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SUMMARY

A study of the high temperature oxidation and Na 2 SO4 -induced hot

corrosion of some nickel-base superalloys has been accomplished by

using ESCA to determine the surface composition of the oxidized or

corroded samples. Oxidation wn., carried out at 900 or 1000°C in

slowly flowing 0 2 for samples of B-1900, NASA-TRW VIA, 713C, and

IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion

of B-1900 was induced by applying a coating of Na l so4 to preoxi-

dized samples, then heating to 900°C in slowly flowing 0 2 . Corros-

ion times ranged from ') min. to 29 hr. For oxidized samples, the

predominant type of scale formed by each superalloy was readily

determined, and a marked surface enrichment of T1 was found in each

case. Fot corroded samples, the transfer of significant amounts of

material from the oxide layer to the surface of the salt layer was

observed to occur long before the onset of rapidly accelerating

weight-gain. Some marked changes In surface composition were ob-

served to coincide with the beginning of accelerating corrosion,

the most striking of which were a tenfold decrease in the sulfur

to sodium ratio and an increase in the Cr(VI) to Cr(III) ratio.
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Goal of the Research	

t I
The goal of this research was to obtain information on the chemistry

of the hot corrosion of nickel-base superallovs in simulated conditions

with emphasis on eventual application to turbine blade corrosion. 'rile

novelty of our approach consisted of the use of new physical methods

with firm potential to expand upon the knowledge gathered to mate by

studies which employed different methods. More detailed information

was needed about the oxidation processes at the surface of the alloys.

Moreover, it was very necessary to obtain as complete an image as pos-

sible of the qualitative and quantitative nature of the dynamic chem-

ical processes occurring at different stages of corrosion. In other

words, we wanted not only to identify all elements reaching the surface

layers, but also to learn about their chemical state, which would then

help us infer (at least in part) the mechanism of corrosion.

Means of the Research

In order to reach such a goal, we chose X-ray photoelectron spec-

troscopy (XPS or ESCA) as the main method of analysis. In ESCA (elve-

tron spectroscopy for chemical analysis):

a) There is a net correlation between the measured

electron binding energy and the oxidation state

of the corresponding element.

h) Measurements of all elements except hydrogen are

possible.

2
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c) The information depth is very small, extending at

most a few nanometers into the sample, thus allow-

ing changes in composition at or near the gas-solid

interface to be observed.

d) Inert gas sputtering can be emplovcd to expose deeper

layers for analysis.

In a later stage, we also used ISS (ion scattering spectroscopy) and

SIMS (secondary ion ►i:ss spectrometry), two methods of surface analysis

that excellently complement ESCA. However, since these instruments be-

came available only toward the end of our project, there was insufficient

time to exploit them profitably. Nevertheless, even the results of the

incipient work were showing clear promise. The samples we studied were

provided and given oxidation and corrosion treatments by scientists at

the NASA Lewis Research Center. The experimental methods are described

In the appended manuscript, which has been submitted to the journal

entitled "Oxidation of Metals."

Description of Results

The data obtained during the course of this study consist of a large

number of X-ra_v induced photoelectron spectra from samples of unoxidized

and oxidized superalloys 8-1900, NASA-TRW VIA, 713C, and IN-738, and hot

corroded 8-1900, covering a wide range of oxidation or corrosion exposure

times. With the help of additional spectra from unoxidized and oxidized

pure metals and from related salts, the spectra from the superallov

samples were analyzed and interpreted to reveal extensive information

about the chemical composition of the outer most few atomic layers of

the samples. Despite the chemical complexity of the samples, all the
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element; present (except H) at concentrations }greater than a fvw parts

per thousand were identified.	 Ili many cases spectral intensities were

employed to nompute approximate relative concentrations of the element~

of interest. The peak positions (binding energies) and shapes allowed

the oxidation states of the elements to be identified in most cases.

Previous progress reports for this grant (see list below) contain many

spectra, as well as tables of binding energies and of surface compos-

e ions. The appended manuscript includes much of tale data in the

progress reports, plus that from experiments conducted near Lite end of

the grant period.

our data revealed substantial migrations of specific elements occur-

ring in the course of high temperature oxidation and Na 2 SO 4 -induced hot

corrosion. Specific observations and conclusions follow.

Conclusions

This work clearly demonstrates the usefulness of E;SCA in tale study

of oxidation and corrosion of superalloys (and other complex materials)

lnspite of its semiyuantitative nature. We will emphasize seven grin-

'	 ciple observations and conclusions of this work:

1. The surface of each of the "unoxidized" superalloy samples

(which were machined to shape and clen ned with detergent,

acetone, and alcohol prior to examination) was found to

be significantly enriched in Al and Cr relative to the

bulk. in each case, the percentage enrichment of X11

exceeded that of Cr.

2. ESCA results for samples oxidized at 900 or 1000°C in

slowly flowing 0 2 showed clearl y that R-1900 and NASA-

'FRW VIA are almmiivi formers and that the surface in

4



IN-738 is primarily T OHowever, the surface com-

position of 713C oxidized at 900% was found to change

dramatically as a function of oxidation time, seeming,

to fit the alumina-former category after one hour but

changing to the chromic-former category after longer

periods of oxidation.

3. The surface of all the superalloy samples oxidized at

high temperature was greatly enriched in Ti relative to

the hulk. TiO 2 is the predominant surface phase on oxi-

dized IN-738 and the second-most abundant on 713C. By

contrast, the surface concentration of Ti did not ex-

ceed the bulk values (1-4%) for any of the "unoxidized"

samples.

4. For preoxidized B-1900 samples exposed to just 30-45

minutes of Na.,SO 4 -induced hot corrosion, the total alloy

element abundance at the surface ranged from 0.3 to 0.8

relative to Na. Thus, the transfer of significant amounts

of material from the oxide layer to the surface of the

salt layer begins long before the onset of rapidly

accelerating weight-gain. A decrease in total alloy

element abundance relative to Na was, however, observed

after 6 hours of hot corrosion.

5. The ratio of Cr(VI) to Cr(III) was significantly greater

after 6 hours of corrosion than at 4 hours. The atomic

abundance of S relative to Na at the surface of Na 2 5o4

-coated B-1900 samples decreased an order of magnitude,
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from 0.43 after 6 hours of hot corrosion to 0.04 after

8 hours. Among the alloy elements, Al and Ni ittcrea-ced

in relative surface abundance and all the others de-

creased over the 6 to 8 hour period. Thermogravimetry

showed that the onset of rapidly accelerating oxidation

took place during this period.

6. For a B-1900 sample examined after 15 hours of Na ?504

-induced hot corrosion, the surface abundances of Na, Ni,

and Al were roughly equal, with Ni and Al accounting for

two--thirds of the alloy element abundance. The oxide

scale which remained attached after spontaneous spal-

lation tram a sample corroded for 29 hours was found to

consist primarily of Mo and Ni. The spallation inter-

face seems on the basis of stoichiometrv, to he mostly

(Nf,Co)Mo04'

7. ESCA binding energies were interpreted to identify the

c)etnical state of the alloy elements In oxidized and

corroded samples. The results did not enable a dis-

tinction between the previously proposed mechanisms

of Na 2SO4-induced hot corrosion.

Recommendations for Future Research

We expect surface analytical techniques such as ESCA to play an it„ -

portant role in the future study of the oxidation and corrosion of

superalloys. To take greatest advantage of its surface sensitivity, we

recommend that ESCA be used for careful examination of the earliest stages

of oxidation or corrosion reactions. Use of an fn situ reaction chamber
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would allow much better control of 'he surface to be examined, and would

facilitate the study of much finer variations in treatments. Scanning

Anger Microprobe would also be very useful, since lateral iahomogeneity

at the surface could then be observed.

Progress Reports Issued

1. First Semiannual Report (June-November, 1974), December, 1974.
NASA CR-140907.

2. Interim Report (December 1974-April 1975), May, 1975.

NASA CR-142899.

3. Second Semiannual Report (December, 1974-Junc • , 1975), .lily, 1975.

NASA CR-143173.

4. Interim Report (.July, 1975-December, 1976), Januarv, 1977.

5. Third Semiannual Report (January-.June, 1977), August, 1977.
NASA CR-154497.

6. Interim Report (July 1, 1977-November 19, 1977), November, 1977.
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ABSTkACT

A study of the high temperature oxidation and Na 2 SO 4 -induced hot

corrosion of some nickel-base superalloys has been accomplished by

using ESCA to determine the surface composition of the oxidized or

corroded samples. Oxidation was carried out at 900 or 1000 0C in

slowly flowing 02 for samples of B-1900, NASA-TRW VIA, 7130, and

IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of

R-1900 was induced by applying a coaeinq of Na2SO4 to preoxidized

samples, then heating to 900 0C in slowly flowinq 02. Corrosion times

ranqed from 5 min. to 29 hr. For oxidized samples, the predominant

t,pe of scale formed by each superalloy was readi1v determined, and a

marked surface enrichment of Ti was found in each case. For corroded

7,amnles, the transfer of significant amounts of material from the

oxide layer to the surface of the salt layer was observed to occur

long before the onset of rapidly accele r ating weight-gain. Some

marked changes in surface composition were observed to coincide with

the beginning of accelerating corrosion, the most strikinq of which

were a tenfold decrease in the sulfur to sodium ratio and an incrpaso

in the Cr(VI) to Cr(III) ratio.
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INTRODUC'T'ION

The development of nickel-base superalloys is a continuing process,

motivated primarily by the demand for materials with great stren g th	 r

and stability at ever higher temperatures for use in modern (gas

turbine enqines. improvement in high temperature strength has been

sought, and achieved by increasing the aluminum and titanium content

of nickel-bas(: superalloys and consequently decrPasinq the chromium

content (ref. 1). Although such rievelopments have succeeded in

permitting higher-temperature operation, a complex catastropF,ic

oxidation process known as hot corrosion has become an important

limiting factor (ref. 2). Ai a resilt, the foot corrosion of

nickel-base superalloys is being thoroug hly investigated in order to

elucidate the reaction mechr.nisms and evaluate the roles of the

various alloy components (ref. 3). The work reported here is part of

such an investigation.

Over the past decade, x-ray photoelectron s pectroscopy (also known as

electron s pectroscopy For chemical analysis - ESCA) has hecome a

useful and widely ap p licable techni q ue for the study of solid surfaces

(ref. 4, 5).	 Its outstandin(i characteristics include: 	 sensitivitv to

all elements except hydrogen; sensitivity to differences in chemical

environment (enabling, for example, the identification of oxidation

states); and surface sensitivity (due to photoelectron escape depths

of just a few atomic layers). Some semi-quantitative information

about the relative concentration of elements in the surface layer can

be derived from the intensitites of the spectral lines, although

F-	 10



the inherent uncertainties are rather large, especially for transition

met als (r#-ts. 6 ti 7).

In recent years ESCA has been employed in many stud t q !:: (0 alloy

surface composition, oxidation, and corrosion (ref. R). Such studies 	
t

have been concerned with simpler, more homogeneous systems than the

multi-element, multi-phase, nickel-base superalloys. Nevertheless,

ESCA can yield useful results for complex systemf;; and it is

complementary to the techniques commonly employed in studies of hot

corrosion which inc l ude thermogravimetry, x-ray diffraction, electron

microprobe, and microscopy.

We have studied by ESCA the oxidation of four commercial Ni-1:ase

superalloys: B-1900, NASA-TRW VIA, 713C, and IN-738. Samr)les of each

were examined prior to high-temperature oxidation an well as after

oxidation treatments at 900 and 1000 00 in slowly flowinq o2. The- hot

corrosion of B-1900 was simulated by coatinq sample; with Na2SO4, and

then exposing them at 900 0C to slowly (lowing 02- Many such samples

were studied with hot-corrosion times rangin q from	 minutes to 29

hours.

To establish a data base for this study we recorded ESCA spectra for

most of the elements contained in nickel-base superalloys, Moth as

pure metals and as oxidized pure metals. These include Ni, Al, Co,

Cr, Ti, Mop Ta, W, and Nb. We also examined several salts of the

alloy elements as well as Na 2SO4 to facilitate the interpretation of

spectre from oxidized or corroded superalloy samples.



EXPERIMENTAL PROCEDURES

All samples had a cylindrical shape consisting of two sections. The

main body section was 114 min
	 and 11 mm in rdiamwor (except IN - -

whichwhich diameter was 5 mm). The upper section, 4 min high by 2.5 min in

diameter was designed for insertion into thf- chuck of the

spectrometer's sample holder. A 1.5 mm diameter hole through the

upper section was provided so that the samples could he hun q from a

platinum wire hook in the oxidation and hot corrosion apparatus. The

samples had a ground surface finish of eight microinches and were

cleaned with detergent, acetone, and alcohol prior to use.

Oxidation and hot corrosion experiments with alloy sam;)l(-s were

performed by	 jing the samples in a 23 u-, i.d. quartz tube contained

wi*hin a vertical tube furnace. Oxygen, at atmospheric pressure, was

flowed through the quartz tube at a rate of 100 cc/min. oxidation

time at 9000 was varied over the range of 0.5 to 100 hours. Sample

weight changes were continuously monitored with a recording

microbalance. Single component pure metal samples were oxidized in

still air in a muffle furnace and w, , ight changes were not -measured.

The corrosion treatment for each sample included the followin g : (a)

preoxidation in oxygen for 100 hours at 900 0C; (b) coatinq with Na2SO4

by spraying with a saturated aqueous solution of Na2SO4 to a specified

weight per unit area coverage of dry Na2S0^4; and (c) hot corrosion by

heating the coated sample to 900oC in oxygen for a specified period of

time. Specific corrosion treatments for individual 1;-1900 samples are

r
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includ^d in the Results arid Discussion section.

All samples were examined with a Varian IEE-15 x-r-ay photoelectron

spec t rometer equipped with a high intensity magnesium anode (Ko,,

-radiation, 1253.6 eV). The operating parameters were: x-ray power,

640 W (8 kV, 80 mA); analyzer energy, 100 eV; channel width, 0.18 eV.

The analyzer pressure was 10- 6 - 10- 7 torn, maintained by a

turbomolecular pump and rotary foreline pump. In cases where

sputtering was done, the arproximate conditions were 5-10 minutes alow

discharge at 1 to 2 kV and 2 to 4 mA in 40 to 50 millitorr Ar.

The binding enerqy of each photoelectron peak was taken to be the

position of the peak max imurr, as determined b y visual  ohservat inn of a

plotted spectrum. A DuPont 310 Curve Resolver was emnloyed in cases

of significantly overlapping peaks. The photoelectron hindinq

ener4 es were corrected for surface-charging effects by reference to

the C is (hydrocarbon contamination) peak, which was assigned the

standard binding energy of 285.0 eV. The width of this peak ranged

from about 2.5 to 3.2 eV (FWHM). The estimated uncertainty of thr,

binding energy ranged from + 0.2 eV for sim p l y-, intense peak:,, i:o + 0.5

eV for peaks that were complicated by multivIet splittinq, multil.>le

oxidation states, or overlap with less Intense peaks of other

elements. Some peaks were poorly defined due to very low intensity

(low concentration of the element in the sample) and thus had even

more uncertain binding energies.

For most samples, the series of spectra u pon which the

13



semi-quantitative results are based was recorded in "sequential mode";

that is, the spectrometer scanned the region of the selected peak of

each element in order of decreasing bindinq energy, then repeated this	 `

sequence until all the peaks were sufficiently well-defined. This

minimizes the effect of any instrumental fluctuations on the relative

intensities of the peaks. The area under each simple, symmetric peak

was generally taken as

width at half maximum.

peak was determined by

analyzed into individu

background wa; assumed

segmented.

the product of the peak height by the full

The area under each complex or poorly-defined

square-counting, after thf spectrum had been

al components using the curve resolver. The

to be linear, or in some complex spectra,

The intensities thus determined were used to compute the approximate

relative surface abundances of the elementT in each sample. Three of

the several factors (ref. 7) that enter into the relationship between

observed intensity Ii and elemental concentration ni were explicitly

accounted for in these computations: the photoionization cross

section W', the spectrometer detection efficiency T, and the mean free

path (of the photoelectron in the sample material) ;k. The cross

sections used were -''.lose calculated by Scofield (ref. 9). The

relative effect of T was represented by its theoretical kinetic energy

de pendence (ref. 10), T	 1/E. The variation in A was also

approximated as a simple function of kir:etic energy (ref. 6),

E1/ 2 . Thus, at this level of approximation, the relative surface

concentration of two elements is qiven by nl/n2, where

14



nl	 ^ i^(^^ T)1) ` l i S i 1/261	 The fra%•tion of one alloy element

relative to the total alloy surface abundance is qiven by ni/Xni,

where the summation includes all the alloy elements.

There are several sources of uncertainty and error that affect the

semi-quantitative results in this study. 'IhN most profound is the

inhomogeneity of the superalloy sample surfaces. Because the surface

area from which photoelectrons were obtained was large (roughly 4

cm2), the SSCA intensities reflect an average composition only.

The large number of elements in the superalloys resulted in the

presence of a large number of peaks in the electron spectra, some of

which were not fully resolved from each other. For example, the Cr

^s, Al 2p, and Ni 3p peaks overlapped significantly, as did the Mo 3d,

Ta 4d, and S 2s peaks, and likewise the Ta 4f, Na 2 p , and n 2s. For

most of the elements of interest, the intensity data were ohtained

from other peaks not involved in such overlaps. This necessitated the

use of peaks at widely different kinetic energies, which also

contributed to the uncertainty (due to the very approximate treatment

of A as a function of E and the neglect of surface contamination

effects). The peaks used were: 2p 3/2 for Ni, Co, Cr, and Ti; 3d5/2

for Mo and N1,; 4f7/2,5/2 for Ta and W; 2s for A]; 2p3/2,1/2 for Cl and

S; is for C, O, and Na.

When a complex system such as a superalloy is studied by means of

ESCA, it is helpful to know the bindinq energy, shape and satellite

structure of the peaks that are expected to appear in the spectral

D
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regions to be examined. This requires knowledge not only of the

spectra of pure metals, but also of other oxidation states and

chemical environments with which the metals might be associated.

Although tLere is existinq literature on the spectra of these metal^

and many of their compounds (refs. 11 through 19), we chose to obtain

our own set of spectra for the superalloy elements as pure metals, as

oxidized pure metals, and in a few cases as powdered salts. These

data, supplemented with information from the above cited literature,

were used as a guide for data analysis (curve resolution and oxidation

state identification) of the superalloy spectra.

RESULTS AND DISCUSSION

Surface Composition of "Unoxidized" Superalloy Samples

Samples of B-1900, NASA-TRW VIA, 713C, and IN-73£3 were examined

"unoxidized" (samples machined to size, then cleaned in detergent,

acetone, and alcohol) as well as after various periods of

high-temperature oxidation at two different temperatures. Tn Table T

the bulk composition of each Euperalloy is given (ref. 20), along with

the average surface composition as computed from the relative

intensities of ESCA lines from "unoxidized" unsputtered samries.

These data indicate that in each case the surface layer was enriched

(relative to the bulk) in Al, Cr, Mo, and Ta; and depleted in Ni by

roughly a factor of 2. The surface concentrations of the remaining

elements, including Ti, were not markedly different from the bulk

values.
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In general, the binding energies measured for each element in the

unoxidized, unsputtered samples suggested the presence Cf one or more

of the higher oxidation states of the element. The f.ollowin q species

were indicated in particular: 	 Ni(II,III) • Cr(III); A1(III); Ti(IV);

Co(II,III); Mo(VI); W(VI); Ta(V); and Nb(V).	 Only for Ni was the

metallic (zero-valent) species also observed. However, ifter 5-10

minutes of sputtering, Ni was found to be solely in the metallic state

(fig. 1), and Co was mostly in the metallic state (fig. 2). Them was

also some evidence of lower oxidation states of Mo, W, Ta, and Nh,

while Cr, Al, and Ti were not reduced at all. These seem to be

chemical effects of sputtering, and are in general agreement with the

observations of Kim and Winograd (ref. 11). 	 In addition, sputtering

was often accompanied by a significant decrease in the Mo

concentration at the surface. This may be due to the relatively high

volatility of M0O 3 of elevated temperatures.

.surface Composition of Oxidized Superalloy Samples

After undergoing oxidation in slowly flowing 0 2 at 900 or 1000 0C for

periods ranging from 0.5 to 100 hours, samples of the four supPralloys

were found to have generally the same oxidation states represented in

the observable surface layer as the "unoxidized" samples had.

Metallic Ni was no longer observed prior to sputterin q , however.

Before discussing the observed surface composition of the oxidized

superalloys, it is helpful to note that such alloys are generally

divided into two groups, depending on the nature of the oxide scale

17



0

(refs. 21 6 22). One group, called "alumina formers", typically has a

thin continuous surface layer rich in Al2O3 adjacent to the metal

substrate. In some cases other oxides are dissolved in the alumina or 	 t

form an external layer over it. The second group, called "chromic

formers", has a layer composed primarily of Cr 2 O 3 which is underlaid

by "tentacles" of Al2O3 extending into the metal. Ot,ier oxides may

dissolve in or form thin layers above or below the Cr2O 3 . While the

concept of these two categories is useful, there are also significant

differences amonq members of each group (dependinq on the exact alloy

composition and oxidation treatment) and even the surface of a single

sample may have significant lateral inhomoUeneity.

The semi-quantitative ESCA results for oxidized suheralloy samples

revealed some interesting trends in the average concentration of the

alloy elements in the surface layer. These results are presented

numerically in 'fables II-V and some of the results are illustrated in

Figure 3.

On the basis of the ESCA results alone, it can be concluded that

B-1900 and NASA-TRW VIA are alumina formers when oxidized at 900 or

1000 0C in slowly flowinq 02. Changes in I3 -1900 surface composition

with oxidation time were generally minor, althouqh the Ti and Cr

concentrations increased. Ti and Al increased while Ni and Mo

decreased with oxidation time on the NASA-TRW VIA sample surfaces.

The surface composition of ' 7 13C oxidized at 9000C was found to change

dramatically as a function of oxidation time, seemin g to fit the

alumina-former category after one hour but changinq to the

18



chromia-former category after longer periods; of oxidation.

The ESCA results also show that Ti was about an order of magnitude

more abundant at the surface of each superalloy after hi g h temperature

oxidation than it is in the bulk. TiO2 was the predominant surface

:species on IN-738 and the second-most abundant on 713C. In IN-738, Ti

constituted 608 of the alloy component abundance in the observed

surface layer after just one hour at 9000C. By contrast, the surface

concentration of Ti did not exceed the bulk values; (1-48) for any of

the "unoxidized" samples, which oxide scale formed at relatively low

temperatures during machining (fig. 4). Bourhis and St. John (ref.

32) noted the presence of a Ti0 2 layer over the Cr2O3-rich oxide scale

on IN-738 and two other superalloys with :similar bulk concentrations;

of Ti. It seems appropriate to designate these as Ti02-overlaid

chromia formers.

Ni, Cr, Al, and Ti were the only alloy elements that attained a

4P
	 relative surface abundance of more than 108 in any of 'he samples

oxidized at 900 or 1000 0C. The surface was depleted in Co (relative

to the bulk) in all the Co-containing oxidized samples except for VIA

oxidized at 10000C.

The ESCA results are generally in good a g reement with earlier- work of

some of the authors (ref. 23) who analyzed similar samples by several

other methods. An exception oc:corred for 7130 oxidized at 1000 0C: the

surface abundance of Ni determined by ESCA was only 138, while

Fryburg, et. al., identified by x-ray diffraction a thin black scale

19



to be mostly NiO. This scale had a marked tendency to spall from

samples oxidized for 100 hours. However, the sample analyzed by ESCA

(which were oxidized for shorter periods) showed no visible evidence	
s

of spallation. 'Thus, the observed differences could be due to the

different oxidation times.

Surface Composition of B-1900 at Successive Stages of N22SO4-Induced

Hot Corrosion

Hot corrosion is a complex process of enhanced or catastrophic

oxidation known to affect superalloys that are exposed to hot

combustion g ases, as in qas turbine engine a pplications. A corrosive

deposit forms: molten Na2SO4 is widely considered to be its most

important constituent (ref. 24).

There is some evidence that hot corrosion in practical systems occurs

in two stages (ref. 25): an incubation or induction period, followed

by the sudden onset of enhanced or catastrophic oxidation. F'ryburq,

^I

Kohl, and Stearns (ref. 26) observed such a

corrosion of B-1900, NASA-TRW VIA, 713C and

reaction conditions employed in this study.

the least resistant to this type of attack,

of about five hours at 900 0C, though it is

oxidation in the absence of Na2SO4.

pattern for the hot

IN-738, using the same

R-1900 was found to he

having an induction period

the most resistant to

Figure 5 is a plot of weight-gain versus time for the B-1900 sample

that rec-ived the longest simulated hot-corrosion treatment prior to

analysis by ESCA. The magnitude of the hot corrosion effect is
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illustrated by the followinq comparison: the total weight gained in

29 hours of hot corrosion was nearly 80 mq/cm 2 (fig. 5) whereas the

corresponding gain for simple oxidation (in the absence of Na2SO4) was

less than 0.2 mg/cm 2 (ref. 27). Upon coolin g , a scale roughly 1 mm

thick peeled off in large sections from the sample that was corroded

for 29 hours.

The existence of an induction period followed by a sudden acceleration

of the oxidation rate is also manifested in Figure 5. The induction

period is a time in which little or no weight gain is observed. The

V.	 length of the induction period is a function of temperature, alloy

composition, amount of Na 2 SO 4, and preoxidation of the sample. In

addition, it is difficult to define the length in a relevant

quantitative way. We have arbitrarily chosen the period of time

required for the specimens to attain a specific weight gain of 0.3

my/cm2. For the conditions illustrated in Figure 5, the data indicate

an induction period of five hours.

In this ESCA study, we sought to elucidate the reaction mechanisms by

which the normally protective oxide scale of B-1900 is destroyed, by

observing changes in surface composition durin g the first few hours of

simulated hot corrosion.

Na2SO4 Coatinq

To test the effectiveness of the application of Na 2 SO 4 , a B-1900

sample was analyzed after being pre e)xidized, then coated to a Na2SO4

coverage of 3 mg/cm 2 . The ESCA spectra showed no distinct peaks for
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the alloy elements, indicating that the coverage was complete. The

spectra for Na, S, and O were in agreement, in terms of binding energy

and relative intensity, with those for Na 2 SO 4 powder (which was	 `!

mounted on double-sided tape for examination by ESCA). There was onh

exception to this agreement: the Na intensity was greater than the

stoichiometric value by a factor of 1.5 for the Na2SO4- coated sample.

Also, the presence of C1 on the coated samples, at a concentration

2-3% as great as Na, was established. The source of the Cl

contamination was not apparent. The concentration of Cl was less than

10 ppm in the Na2SO4 (before application) and in the water used in the

application of the Na2SO4.

Hot Corrosion for 5-45 Minutes (Early Induction Period)

Four experiments were carried out to determine the effect of very

short periods of exposure to hot corrosion conditions. The

preoxidized sample discussed above was washed, recoated with Na2SO4 (3

mg/cm 2 ), then heated to 900 0C for 5 minutes in one atmoGnher- of

slowly flowing 02. The ESCA analysis of this sample showed mainly

Na 2SO4, in the expected stoichiometry, but also showed small amounts

of Ni, Cr, and possibly Al. The abundance of each of these elements

relative to Na was probably less than 2%. Cl was again present at the

3% level relative to Na.

The same sample was later subjected to an additional 30 minutes of hot

corrosion treatment, another sample was given a similar 30-minute

treatment, and an unoxidized sample was coated with 0.6 m q /cm2 of
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Na2SO4 and corroded for 45 minutes. The ESCA analysis of each of

these samples showed clearly that all the alloy elements were pre.,

in the observable surface layer. Al and Cr were, respectively, the

most and next-most abundant alloy elements in the first and third 	 1^

samples, while the order was reversed for the second sample. The

total alloy metal abundance (relativf- to Na) ranged from 0.3 to 0.8

for these samples. This is an important observation, indicating that

the transfer of significant amounts of material from the oxide laye ►

to th•• surface of the salt layer begins early in the induction period,

long before the onset: of rapidly acceleratinq weight-gain. The

analyses of there three samples also showed a consistently low ratio

of S to Na, ranging from 0.22 to 0.29.

Clot Corrosion for 2-8 Hours (Induction Period and Early Acceleration)

Eight preoxidized, Na2SO4-coated (3 mg/cm 2 ), B-1900 samples were

prepared, and subjected (two samples for each treatment) to hot

corrosion for 2, 4, 6, and 8 hours. The average surface compositions

determined by semi-quantitative ESCA are illustrated in Fiqures 6, 7,

and 8.

Figure 6 shows elemental abundances relative- to Na for mo,t of the

alloy elements and for S and Cl. The results for the 2 and 4 hour

treatments support the conclusion that a si gnificant amount of

materia) from the oxide layer reaches the surface of the salt layer

during the induction period.

The atomic abundance of S (identified via ESCA hindinq energies as
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SO4 = ) relative to that of Na is rather close to the stoichiometric

value for Na2SO4 (0.5) after 2, 4, and 6 hours of corrosion. however,

the relative S abundance decreased by a factor of 10 for them sailwles	 t

corroded for 8 hours. Such a decrease in SN' at th r` and of the

induction period was also observed previously (ref. 26), by washing

simlarly-corroded B-1900 samples in wafer and analyzing the elements

thus extracted.

The observation that all the alloy elements are much less abundant

relative to Na in the 6 and 8 hour samples than in the 2 and 4 hour

samples is a phenomenon that remains to be explained. If one assumes

that the alloy elements detected by ESCA are soluble com ponents of the

molten Na2SO4, the decrease in relative abundance could be explained

by a reconversion to the appropriate oxide and subsequent

precipitation. This would a g ree with the layered oxide structure

often observed on hot corrosion samples, and would also agree with a

similar decrease in soluble aluminum and chromium observed at the end

of the induction period by Fryburg, Kohl, and Stearns, using similarly

corroded B-1900 samples. Further work would be required to elucidate

this point.

Figure 7 shows the average alloy element concentrations (for thr , same

samples) computed by setting the total abundance of the seven metals

of the alloy equal to 100%. The composition changes which occur amon<l

the alloy elements over the 2 to 6 hour period of time seem to be

rather minor. A rough similarity to the surface composition of B-1900

oxidized in the absence of Na2SO4 may be noted. 	 The increase in Al
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and Ni and decrease in other alloy eloments at the sut face of the H

hour samples may be si(jnificant becaUse the corrosion rate has bequn

to accelerate by the.' time.

Fiqure If illustrates the results obtained Erom analyses of the same

samples after they were washed in distilled water (try remove the

Na2SO4 and other water - soluble phases) and oven-dried. While the

washing procedure changed the macrosco •)ic appearance of the samples

significantly, the gPneral pattern of the alloy element abundance:

remained much the SamN. Ni and Co were somewhat more abund.+nt after

washing in the 2 and 4 hour samples. The prevalence c,f Al in the f,

and R hour samples was also increased after washing. C1 was ptesen

on the washed samples at 3-7N abundance relative to the total alloy

element abundance.

The core level bindinq energies (E b ) observed for corroded 9-1900

samples have been employed to identify oxidation states and, for some

elements, specific chemical species that are present at the surface.

The ESCA spectra of Na25O4, Al203, NaAl()2, Al2(SO4)3, NaAI (Sc^4 )2, an',

Na2CrO4 powders were recorded to facilitate the interpretation of

bindinq energy results for the corroded samples. 11`nere is soma

inherent uncertainty in the comparison of measurements :made on

tape-mounted Powders with those made on other- types of surfaces;

however, the E b values for Na2SO4 powder- were found to aor • ee within

experimental error (+ 0.3 eV) with those for N12SO4- (-OI:Itrr1 11-1000

sam ples ( both before and after a 5-minute teat t roiit meet at 000 0C) .

t
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The avera(le Al 2s hindinq ener gy for the corrod—i ^ample; wan 11 14.3 eV

which indicates that Al20-1 is the predominant Al species. The Al 2s

Eh of NaA102 is only 0.4 eV lower than that of Al203; thus, the

presence of some NaA102 can be ne it her firmly e -t.ah1 ishf- el nor t u I eel

out. The observation of NaA102 would constitut., evidence for the

"basic fluxing" model of hot corrosion (ref. 28^, in which the Na2SO4

layer becomAs enriched in 02- and dissolves Al203 as A102-.

Conversely, the detection of A1 3+ that is not directly bondc.i to

oxygen would constitute evidence for the "acidic fluxinq" model of hot

corrosion (ref. 28), in which Al203 dissolves as A1 3+ because of 0 2-

deficiency in the molten Na 2 SO 4 layer. The detection of .3uch A13+

species by E;SCA seems feas ihle becaus( , Al2 ( ,()4) 3 and NaA I ( SO4) 2 we're

found to have rather large Al 2s hindinq energy shifts (1.3 eV and 1.;

eV, respectively) relative to Al203. A small "high I:h shoulder" was

observed in the Al 2s spectra of several corroded sam ples; however, a

careful review of the Al 2s and Al 2p spectra showed that no

significant amount of the observed Al could be identified as A13+ in

an Al2(SO4)3- or NaAl(SO4)2 ••like environment.

In both the acidic and basic fluxin q models, a stoichiometry Uradient

is presumed to exist across the salt layer, such that the A1 3+ or

A10 2 - ions formed at the salt/alloy interface would be likely to

reform as Al203 at the salt/atmosphere interface. This suggPsts that

the search for A1 3+ or A102 should be continued toward the salt/alloy

interface. Mechanical removal of peripheral layers, followed by ESCA

analysis, is a possible approach.
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On the basis of Cr 2f'3/2 binding energies and peak shapes, the

corroded sampleb were found to hive both Cr(VI) and Cr(III) present in

the surface layer. Cr(VI) accounted for 50-80% of the Cr intensity

and, because some reduction of Cr(VI) occurred during ESCA runs, it	 `I

can be concluded that Cr(VI) is generally predominant at the surface.

The ratio of Cr(VI) to Cr(III) was significantly greater after 6 hours

of corrosion than at 4 hours (see fig. 9). The average Cr(V1) binding

energy of 579.3 eV for corroded samples is within experimental error

of that observed for Na 2CrO4 powder (579.5) as well as the most recent

literature value for CrO3(579.07) (ref. 13). Na2CrO4 and Na2SO4 are

not clearly distinguishable on the basis of Na is binding energies.

The pale yellow color observed on some corroded samples is indicative

of Na 2CrO4, however.

For Ni, Co, Mo, Ta, and Ti the same oxidation state(s) that was

identified for B-1900 oxidized in the absence of Na2SO4 seemed to be

present on the surface of the corroded samples.

Hot Corrosion for 15-29 Hours (Extensive Attack)

Two pr.eoxidized R-1900 samples were coated with Na 2 SO 4 (3 mq/cm 2 ) and

heated for 15 and 29 hours respectively, at 900 0C in slowly flowing

0 2 . The 15 hour sample exhibited extensive corrosion over the entire

surface, but remained intact so the surface could be examined by usin4

ESCA. The alloy elements were found to he significantly more

abundant relative to Na in this sample than in any previous corroded

sample: Ni which accounts for ?5`k of the total alloy elements
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observed, is nearly as abundant as Na. The other elements

contributing more than 10% of the alloy com ponent total are A1(31%)

and Ti(128). This sample has a surface composition intermediate

between those of the Al2O3- dominated samples (2-8 hour corrosion)

discussed above, and the NiO-dominated ones (up to 100 hour corrosion)

which Stearns, Kohl, and Fr_yburq (ref. 30) examined by x-ray

diffraction.

The S 2p peak is barely detectable for the 15 hour sample, S being

less than 2% as abundant as Na, and about the same as Cl.

The binding energies of Cr, Co and Al are significantly lower than for

previous corroded samples, indicating different oxidation states or

chemical environments. Most of the Cr was found to he in the Cr(III)

oxidation state. The Co 2p3/2 binding energy, width, and shakeup

structure are in agreement with recent results for Coo (ref. 31).

The Eb for Al 2s is 118.5 ev, or 0.8 eV below Al2O3 and 0.5 eV below

NaA1O 2 : the chemical environment of Al remains to be identified.

The sample corroded for 15 hours was subsequently washed in water;

however, a scale a few tenths of a millimeter thick began to peel off

during the process. The sample was again anal; • zed by ESCA after the

scale had been carefully removed. The surface composition,

considering alloy elements only, was found to be: Ni, 42%; Al, 16%;

Mo, 16%; Co, 12%; Cr, 9%; Ta, 4%; and Ti, 2%.

A scale roughly 1 mm thick detached itself in large pieces from the

surface of the 29 hour sample upon cooling after the hot corrosion
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treatment. This provided an o pportunity to examine the interface

where spontaneous scale separation occurs. The surface of the oxide

that was retained on the sample was found to consist primarily of Mo

and Ni. the ESCA results indicate the following composition,

considering alloy components only:	 Mo, 39^; Ni 33%; Al, 11%; Cr, 7%;

Co, 6%; Ta, 2%; and Ti, 1%. This pr(vides evidence in support of the

conclusions reached by Stearns, Kohl, and Fryhurq (ref. 30) on the

basis of x-ray diffraction analysis of similar samples: tl:,^ most

prominent phase is NiM00 4 which probably contains a considerable

fraction of COM004 and is accompanied by a phase of mixed Al-Cr

spinel. The relative abundances from the ESCA results substantiate

the (Ni,CO)MOO4 stcichiometry: the ratio of Ni + Co to Mo is 1.0,

while the ratio of 0 to Mo is 4.1.	 Bourhis and St. John (ref. 32)

also identified NiM004 at a somewhat similar spallinq interface.

SUMMARY AND CONCLUSIONS

This work clearly demonstrates the usefulness of ESCA in the study of

oxidation and corrosion of superalloys (and other complex materials)

in spite of its semiquantitative nature. We will emphasize seven

principal conclusions of this work:

1. The surface of each of the "unoxidized" superalloy samples (which

were machined to shape and cleaned with detergent, acetone, and

alcohol prior to examination) was found to be significantly enriched

in Al and Cr relative to the bulk. In each case, the percentage

enrichment of Al exceeded that of Cr.

•
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2. E;SCA results for samples oxidized at 900 or 1000oC in slowly

flowing 02 showed clearly that B-1900 and NASA-TRW VIA are alumina

formers and that the surface of IN-738 is Primarily Ti02. However,

the surface composition of 713C oxidized at 900 0C was found to change

dramatically as a function of oxidation time, seeming to fit the

alumina-former category after one hour but changin g to the

chromia-former category after longer perioulz of oxidation.

3. The surface of all the superalloy samples oxidized at high

temperature was greatly enriched in Ti relative to the hulk. Ti02 is

the predominant surface phase on oxidized IN-738 and the second-most

abundant on 713C. By contrast, the surface concentration of Ti did

not exceed the bulk values (1-4%) for any of the "unoxidized" samples.

4. For preoxidized B-1900 samples exposed to just 30-45 minutes of

Na2SO4-induced hot corrosion, the total alloy element abundance at the

surface ranged from 0.3 to 0.8 relative to Na. Thus, the transfer of

signficant amount of material from the oxide layer to the surface of

the salt layer begins long before the onset of rapidly accelerating

weight-gain. A decrease in total alloy element abundance relative to

Na was, however, observed after 6 hours of hot corrosion.

5. The ratio of Cr(VI) to Cr(III) was significantly greater after 6

hours of corrosion than at 4 hours. The atomic abundance of S

relative to Na at the surface of Na2SO4-coated 11-1900 samples

decreased an order of magnitude, from 0.43 after 6 hours of hot

corrosion to 0.04 after 8 hours. Among the alloy elements, Al and Ni

s^
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increased in relative surface abundance and all the others decreased

over the 6 to 8 hour period. rhermogravimetry showed that the onset

of rapidly accelerating oxidation took place during this Period.

6. For a B-1900 sample examined after 15 hours of Na2SO4-induced hot

corrosion, the surface abundances of Na, Ni, and Al were roughly

equal, with Ni and Al accounting for two-thirds of the alloy element

abundance. The oxide scale which remained attached after spontaneous

spallation from a sample corroded for 29 hours was found to consist:

primarily of Mo and Ni. The spallation interface seems on the hasis

of stoichiometry, to be mostly (Ni,Co)M(-)04-

7. ESCA binding energies were interpreted to identify the chf,m ical

state of the alloy elements in oxidized and corroded samples. The

results did not enable a distinction between the previously proposed

mechanisms of Na2SO4-induced hot corrosion.
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Fig. 1. Comparison of N1 2p photoelectron lines recorded before and after

Ar ion sputtering of an unoxidized NASA-'TRW VIA sample.
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Fig. 2. A Co 2p photovleetron spectrum, recorded after Ar ion sputtering
of an unoxidiztd YLSA-TRW VIA sample, showing Co mostly in the

metallic state.
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Fig. 3. Comparison of the bulk and surface abundances of Ni, Cr, Al, and
Ti in superalloys: a) B-1900, b) NASA-TRW VIA, c) 713C and d)
IN-738. "Bulk" and "Surface" data are from chemical and F.SCA

analyses, respectively, of unoxidized alloy samples. "Sy 00 o" and

"S1000°" data are from ESCA analyses of samples oxidized for 100
hours at 900 and LOCO°C, respectively. The total observed
abundance of the alloy components (Ni, Cr, Al, Ti, Co, MO, Ta, 11f,

and Zr) was taken as 100% in each case.
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Fig. 4. Comparison of Ti 21) photoelectron lines from unoxidized and oxidized
IN-738 samples, illustrating the marked Ti enrichment of the surface
that accompanies high temperature oxidation. A concurrent decrease

in Ni is evident from the x-ray induced Auger peaks.
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Fig. 6. Approximate surface composition of B-1900 during the early stages of

Na 2 SO4-induced hot corrosion at 900°C. (Other elements observed, but

not included in this graph, were C, 0, Ti, Mo, and Ta.)
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Fig. 7. Approximate relative abundance of alloy components at the surface of
B-1900 during the early stages of Na2S(14-induced hot corrosion at

900°C. (Total abundance of alloy components is taken as 100%.)
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Fig. 8. Approximate relative abundance of alloy components at the surface

of hot corroded (900°C) 8-1900 samples after mashing. (Total
abundance of alloy components is taken at 1007.)
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Fig. 9. Cr 21) photoelectron spectra from R-1900 samples after 4 and 6 hr

of Na2SO4-induced hot corrosion. Cr(V1) and Cr(111) contributions
within the Cr 

2p3/2 
peaks are resolved.
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