General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
GLOBAL CROP PRODUCTION
FORECASTING DATA SYSTEM
ANALYSIS

E. Peter A. Castiglione

(E79-10198) GLOBAL CROP PRODUCTION
FORECASTING DATA SYSTEM ANALYSIS Final
Report (Ecosystems International, Inc.)
192 p H & A09/MP A01 CSCL 02C Unclas
G3/43 00198

CONTRACT NAS8-32408 JANUARY 1978

FINAL REPORT

PREPARED FOR
THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA 35812

ECOSYSTEMS INTERNATIONAL INC
P.O. Box 225
Gambrills, Maryland 21054

Made available under NASA sponsorship
in the interest of economy and the dis-
semination of information. Ecosystems Survey
therefore assumes no responsibility whatsoever,whether
in contract or tort, for any use made of the information.
GLOBAL CROP PRODUCTION FORECASTING
DATA SYSTEM ANALYSIS

PETER A. CASTRUCCIO, HARRY L. LOATS, DONALD G. LLOYD

FINAL REPORT
JANUARY 1978
CONTRACT NAS8-32408

PREPARED FOR
THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

BY

ECOSYSTEMS INTERNATIONAL, INC.
P.O. BOX 225
GAMBRILLS, MD 21054
TABLE OF CONTENTS

FOREWORD

1.0 SUMMARY, RESULTS AND CONCLUSIONS 1

2.0 SCENARIO

2.1 Significance of Global Crop Survey and Forecast 6

2.2 World Scenarios 7

2.3 The U.S. Scenario 9

2.4 Derivation of the Crops to be Surveyed 10

2.5 Derivation of the Countries to be Surveyed 12

2.5.1 Logic 12

2.5.2 Procedures for Derivation of the Countries to be Surveyed 15

2.5.3 Recapitulation of Crops and Countries Candidates for Survey 19

2.5.4 The Effect of Substitution in Human Nutrition 22

2.5.5 The Effect of Substitution in Animal Feed 24

2.6 Effect of Global Crop Forecast on Other U.S. Goals 27

2.6.1 Effect of the Requirements to Maximize Consumer Satisfaction 27

2.6.2 Role of Global Crop Forecast as Tool of Foreign Policy 27

2.7 The International Scenario 28

3.0 SYSTEM PERFORMANCE REQUIREMENTS AND CURRENT PERFORMANCE 29

3.1 Derivation of the Data System's Performance Requirements 29

3.2 Assessment of the Performance of Orbital Data Systems in Estimating Acreage 32
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS (cont'd)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 INVESTIGATION INTO THE PHYSICAL REASONS FOR THE DISCREPANCY BETWEEN REQUIREMENTS AND PERFORMANCE</td>
<td>37</td>
</tr>
<tr>
<td>4.1 Methodology</td>
<td></td>
</tr>
<tr>
<td>4.2 Results from the Analysis of the Field Spectra</td>
<td>41</td>
</tr>
<tr>
<td>5.0 THEORY OF DISCRIMINATION FROM RADIOMETRIC DATA</td>
<td>49</td>
</tr>
<tr>
<td>5.1 Simplified Theory</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Significance</td>
<td>50</td>
</tr>
<tr>
<td>5.3 Selection of the Best Band</td>
<td>55</td>
</tr>
<tr>
<td>5.4 Effect of Multiple Bands</td>
<td>57</td>
</tr>
<tr>
<td>6.0 CONSEQUENCES OF THE THEORY ON THE CHARACTERISTICS OF DATA SYSTEM</td>
<td>59</td>
</tr>
<tr>
<td>6.1 Impact on the Frequency of Observation</td>
<td>59</td>
</tr>
<tr>
<td>6.2 Impact on the Extent of the Area which must be Observed</td>
<td>63</td>
</tr>
<tr>
<td>6.2.1 The Effect of Bounding and the Role of Auxiliary Information</td>
<td>65</td>
</tr>
<tr>
<td>6.2.2 Sampling</td>
<td>68</td>
</tr>
<tr>
<td>6.2.3 Mensuration</td>
<td>78</td>
</tr>
<tr>
<td>6.3 Role of Auxiliary Information</td>
<td>81</td>
</tr>
<tr>
<td>7.0 SIMULATION SCHEME AND RESULTS</td>
<td>83</td>
</tr>
<tr>
<td>8.0 IMPACT UPON OSTA'S AGRICULTURAL DATA SYSTEM OF THE NEXT DECADE</td>
<td>91</td>
</tr>
<tr>
<td>8.1 State of the Data System</td>
<td>91</td>
</tr>
<tr>
<td>8.2 System Performance - Accuracy</td>
<td>91</td>
</tr>
<tr>
<td>8.2.1 System Performance - Recurrence Frequency</td>
<td>92</td>
</tr>
<tr>
<td>8.2.2 System Performance - Role of Auxiliary Information</td>
<td>94</td>
</tr>
<tr>
<td>8.3 System Cost</td>
<td>95</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>A</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>E-1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE 2-1: YEARLY WORLDWIDE EXPENDITURES FOR CROP SURVEY/ FORECAST (1977)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2-2: U.S. GROSS AGRICULTURAL EXPORTS, 10-YEAR CUMULATIVE VALUE 1964-1974, CURRENT $ MILLION, FOB</td>
<td>7</td>
</tr>
<tr>
<td>TABLE 2-3: GROSS U.S. EXPORTS OF STAPLE CROPS, 10-YEAR CUMULATIVE VALUE 1964-1974, CURRENT $ MILLION, FOB</td>
<td>10</td>
</tr>
<tr>
<td>TABLE 2-4: MAJOR WORLD INPUTS & EXPORTS OF SELECTED AGRICULTURAL COMMODITIES 6-YEAR CUMULATIVE VALUE (1968-73) $M CURRENT - EXPORTS FOB, IMPORTS CIF</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 2-5 CROPS AND COUNTRIES INITIAL CANDIDATES FOR SURVEY</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 2-6 CROPS AND COUNTRIES FINAL CANDIDATES FOR SURVEY</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 3-1 ACCURACIES CURRENTLY ACHIEVED IN THE MEASUREMENT OF ACREAGE</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 3-2 ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED BY ERTS INVESTIGATORS</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 3-3 ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED FROM 1974 TO 1978</td>
<td>35</td>
</tr>
<tr>
<td>TABLE 4-1 PRINCIPAL SPECTRAL DATA BASES AVAILABLE IN THE LITERATURE</td>
<td>36</td>
</tr>
<tr>
<td>TABLE 4-2 CHARACTERISTICS OF THE "PURE" SPECTRAL DATA USED IN THE ANALYSIS</td>
<td>39</td>
</tr>
<tr>
<td>TABLE 5-1 NUMBER OF PIXELS (COST FUNCTION) REQUIRED TO BE OBSERVED WITHIN THE FIRST FIVE TM BANDS</td>
<td>40</td>
</tr>
<tr>
<td>TABLE 5-2 RANKING OF TM BANDS FOR DISCRIMINABILITY BETWEEN STAPLE CROPS</td>
<td>56</td>
</tr>
<tr>
<td>TABLE 6-1 PRINCIPAL AUXILIARY DATA PECULIAR TO REGION OF INTEREST CROP ACREAGE INVENTORY</td>
<td>57</td>
</tr>
<tr>
<td>TABLE 7-1 COUNTRIES, REGIONS, CROPS AND NUMBER OF SAMPLES USED FOR STUDY</td>
<td>82</td>
</tr>
<tr>
<td>TABLE 7-2 EXAMPLES OF WINDOW FORMAT USED IN SIMULATION</td>
<td>85</td>
</tr>
<tr>
<td>TABLE 7-3 PERCENT OF SIMULATED SAMPLE SEGMENTS ACQUIRED BY A SINGLE ORBITING PLATFORM (8)</td>
<td>87</td>
</tr>
<tr>
<td>TABLE 8-1 TIME REQUIRED FOR COMPLETE RBV OF THE EARTH'S SURFACE VERSUS RESOLUTION</td>
<td>91</td>
</tr>
<tr>
<td>FIGURE 2-1:</td>
<td>PANORAMA OF THE WORLD'S PRODUCTION OF STAPLE CROPS</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>FIGURE 2-2:</td>
<td>FLUCTUATION OF AGRICULTURAL EXPORTS</td>
</tr>
<tr>
<td>FIGURE 2-3:</td>
<td>RATIONALE FOR SELECTING COUNTRIES FOR AGRICULTURAL SURVEY</td>
</tr>
<tr>
<td>FIGURE 2-4:</td>
<td>THE MAJOR CUSTOMERS FOR U.S. AGRIPRODUCTS</td>
</tr>
<tr>
<td>FIGURE 2-5:</td>
<td>THE MOST FLUCTUATING U.S. CUSTOMERS</td>
</tr>
<tr>
<td>FIGURE 2-6:</td>
<td>DISCRETIONARY SURPLUSES OF MAJOR AGRICULTURAL EXPORTERS</td>
</tr>
<tr>
<td>FIGURE 2-7:</td>
<td>CEREAL SUBSTITUTION IN HUMAN CONSUMPTION</td>
</tr>
<tr>
<td>FIGURE 2-8:</td>
<td>RANKING OF WORLD PRODUCERS OF PRINCIPAL CEREAL SUBSTITUTION AND FIBER CROPS</td>
</tr>
<tr>
<td>FIGURE 3-1:</td>
<td>DISTRIBUTION OF CLASSIFICATION ACCURACIES FOR ERTS INVESTIGATIONS ON ACREAGE MENSURATION</td>
</tr>
<tr>
<td>FIGURE 4-1:</td>
<td>FUNCTIONAL DATA FLOW GENERAL RADIOMETRIC OBSERVATION SYSTEM</td>
</tr>
<tr>
<td>FIGURE 4-2:</td>
<td>SPECTRA OF VARIOUS CROPS AT 100% LEAF COVER IN IMPERIAL VALLEY, CALIFORNIA</td>
</tr>
<tr>
<td>FIGURE 4-3:</td>
<td>TEMPORAL PROGRESSION OF THE MEAN REFLECTANCE FOR THE CROPS CONTAINED IN THE HAND COUNTY DATA SET</td>
</tr>
<tr>
<td>FIGURE 4-4:</td>
<td>SPECTRAL VARIANCES OF CORN</td>
</tr>
<tr>
<td>FIGURE 4-5:</td>
<td>AREAL DEVELOPMENT OF CROPS AS A FUNCTION OF TIME SOUTHWEST CROP REPORTING DISTRICT, KANSAS, 1973 SEASON</td>
</tr>
<tr>
<td>FIGURE 5-1:</td>
<td>AREA WHICH MUST BE OBSERVED AS A FUNCTION OF SCENE PARAMETERS</td>
</tr>
<tr>
<td>FIGURE 5-2:</td>
<td>TEMPORAL BEHAVIOR OF CONTRAST RATIO: HAND COUNTY, N.D.</td>
</tr>
<tr>
<td>FIGURE 6-1:</td>
<td>CONCEPT OF STATISTICAL WINDOW</td>
</tr>
<tr>
<td>FIGURE 6-2:</td>
<td>MONTHLY MEAN AND ONE-SIGMA DISPERSION OF AVERAGE DAILY TRANSMITTANCE DIFFERENTIAL</td>
</tr>
<tr>
<td>FIGURE 6-3:</td>
<td>PROCEDURE FOR CONSTRUCTING PHENOLOGICAL STATISTICS</td>
</tr>
<tr>
<td>FIGURE 6-4:</td>
<td>STATISTICAL (ONE SIGMA) TEMPORAL WINDOW ENVELOPES OF REFLECTANCE DIFFERENCE USSR, UKRAINE</td>
</tr>
<tr>
<td>FIGURE 6-5:</td>
<td>REQUIRED RECURRENCE OF OBSERVATION TO ACHIEVE 99% PROBABILITY OF VIEWING FOR SPECIFIED CLOUD COVER AS A FUNCTION OF SENSOR THRESHOLD SENSITIVITY, Δp</td>
</tr>
<tr>
<td>FIGURE 6-6:</td>
<td>DEPENDENCE OF AREA TO BE OBSERVED ON THE PROPORTION OF THE CROP TO BE INVENTORYED</td>
</tr>
<tr>
<td>FIGURE 6-7:</td>
<td>NUMBER OF PIXELS AND AREA OF EACH SEGMENT AS A FUNCTION OF PROPORTION</td>
</tr>
<tr>
<td>FIGURE 6-8:</td>
<td>NUMBER OF SAMPLES REQUIRED TO ACHIEVE SPECIFIED ACCURACY AS A FUNCTION OF p</td>
</tr>
<tr>
<td>FIGURE 6-9:</td>
<td>MENSURATION ERROR AS A FUNCTION OF TOTAL AREA SAMPLED</td>
</tr>
<tr>
<td>FIGURE 6-10:</td>
<td>RANDOM SYSTEM ERRORS IN ACREAGE MENSURATION</td>
</tr>
<tr>
<td>FIGURE 6-11:</td>
<td>REDUCTION OF DATA LOAD THEORETICALLY ACHIEVABLE BY SAMPLING VERSUS WALL-TO-WALL COVERAGE</td>
</tr>
</tbody>
</table>
The objective of Contract NAS8-32408 was to assess the characteristics required by the Data Systems of future OSTA Earth-Observation systems of the next decade.

It specified investigations in the six application areas Agriculture, Water Resources, Land Use, Global Weather, Severe Storms and Marine Weather. Reported here are the results of the analysis of Agricultural Data Systems. The authors wish to express particular thanks to Mr. Harvey Golden and Dr. George McDonough of Marshall Space Flight Center for their enlightened leadership: and to Dr. Charles T. Paludan, Dr. Sanford W. Downs, Jr. and Dr. Robert Jethro of Marshall for their many valuable suggestions.

Significant portions of this work were developed in prior efforts under the leadership of Dr. Louis Walter and Mr. William Stroud of Goddard Space Flight Center, and Mr. Leonard Jaffe of NASA Headquarters. The author's thanks extend to them also.

Dr. James C. Harlan provided unstinting cooperation in the difficult task of analysis of the spectral data bank gathered by his organization in Bushland, Texas.
1.0 SUMMARY, RESULTS AND CONCLUSIONS

The theme for the Data System task in Agriculture, chosen in concert with the Marshall Space Flight Center, was "Global Crop Production Forecasting." Selection of a specific theme within the broad area of agriculture was motivated by the desire to lend focus to the task; simultaneously, Marshall's directives were to provide results sufficiently general as to be applicable to other agricultural uses of remotely sensed data.

The analysis herein reported applies to a generic agricultural observation system: LANDSAT D was used as a benchmark against which to compare quantitative results.

Two principal scenarios motivate Global Crop Forecasting: "Promotion of the US Balance of Trade" and "Promotion of Global Freedom from Want." The former was chosen as the more realistic motivator of US efforts.

The crops to be surveyed were the major US export staples. They were selected from the cumulative ten-year export history of the US. The rationale for selecting countries candidate for survey excluded non-producers of specific target crops: it included overproducers, i.e. competitors to the US for exports, and marginal producers which steadily or periodically import US agriproducts.

The selection methodology yielded the staple crops wheat, soybeans, corn, cotton, tobacco, rice, grain sorghum, and 24 countries growing these commodities. Of these crops, tobacco and cotton were excluded.
from further consideration because they do not constitute alimentary staples.

Substitution of crops was found to be negligible in human food, important in animal fodder. This added to the list of commodities the small grain fodder crops barley, oats and rye.

Crop production is the product of the two essentially independent factors of acreage and yield. Since measurement of the latter from remotely sensed data is as yet in the experimental stage, the study concentrated on the measurement of acreage.

The user requirements were assessed as being approximately equal to the accuracy performance of current conventional crop acreage inventory systems. The corresponding systems specifications for accuracy range from 98% for US wheat to 92%, one sigma, for foreign forage crops.

The performance of OSTA data systems in acreage mensuration was assessed from analysis of the performance achieved by ERTS and LANDSAT experimenters. Average inventory accuracy was found to be of order 80% in the time frame 1972-74, improving to approximately 86% between 1974 and 1978. These levels of performance were found to fall short of the user requirements by a factor of at least 2, at most 5.

This finding led to investigate the data system from end-to-end, in order to seek the reasons for the shortcoming, and to determine which data system drivers required improvement.

The analysis began at the data systems front-end, i.e. at the interface between the natural phenomena determining crop spectral reflectance and the sensor. To this effect, several of the fine-grained
calibrated spectra from the LACIE supersites were analyzed in detail. It was concluded that unique crop spectral signatures do not appear to exist; that the values of the reflectances fluctuate significantly, even within the same field; that the information contained in the differential amplitudes of spectral bands is in and by itself insufficient to achieve discrimination accuracies satisfying the user requirements; and that the driver of discrimination is the relative average amplitude, or contrast ratio, between the mean spectral amplitudes, brought about by the marked differences of mean reflectance which accompany the natural stages of phenologic development.

These findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicates that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed.

The theoretical results led to three primary consequences as regards the data system: 1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; 2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; 3) the remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

Analysis of the optimal timing requirements in the presence of naturally occurring cloud cover led to the conclusion that the current
configuration of earth-observing platforms operating in the optical and IR spectral ranges need modification as to orbits and swath widths, and could probably substantially benefit from the addition of active microwave sensors. Analysis of the optimal sampling requirements indicated that the number of pixels imaged and processed drives the data system's operating costs: the use of a sampling scheme in lieu of the current wall-to-wall imaging mode could reduce the system's recurring costs by up to a factor of two. Analysis of the role of the auxiliary data indicates that a most important contribution to the system's price-performance would be a world-wide, uniform, photographic-type coverage of relatively good resolution. Such coverage need not be provided in real time: its refresh rate could range upwards of three years. These findings can form the basis for considerable enhancement of the price/performance of future OSTA agricultural observation systems. In particular, the RBV could become the source for the auxiliary photocoverage. Additional savings are possible by on-board processing of the data, consisting of the addition of short-term storage.

An additional systems savings can result from relaxation of the multispectral scanner's sensitivity. This is brought about by the presence of fluctuations, found to exist around the reflectances of agricultural targets. Within the overall system's error budget, of which the "scene fluctuation" is the primary driver, sensor NE Δρ's of order 64 levels appear adequate.

The resulting 4:1 reduction of sensor sensitivity can be traded off against lower-cost sensor implementation: or, it can be exploited to increase the sensor's geometric resolution. It can be shown
theoretically that the tradeoff in favor of performance would improve LANDSAT D's resolution to approximately 15 meters.

The theoretical results were simulated on the Marshall Data System Dynamic Simulator (DSDS). The results confirmed the need for modifying the deployment of earth-observing platforms, and the savings accruing from observing a reduced number of sample pixels. The simulation neither confirmed nor disproved the theory, because the DSDS had not reached its full Stage III configuration, thus could not, at the time, accept inputs from live scenes. The theory was however tested independently by performing regional crop inventories in selected regions of the world, with good agreement between results and predictions.
2.0 SCENARIO

2.1 Significance of Global Crop Survey and Forecast

The activities of estimating and forecasting agricultural production are of major importance virtually everywhere in the world.

Inaccurate forecasts cause agricultural producers to make erroneous production decisions: they distort optimal inventory carryovers. The net result is lowered social efficiency through wasted efforts. Improved forecast accuracy reduces this waste motion, hence produces a net increase in social welfare.

Precise forecasts obtained sufficiently early permit the formulation of national plans and policies best suited to cope with surplus or scarcity. Good predictions allow agricultural producers to take remedial actions aimed at increasing output, reducing costs, or taking shelter against declining prices caused by overproduction. The earlier this information is available, the greater the possible spectrum of ameliorative actions and the larger the potential benefits.

The worth of agricultural survey and forecast activities is evidenced by the efforts and resources which are being devoted to it worldwide. Table 2-1 presents a conservative estimate of the expenditures by world governments for agricultural data gathering. Additional moneys are expended yearly by commodity dealers, traders, Chambers of Commerce, international organizations, other private and public enterprises [1].
Table 2-1

YEARLY WORLDWIDE EXPENDITURES FOR CROP SURVEY/FORECAST (1977)

<table>
<thead>
<tr>
<th>REGION</th>
<th>SURVEY/FORECAST COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. (DOMESTIC & FOREIGN)</td>
<td>40</td>
</tr>
<tr>
<td>CANADA</td>
<td>2.4</td>
</tr>
<tr>
<td>WESTERN EUROPE</td>
<td>48.2</td>
</tr>
<tr>
<td>EASTERN EUROPE</td>
<td>8.9</td>
</tr>
<tr>
<td>LATIN AMERICA</td>
<td>2.5</td>
</tr>
<tr>
<td>AFRICA/MID-EAST</td>
<td>2.1</td>
</tr>
<tr>
<td>ASIA EXCL. USSR, PRC</td>
<td>4.5</td>
</tr>
<tr>
<td>OCEANIA</td>
<td>1.5</td>
</tr>
<tr>
<td>WORLD</td>
<td>110.1</td>
</tr>
</tbody>
</table>

The world's important crops number in the hundreds. Most important in terms of market value, quantity and caloric content are the staple crops.

Figure 2-1 shows that grain crops are the most significant: they provide over half of mankind's food. [2], [3].

2.2 World Scenarios

The configuration and characteristics of a Data System for global agricultural forecast are a function of the surface area, geographic location, number of crops to be surveyed.

Two principal scenarios determine the selection of the countries and crops candidate for survey:
Figure 2-1
PANORAMA OF THE WORLD'S PRODUCTION OF STAPLE CROPS

Million Tons

BY WEIGHT

BILLION U.S. DOLLARS (1978)

BY VALUE (AT INTERNATIONAL EXPORT PRICES)

WCY's

BY CALORIC CONTENT

WCY - AVERAGE YEARLY CALORIC REQUIREMENT
OF WORLD POPULATION (4 BILLION @ 2,500
CAL./DAY) =
3,650 TERA CALORIES
1. As seen from the U.S. national outlook

2. As seen from the outlook of the international community, i.e. the United Nations.

The U.S. national goals have essentially remained unchanged throughout U.S. history. They are:

- Maximize the citizen’s well-being
- Foster the U.S. balance of trade
- Optimize U.S. foreign policy

The United Nations goal is essentially the humanitarian objective:

- Foster world peace
- Promote global freedom from want

2.3 The U.S. Scenario

In the agricultural arena, the three U.S. goals are interrelated.

Promotion of the balance of trade implies essentially "sell more, at more advantageous prices."

Citizen's well-being, or consumer satisfaction, means: "but without unduly increasing domestic prices for U.S.-produced commodities, and maintaining favorable prices for imported agricommodities."

The opportunity for a significant foreign policy role arises if the U.S. can trade food in exchange for political or socioeconomic considerations.

This study focused on the first goal, i.e. maintenance and promotion of a favorable balance of trade.
2.4 Derivation of the Crops to be Surveyed

Agricultural products have always played a major role in the U.S. export picture. In the mid-nineteenth century they represented approximately 80% of total U.S. exports. Although the agricultural share of total U.S. exports has since declined to 25%, the gross dollar value of agricultural exports has increased from $150 million in the 1870's to over $25 billion, in current dollars.

U.S. agricultural exports fluctuate yearly, in response to domestic and foreign alternations of production shortfalls and surpluses. To smooth out these fluctuations, the export values should be integrated over a sufficiently long period of time. Table 2-2 ranks the U.S. agriexports based upon their 10-year cumulative value [3].

<table>
<thead>
<tr>
<th>COMMODITY</th>
<th>ABSOLUTE VALUE</th>
<th>RELATIVE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>$18,527</td>
<td>18%</td>
</tr>
<tr>
<td>SOYBEANS (FOR FEED)</td>
<td>14,750</td>
<td>15%</td>
</tr>
<tr>
<td>CORN</td>
<td>13,873</td>
<td>14%</td>
</tr>
<tr>
<td>ANIMAL & ANIMAL PRODUCTS OF WHICH</td>
<td>10,892</td>
<td>11%</td>
</tr>
<tr>
<td>FATS OILS & GREASE</td>
<td>2,803</td>
<td>(3)</td>
</tr>
<tr>
<td>MEAT & MEAT PRODUCTS</td>
<td>1,666</td>
<td>(2)</td>
</tr>
<tr>
<td>OIL SEEDS</td>
<td>9,090</td>
<td>9%</td>
</tr>
<tr>
<td>OF WHICH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOY OILCAKE & MEAL</td>
<td>4,299</td>
<td>(4)</td>
</tr>
<tr>
<td>COTTONSEED OIL</td>
<td>660</td>
<td>(1)</td>
</tr>
<tr>
<td>COTTON</td>
<td>6,525</td>
<td>6%</td>
</tr>
<tr>
<td>TOBACCO</td>
<td>6,186</td>
<td>6%</td>
</tr>
<tr>
<td>FEED GRAINS, EXCLUDING CORN OF WHICH</td>
<td>4,021</td>
<td>4%</td>
</tr>
<tr>
<td>GRAIN SORGHUM</td>
<td>3,004</td>
<td>(3)</td>
</tr>
<tr>
<td>RICE</td>
<td>3,684</td>
<td>4%</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>87,548</td>
<td>88%</td>
</tr>
<tr>
<td>OTHER</td>
<td>14,481</td>
<td>14%</td>
</tr>
<tr>
<td>TOTAL 10-YEAR EXPORTS</td>
<td>$102,029</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 2-3 synthesizes the information of Table 2-2. It excludes the animal products, for the following reasons:

- The consistency of the animal inventory is not directly amenable to survey from Satellite Remote Sensing.
- The diet of animals is composed of grains, pasture and forage in varying proportions in differing countries. The feed grains are already included in the listing of Table 2-3.

<table>
<thead>
<tr>
<th>TABLE 2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS U.S. EXPORTS OF STAPLE CROPS, 10-YEAR CUMULATIVE VALUE</td>
</tr>
<tr>
<td>1964-1974, CURRENT $ MILLION, FOB</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SOY AND SOY PRODUCTS</td>
</tr>
<tr>
<td>WHEAT</td>
</tr>
<tr>
<td>CORN AND CORN PRODUCTS</td>
</tr>
<tr>
<td>COTTON</td>
</tr>
<tr>
<td>TOBACCO</td>
</tr>
<tr>
<td>RICE</td>
</tr>
<tr>
<td>SORGHUM</td>
</tr>
<tr>
<td>SUBTOTAL</td>
</tr>
<tr>
<td>OTHER LESS ANIMAL PRODUCTS</td>
</tr>
<tr>
<td>TOTAL LESS ANIMAL PRODUCTS</td>
</tr>
</tbody>
</table>

Percents may not add due to rounding errors.

Rangeland (pasture) and forage (hay) are also important candidates for survey for two reasons: 1) they are complementary or substitute animal foods, and can thus affect the demand for the primary grains; and 2) they act as "confuser" crops in the remote observation of the primary staples.
Table 2-3 indicates that soybeans, wheat and corn head the list of exports by value. They constitute 58% of U.S. staple agriproducts exported during the decade, exclusive of animal products. The other major categories combined - cotton, tobacco, rice, sorghum - represent 21%. The aggregate of the several minor commodities is 21%. No single commodity below the ranking of sorghum produced exports greater than 1% of the total.

Before concluding that the seven crops indicated in Table 2-3 are indeed those of major interest to U.S. agricultural exports, it is well to analyze whether the 10-year cumulation does not smooth out and hide major fluctuations. Figure 2-2 indicates that this is not the case: the relative percentages of the exports of the staple crops vis-a-vis the total agricultural exports have remained relatively constant over the last decade. Within the validity of historical extrapolations, and barring major exogenous disturbances, they can thus be assumed to remain substantially the major U.S. agriexports of the near future.

2.5 Derivation of the Countries to be Surveyed

2.5.1 Logic

The "universe" for export of U.S. agricultural commodities subdivides as follows:

1. Countries which do not consume the product at all: i.e., non-customers.

2. Countries which are consistently self-sufficient (for a given agriproduct which the U.S. produces in surplus): neither customers nor competitors. The sub-category of Countries
FLUCTUATION OF AGRICULTURAL EXPORTS

MAJOR AGRICULTURAL EXPORT COMMODITIES AS A FRACTION OF TOTAL GROSS AGRICULTURAL EXPORTS, DOLLAR VALUES

Figure 2-2

RATIONALE FOR SELECTING COUNTRIES FOR AGRICULTURAL SURVEY

Figure 2-3
which do not purchase from the U.S. for policy reasons, valid in the 1960's, has, since the massive entry-to-market of USSR, PRC and Eastern Europe, dwindled into insignificance, at least for the time being.

3. Countries which produce the product, but not in sufficient amounts to meet their demand, and which are steady importers.

4. Countries wherein the difference between production and internal demand alternates between surplus and deficit. These are potential U.S. customers in shortfall years, potential competitors in surplus years.

5. Countries which are consistent exporters. These are potential competitors of the U.S.

6. The U.S. itself, to assess its year-to-year capability to export.

The requirements for agricultural surveys by the U.S. vary among these categories of countries.

Countries which exhibit characteristics 1 and 2 - i.e. consistent non-customers and non-competitors for any given product - are not important to agricultural U.S. exports of that product. Surveys of their agricultural production of that product are thus of little interest to the U.S. foreign trade posture.

Surveys of countries in category 3, i.e., which exhibit the qualities of marginal producers and steady and consistent importers are of interest to assess the quantity of product they are likely to import in any one year. This assessment serves as the basis for U.S. agriexport planning on how to
convert this "addressable market" into sales for the U.S. The interest is proportional to each country's volume of the addressable market and to the potential competition from other surplus-producing Countries.

Countries of category 4, fluctuating customer-competitors, are of interest in proportion to the magnitude of the fluctuations of their agricultural production.

Surveys of countries of Category 5, the potential competitors, are of interest in proportion to the magnitude of their surplus.

Figure 2-3 depicts the logical choices.

2.5.2 Procedure for derivation of the countries to be surveyed

The procedure is to isolate, down to a meaningful level of significance, the countries which fall in categories 3, 4, and 5, for the principal crops of interest to U.S. agriexports.

Figure 2-4 depicts the principal customers for the major U.S. export crops over the last decade. They are ranked from bottom to top by percentage of the dollar volume of imports from the U.S.; from left to right by total dollar value of each imported commodity. The blank unlabeled areas at the top of the histogram bars comprise a rather large number of customers, each of which is significant at most to the 1% level; i.e., its imports during the decade did not exceed more than 1% of the total U.S. exports of the corresponding commodity.

Note that Figure 2-4 indicates percentages and not absolute dollar values. The dollar purchases of each customer can be obtained by
Figure 2-4
THE MAJOR CUSTOMERS FOR U.S. AGRIPRODUCTS
IN PERCENT OF THE CURRENT DOLLAR VALUE OF EACH COMMODITY ACQUIRED
CUMULATIVE FOR THE DECADE 1964-74.

Products are ranked, from left to right. Customers, from bottom to top.
multiplying the percentages of product acquired, from Figure 2-4, by
the total dollar value of the product exports, from Table 2-3. For
example, Japan's purchases of wheat were 10% of the total U.S. exports;
those of sorghum, 45%. The total U.S. exports were $18.5 Billion for
wheat, $3 Billion for sorghum. Thus Japan's 10% share of U.S. wheat
exports brought a revenue of $1.85 Billion; its purchases of sorghum,
in spite of the much higher share, resulted in a lesser revenue, e.g.
$1.35 Billion.

The information of Figure 2-4 allows elimination of the countries
which fall in categories 1, non-consumers, and 2, self-sufficient. It
aggregates categories 3, net importers, and 4, fluctuating importers-
exporters.

The net importers fall into two sub-categories: steady importers,
typified by Japan, whose purchases essentially repeat year after year;
and fluctuating importers. This second sub-category is clearly of
greater interest to U.S. survey efforts. Figure 2-5 exemplifies its
behavior.

Table 2-4 serves to assess which importing countries fall into
category 4, fluctuating customer-competitors. It indicates that the
USSR is the only such for the commodity wheat, since during the decade
it did export as well as import. The PRC likewise is a fluctuating
customer-competitor for the commodity soybeans, France for corn.
Figure 2-5
The Most Fluctuating U.S. Customers

Wheat

The Steadiest U.S. Customers

Years begin Oct. 1

Million Tons

Original Page is of Poor Quality
Table 2-4 also identifies the countries falling within category 5, the steady competitors. These are countries which do not import because they possess a consistent, repeating discretionary surplus: i.e. their production consistently exceeds internal demand.

Figure 2-6 presents a panorama of the principal competitors. It indicates that the U.S. not only possesses the largest but also the most consistent and reliable surplus.

2.5.3 Recapitulation of Crops and Countries Candidates for Survey

Table 2-5 recapitulates the principal crops and countries candidates for survey of the major staples for human consumption, down to the 2% level (as percentage of total U.S. agriexports) for the crops,
Figure 2-6
DISCRETIONARY SURPLUSES OF MAJOR AGRICULTURAL EXPORTERS

WHEAT

MILLIONS METRIC TONS

U.S. CANADA ARGENTINA AUSTRALIA USSR

AVERAGE (1967-1973)
and to the 2% level (fraction of imports of a given commodity from the U.S.) for the Countries. Tobacco is not included since it is not a major staple for human consumption: it is, rather, a luxury item.

<table>
<thead>
<tr>
<th>TABLE 2-5</th>
<th>CROPS AND COUNTRIES INITIAL CANDIDATES FOR SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>CORN</td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td>U.S.S.R.</td>
</tr>
<tr>
<td>PRC</td>
<td>PRC</td>
</tr>
<tr>
<td>INDIA</td>
<td>INDIA</td>
</tr>
<tr>
<td>FRANCE</td>
<td>FRANCE</td>
</tr>
<tr>
<td>CANADA</td>
<td>-</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>-</td>
</tr>
<tr>
<td>TURKEY</td>
<td>-</td>
</tr>
<tr>
<td>ITALY</td>
<td>ITALY</td>
</tr>
<tr>
<td>POLAND</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>BRAZIL</td>
</tr>
<tr>
<td>-</td>
<td>S. AFRICA</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>ROMANIA</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>FRG</td>
</tr>
<tr>
<td>YUGOSLAVIA</td>
<td>YUGOSLAVIA</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>ARGENTINA</td>
</tr>
<tr>
<td>MOROCCO</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>EGYPT</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Before concluding that this is indeed the final set of crops and countries, it is important to investigate whether other crops produced by foreign customers are used as substitutes for the primary U.S. exports: for, in this case, and to the extent of the possible substitution, foreign crops other than those indicated in Table 2-5 may become candidates for survey.
2.5.4 The Effect of Substitution in Human Nutrition

Past studies and field surveys by U.S. Agencies and Foundations, by the UN and the FAO, have uniformly concluded that substitution, even of very similar foods, is not a viable alternative for human consumption even in periods of famine. At least, not in the short-term: habits and tastes change but slowly [4].

This is confirmed by Figure 2-7, drawn from FAO statistics, which depicts the historical evolution of human consumption of cereals in selected countries in the three primary categories of wheat eaters, maize eaters, and rice eaters. Because the per-capita income has grown steadily and significantly over the years shown, the curves illustrate the well-known relationship that the consumption of staples grows initially with increasing per capita income: beyond a threshold level, further increases in income result in a decreasing pro-capita consumption of staples in favor of protein and "luxury" foods. More significant to the question of substitution, Figure 2-7 indicates that the ratios of the diverse staples consumed by a given country change but slowly. Also, short term reductions in pro-capita intake of one staple are not compensated by corresponding increases in other staples. This indicates that substitution is not an important driver in human nutrition, except over relatively long time spans.
FIGURE 2-7

CEREAL SUBSTITUTION IN HUMAN CONSUMPTION

ARGENTINA

IRAQ

PAKISTAN

INDIA

MEXICO

SOUTH AFRICA

BRAZIL
2.5.5 The Effect of Substitution in Animal Feed

Over the last fifteen years, the increased demand for protein has caused a significant shift in the composition of animal feed. Appendix A, Figure A-4 illustrates the trend for the USSR and the U.S.: whereas human grain consumption has remained substantially constant, that of feed has significantly increased.

Currently, of the world's cereal harvest only approximately 37% is dedicated to human consumption, the balance 50% after deducting allocations for seed, waste, industrial usage, is devoted to animal consumption.

Contrary to what happens in human consumption, cereals of all types can be substituted in animal feed. As such, their survey is important within the customer and customer-competitor countries already selected in Table 2-5, and in other countries which are major producers of these commodities. The ranking of the major producers of feed grains is presented in Figure 2-8. Cotton is also included.

The complete tabulation of crops and countries which are the final candidates for survey is presented in Table 2-6.

It is well to reiterate that these crops and countries are only those that have passed the criteria established previously. Japan, for example, although a major and steady customer for several US agricultural staples, is not a significant producer of these: as such, it is excluded from the list of candidates for survey, simply because there would not be much to survey.
FIGURE 2-8
RANKING OF WORLD PRODUCERS OF PRINCIPAL CEREAL SUBSTITUTION AND FIBER CROPS

SOURCE: USDA AGRICULTURAL STATISTICS

% WORLD TOTAL

TOTAL 155 MILLION METRIC TONS

% WORLD TOTAL

TOTAL 54 MILLION METRIC TONS

BARLEY

OATS

% WORLD TOTAL

TOTAL 29 MILLION METRIC TONS

% WORLD TOTAL

TOTAL 14 MILLION METRIC TONS

RYE

COTTON
<table>
<thead>
<tr>
<th>Crops</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>U.S.S.R.</td>
</tr>
<tr>
<td>Soybeans</td>
<td>U.S.</td>
</tr>
<tr>
<td>Rice</td>
<td>U.S.</td>
</tr>
<tr>
<td>Barley</td>
<td>U.S.</td>
</tr>
<tr>
<td>Oats</td>
<td>U.S.</td>
</tr>
<tr>
<td>Rye</td>
<td>U.S.</td>
</tr>
<tr>
<td>Cotton</td>
<td>U.S.</td>
</tr>
<tr>
<td>Sorghum</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2-6

Crops and Countries Final Candidates for Survey
2.6 Effect of Global Crop Forecast on Other U.S. Goals

2.6.1 Effect of the requirement to maximize consumer satisfaction

In a free-market economy, early prediction of the status of crops will result in the maximum possible reduction of U.S. consumer prices for the primary commodities. The U.S. spends approximate one-half of its revenues from the exports of agriproducts in importing complementary and supplementary agricultural commodities and derived products.

Complementary imports are items which are not produced in the U.S.: e.g. coffee, bananas, tea. Supplementary imports consist of products available domestically, but which consumers cherish for reasons of taste or custom: e.g. wines, canned tomatoes, pasta products.

The complementary and supplementary agricultural products play a significant role in insuring the satisfaction of U.S. consumers. Thus inventories of the respective producing countries — for example, Brazilian coffee — are important, and a scenario analogous to, but in reverse of that presented above for the exports, could be constructed. This was, however, beyond the scope of this study.

2.6.2 Role of Global Crop Forecast as Tool of Foreign Policy

The optimum trading of U.S.-produced food in exchange for political advantages requires the early knowledge of the requirements of the numerous countries who are actual or potential AID recipients. This implies that the survey of principal crops should be extended to at least the most important of these countries. The rationale for selecting target crops and countries differs from that developed above: it addresses the selection objectives of U.S. Foreign Policy. Crops different from those thus far identified do emerge — e.g. cassava.
This investigation was beyond the scope of this study.

2.7 The International Scenario

The contribution achievable to the UN goal of "world peace" by providing adequate nutrition to the world's masses is a matter of philosophical speculation. History provides abundant examples of wars and of local disturbances induced by want; as well as examples of prolonged mass deprivations not leading to such violent epilogues; and also instances of major wars initiated by well-fed contenders.

The second UN goal, "promoting global freedom from famine" is more specific and amenable to quantitative analysis, without the need to pass judgements on its philosophical correctness. It is presented in Appendix A.

The UN/FAO scenario was not utilized for this study. It is however worth noting, as shown in Appendix A, that this scenario maintains the crops and countries of the U.S. Balance of Trade scenario, except for the inclusion of additional countries producers and consumers of the staple crop rice.
3.0 **SYSTEM PERFORMANCE REQUIREMENTS AND CURRENT PERFORMANCE**

3.1 *Derivation of the Data System's Performance Requirements*

Appendix B presents an overview of the agricultural survey methods currently in use throughout the world. As indicated therein, crop production forecasts comprise two distinct functions:

- Measurement of the current status of the crop. For reasons of cost, this measurement is always performed by statistical sampling. Following the USDA designation, it is also called "estimate."

- Extrapolation to the future harvest, more properly termed "forecast." This function is accomplished based on historical regressions augmented by "best estimates" of the future incidence of adverse or beneficial phenomena affecting the crop, such as weather.

The estimate of the current status is composed of two subfunctions:

- Estimate of the acreage under cultivation

- Estimate of the crop's condition.

This study focuses upon the acreage estimates, because they are currently amenable to measurement from orbital data systems.

Table 3-1 presents the accuracies of acreage mensuration achieved by various countries and by U.S. States and Counties [5],[6],[7]. It is subject to the following interpretation:
The reported accuracies were obtained from direct discussions with responsible individuals in the US and abroad, augmented by analysis of their data.

The reported accuracies are valid late in the season; i.e. not earlier than at least one month prior to harvest.

The stated accuracies refer to sampling errors only, i.e. the combination of the random errors induced by the limited number of samples and by the accuracies of measuring each sample's crop acreage. Systematic errors are not included.

TABLE 3-1

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CROP</th>
<th>ACREAGE MEASUREMENT ERROR PREHARVEST ONE SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>WHEAT</td>
<td>±2%</td>
</tr>
<tr>
<td></td>
<td>CORN</td>
<td>±6%</td>
</tr>
<tr>
<td></td>
<td>SOY</td>
<td>±6%</td>
</tr>
<tr>
<td>ITALY</td>
<td>WHEAT</td>
<td>±4%</td>
</tr>
<tr>
<td></td>
<td>FORAGE</td>
<td>±6%</td>
</tr>
<tr>
<td></td>
<td>CORN</td>
<td>±7%</td>
</tr>
<tr>
<td>WESTERN EUROPE</td>
<td>SIMILAR TO ITALY</td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td>SPRING WHEAT</td>
<td>±3%</td>
</tr>
<tr>
<td>USDA-FAS WORLD</td>
<td>WHEAT</td>
<td>±2%</td>
</tr>
<tr>
<td>ESTIMATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. STATES</td>
<td>MAJOR STATE CROP</td>
<td>±75-155</td>
</tr>
<tr>
<td>(without auxiliary list sampling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. COUNTIES</td>
<td>MAJOR COUNTY CROP</td>
<td>UP TO ±20-25%</td>
</tr>
</tbody>
</table>
Perusal of Table 3-1 leads naturally to the question as to whether the accuracy figures therein presented do indeed represent the user requirements. In numerous discussion by EOSystems personnel with domestic and foreign user agencies, the following transpired:

- Currently achieved accuracies obtained at the current statutory reporting dates cannot be reduced.
- They must be achieved at costs not in excess of current costs: in fact, it is desirable that the costs be lower.
- Accuracies lower than those currently achieved are only useful if they can provide valuable adjuncts to the current conventional systems, either in terms of significantly lowering costs or of providing significantly improved performance of the total system.
- Users are willing to pay a modest premium for significantly improved accuracies achieved at the statutory reporting dates.
- Users are disposed to compromise accuracy for timeliness, i.e. less accurate results obtained earlier than currently achieved are acceptable.
- The combination of accuracy and timeliness warrants a significantly higher premium than what users are willing to pay to accuracy alone.

The current "user market" situation strongly counsels that the accuracy levels depicted in Table 3-1 be assumed as goals for the data system's performance.
3.2 Assessment of the Performance of Orbital Data Systems in Estimating Acreage

The purpose of this investigation was to quantify numerically the performance of existing orbital Data Systems, for comparison against the user requirements depicted in Table 3-1. The investigation was performed in two steps:

- First, analysis of all available reports on crop acreage measurement by ERTS investigators: these represent tests performed during a concentrated activity in the early phases of the LANDSAT program, from its launch in July of 1972 until 1974.
- Second, analysis of findings from later tests, to assess the trend of improvement.

To this effect, results were gathered from available, published ERTS investigation reports containing numerical performance figures. Details of the analysis are presented in Appendix C.

The resulting statistical population consisted of 224 distinct tests, performed in 10 locations, embracing 7 crops.

The cumulative curve of results is presented in Figure 3-1A. It graphs the accuracies achieved versus the percentage of the tests achieving them. It presents the results for both the inventory and the mapping, or land use, mode. Inventory mode means the determination of the proportion of a given crop within the area under examination, without however specifying the crop's geographic location. It is the mode universally used for estimating agricultural acreage. Mapping mode, as the word indicates, connotes the identification not only of the species sought, but also of
FIGURE 3-1
DISTRIBUTION OF CLASSIFICATION ACCURACIES FOR ERTS INVESTIGATIONS ON ACREAGE MENSURATION

A. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS

<table>
<thead>
<tr>
<th>7 Crops</th>
<th>10 Geographic Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>Mapping</td>
</tr>
</tbody>
</table>

NUMBER OF DATA POINTS: 224

B. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS WITH PROPORTION OF TARGET CROP >10%

<table>
<thead>
<tr>
<th>7 Crops</th>
<th>10 Geographic Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>Mapping</td>
</tr>
</tbody>
</table>

NUMBER OF DATA POINTS: 64
their geometric boundaries and geographic locations. This mode is generally not employed in conventional agriculture acreage estimation, due to its higher cost with respect to the inventory mode. It is presented in this report because of its implications to the theory of discrimination discussed in Chapter 5.

It can be noted from Figure 3-1 that the accuracies achieved by ERTS investigators in the mapping mode are lower than those competing to the inventory mode: this is quantitatively consistent with the fact that the mapping mode requires more information than proportion estimation: conversely, for equal information content, its level of performance should be lower.

Since, as will be shown in Chapter 5, the accuracy of multispectral classification worsens when the proportion of target crops to the total scene is small, a subset was extracted from the total statistical population, based on the criterion of 10% or larger proportion of target crops.

This yielded 64 distinct data points: the test results are presented in Figure 3-1B. Note the higher accuracies achieved.

The probability density functions corresponding to the curves of Figure 3-1 are shown in Appendix C. Computation of the accuracies as a function of confidence limits from these yields the classification results depicted in Table 3-2. It shows that the one sigma accuracy of classification in the inventory mode for the total population of 224 data points is 74%; this increases to 86% for the subset of 64 data points featuring 10% or greater proportions.
Comparison with Table 3-2 shows that the average performance of ERTS investigator tests in accomplishing inventory fell short of the accuracies currently achieved by conventional methods, with the possible exception of inventories performed at county levels.

ERTS investigations ceased after 1974. To assess whether the early performance has improved in the approximately four years elapsed since, a number of subsequent investigations, performed by reputable organizations, were analyzed. The details are presented in Appendix C: the overall results are shown in Table 3-3. It can be seen that there has been improvement since 1974: yet performance is still short of the user's requirements.
TABLE 3-3

ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED FROM 1974 TO 1978

Universe of 18 classification endeavors on 10 crops, 13 geographic locations; one sigma confidence.

<table>
<thead>
<tr>
<th>PROPORTION ESTIMATION</th>
<th>MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCURACY %</td>
<td>86</td>
</tr>
<tr>
<td>ERROR %</td>
<td>14</td>
</tr>
</tbody>
</table>

The logical next inquiry is to ascertain whether the 75-85% inventory accuracy thus far achieved by LANDSAT experimenters is a limit imposed by nature, or whether there exist driving elements in the Data System whose exploitation can further enhance crop discrimination and identification.
4.0 INVESTIGATION INTO THE PHYSICAL REASONS FOR THE DISCREPANCY BETWEEN REQUIREMENTS AND PERFORMANCE

4.1 Methodology

The generalized end-to-end data system of radiometric earth-observation platforms employed currently and expected to be used in the 1980-1990 decade is depicted in Figure 4-1. The methodical investigation of its performance was begun at the front-end, by analyzing the relationships between the information provided by nature, i.e. the crop spectra, and the measurement capabilities of radiometric sensing.

The initial question addressed was whether reflectance spectra of crops do provide sufficient information for accurate identification or discrimination, and, if so, under what operating conditions. By discrimination is meant the recognition that the observed classes are distinct: identification, in addition, is the attribution of a specific label, e.g. agricultural crop, to each distinct class. The difference between discrimination and identification is conceptually akin to that between inventory and mapping.

Proper performance of this investigation suggests the removal, insofar as possible, of all effects which perturb the spectral reflectance patterns: primarily atmospheric absorption, path radiance, instrumental drifts, effects of varying orientations of illumination and look angles. This requires the availability of "pure" spectra, i.e. of fine-grained crop spectral measurements taken under carefully calibrated conditions.
FIGURE 4-1
FUNCTIONAL DATA FLOW GENERAL RADIOMETRIC OBSERVATION SYSTEM

\[n = k \sqrt{\Delta \lambda \cdot \rho \cdot r^2} \]

SENSOR \rightarrow FORMATTING \rightarrow STORAGE \rightarrow COMPRESSION PROCESSING \rightarrow MODULATOR TRANSMITTER

E/M LINK

DATA RELAY

GROUND RECEPTION AND PREPROCESSING

RECEIVER FRONT-END \rightarrow VIDEO PROCESSOR \rightarrow HD STORAGE \rightarrow CORRECTION

A

CORRECTION \rightarrow HD STORAGE \rightarrow VIDEO PROCESSOR \rightarrow RECEIVER FRONT-END

B

HARD COPY RECORDER \rightarrow IMAGES

DATAPRODUCTS \rightarrow ARCHIVE

USER PROCESSING

PRE-PROCESSING \rightarrow INFORMATION EXTRACTION

DISSEMINATION

USER PRODUCT

\[q = k \frac{A}{r^2 \tau} \cdot \ln_2 n \]

Legend:
- \(n \) = NO. RADIOMETRIC LEVELS
- \(k \) = SYSTEMS CONSTANT
- \(\Delta \lambda \) = WAVELENGTH INTERVAL
- \(\rho \) = REFLECTANCE OF IMAGED ELEMENT
- \(r \) = GROUND RESOLUTION
- \(\tau \) = TIME OF IMAGING SCENE
- \(k \) = COMPRESSION RATIO

CURRENT SUBSYSTEMS

POSSIBLE FUTURE SUBSYSTEMS
Several spectral data bases were available in the literature prior to 1975. Table 4-1 lists the principal ones.

TABLE 4-1

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>SPONSOR AGENCY</th>
<th>PUBLICATION DATE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF</td>
<td>NASA/MTF</td>
<td>12/73-5/74</td>
<td>MTF - BAY ST. LOUIS, MS</td>
</tr>
<tr>
<td>LARS</td>
<td>NASA</td>
<td>7/68</td>
<td>LARS - WEST LAFAYETTE, IN</td>
</tr>
<tr>
<td>ERIM</td>
<td>U.S. AIR FORCE</td>
<td>1972</td>
<td>NTIS - SPRINGFIELD, VA</td>
</tr>
<tr>
<td>ERDL</td>
<td>U.S. ARMY</td>
<td>1961-1962</td>
<td>NTIS - SPRINGFIELD, VA</td>
</tr>
<tr>
<td>WESLACO</td>
<td>USDA ARS</td>
<td>10/66-9/67</td>
<td>USDA ARS - WESLACO, TX</td>
</tr>
<tr>
<td>KRINOV</td>
<td>USSR</td>
<td>1936-1938</td>
<td>NRC - OTTAWA, CANADA</td>
</tr>
<tr>
<td>IITRI*</td>
<td>NASA/USAF</td>
<td>VARIOUS</td>
<td>NTIS - SPRINGFIELD, VA</td>
</tr>
</tbody>
</table>

*Summary of data from other sources.

Unfortunately, most of these spectra do not correspond to ideal conditions, because: 1) they are either spectra of plant leaves taken in the laboratory, thus not of the plants as a whole; 2) calibrations surrounding the taking of whole-plant spectra were not consistent. Nevertheless, these spectral data bases were useful as secondary, qualitative sources of information.

The first set of "pure" spectra became available from Bushland, Texas in 1975. They were supplied to ECOsystems through the courtesy of Dr. James C. Harlan of the Spectral Characteristics Laboratory, Remote Sensing Center, Texas A&M University. Dr. Harlan was also most generous with minutious information as to the experimental procedure followed, ground truth
maps, files and aerial imagery. This allowed certification of the quality of these spectra and permitted the compensation of spurious effects which had crept into the data gathering procedure in spite of the experimenter's diligence.

Subsequently, other data sets, also collected under calibrated conditions at low altitude, became available. The set of data used in this study is indicated in Table 4-2.

<table>
<thead>
<tr>
<th>TABLE 4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF THE "PURE" SPECTRAL DATA USED IN THE ANALYSIS</td>
</tr>
<tr>
<td>BUSHLAND, TX</td>
</tr>
<tr>
<td>NUMBER OF FIELDS</td>
</tr>
<tr>
<td>SPECTRAL RANGE, MICRONS</td>
</tr>
<tr>
<td>SPECTRAL RESOLUTION, MICRONS</td>
</tr>
<tr>
<td>NUMBER OF SPECTRA GATHERED PER FIELD</td>
</tr>
<tr>
<td>CALIBRATION PROCEDURE</td>
</tr>
<tr>
<td>INSTRUMENT</td>
</tr>
<tr>
<td>PLATFORM</td>
</tr>
<tr>
<td>DATES OF GATHERING</td>
</tr>
<tr>
<td>GROUND RESOLUTION, METERS</td>
</tr>
<tr>
<td>FLIGHT ALTITUDE, METERS</td>
</tr>
</tbody>
</table>

W = WHEAT R = RYE P = PASTURE C = CORN S = SORGHUM A = ALFALFA O = OATS B = BARLEY SB = SUGAR BEETS AS = ASPARAGUS ME = MELONS () = SPECTRA AVAILABLE DURING PARTIAL GROWTH CYCLE ONLY.

These data sets represent a major improvement with respect to the earlier spectra available in the literature. Nevertheless, they still present significant uncertainties. For example: none of the data sets embraces a temporal span sufficiently wide so as to contain all the phenologic stages of corn or sorghum. The data-gatherer's primary
interest appears to have been the measure of wheat. In several cases, obvious sensor and/or processing errors have crept in. Frequently, the percent of crop ground cover is not unambiguously stated: thus several crop spectra are mixed with soil spectra in such fashion that it is difficult to unravel the true reflectance of either. In many cases, the nomenclature does not correspond with the actual ground cover: fields planted to a certain crop which never does emerge are labeled as containing that crop. No attempt is apparent to reconcile widely disparate reflectances pertaining to the same field, as for example the reflectances of soil, labeled "bare," before emergence and after harvest.

This state of affairs, particularly evident in the Hand County spectra, requires considerable judgement, and inter-comparison of spectra from all the data sets, in order to avoid the conclusion that crop reflectance spectra are essentially random.

4.2 Results from the Analysis of the Field Spectra

The details of the analysis of the available data sets are presented in Appendix D. The salient conclusions are:

1. The shapes of the crop reflectance spectra are significantly similar at similar growth stages - i.e. after the crops are sufficiently developed to cover the underlying soil. As exemplified in Figure 4-2, there is little evidence of sharply unique spectral structures among the various crops.

2. The spectral shapes remain significantly similar throughout the crop's growth stages, provided that the crop's ground cover is sufficiently dense so as to minimize interference from soil reflection.
FIGURE 4-2
SPECTRA OF VARIOUS CROPS AT 100% LEAF COVER IN IMPERIAL VALLEY, CALIFORNIA

SOURCE: Atlas of Selected Crop Spectra Imperial Valley, California
S.G. Ungar, NASA Institute for Space Studies, 1977
3. The spectra exhibit significant differences of mean amplitudes as a function of stage of growth. Typically progressions are exemplified in Figure 4-3.

4. The mean values of the spectral amplitudes exhibit fluctuations. This is exemplified in Figure 4-4. Fluctuations are present within single fields and in ensembles of fields, and occur in all regions of the spectrum.

5. The fluctuations among ensembles of fields are generally larger than those pertaining to single fields. A possible explanation of the intrafield fluctuations is the presence of discontinuities -- patches, bare spots, stressed areas -- within the fields; and the clutter effect originating from the varying orientations and sizes of the reflecting components of the canopy. A logically appealing explanation of the interfield fluctuations is that cropped fields do not reach the same development stage simultaneously. Figure 4-5 depicts for various crops the fraction, as a function of time, of the cropped surface which reaches a given stage of phenologic development. It can be seen that as many as 60 days are required to progress from 0% to 100% of the covered area. Thus an ensemble of fields generally contains individual fields at different phenologic development, and hence different reflectances. The presence of stress causes similar effects. The available data, cf. Appendix D, suggest 0.1 as a typical lower value and 0.3 as a typical upper bound of the coefficients of variation for an ensemble of fields.

6. Identification was not found possible from spectral signature or from differences in amplitude alone. It requires additional external information, e.g. knowledge of the phenologic progressions prevailing within the region being observed.
FIGURE 4-3

TEMPORAL PROGRESSION OF THE MEAN REFLECTANCE FOR THE CROPS CONTAINED IN THE HANG COUNTY DATA SET

REFLECTANCES ARE ADJUSTED TO 100% GROUND COVER

- SPRING WHEAT, FIELD 169
- OATS, FIELD 136
- BARLEY, MULTIFIELD
- PASTURE, FIELD 198
- ALFALFA, MULTIFIELD

(julian dates and calendar dates)
FIGURE 4-4
SPECTRAL VARIANCES OF CORN
HAND COUNTY, N.D., 27 JULY 1977

FIELD NO. 76

ALL CORN FIELDS

REFLECTANCE FACTOR, VARIANCE

SPECTRAL BAND, MICRONS
FIGURE 4-5
AREAL DEVELOPMENT OF CROPS AS A FUNCTION OF TIME SOUTHWEST CROP REPORTING DISTRICT, KANSAS, 1973 SEASON

MAY	JUNE	JULY	AUGUST	SEPT.	OCT.	NOV.
9 118 120 127 137 141 148 158 160 169 170 183 180 197 204 211 215 221 227 232 238 248 253 263 264 274 281 288 299 302 309 319 321 324
39 40 47 51 56 61 66 67 70 71 78 81 83 88 90 93 96 97 100 102 105 107 110 113 116 118 121 124 127 130 133 136 139 142 145

WHEAT — 10,400,000 ac.

CORN — 1,540,000 ac.

SORGHUM — 3,900,000 ac.

ALFALFA — 1,210,000 ac.

Source: U.S. Weekly Crop and Weather Bulletin
The experimental findings suggest that the driver of discrimination is not spectral shape, rather the relative difference of amplitude of the spectral mean values, which occurs when the crop species are observed at different growth stages.

This does not connote the absence of all information in the quantitative differences between diverse spectral bands. It simply says that the information contained within the inter-band variations is relatively less important than that inherent in the differences between the intensities of the mean reflectances. Stated in other words, if the spectral reflectance shapes of various crops or of a single crop at different growth stages, are normalized to a common average reflectance, the ability to discriminate between them is limited. Interband differences probably do arise, especially if the entire region of interest is imaged simultaneously, from momentary differences of leaf orientations, different fraction of underlying ground covered by the leaf canopy, differences in the reflecting properties of the underlying ground, and similar phenomena depending on geometry or upon electromagnetic wave impedances and transmissivities presented by the pattern of reflecting objects.

Nevertheless, the experimental data appears to indicate that attempts at exploiting differentials of spectral shapes in and by themselves is akin to attempting to distinguish targets from clutter using amplitude patterns alone. The resulting accuracies are limited.

The presence of the statistical fluctuations, typical of clutter phenomena, further reduces the discrimination capability. The phenomenology appears formally equivalent to the glint effect observed in radar.
The situation suggests, as a working hypothesis, a model equivalent to the bistatic radar mechanism. The sun provides the illuminator, the illuminated crop represents a "scintillating" target, and the sensor is the receiver. In this model, the discrimination error is analogous to a false alarm rate.

The hypothesis leads to the development of a generalized theory of discrimination, presented in Chapter 5 following.
5.0 THEORY OF DISCRIMINATION FROM RADIOMETRIC DATA

5.1 Simplified Theory

The objective of agricultural acreage mensuration is to determine the proportion of the crop or crops sought relative to the total area under analysis, independently of where each crop species is located geographically. A first approach to the theory can be made by invoking the following assumptions:

- Two species only; normal distribution of reflectances
- One radiometric band only
- Area under study sufficiently large so that mensuration errors induced by the finite size of the resolution element (pixel) are negligible

It is shown in Appendix E that, under these assumptions, the error attributable to discrimination in estimating the proportion of the crop sought is given by:

\[
e_{d \%} = \frac{100}{p \sqrt{n}} \frac{k}{p} \frac{1}{\sqrt{\frac{\sigma_A^2}{p} + \frac{\sigma_B^2}{1-p}}} \frac{p K (\rho_A - \rho_B)}{\rho_A - \rho_B} \tag{5-1}
\]

where:

- \(p \) = proportion of crop A to total area
- \(e_{d \%} \) = percent error in p attributable to discrimination
- \(k \) = statistical confidence multiplier
- \(n \) = total number of pixels in scene (species A pixels + species B pixels).
\(\rho_A, \rho_B \) = means of the relative reflectances of species A, B respectively.

\(\sigma_A, \sigma_B \) = standard deviations of the fluctuations of \(\rho_A, \rho_B \) respectively.

Expression (5-1) can also be written:

\[
e_{q_p}^2 = \frac{100 \ k \ h_A}{\rho_A} \sqrt{p - \frac{\rho_B}{\rho_A} (1-p) \left(\frac{h_B}{h_A} \right)^2}
\]

where:

\(h_A = \frac{\sigma_A}{\rho_A} \) = coefficient of variation of \(\rho_A \)

\(h_B = \frac{\sigma_B}{\rho_B} \) = coefficient of variation of \(\rho_B \)

all other symbols are as defined previously

\(\frac{\rho_B}{\rho_A} \) = is the contrast ratio between the reflectances of the two crops

5.2 Significance

There is currently no definitive experimental indication that the coefficients of variation differ systematically and reliably among crops. Until more comprehensive data become available, it is assumed that

\(h_A = h_B = h \).

Expression (5-2) can thus be modified by posing \(h_A = h_B = h \). This assumption converts (5-2) into:
Explicitating \(n \) from (5-3) yields:

\[
\frac{10^4 h^2 k^2}{p^2 e_d^2} \frac{\rho_B^2}{(1 - \frac{\rho_B}{\rho_A})^2} [p + (1-p) \left(\frac{\rho_B}{\rho_A} \right)^2]
\]

Let us survey briefly the implications of this expression.

\(p \) is a characteristic of the target crop, in fact it is the quantity to be measured. \(p \) does vary from year to year: in most practical cases, the variation is relatively small. More significantly, \(p \) lies beyond the observer's control. He can however render the computation of \(p \) more facile if he is privy to certain prior information.

\(e_d \), the allowable one-sigma error, is established by the user requirements. It is also beyond the observer's control.

\(\rho_A, \rho_B \) and \(h \) are determined by the characteristics of the crops being inventoried. Control over \(\rho_A, \rho_B \) is possible by selecting the timing of the observation.

\(n \) represents the number of pixels required to be observed. It is analogous to the "number of looks" in radar theory. It is controllable by varying the extent of the surface area being observed.

\(n \) is a driver of the characteristics and cost-effectiveness of the Data System, because:
1. The Data System's load is directly proportional to the number of pixels to be observed.

2. The costs of the data relay, preprocessing and information extraction portions of the Data System grow in proportion to the data load.

A feel for the relationships between parameters is available from Figure 5-1. It plots the total area required to be observed and measured versus the contrast ratio $\frac{\rho_B}{\rho_A}$, for the typical conditions: error desired 2%; confidence one sigma ($k=1$); $p=0.15$ (a typical realistic value for densely cropped areas); and a linear pixel dimension of 30 meters (proposed for LANDSAT D). As shown in Chapter 4, the values of h used as parameters, e.g. 0.1 and 0.3, are typical of minimum and maximum values competing to realistic agricultural scenes.

Figure 5-1 can be converted to the characteristics of LANDSAT A, B, C, by increasing the ordinates by the square of the ratio of the respective resolutions, i.e. approximately fivefold.

A feel for typical practical values of the contrast ratio $\frac{\rho_B}{\rho_A}$ can be obtained from Figure 5-2, derived from the experimental data summarized in Chapter 4. It shows that under conservative system regimes, taking into account compression effects induced by the atmosphere, one should not assume design goals for $\frac{\rho_B}{\rho_A}$ significantly lower than 0.8; and that 0.95 represents an approximate upper bound, beyond which the area which must be measured generally transcends practically attainable limits.
FIGURE 5-1
AREA WHICH MUST BE OBSERVED AS A FUNCTION OF SCENE PARAMETERS

DISCRIMINATION ERROR, $e_d = 2$
PROPORTION $p = 0.15$
RESOLUTION $r = 30$ METERS

AVERAGE U.S. COUNTY

$A = \text{AREA REQUIRED TO BE OBSERVED, km}^2$

$C = \text{CONTRAST RATIO } \frac{\rho_A}{\rho_B}$

$H = \text{COEFFICIENT OF VARIATION OF REFLECTANCE}$

$H = 0.3$
$H = 0.1$

TYPICAL OPERATING REGION
FIGURE 5-2

TEMPORAL BEHAVIOR OF CONTRAST RATIO: HANDB COUNTY, N.D.

Contrast Ratio \(\frac{p_B}{p_A} \)

Calendar Date

April

May

June

July

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Julian Date

111

126

141

156

171

186

Barley vs. Wheat

Oats vs. Wheat

Alfalfa vs. Wheat

Pasture vs. Wheat

Note: All wheat is spring wheat
5.3 Selection of the Best Band

The simplified theory deals with a single band. Given a choice among various bands, it comes naturally to ask which band is indeed the best and how to select it.

The most efficient system is obviously the one which provides the best performance at minimum cost. From the aforegoing, this is tantamount to require the simultaneous minimization of the error and of the number of pixels which must be sampled. From expression (5-2), it is clear that the product \(e_d \sqrt{n} \) can be taken as representing a figure of merit of the Data System. Thus, the "best" single band is the one which, for specified conditions of observation, minimizes the figure of merit \(e_d \sqrt{n} \). This is equivalent, from (5-2), to minimizing the expression:

\[
\frac{h}{1 - \frac{\rho_B}{\rho_A}} \sqrt{p + (1-p) \left(\frac{\rho_B}{\rho_A} \right)^2 \left(\frac{h_B}{h_A} \right)^2} \]

where the constant \(K \) subsumes all parameters not affected by the choice of band. Under the previously introduced assumptions \(h_A = h_B = h \), (5-5) becomes:

\[
\frac{h}{1 - \frac{\rho_B}{\rho_A}} \sqrt{p + (1-p) \left(\frac{\rho_B}{\rho_A} \right)^2} \]

(5-6)
In other words, the "best" band consistently exhibits combinations of ρ_A, ρ_B, h_A, h_B which minimize expression (5-5) -- or (5-6) if one does not have available the separate values of h_A, h_B.

Tests were run to determine the best band or bands from the available experimental data. To this effect, pairs of crops were chosen whose ground cover reaches substantial values, in excess of 50% during the season. The reflectance values of the fine-grained spectra were integrated within the wavelength intervals of the first five TM bands.

From (5-6), the number of pixels required to be observed at each of the available temporal dates were calculated. Typical experimental results are shown in Table 5-1 for $h = 0.3$, error $e_d = 2\%$, $p = 0.15$, crops alfalfa versus barley, Hand County data. It is clear that the bands which require the lowest number of pixels, i.e. which minimize the "cost function," are the best.

Table 5-1

<table>
<thead>
<tr>
<th>TM BAND</th>
<th>WAVELENGTH, μm</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45 - 0.52</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
</tr>
<tr>
<td>2</td>
<td>0.52 - 0.60</td>
<td>8.3×10^5</td>
<td>1.7×10^6</td>
<td>4.6×10^7</td>
<td>4.9×10^8</td>
<td>99</td>
<td>202</td>
<td>$5,480$</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>0.63 - 0.69</td>
<td>1.6×10^6</td>
<td>1.9×10^6</td>
<td>1.0×10^6</td>
<td>6×10^4</td>
<td>190</td>
<td>226</td>
<td>119</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>0.76 - 0.90</td>
<td>3.2×10^6</td>
<td>2.6×10^4</td>
<td>3.2×10^5</td>
<td>8.4×10^5</td>
<td>5.8</td>
<td>3.1</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.55 - 1.75</td>
<td>4.5×10^7</td>
<td>2.7×10^5</td>
<td>4.0×10^5</td>
<td>2.5×10^5</td>
<td>$5,350$</td>
<td>32</td>
<td>48</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 5-1 (continued)

<table>
<thead>
<tr>
<th>NUMBER OF PIXELS (COST FUNCTION) REQUIRED TO BE OBSERVED WITHIN THE FIRST FIVE TM BANDS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TM BAND</th>
<th>WAVELENGTH, μm</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45 - 0.52</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
</tr>
<tr>
<td>2</td>
<td>0.52 - 0.60</td>
<td>8.3×10^5</td>
<td>1.7×10^6</td>
<td>4.6×10^7</td>
<td>4.9×10^8</td>
<td>99</td>
<td>202</td>
<td>$5,480$</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>0.63 - 0.69</td>
<td>1.6×10^6</td>
<td>1.9×10^6</td>
<td>1.0×10^6</td>
<td>6×10^4</td>
<td>190</td>
<td>226</td>
<td>119</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>0.76 - 0.90</td>
<td>3.2×10^6</td>
<td>2.6×10^4</td>
<td>3.2×10^5</td>
<td>8.4×10^5</td>
<td>5.8</td>
<td>3.1</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.55 - 1.75</td>
<td>4.5×10^7</td>
<td>2.7×10^5</td>
<td>4.0×10^5</td>
<td>2.5×10^5</td>
<td>$5,350$</td>
<td>32</td>
<td>48</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 5-1 (continued)

<table>
<thead>
<tr>
<th>NUMBER OF PIXELS REQUIRED FOR DISCRIMINATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TM BAND</th>
<th>WAVELENGTH, μm</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
<th>4/21</th>
<th>5/10</th>
<th>6/1</th>
<th>6/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45 - 0.52</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
<td>2.9×10^5</td>
<td>2.9×10^6</td>
<td>2.3×10^4</td>
<td>2.3×10^4</td>
</tr>
<tr>
<td>2</td>
<td>0.52 - 0.60</td>
<td>8.3×10^5</td>
<td>1.7×10^6</td>
<td>4.6×10^7</td>
<td>4.9×10^8</td>
<td>99</td>
<td>202</td>
<td>$5,480$</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>0.63 - 0.69</td>
<td>1.6×10^6</td>
<td>1.9×10^6</td>
<td>1.0×10^6</td>
<td>6×10^4</td>
<td>190</td>
<td>226</td>
<td>119</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>0.76 - 0.90</td>
<td>3.2×10^6</td>
<td>2.6×10^4</td>
<td>3.2×10^5</td>
<td>8.4×10^5</td>
<td>5.8</td>
<td>3.1</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.55 - 1.75</td>
<td>4.5×10^7</td>
<td>2.7×10^5</td>
<td>4.0×10^5</td>
<td>2.5×10^5</td>
<td>$5,350$</td>
<td>32</td>
<td>48</td>
<td>30</td>
</tr>
</tbody>
</table>
The example of Table 5-1 shows that TM Band 4 is the best for the specific case selected.

In general, the best band is case-dependent. Various tests run for diverse crops at 50% or better ground cover resulted in the orientative rankings of the discriminating power of the TM bands depicted in Table 5-2.

Table 5-2

Ranking of TM Bands for Discriminability Between Staple Crops

<table>
<thead>
<tr>
<th>TM Band</th>
<th>Wavelength, Microns</th>
<th>Approximate Relative Figure of Merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45 - 0.52</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.52 - 0.60</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.63 - 0.69</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>0.76 - 0.90</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.55 - 1.75</td>
<td>0.3</td>
</tr>
</tbody>
</table>

5.4 **Effect of Multiple Bands**

Rigorous extension of the theory to multiple bands was not attempted in this effort: because the objective was to determine the drivers of Data System performance rather than to develop discrimination theory. Some general considerations on the effect of multiple bands can however be made at this time:

1. The addition of other bands to the best band will generally improve the discriminant power of the system; provided, that the signal-to-fluctuation ratio this added to the best band is not so low as to
yield a decreased overall signal-to-fluctuation ratio for the multiple bands.

2. The addition of bands is beneficial - subject to the caveat expressed above - even if their spectral amplitudes are completely correlated (cf. Table D-2, Appendix D). This is because adding bands provides additional samples. Thus, if all bands possess the same discriminating power, the upper bound of the improvement is given by the sampling theorem, i.e. it will equal \(\sqrt{b} \), where \(b \) is the number of bands combined. In practice, as indicated by Table 5-2, the benefit will be lower than this upper bound, if the best band has been selected initially.

In conclusion, all other conditions remaining invariant, multispectral discrimination can be expected to lower the number of pixels and corresponding total area required to be observed (cf. Figure 5-1), but not by a strikingly large amount.
6.0 CONSEQUENCES OF THE THEORY ON THE CHARACTERISTICS OF THE DATA SYSTEM

6.1 Impact on the Frequency of Observation

The developments of previous Chapter 5 lead to the following conclusions regarding accurate discrimination:

1. It is not sufficient to image agricultural scenes "when all crops look good." They must be imaged when the statistical 'distances' between their probability distributions reach sufficiently large values. The requires selecting moments of observation for which $\frac{\rho_B}{\rho_A}$ and h_A, h_B are, simultaneously, sufficiently small.

2. The above conditions do not occur for all crops simultaneously: rather, they occur generally pairwise. The net result is that quality discrimination must be achieved by analyzing several optimally positioned temporal "cuts."

The typical situation is depicted in Figure 6-1. The time intervals during which the "statistical distances" are widest bear the generalized designation of "temporal windows", or simply "windows."

The duration of a window is not a univocal quantity. It is a function of:

1. The system's specified figure of merit, $e\% \sqrt{n}$. The more stringent the figure of merit --- i.e., the higher the desired accuracy and simultaneously the lower the number of pixels one wishes to process --- the smaller must be the value of function (5-5). Consequently the shorter will be the admissible window. In extreme
FIGURE 6-1

CONCEPT OF STATISTICAL WINDOW

DATA FROM HAND CO., N.D.

SPECTRAL BAND: 0.76-0.90

REFLECTANCE FACTOR, PERCENT

ALFALFA (at 80% GROUND COVER)

SPRING WHEAT (AT 30% GROUND COVER)

ONE-SIGMA INTERVAL OF FLUCTUATIONS

APRIL MAY JUNE JULY
cases, i.e. if the specification of the figure of merit is made too stringent, the window may vanish altogether.

2. The system's sensitivity threshold \(\frac{\rho_B}{\rho_A} \) \text{th}. The previous derivations disregard exogenous fluctuations acting within the scene. In practice, such fluctuations exist. Thus it is necessary in real situations to allow a "margin of safety" on the threshold value of \(\frac{\rho_B}{\rho_A} \). In other words, the actual \(\frac{\rho_B}{\rho_A} \) must be chosen somewhat more stringently, or lower, than its theoretically acceptable value.

The principal exogenous fluctuations stem from three sources:

- The granularity of the sensor, caused by quantization errors, calibration imperfections, instrumental errors.
- The variability of the atmospheric absorption across the scene.
- The variability of the path radiance across the scene.

As regards the sensor, a reasonable estimate, derived from MSS performance, is to assume that the theoretical maximum number of levels is reduced by a factor of two. Thus, for example the Thematic Mapper, which possesses a theoretical maximum of 256 levels, probably contains only approximately 100 univocal levels at a false alarm ratio of order 1%.

Because experimental results show that the reflectance fluctuations of crop targets, also known as "scene noise," are considerably larger than this value, sensor fluctuations are negligible to the effects of performing agricultural inventories by radiometric remote sensing from OSTA space platforms.

Atmospheric transmissivity fluctuations affect \(\frac{\rho_B}{\rho_A} \) \text{th} are those which occur between diverse points of the scene. Variations which affect the entire scene uniformly affect both \(\rho_A \) and \(\rho_B \) by the same ratio and thus impact only slightly the ratio \(\frac{\rho_B}{\rho_A} \) \text{th}'.
Information on the intra-scene fluctuations is limited. Investigations by ECOsystems, using data from the US Turbidity Network indicate that fluctuations between separate points of the scene can reach peak excursions as high as 20%, rms values of as much as 10%. Figure 6-2. The contribution of these fluctuations to the uncertainty in $\hat{\rho}_B^{th}$ depends upon the distribution of the species A, B across the scene. If A and B are adjacent to each other everywhere (locally compact), the fluctuations will have no effect on $\hat{\rho}_A^{th}$. If however the locations of A and B are disaggregated (for example, as a limiting case, all the A's are in one place, all the B's in another, distant from the first), then ρ_A and ρ_B will suffer different random variations. Pending the availability of supplementary information on atmospheric fluctuations, it is not unreasonable to assume that ρ_A, ρ_B are both affected by uncorrelated random fluctuations of 3%; their combined rms fluctuation thus would be of order 4%, one sigma.

The third factor, variability of the path radiance, is even less known. It is not included in this calculation.

3. The amount of prior information available. If the phenologic progress for the year under study is poorly known, the average phenologic progressions are computed from historical statistics. Figure 6-3 illustrates the procedure for determining the temporal fluctuations of the phenologic stages from historical data, in this case from [10]. It is noted that the yearly progressions of mean reflectances are shown as reaching the same peak values. This is not necessarily true in nature: it is an assumption dictated by the scarcity of experimental data. In practice, it can be expected that the peak values will vary from year to year, in response to differing situations of ground cover, plant stress, and similar. The computation of the temporal excursions is however affected but little by fluctuations of reflectance levels.
MONTHLY MEAN AND ONE-SIGMA DISPERSION OF AVERAGE DAILY TRANSMITTANCE DIFFERENTIAL

TAKEN AT 5-DAY INTERVALS, BETWEEN RALEIGH AIRPORT AND RESEARCH TRIANGLE PARK, NORTH CAROLINA

Stations located 8 km apart.

All observations taken on cloud-free days or when a clear path to the sun is available.
PROCEDURE FOR CONSTRUCTING PHENOLOGICAL STATISTICS

RELATIVE REFLECTANCE

+ SEVEN ADDITIONAL PAST YEARS

he = HEADING

ts = TASSELING

pod = PODDING

e = EMERGING

WHEAT

CORN

SOYBEANS

10-YEAR AVERAGE

APR MAY JUN JUL AUG SEP OCT NOV
4. The presence of cloud cover. The random occurrence of clouds during the window intervals can be calculated or simulated with existing cloud models. This is further discussed in Chapter 7.

Figure 6-4 depicts typical windows. Note the effect upon window length of varying the sensitivity threshold of the system. The windows discussed previously are for cloudless conditions. Figure 6-5 depicts the required frequency of observation for selected regions of the world when cloud cover is taken into account for various levels of threshold sensitivity. Chapter 7 illustrates how the windows portrayed in Figure 6-4 for selected regions were expanded worldwide by simulation. The results were analogous to those portrayed in Figure 6-5: recurrence times of order 5 days are needed to achieve coverages commensurate with 96% to 98% completeness of crop acreage mensuration.

Chapter 8 discusses ways and means of achieving such low recurrence rates with minimal cost impact upon the system.

6.2 Impact on the Extent of the Area which must be Observed

The preceding theory shows that it is not necessary to observe, sample and process the entire surface of the region under study. If the times of observation are selected correctly, sampling of considerably smaller portions is sufficient. Let us examine this in more detail.

6.2.1 The Effect of Bounding and the Role of Auxiliary Information

The sensitivity of the area to be measured to its crop proportion is depicted in Figure 6-6, which also presents for comparison the proportions
FIGURE 6-4
STATISTICAL (ONE SIGMA) TEMPORAL WINDOW ENVELOPES OF REFLECTANCE DIFFERENCE
USSR, UKRAINE

FIGURE 6-5
REQUIRED RECURRENCE OF OBSERVATION TO ACHIEVE 99% PROBABILITY OF VIEWING FOR SPECIFIED CLOUD COVER AS A FUNCTION OF SENSOR THRESHOLD SENSITIVITY \(\Delta \rho \)
FIGURE 6-6

DEPENDENCE OF AREA TO BE OBSERVED ON THE PROPORTION OF THE CROP TO BE INVENTORIED

ERROR DESIRED = 2%, l_α

PIXEL RESOLUTION = 30 meters

![Graph showing the dependence of area to be observed on the proportion of the crop to be inventoried. The graph plots area to be observed in km^2 against the proportion of the target crop, p. The graph includes two lines, each representing a different pixel resolution: $\frac{\rho_B}{\rho_A} = 0.95$ and $\frac{\rho_B}{\rho_A} = 0.8$ for $h = 0.3$ and $h = 0.1$, respectively. The areas for unstratified and bounded populations are indicated.]
competing to selected areas of the world. It can be seen that the average proportions of crops are relatively small, calling for the sampling of rather extensive areas: but that the area to be observed decreases drastically as the crop proportion increases.

This leads to the concept of "bounding," i.e., eliminating from the observed scene as many as possible areas known not to contain the crop or crops sought. The concept of bounding is obvious for such surface features as lakes, deserts, dense urban settlements. For other than these obvious features, proper bounding requires the availability of prior information, i.e., what areas under observations do or do not contain the crops sought. After bounding is accomplished to the best extent possible with the information available, stratification into diverse levels of crop proportions is effective in further reducing the area to be observed. Same as with bounding, proper stratification also requires prior information.

6.2.2 Sampling

If the moments of observation are correctly chosen, the area required to be observed will be significantly less than the net scene area still available, even after bounding and stratification. In other words, it will not be necessary to observe all of the residual area: observation of a smaller fraction generally suffices to yield the desired accuracies. (5–4) allows computation of the area required to be observed: however, it does not provide information as to what geographical locales within the scene should be observed.
In the absence of other prior information, the distribution of the locales to be observed is determined by statistical sampling. The standard procedure is to choose the number of samples, or segments, from the well-known formulation:

\[e_s = \frac{\bar{o}}{\bar{\mu} \sqrt{N}} \]

where:

- \(e_s \) = sampling error desired in the measurement of \(p \)
- \(N \) = number of sample segments
- \(\bar{\sigma} \) = fluctuation of proportion within the sampled area
- \(\bar{\mu} \) = mean value of the proportion measured from the \(N \) samples.

In practice, \(\sigma \), or, equivalently, the coefficients of variation \(\frac{\sigma}{\mu} \) of agricultural regions are not published nor available. What is available is the historical sequence of the region's proportions of target crops \(p \). If the successive \(p \)'s do not fluctuate too widely, one can assume their temporal average as representative of the region; otherwise, in absence of other information, it is prudent to assume the lowest value of \(p \) experienced over the last several years.

This historical value of \(p \) can be utilized in place of the unavailable \(\frac{\sigma}{\mu} \) by assuming that the population of samples to be chosen obeys a Bernoullian distribution, wherein each sample, or segment, is counted as zero if it contains a proportion of the target crop less than \(p \); and as 1, if more. With this assumption, the standard deviation \(\bar{o} \) is given by:
\[\sigma = \sqrt{N p (1-p)} \]

The mean \(\bar{p} \) of the sample is \[\frac{\sum_{i=1}^{N} p_i}{N} \], which, for \(N \) sufficiently large, tends to \(p \). The mean proportion containing the species sought is then \(Np \), and expression (6-1) becomes:

\[e_s = \frac{\sqrt{Np (1-p)}}{\sqrt{Np}} = \sqrt{1-p} \frac{1}{\sqrt{N}} \]

Expressing \(e_s \) as a percent error, and introducing the confidence multiplier \(k \), (6-3) becomes:

\[e_s = 100 k \frac{\sqrt{1-p}}{\sqrt{Np}} \]

This expression is valid if \(Npk \gg 1 \), i.e. to the extent to which the Bernoullian approximation is close to the Gaussian distribution, and if \(N \ll \) total number of sample segments extractable from the observed scene. In practice, the errors are negligible at the 1% as long as \(Npk \geq 30 \), and if \(N/(\text{Parent population } N) \leq 2\% \).

The formulation above applies to unstratified sampling. The effect of stratification is to increase the "effective" \(p \) by parceling the samples according to the \(p \) - density of the various strata within the scene.

Expression (6-4), or its originating form (6-1), do not in and by themselves answer the question of how large to make each individual segment. As the segment's surface is made progressively larger, it
eventually will encompass the entire area to be inventoried. The number of segments becomes unity, yet the error becomes zero: thus (6-4) breaks down in this extreme case. A quantitative formulation requires knowledge of the distribution of \(p \) within the region. In its absence, (6-4) still holds for conditions wherein the total area sampled is "sufficiently" small with respect to the total area being inventoried, and the number of segments is "sufficiently" large.

From (6-4), the number of sample segments can be calculated:

\[
N = \frac{10^4 k^2 (1-p)}{(e_s)^2 p} \tag{6-5}
\]

We have seen that the total number of pixels required for discrimination is given by expression (5-4). The question is, how many pixels to allocate to each segment, i.e. what is the optimum area of each segment.

If there are no other error sources, and if the errors induced by sampling and those induced by discrimination are uncorrelated, then the total error is given by:

\[
e_t = \sqrt{e_s^2 + e_d^2} \tag{6-6}
\]

where \(e_t \) is the inventory error specified by the user, \(e_s \) is the sampling error, and \(e_d \) is the discrimination error.

Expression (6-6) indicates that there is a choice in the selection of \(N \), number of sample segments, and \(n_t \), total number of pixels to be
observed: as long as neither of the corresponding errors e_s, e_d equals the total error e_t, and subject further to the obvious constraint $N < n$.

For example, suppose that one wishes to minimize n_t, which is proportional to the data system costs. To see what happens, let us re-write (6-6) using expressions (6-4) and (5-3):

$$e_t^2 = \frac{h^2}{p^2 n_t (1 - \frac{\rho_B}{\rho_A})^2} \left[p + (1-p) \left(\frac{\rho_B}{\rho_A} \right)^2 \right] + \frac{1-p}{pN} \quad (6-7)$$

Using for convenience:

$$\frac{h^2}{p^2 (1 - \frac{\rho_B}{\rho_A})^2} \left[p + (1-p) \left(\frac{\rho_B}{\rho_A} \right) \right] = A$$

$$\frac{1-p}{p} = B$$

and substituting in (6-7):

$$e_t^2 = \frac{A}{n_t} + \frac{B}{N} \quad , \quad (6-8)$$

whence:

$$n_t = \frac{A}{e_t^2 - \frac{B}{N}}$$

To find the minimum n_t, since e_t, A, B are constants, set the condition:
\[
\frac{dn_t}{dN} = \frac{AB}{N^2 \left(e_t^2 - \frac{B}{N}\right)^2} = 0
\] \hspace{1cm} (6-9)

Condition (6-9) is satisfied when the denominator tends to infinity, i.e. when \(N + \infty \).

Since, by definition, \(N \) cannot exceed \(n_t \), the minimum value of \(n_t \) is achieved when \(n_t = N \). From (6-8), \(e_t \) becomes:

\[
e_t = \frac{1}{\sqrt{n_t}} \sqrt{A + B}
\]

In this case, each pixel acts both as a discrimination element and as a sample segment. The total number of required pixels will be given by:

\[
n = \frac{A + B}{e_t^2} \approx 10^4 \frac{A + B}{(e_t\%)^2}
\] \hspace{1cm} (6-10)

and will be somewhat larger than depicted in Figure 5-1. In practice, this mode of operation may be difficult to achieve by orbital sensors of the not too distant future, for two reasons: 1) it would entail a very rapid scan of the sensor during overpass; 2) it would entail high precision of pointing, to insure correct location of the "pixel segments" on the earth's surface.

On the other extreme, if one wishes to minimize the number of sample segments \(N \), so as to minimize the sensor's angular excursions, it can be observed that \(N \)'s lower limit is given by (6-5). However, choice of
this value of \(N \) entails \(n = \infty \), because it is tantamount to specifying \(e_d = 0 \) in (6-6) and hence in (5-4). In this extreme case, the area of each segment would become infinite. Since this is not possible, the upper limit for this case is the already-discussed case of a single segment encompassing the entire area to be inventoried. As \(N \) is increased from this lower limiting value, \(n \) decreases monotonically until it reaches the value given by (6-10).

Optimization of the relative weights to be placed on \(e_s \) and \(e_d \) requires the formulation of an additional relationship between \(N \) and \(n \). Such a relationship could be written, for example, if one knew the improvement of sampling accuracy achievable by increasing the area subtended by each segment. This type of relationship would be a function of the characteristics of the observed region.

In the absence of such knowledge, one can assume that \(e_s \) and \(e_d \) possess equal weights in the total error budget:

\[
e_d = e_s = \frac{e_t}{\sqrt{2}}
\]

With this hypothesis, the total number of pixels required, \(n_t \), is, from (5-3):

\[
n_t = \frac{2 \times 10^4 h^2}{k^2} \left[p + (1 - p) \left(\frac{\rho_B}{\rho_A} \right)^2 \right] (6-11)
\]

and the number of samples, \(N \), is from (6-5):
Consequently, the number of pixels per sample segment, \(n_s \), becomes:

\[
N = \frac{2 \times 10^4 k^2 (1 - p)}{(e, k)^2 p} \tag{6-12}
\]

\[
n_s = \frac{n_t}{N} = \frac{h^2}{p \left(1 - \frac{\rho_B}{\rho_A}\right)^2} \left[\frac{1}{1 - \rho_B} + \left(\frac{\rho_B}{\rho_A}\right)^2\right] \tag{6-13}
\]

Figure 6-7 shows \(n_s \) as a function of \(p \) for values of the parameters \(e_t, h, \frac{\rho_B}{\rho_A} \) corresponding to practical situations. The strong effect of increasing \(p \) on reducing the sample areas is clearly evident. The corresponding number of segments, \(N \), is shown as a function of \(p \) in Figure 6-8.

As already mentioned, the computations above hold for unstratified sampling. Stratification generally reduces the number of samples required. USDA, for example, estimates (personal communications from Mr. William Wigton of USDA/ESCS) that the number of samples required to inventory U.S. wheat at a 2% sampling error is of order 1,000 with optimum stratification. This number would increase if one wished simultaneously to inventory additional crops.

The allocation of stratified samples is a function of the homogeneity of the areal distribution of acreage. To assess the latter, a map of the region's agricultural acreage is required. Because this varies with time, sampling schemes periodically require the availability of full frames, at intervals commensurate with the dynamics of the observed region: generally of order several years.
NUMBER OF PIXELS AND AREA OF EACH SEGMENT AS A FUNCTION OF PROPORTION

Figure 6-7

Error Desired = 2%, 1σ

- \(\frac{\rho_B}{\rho_A} = 0.9, h = 0.3 \)
- \(\frac{\rho_B}{\rho_A} = 0.8, h = 0.3 \)
- \(\frac{\rho_B}{\rho_A} = 0.8, h = 0.1 \)
FIGURE 6-8
NUMBER OF SAMPLES REQUIRED TO ACHIEVE SPECIFIED ACCURACY AS A FUNCTION OF \(p\)
UNSTRATIFIED SAMPLING

FIGURE 6-9
MENSURATION ERROR AS A FUNCTION OF TOTAL AREA SAMPLED

ERROR \(e\)

TOTAL AREA SAMPLED, Hectares
6.2.3 Mensuration

If the total area to be inventoried is relatively small, an additional source of error, well known in surveying practice, arises due to the finite precision of the measurement devices employed. In the case at hand, the precision is of order one pixel. The corresponding mensuration error is:

\[e_m^\% = \frac{2 \gamma \beta r k}{\sqrt{A p N}} = \frac{2 \gamma \beta r k}{\sqrt{n p \delta}} \]

(6-14)

Where:

- \(e_m^\% \) = mensuration error, percent of crop area inventoried
- \(\gamma \) = form factor of sample (= 1 for square samples)
- \(\beta \) = mensuration figure of merit (\(\approx 1 \) for photointerpreter)
- \(r \) = linear dimension of pixel, meters
- \(k \) = statistical confidence multiplier (= 1 for 1σ)
- \(A \) = area of each segment, hectares
- \(p \) = proportion of crop area to total area
- \(N \) = number of sample segments
- \(n \) = total number of pixels in all sample segments
- \(\delta \) = area of each pixel, hectares (0.09 for 30 meter LANDSAT D pixels, 0.44 for LANDSAT C pixels).

The mensuration error, depicted in Figure 6-9 for practically encountered parameters, must be taken into account when it becomes a substantial fraction of the allowable total error \(\epsilon_t \). This can happen if the total area to be sampled is small -- brought about for example, if \(p \) is very high and/or the contrast ratio \(\frac{\rho_B}{\rho_A} \) is very low.
In this case the total error budget must be allocated between the
three sources of error, i.e. sampling, discrimination, mensuration:

\[e_t^2 = e_s^2 + e_d^2 + e_m^2 \] (6-15)

In the absence of other prior knowledge, the error budgets are allocated
equally. The simple manipulations result in expressions similar to
(6-11), (6-12), (6-13), with the additional term due to mensuration
error included. Figure 6-10 depicts the three sources of statistical
error arising in proportion estimation, and the corresponding expres-
sions for each and for the total error.

6.2.4 Advantages and Practical Constraints of Sampling

Sampling can significantly reduce the systems data load: specifi-
cally, in spacecraft-to-ground data relay, in preprocessing, and in the
information extraction function.

The reduction theoretically achievable by sampling vis-a-vis
wall-to-wall imaging is shown in Figure 6-11. In the near future,
technological constraints limit its full realization. For example,
the precision of the platform's stabilization system impacts the ac-
curacy with which the sample segment can be located on the earth's
surface. The typical stabilization accuracy of the Multi Mission Mo-
dular Spacecraft (MMS), planned standard support for LANDSAT-D, is
\(\pm 0.25 \) arc min rms. From an orbital altitude of order 700 Km, the cor-
responding ground smear is of order \(\pm 140 \) meters, 99% of the times.
FIGURE 6-10

RANDOM SYSTEM ERRORS IN ACREAGE MENSURATION

- Sampling Error e_1
- Classification Error e_2
- Mensuration Error e_3
- Total Error $\sqrt{e_1^2 + e_2^2 + e_3^2}$

- Caused by limited number of samples
- Caused by imperfect discrimination
- Caused by coarseness of pixel yardstick

FIGURE 6-11

REDUCTION OF DATA LOAD THEORETICALLY ACHIEVABLE BY SAMPLING VERSUS WALL-TO-WALL COVERAGE

Pixel resolution = 30m
Wall-to-wall coverage = 185 X 185 Km
Error = 2%

- $\frac{\rho_B}{\rho_A} = 0.9$
- 0.3
- 0.8 0.3

Proportion, p
Sampling cannot be used to the total exclusion of all wall-to-wall data. The latter is still required periodically to update the stratification method.

6.3 Role of Auxiliary Information

The preceding developments illustrate how crop discrimination improves if prior available information is exploited in conjunction with radiometric data. In particular, the availability of prior information appears essential to the crop identification function.

Limited experimental results indicate the possible appearance of narrow band spectral features peculiar to particular species at some phenologic stages. The reliable presence of such "indicators" would allow identification without prior information. So far, the only such effect known to the authors to have been observed is the "red shift" of wheat, at the pre-flowering stage, found by S. Ungar of GISS [15].

The value of prior information to the discrimination process is greater, the less redundant its contents with the radiometric information supplied by the sensor. The much used procedure of deriving basic spectral data from training sites is thus valuable only if natural crop spectra differ significantly one from the other. According to the model previously described, this occurs primarily during selected time periods corresponding to the phenologic windows. It is in these periods that training site information has maximum value.
Errors of mensuration induced by the coarseness of the pixel dimension can be reduced by appropriately combining the low-resolution radiometric data with high-resolution aerophotographic data. The latter serve to delineate geometrical boundaries, the former to identify their internal contents.

Table 6-1 presents the types of auxiliary information which most significantly contribute to the accuracy of crop inventories.

<table>
<thead>
<tr>
<th>TABLE 6-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCIPAL AUXILIARY DATA PECULIAR TO REGION OF INTEREST</td>
</tr>
<tr>
<td>CROP ACREAGE INVENTORY</td>
</tr>
<tr>
<td>BASELINE DATA</td>
</tr>
<tr>
<td>• STATISTICAL DATA: PRODUCTION, ACREAGE, PROPORTIONS OF CROPS; FIELD SIZE STATISTICS.</td>
</tr>
<tr>
<td>• PHENOLOGIC CALENDAR; ITS STATISTICAL FLUCTUATION</td>
</tr>
<tr>
<td>• REPRESENTATIVE OR INDICATIVE SPECTRA</td>
</tr>
<tr>
<td>• METEOSTATISTICS, RAINFALL, INSOLATION, TEMPERATURE, EVAPOTRANSPIRATION</td>
</tr>
<tr>
<td>• CLOUD COVER STATISTICS</td>
</tr>
<tr>
<td>• TOPO MAPS, VARIOUS SCALES</td>
</tr>
<tr>
<td>• LATEST CONVENTIONAL AEROPHOTOS</td>
</tr>
<tr>
<td>• LATEST LAND USE MAPS</td>
</tr>
<tr>
<td>• AGRICULTURAL PRACTICES, AGROECONOMIC DATA</td>
</tr>
<tr>
<td>• STATISTICS ON PRINCIPAL CAUSES OF CROP LOSSES</td>
</tr>
<tr>
<td>• DESCRIPTION AND DATA ON CONVENTIONAL (GROUND-BASED) INVENTORY METHODS</td>
</tr>
<tr>
<td>• CADASTRAL MAPS</td>
</tr>
<tr>
<td>DERIVED DATA</td>
</tr>
<tr>
<td>• AGROMET INDICES</td>
</tr>
<tr>
<td>• ACREAGE, YIELD, PRODUCTION TRENDS</td>
</tr>
<tr>
<td>• SIGNATURE EXTENSION INDICES</td>
</tr>
<tr>
<td>SOFTWARE</td>
</tr>
<tr>
<td>• CONVENTIONAL PROGRAMS MODULES AND PACKAGES</td>
</tr>
<tr>
<td>• SPECIAL PROGRAM CLEARINGHOUSE</td>
</tr>
<tr>
<td>DATA-RELATED SERVICES</td>
</tr>
<tr>
<td>• RECOMMENDATION OF OPTIMUM SCENE TIMING</td>
</tr>
<tr>
<td>• RECOMMENDATION OF TUNING PARAMETERS FOR SPACE-DERIVED DATA</td>
</tr>
</tbody>
</table>
7.0 SIMULATION SCHEME AND RESULTS

The approach originally conceived was to test the theory thus far presented on a worldwide basis, including the effects of sampling, phenologic cycles and cloud cover, by simulation on the Marshall Space Flight Center's Data System Dynamic Simulator (DSDS). The DSDS concept embodies these capabilities, including capability for radiometric readout from imagery, magnetic tapes, or simulated scenes.

At the time of this simulation, the DSDS had not reached its Phase III development stage. Hence the simulation was tailored to accept, instead of the full complement of inputs in their original format, the following: 1) Synthetic sampling and discrimination derived from theory; 2) Synthetic model of the reflectance excursions induced by phenology, derived from empirical data; 3) Pre-determined geographic locations of the principal crops, derived from historical statistics; 4) Synthetic cloud cover statistics, derived from existing models.

The simulation scheme was elaborated jointly with NASA Marshall and with the General Electric Company's Huntsville Operations, who ran the simulation. General Electric's results are contained in separate report [8]. This chapter synopsizes how the simulation inputs were structured, and reports key results. The procedure adopted was the following:

1. The principal countries and crops were determined from the statistical material presented in Chapter 2. Twenty-two countries were selected. Pre-simulation analyses showed that adequate results could be obtained by simulating only the crops Winter Wheat, Spring Wheat, Corn, Soybeans, and Rice.
2. For each selected country, phenologic calendars were obtained from [9].

3. Because not all crop calendars provided complete information on all phenologic stages, they were adjusted against the data of the SRS Crop Weather Bulletin [10]. From these, U.S. phenologic statistics were compiled following the procedure described in Chapter 6, illustrated in Figure 6-3. The mean and standard deviations of each phenologic stage's time of occurrence was computed. Most foreign data were incomplete, e.g. provided only the mean dates of occurrence of a few phenologic stages. The phenostages were assumed to possess the same standard deviations as computed for the U.S. Subsequent work by ECOsystems [11] indicates the validity of this procedure for countries located in the temperature zones, and for tropical countries subject to regularly recurring weather phenomena, e.g. monsoons in India.

4. The phenologic phasings differed considerably among the 22 countries selected. Equivalent phenologic zones were defined as those wherein the phasing between phenostages did not exceed 20 days. Five such phenologic zones were sufficient to account for the selected 22 countries.

5. The major countries, e.g. the U.S., USSR, Brazil, turned out to contain more than one phenologic zone. They were thus subdivided into sub-zones. Thirty-six regions were thus defined, as shown in Table 7-1 [8].

6. The major areas of cultivation of the five selected crops were identified and bounded in each of the 36 regions, from [14]. Analysis disclosed almost everywhere the presence of two major confusers: 1) permanent pastures, i.e. areas where grasslike crops are grown for grazing; and 2) hay-type crops, such as alfalfa, which are grasslike crops harvested
TABLE 7-1
COUNTRIES, REGIONS, CROPS AND NUMBER OF SAMPLES USED FOR STUDY

<table>
<thead>
<tr>
<th>COUNTRY & REGION</th>
<th>CROPS</th>
<th>SIMULATION SAMPLES</th>
<th>ESTIMATED NO. OF OPERATIONAL SAMPLE SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>Australia</td>
<td>W</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Brazil North</td>
<td>C</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Brazil South</td>
<td>C, S, R</td>
<td>53</td>
<td>1767</td>
</tr>
<tr>
<td>Canada</td>
<td>W</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>China North</td>
<td>W, C, S, R</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>China Central</td>
<td>W, C, S, R</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>China South</td>
<td>W, C, S, R</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>Egypt</td>
<td>C</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>France</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>India Punjab</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>India Ganges</td>
<td>W, C, R</td>
<td>53</td>
<td>1767</td>
</tr>
<tr>
<td>India Central</td>
<td>W, C, R</td>
<td>53</td>
<td>1767</td>
</tr>
<tr>
<td>India Bilaspur</td>
<td>W, C, R</td>
<td>53</td>
<td>1767</td>
</tr>
<tr>
<td>India Coastal</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Indonesia</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Italy</td>
<td>W, C, R</td>
<td>53</td>
<td>1767</td>
</tr>
<tr>
<td>Japan</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Mexico</td>
<td>C</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>W</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Romania</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>South Africa</td>
<td>C</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Philippines</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Thailand</td>
<td>R</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Turkey</td>
<td>W</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>USA - Region A</td>
<td>W, C, S</td>
<td>53</td>
<td>1500</td>
</tr>
<tr>
<td>USA - Region B</td>
<td>W, C</td>
<td>45</td>
<td>2000</td>
</tr>
<tr>
<td>USA - Region C</td>
<td>W, C, S, R</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>USA - Region D</td>
<td>W, C, S, R</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>USSR Latvia</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>USSR Ukraine</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>USSR Transvolga</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>USSR Volga-Ural</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>USSR Siberia</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>W, C</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1553</td>
<td>51355</td>
</tr>
</tbody>
</table>

W = Wheat (Winter & Spring); C = Corn; S = Soybeans; R = Rice
periodically for hay, sometimes as much as 6 to 7 times yearly. The phenologic cycle of these two types of confusing crops affects the discrimination of the primary crops differently.

Permanent pastures generally reach the stage of maturity, i.e. of high reflectance, prior to the emergence of the wanted primary crops. It is thus necessary to "mask out" the former from the remainder of the scene by employing LANDSAT data gathered sufficiently early in the season.

The haylike crops exhibit early season characteristics similar to those of the pastures, yet contribute additional information: their frequent cuttings display a characteristic temporal alternation of high and low reflectances.

For reasons of simulation expediency, the haylike crops were assimilated within the simulation model to the permanent pastures. A corresponding pattern of reflectance progression was constructed for each of the 36 regions.

7. The phenologic "windows" were constructed for each of the 36 regions. The mean reflectances corresponding to each phenostage were assumed for all regions to equal those observed in the available U.S. experimental data. The fluctuations around the means were assumed to equal +30% one sigma, and to be uncorrelated among different crops. The unperturbed threshold of separation between reflectances was set at in 20 years. This means that deviations from the reflectance of two crops must have a joint probability of occurrence of 0.05, i.e. individual probabilities of occurrence of \((0.05)^{1/2} = 0.22\). On the assumption of normal distribution of the fluctuations, this yields a threshold fluctuation level of 0.76 for each of the two crops to be discriminated or 23% of their mean reflectances. The statistical window durations were set to the 95% confidence level: i.e. windows shorter than those which were modeled occur on the average less frequently than every 20 years.
8. An average sensitivity threshold was computed for all windows, by RSS combinations of: 1) 1% for sensor fluctuations; 2) ± 6% for atmospheric fluctuations as described in Chapter 6. In order not to overly complicate the simulation, the sensitivity threshold was assumed fixed rather than proportional to the reflectance's amplitude: its value was selected as 0.02, or 2% of the relative maximum reflectance of 1. Typical examples of windows are depicted in Table 7-2.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>REGION</th>
<th>CROPS</th>
<th>WINDOW STARTS \ JULIAN DATE</th>
<th>WINDOW DURATIONS \ DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>A (IL, ID, OK, KS)</td>
<td>WW-P</td>
<td>111</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>B (MT, SD, ND, UT, CO)</td>
<td>SW-P</td>
<td>118</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>C (VA, KY, NC, TN, SC, CA, AL, MI, LA)</td>
<td>C-S</td>
<td>151</td>
<td>17</td>
</tr>
<tr>
<td>USSR</td>
<td>UKRAINE</td>
<td>WW-S</td>
<td>115</td>
<td>48</td>
</tr>
</tbody>
</table>

WW = Winter Wheat, SW = Spring Wheat, P = Pasture, C = Corn, S = Soybeans

9. A sampling scheme was constructed within each region. Based upon the results derived in Chapter 6, good stratification and bounding was assumed: each candidate region was assigned 1,000 sample segments if it contained a single crop: and 1,500; 1,767; 2,000 segments if it contained two three, four crops respectively. For expediency of simulation, sub-multiples of these numbers of sample segments were chosen as inputs to DSDS: specifically, 30, 45, 53 and 60 for single, double,
triple and quadruple crops respectively. This reduced set of segments was selected at random from the larger set. The list of countries, regions, crops and number of sample segments contained within each is shown in Table 7-1. Not therein shown but implicit in the previous construction of the windows is the presence of the selected confuser, pasture, discussed under point 7, preceding.

10. Simulation of the complete logic of the cumulation of information from multiple looks exceeded the constraints placed on this effort. In its place, target acquisition was specified as occurring when at least one "look" per phenologic window was possible. Whenever such look did not occur, either due to excessive shortness of the windows or impeded by the presence of cloud cover, the particular region and crop affected was considered as not having been surveyed.

The "one look" assumption, necessitated by simulation expediency, is reasonably adequate for the purposes of this project, because:

a. The specification of a single look per window is somewhat lax if the single look is all that is available. ECOSYSTEMS experience with real scenes shows that generally more frequent looks are needed: an approximate average is of order 1.5 per window.

b. The requirement of one look per window is somewhat stringent if a sufficient number of earlier or later looks are provided wherefrom to reconstruct the state of affairs within the missed window.

11. Cloud cover statistics were incorporated in the simulation by the General Electric Company, in accordance with the available worldwide Allied cloud model. The model's statistics are supplied in terms of percent cloud cover.
A more cogent statistic, i.e., the "probability of effecting target acquisition," requires knowledge of the statistics of unobstructed vision within each scene, i.e. of the patterns of "holes in the clouds." The DSDS, in its full phase III implementation, would have been capable of deriving these statistics from automated analysis of historical LANDSAT and/or GOES and NIMBUS scenes. In its absence, it was instead decided to incorporate into the simulation two alternate cloud cover thresholds: 50% and 90%. When cloud cover exceeded the threshold, the acquisition of a crop target was considered missed.

The principal results derived from the simulation for the LANDSAT-D configuration are indicated in Table 7-3.

Table 7-3

<table>
<thead>
<tr>
<th>COUNTRY/REGION</th>
<th>50% CLOUD COVER</th>
<th>90% CLOUD COVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGENTINA</td>
<td>93.3</td>
<td>97.8</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>95.0</td>
<td>100.0</td>
</tr>
<tr>
<td>BANGLADESH</td>
<td>84.4</td>
<td>95.6</td>
</tr>
<tr>
<td>BRAZIL - NORTH</td>
<td>100.0</td>
<td>96.7</td>
</tr>
<tr>
<td>BRAZIL - SOUTH</td>
<td>99.1</td>
<td>98.1</td>
</tr>
<tr>
<td>CANADA</td>
<td>95.7</td>
<td>96.7</td>
</tr>
<tr>
<td>CHINA - NORTH</td>
<td>85.6</td>
<td>88.3</td>
</tr>
<tr>
<td>CHINA - CENTRAL</td>
<td>76.7</td>
<td>96.8</td>
</tr>
<tr>
<td>CHINA - SOUTH</td>
<td>87.5</td>
<td>90.0</td>
</tr>
<tr>
<td>EGYPT</td>
<td>100.0</td>
<td>97.8</td>
</tr>
<tr>
<td>FRANCE</td>
<td>85.7</td>
<td>97.8</td>
</tr>
<tr>
<td>INDIA - PUNJAB</td>
<td>87.8</td>
<td>98.9</td>
</tr>
<tr>
<td>INDIA - GANGES</td>
<td>75.0</td>
<td>85.4</td>
</tr>
<tr>
<td>INDIA - CENTRAL</td>
<td>72.3</td>
<td>90.6</td>
</tr>
<tr>
<td>INDIA - BILASPUR</td>
<td>82.4</td>
<td>89.9</td>
</tr>
<tr>
<td>INDIA - COASTAL</td>
<td>85.6</td>
<td>97.8</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>85.0</td>
<td>91.1</td>
</tr>
<tr>
<td>ITALY</td>
<td>86.9</td>
<td>93.5</td>
</tr>
<tr>
<td>JAPAN</td>
<td>95.0</td>
<td>93.3</td>
</tr>
<tr>
<td>MEXICO</td>
<td>97.2</td>
<td>98.9</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td>93.3</td>
<td>90.0</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>91.1</td>
<td>91.1</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>90.0</td>
<td>93.3</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>91.7</td>
<td>96.7</td>
</tr>
<tr>
<td>THAILAND</td>
<td>97.7</td>
<td>96.7</td>
</tr>
<tr>
<td>TURKEY</td>
<td>93.3</td>
<td>80.0</td>
</tr>
<tr>
<td>US - A</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>US - B</td>
<td>93.0</td>
<td>93.0</td>
</tr>
<tr>
<td>US - C</td>
<td>84.6</td>
<td>87.9</td>
</tr>
<tr>
<td>US - D</td>
<td>77.0</td>
<td>84.7</td>
</tr>
<tr>
<td>USSR - LATVIA</td>
<td>96.7</td>
<td>100.0</td>
</tr>
<tr>
<td>USSR - UKRAINE</td>
<td>96.7</td>
<td>96.7</td>
</tr>
<tr>
<td>USSR - TRANS-VOLGA</td>
<td>97.8</td>
<td>95.6</td>
</tr>
<tr>
<td>USSR - VOLGA-VOLGA</td>
<td>90.3</td>
<td>96.7</td>
</tr>
<tr>
<td>USSR - SIBERIA</td>
<td>94.4</td>
<td>97.8</td>
</tr>
<tr>
<td>YUGOSLAVIA</td>
<td>89.1</td>
<td>92.7</td>
</tr>
<tr>
<td>WORLD AVERAGE</td>
<td>89.1</td>
<td>92.7</td>
</tr>
</tbody>
</table>
The Table shows results similar to those presented in previous Figure 6-5: namely, a single orbiting platform with the characteristics of LANDSAT-D achieves order of 90% of the desired worldwide observations. Whereas this result might at first blush appear incommensurate with the specified accuracy of 96-98% worldwide, it does not tell the entire story: for not all countries and regions missed contribute equally to the world's production of the identified four staple crops. A more sophisticated simulation scheme is required to determine the weighted impact of missed observations.

In any event, modifications to future earth observation systems, other than the brute force expedient of multiple spacecraft, appear desirable and practically feasible, as discussed in the following chapter.
8.0 IMPACT UPON OSTA'S AGRICULTURAL DATA SYSTEMS OF THE NEXT DECADE

8.1 State of the Data System

The reason for being of OSTA Space Systems is to provide information. Thus the Data System represents their paramount element, which all other Subsystems are designed to support.

To compete with other acreage-measurement systems - e.g. aircraft, ground surveys - OSTA Agricultural Data Systems must provide better price/performance. Industry tests the price/performance and market acceptance of a given product, prior to its entry to market, by a process known as product assurance. A fallout from this study is a preliminary product assurance review of OSTA agricultural information systems.

The principal design recommendations which affect the overall system's price-performance in Agricultural Applications are recapitulated following.

8.2 System Performance - Accuracy

To achieve market acceptance, the Data System's accuracy need be increased from the currently achieved average level of approximately 80-85%, one sigma, to 96-98%, i.e. by a factor of at least three, preferably five. Except for the interference from cloud cover, there are no theoretical reasons barring this achievement. Improvements of on-board radiometric calibration, better registration of images, and similar sensor-oriented procedures, will assist but will not correct the problem. principal
bottleneck lies in the information-extraction subsystem; specifically it is attributable to the manner in which radiometric information has been heretofore exploited.

Principal corrective actions are:

- Exploitation of the phenologic windows phenomenon
- Integration of auxiliary information with the radiometric sensing data.

The first requires significant increases of the observations's recurrence frequency. The second requires making available suitable external information, approximately formatted.

8.2.1 System Performance—Recurrence Frequency

The data recurrence frequency must be sufficiently high to cope with the finite time duration of the temporal windows, further reduced by cloud cover.

The polar-orbit, sun-synchronous, 185 km swath configuration characteristic of LANDSAT supplies adequate worldwide crop visibility if multiple (order of three), suitably phased orbiting platforms are provided.

Promising avenues to obviate this costly expedient are:

- Use of microwave sensing in conjunction with optical and near-IR sensing

The technical feasibility of active microwave sensing from orbit was tested in the SEASAT-A spacecraft. Limited experimental data in crop reflectances in the microwave spectrum indicate strong analogies with their behavior at optical wavelengths. Theory supports these findings.
Increase in the sensor's swath width

Current thinking holds that nadir viewing of agricultural crops is preferable to observations from slant angles. No adequate experimental verification of this assumption was found in the literature: in fact, limited experimental data point to advantages from slant observations.

The effect of increased swath widths is to lower the repetition interval required of the observations. Its drawback, i.e. reduced cross-track resolution or the need of more sophisticated sensors to maintain resolution, can be obviated by replacing wall-to-wall with sampled observations.

Modification of orbital parameters.

Reductions of recurrence interval are achievable by modifying the platforms orbit. Those are however of lesser magnitude than what can be accomplished by the methods previously discussed.

The largest effect occurs if the orbital inclination is reduced so as to cover only the significant agricultural and/or forested regions of the world. Figure 8-1 suggests an orbital inclination of order 60°.

This system modification would entail a departure from sun-synchronous operation. The corresponding effects upon discrimination remain to be tested experimentally. It is noted that no adequate justification for sun-synchronism was found in the literature: numerous discussions with members of the remote sensing community indicate that the specification of this requirement is at present founded essentially upon expert opinion rather than upon observed fact.
FIGURE 8-1
CUMULATIVE VALUE OF WORLD'S AGRICULTURAL AND FORESTRY PRODUCTS VERSUS LATITUDE
8.2.2 System Performance - Role of Auxiliary Information

It is necessary to combine radiometric imagery with auxiliary information to reach levels of performance compatible with the user's requirements. Most US auxiliary data are available from data bases managed by Federal Agencies; the residual is obtainable at State and Local levels.

The primary sources of foreign data are agencies at the Ministerial level. Albeit with exceptions, foreign data are significantly scantier and of more difficult access than in the US. The situation particularly critical with regard to aerophotography; even where available, this most important auxiliary information is so time-consuming and laborious to retrieve as to very seriously affect the final product's timelines and price.

This situation can be obviated by providing easily accessible global photographic base coverage, at appropriate geometric resolutions. The refresh cycle should be commensurate with the period of obsolescence of the observables: in the case of agriculture, it need be no shorter than two or three years.

A means of implementing this service would be to reduce the RBV'S field of view, coupled with progressively stepped side look. Table 8-1 shows the times-resolution tradeoffs for complete coverage of the earth surface.
It can be seen that resolutions adequate for agricultural applications are achievable within practical time constraints.

8.3 System Costs

The wall-to-wall method of data acquisition is costly on two accounts:

- It requires very high data relay rates (84 Mbit/sec for LANDSAT D)
- It requires pre-processing subsystems of high throughput

The peak throughput requirements are particularly high in certain periods of time. During the months from March through August in the northern hemisphere, and their counterparts in the southern, the simulation shows that as much as 500 observations are required daily.

Preliminary computations indicate that as much as 50% of the LANDSAT D system's running costs is attributable to the combination of TDRS channel rental plus cost of pre-processing.
As shown in Figure 6-11, reduction of the peak data load by as much as 30:1 is achievable by employing sampling as the primary data-gathering mode. Wall-to-wall data are required to provide base information, but only occasionally.

The presence of reflectance fluctuations indicates another possible avenue of price/performance enhancement for agricultural observation systems, through relaxation of the sensor's NEA specifications. The sensor's sensitivity should be matched to the overall system's error budget, of which the "scene fluctuation" is the major contributor.

Sensor sensitivities of order 64 levels appear adequate. The resulting 4:1 reduction of sensor sensitivity can be traded off against lower-cost sensor implementation, or it can be exploited to increase the sensor's geometric resolution. It can be shown theoretically that the complete tradeoff would improve LANDSAT'D resolution to approximately 15 meters.
APPENDICES

APPENDIX A THE UN/FAO SCENARIO FOR GLOBAL CROP FORECASTING

APPENDIX B CURRENT CONVENTIONAL METHODS OF AGRICULTURAL CROP MEASUREMENT AND FORECASTING

APPENDIX C DETERMINATION OF THE ACCURACIES OF AGRICULTURAL ACREAGE ESTIMATION ACHIEVED BY ORBITING DATA SYSTEMS

APPENDIX D ANALYSIS OF AVAILABLE CROP SPECTRA

APPENDIX E INFORMATION EXTRACTION FROM RADIOMETRIC DATA DISCRIMINATION THEORY
APPENDIX A

THE UN/FAO SCENARIO FOR GLOBAL CROP FORECASTING

The UN/FAO viewpoint can be synthesized by the following logical sequence of propositions:

1. The World's human food supply is dominated by cereals, which account for 53% of the total, followed by 12% tubers, 15% high-protein foods (meat, fish, milk), 20% vegetables, fats, sugar combined [2].

2. The global growth of cereal production outstrips population growth. Figure A-1 appears to indicate that no global nutrition problem exists [12].

3. However, more detailed analysis of the cereal production and population trends of each of the three FAO zones, as in Figure A-2, reveals that the problem is one of distribution: in the most populous Zone C, production increases barely keep pace with population growth. Because Zone C food intake is now only approximately 80% of the FAO norm, Zone C appears to be hopelessly undernourished.

4. A deeper step in the analysis, portrayed in Figure A-3, indicates that even in Zone C, cereal availability per capita significantly outstrips the consumption, even though the apparent per capita consumption is quite high.

5. What causes the apparent inconsistency? Figure A-4 provides the explanation. Almost three billion large farm animals, not counting upwards of 10 billion heads of poultry, share the earth's surface with man. Up until the late fifties, these animals subsisted primarily on pasture and grass products; in the last decade and a half, the composition of feed has been significantly enriched by
Figure A-1
The Global Food Outlook

- Cereals: 75% of human consumption is primarily based on cereals.
- Meat, Fish, Milk: 25%
- Vegetables & Fruits: 10%
- Fats & Oils: 5%
- Sugar: 1%

FIGURE A-2

THE THREE FAO WORLD ZONES

A Developed Market Economies
B Planned Market Economies
C Developing

THE ZONAL FOOD OUTLOOK
FIGURE A-3

THE WORLD CEREAL BUDGET BY FAO ZONES

AVAILABILITY OF CEREALS

<table>
<thead>
<tr>
<th>POPULATION</th>
<th>PRODUCTION</th>
<th>PER CAPITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>billions</td>
<td>megatons</td>
<td>kg/yr.</td>
</tr>
<tr>
<td>Zone A</td>
<td>1.8</td>
<td>39.5</td>
</tr>
<tr>
<td>Zone B</td>
<td>1.24</td>
<td>325.1</td>
</tr>
<tr>
<td>Zone C</td>
<td>0.96</td>
<td>338.1</td>
</tr>
</tbody>
</table>

HUMAN CONSUMPTION VERSUS AVAILABILITY

Kg/Capita/yr.

Zone A

Zone B

Zone C

ZONE A

ZONE B

ZONE C

consumption

discretionary surplus
FIGURE A-4
THE INCREASING USE OF CEREAL IN ANIMAL FEED

CURRENT WORLD MEAT SUPPLY

BOVINES 956
OVINES 1066
SUINES 634.5

Production 92.5 MT

PER CAPITA Kg/yr.

12.5
25.7
39

ZONE A
ZONE B
ZONE C

HISTORICAL TREND IN ANIMAL FEED

U.S.

1962
1968
1974

100
50

MEGATONS

CEREALS

HAY

U.S.S.R.

1965
1970
1973

SUCCULENT SILAGE
COARSE HAY
PASTURE

SUCCULENT SILAGE
COARSE HAY
PASTURE

SUCCULENT SILAGE
COARSE HAY
PASTURE
the so-called "concentrates," i.e. cereal products: corn, soy, wheat.

6. The reason? The growing demand for protein: its efficient and cost/effective production requires concentrated animal fodder. This "technological revolution" has vastly increased the importance of cereal products, much beyond the proportions depicted in Figure A-1 for human consumption alone. Since meat, milk and animal fat production is now driven by cereals availability, it is safe to estimate that circa 75% of global human food consumption is based on cereals.

7. The cure? Figure A-5 indicates that on the average, Zone A's surplus just matches Zone C's deficit. The simple device of straightforward transfer would thus, at least on the surface, resolve the global food problem. That is, except for the economic implications, i.e. the matter of who would foot the bill.

8. The cost of such transfer was computed by the FAO in their recently compiled World Indicative Plan. As plotted in Figure A-5 the straightforward transfer of food including acquisition and shipment, would cost $63 billion per year, growing to approximately $80 billion in 1985. The cost of financing adequate infrastructures -- fertilizer plants, farm machinery, education, etc. -- to enable Zone C to become adequately self-sufficient would cost $25 billion yearly growing to approximately $30 billion a decade hence. In practice, a complete solution of the world's food problem would consist of a mixture of these two methods. In the limit, it would entail a yearly expenditure of almost $90 billion yearly currently, growing to exceed $100 billion yearly in the mid-1980's.

9. While these expenditures are not impossibly high -- the U.S. share, for example, of the "maximum plan" would not exceed $36 billion yearly now, growing to $45 billion in 1985, or approximately one-third of our current National Defense outlay -- they are not likely to be implemented in the near future.
FIGURE A-5
THE WORLD FOOD DISTRIBUTION PROBLEM

YEARLY CEREAL SURPLUS AND DEFICIT
10 year average (1963-1973)

Cost of Total Food Assistance to Zone C

Option 1: Transfer or Surplus

Option 2: Build up Infrastructure
Note that the contributions for agricultural aid to Zone C in all forms, from all of Zone A and B combined, cover not more than approximately 10% of the requirements stated by the FAO.

The analysis above leads to the conclusion that the primary requirement to alleviate the global food problem is to manage as best as possible the scarce amount of agricultural aid currently flowing from Areas A and B into Area C.

The requirements "universe" as seen from the UN/FAO outlook can be divided logically as follows:

1. Countries in which internal production consistently equals the demand, and which are thus self-sufficient nutritionally.
2. Countries whose internal production is consistently less than the demand, but which are able to import the deficiency through other sources of revenue. Typically, the OPEC countries.
3. Countries with consistent or periodic production-demand deficits and which are unable to fill the deficiency by imports.
4. Countries which are consistent overproducers and therefore exporters.

Countries which exhibit characteristic 1 are not important to the UN/FAO goal, because they already meet it: nor can they directly assist in transferring surplus to other diet-deficient Countries.

Countries exhibiting characteristic 2, i.e. which are consistently in crop deficit but which can import the deficit through other means of revenue, are only important to the extent that their fluctuating import requirements may increase or reduce the surplus available to the chronically deficient Countries.
Survey of Countries in Category 3, chronically deficient and unable to import the deficit, are of interest to assess the quantity of product they are likely to have available in any one year, and thus the extent of the current deficiency. This assessment serves as the basis for UN/FAO is planning of the amount of food aid to be provided. Aside from political considerations, the interest is proportional to the extent of the deficit and the number of persons affected.

Surveys of Countries in Category 4, consistent overproducers, are of primary interest in proportion to the extent of discretionary surplus they historically produce. The assessment of their production serves as the basis for planning the most appropriate distribution of food aid.

It is worth noting that the UN/FAO scenario presented above is idealized: in current practice, the food aid funds at the disposal of the UN are insufficient to cope with the demand. Also, AID-dispensing Countries do not act in harmony and nor for the solely humanitarian purpose of providing their surplus where most needed: rather, political considerations tend to channel food aid where each donor deems it to be most opportune.

In spite of these departures from ideal perfection, the UN/FAO scenario is of value as an approximate model to guide the equalization between deficits and surpluses.

Table A-1 depicts the aggregate distribution of human consumption in diet-deficient regions. It shows the presence of the staples already identified in the analysis of the U.S. balance of trade situation, plus the emergence of rice as a new major staple.
Table A-1 also indicates the 6-year cumulative import-export trends for rice, and its principal producing Countries.

Table A-2 tabulates the Countries and crops candidates for survey as seen from the UN/FAO outlook.
APPENDIX B

CURRENT CONVENTIONAL METHODS OF AGRICULTURAL CROP MEASUREMENT AND FORECASTING

The measurement and forecasting of agricultural production are activities of major importance in virtually all countries of the world, as indicated in Figure B-1 [13].

The most sophisticated forecast system is the United States Department of Agriculture (USDA's) Economic and Commodity Reporting Service (ERCS). Since much information is available on this system, it can conveniently be used to exemplify conventional procedures.

The key functions of the ERCS data gathering, information development and dissemination cycle are shown schematically in Figure B-2 [1].

Shown in Figure B-3 are SRS's three principal sources of data:
a) voluntary reports from individual farmers (9.5 million questionnaires mailed yearly, approximately 3 million responses); b) objective yield measurements by specialists; c) direct sampling of selected farms by specialists (enumerators), through farmer interviews supported by map and aerial survey information.

A typical reporting form periodically filled out by individual farmers is shown in Figure B-4. Aerial photography at scale of order 1:20,000 is used by USDA's enumerators to precisely mensurate a limited number (approximately 17,000, covering 0.6% of total farm...
FIGURE B-1
Distribution of Crop Forecasting Activities

Agricultural Data Gathering System

- Sophisticated
- Medium Complexity
- Simple
- No Data
FIGURE B-2
TYPICAL USDA (CORN, WHEAT) FORECAST AND FORECAST RELEASE CYCLE

REPORTS:

MARCH
CROP PRODUCTION
PROSPECTIVE PLANTING

MAY
WHEAT SITUATION

JULY
HIGHLIGHTS OF U.S. CROP REPORT - JUL

CROP PRODUCTION
ANNUAL SUMMARY
ACREAGE - YIELD

Agriculture
Statistics

PLANTING INTENTION
PRODUCTION OUTLOOK
CONDITION/YIELD
FINAL ESTIMATE
REVISED ESTIMATE

跟随图标

FOLLOWING 2 YEARS

= Reports to Public

= Forecasts

FIGURE B-3
SIMPLIFIED USDA DATA GATHERING PROCEDURE

44 State Offices

U.S.D.A.
Headquarters

OBJECTIVE
YIELD PROGRAM

9.5 MILLION
QUERIES

200 YIELD
SPECIALISTS
10,000 SAMPLES

3 MILLION
REPLIES

STATE FORECAST

ACREAGE, PRODUCTION

FORECAST TO PUBLIC

16843 SEGMENTS
2 TO 5 FARMS PER SEGMENT

1500 ENUMERATORS

50 MILLION
ACREAGE

BAR CHART

ACREAGE UTILIZATION 0.5% OF U.S. AREA

REPORTING PROGRAM

500 MILLION
ACREAGE PER YEAR
area) of agricultural producing units. The farmer's information is validated by planimetricing the farm's area, accurately identified on the photograph.

Yield prediction (bushels per acre or quintals per hectare) is performed by: a) the farmer, who assesses the "condition" of the crop (its status with respect to what it was at the same time last year); and b) specialized personnel who perform "objective measurements" of various indicators of plant development on selected test plots; e.g., plant density, number of ears, number of spikelets, and so forth.

These reports are integrated by the central Crop Reporting Board, which issues monthly forecasts beginning 4 to 6 months prior to harvest, depending upon the crop. A final estimate of production for the current year is given shortly after the harvest.

USDA corrects their estimates over the following two years, based on additional information which becomes available on the amounts of grain products actually processed and sold by food industries. As evidenced by Figure B-5, the corrections are quite small when compared with the variances of selected other countries. Figure B-5 indicates that the fluctuations in typical developing Nations reflect a considerably higher degree of uncertainty than exists in developed Nations.

USDA's method of forecasting production is based upon the product of two factors: 1) the acreage planted; and 2) the estimated yield (bushels per acre or quintals per hectare). The yield estimate is based upon a regression formula of the type:
FIGURE B-4

TYPICAL REPORT FORMATS, U.S. FARMERS

FIGURE B-5

VARIATION OF FINAL ESTIMATE
\[Y = aX_1 + bX_2 + cX_3 + dX_4 \]

where:

- \(X_1 \) is the "condition" of the crop at time of estimate, reported by the farmer or crop surveyor;
- \(X_2 \) is the precipitation, in inches, which occurred during the previous two months;
- \(X_3 \) is the precipitation, in inches, which is predicted will fall in the following two months;
- \(X_4 \) is the historical growth of yield: for wheat, for example, approximately 3\% per annum.

\(a, b, c, d \) are coefficients whose value is derived from regressing historical records over approximately the previous fifteen years.

Implicit in this formula is the hypothesis that the methods of cultivation: a) fertilizer input; b) weeding effectiveness; c) density of planting, and so forth, are essentially constant from year to year, and will be practiced by the individual farmer with the same diligence and with the best technology known at present. Also implicit is the assumption of a "normal" year as regards crop disease. The occurrence of diseases such as wheat rust or corn blight, or unusual events such as floods, is factored in by the farmers and specialized survey personnel, who amend their estimate, upon detection, in the next monthly reporting period.

Note that in the formulation above, the only corrector of the estimates is precipitation: rainfall is assumed to be the principal
driving function for yield. While this assumption has been found adequate for the U.S., it may not be optimal for Nations subject to different climatologies. France, for example, employs the additional variable of integrated temperature (degree-days) for their yield model.

A measure of the accuracy of forecasts referenced to the "final" yearly estimate for the last several years is indicated in Figure B-6. Figure B-7 depicts the average historical trend of forecast accuracies. Figure B-8 shows the average accuracy experienced over the last 15 years for winter wheat, the major variety of U.S. wheat.

The relative contribution to the forecast of the acreage and yield components is shown in Figure B-9, which compares the fluctuations in U.S. wheat production with the variations in acreage and yield. Note that acreage fluctuations account for almost 50% of the total production variance.

The USDA system is substantially followed, with varying degrees of sophistication, by the developed Nations. In developing Nations, simpler systems are employed. Table B-1, based upon FAO data, categorizes the crop reporting systems employed by the majority of the world's nations. Note that the complete system composed of farmer reports, plus objective yield measurement plus enumeration by specialists is used in general in those countries which possess the highest levels of living and literacy rate. As the GNP per capita diminishes, crop measurement systems tend to eliminate farmer reports and rely primarily upon sample measurements by specialists. The frequency and sophistication of the sampling procedures
FIGURE B-8
WINTER WHEAT DATA COVER 1957-1972

ACREAGE FORECASTING ERROR %

Time Prior to Final Estimate Months

FIGURE B-9
ACREAGE CHANGE AS A % OF TOTAL PRODUCTION CHANGE

100% Means Acreage Change Was Greater Than Production Change (Yield Diminished)
0% Means Acreage Change Did Not Influence Production Change
- Values Means Acreage Varied Oppositely To Production Change
TABLE B-1

COUNTRIES INVOLVED IN CROP SURVEY ANALYSIS

<table>
<thead>
<tr>
<th>Country</th>
<th>Survey Classification</th>
<th>Survey Classification</th>
<th>Survey Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acreage Forecast</td>
<td>Yield Forecast</td>
<td>Statistical Sampling</td>
</tr>
<tr>
<td>EVALUATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Belgium</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>France</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Germany</td>
<td>A</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Greece</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Greece</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>Hungary</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Italy</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Netherlands</td>
<td>A</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Portugal</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>Spain</td>
<td>A</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Sweden</td>
<td>A</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Switzerland</td>
<td>A</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>A</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>B</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>NORTH-CENTRAL AMERICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>A</td>
<td>A*</td>
<td>S</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>El Salvador</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burma</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>Cambodia</td>
<td>A</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Cyprus</td>
<td>A</td>
<td>A*</td>
<td>--</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Angola</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Benin</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Botswana</td>
<td>D</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Comoros, Fr.</td>
<td>A</td>
<td>A*</td>
<td>--</td>
</tr>
<tr>
<td>Eritrea</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>Ghana</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>Kenya</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>Lesotho</td>
<td>C</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>Libya</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>Madagascar</td>
<td>C</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>Malawi</td>
<td>C</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>Mozambique</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Namibia</td>
<td>C</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>Niger</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Nigeria</td>
<td>D</td>
<td>D</td>
<td>--</td>
</tr>
<tr>
<td>Rwanda</td>
<td>D</td>
<td>D</td>
<td>--</td>
</tr>
<tr>
<td>South Africa</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>Tanzania</td>
<td>D</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>Uganda</td>
<td>C</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>Fiji</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>A</td>
<td>A*</td>
<td>--</td>
</tr>
<tr>
<td>New Zealand</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>Niue</td>
<td>A</td>
<td>A</td>
<td>--</td>
</tr>
</tbody>
</table>

Explanation of Symbols:

- A: Sampling at farm level
- B: Sampling at commune level
- C: Sampling at district level
- D: Sampling at province level
- S: Stratified Sampling
- *: System under development
also tend to decrease with decreasing GNP per capita. Table 1-2 synthesis the world's current crop rating systems into three fundamental categories: Developing, Intermediate, Advanced. The agricultural data-gathering network of the US is shown in Figure B-10, that of a typical intermediate county in Figure B-11.

The basis for potential improvements in acreage measurement procedures lies in the fact that present methods, for budgetary reasons, only measure limited samples. Increased sampling, or, in the limit, wall-to-wall measurements, would improve accuracy; performance of the current sampling task without laborious field surveys would reduce costs.

As regards yield estimates, the benefits of increased sampling still apply but with significant differences. Expected yield is based to a significant degree upon the assessment of present crop condition. To the extent that this quantity can be measured more accurately by increasing the number of samples, yield forecasts will be improved. However, yield also depends upon other factors more difficult to estimate: principal among these is weather. Therefore, until the state of technology will allow accurate prediction of weather, an irreducible uncertainty will remain in the forecast. Better sampling methods can, however, materially assist in reducing the errors of estimate.
THE THREE BASIC LEVELS OF CROP FORECASTING SYSTEMS

<table>
<thead>
<tr>
<th>Developing Typical: Dominican Republic</th>
<th>Intermediate Typical: Italy</th>
<th>Advanced Typical: United States of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Administrative Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1599 sections grouped into 69 communes</td>
<td>7851 Communes grouped into 91 Provinces</td>
<td>1700 enumerated areas grouped into 44 States</td>
</tr>
<tr>
<td>Crops Surveyed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize, rice, beans, potatoes, onions, garlic, peanuts, coconuts, oranges, bananas, coconuts, sugar cane, plantains, pineapple, coffee (in pod), avocado, peas, cotton, tobacco</td>
<td>Wheat, rye, barley, oats, maize, rice, sugar beets, potatoes, peas, beans, vineyards, fruits, olives, linseed rapeseed, vegetables, tobacco, fibers</td>
<td>Grains, fodder crops, tuber and root crops, sugar crops, pulses, oilseeds, hay and grass seeds, vegetable seeds, fruits, nuts, vegetables, tobacco, fibers</td>
</tr>
<tr>
<td>Methods of Data Gathering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Interview of producers by enumerators</td>
<td>* Crop area from personal judgement, supplemented by cadastral survey</td>
<td>* Direct inquiry to farmer respondents</td>
</tr>
<tr>
<td>* Crop yields from local inquiry</td>
<td>* Enumerators with aerial photos</td>
<td>* Enumerators with aerial photos</td>
</tr>
<tr>
<td>Sampling Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Simple sampling procedure</td>
<td>Multi-frame stratified sampling procedures</td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Statistical Board in each commune</td>
<td>* Data from commune collected by local correspondent assisted by provincia agricultural inspector</td>
<td>* SRS HQ staff supported by 44 State offices comprising 9 crop regions.</td>
</tr>
<tr>
<td>* Central Institute of Statistics issues technical directives and publishes results</td>
<td>* Refer to Figure 9</td>
<td>* Refer to Figure 9</td>
</tr>
<tr>
<td>Frequency of Crop Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Every 3 months</td>
<td>Two crop reports per year First estimate at planting time; second estimate at harvest</td>
<td>Multiple crop reports per year. Intentions to plant-yearly per crop. Acreage, crop condition, production forecast - monthly for 3-6 months. Final production and yield-yearly.</td>
</tr>
</tbody>
</table>

TABLE B-2

Grains, fodder crops, tuber and root crops, sugar crops, pulses, oilseeds, hay and grass seeds, vegetable seeds, fruits, nuts, vegetables, tobacco, fibers.
FIGURE B-11
TYPICAL FOREIGN COUNTRY CROP INVENTORY & FORECAST INFORMATION NETWORK (ITALY)

Acreage:
Statistical Sampling
(5,300 segments, stratified, 750 enumerators)

Provincial Inspectorates of Agriculture (92)

Regional Inspectorates (18)

Central Statistical Institute

Domestic Information

Teletype

Public-at-large
National Farmers Association
National Cattle Growers Co-op
Chambers of Commerce

Dealers and Traders
AIMA (Semi-Gov't. Purchasing Agency)
ISVET (Private Forecasting Group)
Private Traders

Government Agencies
Ministry Agriculture & Forestry

Foreign Agencies
USDA Attache'
Other Attache's

International Agencies
FAO

Yield: Subjective plus Farmer Queries (same personnel)

Mail/Courier/Publications
Conventional electrical

National Weather Service
APPENDIX C

DETERMINATION OF THE ACCURACIES OF AGRICULTURAL ACREAGE

ESTIMATION ACHIEVED BY ORBITING DATA SYSTEMS

(LANDSAT)
1.0 Accuracies Achieved by ERTS Investigators

The ERTS crop classifications represent an intensive series performed during the early phases of the LANDSAT program from its launch in July 1972 until 1974. The spacecraft was at that time named ERTS, later changed to LANDSAT.

The available principal investigations reporting numerical results were used in the analysis [16] [17] [18] [19] [20] [21] [22] [23] [24].

Table C-1 synopsizes the investigations analyzed. Nine ERTS investigators performed 224 distinct tests in ten locations, for seven major crop types. Thirty-two of these experiments included sufficiently complete description of the corresponding ground truth for complete comparison. Forty-three provided aggregate results against various estimates of the ground truth e.g. SRS estimates, State Yearbook data etc. The balance indicated only the percent of pixels correctly identified.

The cumulative curve of the results, presented in Figure C-1A, graphs the accuracies achieved versus the percentage of the tests achieving them. It presents the results for both the inventory and the mapping, or land use,
TABLE C-1

SUMMARY OF ERTS-1 ACREAGE MENSURATION RESULTS

<table>
<thead>
<tr>
<th>INVESTIGATOR</th>
<th>PLACE</th>
<th>DATE</th>
<th>MAJOR CROPS</th>
<th>AVERAGE FIELD SIZE</th>
<th>METHOD OF COMPUTATION</th>
<th>RANGE OF ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Bryan Erb, NASA (87)</td>
<td>Hill Co., Montana</td>
<td>8/7/72</td>
<td>Wheat</td>
<td>42.8 Ha.</td>
<td>Planimeter</td>
<td>0.1-35%</td>
</tr>
<tr>
<td></td>
<td>Holt Co., Nebraska</td>
<td>7/29/72</td>
<td>Corn</td>
<td>366.3 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imperial Co., Cal.</td>
<td>11/6/72</td>
<td>Asparagus</td>
<td>45.9 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butte Co., Cal.</td>
<td>9/19/72</td>
<td>Rice</td>
<td>255.2 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.S. Simonett</td>
<td>Williams Co., N.D.</td>
<td>6/5/73</td>
<td>Spring Wheat</td>
<td>15.8 Ha.</td>
<td>Pixel Count (Proportion to Maximum)</td>
<td>0-25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Durum Oats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craig L. Wiegand, ARS (31)</td>
<td>Hidalgo Co., Tex.</td>
<td>1/21/73</td>
<td>Vegetables</td>
<td>No-64.8 Ha.</td>
<td>Pixel Count</td>
<td>2-350%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Citrus</td>
<td>50-8.9 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cotton</td>
<td>50-6.9 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sorghum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rangeland</td>
<td>Tot-12.2 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion F. Baungardner, LARS (5)</td>
<td>Lubbock Co., Tex.</td>
<td>6/18/73</td>
<td>Wheat</td>
<td></td>
<td>Pixel Count (Proportion to Maximum)</td>
<td>1-35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cotton</td>
<td>No-64.8 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sorghum</td>
<td>50-8.9 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rangeland</td>
<td>Tot-12.2 Ha.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pasture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Corn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David A. Landgrebe, LARS (15)</td>
<td>3 Counties in Ill.</td>
<td>8/9/72</td>
<td>Corn</td>
<td>NA</td>
<td>Bias Corrected & Uncorrected ERTS results determined on basis of equal & non-equal weights.</td>
<td>11-65%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pixel Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 Counties in Ind.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humberto C. Garuti, Argentina (6)</td>
<td>Pampus of Argentina</td>
<td>10/5/72</td>
<td>Wheat</td>
<td>NA</td>
<td>Pixel Count</td>
<td>1-55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Corn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pixel Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J.P. Mahlstede, Iowa State (10)</td>
<td>Ames, Iowa</td>
<td>8/7/72</td>
<td>Corn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Doon, Iowa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alfalfa Soybeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pixel Count (Pro. to Max)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5-21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gene A. Thorley, Univ. of Calif. (22)</td>
<td>San Jose-Quila Co., Calif.</td>
<td>7/24/72</td>
<td>Range Vegetables</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers in parentheses indicate the number of tests performed by each investigator.
FIGURE C-1
DISTRIBUTION OF CLASSIFICATION ACCURACIES FOR ERTS INVESTIGATIONS ON
ACREAGE MENSURATION

A. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS

B. CLASSIFICATION ACCURACY OF ERTS INVESTIGATIONS WITH PROPORTION
 OF TARGET CROP >10%
mode. Inventory mode means the determination of the proportion of a given crop within the area under examination, without however specifying the crop's geographic location. It is the mode universally used for estimating agricultural acreage. Mapping mode, as the word indicates, connotes the identification not only of the species sought, but also of their geometric boundaries and geographic locations. This mode is generally not employed in conventional agricultural acreage estimation, due its higher cost with respect to the inventory mode.

Note that the accuracies achieved in the mapping mode are lower than those competing to the inventory mode: this is quantitatively consistent with the fact that the mapping mode requires more information than proportion estimation: conversely, for equal information content, its level of performance should be lower.

The accuracy of multispectral classification worsens when the proportion of target crops to the total scene is small: a subset was extracted from the total statistical population, based on the criterion of 10% or larger proportion of target crops. This yielded 64 distinct data points: the test results are presented in Figure C-1B. Note the higher accuracies achieved.

A breakdown of the mode - whether inventory or land use - employed for each experiment by each ERTS investigator is given in Table C-2.
TABLE C-2

BREAKDOWN OF THE NO. OF EXPERIMENT VARIANTS FOR EACH ERTS INVESTIGATOR BY MODE

<table>
<thead>
<tr>
<th>INVESTIGATOR</th>
<th>LAND USE</th>
<th>INVENTORY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDGREBE</td>
<td>51</td>
<td>22</td>
<td>85</td>
</tr>
<tr>
<td>ERB</td>
<td>16</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>GARUTI</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>WIEGAND</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>BAUER</td>
<td>76</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>EARTHSAT</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MAHLSTEDE</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>BAUMGARDNER</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>THORLEY</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>149</td>
<td>43</td>
<td>224</td>
</tr>
</tbody>
</table>

One-hundred sixty-nine experiments reported the individual field areas. The distribution of the field sizes shown in Figure C-2 indicates the predominance of fields below 50 hectares and above 10,000 hectares.

The sensitivity of the classification to area is indicated in Figure C-3 for each of the area classes given in Figure C-2. The general trend is that the mean error within each class is inversely related to the area. Note however that there is a wide dispersion of errors for each area class: this is indicative of the wide dispersion in the fraction of the total scene comprised by the crops investigated. Figure C-4 summarizes the results for the 169 investigations.
FIGURE C-3
SENSITIVITY OF EFTS CLASSIFICATION TO AREA - INVENTORY MODE
169 DATA POINTS

0-50 ha.

50-100 ha.

100-250 ha.

250-500 ha.

500-1,000 ha.

1,000-5,000 ha.

5,000-10,000 ha.

10,000 ha.

% ERROR

NO. OF MEASUREMENTS WITHIN ERROR BANDS

% ERROR

% ERROR

% ERROR

% ERROR

% ERROR
The effect of small crop acreages was eliminated by reducing the set of investigations analyzed from 169 to 64 as indicated in Table C-3. Figures C-5 and C-6 present the distributions of investigations as a function of percent error for the 64 investigations with acreage fraction of crop greater than 10%.

Table C-3

Agricultural Crop Classification from ERTS Investigations Reduced to Provide Acreage Fraction > 10%

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Investigations Selected for This Sample:</td>
<td>32 with 64 crop data points</td>
</tr>
<tr>
<td>Number of Investigators Performing the 32 Investigations Analyzed:</td>
<td>5</td>
</tr>
<tr>
<td>Range of Areas Classified:</td>
<td>400 to 100,000 ha; Median 7700</td>
</tr>
<tr>
<td>Geographic Locations:</td>
<td>9 states: (IL, IN, MT, IA, CA, NE, GA, TX, ND); approximately 20 counties</td>
</tr>
<tr>
<td>Principal Crops Selected:</td>
<td>Wheat, small grains, corn, soybeans, barley, pasture, alfalfa</td>
</tr>
<tr>
<td>Average Number of Distinct Crops Classified Per Investigation:</td>
<td>3 to 4</td>
</tr>
<tr>
<td>Number of Distinct Crops Selected for Comparison:</td>
<td>Average 2 per investigation. Criterion: Only crops whose acreage ratio to total crop acreage exceeded 10%</td>
</tr>
<tr>
<td>These Yielded 64 Data Points on Principal Crops.</td>
<td></td>
</tr>
</tbody>
</table>

The classification results are presented in Table C-4 for both the 224 and 64 investigation data sets. It shows that the one sigma accuracy of classification in the inventory mode for the total population of 224 data points is 74%; this increases to 86% for the subset of 64 data points featuring 10% or greater proportions.
DISTRIBUTION CLASSIFICATION ERRORS

TOTAL NUMBER OF INVESTIGATIONS = 64
ALL CROPS >10% OF SCENE

FIGURE C-5

LAND USE MODE

FIGURE C-6

INVENTORY MODE
TABLE C-4
ACCURACY OF CLASSIFICATION OF CROPS ACHIEVED
BY ERTS INVESTIGATORS

<table>
<thead>
<tr>
<th>PROPORTION ESTIMATION</th>
<th>MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCURACY %</td>
<td>74</td>
</tr>
<tr>
<td>ERROR %</td>
<td>26</td>
</tr>
</tbody>
</table>

64 CLASSIFICATION TESTS EXTRACTED FROM THE ABOVE UNIVERSE, WHEREIN THE CROP-TO-TOTAL-AREA PROPORTION WAS GREATER THAN 10%.

<table>
<thead>
<tr>
<th>PROPORTION ESTIMATION</th>
<th>MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCURACY %</td>
<td>86</td>
</tr>
<tr>
<td>ERROR %</td>
<td>14</td>
</tr>
</tbody>
</table>

2.0 Accuracies Achieved in Acreage Estimation after 1974

ERTS investigations ceased after 1974. To assess whether the early performance has improved in the approximately four years elapsed since, a number of subsequent investigations, performed by reputable organizations, were analyzed. Table C-5 is a summary of the key Landsat investigations dealing with crop classifications reported since 1974.

Figure C-7 presents the results of the investigations in the inventory and land use mode. The one sigma accuracy was 86.3% for the inventory mode and 73.4% for the land use mode respectively. The overall results are also shown in Table C-6.
TABLE C-5
SUMMARY OF KEY LANDSAT CLASSIFICATION INVESTIGATIONS SINCE 1974

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LOCATION</th>
<th>NUMBER OF CLASSES</th>
<th>AVERAGE INVENTORY ERROR</th>
<th>AVERAGE LAND USE ERROR</th>
<th>DATE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area estimation of crops by digital analysis of Landsat Data, LARS, Purdue University</td>
<td>Kansas, 4,613,000 Ha.</td>
<td>2 (wheat, other)</td>
<td>1.5% compared with SRS estimate</td>
<td>-</td>
<td>1977</td>
<td>Computer classification of wheat.</td>
</tr>
<tr>
<td>High-altitude vs. Landsat imagery for digital crop identification (LACIE)</td>
<td>Kern County, California, 11,839 acres</td>
<td>10 (cotton, grapes, melons, tomatoes, sugar beets, wheat, fowls, oranges, natural vegetation, other)</td>
<td>24%</td>
<td>22%</td>
<td>1977</td>
<td>Computer crop classification</td>
</tr>
<tr>
<td>Pattern Recognition of soils & crops from space, USDA</td>
<td>Imperial Valley, California, (53 fields)</td>
<td>5 (alfalfa, barley, sugar beets, bare soil, salt flats)</td>
<td>-</td>
<td>28%</td>
<td>1975</td>
<td>Computer crop classification</td>
</tr>
<tr>
<td>Land use inventory for Alto Lazio, ERIM</td>
<td>Alto Lazio, Italy, (53,284 ha.)</td>
<td>5 (Piscopo, Seminativi, Foresti, Orchiords, Urban)</td>
<td>12.3%</td>
<td>-</td>
<td>1977</td>
<td>Manual crop classification from Landsat imagery</td>
</tr>
<tr>
<td>Landsat spectral signatures: studies with soil associations and vegetation. South Dakota Agricultural experiment station</td>
<td>Brookings Co., South Dakota, 12,950 ha.</td>
<td>4 (corn, small grain, grass, water)</td>
<td>6.1%</td>
<td>6.3%</td>
<td>1978</td>
<td>Computer classification of Landsat imagery</td>
</tr>
<tr>
<td>Cost, accuracy, and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery.</td>
<td>Central Atlantic (urban, water, agricultural, forest, non-forested wetland)</td>
<td>6</td>
<td>12.1%</td>
<td>30.5%</td>
<td>1975</td>
<td>Manual classification from Landsat imagery</td>
</tr>
<tr>
<td>Landsat urban area delineations. Intralab Project 75-3</td>
<td>Prince Georges Co., MD, 84,100 ha.</td>
<td>2 (residential, other)</td>
<td>27%</td>
<td>27%</td>
<td>1977</td>
<td>Computer classification</td>
</tr>
<tr>
<td>Global agricultural productivity evaluation from Landsat data, J. Schubert, Gregory Geoscience Ltd.</td>
<td>4 Canadian test sites and acres analyzed</td>
<td>2 (wheat, other)</td>
<td>-</td>
<td>-</td>
<td>1976</td>
<td>Manual classification from enhanced Landsat imagery</td>
</tr>
<tr>
<td>1) Swiftcurrent</td>
<td>1) Swiftcurrent (1844 acres)</td>
<td>0%</td>
<td>-</td>
<td>July 1973</td>
<td>July 1973</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7204 acres)</td>
<td>0.6%</td>
<td>-</td>
<td>July 1975</td>
<td>July 1975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6960 acres)</td>
<td>3.4%</td>
<td>-</td>
<td>July 1976</td>
<td>July 1976</td>
<td></td>
</tr>
<tr>
<td>2) Raymond</td>
<td>2 (2175 acres) (wheat, other)</td>
<td>3.8%</td>
<td>-</td>
<td>July 1974</td>
<td>July 1974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4813 acres)</td>
<td>-4.7%</td>
<td>-</td>
<td>July 1976</td>
<td>July 1976</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-5 (cont'd)

SUMMARY OF KEY LANDSAT CLASSIFICATION INVESTIGATIONS SINCE 1974

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LOCATION</th>
<th>NUMBER OF CLASSES</th>
<th>AVERAGE INVENTORY ERROR</th>
<th>AVERAGE LAND USE ERROR</th>
<th>DATE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Stoney Mountain (wheat, other)</td>
<td>Texas</td>
<td>2</td>
<td>7.2%</td>
<td>-</td>
<td>Aug. 1974</td>
<td></td>
</tr>
<tr>
<td>Crop identification technology assumed for remote sensing (CITARS), B.J. Davis, A.H. Felteson, NASA, JSC, Houston, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use classification for 6 Rocky Mountain states - using Landsat multispectral - multi-temporal data</td>
<td>Fox Creek, Colorado (Rabbitbrush, grass/rabbitbrush, dense shrub, mahogany, meadow, wet pasture, Doug fir, Pinyon-Juniper, Ponderosa Pine, Aspen, cottonwood)</td>
<td>11</td>
<td>-</td>
<td>25.6%</td>
<td>1977</td>
<td>Computer classification</td>
</tr>
<tr>
<td></td>
<td>Fox Creek, Colorado (shrub land, non-irrigated grassland, irrigated grassland, coniferous forest, deciduous forest)</td>
<td>5</td>
<td>-</td>
<td>17.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Rangeland, forest)</td>
<td>2</td>
<td>-</td>
<td>10.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOTAL NO. IN SAMPLE = 18

1 SIGMA INVENTORY ERROR = 13.7%
1 SIGMA LAND USE ERROR = 26.6%
MEDIAN ABSOLUTE INVENTORY ERROR ≥ 8%
MEDIAN ABSOLUTE LAND USE ERROR ≥ 23%
3.0 Description of the Experiments in ERTS Crop Classification

Tables C-7 through C-14 present the highlights of each ERTS experiment: the crops analyzed, their locations, the dates of the ERTS observations, the method of analysis employed.

Figures C-8 through C-16 depict the scattergrams of the differences between measured values and ground truth. The scattergrams present for each group of investigations, the error experienced in measuring each crop area versus the actual areas. The solid downward sloping straight lines represent the error of mensuration e_m expected from the ERTS pixel size on the assumption of perfect discrimination. They obey the relationship:

$$e_m^% = \frac{2r}{\sqrt{A}}$$

Where:

r is the average dimension of the ERTS pixel 70 meters
A is the area mensurated in hectares
DETAILED SUMMARY OF THE ERTS CROP MENSURATION CASES
TABLE C-7

HIGHLIGHTS OF ERTS EXPERIMENT

Source: The ERTS-1 Investigation (ER-600): Volume I - ERTS-1 Agricultural Analysis, R. Bryan Erb, NASA, August 1974.

Scene Content:

<table>
<thead>
<tr>
<th>Hill County</th>
<th></th>
<th>Imperial County</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Fallow & Sod</td>
<td>55%</td>
<td>Bare Soil</td>
<td>40%</td>
</tr>
<tr>
<td>Spring Wheat</td>
<td>24%</td>
<td>Asparagus</td>
<td>34%</td>
</tr>
<tr>
<td>Winter Wheat</td>
<td>19%</td>
<td>Alfalfa</td>
<td>15%</td>
</tr>
<tr>
<td>Barley</td>
<td>2%</td>
<td>Carrots</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melons</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light Veg.</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holt County</th>
<th></th>
<th>Butte County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Corn</td>
<td>67%</td>
<td>Rice</td>
</tr>
<tr>
<td>Grass & Pasture</td>
<td>16%</td>
<td>Fallow</td>
</tr>
<tr>
<td>Sunflowers</td>
<td>4%</td>
<td>Corn</td>
</tr>
<tr>
<td>Popcorn & Field Corn</td>
<td>4%</td>
<td>Alfalfa</td>
</tr>
<tr>
<td>Popcorn</td>
<td>4%</td>
<td>Sugar beets</td>
</tr>
<tr>
<td>Field Corn & Grain Sorghum</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Disked Fallow</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

Time of Measurement:

<table>
<thead>
<tr>
<th>Hill County</th>
<th></th>
<th>Imperial County</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7/72</td>
<td></td>
<td>11/6/72</td>
</tr>
<tr>
<td>Spring Wheat - Ripening</td>
<td></td>
<td>Alfalfa - Growing</td>
</tr>
<tr>
<td>Winter Wheat - Harvesting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley - Harvesting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holt County</th>
<th></th>
<th>Butte County</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/29/72</td>
<td></td>
<td>9/19/72</td>
</tr>
<tr>
<td>Field Corn - Tasseling</td>
<td></td>
<td>Rice - Maturing & Harvesting</td>
</tr>
<tr>
<td>Grass & Pasture (Native Hay) - Harvesting</td>
<td></td>
<td>Corn - 100% Ground Cover</td>
</tr>
<tr>
<td>Sunflowers - Heading</td>
<td></td>
<td>Sugar beets - Harvesting</td>
</tr>
<tr>
<td>Grain Sorghum - Heading</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Field Size:

<table>
<thead>
<tr>
<th>Hill County</th>
<th></th>
<th>Imperial County</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.8 Ha.</td>
<td></td>
<td>45.9 Ha.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holt County</th>
<th></th>
<th>Butte County</th>
</tr>
</thead>
<tbody>
<tr>
<td>366.3 Ha.</td>
<td></td>
<td>225.2 Ha.</td>
</tr>
</tbody>
</table>

Method of Computation:

Mechanical/electronic planimeter to manually trace field borders.

Additive color-enhanced ERTS-1 imagery of about 1:130,000 scale used as base photography for measurements.

Universal Transverse Mercator coordinate system with grid prepared for enhanced ERTS-1 imagery of about 1:130,000 scale to locate fields.
FIGURE C-8

EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - ERB

ORIGINAL PAGE OF POOR QUALITY.

GROUND TRUTH MEASUREMENT - hectares
HIGHLIGHTS OF ERTS EXPERIMENT

Scene Content:
Urban
Agricultural
Vegetables
Citrus
Cotton & Sorghum
Idle Cropland
Dry Debris
Rangeland
Grass
Shrub
Non-agricultural
Water

Time and Place of Measurement:
January 21 and May 27, 1973, Hidalgo County, Texas.

Average Field Size:
Total County - 12.2 Ha.
Northern Region Only (Range and Pasture) - 64.8 Ha.
Central Region Only (General Farming & Citrus Growing) - 6.9 Ha.
Southern Region Only (Winter Vegetables) - 8.9 Ha.

Method of Computation:
Ground truth information was obtained on several items pertaining to crops, crop histories, and farming practices by interviewing approximately 400 farmers. Typical ground truth included crop species, stage of maturity, row spacing, plant height, percent ground cover, row direction, Munsell color of soil, recent cultural practices, and other qualitative information.

A classification was determined for every pixel in Hidalgo County (849,000 pixels in January and 948,000 pixels in May), and a comparison was made, using Student's t-test, between actual and computer acreage estimates of Hidalgo County for the categories of vegetable, citrus, cotton and sorghum, idle cropland, grass, and mixed shrub.
FIGURE C-9

EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - WIEGAND

GROUND TRUTH MEASUREMENT - hectares
HIGHLIGHTS OF ERTS EXPERIMENT

Source: Evaluation and Comparison of ERTS Measurements of Major Crops and Soil Associations for Selected Test Sites in the Central United States, Marion F. Baumgardner and Staff, LARS, Purdue University, March 1974.

Scene Content:

Lubbock Co., Texas - Wheat - harvesting
Cotton
Grain Sorghum
Water

Fallow (Bare Soil)
Permanent Pasture

Humboldt Co., Iowa - Corn
Soybeans
Other Row Crops

Time of Measurement:

Lubbock Co., Texas - June 18 and July 24, 1973
Greeley Co., Kan. - June 19, 1973
Humboldt Co., Iowa - August 26, 1973

Method of Computation:

Lubbock Co., Texas - Acreage estimates were made from percentage of points in each class. The total area in the county was multiplied by these percentages to obtain an estimate of area in each cover type.

Greeley Co., Kan. - Area of wheat was calculated from classification results.

Humboldt Co., Iowa - Area of crops was calculated from classification results.
FIGURE C-10

GEOGRAPHICAL LOCATION OF TEST SITES IN THE CENTRAL UNITED STATES — BAUMGARDNER

1 LUBBOCK, TEXAS REGIONAL TEST SITE
2 BOONE AND HENDRICKS COUNTIES, INDIANA
3 GREELEY COUNTY, KANSAS
4 HUMBOLDT COUNTY, IOWA
5 MCPHERSON COUNTY, NEBRASKA
6 WELLS COUNTY, NORTH DAKOTA
TABLE C-10

HIGHLIGHTS OF ERTS EXPERIMENT

Source: A Study of the Utilization of ERTS-1 Data from the Wabash River Basin, David A. Landgrebe and Staff, LARS, Purdue University, August 1974.

Scene Content:

Illinois - Corn 40% Soybeans 18% Grain Sorghum Alfalfa Hay Pasture Small Grain Stubble Woods Urban

Indiana - Corn 32% Soybeans 25% Hay Pasture Small Grain Stubble Woods Urban

Time and Place of Measurement:

Illinois - 8/9/72
DeKalb County
Ogle County
Lee County
(Analysis performed on total information from these three counties.)

Indiana - 8/21/73
Lake County Newton County
Porter County White County
LaPorte County Benton County
Starke County Warren County
Pulaski County Fountain County
Casper County Tippecanoe County
(Analysis performed on total information from these twelve counties.) SEE ATTACHED MAP.

Method of Computation:

Illinois - Bias corrected and uncorrected ERTS results were determined, each on the basis of equal weights and non-equal weights, resulting in four acreage estimates made from ERTS data. The method used for unbiasing classification results involves multiplying the county classification results by the inverse of the test field classification performance matrix as follows:

\[A = CP^{-1} \]

Where:

\[A = 1 \times n \text{ vector of crop acreages} \]
\[C = \text{classification vector with } n \text{ crops or classes} \]
\[P^{-1} = \text{inverse of } n \times n \text{ classification performance matrix} \]

Indiana - Acreage measurements based on pixel count classification.
FIGURE C-12

EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY — LANDGREBE
TABLE C-11

HIGHLIGHTS OF ERTS EXPERIMENT

Scene Content:

- Wheat - eared (flowering - grained)
- Barley
- Rye
- Corn - germinated
- Grain Sorghum - ready to plant
- Forage Sorghum - ready to plant
- Soya - planted
- Mijo - planted
- Sunflower - planted
- Alfalfa - shooted
- Mixed Pasture - shooted
- Natural Pasture - shooted
- Winter Cereal

Time and Place of Measurement:

Pampus Region of Argentina - 10/5/72

Method of Computation:

1. Manual Interpretation: Acreage estimates were obtained from 1:1,000,000 amplified transparencies of false color images after classification.

2. Pixel Count: Ground truth available for only one scene; since the 3 scenes used were successive frames from one ERTS pass, ground truth used as training data from first scene, then processed results from first scene used as initial training data for next scene, etc. (10% overlap between scenes.)
EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - GARUTI

FIGURE C-13

GROUND TRUTH MEASUREMENT - hectares
Conclusions:
The best method for investigating large cultivated areas is automatic discrimination, which assures speed and consideration of large areas. A 96% safety factor was obtained in the general preliminary classification.
TABLE C-12

HIGHLIGHTS OF ERTS EXPERIMENT

Source: Remote Sensing in Iowa Agriculture: Identification and Classification of Iowa's Crops, Soils, and Forestry Resources Using ERTS-1 and Complimentary Underflight Imagery, J.P. Mahlstedt et al., Iowa State University, May 1974.

Scene Content:
- Corn
- Alfalfa
- Soybeans
- Oats
- Pasture
- Water
- Forest

Time and Place of Measurement:
- Ames, Iowa - August 1972
- Doon, Iowa - August 1972

Method of Computation:
- Optical Processing
FIGURE C-14

EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - MAHLSTEDE

GROUND TRUTH MEASUREMENT - hectares
TABLE C-13

HIGHLIGHTS OF ERTS EXPERIMENT

Source: EOS Thematic Mapper Technical Review, Ralph Shay et al., April 30 – May 2, 1975.

Scene Content:
- Corn
- Soybeans

Time and Place of Measurement:
- Midwest (Indiana and Illinois)

Average Field Size:
- 6 - 17 Ha.

Method of Computation:
- Pixel Count
EXPERIMENTAL ERRORS IN GEOMETRIC MENSURATION FROM LANDSAT IMAGERY - SHAY (CITARS)
<table>
<thead>
<tr>
<th>Scene Content:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Sugar Beets</td>
</tr>
<tr>
<td>Pasture</td>
<td>Walnut</td>
</tr>
<tr>
<td>Plowed Land</td>
<td>Fruit Trees</td>
</tr>
<tr>
<td>Grapes</td>
<td>Burned Areas</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>Beans</td>
</tr>
<tr>
<td>Barley</td>
<td>Harvested</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Cucumber</td>
</tr>
</tbody>
</table>

Time and Place of Measurement:

San Joaquin County, California July 26, 1972

Average Field Size:

Approximately 17 Ha.

Method of Computation:

Manual Interpretation
Automatic Interpretation
APPENDIX D

ANALYSIS OF AVAILABLE CROP SPECTRA

It has been known for a long time that laboratory spectra of single leaves exhibit a considerable degree of qualitative similarity. Personal communication by Professor R.N. Colwell of the University of California, Berkeley, in 1975, who obtained numerous laboratory spectrograms, indicated that essentially "all leaves look alike." An example of this qualitative likeness is depicted in Figure D-1 which shows the qualitative similarities in the reflectances of single leafs in the spectral region from 0.5 to 2.5 µm of various plants: Bean, Avocado, Sorghum, Pigweed, Corn, Soybean, Orange, Peach, Cotton.

Leaf spectra however are not necessarily good indicators of the spectral reflectances of entire plants: especially since the available leaf spectra are taken "in vitro" at essentially normal incidences. One could speculate that specific patterns of leaves peculiar to each plant may emphasize preferred directions of reflection, or possibly even enhance one spectral region over others.

Analyses of spectra contained in the literature, see Table D-1, did qualitatively confirm the hypothesis of "similarity" of spectral shapes: however, the difficulties encountered in resolving discrepancies of calibration, stage of plant development, illumination and viewing angles, prohibited the formulation of general relationships valid between diverse plants, even between plants belonging to the same species but at differing stages of development, or subjected to different stresses.
FIGURE D-1

TYPICAL REFLECTANCE SPECTRA OF SINGLE LEAVES

- Bean
- Avocado
- Sorghum
- Pigweed

RELATIVE REFLECTANCE (Percent)

WAVELENGTH (nm)

The resolution of this question had to await the advent of fine-grained, calibrated spectra.

Figures D-2 and D-3 present spectral radiance values produced by the Goddard Institute for Space Studies from a field program conducted in Imperial Valley, California. Figure D-2 shows spectra of the crops alfalfa, melons and sorghum at a 40 to 50% leaf cover. Figure D-3 shows the spectra of the crops wheat, alfalfa, sugar beets, sorghum, asparagus, each at an approximate leaf cover of 100%. These plots show that diverse crops at similar stages of development, i.e. at similar amounts of leaf cover, exhibit qualitatively similar spectral signatures.
FIGURE D-2

SPECTRA OF VARIOUS CROPS AT 40-50% LEAF COVER IN IMPERIAL VALLEY, CALIFORNIA

SOURCE: Atlas of Selected Crop Spectra Imperial Valley, California
S. G. Ungar, NASA Institute for Space Studies, 1977
FIGURE D-3
SPECTRA OF VARIOUS CROPS AT 100% LEAF COVER IN IMPERIAL VALLEY, CALIFORNIA

SOURCE: Atlas of Selected Crop Spectra Imperial Valley, California
S.G. Ungar, NASA Institute for Space Studies, 1977
A more quantitative determination of the spectral similarity between crops at like levels of leaf cover is obtained by examining the ratio between various spectral bands. For example, Table D-2 presents results of a correlation analysis between the spectral bands 0.7 to 0.8 μm and 0.8 to 0.9 μm for wheat and alfalfa crops with greater than 60% leaf cover.

Table D-2

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>COEFFICIENT OF CORRELATION</th>
<th>SLOPE</th>
<th>STD. ERROR OF SLOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>0.93</td>
<td>0.58</td>
<td>0.05</td>
</tr>
<tr>
<td>ALFALFA</td>
<td>0.97</td>
<td>0.58</td>
<td>0.02</td>
</tr>
<tr>
<td>SOIL</td>
<td>0.98</td>
<td>1.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Source: ECOsystems analysis of a selected subset of spectra provided by Dr. S. Unger of the Goddard Institute for Space Science.

Each crop exhibits a "slope" (ratio of amplitude of band 0.8-0.9 to band 0.7-0.8 μm) of 0.58 and a high degree of correlation between the two spectral bands. The closeness of the slope values indicates that these crops generate similarly shaped spectra: whereas the high correlations indicate that the computed slope, hence the shape of the spectra is relatively stable for each crop at leaf cover areas greater than 60%. A number of such correlations were performed by ECOsystems with results similar to those obtained by other workers.

Table D-3 lists relative reflectances of irrigated wheat in the two spectral bands 0.74-0.76 μm and 0.78-0.80 μm and the ratio between the two
for the phenologic stages from early jointing through dead ripe for Bushland, Texas. These two bands show significant amplitude changes throughout the growth period. They exhibit 1 sigma variations of approximately 20% in the band 0.74-0.76 μm and 26% in the band 0.78-0.80 μm. The ratio between the two bands remains relatively constant, however, through this growth period, exhibiting a 1 sigma variation of approximately 8%. From these results it can be concluded that while the wheat field exhibits significant amplitude changes in mean reflectance throughout the later stages of the crop's growth, the shape of the spectra remains relatively constant.

TABLE D-3

<table>
<thead>
<tr>
<th>DATE</th>
<th>REFLECTANCE 0.74-0.76μm</th>
<th>REFLECTANCE 0.78-0.80μm</th>
<th>RATIO 1/2</th>
<th>STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td>.338</td>
<td>.397</td>
<td>1.145</td>
<td>Early Jointing</td>
</tr>
<tr>
<td>4/4</td>
<td>.376</td>
<td>.520</td>
<td>1.383</td>
<td>Late Jointing</td>
</tr>
<tr>
<td>4/21</td>
<td>.391</td>
<td>.531</td>
<td>1.378</td>
<td>Booting</td>
</tr>
<tr>
<td>5/19</td>
<td>.304</td>
<td>.382</td>
<td>1.257</td>
<td>Early Ripe</td>
</tr>
<tr>
<td>5/27</td>
<td>.248</td>
<td>.304</td>
<td>1.226</td>
<td>Late Ripe</td>
</tr>
<tr>
<td>6/4</td>
<td>.231</td>
<td>.269</td>
<td>1.145</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>.309</td>
<td>.378</td>
<td>1.215</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>.060</td>
<td>.097</td>
<td>.103</td>
<td></td>
</tr>
<tr>
<td>c.v.</td>
<td>.195</td>
<td>.256</td>
<td>.084</td>
<td></td>
</tr>
</tbody>
</table>
This relationship appears to hold for other crops as well. Figures D-4 and D-5 present spectral plots of various crops throughout their growth for Hand County, South Dakota [] and Bushland, Texas. The similarity of shape, although with significant variations in amplitude from stage to stage are evident in these plots.

Figure D-6 plots single-date "snapshots" of spectra of various ground covers taken at the Bushland, Texas site. Note the emergence of irrigated wheat from the soil cover spectrum on the earlier date: its further growth, and the emergence of dryland wheat, on the later date. On the later date, whereas the spectral shapes of the emerging crops are qualitatively similar, their average magnitudes begin to differ significantly.

A striking example of the differences of amplitude displayed by crops at certain times during their growth cycle is shown in Figure D-7. Note the significant emergence of the crop rye over the others: its spectral shape, however, is qualitatively not very different from the spectral shapes of other crops. It should be noted that the April 4, 1974 curve for rye appeared upon investigation to be probably tainted by an imperfection in the experimental procedure---possibly an instrumental gain change of as much as 1.5:1. Even correcting for this possible mishap does however not modify the general relationships.

Figure D-8 plots the temporal progression of the mean reflectance of spring wheat, pasture, corn, oats, alfalfa and barley in the spectral band 0.76-0.9 μm for Hand County, South Dakota. It shows that temporal variations in mean reflectance differ from crop to crop.
FIGURE D-4

REFLECTANCE OF WINTER WHEAT
AT DIFFERENT MATURITY STAGES

LOCATION: HANG COUNTY, SOUTH DAKOTA
SENSOR: FSS DATE: 1975-76

REFLECTANCE OF SPRING WHEAT
AT DIFFERENT MATURITY STAGES

LOCATION: HANG COUNTY, SOUTH DAKOTA
SENSOR: FSS DATE: 1976

TILLERING OCTOBER 15
TILLERING NOVEMBER 5
TILLERING MAY 11
GERMINATED JUNE 19
RIPE JULY 8
HARVESTED JULY 31

EMERGENCE MAY 11
GERMINATED JUNE 19
RIPE JULY 8
HARVESTED JULY 31
FIGURE D-5

PHENOLOGIC PROGRESSION OF THE SPECTRA OF IRRIGATED WHEAT

(BUSHLAND, TEXAS 1974)

PHENOLOGIC PROGRESSION OF THE SPECTRA OF IRRIGATED PASTURE

(BUSHLAND, TEXAS 1974)
FIGURE D-6

COMPARISON OF CROP SPECTRA FOR THE BUSHLAND, TEXAS SITE

APRIL 21, 1974

MAY 19, 1974
COMPARISON OF CROP SPECTRA FOR THE BUSHLAND, TEXAS SITE

MARCH 16, 1974

APRIL 4, 1974
FIGURE D-8

TEMPORAL PROGRESSION OF THE MEAN REFLECTANCE FOR THE CROPS CONTAINED IN THE HAND COUNTY DATA SET

UNADJUSTED DATA
It can be argued at this point that the findings thus far exemplified are peculiar to the limited number of regions within which they have been gathered: and that the hypothesis of "similarity" of spectral shapes is thereby not proven, but rather only inferrable as a working hypothesis.

There is of course no positive answer to this argument, whose thorough experimental verification would require an impracticable number of field data gathering programs. Heuristic arguments which point to the fact that the hypothesis of "similarity" is valid worldwide are:

1. Personal communication by Dr. N.G. Kharin, Director, Remote Sensing Institute, Academy of Sciences of the Uzbekhistan Republic, USSR. Dr. Kharin confirmed in 1976 that from his findings in the USSR, spectra of trees and crops appear "very similar." His tabulations in [25] further confirm this fact.

2. Spectra of rice gathered in hothouse environment by the French-Italian cooperative program "Agreste" show not only that various species of rice present "similar" reflectance spectra, but that these are essentially "similar" to the available spectra of other U.S. crops [26].

The mean reflectances of crops display fluctuations. Figure D-9 shows the fluctuations of mean reflectances measured among five spring wheat fields on July 28, 1976 in the Williams County, North Dakota LACIE Supersite. It also plots the results of 5 spectral scans of spring wheat field 334 located within this site: it shows that fluctuations occur not only among fields but within single fields. The Figures show that such fluctuations occur in all regions of the spectrum from 0.4 - 2.4 μm.
FIGURE D-9

VARIABILITY IN REFLECTANCE WITHIN A SPRING WHEAT FIELD

LOCATION: WILLIAMS COUNTY, NORTH DAKOTA
SENSOR: FSS DATE: JULY 28, 1976
FIELD: 334

VARIABILITY IN REFLECTANCE AMONG SPRING WHEAT FIELDS

LOCATION: WILLIAMS COUNTY, NORTH DAKOTA
SENSOR: FSS DATE: JULY 28, 1976
Figure D-10 plots coefficients of variation as a function of spectral wavelength for wheat in Bushland, Texas. It, and several other similar tests, indicates that an average spectral variability of order 10% is typical for reflectance fluctuations within a single field. Tables D-4 through D-6 list coefficients of variation for various multi-field crop classes for six dates in Hand County, South Dakota. They indicate that multi-field coefficients of variation are generally greater than 10%. The maximum multi-field reflectance fluctuation is exhibited by oats with a coefficient of variation of approximately 40% on June 16, 1977 in the spectral band from 2.08 to 2.35 μm. Typical coefficients of variation for multi-field crop classes appear to fall in the range from 10% to 30%.
FIGURE D-10

COEFFICIENT OF VARIATION VERSUS WAVELENGTH

BUSHLAND, TEXAS – MARCH 16, 1974

SINGLE WHEAT FIELD

COEFFICIENT OF VARIATION, $\frac{\sigma}{\mu} \times 100$

Probable systematic deviations (detector crossovers)

Sensor Bandwidth: 0.02 microns

Average

Change of scale

WAVELENGTH - μm
TABLE D-4

COEFFICIENTS OF VARIATION OF REFLECTANCE VERSUS BAND AND DATE: HAND COUNTY, S.D.

<table>
<thead>
<tr>
<th>Spectral Band</th>
<th>Spring Wheat CV%</th>
<th>Winter Wheat CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.450 - 0.520</td>
<td>13.5</td>
<td>7.1</td>
</tr>
<tr>
<td>0.520 - 0.600</td>
<td>15.5</td>
<td>6.6</td>
</tr>
<tr>
<td>0.630 - 0.680</td>
<td>13.9</td>
<td>6.4</td>
</tr>
<tr>
<td>0.760 - 0.900</td>
<td>13.6</td>
<td>6.7</td>
</tr>
<tr>
<td>1.550 - 1.750</td>
<td>6.1</td>
<td>3.5</td>
</tr>
<tr>
<td>2.080 - 2.350</td>
<td>7.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Averages of 5 fields, 74 to 148 spectra taken at each date.

Averages of 4 fields, 50 to 109 spectra taken at each date.
<table>
<thead>
<tr>
<th>SPECTRAL BAND</th>
<th>CORN CV%</th>
<th>OATS CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.450 - 0.520</td>
<td>15.5</td>
<td>20.1</td>
</tr>
<tr>
<td>0.520 - 0.600</td>
<td>16.6</td>
<td>18.7</td>
</tr>
<tr>
<td>0.630 - 0.680</td>
<td>15.1</td>
<td>18.0</td>
</tr>
<tr>
<td>0.760 - 0.900</td>
<td>12.9</td>
<td>23.5</td>
</tr>
<tr>
<td>1.550 - 1.750</td>
<td>6.8</td>
<td>14.0</td>
</tr>
<tr>
<td>2.080 - 2.350</td>
<td>9.0</td>
<td>23.3</td>
</tr>
</tbody>
</table>

AVERAGE OF 3 FIELDS, 15 TO 64 SPECTRA TAKEN AT EACH DATE

AVERAGES OF 2 FIELDS, 57 TO 77 SPECTRA TAKEN AT EACH FIELD
<table>
<thead>
<tr>
<th>SPECTRAL BAND</th>
<th>ALFALFA CV%</th>
<th>PASTURE CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.450 - 0.520</td>
<td>8.5 24.6 7.4 28.4 5.3 16.4</td>
<td>15.3 15.2 17.7 20.8 15.0 13.4</td>
</tr>
<tr>
<td>0.520 - 0.600</td>
<td>10.8 16.3 15.7 27.0 4.8 13.4</td>
<td>12.3 11.7 11.5 15.6 11.3 10.1</td>
</tr>
<tr>
<td>0.630 - 0.680</td>
<td>9.1 14.6 5.3 29.3 5.3 12.4</td>
<td>11.1 11.0 10.6 15.1 10.5 9.7</td>
</tr>
<tr>
<td>0.760 - 0.900</td>
<td>20.6 17.5 6.4 48.2 2.7 4.1</td>
<td>11.5 9.2 12.7 21.8 9.7 9.3</td>
</tr>
<tr>
<td>1.550 - 1.750</td>
<td>4.5 15.9 2.3 38.7 3.7 12.9</td>
<td>13.3 10.2 14.1 18.7 10.1 10.1</td>
</tr>
<tr>
<td>2.080 - 2.350</td>
<td>8.3 36.8 3.7 50.7 5.1 19.5</td>
<td>15.0 16.1 24.1 26.8 15.7 14.9</td>
</tr>
</tbody>
</table>

AVERAGES OF 3 FIELDS, 26 TO 53 SPECTRA TAKEN AT EACH DATE

AVERAGES OF 4 FIELDS, 76 TO 142 SPECTRA TAKEN AT EACH DATE
APPENDIX E

INFORMATION EXTRACTION FROM RADIOMETRIC DATA

DISCRIMINATION THEORY

There is a distinction between identification and discrimination. Discrimination means separation among species, i.e. their grouping into distinct classes, plus the assignment of a numerical value to each class: in our case, the total ground surface occupied by that class. The function of identification requires in addition the "naming" of each class, i.e. its assignment to predetermined categories.

The function of discrimination requires the sufficiently accurate recognition of distinctions between classes: identification requires in addition the identification of specific characteristics which univocally tag each distinct class as pertaining to a preassigned set.

The treatment which follows addresses the function of discrimination only, specifically: 1) the identification of the drivers of accuracy; and 2) the statement of their interrelationships.

Single Band - Binary Mixture Case

Consider an area containing N total pixels of two crop species: N_A of species A and N_B of species B. The reflectances of species A, B are characterized by Gaussian distributions with mean reflectances \(\mu_A \), \(\mu_B \) and standard deviations \(\sigma_A \), \(\sigma_B \).
The proportion of the area containing species A is:

\[\alpha = \frac{N_A}{N} \]

That containing species B is:

\[(1 - \alpha) = \frac{N_B}{N} \]

The probability density function \(p(x) \) of the distribution of the binary crop mixture is:

\[p(x) = \alpha P_A(x) + (1-\alpha) P_B(x) \] \hspace{1cm} (E-1)

where \(P_A \) is the conditional probability of \(x \) belonging to Class A and \(P_B \) is the conditional probability of \(x \) belonging to Class B, and \(\alpha \) is the a priori probability of \(x \) belonging to Class A.

The expected mean reflectance \(\mu_\alpha \) of the \(N \) pixels is given by:

\[
\mu_\alpha = \int_{-\infty}^{\infty} x p(x) \, dx = \\
\int_{-\infty}^{\infty} x \left[\alpha P_A(x) + (1-\alpha) P_B(x) \right] \, dx = \\
\alpha \mu_A + (1-\alpha) \mu_B
\] \hspace{1cm} (E-2)

and the expected variance by:
\[\sigma_{\alpha}^2 = \int_{-\infty}^{\infty} x^2 p(x) \, dx = \int_{-\infty}^{\infty} x^2 \{ \alpha P_A(x) + (1-\alpha) P_B(x) \} \, dx = \alpha \sigma_A^2 + (1-\alpha) \sigma_B^2 + \alpha (1-\alpha) (\mu_B - \mu_A)^2 \quad (E-3) \]

For sufficiently large samples the sample mean \(M \) tends to a normal variable with mean \(\mu_\alpha \) and standard deviation \(\sigma_\alpha / \sqrt{N} \). Using the standard definition of the \(q\% \) probability that the true value is contained in an interval

\[M - k \left(\frac{\sigma_\alpha}{\sqrt{N}} \right) < \mu_\alpha < M + k \left(\frac{\sigma_\alpha}{\sqrt{N}} \right) \]

where \(t \) is a constant whose values are given below:

<table>
<thead>
<tr>
<th>CONFIDENCE LEVEL</th>
<th>LEVEL OF SIGNIFICANCE</th>
<th>LEVEL OF SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>q%</td>
<td>(100-q)%</td>
<td>k</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>1.64</td>
</tr>
<tr>
<td>95</td>
<td>5</td>
<td>1.96</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>2.58</td>
</tr>
<tr>
<td>99.9</td>
<td>0.1</td>
<td>3.29</td>
</tr>
<tr>
<td>99.99</td>
<td>0.01</td>
<td>3.89</td>
</tr>
</tbody>
</table>

For species A with \(\hat{\mu}_A \) as the estimate of the mean value for species A, the true value \(\mu_\alpha \) lies between the limits
\[\tilde{\mu}_A - \frac{k \sigma_A}{\sqrt{N_A}} < \mu_A < \tilde{\mu}_A + \frac{k \sigma_A}{\sqrt{N_A}} \tag{E-4} \]

at the confidence level \(q \). Similarly for species B:

\[\tilde{\mu}_B - \frac{k \sigma_B}{\sqrt{N_B}} < \mu_B < \tilde{\mu}_B + \frac{k \sigma_B}{\sqrt{N_B}} \tag{E-5} \]

Adding the two equations and weighting them by their a priori proportions, yields:

\[a \tilde{\mu}_A + (1-a) \tilde{\mu}_B - k \left[a \frac{\sigma_A}{\sqrt{N_A}} + (1-a) \frac{\sigma_B}{\sqrt{N_B}} \right] < a \mu_A + (1-a) \mu_B < \]

\[< a \tilde{\mu}_A + (1-a) \tilde{\mu}_B + k \left[a \frac{\sigma_A}{\sqrt{N_A}} + (1-a) \frac{\sigma_B}{\sqrt{N_B}} \right] \tag{E-6} \]

Rewriting the equation:

\[M - k \left[a \frac{\sigma_A}{\sqrt{N_A}} + \frac{(1-a) \sigma_B}{\sqrt{N_B}} \right] < a (\mu_A - \mu_B) + \mu_B < \]

\[< M + k \left[a \frac{\sigma_A}{\sqrt{N_A}} + \frac{(1-a) \sigma_B}{\sqrt{N_B}} \right] \tag{E-7} \]
Where:

\[M = a \nu_A + (1-a) \nu_B \]

Introducing the definitions below in (E-7):

\[a = \frac{\nu_B - \nu_A}{\sigma_A} \]

\[b = \frac{\sigma_B}{\sigma_A} \]

\[\hat{a} = \frac{\nu_B - M}{a \sigma_A} \]

yields:

\[\hat{a} - \frac{k}{a \sqrt{N}} [\sqrt{a} + b \sqrt{1-a}] < a \]

\[< \hat{a} + \frac{k}{a \sqrt{N}} [\sqrt{a} + b \sqrt{1-a}] \] (E-8)

Thus the absolute value of the error e of the estimate of \(\alpha \) is bounded by:

\[e < \frac{k}{a \sqrt{N}} [\sqrt{a} + b \sqrt{1-a}] = \]

\[= \frac{1}{\alpha \sqrt{N}} \frac{k}{\nu_A - \nu_B} \sqrt{\alpha \sigma_A^2 + (1-\alpha) \sigma_B^2} \] (E-9)
REFERENCES

6. Personal Communications from Mr. E. Mercati, Director, Agricultural Section, IstitutoCentrale di Statistica, Rome, Italy.

14. Personal Communications from Mr. Dale Rowe, GE Missile & Space Division, Huntsville Operations, Huntsville, Alabama

15. Ungar GISS Report Spectra

18. Evaluation and Comparison of ERTS Measurements of Major Crops and Soil Associations for Selected Test Sites in the Central United States, Marion F. Baumgardner and Staff, LARS, Purdue University, March 1974.

19. A Study of the Utilization of ERTS-1 Data from the Wabash River Basin, David A. Landgrebe and Staff, LARS, Purdue University August 1974.

