General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



ATVMIOSPHERIC EFFECTS ON COHERENT LASER SYSUEMS

Fin.l Report

June 1973 = June 1979

Grant NSG-8037

(NASA-CE-158692) ATMOSFHERIC EFFECTS ON N79-25374
COHERENT LASER SYSTEMS Final Report, Jun.
1978 - Jun. 1979 (Alabama A % M univééCL _— R
. HC AO2/MF AO1
eANE E R d G3/36 22264

NASA Technical Oificer for this Grant: Mr. James W. Bilbro,

EC 32, NASA-Marshall Spacu light Center, Alabama 35812

by

S. S. R. Murty

Alabama A & M University

Normal, Alabama 35762



T

Introduccion and Summary

The final report documents the rescarch work accomplished on the NASA
Crant NSG 8037 entitled "Atmospheric Effects oa Coherent Laser Systems"
during the period June 1978 through May 1979. This report includes the
material from the semi-annual report along with the acdditional analysis
developed during the latter half of the Grant period. Most of the material
from eq. (16) through eq. (33) is due to the research since December 1978.

The objective of the resecarch is to investigate the effects of che
truncation of the gaussian beam by the telescope on the signal-to-noise
ratio of the NASA Laser Doppler System. The analysis presented in the next
scct%on deals with the finite bean effects neglecting the atmospheric
effects. The well-known results for the case of infinite beam are derived
fream the finite beam formulation. The latter section deveiops the tacory
with the effects of the atmospheric turbulence and beam t:uncation. The
results are expressed as finite integrals. Taese integrals require numer-
ical integration. The integrals were programmed on the UNIVAC 1108. The
program ran into unexpacted computer memory problems and the results are
fragmentary at this time,

Another objective was *o gatner data on the refractive index structure
constant CN using the CA-9 Space Averaging Ancmometer. It took feveral
months to obtain clearance [rom NASA to purchase the Anemometer and the
associated equipment. Campbell Scientific, Inec. took almost 3 months to
deliver the system. The system is in the process of being set-up over
the roofs of Patton Hall and Carver Complex on the campus of Alabama A & M

University.



A paper eatitled "Laser Beam Propagation in Turbulent Atmosphere" is
at the stage of galley proofs and will be published in the forthecoming

issue of Proceedings C, Indian Academy of Sciences, Bangalore, India.



FINITE BEAM THEORY OF ATMOSPHERIC LDV SYSTEMS

Hetcrcdyne detection of optical radiation scattered from aerosols
has been the subject of several papers. We are concerned specifically
with the detection of backscattered radiﬁcion and the extraction of
velocity information of the target from the Doppler shift of the wave
frequency. The NASA l.aser Doppler System is of coaxial configuration with
the same telescope acting as transmitting and receiving antenna. The
intensity of laser radiation leaving the transmitting telescope has a
Gaussian profile whose wings are cut off by the finite size of the tele-
scope. It is simpler mathematically to treat the beam as an infinite
Gaussian distributed field and ignore the finite size of the transmitter
and receiver. Sonnenschein and Harrigan [1] analyzed the signal-to- noise
relat'ionships for a coaxial system that heterodynes the backscattered sig-
nal from atmospheric aerosols assuming infinite Gaussian fields. The real
systems are of finite size and the radiation becomes a truncated Caussian
beam. The purpose of this work is to investigate the effect of the finite
aperture size of the coaxial system on the signal-to-noise ratio and detér-
mine the conditions when the infinite wave analysis is valid.

There are a few research papers which deal with the effects of finite
aperture size in practical systems. We refer to the papers relevant to
the present work in the following.Classical heterodyne detection of an
incoming optical signal by superpesition of a beam from local oscillator at
the finite receiver aperture is discussed by Fink [2] and Cohen [3] for plune
or airy signal fields and by Takenaka, Tanaka and Fukumitsu [4] for Caussian
fields. Mundel and Wolf [5] comsidered the problem of detecting a coherent
light beam in the form of a plane wave or Caussian wave with an aperture of
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circular or rectangular geometry. Halldorsson and Langerhole [6] considered
the lidar set-up and calculated the form factors for atmospheric backscatter-
ing of laser radiacion for misalignment of the axes and axial displacement
of the aperture. Fried [7] considered the heterodyne detection of atmos=
pherically distorted wavefront by a finite detector and showed that there is
a limit to the useful collector diameter for an optical heterodyne system.
Finally, Lutomirski and Buser [8] analyzed the mutual coherence function for
a finite optical beam which contains the effects of source geometry and
coherence loss in atmospheric propagation. The analysis of the coaxial system
with finite aperture neglecting the atmospheric propagation effects is pre-
sented in the following.

The leser beam is transmitted along the Z axis and scattered back at
the range point by the natural aerosols. The transmitter, receiver and the
diffuse scatterers along with the coordinate system are shown in Fig. 1. The
transmitter and receiver lens are in the xy plane and the scatterers are at a

distance L. x J X

Fig. 1. Sketch of the telescope, scatterers and
coordinate systems

We consider the coordinate vector ?1 as a two-dimensional vector in the plane
of the transmitting lens. The vector ;2 is in the plane of the receiver lens.
The wvector ; is a two-dimensional vector in the i&'acattering plane at the

point P.



The wavefront leaving the transmitting lens is assumed to have a
Gaussian amplitude Aistribution with standard deviation of a and focussed

at range f from the transmitter. The transmitted wavefunction is given by

A K nE
- _—— TL; — L a--—_—1 ! D
V(I(RY = U, & * f h, £ P/
' 1

where k = 2n/) is the optical wave number, and :. - l;ll'

The wavefunction at the range po.nt P before scattering takes place may

be written using the Huygens-Fresnal principle:

o A - -3 b 1
U(p)=- B_r'i. j}\vw,) G(~N,,p) 4 N (2)

The term G (;, ?1) is the field at the point P due to a point source at ;1

and is given by

G(h,n) = VR (3)

for a homogeneous medium where s (E, ?1) is the geometric distance between

the points ; and ?1. In the paraxial approximation, we may use

- > \Z
S(BR) o~ L [l % bzl ] (4)
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After substituting for G (p, rl) in eq. (2), we get

g |
= ., oKL %L(_E::‘- .
Vip) = —;f:‘- fvcﬁ’,) £ AL &‘}{‘ s
FTY A -

The integration in eq (5) 1s over the area of the receiver.
The laser beam will be back-scattered at point P. Applying the
Huygens-Fresnel principle and paraxial approximation to the scattered deam,

we obtain the wavefunction at the receiver given by
2

o\ —%"fh‘,ﬁi(li;&%,;(uuwf)
AR P=ARIOR

(6)

where o' is the radar crossection of a single aevosol.
 The incident radiation is mixed with the local oscillator signal whose

wavefunction is given by

2 8
Vi, (R > M/2a (7
lu}L"'g_) = L"-”u‘_f 'd
The signal current 1. is given by
- s 1 f‘-Lr(’\
Ay = M) 2D Ungy () W(R,) 4°R, ¢

where W (?2) is the aperture function given by

W(R,)) = | fov N, < DA
= 0 ‘i‘a" h’;>'D/1

We will now substitute equations (5), (6) and (7) in eq (8) and obtain the
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following equation for the signal current: SR O T

iye = EXN(T_) o UR) € a* i
o 8 LAY A "o
iK (rﬁ-i:i)l. (9
- — 2
IVC'\,) et W(h,) 4 ;{:
B - M dkn
- (R = Upy ¢ T TP o)

The signal power due to scattering from a single particle at P is
proportional to the square of the current given by eq (10). To obtain the
total power, we have to integrate over the probing volume. The pulsed
system serses scattered radiation from a slab of air of thickness AL = ¢T/2
in the paraxial approximation where c is the speed of light and T is the
pulse length.

" Let I‘ denote the total current due to scattering from all particles at

a mean distance L. The total power is proportional to I:-

. s 4 3 - g__ f ¢ A 2>

In order to obtain the total signal power, we have to calculate ii, which is

written as a double integral. The ensemble average of the square of the

signal current is given by: ik T.RAYL/D
’ -,:zi('? ) =(p=-ny) }
o 1 [k o'’ e T il 12—
Cag > = ‘i(:"’: HU f VEIU,) € AR, 47, |,
A A :

2 (LA R LAY az
[[ ng’) V.)€ | W(R,) W) d‘&’:a“f{]
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The point ;3 is in the plane of the transmitter and the point ;& is in

the plane of the re.ceiver. We will consider the intcgrals in each of the

square brackets one after another. We introduce sum and difference coodin-

ates and make use of the circular symmetry of the beam.

Define
- i~ _ - >
R,= _'E(R’,-i- R,) ?A 2 A =Ny
3 m— 13
T = Ruy+ Wa n‘a:'ﬁ“_ /2 i

Substituting for ;1 and ;3. we obtain the following relations.

('Al-;--;'x’,) . (F"R5) = 2 f,\- (Rh‘- *’) (13a)

—

'_~ - . y -;, » = /)
SRy - V(R B) UG- )
- RIA - 9: kR,
2 az ';:;1 ts '?f A $A
=W, <L (14)

Using the relations from eq (13) and (14), it 1is possible to write

the following:

% [(F"E.) = (.{3—"5) J

-y ¥, - L= 2
v(f'b (ROV (7)) < "R &R,
A A

2 —

®s tkQ.p L

_—— - = A'f‘ R c K (i< &
‘:1 L4a? L .2?, —a‘g_ +""':(l })“.::-' (15)
= L{'C « .Q a A e a KN
A ’ A A



Jo is Bess2l function of zero order.
Manipulations similar to those in eq (13), (14) and (15) yield the
following results for the remaining integrals in eq (12).

Define sum and difference coordinates:

-— — - w» 2 o s . - i
RB-E %(nz"' Ny, 9{5’ i S I'L“_ (16)
o . i = = e
(b-53- G-y = 26 (Ra-b) oo
-8t _ i F R,
& P 2 at "-dz '} -
VIN)V (1) = Ly € )
. g _9
W(R,) W(R,) = W (Ro+ ) W(Rs- )
Sl R -2
R % [_(1-“"“:.) -'CF"" n"r) ] = :
[ [VEIVED | W (7, W, ) b 47,
T L I
3 g..e 5 = i, ‘Lz‘éia
= :}‘(4 P) (18)
R, LR (-5 .
( g o (-3 w(fae f2) W(Re- 2) 4R,



The inner integral on the right hand side of eq (18) is the integration of the

function

| ‘313 ah (1 (l—f;.)]
-‘"ﬂib ]:" - t T '® 3 3

@*

over the area of overlap of two circles, each of diameter D, with centers

wisplaced at opposite ends of the vector Eﬁ'

Fig. 2 shows the area of overlap and the relevant vectors. O and 0'

are the f E{
/
w/a 8 -
: o -8 )
fs/a AT~

Fig. 2. Area of overlap

centers of the circles and the length 00' is equal to pg» From the triangle
OAB, we obtain the following.

R; _'L; [(t(_')l't- f‘f:—' 2 ‘L(I FB CﬂSff’]

1}

n

'.l)z [ u_z_*_ xa-— 2 WX C’(")(f’J (19)
o .
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where u-' B M"/[) Gund X = PB/D .

?\“53 - SaRplmd = 95(-'—';- lasqp - %ﬂ)

e D x(uw tesg—- 2)
K LN = 2 ' ¢ x R = E'Dz OC’" dé_‘;\
8.3 ("" —) S‘O' RB = 2Kk X (U- - ) " 38 = /

L ¥ 3 / Lt ! 3
Area element . W dad J_¢,
2 - 3
= D wdudg (21)
4

The inner integral may be written as follows using eq. (19), (20) and

(21) over the hatched area in l":lg 2.
- Rza/ 2 4+ Ak ? a (I-— =,
e - ) W(R +—") W(Q - —)d ’\.5

Cod x !
Dz. 441 (u + x % Lix c’es¢)+ A4 28 x (uc’.ascf-
® "% JACP . & o de
o. /.

* tesp

Extending the integrati-n over the entire area of overlap, we obtain

the inner integral as .Dl F ! ( ) -C.a !
where
ol (u. ~ 2ux Cesh )
Nex) = f dep J‘ e de
O Xftasy (22)

and é = D/Za

Using the results of eq (15) - (22) in eq (12), the square of the

signal current becomes:
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. (=Y
; Z N - ! ,
ity = b (R Uotng D) fo < r,(':])'{.(‘-r"c:}’ah)j’:::'.

q

| .
‘ g. ¢ N ?"( ) J' ( 4R x {3) x dx a (23)
.o | J| 452
' & ¢ » s tl
Sondt ,':] = % ) i') s % ! '?(4‘1) = A J o .()? {

The inte-vals in eq (23) require numerical integration for finite
aperture. However, they can be evaluated in closed form when the upper
limits of integration are stretched to infinity which corresponds to
an infinice beam and aperture. The infinite wave case is obtained by

setting D » « in eq (15) and (18) and taking “(;) = 1 for all values of r.

(a7 >a~w><,,L e

by “~

L}Sr RETCINE (W iy 3 <'-"M e

The result is

v 2 ]
<,\, N B e
o/ 2

The integrals are evaluated using the following relaction:

Ea <_2
- l//ct i =29
[T I A CE) B P
[
The result is the following: -2-‘3-82(:&
2 —

2 2 2
4 (1= %" 2"
2, L Al / tLou,ké.kv) a " ( )
Cagd ® L | = e (25)

The aerosols are of varying sizes and we integrate eq (25) over the
size distributioa n(r) where r is the aerosol radius. The result is the

ceplacement of 0' by 0 which is given by
'
f F(A) n(rn) dn
(o]
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The radar crosscction O is related to the backscatter coefficient 8 by

g = 4uB. Substituting these relution-. eq (25) becomes
2 l 2
3 2 Ak
I, e Ky a L‘l-ws'
i) s & [. __‘:.L_ -) L LentCer).
o |4 R'a*

From eq (11), the cotal current from all particles at a mean distance L

for pulsed system 1- giv-n by (dropping the angle brackc:n)
2

I, » f wfu pdp' = vc?f%"{)dp

peritmeniiens fy S8,

2
2 /ac‘? Ue “hq n*
L*

+Energy per pul-. is defined by

v

1

{2

| g("a‘dlf

-—

CT': f P(t) di = ‘PTT

0
where PT is the average power.

By the definition of the wavefunction, tlie

number of photons Nr in the pulse is given by

' 2 e & 2

(27)
Using the relation PT - thT. we obtain the relation
I a U, = Er
A» T (28)

The noise power is propurtional to the square of the noise current and
is given by

v 7 . 2
{55
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We made use of eq (20), (27) and '28) to obtain:

(N3 ‘){v"(‘ a

. SR Sl S & e ———
PR - —

-f\v L"[_l ._-‘i"(l _5] (3C)

This is the same as that obtained in Ref. 1, if we note that nz

~
2 =
N

2
« R“/2 where
R is the aperture radius.

For a finite boam, eq (27) and (20) should be modified as follows:
- ]
bR
r - 2 —%&
NT: 5'{,"‘0*6{:\' s Q.ulllo\( ¢ .’1:“],

“A 2 (31)
2 Tuoa (l--ﬂ /a)

RY ,
220t 2202 )
S Ungg & L1 =4 (32)

Uulng eq (31) and (32) after a little algebra, the signal-to-noise ratio for

finite beams iu obtaincd as follows:
o

£ . :")I,c‘t I.x L c

vd y
1 (1~ z*) fv {f ‘)J d d’ .
v(h DIXE )J(z,u(J!)J(z, )1,1&3(“‘!‘“)]&.“

where € = /a- € represents the truncation of the Caussian beam. For

instance, if € = 1, the beam is truncated at the points where the intensity

has dropped to e-l As the value of € increases, greater portions of the

wings are included in the beam and if € + «, there is no truncation.
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PROPAGATION THROUGH ATMOSPHERIC TUREULENCE
The atmospheric turbulence introduces random fluctuations of amplitude
and phase into the wavefuncticn. The turbulence effects are usually incorp-

orated by modifying the term G (;. ;) of eq (3) as follows:

G(B7) - _fwPE‘“‘ffj*é; );) TE,R)]

-4 -'-L— .L;nP[_a'-kL + :4'_-2%_([,’_;;)‘+ 'W'(F’F{')] (34)

where Y (3. ?) describes the effects of the inhomogeneous medium on propaga=-

tion of a spherical wave between the points 3 and T and is given by

YBR) = X(F,R) + 4 S(RR)

(35)
x(;. ) represents the perturbation in the log-amplitude of the wave and
S(;,.;) represents tﬂe perturbation of the phase between the points ; and T.
The Huygéns-Fresnel formulation is modified using eq (34) and (35). With-
out further elaboration, we write the equation for the signal current using

eq (8):
P i Yo o (kL + Awt’)
JL e 2 E
' e (F~3 )4 (36
' \(V(ﬁz) « W(_ﬁ;) t[ziﬂ:;

where?l & (3. ?1) - x1+ i S1 represents the perturbations between the points

?1 and 3, and wz - wz (3, ?2) - x2 + 1 S2 represents the perturbations between

the points 3 and ?2.
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The ensemble average of the square of the lignnl current is given by

. o ar LU" n\“({" ")-j
agp = L7 LZ )[jj UG UTR,) AR A
L(P" :D —Q»-'H')]

SS v, v(n,) L

A

V\J(&‘,) W () -

(37)

- < S

The enscmble average in eq (37) may be evaluated using the following

relations: lz [a2_< @_i.)z>+ Ll< ("J—ﬁ)z>j
ax + 5':} _
< ¢ > = £ ' (38)
) ' ax + l)ﬁ'

L

x and y are independent Caussian-random variables with means of .. and y, and
a and b are arbitrary constant,

Using eq (38), the following relation is obtained:

X+ Xyt Xoot X, 4 (S + S+ Sa¥ SQ) =

< e | ' /

Qc%(jﬁl'?z‘) + lcx('“’;,a"-’-ﬁ‘,) (39)
=~ 0 i '
i [.b(xﬁ'l-?\;l)—rD(:ﬁ",_ﬁ"‘I:) + DOIR-R,1) 4 D(R-R, )\
NG
- o e ’
CDNRAR) 4 DO
N

Cx (r) is the log-amplitude covariance given by f,')‘(n ) - \ x(ﬁ‘, I ;><X("-:y-—"‘::
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- -
with r = lr1 -1,

D (r) is the wave structure function and may be approximated by

‘.")7 .
Dln) = 1(%) : y Po- (0. 54b C:'I_K )

-2,
IS

The log-amplitude covariance for a spherical wave valid for short and .

long path lengths, and weak to strong turbulence is given by the following:

(2‘('€n)(I?z') s 2.5 @ u{ C{LL 2 LL(:I-»u:)§ erET a6¢+i;1 ‘
. i
onp §- 5 Lul-] M ep T (ALY £,

o U4

q/\'ﬁ 0;"- 0. 12 K L cN (40)
. . 5 G T =
aud :f.(aj) - .02 H/bf‘téé -’[,_J‘;Cé)J
Cﬁﬁ7n

In order to proceed further, a few approximations are made. Using the

identity
(a-b +<.-_4)P_. (4_5)P+ (a-d)Fs b-efs -5
__(a_c)?b_. C})--A’)P fov b=l o2

the structure functions are approximated as:

D(IF,<R)+ D (R=Fe)) + DAB-Tel) + DY, -Ry)
~D (IF,-Ry1) - » (17, iyl ) B D(l Ry + Ry =10 |) (41)
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The second approximation is to replace C (I;1 - ;él) and C, (I?3 - ;‘[) by
Cx (0).

With these 6implifications, eq (37) may be written as:

ERCARICES

a(c)
LT L (u & [ ff UE,) U*(H_g) e 42,{' AL—,

R O (S &
j&vca’;) Vi) < W) WR,y |

ol o
rf,-—_-’:fql]"g

(42)

A'x, AR,

The sum and difference coordinates defined in eq (13) and (13a) will he

utilized to simplify eq (42). The result is

-~
e oG’ 645 € 50,
% _ R
/:c i \
\( RA C{QA [_ : (l L:f" ) 'PA RA] P (43)
(8] i
R gt [Ifi-ff? )7 75
‘ et ok - [
J %4t « * 52 e neny o

double integral.
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