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ABSTRACT

The task of selecting the best set of spectral channels
is vital to the design of multispectral remote sensor
systems. ir would be desirable to choose a sensor design
such that the entire pattern reccgnition system performs
in an optimal manner. In order to choose a design which will
be optimal for the largest class of remote Sensing problems,
a method is developed which attempts to represent the
spectral response function from & scene as accurately as
possible. The performance of the overall recognition
system, then, is studied relative to the accuracy of the
spectral representation. The spectral representation is
only one of a set of five interrelated parameter cate-
gories which also include; the spatial representation
parameter, the signal-to-noise ratio, ancillary data, and
information classes.

The spectral response functions observed from a stratum
are modeled as a stochastic process with a Gaussian proba-
bility measure. The criterion for spectral representation

is defined by the minimum expected mean-square error. The
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sensor is modeled as a set of basis functions such that the
output approximates the input by a linear combination of
the basis functions suitably weighted by a sequence of
coefficients. The optimum set of basis functions with
respect to the mean-square error criterion is given by the
solutions to the Karhunen-Loeve expansion. The development;
of the Karhunen-Loeve expansion was generalized to include
a weight function such that each point in the spectral
interval could be assigned a weight corresponding to its
importance. The computation of the optimum set of basis
functions is incorporated into an analytical procedure that
seeks to design practical sensors, comparing their per-
formance against the optimal design.

The five parameter categories are discussed with regard
to their effect on the pattern recognition system perform-
ance. The usefulness of the graph of the recognition system
performance as a function of spectral representation is
introduced.

A software system is developed to test and evaluate
this method using field measurements data taken from two
locations on three different dates each. Four different
weight functions are evaluated. The effect of sample size
on the evaluation of a data set is demonstrated. For each
stratum the first few eigenvectors are plotted, and the
mean-square error and probability of correct classification

are evaluated. The graphs of probability of correct



xviii

classification vs. expected mean-square error allow the
study of the relationship between classification performance
and spectral representation. One can also study the
dimensionality of the observation space relative to repre-
sentation and performance.

The procedure is demonstrated to be a valuable tool for
the design of sensors for the limited collection of data.
The value of the weighted Karhunen-Loeve expansion is
demonstrated. The performance of several suboptimal sensors
are compared with the optimal design. A proposed suboptimal
sensor is designed which demonstrates superior performance
in representation accuracy and classification accuracy
over the other suboptimal sensors. It is shown that spec-
tral sampling should be done using spectral channels which
have a smaller bandwidth, particularly in the red part of
the visible region, than are currently being used on

operational sensor systems.



CHAPTER 1. INTRODUCTION

Earth observational remote sensing has emerged as a

prominent technology in the last two decades. Important

developments in sensor technology, computer systems, pattern

St e

recognition theory, and image processing techniques have

rought the remote sensing state-of-the-art to the point
where it is a powerful tool for studying earth resources.
With the launching of the Landsat satellites and advanced
automated processing of the image data, worldwide monitoring
of the earth's surface for locating and utilizing natural

resources is now a reality.

1.1 The Pattern Recognition System

A basic tool for remote sensing is pattern recognition.
From a systems perspective the components of a pattern recog-
nition system can be placed into three distinct blocks - the
scene, the sensor, and the processor (I'igure 1.1). The
scene includes everything in front on the sensor. 7The
information in the scene is contained in the spectral, spatial
and temporal variations of the electromagnetic energy that
'is either reflected by or emitted from the earth's surface
and passes through the atmosphere. The sensor measures the

- received electromagnetic energy and prepares the measurements

L v T A g o T | g e . . - JRESIG G e L St e
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for transmission to the processor. The processor digitally
impLgpents a set of algorithms for classification and image
proceéging as required by the user or analyst.

In this research we focus on the sensor subsystem and
develop an analytical technique for selecting certain parame-
ters for the sensor design. Because of the interrelationship
with other parts of the pattern recoqgnition system, the
sensor design problem will be considered as a part of the
integrated overall system design problem. That is, sensor
design choices will be made on the basis of overall system

performance. Therefcore, we begin with a more detailed

discussion of the parts of the system and how they interface

" with each other.

1.1.1 The Scene

A distinctive characteristic of the scene is that it
is not under the control of the system designer or the
analyst. 1In fact, the intent of remote sensing is to observe
and learn as much about the scene as possible without modify-
ing it or affecting it in any way.

For current earth observational remote sensing problems,
the information bearing signal is the spectral response
function x(A,r,s,t). The parameters of this function are
the wavelength, A, the spatial coordinates, r and s, and
time, t. Historically, the desired information has been
extracted primarily from the spectral variations (Holmes

and MacDonald, I96$&}to which we will limit ourselves, here,

Ea)
R
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although significant progress is being made in extracting
informa£ion from spatial (Kettig and Landgrebe, 1976;
Haralick et al, 1973; Wiersma and Landgrebe, 1976) and
temporal variations (Swain, 1978). A typical spectral
response function for green vegetation at a fixed location
and time is shown in Figure 1.2. The interval of interest,
A, typically includes the visible and infrared regions of
the electromagnetic spectrum from 0.4 micrometers fo 2.4
micrometers.

The scene is very dynamic and complex. Changes in sun
angle, atmospheric conditions, climate, cover type, and a
variety of other variables can produce significant changes
in the spectral response. Instead of trying to acccunt for

each of the variables that affect the spectral response, we

‘choocse to model the scene as a stochastic prccess. The

complete characterization of this process model is not known

a priori. 1In order to obtain this knowledge, one observes
the scene over a period of time, an area of space and an
interval of the spectrum and estimates the parameters from
the observations which are necessary to complete the
characterization. '

It is generally necessary to group the observations
taken from the scene into classes. For purposes of classi-
fying the data into distinct classes it is required that
the class list have the following properties simultaneously

(Landgrebe, 1978):

- Each class must be of interest to the user,
i.e. of informational value
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- The classes must be separable in terms of the
features available

- The list must be exhaustive, i.e., there must be

a class to which it is logical to assign each

pixel in the scene
1.1.2 The Sensor

The function of the sensor is to transform the con-

tinuous parameter functions x(A) into a finite number, N,
of measurement values (xl, Xor eeey XN) called features.
Ideally, the sensor would be under the control of the system
user who could then optimize the sensor and the processor
for a specific application. However, in practice the sensor

is a complex, expensive system which is designed infre-

quently. Control over the sensor, consequently is the

responsibility of the system designer rather than the user.
The system designer cannot optimize the sensor for a
particular location, time, and application but must create
a single instrument which must serve a broad spectrum of
users and applications over a number of years.

A basic sensor is shown schematically in Figure 1. 3.
The system components can be placed into five blocks - the
collector (typically a set of optics) which collects the
electromagnetic energy over the spectrum of interest, the
scanning mechanism which controls the pointing of the
collector, a spectral dispersing device, the detectors which
convert electromagnetic energy into electrical signals,

and the signal processing unit. The sensor is mounted on
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Figure 1.3 Sensor system block diagram.



a platform such as an aircraft or spacecraft.

The operation of the seﬁsor can be expressed mathemat-
ically as the representation of the waveform x(1) by a set
of functions {¢i(l)}. The original waveform is approxi-
mated by the series expansion

N .
X (1) =i£i x,0; () (1.1)
where the ¢i(x) represent the spectral sensitivity (as a
function of 1) for one feature of the sensor system and the
x; are the coefficients in the expansion and tlie measurement
values which will be used by the processor. Each X, is
obtained by using the linear functional

X; = L\x(k)¢i(k)dA (1.2)

1.1.3 The Processor

The measurement values {xl, Xop wees xN) from the
sensor become the input to the nrocessor which typically
contains a digitally implemented classification algorithm
A comprehensive list of all the processors that have
been implemented would require a monumental effort to com-
pile. Texts such as Nilsson (1965), Fukunaga (1972), and
Duda and Hart (1973) describe some basic classifiers which
may be adapted for specific applications. The point, here,
is that the system designer and the analyst have great

flexibility in choosing the processor.

e Y



An important step in the design of a classifier is the
training phase. After the classification algorithm has been
selected, the parameters required by the algorithm must be
determined in order to obtain qood performance. The process of
selecting these parameters is the training phase. To train
the classifier a set of (presumably correctly) class-labeled
samples from the scene are selected from which the necessary
parameters can be computed.

During the design procedure it is important to specify
the performance of the system which implies that a measure
of the performance must be defined. The global performance

criterion, €0’ is a function of many system parameters.

Eq = f(a) ' (1.3

The list of system parameters is indicated by a. This func-
tion is so complex that the straightforward analysis and
subsequent optimization of the whole system with respect to
€5 is not trivial. What seems more appropriate is to list
the parameters in order of importance and investigate the
effect of each on the performance.

Landgrebe (1978) has listed five general parameter
categories which affect the system design. These are:

"= Spectral representation

- Spatial representation

Signal-to-noise ratio

Ancillary data

Information classes
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It is important to recognize that these parameters are inter-
related; hence, a change in one parameter may affect the

value of one or more of the other four. In this research

. we will be concerned primarily with the spectral representa-

tion; however, the other four parameters will play a neces-

sarily important role in the analysis.

1.2 Previous Approaches to Sensor Design
There have been basically three aporoaches to selecting

spectral bands for multispectral scanner design. They are

.1) in-depth studies of physical consideratiocns, 2) empirical

‘methods, and 3) simulators. All three of these approaches

have contributed to our knowledge of the scene and to the
design and development of present-day scanner systems.

Important physical considerations which have beenv
studied are atmospheric effects and the interaction of light
with various cover types. Atmospheric effects include
scattering and absorption by water vapor, carbon dioxide,
and ozone (Korb, 1969; Hulstrom, 1974). By evaluating the
transmittance of the atmosphere over the spectral intervai 
of interest, one can eliminate certain portions of the
interval, since little or no energy will reach the sensor.
Scattering effects are less pronounced but are important
for consideration.

Studies have been done to ihvesﬁigate the interaction

of eléctromagnetic radiation with plant leaves to determine

S NITOLH Y T s oer i xn o o . R N . R = D S e 3 R e e LTI e T e e




11

rggioné of theﬁgpeét:um which wifl be useful for identifying
vegetatién and dgtermining plant.stress {(Harnage, 1975;
' Gates et al, 19715. On a larger scale the interaction of
light with a plant canop& has been studied which takes into
‘cqnsideration the effects of.leaf sizé; plant size, and plant
density fColewell,'1974). Similar studies have been done
‘With soils (Méy and Peterson, 1975; aﬁa Montgomery, 1976)
" and with water temperatures (Bartolucci, 1977). A typical
fprocedure for these studies is to take measurements with a
spectroradiométer on a restricted set of information
classes over the entire spectrum. For a single observation
‘a single specﬁral reéponse function is recorded. The average
response is taken over a small number of sampleé and con-
clusions are drawn from the average. It is important to
note that over a collection of ﬁhese spectral response
functions, the functions vary significantly about the mean.
Furthermore this variation is potentially information
bearing. This information is lost if one considers only
the mean response function.

The second approach is empirical in that a'scanner
with many spectral bands is constructed, and the selection
of the bands is done experimentally. Examples of experiment-
al scanners which have been constructed are the ¥#ichigan
scanner (Hassel et al, 1974) and the MSDS scanner {(Zaitzeff
et al, 1971). The spectrum is sampled using on the order

of 10-30 spectral channels (12 for Michigan scanner 24 for
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observation has been made.
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MSDS) which are thought to be of interest. Data is collected

using the scarner, and processing is performed to evaluate

the channels over a variety of scenes. Some examples of

empirical studies which have been done are Landgrebe et al
(1977) with agricultural cover types, Coggeshell and Hoffer
(1973) with forest covers, and Vincent and Thompson (1972)
with geological applipations. This empirical approach has
the advantage of rétaining the information in the variations
about the mean since a large number of samples can be
édllected. However, the spectral sampling is crude and
incomplete for representing the whole spectrum.
Simulators have been developed to generate typical

spectra according to a scene model. The artificial spectral

response functions can then be used to evaluate spectral
bands. A system which has been set up to simulate multi-
spectral data is described by Malila et al (1977). At this
time there is not sufficient understanding of the scene to
be able to develop and use accurate models.

One additional research effort due to Wiswell (1978)
which differs from the previous aporoaches deserves menéion—
ing. The purpose was to extract information from a scene
using the entire spectral interval. The criterion of
average mutual information was proposed which is a measure
of the reduction in uncertainty about the scene after the

This information theoretic

technique was used to evaluate spectral bands on the basis
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of maximum average mutual information. An autoregressive

stochastic process model was used for the scene. Consider-
able effort was expended in developing and testing this model,

the parameters of which were then used to compute average

mutual information. While spectral bands were evaluated on

the basis of the information criterion, the relationship
between average mutual information and some global per-
formance criterion such as classification accuracy was not
demonstrated.

In this research it will be desirable to incorporate
the positive features of past approaches and build on the
knowledge that has been gained through them. We would like
to extract information from the entire continuous spectral
interval of interest rather than from the coarse sample of
the interval provided by experimental scanners. A large
collection of spectral response functions taken from field
measurements of the scene will be utilized in order to take
into consideration the variability of the data over the
scene as well as the average values. A parametric sto-
éhastic model will be aséﬁmed which has been well studied.
The complete characterization will be learned from observa-
tions of therreal data.

An important consideration is the choice of criterion

upon which the sensor system will be designed. The choice
of a global performance criterion, such as probability of

correct classification, seems attractive, since the overall
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per formance of the pattern recognition system is ultimately
what we wish to optimize. Usually one would like to
maximize the probability of correct classification; however,
in most cases the integral involved is too complex to

admit an analytic solution. Efforts have been made

in this direction primarily drawing on results from the
literature of feature selection. There have been three
basic approaches along this line: 1) ootimization of a
separability measure, 2) discriminant analysis, and 3)
principal component analysis.

Separability measures of the statistical distance be-
tween two.blass distributions are numerical quantities which
are simpler to compute than classification performance and
which provide bounds on the performance. The divergence
(Marill and Green, 1963) and the Bhattacharyya distance
(Kailath, 1967) are two well-known examples of separability
measures. Wacker and Landgrebe (1971, Table 2.4.2) provide
a listing of many of the separability measures that have
been proposed in the literature. The approach is to select
the set of spectral channels which is optimal with respect
to the separability measure. Typically, a search procedure
is used to arrive at the best choice of spectral channels
(Tou and Heydorn, 1967; Whitsitt and Landgrebe, 1977;

Kadota and Shepp, 1967; and Caprihan and deFigueiredo,
1970) . Note that Kadota and Shepp (1967) and Caprihan and

deFigueiredo (1970) are extracting information from continuous
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functions. Since the separability measure provides at best

only a bound on the classification performance, it cannot be
guaranteed that the channels which optimize the separability
measure will necessarily optimize the system performanée.

In discriminant analysis one attempts to find some mea-
sure of the ratio of the between class separability to the
within-class separability (Fukunaga, 1972;Wroley and Sammon,

1975). The spectral channels are selected to maximize this

ratio. One can observe intuitively that maximizing the ratio
would improve the performance; however, it cannot be guar-

anteed that the chosen set is optimum with respect to the

glébal performance criterion.

The method of principal components is a statistical
procedure which reduces the number of variables to be analyzed
to a manageable number (Anderson, 1962; Dempster, 1969).
Principal vectors are found such that the variable in the

first principal vector has maximum statistical variance, and

so forth. A variation on principal component analysis which

has found considerable application is that of cannonical

correlation (Dempster, 1969). It cannot be assured that

once the principal vectors have been selected, the global
performance criterion is optimized.

Although each of the feature selection procedures
described above has been demonstrated to be practical in
spite of the lack of a tight relationship to the global

criterion, the approach that is proposed here will take
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a different direction. Once the sensor has been designed,
‘built, and placed into service, it should perform optimally

over all possible scenes for any possible choice of pro-

"cessor. The difficulty%with the methods for optimizing

the global criterion is that one does not know the specific
processor and setﬂbf classes of a problem at the time the
sensor is designed. Optimizing the choice of basis func-
tions with‘iespect to a global criterion for a specific set

of classes in general may yield poor results with the same

“"basis functions on a different set of classes. Furthermore,

the global performance criterion was described as being a
complex function of many parameters (1.3); If we choose as
our criterion some measure of the quality with which the
output of the sensor represents the input, we can optimize
the criterion while holding parameters from the other four
categories fixed. The relationship between the spectral
representation criterion and the global performance criterion

can be evaluated for typical remote sensihg problems.

1.3 Present Investigation

In Chapter 2 a procedure is developed to analytically
select spectral channels for a sensor system. The collec-
tion of spectral response functions makes up the stochastic
process. A representation technique based on the Karhunen-
Loeve expansion which minimizes the criterion of mean-square

representation error is.developed. This technique is

L E
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generalized to include a priori weighting information which
may be available. This weighting method has been termed
the weighted Karhunen-Loeve expansion.

The Karhunen-lLoeve expansion is attributed to Karhunen
(1947) and Loeve (1963) and is used extensively in the
stochastic process literature as a technique for represent-

ing stochastic processes (Davenport and Root, 1958; Wong,

©»1971). 1In the pattern recognition literature the Karhunen-

Loeve expansion historically has been used as a feature
selection technique (Watanabe, 1965; Chien and Fu, 1967;
Fu, 1968; Fukunaga, 1970; Kittler and Young, 1973).

The parameters and their influence on the global per-
formance criterion are discussed in Chapter 3. The princi-
pal parameter in this research is the spectral representation;
hence, the relationship between the spectral representation
parameter and the probability of correct classification is
developed. The ancillary data, information classes, spatial
representation, signal-to-noise ratio, and the interrelation-
ships between these parameters are also discussed.

An experimental software system which implements the
procedure that was developed in Chapter 2 is described and
evaluated in Chapter 4. Results from tests of the system
are presented and discussed.

In Chapter 5 some conclusions from the results are

presented and suggestions are made for further work.
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CHAPTER 2. SCENE REPRESENTATION AND SPECTRAL

PARAMETER DESIGN

T In this chapter an analytical procedure is developed

yio perform the spectral parameter design for a sensor system
x%apable of operating as an integral part of any potential
pattern recognition system. Due to the complexity of

the scene, a stochastic process model is used to describe
the scene. The theory necessary to support the procedure

is developed for the case where the spectral response
functions are square-integrable functions of the continuous
parameter ix. Due to practical consideration for measuring
real data in the field and performing computations on a
digital computer, a discrete approximation is developed,

and the potential error due to the approximation is discussed.

2.1 The Analytical Procedure

Consider a pattern recognition system where the scene
which is being observed by the sensor is some portion of
the earth's surface S,. It may be desirable to design a
sensor such that S5 is some subarea, for example, the land
surfaces or a particular nation within its territorial
boundaries. The area defined by the geographical boundaries

of S5 can be subdivided into areas called strata. We define

s
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a stratum S ¢ Sy as the largest contiguous set of points
{seS} which can be classified to an acceptable accuracy
with a single training of the pattern recognitién algorithm.

The sensor model will be a set of basis functions
wi(k)} on the interval A (Figure 2.1). These functions
are essentially filters which have weighted passbands in
differing portions of the spectral interval. The approxi-=-
maﬂion of a function x(1) by a set of four rectangular basis
functions is illustrated in TFigure 2.2.

The processor for the pattern recognition system will
be denoted by P(A, z, e5), where A represents the set of
algorithms used in the processor, z is the output of the
system, and e, is the system performance criterion with
respect to z. The set A may include feature selection and
classification algorithms. The output z may be a map, a
table or some other presentation of the desired information.

In order to define a remote sensing problem, the
analyst decides upon an objective. Depending on the objective
the analyst will specify the components of the pattern
recognition system S°, {wi(l)}, and P(A, z, e5) . Quite
often the objective dictates which subset, S7, of So will be
used. As described in Chapter 1, the sensor {wi(k)} is
designed infrequently and once put into service remains
fixed. The output z is based upon what information is

desired from the scene to achieve the objective.
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Figure 2.2 Approximation of the spectral response
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The ultimate goal before us is to select a gensor

design {wi(x)} which can be used on any SUbset 5° of §,

and will provide, as nearly as possible,optimal performance

for any choice of processor P(A, z, eg).

To achieve the design goal an analytical procedure

is set forth which incorporates the design of a theoretically

optimal sensor against which the performance of candidate-

practical sensors can be compared. The following procedure

1s proposed (see Figure 2.3):

1.

Based on the intended use of the sensor system, the
collection of strata comprising gjis specified. Because
of the infinite number of possible strata in S,
only a finite number G of subsets {Si} which are
representative of the entire collection S, will be
used to evaluate the sensors.

An initial candidate sensor system is specified

by defining a set of basis functions {wi(x)}.

At appropriate steps in this procedure the set

of basis functions may be modified to improve

the performance.

"In steps 4 through 7 each stratum Si' i=1, 2, .., G

will be considered in sequence. If it is necessary
at any stage to modify wi(x), the sequence should
be repeated to insure that the desired performance

is obtained over all of S§,.

»
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Design an optimal sensor

*
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Yes

Figure 2.3 Flowchart of the design procedure.
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4., For Si design a sensor which will be optimum with
‘respect to some criterion for any possible choice
of processor. This optimal sensor {wi(A)} will
serve as a standard by which one can compare the
performance of the candidate system..

5. Evaluate the performance of the optimal sensor based
on the criterion of optimality over the stratum Si‘

6. Evaluate the performance of the candidate sensor
{wi(k)} over the same stratum using the criterion.

7. Compare the performance of the candidate sensor
with the optimal design relative to the criterion.
1f the performance of the candidate sensor {wi(A)}
is very nearly the same as the optimum, then, the
proposed sensor is adequate for the stratum under
consideration. In this case the next stratum in
the sequence is fetched and we return to step 4.
In the event that all of the strata have been used
.the procedure halts. If the candidate system's
performance is substantially below that of the
optimum, it will be necessary to modify our choice
of the set {wi(k)} and return to step 6. The set
of optimal basis functions {¢i(A)} can be used to
provide an aid for modifying {ﬁi(k)}.

The critical stép in this procedure is the design of

 the optimum sensor, and will be the principal step to which

this research will be addressed. The criterion for -
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4voptima1ity'is an important quantity .and mqs£ be dealt witﬁ
_carefully. An op;imality criterion has the dual role of

.. providing the_méasure of péffo:mance whicthill be optif_f"

mized-as weil as providing a Standaré for compafison Qf.
suboptimal systems (Middleton, Sect. 2.3.4, 1960) .

The optimal sensor system desigﬁ will be optimum in
the following sense. ‘If one has the entire function x())
at his disposal, a processor which ié opﬁimum with respect
to a global performance criterioh €q may be designed. If
X()) is the approximation by the Sensor'to the waveform

x(1), then a fidelity criterion is defihed'by“

r

e = J F(x(A) = x(1)) da _ (2.1)
A

The condition for optimality requires that the original
waQeform be reconstructed with arbitrarily small S

There are several possible choices for the function f£(.)
in 2.1. It is desirable to choose a function for which there
is a greater cost for large errors than for small errors.
Since x(A) will be required to be a square-integrable
function, a natural choice which satisfies the requirements
for the cost of making an error is the function f(x) = x2.
Equationyz.l, then, becomes

oy = f/\ [x()) - %()) 12 da (2.1a)



26

2.2 The Stochastic Process
An experiment is defined as the observation of a point
s in the stratum S. Each point seS is mapped into a

. spectral response function x(1).
X: s+ x(})) (2.1)

" fhe function x(X) is a real-valued function of the continu-
ous parameter 2.

Let o()) be a non-decreasing function of bounded
variation which is absolutely continuous. Construct a o-
measure on the interval A such that

do{})
da

= w(}) (2.2)

We require that x()) belong to the Hilbert space ch of

all o-measurable functions for which the Lebesque~Stieltjes
i
integral '

f [x(})1%d0 (M) | (2.3)
A

exists. The inner product which genefatcsjthe metric for

this space is
(x,y) = J x(M)y(x)do(x) (2.4)
A

(Akhiezer and Glazman, 1961). The norm is given by
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x|l = (x,%% = [ [x(2) 12 do.()
A

- (Kolmogorov and Fomin, 1957).

Consider the subset IL_ of L which consists of the

S 02
~set of all possible spectral response functions which may

be mapped from points in the stratum. The members of this

g

subset {x(1), xeLS} form an ensemble (Figure 2.4). This
' o ensemble together with the probabilities of occurrence

associated with the functions that belong to L_ specify

S
_a‘stochastic process (Papoulis, 1965; Doob, 1963; Gikhman
and Skorokhod, 1969).

Crane et al (1972) and others have shown that for
remote sensing applications this stochastic process may

be assumed to have a Gaussian probability measure. The

Gaussian assumption is attractive because its mathematics

S —

are well-studied and tractable and because of its robust-

ness. Robustness implies that good estimates of the density

function can be obtained with a relatively small number of

T S

training samples and that statistical procedures on the

process yield good results even for some non-Gaussian pro-

P
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cesses (Lachenbruch et al, 1972). An important property of

a Gaussian process is that every linear function of x(X) ech
is a Gaussian random variable (Van Trees, 1968). Also, a
Gaussian random variable is completely characterized by its

" first and second moments. The first moment or mean function

of the process is denoted by

T i . . ’ e 4
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Figure 2.4 Realization of a stratum as the ensemble of spectral sample
functions.
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m(A) = E{x(2)} (2.5)

and the second moment or covariance function is denoted by
K(2,8) = E{[x(A) -m(2)] [x(g) -m(&)]} (2.6)

where E { } denotes ensemble expectation. The covariance

is assumed to be continuous.

2.3 Representation of the Stochastic ”rocess

The criterion that has been propcsed for designing the
spectral representation parameter for the sensor system
is based on the ability of the sensor té represent func-
tions belonging to the stochastic process. Of the possible
techniques for representation of stochastic processes
(Wong, 1971), it would be desirable to choose a method which
bears a close relationship to the physical model of the
sensor. A well-studied technique is to represent the con-
tinuous parameter stoachastic process {x(1), A eLS] by a |
sequence of random variables which are the coefficients
of a set of basis functions in a series expansion. The
basis functions corresnond to the basis functions described
for the sensor model in Figure 2.1. That such a representa-
tion is possible without loss of information was shown by
Bharucha and Kadota (1970).

Consider the linear Hilbert space Ibzand let {¢i(A)}

be an infinite linearly independent set of functions
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belonging to L For an arbitrary function x(A) e L

s’ S
we can associate the infinite series { S
x(2) = x(2) = i x5 45 (3) : (2.7) ;

i=1 ‘ i

Note that for the series expansion the continuous parameter

function x(A) is transformed to a point in the Hilbert

e e R T 2 TN

space Lb whose coordinates are given by the vector of

2 T
coefficients [xl, Xy |

Without loss of generality the set {¢i(k)} will be

taken to be orthonormal; that is,

1l

(65 (M) ¢j(k)) L\¢i(l)¢j(k)dc§}) (2.8)

f/\ rbi(k)d»j(x)w(x)dx

{1, i=j

) 0, 1i#7

If the set {¢i(A)} is not orthonormal to begin with, it

can be orthonormalized by the Gram-Schmidt procedure (Courant
and Hilbert, 1953). That such sets exist in Hilbert spaces
has been demonstrated by the construction of sets such as

complex sinusoids, Legendre polynomials, Tschebycheff

polynomials and others.
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The coefficients xi are the Fourier coefficients

defined by

»
Il

(x(2), ¢, (1)) (2.9)

fxm)qs.(x)dom
A 1

CErTITRIE T Y

f x(A)¢i(A)w(A)dA
A

For a given set of basis functions the set of coefficients
which minimizes the mean-square error between each function

and its approximation are the Fourier coefficients (Courant

and Hilbert, 1953). Note that the set of coefficients
{Xi} can be treated as a vector X = [Xl' X2, ...]T.

This vector representation of the function x()) is a
motivating factor in choosing this method of representing
the stochastic process, since the vector representation
provides an equivalent mathematical model to the physical

sensor.

Since the Hilbert space Lb has already been defined,
_ . 2
the corresponding definitions for the inner product and

the metric follow. It is possible, therefore, to talk

about a set {¢, (1)} which is complete in L and about the
2

convergence of the sequence

Bn(A) = xi¢i(A) - | 4 (2.10)

i=1

‘IIMD
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to the function x(A). Convergence in BS is convergence in

the mean. If Bn(x) converges to x(1), then

x(2) = 1l.i.m. Bn(l) (2.11)

n->
where 1.i.m. is defined as

n
lim [[ [x(x) - Z xi¢i(x)]2do(xﬂ =0
A i=1

n->ow

The problem of designing the optimal sensor becomes
'ﬁchat of selecting the set of basis functions {¢i(A)} such
that the series representation will be optimum with respect
to the criterion. The criterion of minimum error in
reconstructing a function is extended to the stochastic
process where the expectation of the mean-square reprasen-

tation error is taken over the ensemble

E {e }=E [{ [x()) —fc(),.;]zdo(x)] (2.12)
r Iy

We now propose a list of properties which would be
desirable for the optimal design to have. Beca&ge it
would be impractical to transmit an infinite or even a
very large number of spectral channels over a data link
to a processor as well as difficult for any processor to
handle éuch volume, it is necessary that the representation

of the signal space be characterized by a small number of

dimensions. The series expansion provides a countable set;

e e a¥E
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hence, by ‘runcating the series at some appropriate number
of terms N a finite dimensional signal space is obtained.
This finite dimensional space is only an approximation to

the entire space L but it is desired that the approxi-

SI
mation be an adequate representation for LS.
If we form the sequence mn}, where
n
B (}) = D) x5, (2) (2.13)
i=1

it would be desirable that this sequence converge to x(A) in
the mean-square sense. This convergence guarantees that the
series can be made arbitrarily close to x(A) by increasing n.
Another desirable property is that the convergence be

rapid in the first few terms. One would expect that an
increase in the number of terms in the expansion would
reduce the representation error. It is desirable, though,

that each additional term decrease the representation error

~Dy a maximum amount. A plot of the expected mean-square

representation error as a function of the number of terms
n would show a large decrease in the mean-square error
for the first few terms with a considerably slower rate of
convergence for higher order terms. If the expansion is
truncated after N terms, the series

| N

BV = L xie5(0)
i=1

should represent the function x(A) with minimum expected

mean-square representation error.
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We would also like the representation in terms of the
optimal basis functions to be complete in the following
sense., Let T be the ﬁinimum acceptable expected mean-
square representation error. If the representation by
the series expansion for some finite number of terms is

such that

E {e_}= E[I [X(A)-£3(A)]2da(lﬂ<fr (2.14)
r A n-

then the set of N basis functions will be complete in the

N-dimensional subspace of L_ that has an éxpected error

S
less than T.
The completeness of the set can be expressed in terms

of the coefficients of the expansion. Squaring and inte-

grating term-by-term the expression in 2.14 becomes

E {e )= E[J [x(A)]zdo(AJ- L E{ lxilzl
A i=1
since, E{e}20
r
) E{lx.|2}§ E[f [x(x)]zda(xq (2.15)
i=1 1 A

Inequality 2.15 is Bessel's inequality and guarantees that
the sum of the squares of the coefficients always converges.
Furthermore, if there is equality, then Bessel's inequality

becomes Parseval's equality

oo

) E{ Ixi|2}= E[J [x(A)]zdc(A)] (2.16)
: A

i=1
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and the set {¢i(A)} is said to be complete. The direction,
here, is to find the complete set {¢i(A)} and use only ﬁ
those terms in {¢i(A)} which provide a good approximati%n
(E {e, }<T) in the mean-square sense. ﬁ
To obtain the optimal set of basis functions {¢i(xﬁ}
some results from linear integral equation theory are
required (Courant and Hilbert, 1953; Akhiezer and Glazman,
1961; Riesz and Sz.-Nagy, 1956; Lovitt, ﬁ924; Tricomi,

1957; Ash, 1967).

The linear integral operator ¥ on Ls ig*defiaed by
K x(A) = J k(%,&) x(£) Ao (¢) (2.17)
A

where k(XA,£) is the kernel of the operator. An operator
is compact if for every bounded sequence of functions
{Xn(x)}, the sequence of functions *xm(x) has a con-

vergent subsequence. A bounded operator is self-adjoint if

(Kx,y) = (x, §y)

We now state a theorem and some consequences of that theorem

which will determine the set of basis functions {¢i(A)}

Theorem: If K is compact and self-adjoint, then the

solutions to the linear homogeneous inthgral equation

Y 0, (0 = Ko, (1) (2.18)



is a set of eigenfunctions {¢i(l)} with corresponding

e T

eigenvalues'yi. The following statements can be made:
i - The eigenvalues are real
W - The eigenfunctions form a basis for the space L

s7
- The eigenfunctions for distinct eigenvalues

are orthogonal

- The series I xi¢i(l)converges in mean-square
i=1
to x(A).

The covariance function K(A,£) satisfies the necessary

conditions on the kernel. - Since the covariance kernel

L

is Hilbert-Schmidt,

i

” | K(x,8) [*do (1) (2) "‘<\‘~f~,E[xm12dom <w (2.19)
A A ‘
( it can be shown that the operator K is compact (Weston, 1977

The covariance function is real and symmetric; hence, it is

self-adjoint. If the covariance kernel is non-negative

definite, the inequality

f[.K(A,E) x(X) x(g) do(r) da(g) 2 0O (2.20)
A

is satisfied and the eigenvalues are non-negative. If the
kernel is positive definite then the inequality is strict
and the eigenvalues»are non-zero and positive (Van Trees,
1968) . |

The proof of the theorem draws upon results that
have been well-established in the literature of Hilbert

Space theory (Ash, 1967).

s
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The random variables X, generated by the linear

functionals are uncorrelated

E{xixj} E[f x(A)¢i(A)dA J x(£)¢j(€)d£] (2.21)

/r,'.V' i=j
= v, (M) gL (nyax =1
" f R |_o i#]

If x(A) 1is a Gaussian process, then the coefficients

x, are independent Gaussian random variables (Ash, 1967).
It is possible to order the set of eigenfunctions

{¢i(A)} such that the sequence an(A) for n=N, fixed,

minimizes the expected mean-square representation error.

To accomplish this ordering, the corresponding eigenvalues

are ranked such that
YlZY22Y32....

The expected mean square error for N terms is

(Brown, 1960)

- 5 2
E{er}|n=N-EUA [ingﬂ Xi"’i(“] do(A):] (2.22)

2 2
{]x; %) fA $; (1) do(X)
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i . since from eguation 2.21 E{Ixilz} = y.. The graph of the

i
expected mean-square error as a function of the number of

terms N in the expansion will show a sharp decrease in the

error as the first terms are added. As an example consider
the second-order stochastic process on the interval [~1,1]

with mean zero and covariance K(1,£) = exp( -|i-t]).

The eigenvalues are given by Van Trees (1968, p. 188)
Y; 5 > (2.23)

where the bi are solutions to the equation

(tan b +b,) (tan bi—517> =0 (2.24)
py

A graph of the expected mean-square error for this process
as a function of the number of terms (Figure 2.53) illustrates
the desired rapid convergence property. It is important
to note that for a fixed N the best set of N basis function
from the set of all possible basis functions is the ordered
set {¢i(kﬂ, i=1,2, ..., N.
~F In an effort to present an intuitive interpretation of
the eigenvalues and eigenfunctions consider the first
éigenvaluekand its corresponding eigenfunction for a partic-
ular stochastic process. The first eigenvalue is found
by choosing a function ¢1(A) which maximizes the variance
of the coefficient of that function. That is, the co-

efficient Xy is given by the linear functional

L3
4




e

1.2y
+

1.+
n
A
N
% .68 1
é .6 T
V
G
E

ot +

2 1

+
+
+
+ + "
0. + — - . 4 i
' 4 8
. 2 6 10
NUMBER OF TERMS IN EXPANSION - N

Figure 2.5 Eigenvalues for the stochastic process

example.

39



FRe—

40

X, = L\x(k)¢l(k)d6(%) (2.25)

The variance of %y is equal to the first eigenvalue
(2.21) which was chosen to be the largest of the set of
eigenvalues. Since the variance is the largest for the
coefficient xl,'the uncertainty about the original function
x(2) is reduced the most by using the first term. From
a Shannon information theory point of view (Shannon, 1948)
knowing the value of the coefficient Xy provides the most
information concerning the input signal that a single
measurement can give. From the argument of being able to
reconstruct the waveform, the coefficient X1 giveé the
single most valuable measurement from which the input
signal could be reconstructed.

The first eigenfunction can be used to identify por-
tions of the spectral interval which may be more useful
than others. If at a point ) on A the value of ¢i(A)
is close to zero, then the contribution to glis not signifi-~
cant. On the other hand, if at a point ), ¢i(x), is
significantly different from zero, then,. the spectral
response at that point may be of importance.

The second eigenvalue and eigenfunction attempt to
find the second most useful portions of the spectral
interval. The variance of the second coefficient x_ is

2
the second largest since the eigenvalue is the second
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largest. The third eigenvalue and eigenfunction corres-

pond to the third most useful and so forth. Therefore,

there is an ordered sequence of eigenfunctions ¢1(A),
¢2(A), ... whose corresponding coefficients Xyr Xoy on
provide a decreasing amount of information and a decreas-

ing contribution to the reconstruction of the original

function x(X). Based on the ranking, the eigenfunctions

provide some intuitive indications concerning the importance

of the points in the spectral interval.

A useful concept when discussing a signal set is the

dimensionality of the signal space. The dimension of a

signal space can be defined as the minimum number of basis

functions required to completely reconstruct any function

from the ensemble (Bennett, 1969). The orthogonal

expansion which we have just derived provides an approxi-

mate method of determining the dimensionality of the obser-

vation space. If T is the value of expected méan—square

error such that the approximate representation using only
enough eigenfunctions to reduce E{e}l to a level below T,
then the number of eigenfunctions is a reasonable approx-
~imation to the dimensionality of the signal space.

A general method has been developed for obtaining an
optimal set of orthonormal basis functions such that
if we choose an acceptable value of expected mean-square
representation error E{c}, the series expansion can be

truncated at some finite number N which will represent
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-any function in LS with E{cr} less than the required
value. Built into this derivation is the capa-
bility of adding a priori information which may be avail-
ablevconcerning the spectrum. If we let w(x) = 1.0 for
all X e A, the series expansion is identical to the
Karhunen~Loeve expansion derived in many texts (Davenport
and Root, 1958; Van Trees, 1968; Middleton, 1960). When
| the weighting function is unity for all A, the expansion
will be referred to as the unweighted Karhunen-Leove
éxpansion'

Due to measurement difficulties in water absorption
bands and differences in detector characteristics it has
become apparent that the use of a weighting function dif-
ferent from the uniform one used above may be advantageous,
The use of the weighted Karhunen-Loeve expansion has
appeared only briefly in the literature (Kailath, 1971;
Kailath, 1974). It is thought that the lack of wider use

for the weighted Karhunen-Loeve expansion is due primarily

to a lack of need for it until this time. The weighted

Karhunen-Loeve expansion will be used extensively in the

results to be presented later.

2.4 Discrete Approximation

It is proposed to solve the optimal sensor problem

described in the previous section on a digital computer
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using real data taken in the field. Howeﬁgr, the solution

must be approximated in order to take into consideration

0 i some practical constraints. First, the spectral response

functions are not available as square-integrable functions

on the dense set {A e A}. The functions are obtained in
i the .field by sampling the spectral response¢ with an instru-

ment that uses very fine spectral windows. Secondly, the

parameters of the process are not known a priori; hence, it
is necessary to estimate the mean and covariance functions
using a representative sample from the ensemble. Finally,

because the data will be stored and processed digitally

i it is necessary to quantize the amplitude of the response
at each of the spectral sample points. Each of these con-
straints can potentially contribute to the representation
error for the process. 1In this section we want to consider
the significance of the error due to spectral sampling,

ensemble sampling and quantization.

2.4.1 Spectral Sampli: y
Up to this point the spectral response functions have
lfgeen treated as functions of the continuous parameter ).
Suppose that the function x()) is sampled at L intervals.
Each spectral response function then becomes a vector u =
hi’ Uys Ug, ...,uL]T. It would be desirable to use a large

enough number of sample points such that the error intro-

duced by sampling the spectral interval is not significant.
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Note that once the sampling has been done the dis-

crete equivalents to the solutions of the eigenvalue problem

A

gfére used. The linear integral equation becomes

' ¢ = KWo ‘ (2.26)

here ¢ is the L xL matrix of eigenvectors, K is the LxXL
covariance matrix given by

E{[ui-ui][uj-uj]} (2.27)

u, = E{ui}

I' is the diagonal matrix of L eigenvalues, and W is the

diagonal matrix of L weighting coefficients.

Because the actual covariance function is unknown, the

loss of information or representation error from sampling

cannot be evaluated. However, we can derive an expression

that gives some insight into the effect of the error due
to sampling. To evaluate the error due to sampling, the
interval over the random process with mean m(A) and co-
variance k(i,¢), the interval A is partitioned (Figure

2.06) into L equal intervals with L+ 1 end points Ai.

Define a set of sampling functions by

1
A, L <A <A.
6. (1) =Awn) " Ti-1 1 5 e (2.28)
1 0 , €lsewhere

where AX = Ai-xi_l. The waveform x()) can be approximated

by
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[l ol

X (0) =

x.0.(2)
i i“i

(2.29)
1 :

Using the expression for mean-square representation error,

eq = L\[X(A)"XL(X)]ZdG(A) (2.30)

the form for the expected error due to spectral sampling

can be derived. The coefficient for the ith sampling

function is given by

X; = L\x(x)ei(x)do(x) (2.31)

The expected mean square error due to sampling is

E{ES} = E U [x(x) —xL(A)]zdo(A)-] (2.32)
A

L 3 L
2 2 2
z [x.-m, ] J+ Jm (Aydo(r) - Z m,
i=1 *+ * A i=1 *

= j K(x,A)do(A) - E
A

where m(x) = E{ x(x)} and m, = E{xi}. If the number

of intervals L approaches infinity,

; -
lim E[ ) (x.-m.)2i]= J K(x,r)do (A) t(2.33)
Low 1=1 i1 A '
and
L
lim Z m2

2 = J m? (\)do (1)
Loe  i=1 A

(2.34)

and the limit for the expected error is zero.
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The discrete version of the Karhunen-Loeve expansion
can be evaluated using the sampled spectral response

functions. Let y, =x, -m,, then
i i i
Ely,} =0 |  (2.35)

E = k

The discrete form of the integral equation is

¢LPL KW¢L | (2.36)
where FL

is the matrix of eigenvectors ¢y, for the L sampling
i

is the diagonal matrix of eigenvalues Y1, and o
i

intervals. Therefore,

L 2 L
E ) (%, -my) E (2.37)

i=1 i
Hence, the expected error is the difference between the sum
of the eigenvalues for the unsampled covariance function
and the sum of the eigenvalues for the covariance matrix
plus the difference between the integral of the mean

function sguared and_the sum of the squares of the

"elements of the mean vector.

L
'Yi" Z

E{e  } =
7 21 i

1

2
m; (2.38)

L
!

le~18

Yo, t J m® (A)da (A) -
1 " A 1

As an example consider the second-order zero-mean

process described earlier with covariance K(A,£) = exp(-|i-g).
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Suppose the interval [-1,1] is partitioned into 20 sub-
intervals and the eigenvalues for the 20 dimensional system
is computed. The expected mean square representation error

due to sampling is:

E{e.}| =fle“”dx If Y (2.39)
S '1L=20 1 i=1 Lj
L
=2.0 -
El L3

The first ten eigenvalues for the continuous covariance

and the sampled covariance are listed in Table 2.1.

Table 2.1 Eigenvalues for continuous and sampled covariance.

EIGENVALUES
CONTINUOUS SAMPLED
1 1.149 1.149
2 .391 .390
3 . 157 .156
4 .080 .078
5 .047 .046
6 .031 .029
7 .022 .020
8 .016 .015
9 .012 011
10 .010 .008

The expected mean-square error due to spectral sampling
for 20 terms is 0.065. Depending on the form of the co-

variance function and the mean function, one can choose a

L33

5,
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sufficient number of samples L to reduce the error to a

negligible value.

2.4.2 Ensemble Sampling

Ideally, one would have available the complete ensemble

from which the stochastic process could be accurately
characterized. Unfortunately, a complete ensemble may
require an infinite number of sample response functions
since there are an infinite number of points in a stratum.
A reasonable alternative is to select a representative
sample from the ensemble from which the unknown parameters
may be estimated. In sampling the ensemble one is con-
cerned with the number of samples that are needed and how
the sampling is done. By a 'representative' sample it
is implied that the‘sample functions are taken from all
typical observations in the stratum.

The number of samples required to adequately estimate
the eigenvalues and eigenvectors can be evaluated in a
straightforward manner. Using perturbation theory
(Wilkinson, 1965), a first order approximation to the
estimates of the eigenvalues and eigenvectors can bhe

derived as functions of the covariance estimate

?lwfﬁ«bi (2.40)
T &
. b Koo
L R E T—“TT;% ¢ (2.41)
R £ RS WS L
' j#i
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where ?i and $i are estimates of the eigenvalues \ and
eigenvectors o5 respectively. These estimates are
approximately unbiased (Fukunaga, 1972) since §
~ T 5 - .T - :
and
- L ¢ E{K}¢
L}, + - J = ¢, 2.43
Ewl} *i g (Y "'Y) b5 ( )
=1
j=i
The variances of the estimates are expressed by
-  _ a 2, . T 5 2 u 2 '
var [Yl] “E{Yi Yi) }”E{(¢1K¢i) ""Yi (2~44)
and
SRTETUPICN Ll K 15
Var [¢.]1 = E ¢, = } =2 (2.
i i . -
j=1 (v YJ)
j#i

The term that must be evaluated is E{(¢ff&¢j)2 . The
derivation follows that of Fukunaga (1972) from which the

result is shown to be

(N -1)N N
S S .2, S 2
E{(¢ K¢) }— Y5 + 2 2yT 8., (2.46)
(Ng -1)° i3 (Ns—1)2 i7i] ,
N
+ S Y
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~ Where NS is the number of sample functions in the ensemble

and Gij is the Kroncker delta. Now the variances can be

written
4N -1
Var [Yi] = ———g——jg Yi (2.47)
(N.-1)
S
and
. N N Y Y2
var [¢;] = | S . SN (2.48)
j=1 (N, -1 (Y.,=v.)
3#1 S 1 ]

Note that the variance of the eigenvalue is proportional to
the square of the eigenvalue. The variance will decrease
as the number of samples is increased and asymptotically
approaches zero as Nsvapproaches infinity. Since the
expected mean-square error is a function of the eigenvalues
the estimate of the error is also asymptotically unbiased.
The variance of the eigenvectors is very large when
two eigenvalues are close together. If all of the
eigenvaiues are well sebarated the variance of the

eigenvectors approaches zero ‘as NS approaches infinity.

2.4.3 Quantization

Quantization of the amplitude of each element in the
output vector is necessary for subsequent data transmission,
stofébe and digital processing. A Q-level quantizer divides

the amplitude range into Q equally-spaced intervals. The
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ith interval has end points x; and Xi41 and output level
Yy equal to (xi+l-+xi)/2.0. The expected mean~-square

error due to quantization is given by Max (1960).

E{e }= ) b{—yi)zp(x)dx (2.49)

q .
i=0 xi

0-1 fxi+l

where p(x) is £he probability density function for the
random amplitude x.

Suppose the interval corresponding to the amplitude
range has length I and is divided into Q subintervals.
Assume that the probability density function is very
small outside I. The length of each subinterval LI isl
the ratio I/¢. An upper bound to E {gq}can be found

easily by noting that

L2
2 2

(x-y)° s (% )= F (2.50)
and

Q i+l

) f p(x)dx = 1 (2.51)

i=1 Xy ,
Therefore,

-
E {eq} <-z— (2.52)

By keeping the length LI reasonably small the quantization

error will not be significant. .

-3

v e e e i T

R
i



o e R St b

[

53

If the probability density function has a significant
portion of the function outside the designated amplitude
range the expected error may increase substantially. The
quantizer will assign the value yQ to all values of x

greater than x and Y, to all values of x less than x

Q' 1
If x 1s outside the amplitude range saturation will occur.
The mean-square error will increase significantly if this
situation occurs.

The total expected mean-square representation error
is a function of the errors due to truncation, spectral
sampling, ensemble sampling, and guantization. It has
been demonstrated that the error due to quantization is not
significant. In fact the uncertainty in the measuring
devices is considerably greater than the uncertainty due
to quantization. Since the covariance and mean function
are not known apriori it is not possible to evaluate the
expected error due to spectral sampling. However, it was
demonstrated that for a known case the number of samples
required to reduce the error to a negligible value was
not wuareasonable. Therefore, in the experimental work
it will be assumed that the cxpected error due to spectral
sampling will be sufficiently smaller than the average

error in the measuring system.

Since the estimates of the eigenvalues and eigenvectors

are unbiased, it is expected that the corresponding error
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due to the fact that only a finite set of sample functions
was available would be small, especialiy if the number of
sample functions was sufficiently large.

The principal source of error which will be considered

will be the error due to truncation. Hence, provided that

some care has been taken with regard to the number of
spectral samples, number of sample functions, and the
length of the quantization intervals, the approximation

to the continuous case is not unreasonable.
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CHAPTER 3. THE PARAMETERS AND OVERALL

SYSTEM PERFORMANCE

The intent in choosing a particular sensor design is

to optimize the expected performance of the pattern recog-
nition system with respect to the global performance ;
criterion € The guantity €0 is a complicatad function
of a set by parameters o. By varying the parameters a
search can be made to find the best combination to
optimize € The first step is to list the parameters.
Five parameter categories were listed in Chapter 1:

~ spectral representation

- spatial representation

- signal-to-noise ratio

- ancillary data

- information classes
The problem is to quantify these parameters categories such
\that an optimization procedure can be applied. As a preliminary
fétep, it is proposed to consider each category individually
‘and study the relationship between that category and the
global criterion. The other parameters will be held
¢onstant while allowing the parameter under investigation
‘to vary. It is also important to understand the inter-

relationships between the parameters; a change in one
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parameter may influence the performance criterion both
directly and indirectly through another parameter.

The primary focus, here, is on the spectral represen-
tation parameter and its correspondiné?quantity, mean-square
representation error, €. In Chapter 2, an analysis
procedure was developed in whigh an ordered sequence of
basis functions allows the spectral response function to
be represented with decreasing expected mean-square error.

It remains to show the effect of the spectral parameter

~on the overall system performance. This chapter will

first deal with the relationship between €5 and € v followed
by a discussion of some research results relating other
parameters to €o°

There are a variety of processors which can be used
to evaluate a data set depending on the nature of the
problem. Typical processors include separability computers,
linear classifiers, quadratic classifiers, non-parametric
classifiers and context classifiers. We will choose the
maximum likelihood Gaussian classifier as an example of
a quadratic classifier which will be used as representative
processor for evaluation of the pattern recognition system.
Let X be an observation frqm one of M classes'Ci,
i.=l;2, ..., M, with é1priori probébilities P, . The maximum
likelihood decision rule can be stated as follows: Assign

X to the class Ck if

it S A R L A L i i st e 1
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Py p(X]-Ck) = m;ix {Pip(X ]Ci).} ' (3.1)

where the p(XJCi) are the class conditional probability
density functions. If Q is the observation space, then this
rule partitions @ into the subspaces Ql' 92, .+ Yy coOrre-

sponding to the classes C C,y «ee, C

1" -2 M’
The probability of correct classification has found

respectively.

widespread use in the pattern recognition and remote

. sensing community, and will be used here as the system

performance criterion. For a multivariate, multiclass

pattern recognition problem the probability of correct

classification is defined as

P = f max {P, p(X|C,)}dx (3.2)

. i i
f 1

where p(XlCi) is the conditional jointly Gaussian probability

density function for class i.

3.1 Spectral Representation

The expected mean-square error, E {er}, has
been used as a measure of the fidelity of the spectral
representation. The Karhunen-Loeve expansion has been
developed as a means of representing the spectral response
functions in the ensemble by a finite series expansion
such that E {er} is minimized. We wish to study the
relationship between the spectral representation and the

performance of the overall pattern recognition system.
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If the stochastic process is completely known,
and if all the terms in the Karhunen-Loeve expansion
are used in the representation, then a decision scheme
exists which is optimal in the sense of.maximizing the
probability of correct classification. For the M-class
pattern recognition problem an experiment is defined
whose outcome is the vector X belonging to the set of all
possible outcomes. A decision scheme is realized by
partitioning the observation space into M regions such
that if X belongs to Qi, then the decision, '¥X belongs
to class Ci,' is made. Such a decision scheme can be
arrived at by evaluating the a posteriori probabilities
for each class. The a posteriori probability (P(Ci|Xn
is the conditional probability that class Ci occurs given
that the measurement value is equal to X. If the vector
X is finite dimensional, then it is straightforward to
evaluate the aposteriori probabilities and, using equation
3.1, to design a classifier which is optimal in the sense
of maximizing the probability of correct classification
(Anderson, 1958).

This approach has often been generalized to the
case where the vectrs are infinite dimensional and the
outcomes éggﬂreal functions x/)) on an interval (Grenander,
1950; Kadota, 1964, 1965; Van Trees, 1971). The procedure

begins by representing observed sample function in the




T wame- vy ALt LSRR S S

T

3 A

59

ensemble by a finite vector [Xl' xz,..., xN]T‘ of

coefficients which are the coefficients in the Karhunen-
Loeve expansion. The a posteriori probability for each )
class is constructed and the limit as N approaches

infinity of the conditional probability P(Cilxi, Xyr eonr xN)

is taken. Bharucha (1969) has shown that this limit exists,

and furthermore, that the resulting decision scheme opti-

'mally partitions the observation space such that the

probability of correct classification is maximized.

We now consider the implications of the constraint
that the number of terms in the expansion be finite
has on the classification performance. If N features are
ﬁsed, it cannot be guaranteed that the first N features
are the best for diécriminating between M classes in a
particular remote sensing problem (Foley and Sammon, 1975).
A simple example has been used to demonstrate this fact.
Suppose there are two features and it is desired to use
only one feature to discriminate between the two classes.
Let the classes be distributed as shown in Figure 3.1.
Based on the criterion of minimum mean-square representa-
tion error the basis function ¢l should be chosen. However,
it is obvibus that ¢2 is the better choice for discriminating
between the classes. Hence, if say ten terms are used in

the representation, it may be true that the 34th term, for

example, is superior for discriminating between classes

than some of the first 10 features.
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Figure 3.1 Two distributions which demonstrate a potential
difficulty in using the best feature for
representation to perform classification.
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We wish to develop, here, the reiétionship between the
expected mean square error for an optimal set of basis func-
tions and the probability of correct classification. If the
stochastic process is completely known, a decrease in the
mean-square representation error does not result in a de-
c¢rease in the probability of correct classification. The
addition of a measurement or feature does not decrease the
separability. If the added measurement contributes only
noise, then the separabili;y of the distributions is the
same as without the added measurement. This monotonicity isv
implied in the convergence of the a posteriori probabilities
as N approachee infinity.

The intent here is to have as small a value of E{er} as
possible or at least drive it well below the average measure-
ment noise. Every decrease in_E{er} is known to not decrease
Pc' Returning to the example, we would not choose only one

feature if we could help it, but rather choose to keep both

features since this would reduce E{er} to zero for the two-

dimensional case.

If the probability of correct classification is plotted
as a function of the expected mean-square representation er-
ror as sketched in Figure 3.2, some important insights into
the nature of the data can be gained. We know that as the
expected error decreases the classification accuracy does

not decrease. The monotonicity is indicated by the solid

line in the figure. We wish to observe the behavior of the

s o e e oot Ty emil (S | APt oy 7 S R R e R R ST S R SR RRa

g B T,

e ek R ST R T S S AN K e LTI B R T

FESAS

ERPS RN



b
o,

Probability of correct classi icatioh

T |
Expected mean-square error

Figure 3.2 Probability of correct classification as a
function of expected mean-square representa-
tion error. ‘
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relationship between the expected error and fhe claésjfica-
tion performance as E{er} becomes small. It may occur that
at some point P, a large decrease in the expected error
results in little or no change in the classification per-
formance as indicated by the dashed line (:). In this case
the number of terms required to represent the process with
an error of T is sufficient for the information classes
chosen. One may be able to evaluate *the portions of the
spectrum which are of most value based on the first few
eigenvectofs. Also, 1n this case one can estimate the
maximum classification performance that can be achieved by
noting the value of Pc that the graph is approaching as the
expected error becomes small.

Suppose, however, that at point P a small decrease
in the expected error results in a significant improvement
in classification performance as indicated by the dashed
line . In this case more terms are required to attain
the maximum discrimination capability. Also the eigenvec-
tores which correspond to the largest improvements in
performance can be analyzed to determine which spectral
regions are contributing the most.

Several times in this discussion the condition that
the process be completely known was stated. If the process

is not completely known, but must be estimated from a finite

...data set then the situation becomes different. The effect
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of a finite data set size is now discussed.
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3.2 Ancillary Data

Ancillary data is information other than the spectral
response functions themselves associated with a stratum
which has bearing on the performance of the system over
that stratum. An example of ancillary data which is
important for this research is the design set. Sample
response functions drawn from the ensemble are used to
design the classifier. For a maximum likelihood Gaussian
classifier the design procedure is to estimate the mean
vectors and covariance matrices for each class from the
design set.

For a fixed number of features or dimensions, it 1is
well known that if the design set is used to test the
classifier performance, the estimate of probability of
correct classification ﬁc will be optimistically biased
(Fukunaga, 1972; Toussaint, 1974). That is, the estimate
is better than the true performance. If a test set, con-
sisting of sample functions from the ensemble different
from those in the design set, is used, the performance
estimate is inferior to the true performance. If the
ﬁumber of sample functions NS is increased the estimates
of classification performance both approach the true
performance. If the number of sample functions NS approaches
infinity, the probability structure will become completely

known and the true performance can be evaluated.
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Now, consider the case where the number of sample
functions is fixed while letting the number of features
be a variable. If}Ns is infinite, increasing the number
of features from N to N+1 will either improve the per-
formance or the performance will be the same for N and N+1

features. However, if N is finite, increasing the number

of features may have an adve:se affect on the performance
estimate.

Three research results have been published which
attempt to determine the relationship between the design
set size and the number of features. One of the first ;
attempts to quantify and explain this relationship was done
by Allais (1964). The study involved the linear prediction
problem which is closely associaﬁed with the linear two-
class pattern recognition problem. Allais showed both
analytically and experimentally that for a fixed Ns’
increasing the number of measurements improved the per-
formance for a while until a certain peak was reached,
after which the performance deteriorated drastically.

A second research result reported by Hughes (1968)

showed the same peaking for mean recognition accuracy as

measurement complexity is increased. The mean recognition

accuracy is the average over all discrete non-parametric
probability structures of the correct recognition

probability using the Bayes recognition.rule. The measure-

ment complexity is the total number of discrete values and
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is equal to the product of the number of features and the
number of quantization levels. Hughes argues that increas-
ing the measurement complexity necessarily means that

there are fewer samples, Ns’ per measurement cell available
to estimate the probabilities associated with each cell.
Hence, when the classification accuracy is computed

using these cell probabilities, the average classification
accuracy will decrease as the number of features increases
1f the design set size is too small.

A third research result is due to Foley (1975)
who studied two-class multivariate Gaussian pattern recog-
nition problems with different means but identical co-
variances. An analytical expression was developed to
determine what the ratio of design set size tco featﬁre
size should be to obtain a good estimate of the performance
of the classifier. A ratio of 3-to-1 was considered to
be a good engineering rule-of-thumb for choosing the number
of features for a given sample size.

These rééults have been somewhat controversial and
often misinterpreted, especially the work by Hughes, and
have frequently been discussed in the literature (Kanal
and Chandrasekaran, 1971; Abend et al, 1%69; Chandrasekaran,
1971; and Chandrasekaran and Jain, 1974, 1975).

~The underlying cause of the influence of sample size
is due to the statistical uncertainty that occurs in

estimating the statistics for the classes. As sketched
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in Figure 3.3 the positive bias in the performance estimate
when testing on the design set increases with the number

of features used. This bias is due to the cumulative
effects of the uncertainty in estimating the statistical

parameters (Chen, 1978). When the test set is used to

o evaluate the performance the bias decreases as more features

E' are added. The end result is that a positive bias becomes
significant at some point determined by the sample size
for the estimate on the training set. A degradation in

the performance occurs at the same point for the estimate

based on the test set.

A concept which is brought out in much of the litera-
‘ture dealing with the relationship between feature size and
design set size is that the more a priori knowledge
about the_underlying orobability structure that is available
the more features that can be used with a given data set
size (Foley, 1972). Conversely, for a fixed number of
features, added knowledge of the probability structure
allows one to reduce the number of design set samples
collected (Mogera and Cooper, 1977). As an example, the
fact that the probability densities are assumed to be
Gaussian implies that fewer sample functions are required

to get good estimatszs of perfcormance than if no parametric

assumption was made.

MR L el L STEEIEIA e IR D s e



68

Figure 3.3

The effects of sample size on classification
performance as a function of the number of
features, a) true performance, b) Positive
bias in P, due to testing on the design set,
c) Negative bias in P, due to testing on

the test set, d) estimate of P. when testing
on the design set, e) P, for testing on the
test set.
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3.3 Information Classes

An information class refers to the label assigned
to the sample points in the stratum. The labels are chosen
to be meaningful in the context of the pattern recognition
problem under consideration. Since we are looking for a
sensor which will work well for a'variety of pattern
recognition problems, we éonsider the influence of the
choice of information classes on the overall performance
criterion for the pattern recognition system.

We first note that there is an intrinsic set of classes
which is associated with each stratum. For example, in some
strata the class list may consist of primarily vegetation
classes; whereas, in other strata urban classcs may be
predominant. For each stratum a non-unique hierarchial
tree structure may be constructed (Figure 3.4) (Landgrebe,
1978). To construct the information tree it is important
to remember that the class list must be exhaustive; that is,
every point in the stratum must be assigned to one of the
classes. &he choice of the class labels depends on the
informational value that they have to the user. At the
top of the tree the classes are easily separable using
few features. As one selects class sets which are deeper
in the tree structure, it becomes increasingly more diffi-
cult to discriminate between the classes.

An example using artificial data can be generated

which demonstrates the effect of the choice of information



EARTH Surface Features
Clouds Surface Water Expased Earth Vegetation Man-Made
Density  Forms  Shadows Liquid Snow Ice Geologic Soils Natural Cultural Residential Industrial
Victer Features
{ ]
Forest Bushland - Gras"sland Cropland

Type Condition Species ija Use Crop Condition

|
Deciduous Coniferous Mixed Mcisture Disease Insect Variety Yield Grain Hay Pasture Other Disezse Feasibility Insect Moisture

Stress Damage Damage Stress

Figure 3.4 An informaticn tree for a typical stratum (Landgrebe, 1978).
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classes on the probability of correct classification. As-
sume that the data is two-dimensional and that a tree

structure can be drawn as follows:

N |

where I and II denote the first level classes and a, b, c,

and d denote second level classes. Let the mean vectors

and the covariance matrices for the four classes be

~ -
o _ l10.0 {3 32
class a Ba = l11.0 Ka T 372 5
10. 5] 2 12
class b M, = l11.0 Ky = l1/2 372
15.0] EREYZ
class c M= 9.0 Ko = Is/a 10
class d M. = [l4'éj K, = ’6 1
¥4 9.5 a |1 4

Plotting 20 random points from each of these distributions

in two-dimentions gives some idea of the four distributions

(Figure 3.5).

)
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The performance can be evaluated for the first level
by combining the statistics assuming that the four classes
are equally probable. A performance estimator was used
to evaluate the probability of correct classification from
the known statistics. The overall probability of correct
classification at level one‘is 0.91 whereas the overall
probability when attempting to discriminate between the
four classes is 0.59. One can readily see from this example
that the choice of classes will effect the overall per-
formance criterion.

Recalling the graph of the classification performance
as a function of expected mean-square error, a different
set of information classes may alter the graph significantly.
In general, information classes that are deeper in the
information tree will require smaller representation error
to achieve a specified classification performance.

Kulkarni (1978) provides further discussion of the per-
formance of a classifier as a function of the design set
size, the measurement complexity, and the depth of the
information tree.

One can also observe that the information classes
present in a stratum influence the selection of the
optimum set of basis functions {¢i(A)}. Let each
class have a Gaussian probability density with mean
function mi(A) and covariance f£unction Ki(A,E), i=1,2,

..., M. The covariance function for the stochastic




v process can be written as a function of the class condition-

al mean and covariance functions.

K(A,8) = E{(x(}) =m(A)) (x(&) ~m(E)}

. M
3 : where m(r) = ) P.m, (A)
. joq 1

: : M M
4 K(r,8) = J P K (A,E)+ J) P [ ()
: Kl Kk T

M M
: - izlpimim m () - Y Pimi(E)]

i=1
For the special case where M=2; this equation reduces to

K(AOE) = P].Kl(x'g) + Psz(A,E) + PlPZIml(U

- mz(h)][ml(é)-m2(€)]

Recall that K(i,¢) is the kernel of the integral equation
which is solved to obtain the optimum set of basis func-
tions {¢,(A)}. Hence, the information classes determine
the values of the mean and covariance functions and their
relationships and, subsequently, influe=ce the selection
of the basis functions. The solutions {¢i(A)} to the
integral equation are ordered by the eigenvalues such
that regions of the interval A which have large variance

are weighted more heavily. A change in the spectral



rl
y:
A
i
i
¥
i
2
-
Fo
b

[
PRttt ahfl

CETTI

PSR N R R SRR T T T A AR T T S M

76

classes such that the means are further apart, will cause
an increase in the variance along the coordinates in which
there was an increase in the distance between probability

distributions.

3.4 Spatial Representation
The spatial representation parameter reflects the
ability of the sensor to represent the spatial characteris-
tics of objects in the scene. Spatial characteristics
may include the size, orientation, and texture of objects
as well as the distance and direction from other objects
in the scene. In image-oriented pattern recognition
systems the spatial representation parameter is paramount
since the spatial characteristics are information bearing
features; whereas, in numerically oriented systems the
spatial representation is less important but significant.
The fundamental quantity for spatial representation
is the ground resolution element size. The ground resolution
element is the area of the earth's surface which is being
observed by the sensor at a given instant of time. A
physically realizable sensor system is constrained to ob-
serve an area of finite size. The area of the ground
resolution element is determined by the sensor's instantane-
ous field of view (IFOV), altitude, velocity, and scan rate.
The size of the ground resolution element determines

what informatign classes can be observed. If the size of
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an object is denoted by F and the size of the ground

resolution element is denoted by A, three relationships

ZrEm s

between F and A can be expressed: A>F, A*F, and A<F

AT

as shown in Figure 3.6. If the size of objects or fields

i
F
i
i
i

is smaller than the resolution element size it is very

difficuit to identify them. If the object size and reso-
lution element size are about the same, the performance
is marginal, principally because the center’of the object
differs from the center of a ground resolutibn element a
significant percentage of the time. Quite often the ob-
ject will occupy space in small portions of two or more
resolution elements. The resulting mixed elements may
have spectral response functions which are not character-
istic of either the object or the surrounding area.

The best case is when the ground resolution element
is much smaller than the field size. For crop inventory
applications the field size determines the approximate reso-
lution element size required to keep root mean square
error of area estimates below a specified level (CITARS
experiment; see Harnage and Landgrebe, 1575). Results of
the CITARS experiment indicate that the number of resolu-
tion elements per field should be greater than forty to
avoid the effects of boundary resolution elements.

Having a small ground resolution element also
provides more sample functions per class. As discussed in

a previoug section more sample functions will provide

ORIGINAL PAGE IS
OF POOR QUALITY .
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Figure 3.6 Relationships between object size F and
‘ ground resolution element size A.
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better estimates of the statistics and allow more features
to be used to represent the spectrum.

It might seem that the smaller the ground resolution
element the better the performance; however, the signal-to-
noise ratio deteriorates with decreasing resolution element
size. The energy available to the sensor decreases as the
area observed by the sensor at a given time decreases.

The resulting decrease in signal-to-noise ratio tends to
cause a degradation in the overall system performance.
Mobasseri (1978) has shown that an increase in the ground
regsolution element size corresponds to a significant
~improvement in the classification accuracy. It is assumed
that the size of the fields or objects is sufficiently
large as to not be a factor in these results. Also the
spectral representation parameters, sample size, signal-to-
noise ratio, and the set of information classes were held
fixed.

In this discussion only per-pcint or per-element
classifiers have been considered so far. Classifiers
which incorporate spatial information to improve the
performance have been developed. The ECHO classifier
developed by Kettig and Landgrebe (1975) divides the
scene into homogeneous objects. These cbjects are then
classified on a per field basis. Since the decision rule
decides to which class a field belongs on the basis of its

mean vector and covariance matrix rather than the single




80

vector from a single point, a potentially faster and
better classification can be made.

In the experiment of Landgrebe, Biehl and Simmons
{1976) , the ECHO and per element classifiers were compared
for different ground resolution element sizes. The results
are shown in Figure 3.7. Note that for the smaller reso-
lution element sizes the spatial classifier is slightly
better than the per-element. As the ground resolution
element size increases the objects size become closer to
the resolution element size and the ECHO classifier becomes
essentially a per-element classifier. Also the per-
element classifler improves as the resolution element size
increases.

Another effort to utilize spatial information is to
generate texture features (Haralick et al, 1973; and Wiersma
and Landgrebe, 1976). The texture features are numerical
quantities which loosely correspond to some intuitive
properties of textures which humans can perceive. The
spatial resolution in this case affects the textures which
one caﬁ observe. A fine resolution has a more detailed
texture as in the respor-~ variations due to the size and
shapes of leaves. A coarse resolution is more sensitive
to large scale textures such as the quilt-like patterns
of agricultural fields.

The choice of the spatial representation parameter

depends primarily on the choice of information classes.
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8

Classification performance (% correct]

30/120 40/120 50/120 60/120
Reflective/emissive IFOV [m]

Figure 3.7 Classification performance vs. spatial reso-
lution using ECHO and peir-point classifiers
(Landgrebe et al., 1977).
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Tradeoffs may be required to achieve improved signal-to-
noise ratios or larger sample sizes. The use of spatial
classifiers is still in early development and quantitative
results on the effects of spatial resolution are still

limited.

3.5 Signal-to-Noise Ratio

For a given remote sensing problem the signal is
the part of the received spectral response function which
is information bearing, and the noise is that part: whichr
is non-information bearing. The performance of the
pattern recognition system is dependent on the ratio of
the signal to the noise (S/N). For remote sensing problems
this parameter is difficult to quantify.

There are essentially three types of noise intro-
duced into the pattern recognition system - scene noise,
atmospheric noise, and hardware noise. The scene noise
consists of the variations in the response which have no
informational value for the remote sensing problem being
studied. An example would be the variations in the response
of the soil when an analyst is trying to discriminate be-
tween two crops growing in the soil. Hence, the choice of
information classes will affect the signal-to-noise ratio.

The atmospheric noise includes variations in the
absorption and scattering of the electromagnetic energy

in the atmosphere. The visible regions of the spectrum




tend tc suffer mostly from scattering in the atmosphere.
The infra* 1 portions are very susceptible to absorption
particularly in certain bands known as water absorption
bands (Korb, 1969).

The noise generated in the sensor system hardware comes
from the thermal and shot ncise introduced by the optics,
the detectors, and the electronics. 1In addition quantiza-
tion noise is added by the sensor (Billingsley, 1975).

Of interest here, is the effect of the noise on the
overall performance of the system and in particular on the
choice of the spectral parameters.

Intuitively one would expect the noise to be a limiting
factor on the classification performance. Because of the
randomness of the spectral response at the earth's surface,
the probability distributions will overlap even if no atmos-
pheric or hardware noise is added. Hence, in general there
is some inherent classification performance which cannot be
improved upon due to scene and atmospheric noise. However,
noise introduced in the hardward can degrade this inherent
performance.

Several research efforts have been directed at
determining the effect of noise on the system performance.
In each case the noise was modeled as additive white
Gaussian noise. In an experiment reported by Ready et al
(1971) pseudo-random noise was generated on a digital

computer and added to multispectral data taken over an
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agricultural scene. The classification performance was
estimated for varying amounts of added noise power.
The results showed that the overall classification per- |
formance decreased with an increase in the noise level.
Also, it was shown that a class which was the most diffi-
cult to identify with low noise levels suffers the most
degradation when noise is added.

In a similar experiment, using data taken by the MSDS

scanner, Landgrebe et al (1976), also, demonstrated the

——

performance degradation due to added noise. An interesting
result in this experiment was that the degradation was
significantly less when a spatial classifier was used.
In another research result Mobasseri et al (1978)
studied the relationship between the spatial representation !
by the sensor and the signal-to~noise ratio. Noise was
added to simulated multispectral data statistics, and it
was concluded that the added noise reduced the class
separabilities and degraded the classification accuracy.
A The effect of additive white Gaussian noise on the
Karhunen-Loeve expansion can be demonstrated quite easily.
The covariance matrix for white noise with variance oi 4

in N dimensions is

02 0 ¢« o .0-1 H
n .
K = 0 02 :
n n.. L
Lo. - L] L] . - .02
n .

N S N s ——
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A linear transformation on the noise such as the transfor-
mation determined by the Karhunen-Loeve expansion does not
change Kn. For additive white Gaussian noise the signal

covariance and noise covariance are additive

= +
K Ks Kn

After the KL expansion the transformed covariance matrix

is the diagonal matrix given by

- -
yl+o o . . . O
K = 0 72+on « « 0
1 0 . . . . . . YN+0 b

If the signal is of dimension N' then the eigenvalues for
the terms greater than N' are equal to oi. The plot of
the locus of the eigenvalues corresponding to the terms in
the expansion is shown in Fiqure 3.8. The eigenvalues
become constant at the value oi for N greater than N'.
The signal-to-noise ratio for each channel, then, is
Yi/vi.

The weighted Karhunen-Loeve expansion can be used
to good advantage when it is known that certain portions

of the spectral interval have low S/N. By weighting those
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Figure 3.8 The locus of eigenvalues for an N'
dimensional signal in white Gaussian noise.
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portions with high S/N more heavily, the eigenvectors
will tend to be more sensitive to the regions with high
S/N. In effect basis functions which have significant
components from regions with low weights will have smaller
eigenvalues; hence, they will be ranked lower in the
ordering of the basis functions.

In general noise from any source tends to make dis-
crimination between information classes more difficult.

The degree of the performance degradation depends upon

the statistical separability of the classes. Improvements
in the signal-to-noise ratios are most helpful when the
separability is small.

It is important to realize that one cannot simply
specify a high signal-to-noise ratio without considering
the other parameters. Because of the law of conservation
of energy, the amount of received energy in a fixed
spectral band over a fixed surface area at a given time
is determined. Therefore, in order to improve S/N, it
is necessary to modify the spectral representation parameter,
spatial representation parameter, or both.

We have listed one parameter from each of the five
categcries which is believed to be significant. It is impor-
tant to note that a change in any one of the parameters--
mean-square representation error . the size of the ground

resolution element A, the signal-to-noise ratio, the number

. ey okt 2 A ANl AL s PAa b o
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of sample functions per class, or the set of information
classes - frequently causes a change in the optimal value
of one or more of the remaining parameters.

One can conceive of an experiment in which a data
set is constructed which is large enough to include several
values for each of the parameters. An algorithm could be
devised to optimize e, over the set of parameters with
respect to a set of constraints which may be placed on a
sensor system. At this time, however, a data set which
would satisfy these requirements is not available.

As stated before the spectral parameter is of primary
importance in this investigation. Due to the dependence
on the other parameters the conditions on the other param-
eters must be stated. The size of the ground resolution
element will be a constant for each data set. The same
instrument will be used at the same altitude for all
observations. Also, since the same instrument and calibra-
tion procedure:s are used, the noise due to the hardware
will be constant. The noise due to atmospheric and scene
variations, however, may change from stratum to stratum.
The number of sample functions per class will vary, but
in each case the number should be sufficiently large to
obtain reliable results. The information classes will vary
from location to location and for different dates of

collection.
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CHAPTER 4. EXPERIMENTAL SYSTEM AND RESULTS

A software system has been developed which implements
the sensor design procedure described previously. The
software package basically consists of an algorithm to
compute eigenvalues and eigenvectors, an algorithm to
transform the data, a suboptimal sensor simulator, and a
method of estimating classification performance. A very
necessary part of the experimental system is the field
measurements data library consisting of spectra taken
over typical agricultural scenes. A block diagram showing
the essential parts of the sensor design system is dis-
played in Figure 4.1. This system has been implemented
on the IBM 370/148 at the Laboratory for Application of
Remote Sensing at Purdue University.

This chapter begins with a description of the field
measurements data base and how it is accessed to provide
spectral data for the sensor system design. The software
required to compute the eigenvalues and eiagenvectors for
an ensemble, to perform linear transformations, to simulate
suboptimum sensors, and to estimate classification per-
formance is described. The experimental procedure which is

used to test the software system is presented and results
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from using the system are displayed. An important by-

product of the sensor design procedure is an increase in li:e

understanding of the scene. Knowledge of some important
scene characteristics is extracted with the optimal design
system and procedure. The procedure is used to d=velop

a proposed sensor design which is compared against the
optimal design for each stratum. A discussion of the
overall pattern recognition system performance using the

proposed sensor is given.

4.1 Field Measurements Data Base

The field measurements data base consists of spectral
samples taken with very fine spectral resolution by the
Field Spectrometer System (FSS) mounted in a helicopter.
The spectral resolution was 0.02 micrometers for the inter-
val from 0.4 to 2.4 micrometers. The spectra that will be
used to test and evaluate the method developed here were
collected over each of two sites at three different
times of the year.

Field data were taken over Williams County, North
Dakota on May 8, June 29, and Augqust 4, 1°77. The three
principal information classes are SPRING WHEAT, FALLOW,
which are fields plowed regularly to conserve moisture,
and PASTURE. For the May 8, observation date the wheat
was about 8 cm high so that the wheat field would be

expected to have spectral characteristics very similar to

A
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bare soil; hence, one would expect that it would be quite
difficult to distinguish between the WHEAT and the FALLOW
classes. The second date, June 29, provided data during
the period of the growing season when the wheat is full
grown and is typical of green vegetation. The final date,
August 4, provided a data set containing fields with mature
wheat. Some of the wheat fields were harves:ed by August 4;
making it necessary to add the class HARVESTED WKFAT.

A second location in Finney County, Kansas was chosen
an an example of similar classes in a different location.
Three dates, September 28, 1976, May 3,.1977, and June
26, 1977, were chosen corresponding to the growth stages
emerging, full canopy, and mature. Other crops in nearby
fields, notably grain sorghum, are ripe on the fall date
and emergent on the spring date. The information classes
used for this data set are WINTER WHEAT, FALLOW, and OTHER
CROPS.

The data sets are assembled and stored on disk in a
format that is used by all routines that require access
to the data. Details of the data set assembly along with
the data storage format specification are described in
Appendix B. Also, in the appendix complete information

on each of the six data sets is listed.
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4.2 Spectral Parameter Evaluation System

7he kéy system elements in the spectral parameter
evaluation system are the processors SPOPTM, which com-
putes the optimal basis functions, SPTES which uses
the basis functions to transform the data, and SPSUB which
simulates suboptimal sensors (Figure 4.1).

The computation of the optimal set of bas . functions

for an ensemble is accomplished by solving the matrix

equation :
¢ I = KW ¢ (4.1) :
f;
to get the eigenvalues Yy Yor eees Yy and the eigenvectors
¢1, oz,.... °N e The matrix ¢ is the matrix of eigenvectors,
¢ = [¢y35 ¢y, ..., ¢g] and T 1s the diagonal matrix of
eigenvalues. «
B 7
r - Yl 0 * - . 0
8 Wy ;
O & = & © « @& %
: v

[ =
w 0 « « 0
w=| 1
0 w2 - :
_o . . - . . wN B

cur ol e PR N



}
E
b
i
?

g

94

K is the covariance matrix for the ensemble. Let the mean

vector for the ensemble be M = [ml, Myr eees ﬂ“]T, then

kij - B {(xi-mi) (xj-mj)} (4.2)

The unbiased estimate is

N
S

- L - "
kij - N—«fr kz (%] )-m, ) (xjk mj) (4.3)

1
where Ns is the number of sample functions in the ensemble.

Note that in general the stochastic process is non-
stationary. A zero-mean process is defined to be stationary
in the wide sense if the covariance function depends only

on the difference |) - ¢| (Papoulis, 1965). That is,
K(A,E) = K(A=£€) A,E€A

The covariance matrix of a stationary process has elements
which are equal along the diagonals. The methods used
to compute the covariance matrices and to compute eigenvalues
and eigenvectors are valid for both stationary and non-
stationary stochastic processes.

Let A be the matrix product of the covariance matrix

K and the diagonal weighted matrix W.

A = KW (4.4)
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If the weighting matrix W is equal to the identity matrix
I, then the kernel A is real symmetric and the solution

to 4.1 can be found using a standard numerical algorithm
known as the Jacobi method (Wilkinson, 1965, p 266). The
Jacobi method uses a sequence of similarity transformations
to reduce a real-symmetric matrix to a diagonal matrix.
This method is very stable and provides all of the eigen-
values and eigenvectors with good precision.

However, if W is not the identity matrix, then, A is
not symmetric. An algorithm which solves the eigenvalue
problem for real general matrices was published by Grad
and Brebner (1968). This algorithm, EIGENP, computes the
eigenvalues by the QR double-step method and the eigen-
vectors by inverse iteration. Some comments on the
application of the algorithm to the specific computer
used here were published by Niessner (1972).

The complete algorithm package consists of the main
subroutine EIGENP and four callable subroutines SCALE,
HESQR, REALVE, and COMPVE. Subroutine SCALE scales the
matrix so that the absolute sums of corresponding rows and
columns are roughly equal. The scaled matrix is then
normalized so that the Euclidean norm is equal to one.
These two pfeliminary modifications are carried out to
improve the accuracy of the computed results. In HESQR
the scaled matrix is reduced to upper-Hessenberg form by

Householder's method. The QR double-step iterative process

P

CC Bt Addes b M iR
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N o i
ie performed on the Hessenberg matrix to reduce the matrix .
to diagonal‘ferm"within the computational accuracy limite,l
where the elements along the diagonal are the elgenvalue.
The 1nverse 1terat10n process to find correspondlng eigen-
vectors is carrled out in RLALVE for real elgenvalues and

COMPVE for complex eigenvalues. Since it has been shown

that the elgenvalues will be real for the application under

con51derat10n, there is no need to include COMPVE.

Both the EIGENP algorlthm and the Jacobi method havev

been tested on the same covariance matrix using the

identity matrix as the weight. The differences using the

two methods were negligible eﬁen for matrices of order 100.
A necessary part of the Karhunen-Loeve expansion is

the ordering of the eigenyalues and corresponding eigen-

veetors. Since the eigenvalues are not ordered in the

eigenvalue -algorithm a sorting routine was added to the 7
| !
system to perform this task. /
Y/

: i
The set of ordered eigenvectors {¢; (1)} will be used)
to perform a linear transformation on the original dapé
. //
, J
vectors X. To perform the linear transformation the/
//

coefficients corresponding to each excenvector are“computed.

Instead of the vector X, the waveforms are represented

/(}b/ Ai\\
: (7

by the set of ccefficients {xi} where

14

x; = f [x(A) =m(A)] ¢ (A) w(n) da (4.5)
A

o
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or in terms of discrete vectors
A :

=

This transformation on the field data is performed in the

B

program SPTES.'
| ‘The statistics for each information class are needed

to evaluate the probability of correct classificaiion.

The data set, now‘represented by the transform coefficients,

is partitioned into classes and-the corfeéponding mean

vectdrs and covariance matrices are computed in SPTES.

The maximum likelihood gstimates are used for the mean

¢

: i .
vectors and covariance Watrices.

The routine SPSUB wag developed to simulate several

NS

suboptimal sensors. A set of N basis functions {wi(k)}

is stored in memory where each function is approximated
=

by a 100 element vector. As an example, % set of four

7
vectors, wl(k), wz(k); w3(k), w4(k) was gmpl$mented where
~i\\§;\“{/j‘; ‘

Yy = 1.0 A, <A <2, 4.7
{ N

77
0.0 elsewhere e

v U =

n
i

The endpoints Ay and A;4q are given under sensor number 1
in Table 4.1. The basis functions may be normalized by

requiring

[ wyonwmar =2 (4.8)
A
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S8 2
ff? Each wavefdrm]infﬁhefensémbie&ié:éppidkiﬁatedfby.ee
x(2) Z X, :p () R T 1}
i i=i Lk ’ .
where - _
o x5 =‘-J x(2) v, (A) win)dr o (4.10)
f- . For the nermallzed basms functions the expected mean-square
I I \R
" representatlon error over the ensemble, 1s qlven by .
| R ~ | |
Efld=E UA [x(A -2=1 1 ¥ Yw(k) dal. | (4.11)
. A second sensor which has been considered. for practical
iimplementation and which has band edges given under sensor
. s ‘
number two in Table 4.BM@as, also, been included in the
routine SPSUB
0 »
Table 4.1 Spectral band locations for two practlcal
sensor designs.
Sensor Number 1 B Sensor Number 2
Band . Wavelength Band _ Wavelength
. . D B N L
1 0.5 ym to 0.6 um 1 0.45 ym to 0.52 um
2 0.6 ym to 0.7 um 2 0.52 ym to 0.60 um
3 0.7 um to 0. 8 um 3 0.63 um to 0.69 um
4 0.8 um to 1.1-m 4 0.76 ym to 0.90 um
. 5 1.55 4m to 1.75 um
\ 6 2.08 ym to 2.35 um
A 0 |

ey

A
w7
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The output of both SPTES and SPSUB is a set of

statistics from which it is desired to evaluate the global

performance criterion of probability of correct classifica-

tion., 1In pettern recognition terminclogy the estimation of
the class conditional statistics is the‘training phase or

design of the classifier. It now remains to use these . S

training sets to compute the performance. A Monte Carlo ‘
" technique has been developed to evaluate the probability
.of correct classification integral. The details of the

'technique and an evaluation of an algorithm, SPESTM,

designed to implement the technique are covered in Appendix
A. A sufficient number of representative spectral response
functions to represent tgehstratum is necessary in order

to obtain a good estimatekef the statistics. Experience
with the-performance estimator algorithm has demonstrated

that the algorithm is reasonably efficient in terms of

execution time and accuracy.

4.3 Experimental Procedure
In this section éeﬁe.eomments concerning the pro-
cedures for the operation of the spectral parameter
design system are made; These procedures are'followed
in generating the results ﬁhat‘are given ie/later sections.

A stratum is selected by choosing a lgca;ion and
; \ N
il

collection date for which a set of field datalhéﬁ”beeg
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acquired and stored in the fieldjhéasurements library.
Sample spectral response functions are selected from the
field data to represent the stratum. This selectidn is

- %
accomplished by specifying the tape that a particular data

‘set is stored on and the date on which it was collected.

Details concernihg fhis procedure'are'covered<§n Appendix B.
The deck of cards, containiﬁg the numerical values of the
spectra, is”read by SPRDCT Which stores the response func-
tions and some ID informatioﬁ ontooa diskvfile° ill of
the analysis élgorithms using the data require the data
to be in the format described in.the appendix.

| The estimate of the covariancé matrix of the ensemble
and the solutions to the matrix equation which gives the:
eigenvalues and eigenvectors are computed by the routine
SPOPTM. A weight function which is stored as a vector in
a callable subroutine is selected in SPOPTM. A subroutine
is used to sort the eigenvalues and corresponding eigen-
vectors such that the>éigenvalues are in deécending order
of magnitude.

An éxample of the output listing fér SPOPTM which
lists the first 30 eigenvalues is shown in Figure 4.2.
Correspondihg to each eigenvalue estimate is an estimate
of the variance of the eigeﬁvalue, an estimate of the

variance of the eigenvector, and the expected mean-square
(24

representation error for using the Karhunen-Loeve expansion.

Va

el
/s
o o
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The variancesware computed using the results derived in
_Cﬁapter 2., TIt.should be remembered that fhe eigenvalues
and eigenvectors are estimated from random samples from a
Gaussian. stochastic process. The estimate of»tﬁe first
eigenvelue iS‘267l;23. This estimate is approximately
unbiaeed’and has a Stendard deviation of 135.7. Similarly
the estimate of the nofm of the difference between the true.
elgenvector and the estimate ls\approxlmately unblased.

The standard dev1at10n is .02. It 15 1nterest1ng to note
that the variance for the 12th and l3th eigenvectors is
relatlvely large. Recalling that the expression for the
variance is sensitive to elgenvaluAg which are close’
together, the large variances are not‘surprlslng. Tﬁe
'mean—square error is computed using the eigenvilue estimates.
ID information concerning the data set is‘includedgﬁor
reference. The eigenvectors are punched and stored in a
card data file. A plotting.routine is used to display

the eigenvectors. Also,.the eigenveetérs will be used
later to perform linear transformations on the data.

A crude approximation to the system measurement
errof, introduced in making the field measufements, is
used to provide a comparison with the expected mean-square
represeﬁfation error. Measureﬁent error Was assumed to

be 7% of the numerical response value. If x(A) is the

true signal and s(A) is the measured signal including

\\

added noise, then, the measurement error is

I
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2

C?“q
e = f x(x) - sGiZax  (4.12)
m A o

In discrete form let x. -s, = .07 x and

2
e = ) (.07 x,) ' (4.13)
T k=1 ‘ XK . ,

D

The average € over the ensemble ishthe es?imate of the (
expectedbmeasurement error. i g &
The linear transformation on the originél data set )
using the computé&d eigenvectors is performed using SPTES.
The statistics for the first N terms or features ére
computed for e&ch claés and displayed on the printer
(Figure 4.3). Also a card decK with the”statistics stored
on it is punched for use with the classification performance
estimatoi.

J The estimate of the probability of correct classifi-
cation’is obtained by SPESTM (see Appendix A). The statis-
tics deck output of SPTES is designed to be identical to
the requir’ed input for SPESTM. The ocutput of SPESTM
includes the condilional probability of correct classifi-
cation for each class and the overall probability of
correct classification (Figure 4.4).

It is possible to evaluate the contribution of each

feature to the separability of the classes. Feature selec-
7

e

tion is performed using the SEPARABILITY processor in’

= e A g g ey g
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MEAN VECTOR
22.1997  17.3667  0.9930 =0.0932

COVARIANCE MATRIX

.
1w
WU~

716 ’
3 2425298
-6 -8.2161 15.4123

. O~NE®

5
8
1
0

Lo

18
69
18

ON~NO
~UnWw

5
1
7
3

W=

o

MEAN VEGTOR
~16.1261 =17.6414 =1.4610 =0,2640

e e oo

COVARIANCE {ATRIX

BT L

2500.3152
=370.0427 144.1309

“111.1944 =5,3496 48,6596

| =49,1371 33,2773 -2.7137 19.3354 ;

MEAN VECTOR :

1664757 =11.2648 =0.4962 0.1673 :

#

COVARIANCE MATRIX g

2112.1230 s

-170.6249 168.9570 i

50.6295 =32.0785 46.%451 i

-14.4506 =1.3899 8.9443 18.5254 i

: - Figure 4.3 Sample output of class conditional statistics.
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1

0.8308

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 1.

0.8450

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 2

o
(]

' PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 3 = 0.5773
OVERALL PROBABILITY. OF CORRECT RECOGNITION = 0.7509

Figure 4.4 Sample output of classification performance estimates.
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LARSYS (Phillips, 1973) in which the divergence is computed
using various combinations of N' features. The feature
sets are ordered according to the average pairwise di-
vergence. This feature selection technique allows one to
find the best feature set quickly without having to try
all of the possible combinations.

Two practical sensor designs are evaluated for
conparison with the optimal design. The spectralvbands

used to simulate these sensors was presented in Table 4.1.

The spectral bands are contained in SPSUB which uses them

as a set of basis functions to represent the response func-
tion. A linear transformation is performed on the data,

and the statistics for each class are computed. The average

mean-square error for the suboptimal representation is

cbmputeé and printed. The statistics are again punched
on cards in a format suitable for SPESTM.
" SPSUB can also be used to design a practical sensor.

The program can be modified to include any choice of

'sPectral bands desired.

4.4 System Testing

The system was exercised in an effort to determine
its capabilities and limitations. The data sets taken over
the two locations at different times were used in the tests.
In particular it would be good to get some feel as to what

would be a good choice for the weight°function; Also the
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1

number of samples that are required will be importanﬁ when

specifying what is desired in future data sefg

'4.4.1 Reconstruction

As a fifst test of'the éy;tem we would like fo demon-
strate the capability of the first few terms in the.Karhunen-
Loeve expansion to reconstruct’the.origiﬁal waveform. A
sample’;pectral reSponse function from an ensemble is
selected énd the coefficients in the expansion are com-
puted. Using N' terms in the'expansién the approximation | ;

to the original function is given by:

N' |
x(2) = )} x.¢.(x) + m(r) o (4.14)
. i7i »
. i=1 .
where m()) is the mean function of the process. For this ' a
example a uniform weight function, w(iA) = 1.0 for all ieA,
was used.
A sequence of graphs showing the original function
x(A\) as a solid line and the approximated function %())

as a dashed line is shown in Fiqures 4.5a to 4.5h. Only

R Sy WA SRR BP0 2t

; the first term in the expansion is used in figure 4.5a;
thé first two termé are used in Figure 4.5b, and so forth.
It is‘readily obsefved'that after a few terms theiapproxi~
mation is very close to the originail.. |

If the average mean-square error is computed directly .

using the equation

[Berra o oG T A Re . N AT T e pe : 5 i " ; R S T AR S E R L i I s T
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e = f [x(2) -x(0) 1% ax . (4.15)
A . .
and averaging over the énsemble, the value of E{e} is
equal within numerical error to the value given by summing

the eigenvalues

E {e} = ) v,
: i=N'+1 *

(4.16)

as predicted by équation 2.

4.4.2 Choice of Weight Function

An important part of the analysis procedure is the
choice of the weight function‘W(A) to be used in the
weighted Karhunen-Loeve expansion. Four different weight
functions, which are displayed in Figure 4.6, were proposed
and tested. Data taken over Williams County, North Pakota
on May 8, 1977 was used to evaluate the different wéiéht
functions. Comparisons were made by evaluating the
eigenvalues, eigenvectors and classification performances
for each of the weight functions.

The motivation for the development of the weighted
Karhunen-Loeve expansion is demonstrated by using the first
weight function which has a weight of one assigned to all
wavelengths on the spectral interval (Figure 4.6a).

The first four eigenvectors for this weight function are

graphed in Figure 4.7. It is noted that the first

ARy oo
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Y

Y
(
L

| 5y 113

elgenvector is domlnated by the varlance in the 51gnal

for a narrow 1nterval hear 1.9 um. A 'similar peak for the
same 1nterval occurs in the second elcénvector, In,the | v b
fourth elgenvector a 51m11ar result occurs for a reglon

near 1‘4 ym. These two bands near 1. 4 and 1. 9 um corres—
pond to water absorptlon.bands which severely attenyaten

the electromagnetic energy passing through the atmosphere

at these Qa&elengths; The sample spectral response func~

tions have large variations in these bands which causes

the eigenvalue algorithm to select one or more eigen-

‘vectors which are sensitive almost entirely to the portion

of the. spectral interval correspondlng to one of the
r/
water absorption bands. The source of these large varia-

=y

tions is traced to‘the calibration procedure during which -
a di&ision by a small number occurs, resulting in the‘
noisy signals in the respective bands. The ability of
eigenvectors 2 and 4 to aid aiscrimination between informa-
tion classes.is_limited and real contributions to the
performance for these eigenﬁectorsvaréfdue to the small
but finite sensitivity in the remainder of the spectrum.
The three remalnlng welght functions were chosen to

minimize the effects of the water absorption bands. 1In
the second weight function (Figure,4.6§%, the weight is
set equal to .001 for the intervals 1.32 to 1.50 pm and

1.76 to 1.94 um and equal to one elsewhere. A more radical

G wrer e . TR 2 % e BRI b
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ch01ce df weihht f\nctlon (Flgure 4, 6c) is based on the

solar spectnal 1rrad1ance at sea level (Handbook of

Geophy31cs, 1961) The solar lrradlance 1s strongest 1n_

,the VlSlble and decreases to very small values 1n the
/' lnfrared.o The two water absorptlon bands are accounted

for as well as. several other 1esser molecular absorptlon

bands. A crltlclsm of thls ch01ce of welght functlon is -
that the reflectance From vegetatlon, for example,

is very low in the v151b1e whlle 1t is qulte hlgh in the v

:_1nfrared, whlch 1s the opp051te of the solar lrradlance

‘curve. Hence, the thlrd welght functlon, based on the

1rrad1ance curve w111 tend to glve too much lmportance
to *he v151ble neglon and too llttle lmportance to the

1nfrared reglons\véspec1ally those between 1.5 and 1. 7 um

LI

tion was chosen to weight the low reflectance typical of

the visible region lower. It has slightly higher weight

values for the two water absorption bands and has a weight

of 0'7 for the visible region. The first four eigen- .

l

vectors for weight functlons 2‘\eiland 4 are shown in
Flgures 4.8, 4 9, and 4, 10 respectlvely ”

The expected value of the integral over A of the
square of the response functions can be treated as a total
recelved s1gnal»energy. Thls expected energy is equal to

e Ay

the sum of all of the eigenvalues, which is different for

T

L

’and those between 2.2 and 2.4 um. The fourth weight func- '
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eacﬁ weight function. The expected energies are 1985,
550, 177, and 589, respectively where the units are
relative to the units offﬁer cent regpohse for the spec-
tral fesponge;functions. Ideally, the weight function
would reduce the energykwhich is noise and retain that
which is signal. By using low weights in the water absorp-
tion bands, an impravément in overall signél—to—noise rgtio
has been gained. However, in the case of the third wéiéht\
function, the reduction in energy mé§ have been too much. |
The ihfrared regions are not repressented significantly in
any but perhaps the second»eigenvaftor. ‘ B ﬁv
As a final comparison betwagn weight functions, %y
the classification performandes are examined. 1In Table 4.2
the estimate of the probability of correct classification
as a function of the number of terms in the expansion J

for each of the four weight functions. For ten terms it

appears that the second. and third weight functions are the

%

P

i

better choices with the second weight function demonstfatiné¥t“§

a slight advantage in the first few terms. The conclusion ="
drawn at this point is that the second weight function is \N\
the most reasonable choice and will be one used in the

results that follow.
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Table 4.2 Comparison of the'probability of correct

classification using N terms in the weighted
Karhunen-Loeve expansion among four choices
of weight functions.

q

Weight Function

1 2 3 4

N
1 . 355 .467 . .468 .488
2 .443 .729 .675  .730
3 .729 .819 .700 .799
4 .736 .833  .806 .817
¢ 5 .742 .851" .853 .822
] 6 5794 .882 .896 .834
7 .807 .894 _  .897 .851
8 .823 -943 ./ y.914 .860
9 .851 4943 7.956 . -,289
10 .862 (ﬁ949 ©,954- 931
oy )

SN

T

4.4.3 “Evaluatiod of the Eigenvalue Algorithm

The methods employed in the algorithm EIGENP have

been well-studied (see Wilkinson, 1965) and are characterized

by good numerical stabiligy and accuracy even for covariance
matrices which have a rank.of 100. The accufacy of the
algorithm depends largéiy on the particular machine on
whichbthe algorithﬁ is implemented. The accuracy is pro~
portional to the rank of the matrix, to £he number of
iterations required for the iterative procedures used, and
to 2”7t where t is the humber of significant digits in the
mantissa of a binéry floating»pgint number. For the IBM 370
machine using double—precision\Eﬁéevalue of t is 56. Typi-

cally eigenvalues can be computed which are accurate to

P T
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e
{aJSiX decimal places. The norm of the difference between a
computed eigenvectér and the true eigenvector is also on
the order of 107%. |
The accuracy of the computed eigenvalues and eigen-
vectors deteriorates slightly with the introduction of
the weight‘matrix. Weight matrices containing small
wéights tend to cause underflow conditions té occur in thé
reduction to Hessenberg‘form. |
Computation times for matrices of rank 100 are on the

order of 10 minutes of CPU time. Hence, one is restricted.

somewhat in using this algorithm a large number of times.

4;4.4 Sample Size

The number of sample functions, used tb represent

iz SAERICURY b o 14 v

the ensemble, influences both the estimates of the eigen-

‘»j values and eigenvectors and the estimate of the classifica-

JORE i i 36 Mg 2 1

tioﬁ;performance. The prediction cf the general effects é
of thg}ﬁgmpie size have been described earlier; however, ;
it Qbuld‘be desirable to demcnstrate these effects in
the context of the present problem for the purpose of :

deciding whether'or not a sufficient number of Samples

were collected. - v‘ t

An experiment was performed using the data taken over

Williams County on August 4, to demonstrate the effect of

sample size. Subsets of the ensemble were used to simulate

small data set sizes of 55, 110, and 294 éample functions.

] i
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The breakdown in the number of samples from the four
information clasées is shown in Table 4.3. The eigenvalues
and eigenvectors were computed using 55, 110, 294, and 1444

samples, respectively. Several sample functions, which

=

were ‘used to compute the %;genvalues, were not used to
{
evaluate the performance because they were from fields in
E which there was some uncertainty as to which:cover type
|
the functions belonged. The eigenvalues and eigenvectors
for each case were computed using the secdnd weigh£ func-

tion,_and the expected mean-square error was plotted as a

function of the number of terms in the expansion in Figure

4.11. The effect of sample size on mean-square error is
most detectable for the number of terms greater than ten.

It is observed that the expected mean~square error increases

At RS T Ty e bRy

with increasing sample size.

! Table 4.3 Sample size assignments for data from Williams
P ' County, N.D. on August 4, 1977.

Class NUMBER OF SAMPLES

L WHEAT 25 60 134 808
; WHEAT HAR 5 10 22 34
: FALLOW 15 25 76 330
' PASTURE 10 - 15 62 130

——— —

Total 55 110 294 1,302

;
N
£

resmesgte it g

D S S e et
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Figure 4.1l Influence of sample size on expected nean-
‘ square error for Williams County, August 4,
1977, using weight function number 2.

BT A2 v i =
PO B K “\

i R A Ty S L P 3 e AR, ARG " e Sy



123

The classification performance was evaluated for each
additional term in the sequence and a plot of Pc as a

function of the mean-square representation error was drawn

for each cade (Figure 4.12). The small sample function
size has two effects on Bc vs. E{sr} curve. First the

smaller mean-square error causes the curve to be further

Y

- to the,léft than it should be. Second, the small sample
size causes the performance to be higher than it should be
for a given expectedﬁmean~square error.

The quéstion of whether or not the set of samples

j adequately represents a stratum is a difficult one. 1In

- particular the method of selecting which functions to

include in the sample is not easy to determine. One reason

.is that relatively few. sample functions are évailable and

aé in theﬁcase of thisﬂresearch one uses all the functions

that are available. This experiment demonstrates the

effects if we assume that the 1444 sample functions accurate-

iy represent the ensemble. Certain trendsvindicate that

the number of samples availaﬁlé is adequate. The change

in the expected mean-square eéror is quite small between

the curves 297 and 1444 samples in Figure 4.11. Also,

N

the performance as a function of representation error in
Figure 4.12 is probably close to accurate for the largest
sample size. In the following the ensemble will consist

; A of all of the sample functions that are available which

g is on the order of 1000. It should be pointed out that

A A~ PRSI £ Ty o 2 AT VO A OSSR Y I T Y
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“1f there are a larger number of classes, a 1arger number
- of samples w111 be needed to obtaln good class1f1catlon

per formance estlmates usan hlgh dlmenSLOnallty.
. . : Q . .

4.4.5 Results -
The'analyﬁicai procedure for spectral parameter de-
sigﬁ of sensor systems was_performed using the data col-

lected on three dates over each of two 1ocations; Results

from usxng the experlmental system are presented graphlcally‘

in Figures 4 13 through 4&561' The three.collectlon dates
for Williams County, North Dakota, are presented first
followed by the three data sets‘from Finney Counﬁy,~Kansas.‘
Weight function number twe was used for all cases.

For eaeh'datavsetdthe expected mean-square error
is plotted as a function of the numberwef terms used in
the Karhunen-Loeve expansion; A 1oaarithmic‘scale is
used for ‘the mean-square error because of the large range
of values. The units for the mean-sguare error are rela-
tive to the units on the spectral response function which

are in terms of percent reflectance. Since

(4.17)

He~8
<
-

‘i

Y
E D [x(A)] w(r) dx] = i
, : _ 1

the units of error are relative to the expected mean-

sguére value of the response functions in the ensemble. .

1

S

e
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Estimate of probability of correct classifica-
tion vs expected mean-square error for

Finney County, May 3, 1977, using weight
function number 2.
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The first twelve weighted eigenvectors for each set of

a2

dataxére shown. Note that the graphs are of weighted

eigenvectors; that is, Fi(A) where

Fi(l) = ¢i(A)w(A) (éﬁlg)

is plotted as a function of wavelength. The Qeighted

e%genvectors will be used to determine effective ways of

sémpling the spectrum.

. E : The important relationship between probability of
correct classifiéation and expected mean-square error is

~ depicted in the graphs of ﬁc vé‘ﬁ{erj for each data
set. Starting with the first eigenvector, the values of
ﬁc and E {er} are plotted as the number of terms in the

Karhunen-loeve expansion is increased up to ten terms.

Again a logarithmic scale is used for the mean-square error.

4.5 Scene Understanding

Although the primary thrust of this research was to
arrive at an analytical approach to sensor design, it has
beneficially resulted in some important contributions
to scene unders?aﬁding. Four important characteristics

of the scene can be studied using the analysis procedure

g

that has been developed, here - the dimensionality of
; the observation space, the determination of the important

regions of the spectrum, the relationship between spectral

T

petas
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representation and classification performance, and the
maximum achievable classification performance. These
characteristics are evaluated over the limited number of

data sets available.

4.5.1 The Dimensionality of the Observation Space

The dimensionality of the observation space is
determined by the minimum number of basis functions re-
quired to reduce the expected mean-square representation
error to a value below a specified level T. The problem
becomes that of determining an appropriate value for T.
Consider the expected measurement error discussed earlier.
This measurement error is an attempt téiquantify the
capability of the field data gathering system to make
accurate measurements. If the value of T is much less
than the expected measurement error, then, one would expect
that no real improvement in performance may be achieved
by increasing the number of terms in the expansion.

The expected measurement error for each of the six
data sets is listed in Table 4.4. Two choices for T will
be considered. First, let the ratio of the expected
measurement error to Tl be ten-to-one. The number of
terms required to reduce the expected mean-square repre-
sentation error to less than Tl is six in all but the
first data set where only five terms are required (see

Table 4.4). Six terms appears to be a very reasonable
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Table 4.4 Expected measurement error and proposed values for T for each |
of the data sets. . 7T\
7 (=
Kﬁ&{
\i‘/ \<
= \
Expected : S
Measurement : Number of Number of Number of texms - s
Data Set Error T, Terms for Ty T, Terms for T, R <".,99 »
. - B
Williams Co. 178.8 17.9 5 1.78 18 = 10 {;
May 8, 1977 ' . . 7
Wiiliams Co.
June 29, 1977 1407 14.1 6 1.41 20 4
Williams Co. .
Aug. 4, 1977 127.4 . 12.7 6 1.27 17 5
Finney Co. ' .
sept. 28, 1976 1037 10.4 6 1.04 18 R
Finney Co. .
May 3, 1977  +°°-© 15.7 6 1.57 22 5
Finney Co.
June 26, 1977 165.3 16.5 6 1.65 19 6
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number considering both the representation accuracy and

the data volume required to be transmitted, to the processor.
However, for tﬂé purposes of this work it is desirable

to decrease T further to insure that as much information
" as possible is retained. Therefore, let the ratio of

the egpected measurement error to T2 be one hundred-to-one.
The number of terms required to reduce the expected measure-
ment error to a value less than T2 is approximately twenty.

A second criterion for determining how many terms

in the expansion to use which has often been applied is

to compute the ratio

o
]
<
-

(4.19)

'_l-
Il o1
=
<

[N
=
=

where N is the number of terms in the expansion and L is
the total number of terms available. If R is equal to 1.0
then the expected mean-square error for the process is zero.
In general this occurs ohly when N=L, therefore, one must
be content with choosing of value of R close to 1.0.

Suppose that we choose R=0.99 and require that the number
N be chosen such that the right-hand term in equation 4,19
is greater than R. This would guarantee that the expected
representation error would be less than 1% of the total
signal 'energy'. The last column in Table 4.4 lists the

number of terms required to achieve this representation
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“accurch. The first twenty‘eigenvecg&rs were used in the

analysis of the data which are presented in this research.

4;5.2: Feature Seléction

It is desirable to evaluate thé détimal set of basis
funcﬁions’to determine which féatures,are contributing the B
most toWard the‘disqriﬁination between classes in a given
problem. To eValuate the features it is proposed to rq?k .IB
them according to their ability to discriminate between
classes. This ranking will achieve three purposes. First
the ranking will indicate whether the ordex of the features
based on expected mean-square error is relevant to the
classification problem. Second by examining the eigenvectors
of the most significant features, some information rega;d~
ing the selection of the best set of features to use in the
classifier.is obtained. Finally, the relationship‘between
the observed spectral response variations and the phenomena.
being observed on the earth's surface can be examined more
closeiy, since the most significant variations which affect
separability can now bézdetermined.

.For each data set; the information classes havé been

specified; The features in the optimal set will be

evaluated based on the following criteria:

- Estimate of probability of correct
classification for each feature.

- Computation of a separability measure -
(divergence) for combinations of features
and ranking accordlng to highest average
separablllty.
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- Estimate of probability of correct classifi-
‘cation for combinations of features.

The rankings for the first ten optimal features are
listed in Table 4.5. Note that the rankings are somewhat
subjective because the importance of a particular feature

may be different when used in combination with other features

‘than when used alone. However, those features at the top

of the lists’afé'dgfinitely superior to those at the bottom.
For convenience %he rankings are denoted by a number in
parenthesis indiéatinq the rank below each of the first 10
eigenvectors plotted in section 4.4.5. /ﬂ

In genefal, the ranking in Table 4.5 bears some similar-
ities to the ranking based on expected mean-square error.
For example, feature 1 is ranked first in two of the six
data sets and second in two othersuwhile never being
ranked below fifth. The low ranking for the May 8,n
Williams County data is not surprising since the first
eigenvector is véry similar to bare soil and the responses
from both emerging wheat and fallow fields are similar to
that characterized by bare soil. The first eigenvector
would not.be expected to be of much value for discriminating
between the WHEAT and FALLOW classes. Feature 2 is also
ranked high for ail of the data sets. At the other end

of the list features 9 and 10 are consistently at or near

the bottom.




Table 4.5 Ranking of the first 10 optimal features on their ablll_J to discriminate
between classes. S

Rank May 8, 1977 June 29, 1977 Aug. 4, 1977 Sept. 28, 1976 May 3, 1977 June 26, 1977
1 2 3 2 1 2 1
2 6 2 1 2 1 3
3 3 1 3 4 5 2
4 8 4 7 3 4 4
5 1 5 4 7 73 6
6 5. 8 6 5 10 7
7 4 7 8 6 8 5
8 Iy 6 5 10 7 ~ 10
9 L 9 9 8 9 8
0 5’ 10 10 9 6 9

: “w‘, _;."‘,_',

<91
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Only the first 10 features were ranked, however,
sinceitwé;ty features were availablé a check was made
of the Second ten for features which may be significant.
The importance of £hese features was determined by esti-

mating the probability of correct classification in combina-

tions with other features as Well as by themselves. For ;
the Williams County data sets features 11 and 12 were
important for the May 8 data and for the 29th data. For
the Finney County data sets features 11 and 13 were
important fof the Sept. 28 date while features 15 and

14 were significant for the May 3rd and June 26th dates
respectively.

The evaluations of the spectral interval to select
features for the classifier and to interpret observed
phenomena will be discussed in the next sections.

4,5,3 Classification Performance as a Function of the
Spectral Representation

The relationship between the overall pattern recog-
nition system performance and the spectral representation
parameter is graphically displayed by plotting the proba-
Pility of correct classification, Pc, as a function of
expected mean-square error, E{er}. These graphs are
plotted again in Figure 4.31 with the three graphs for each
location on the same coordinates. One can evaluate which
terms contribute to the performance as well as to the

representation,
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Figure 4.31 ] Estimate «f probability of correct classifica-
tiop vs expected mean-square error for
(a) Williams County and (b) Finney County,
using weight function number 2. (See also
Figures 4.15, 4.18, 4.21, 4.24, 4.27, and
4.30.)
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The graph for the May 8, 1977, Williams County data is
typical. The value of ﬁc increases steadily with decreas-
ing E {er}. At the fourth term the graph begins to level
off at a value of 0.83, indicating that ﬁc is may be close
to a maximum. 3qyever, at the eighth term the value of ﬁc
increasesw§i§ﬁificantly for a corresponding small decrease

in E(e;) before leveling off at about Ec = 0.95. The June

‘data set from Williams County has a similar graph with the

final leveling off beginning at about the fifth term.
Comparing these two data sets, a smaller mean-square
error is required in the May data to achieve an equiva-
lent classification performance. Hence fewer terms or
dimensions are required to achieve a given level of per-
formance.

The last data set from Williams County does not
exhibit the early leveling off noted in the first two~sets.
The performance improves steadily until it reaches approxi-
mately 1.0 at the seventh term.

The September 28, 1976 data set from Finney County
has a steady increase in performance with decreasing mean-
square error until the leveling occurs at about ﬁc = .96.
Note that the value of ﬁc for the first term is the highest
of the six graphs; hence, a lot of discriminating information
is present in the first term. The graph associated with

the May 3, 1977, Finney County data set is still increasing
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at the tenth term, indicating that more terms are necessary
to determine the maximum performance. The graph for the last
set from Finney County is similar to the graphs for the
first two data sets from Williams County.

The graph of Pc vs E {er} can be used to determine the
degree of representation accuracy required to achieve a
specified level of performance. For the data for Williams
County on June 29 a relatively high value of E {er} is
acceptable; whereas, for the May data from Finney County
requires a more accurate representation.

For these curves there does not appear to be' any
trends based on location of the data sets. There does seem
to be a trend as far as the time of the growing season at
which the data was collected is concerned. The May dates
in both locations tend to require more representation accu-
racy and tend to still be increasing in performance after
using 10 terms.

The asymptotic properties can be used to estimate the
value of the maximum achievable classification performance.
To find the maximum performance let E{ar} approach zero
and observe the value of éc' In most cases ﬁc will be
constant or increasing very slowly as E{sr} becomes
small. The value of the constant to which ﬁc is approaching
is maximum value of the probability of correct classifica-
tion. Table 4.6 lists the maximum probability of correct

classification for each data set. Note that for the May 3,
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Finney County, data, Pc is still increasing so that the

maximum value of ﬁc is probably higher than that listed.

Table 4.6 Maximum probability of correct classification
for the six data sets.

Approximate maximum probability

Data Set of correct classification
Williams Co., May 8, 1977 .85
Wwilliams Co., June 29, 1977 .96
Williams Co., Aug. 4, 1977 1.00
Finney Co., Sept. 28, 1976 | .96
Finney Co., May 3, 1977 .93
Finney Co., June 26, 1977 .95

4.5.4 Characteristics of the Eigenvectors

For the six data sets there are some general charac-
teristics of the eigenvectors which can be readily observed.
The contribution of the spectral response to the channel
or feature which corresponds to the eigenvector is
determined by the portions of the spectral interval where
the eigenvector has a magnitude or sensitivity different
from zero. This sensitivity is apparent from the linear

functional which determines the coefficients

x, = L\x(x)¢i(x)w(x)dx (4.20)

Ty
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Therefore a subinte;val of A which has relatively large
values for.¢i(x) and w(}) will.contyibute significantly to
the informational value of the eeefficientixi.

The eigehvectors provide seme insights into thev
correlatlon between adjacent reglons of the spectrum. Let

the spectrum be sampled using very fine spectral bands. Let

the measurements using these bands be denoted by u. ., i=1,2,

" ..., 100. The correlation between any two of the measurements

is given by

E {uiuj} = ]Zc«pik«pjkyk | (4.21)

where ¢ is the ith element of the kth eigenvector. If

ik
the correlation between two adjacent measurements u, and

ui+l is high, then, the two measurements are not independent

and they couldvbe combined into a single measurement.

‘It is now possible by examining the eigenvectors to deter-

mine how narrow the spectral measurement bands should be
in various parts of the spectrum. Eigenvectors which have
high frequency variations.in magnitude in a particular
subinterval of the spectrum strongly indicate that it may
be desirable to saﬁple that subinterval using very narrow
spectral bands.

Referring to the results presented in section 4.4.5,
the first eigenvector typically has the characteristics

of the weighted mean function of the ensemble. The second
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eigenvector has a strong compgnent between .72 and 1.3 um
and a second important_coﬁpénent i; the 1.95 to 2.4 um
band. For the Finney County data set taken on September
28, 1976 these two eigenvectors are reversed in order.

The third and fourth eigenvectoré in all of the data sets
exhibit noticeable similarities. In the third eigenvectors
Williams County data and the fourth eigenvectors for Finney
County data there exists a significant component in the
subinterval between 1.5 and 1.7 uym. The sensitivity in the

visible region from .55 to .70 pym is strongest in the

fourth eigenvectors for Williams County data and the third

eigenvectors for the data from Finney County. These similar-

ities over the different data sets are somewhat surprising
and also encouraging in that these similarities indicate

a strong possibility that a sensor can be built which will

‘work very well over more than just a single data set.

As eigenvectors which are later in the sequence @f
optimum basis functions are examined, there is an increased
occurrence of subintervals with high frequency variations
in magnitude. It is of interest to note that several of
these terms were important for classification performance.
Examples of important eigenvectors which have high
frequency variations are the sixth and eighth eigenvectors
from the May 8, Williams County data and the seventh eigen-

vector from the August 4, Williams County data.
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It was observed that the subintervals from 0.6 to

0.7 ym and from 0.9 to 1.1 um have considerable high
frequency variation. The 0.6 to 0.7 um band has often
been suggested as very important for identifying green
}‘ vegetation. In particular, the chlorophyll absorption
| band centered at about 0.65 pm is present (Hoffer, 1978).
Differences in the chlorophyll pigmentation are indicators
of plant stress. Other pigments are also present in the
visible part of the spectrum. Therefore, thefe is good
evidence that narrow spectral bands in the region between
0.6 and 0.7 ym may be helpful. The spectral interval
between 0.7 and 1.1 um also possesses high frequency
variations; however, some of these variations can be traced
to water absorption bands occurring at 0.76, 0.93, and
1.12 uym. Furthermore tests using narrow spectral bands
in this region did not improve the classification per-
formance significantly over using a wide spectral band.

The significant sensitivity of important eigenvectors
in the spectral bands from 1.5 to 1.7 ym and 1.96 to 2.4 um
clearly indicates that these bands should be included in the
design. The importance of including these two bands was

further substantiated by improved classification performance.
4.6 Suboptimal Sensor Design

The analytical procedure which has been developed and

tested 1s particularly useful as a tool for the design of

S e g O g
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practicallsensof systems. Significant contributions to the
design haQe been made through iﬁproved scene understanding;
however, the primary purpose is to be able to design a prac-
tical sensor system by specifying a particular set of
spect:al bands{wi(lﬁ. The optimél‘set of basis functions
generated Sy the procedure provides a standard against which
any suboptimal practical sensors can be compared. In

addition, the optimum basis functions {wi(x)} provide

information regarding the proper choice of spectral bands.

4,6.1 Comparison with Suboptimal Systems

An important use of the optimal design is to use it
as a standard for comparing suboptimal systams. Two subop-
timal sensors similar to existing or futuretﬁfactical
scanner systems were simulated using the spectral bands
listed in Table 4.1. The basis functions for these
two sensors are given by

(4.22)

1.0, A, S x 2
= k k+1

0.0, elsewhere

where the Ak are the endpoints listed in Table 4.1.
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The sensors are first compared on the basis of expected
mean-sauare error. In Table 4.7 the mean-square error for
the two suboptimal sensors is compared with the optimal
senéor for all six data sets. The mean-square error for the
optimal sensor is shown, using the first four, six, and ten
eigenvectors. The units of the expected mean-square error
are relative and are significant for comparison purposes
only. The second weight function (Figure 4.6b) was used for
all error compuations. The large difference in mean-square
error between the suboptimal and the optimal sensors is
due to the fact that sensors one and two do not attempt to
represent the entire spectral interval from 0.4 to 2.4
micrometers. Figure 4.32 illustrates how a large contribu-
tion to the mean-square for the suboptimal sensors results
from the lack of spectral channels in large portions of
the spectrum.

Comparison can also be made on the basis of overall
pattern recognition system performance. For each data set
information classes were selected. The performance
criterion was the probability of correct classification.

The performance of the two sensors is compared with

the optimal sensor in Figures 4.33 through 4.38. Using ten
eigenvectors in the representation of the ensemble, the

best four features and the best six ifeatures as determined
by feature selection were evaluated. The choice of four and

six features was made because suboptimal sensors one and
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Table 4.7 Comparison of expected mean-square error (in relative units) for
each of the six data sets using two suboptimal sensors and
the optimal sensors consisting of the first 4, 6, and 10
eigenvectors. '

Data Set Sensor 1 Sensor 2 First Four First Six First Ten
ﬁi;lg?migsg' 28570 17340 21.30 11.04 5.144
giiéiggf o5, 17320 16380 26.31 £1.37 5.253
Xig%iZTslgg; 18070 14010 19.76 9,315 3.539 L
giﬁi?yz§?'1976 13360 11650 18.19 7.133 3.035
;i;ngf - 22110 16080 36.67 14.72 6.968
Finney Co. 23210 17760 26.19 13.98 5.769

June 26, 1977
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Figure 4.32 Regions of the spectral interval which are not
represented by a suboptimal sensor and which
contribute heavily to the mean-square error.
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tWo_have four and six spectral channels respectively.
The classification performances, using the first four and
the first six eigenvectors as well as the first ten eigen-
vectors, are also provided for comparison. Severalyobserva—
tions can be made from comparing the perfofmances; In
general considerable improvement in classification per-
formance can be achieved over that of sensor number one. In
several caées the estimate of the probability of correct
classification for sensor 1 one was significantly less than
any of the other combinations of channels presénted. Sub-
optima% sensor number two does quite well, however, even
approaéhimg in some cases the performance of the optimal
sensor using the first ten eigenvectors.

For the chosen information classes, a very accurate
representation of the original spectral response function
is not required‘tobcbtain good performance. The information
contained in the unused portion of the spectrum does not
appear to be essential for the identification of these
classes. However, for a set of information classes which
are deeper in the information tree, a representatiqn
with smaller expected mean-square error may be necéssary.

There is evidence that measurements made by the
optimal set of basis functions are uncorrelated. A measure
of the correlation between any two measurements is the

correlation coefficient given by

e e ot e g 3t o
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E{(x.-m,) (x.~m.) }
r * J ) (4.23)

L
2 2.7
[E{(xi—mi) }E{(xj-mj) %

Two measurements X, and Xj, i#3j are said to be uncorre-
lated if pi.==0. The matrix of coefficients is called

the correlation matrix. From the properties of the Karhunen-
Loeve expansion the Sff-diagonal cdrrelation coefficients

in the correlation matrix for the stochastic procéss corres-
pqnding to a stratum are zero. Therefore, the measurements

on the process are uncorrelated. However, the class condi-

tional correlation matrices in general do not exhibit un-
correlated measurements (Bharucha and Kadota, 1969). 1In

practice it was found that the the class conditional

Ly

statistics are still relatively uncorrelated. As an

s 2t

example, the correlation matrices for the three classes

} ffrom the data taken over Williams County, on June 29, 1977,

2 BTN ST g 0

the four band suboptimum sensor number 1 of Table 4.1 were
computed. These matrices are listed in Table 4.8. The ;

first two channels of the suboptimal sensor are highly

correlated and the third and fourth channels are highly

correlated. The correlation matrices‘for the first four
optimal basis functions over the same data set are

presented in Table 4.9. There is considerably less

i
4
£
1
=1
R
*

correlation between any pair of channels in the optimal

sensor for any of the three classes. The fact that the , Z

measurements are uncorrelated implies that the redundancy

L g e e

eI ¢



e — T ——————— AL SRR A TR

183

Y

of information in the measurements is minimized, and

maximum performance can be achieved with a minimum number

of features.
Table 4.8 Correlation matrices for the four band suboptimal
sensor number 1 using data taken over Williams
County on June 29, 1977.
Class WHEAT
1.00
0.99 1.00
0.45 0.46 1.00
0.22 0.24 0.96 1.00
Class FALLOW
1.00
0.99 1.00
0.84 0.83 1.00
0.68 0.67 0.95 1.00
Class PASTURE
1.00
0.99 1.00
0.76 0.81 1.00
0.68 0.73 0.99 1.00
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- Table 4.9 Correlation matrices for the first four optimal

basis functions using data taken over Williams
County on June 29, 1977.

Class WHEAT

1.00
-0.45 1.00
-0.23 -0.35 1.00
0.01 0.25 =0.15 1.00
Class FALLOW
1.00
~0.02 1.00
0.24 0.30 1.00
0.30 -0.30 0.02 1.00
Class PASTURE
1.00
-0.62 1.00

-0.79 0.30 1.00
-0.34 0.07 0.49 1.00

4.6.2 Evaluation of Spectral Subintervals

In section 4.5.4 methods of evaluating the eigenvectors
in order to determine how to select spectral channels for
a practical sensor were discussed. Principally the eigen-
vectors are examined to identify regions which are coﬁ—
tribﬁting to the inforhation content of the scene. The
weight function effectively eliminated two subintervals
which were shown to be of little value. The factors which
are important for identifying imp@rﬁant subintervals are the

magnitudes ¢f the eigenvectors in these subintervals and
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their ranking with respect to representation error and with
respect to classification pefformanceﬂ

Examination of the eigenvectors has revealed that
the spectral bandwidths of current sensor systems‘may be
too wide in certain subintervals bf the spectrum. Two
subintervals in partiéular appear to have significant high
frequency variations to merit narrow spectral-sampling
channel widths. One of these subintervals from 0.9 to
1.15 micrometers is known to have several minor molecular
absorption bands which may be the cause of the increased
high frequency variations. The subinterval from 0.6 to
0.9 ym also possesses significant variations in the magni-
tudes of the eigenvectors. This region is considered to
be important for measurements on vegetation classes. There-
fore, the proposed sensor design should reflect the
importance of narrow sampling channels in the subinterval.
Bandwidths as narrow as .02 ym may be required to achieve
good performance. However, narrow spectral channels
require more bands to cover the spectrum. The cost
of adding more spectral channéls which will cause greater
‘data volume difficulties should also be considered during

the design of the system.

4.6.3 Proposed Sensor Design
A proposed sensor is now designed using the techniques

and knowledge that has been developed. It is desirable that
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this sensor work well over all six data sets. The number of
features or channels will be restricted to between six and
ten. Only recﬁangular basis functions will be considered
because they are orthogonal and simple to implement. The
approach will be to pick a set of basis functiohs that will
give a small expected mean-square error, and, then, compare
the resulting classification performance with the optimum.
The selection of spectral channels for the proposed

sensor was based upon manual examination of the eigenvectors

and upon use of equation 4.21 to locate adjacent uncorre-

lated measurements of the spectrum. The eigenvectors over

each band are studied with the intention of locating regions
of the spectrum which need to be sampled with narrow spectral
channels. The sampling measurements made by the field

data collecting system are used to compute the correlation
betWeen measurements normalized to the respective variances.
If two adjacent spectral measurements are uncorrelated, a
good choice for the location of the edge of a rectangular
basis function.might be between the two measurements.

Graphs of the correiation coefficients as a function of
'frequency for each data set are included in Appendix C.

It should be pointed out that even though these groups
indicate that two.points are not correlated, there still

may not be much improvement in performance as a result of
locating the edge of a channel between the two points. The

fact that the edges of two channels are uncorrelated does
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not guarantee that the spectral channels themselves aré
uncorrelated. Furthermore, the examination of the eigen-
vectors and the computation of the correlations must be
considered in light of tﬁe signa;-und noise properties
across the spectrum. Therefore,‘the procedure is to design
a proposed sensor using the principles discussed above
and evaluate the system performance.

The proposed sensor design was developed using the
May 8, Williams County, data. The spectral band locations
are listed in Table 4.10 wherelthé basis functions are,

again, given by

1.0, 2 =% 2 Ay
wi(l) = {:
0.0, elsewhere

The resulting design was tested on the remaining data sets
and compared with the corresponding optimum sets of
basis functions.

The performance of this sensor design was very
good. The expected mean-square error for each data set
is given in‘Table 4.11. The expected mean-square error is
on the order of 1000 which is a factor of 10 less than either
suboptimal sensor one or twd. This wvalue though high
with respect to the optimal sensor is probably about as well
as one can do with a small number of rectangular basis func-

tions. The classification performance is listed in Table
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4.11 and ihcluded in the bar graphs of Figures 4.33 to

4.38 for cémparison with the other systems.

Performance

is significantly better in several cases to either of

the suboptimal systems and very close to the 10 channel

optima1 System in a number of the data sets.

Table 4.10 Spectral band locations for the proposed

sensor.

Channel
1

O~V WN

Endpoints
.42 ym - .54 um
.56 um .66 um
.68 um .70 um
.72 um .90 um
.92 um 1.00 ym
1.02 um 1.30um
1.52 um 1.74 ym
1.96 pm 2.40 ym

T o o R R A B o D TR
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Table 4.11 Expected mean-square error (in relative units)
and estimated probability of correct classifi-
cation using the proposed sensor.

Data Set E {e} ﬁc

gﬁiéiggf 5837 1700 ~.969

Xié%iZTslgg3 1016 .995

i | §i§2?yz§?’1976 - 1068 -953

% 5i;n§¥ 5377 1213 .854

g §igge§6?0i977 121 -966
¥
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CHAPTER 5. CONCLUSIONS AND SUGGESTIONS FOR
IR // " - )
' FURTHER RESEARCH

The purpose of this research was to dgyelop an analyti-
cal technique for selecting spectral channels as a part
of the design of a multispectral scanner sé@Sbr system
for remote»sensing. The resuits and conclﬁgions as a
consequehce of the development and implégégtation of this

technique have been significant and are now summarized.

0

?J\m The spectral representation parameter is one of five

suggested interislated parameters which influence the
v:f\ - . ) :
overall pattern recognition system performance criterion.

Thﬂ quantity associated with the spectral representation

v

vpafameter was defined by the expedted_méan-squaré error.

The stochastic process, consisting of an ensemble of
spectral'response‘functions from a stratum, was represented
by a éeries expansion in’a set of basis functions'suitab%y
weighted by coefficients. By incfeésing the number of baéis
functions in the repfésentation the expected mean-square
representaﬁion error will decrease. The Karhunen-Loeve'
expansion was used to‘provide,an,ordereﬁtset of basis

functions such that uﬁing the first N of them results in
& minimum mean-square representation»error over all
possible choices of N basis functions.
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7
/4
5

The development of the Karhunen-Loeve expansion in
Chapter 2 was generalized to include the possibility of
using a weight function in order to weight the different
portions of the spectrum relative to their importance.
The‘mqtivation was the occurrence of strong but noisy
spectral response variations in two regions of the spectrum
corresponding to water absorption bands. Using the
uniform weight function eigenvectors which were dominated
by components in these bands were among the first five in
the ordered sequence of optimal basis functions; however,

their contribution to the overall performance of the system

.~ was very small. By using a weight function which was

unity except in the water absorption bands where the
weight was very small, the eigenvectors containing
significant components from these bands were no longer in
the top ten or twenty eigenvectors. A very noticeable
improvement in classification performance on a term-by-term
basis was noted with the inclusion of this weight function.
The analytical techniqué”developed in this research
has contributed to the understanding of the scene. The
dimensionality of the observation space required to
achieve sufficient representation accuracy to provide
acceptible classification performance for the information
classes was approximately six to eight. A more complex
set of information classes may require more accurate

representation which would necessitate using more basis
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functions and increase the number of dimensions in»thé
rep;§sentation. The graph of.tye glbbal performance
critérion, which is typically the probakility of correct
classification, as a func#ion of expected mean-square
error is useful for studying the relationship between
the spectral representation and the overall system per-
formance. For tg;:épformation classes selected the
graph of ﬁc versus E {er} allows one to estimate"the
maximum probability of correct classification and to
study which eigenvectors are contributing the'most 9b
the classificafion performance. Also, the shape of this
curve indicates whether or not the selection of the basis
functions with respect to the mean-square error.criterion
bears any relation to the contribution to'classification
performance. The largest contribution to improvea per-
formance occurred when the first few eigenvectors in
thevsequence were used. However, in several of the strata
used in this work it was found that eigenvectors that
were sixth or higher in the sequence of optimum basis
functions made important contributions to the classifi-
cation performance. In general, there is good correlation
between the ranking of the basis functions on the basis
of classification performance and the rankiné on the basis
of minimizing mean-square error.

An important aspect of understanding the scene is

determining which portions of the spectral interval are
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most useful. “By examining which subintervals are'being
. sampled fromithe eigenVectors'which are most important
K, ~
Lo {
h for clas31f1catlon purposes, one can’ 1dent1fy porylons

J of the spectrum whlch are 1mportant and sublntervals

which are strongly correlated with other sublntervals.
Ny | | e . -
wae limited value of the subintervals corresponding to

N

the water absorptlon bands near 1.4 and 1.9 mlcrometers

was well known and was verlfled in tHis research

\
\‘

It was observed that the plots of the elgenvector /

’ Which were later in the sequence tended to have increased

\ L , . .. : o . o
~ high frequency variations. Coupled with the indication

pthat these later terms- provide significant additional

5,
.

information for classification, it was concluded that

‘some spectral regions may require a high spectral sampling

A
e

rate. Bandwidth intervals of 0.02 um may be required as
compared to the 0.1 um intervals used in the suboptimum
sensor number one. Of particular importance was the

indication of a need for fine sampling of the spectrum

AT B e e 45 TR g

in the visible region corresponding to the chlorophyll
absorption bands (0.55=-0.70 um).

The dse‘of'the weighted Karhnnen—Loeve expansion was
demonstrated to be a useful tool in the design of sensor
systems. Two suboptlmal systems ‘which are similar to
existing or planned operational sensor systems were

compared with the‘optimaI representation. ‘For the

R S T e g eat. i
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information classes used it was found that a very high

A representation accuracy was not necessary to obtain good

' performance. The practical sensors, which represented
the spectral response functions very crudely, performed

quite well compared to the system consisting of the set

of optimal basis functions. However, there is a signifi-

cant improvement in performance that can be achieved by
a better representation in several of the cases.

A proposed sensor design was developed usihg the
design procedure. The proposed sensor consisted of eight
rectangular bands selected on the basis of the information
provided by the ?rocedure. The performance of the pro-

posed design was superior in classification performance

to two other practical sensor designs and very much Super-

ior in representation accuracy. For the information classes

e tm s & L

used the classification performance of the proposed sensor

was very close to the maximum possible in most cases.

b o ey g O AR
e e T

The conclusions drawn so far are based on a very

limited collection of strata. To carry out the procedure

! such that the collection is representative of all possible
strata that a given sensor may observe would require many
more sets of data. Suppose, for example, that it is
desired to use a sensor to map vegetation in the United

;1 States. Only wheat growing areas of the central plains

are represented by the two locations used in this work.
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The spectral variations that are peculiar to agricultural
scenes in the midwestern cornbelt, the small farms of
New'England, the southern cotton belt, or the fresh

¢ produce growing regions of the far west are not repre-

| sented. Furthermore, other useful areas which may be of
interest such as urban areas, forest lands, deserts,

( mountainous regions and large bodies of water are not

i ,;'/ \\;

ipcluded Lﬁ\the representation. At presentkthe a;ailable
data is primarily taken over the great plains and the
midwest. The helicopter-mounted sensor has proved to
. be an efficient method of gathering avsufficient amount
of measure;ents in a short amount of time. The time-
consuming effort that is needed is the collecting and
correlating of ground truth information which will allow
one to use various sets of information classes.

An important concept which has been alluded to but
which requires further investigation is the design of

methods for insuring that the ensembles assembled are

I AT N S

representative. Specifically it would be desirable to

be able to make some quantitative assessment as to
whether or not the collection of spectral response func-

tions are representative of the ensemble assnciated with

a stratum and whether or not the set:of strata are

representative of all possible strata which the sensor

T et e

may observe.
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The five parameters were discussed at some length in
Chapter 3. A considerable body of research results has
been collected relatingleach of these parameters to
classification performance and in some cases showing the

interdependence of the parameters. However, at present

~only limited attempts to vary all of the parameters

simultaneously to arrive at some optimal set have been
reported. It is recommended that g2ts of data be assembled
which would allow one to vary all of the parameters.

The available knowledge should provide guidelines for

the proper design of such a collection. Recommended
variables are the mean~square representation error, the
ground resolution element size, added white noise power,
number of training samples, and the information trees
which correspond to the spectral representation, spatial
representation, S/N, ancillary data, and information class
parameters respectively. Also, it would be desirable to
have available several other classifiers including a

spatial classifier to evaluate performance.
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Appendix A. A Stratified Posterior Classification

Performance Estimator

A method was needed to estimate the classificétion
fperfbrmance for a maximum likelihood Gaussian classifier
from a set of multiclass multivariate statistics. ’A Monte
Carlo method may be used to evaluate the probability of
correct classification integral. The method used here
is based on the stratified posterior estimator developed
by Whitsitt and Landgrebe (1977) (see also Moore, Whitsitt
and Landgrebe, 1976).

Let X be an observationbfrom one of M classes Ci,
i=1,2,3,...,M, with a priori probabilities P.. The
maximum likelihood decision rule can be statéd.as follows:

Assign X to the class C, if : o

P(C, |X) = max {P(ci[x)}
, i

where P(CiIX) is the conditional posterior probability

for class C; given the observation X. This rule partitions
the obsérvation space Q into subregions Ql’\n2' ...,QM;
co;responding to the classes‘cl,C2,..., CM' respectively.
Define the indicator function

. l' X € Q.
I, (%) = *

0, x £ a;
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The probability of correct classification integral is
/given by
I |
p =Jf P.I,(x)p(x|C,)dx (A.1)
7 ¢ gi=1 * % 1
It is desirable to evaluate the probability of correct
classification for each class as well as the overall
; probability. The perfofménce probability for the ith
? class is “
% Pci = L Ii(x)p(*lci)dx (A.2)

This integral is equivalent to the integral of the con-

ditional density function whose support is Qi. The

§ ' overall performance, then, is
f 1
i P = P,P (A.3)
¢ i=1 * S
;
5 From Bayes' rule
] . o
P(C, |x) P(x)
' p(x|c,) = *
f i P,

_ i
% hencé,
; P(C, |x) :

P = f I, (x) p(x) dx

¢ €i o T Py
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M
p(x) = ] P.p(x|C.)
j=1 T J

Therefore,

I

fg 1, (0 B(C |0 plxlc,) ax (A.4)

Define

Q; (x) = I, (x) P(Cilx)
Theh,.

L 9, (x) p(xICj) dx

is the conditional expected value of Qi(x) given that x
comes from the class Cj' The estimate of this expected

value is
f v
R

N,
- 1
Q. (x|c,) = = zj Q. (x)
i 3 Nj k=1 * "

Therefore the estimate of the probam@lity of correctly

' clqésifying observations belonging to class is the unbiased
= .

estimate
N

o .
31 7 5 (x) (A.5)
Py Ny &y i "
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(Whitsitt and Landgrebe, 1977). The stratification refers
xto the sampling scheme used to obtain the estiméte. A

stratified sampling scheme takes advantage of knowledge

of the classes to which the samples belong, whereas random

sampling does not use the class assignment information.

N, multivariate sample vectors are generated for class i

from the given statistics. The maximum likelihood

PO SN, Spup et T

5 rule is used to determine the decision regions. Equation
A.5 is evaluated for the Ni sample vectors from each class
and the total probability of correct classification

is computed from equation A.3.

From equation A.4 the term that must be evaluated is

Pi_P(x]Ci)

L P, p(x|C )
Lk k

it

P(Cy Ix) = (A.6)

A P o ey e

To evaluate this probability compute Pk:p(x|Ck) for each

s e

class. Choose the largest value of Qkp(x|Ck) which
3 by the maximum likelihood decision rule will be Pi.p(xlci).
The posterior probability is given by equation A.6.

The analysis so far can be applied to any probability
measure. The remaining discussion will deal with the -

parametric case where the probability measure is Gaussian.

j That is

p(xle) ; exp {—%(x—mk)TIﬁ:l(x-mk)} (a.7)

e P P R : s R
PRI U Y
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.

e

’ 7
where m, and Kk are the L-dimensional mean vector and <
B

4
)

covariance matrix respectively for class k.
[

To reduce the number of computations required the

1inear‘transformatiog

x = ¢iri%y + m, o - (A.8)
7*\/f*' ; |
is introduced‘where ¢i is the mgtrix of eigenvectors
'required to diagénalize the covariance matrix of class i,
.Pi is the.diagonai%matrix of‘eigenvalues and m, ;s the
mean vector for class i. Substituting equation A.8 into

A.7,

= -3 - T % T -1 %
p(x|C) = (2m) F g |7 exp [—%[y P60y K ¢37;°Y

7
//“:-:;\::2
Ny

\\:/

T.% T -1 T -1

+2y TiM e Ry (mj mk)-F(mj-mk) K~ (my mk)ﬂ ;
In this form it is not necessary to perform th@ intermediate
computational step of transforming the generated random
vectors to get the desired statistics. It is only necessary
.to generate M sets of random vectors y with expected

value the zero vector and covariance matrix I and to use

them in expression A.8. e
The random vectors are generated using a pseudc=

random sequence of uniformly distributed random numbers. o
; A :

i

0
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The subroutine RANDU from the IBM 360 subroutine package
generates the random numbers and transforms them by the
in;éfse cumulative-distribution~function method to
obtain zero mean, unit variance, @ndependent Gaussian

s random numbers. These random numbers are used to fill

o\,

LK
the elements of the vector y. The y vectors have an

;. expected value equal to the zero vector and a covariance

matrix equal to the identity matrix.
i ) N '
' y

N

Estimgto: Evaluation

N.

Since - Y Q.(x,) is an unbiased estimate of

e e T EIINE

i f Q. (x) p(x C,)dx, the estimator
g & i

P \

(L 7 g (x) (a.9)
1 Pi Nj k=1 i xk) | i

is an unbiased estimate of the probability of correct

classification (Moore, Whitsitt, and Landgrebe, 1976).
The variance of the estimator can be shown to be é

smaller than the variance for a count estimator using

stratified sampling (Moore, Whitsitt, and Landgrebe, 1976).

The variance for the stratified count estimator is

2
M P, 2

1
izl . (Pci —pci ) , . (A.10)
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If the probabilities of correct classification for each
class are known then the variance of the stratified
count estimator can be evaluated and used as a bound
on the stratified posterior estimator.

A FORTRAN program SPESTM was written which accepts
the mean vectors and covariance matrices for up to
ten classesvand up to 10 dimensions. These statistics
are used to generate random vectors and estimate the
classification performance for the classes specified
by the distrihutions.

To test the me£hod and the program a three-class

problem was constructed. The mean vectors for the classes

were
My = [-1, -1, ..., -117
M, = [0, 0, ..., 01"
My = (1, 1, ..., 117

The covariance for each class was the identity matrix.
The number of random vectors generated for each class was
1000. The exack classification aciuracy as a function

of the dimensionality can be evaluated for this case

c1 = 1 - erfc (VL/2)

P
P_, 1 - 2 erfc (V/L/2)
P
P

~c3 = 1 - erfc (VL/2)
c=1- 4/3 erfc (VL/2)
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2
) e 2.

where erfc (a) = [ gl © >3
, a V27

Oy ] \

and L is the dimensionality. Table ALcontgins the results
of evaluating the class conditional performance and
the overall perféfmance\for.from one to ten diﬁ;nsions.

A bound on the standard deviation of the estimator
dan be computed by calculating the standard deviation
for the stratified count estimator. Table A2 lists
the standard ¢~yviations for from onre to ten dimensions

for this experiment.

The actual variance was estimated by repeating the

~ classification performance estimation 20 times using

7

different starting points in tye'random number generator.
The maximum difference between the estimate and the true
value Emax and the standard deviation froﬁ the true
value were computed for from one to ten d%mensions as
shown in Table A3.

Based on the results presented in the tables, differ-

ﬁi}\
ences in estimation of overall performance of less than .005 |

(% of 1%) will not be considered significant. Tﬁé per-

formance of the algorithm is demonstrated to be quite

adequate for its intended use. The class conditional esti-
mates are less reliable but are sufficient to observe trends

in the performance due to the individual classes. Thﬁ“xun—
i 3%

{

ning time for this algorithm is quite reasonable, even- for

ten dimensions.

R L R N 0
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Table Al.

CLONHRUTD WM

0.6915
0.7602
0.8068
0.8413
0.8682
0.8897

0.9071

0.5214

0.9332
0.9431

0.3829
0.5205

0.613%

0.6827
0.7364
0.7793
0.8141
0.8427
0.8664
0.8862

0.6915
0.7602
0.8068
0.8413
0.8682
0.8897
0.9071
0.9214
0.9332
0.9431

Test of error estimator.

P
c

0.5886
0.6803
0.7423
0.7885
0.8243
0.8529
0.8761
0.8951
0.9109
0.9241

R R R T R T R

A

Pcl

0.6859
0.7671
0.8037
0.4283
0.8642
. 0.8767
0.8993
0.9129
0.9193
0.9209

-~

Pc2'

0.3793
0.5116
0.6202
0.6852
0.7425
0.7939
0.8242
0.8472
0.8809
0.9012

~

Pc3

0.7001
0.7700
0.8081
0.8550
0.8703
0.8787
0.9065
0.9240
0.9360
0.9481

P
c

0.5884
0.6829
0.7440
0.7895
0.8256
0.8498
0.8766
0.8947
0.9120
0.9234

A X4
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Table A2. Theoretical bound.of standard deviation for
different dimensions.

1 .00858
2 .00826 j
3 | .00781
4 .00733
5 .00686

6 .00640 |
7 .00596 }
8 ) .00555 ?

9 .00517 !

10 .00481 | ;
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Table A3. Experimental standard deviation of estimates.

A

i
1
:
-
i
-
B
%
4
i
3
y
L

e DS

PN A bl AR

f Dimensions Pcl Pc2 Pc3 Pc
A
i 1 .016 | ..010 .017 .003 | o
{ .033 .019 .049 .005 max
g 2 .018 .010 .014 002 | o
8 .036 .018 .027 .005 max
% 3 .016 .017 .017 .003 | o
; .046 .031 [ .o055 .007 max
4 .011 .016 .015 003 | o
g .025 .029 .029 .005 max
§
; 5 .015 .014 .012 .002 | oy
.031 .033 .026 .004 max
N 6 - .014 .014 .010 .003 | op 4
. .026 .023 .022 .006 max
7 .009 .016 .012 .003 | o
: .027 .033 .027 .005 max
g 8 .013 .013 .012 .003 | o
; - .025 .036 .023 .006 max
: ' 9 .013 .014 .012 .002 | o
| .026 .031 .021 .004 max
| ,
: 10 .009 .012 .009 .002 | o
: .016 .024 .019 .005 max

o = standard deviation

EmaX = maximum difference between estimate and true value
over 20 trials

T
T

e - = - : AR
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" Appendix B. Data Base Description

The data sets used in this research are described and

sufficient information to access this data is provided.

Data set number 1

Location: Williams County, North Dakota
Collection date: 8 May 1977

CLASS SAMPLE FUNCTIONS/CLASS
SPRING WHEAT 664
SUMMER FALLOW 437
PASTURE 164

Field measurements library tape number: 4896

BN

218

Comments: Wheat is just emerging (plant height ~8 cm).

Data set number 2

Location: Williams Cbunty, North Dakota
Collection date: 29 June 1977

CLASS ' SAMPLE FUNCTIONS/CLASS
SPRING WHEAT 787
SUMMER FALLOW 291
PASTURE : 161

Field measurements library tape number: 4897

Comments: Wheat is green and at full height. The

mixture is below average.
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Data set number 3.

- Location: Williams COuntv, North Dakota
~.Collection date- 4 August 1277

s

= CLASS SAMPLE FUNCTIONS/CLASS
SPRING WHEAT . 931
~ (SUMMER FALLOW . 330 \
PASTURE SRR . 183 |

Fleld measurements llbrary tape number- 4898
- Comments: Wheat is mature. In a few fields the wheat
is harvestedJ : B

Data set number 4

- Location: Flnney County, Kansas
- Collection date: 28 ‘September 1976

CLASS SAMPLE FUNCTIONS/CLASS
 WINTER WHEAT | 141
SUMMER FALLOW 414
GRAIN SORGHUM 277

Field meaSurements library tape number: 4292
Comments: Wheat is emergent while other crops are at
mature stages.

Data set number 5

Location: Finney County, KanSds
Collection date-v 3 May 1977

CLASS SAMPLE FUNCTIONS[CLASS
WINTER WHEAT - 658
SUMMER FALLOW 211
OTHER CROPS | 652

Field measurements library tape number: 4295
Comments: Wheat is near full canopy and green.
Other crops are emergent,

[
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Data ;set number 6

Lécation: Finney County, Kansas
Collection date: 26 June 1977

CLASS SAMPLE FUNCTIONS/CLASS
WINTER WHEAT 677
SUMMER FALLOW 643
GRAIN SORGHUM 157

Field measurements library tape number: 4296
Comments: Wheat is mature and ready for harvest.

Accessing the Data

A software package éalled EX0OSYS (Simmons et al, 1972)
w;s developed at LARS for handling field measurement data.
Sampled spectral response funcﬁions are calibrated and
stored on magnetic tape'aiong with pertinent identiciatioh
information. EXO0OSYS, also, provides access to the field
measurement data through three processors - IDLIST, GSPEC,
and DSEL. The IDLIST processor scans the tape and lists
information from the identification record as required. One
cén use this information to select appreopriate runs to repre-
sent the ensamble. The GSPEC proceésor creates 'a punched
deck consistihg of the 100 sampled values of the spectral
response functions for all of the desired runs. The DSEL
processor simulates recﬁangular spectral channels and uses

data from the tape to evaluate the response in each channel

‘for the ensemble.

The GSPEC processor is used to assemble the data sets.

It is required to specify the library tape number, the

ey
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i

cover type or class, and the collection date to pﬁt together
all of the sample functions on a particular date for a
single class (see Figure Bl). The sample functions are

collected by class to facilitate the estimation of

class dependent statiSticg. A deck of cards containing
ﬁhe sample functioné for all of the claéses is readvby the
roufing SPRDCT and stored on disk in the format as shown
in Figure B2. All programs which éccess,the daté sets
expeét the data to be in this format. Supplimenta%g
information suéﬁ as the number of.samples in each cigzg
and the name of each class are added from the terminal
during the execution of é%ﬁbCT (Table Bl1) . ProceSsing of
the ensemble is accomplished with the data stored on

the desk file; however, the data file may be stored on

magnetic tape between processing sessions.

TR YR
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Figure Bl. Sample program for assembling sample

functions using the GSPEC processor
in EXOSYS. '
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) [
Co 100 WORDS
ID Information i
Integer #4 i
A
p '
/ Sample Function 100 WORDS ’
o No. 1 (100 points) REAL * 4 o Vci}as;f*;;s 1
Sample Function 100 WORDS
4 No. 2 (100 points) REAL * 4
! / l/
‘//Y/J,:j: ‘ .
d T
160 WORDS . , !
8 REAL * 4 Class 2
100 WORDS
_REAL * 4
i ‘/L\‘//
.
Figure B2. Spectral parameter design sYstem data storage
B format. '
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*Table Bl.

ID information locations in data storagz

format.

I

TEM

f
o

Date data set was assembled
Experiment number

Number
Number
Number
Number

~ Number

Number
Number
Number
Number
Label
Label
Label
Label
Label
Label
Label

of
of
of
of
of
of
of

of

of
for
for
for
for
for
for
for

classes :
sample points (=100)

samples
samples
samples
samples

samples

samples
samples

class

for
for
for
for
for
for
for

class
class
class
class
class
class
class

N Ww N

N

class
class
class
class
class
‘class
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Correlation Between Sample Measurements
on the Spectrum
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Appendix C. Correlation Between Sample Measurements on the‘

Spectrum

Graphs of the correlafion Eoefficients as a function
of wavelength which were uséd to help lacate speétral band
edgeS'é%e présented. Traditibnal methods of spectral analy-
sis ;rewnot_gppropriate for this anélysis since the calcula-
tion of théP;pectral.density to obtain a sampling bandwidth
assumes that the sﬁochastic process is stationary and that
the sampling rate will be uniform over the entire interval
A. It is believed fhat it is hecessary to sample somé
parts of thé spectrum more frequéntly than others; hence,
the correlation measure proposed here is used.

The measure of the correlation between two adjacent

spectral samples uy and u;,q ON the interval A is the corre-

lation coefficient given by

E{(ui-ui)(ui+l-ui+l)}

(C.1)

°i,i+l T ”

— .2 - 2.1
E{(ui-ui) }E{(ui+l—ui+l) }]

e

N
i
W
W

The correlation cc@fficient can be computed using the

A

‘eigenvalues and eiginvectors. The matrix equation which

was ‘solved is given by
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¢TI = KWo

ox

Vil = ¢P¢T (Cc.2)

\

The covariance matrix K consists of the elements-kij,

R

£ where the kij are the correlations between the ith

and jth spectral samples. Assuming W is the identity

matrix, the correlation coefficient is equal to kij
normalized by dividing by the square root of the product of
the respective variances. Using equation C.2, two adjacent
spectral channels have the correlation coefficient

}zc %ik%i+1,x"k
= (C.3)

Pi,i+1

ETEVN (2 P541%k 142,670

where ¢ik is the it? element of the kth eigenvector.

The second weight function from Figure 4.6 is used.

RO L A, T T

Since this weight function is unity everywhere on A except

over the water absorption bands, equation C.3 is valid

everywhere except over the absorption bands and on the edges

of the absorption bands.

PRI Ao ast el SRt e T
AT ST e ey e

The graphs of the correlation coefficients as a func-

PR LUMEDE ta

tion of wavelength for each of the six data sets are pre-

sented in Figures C.l1 through C.6.

ORI
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i ’

3JULY. 1978 , g

aaaQaaQnQan

N

.COHMON 1D(106)
INTEGER®4 IN(S) ,DAY(3), TIHE(S) NOGRPS GRO‘UPS(S)

INTEGER®4 ISAM SINT,DATE(IS) INFO(IQ. : ,
REAL®4 WBCOEF(2,5), DATA(ZSGG) X (100) ' .
EQU!VALENCE(DATE(I) ID(1)) , (INFO(1, 1),ID(30)), (INFO(! »2) ,1D(40)) ,
@ (INFO(1,3),ID(50)), (INFO(1, 4) ID(GO)) (INFO(1, 5) ID(70)) , (INFO(1,6
0), ID(SO)) (!NFO(I 7, ID(QO)

“REWIND «

NT = 100

C .
g 1D 'lNFORHATION

WRITE(16, 10)
10 FORMAT (5K, 'TYPEIN DATE’,/IX,15(’/"))
READ( 1S, 15) DATE
ls mmrusAn ‘

C EXP NO., NUMBER OFCLASSE, AND NUMBER OF DIHENSIONS

WRITE{(16,20)
2 FORMAT (5X, ' TYPE EXP.NO. ,CLASSES
READ(iS,25) ID(16), lD(l7) IDA1®)
25\\ FORMAT (13, 2X,12 3X,I

,AND DIMENSIONS® ,/* /77 /7 777%)

c
¢ mmmm INFORMATION . |
NCLS = ID(17) | . R
DO 35 1=1,NCLS . T
WRITE(16,30) | T

30 elf(/)l'lgm"!“’({ﬁ'(};;gli CLASS INFO AND NO SAMPLES FOR CLASS ’.ll;/lX,lO(
35 READ(15, 40) (INFO(L, ) ,L=1,10) ,1D(20+1)
40 FORMAT (10A1, 4, I3)

WRITE(11) 1D

CALL SPLBL

, g READ SAHPLE FUNCTIONS FROM EACH ("LASS

" DO 500 K=1, NCLS | ’x*\\\_ i

WRITE(6,80

80 .FORMAT(&(/) 10X, *SAMPLE I‘UNCT'ONS’)
NF = ID(20+K)
DO 200 JJ=1,NF

100  READ(S, maanm TIME, IN, NOGRPS, N

1000 * FORMAT (3A4, 2X, 3(]2 lX) ,/ 45X, SA4 / 20X,Il 8X,13,/)
~READ(S, 1100) (DATA(D 1 ,NOSAMS
1100° FORMAT (20A4)
WRITE(6,1S0)IN.
156 FORHAT(!OX 20A4)
DO 160 I=l, .
160  X(I) = DATA(I+1)
WRITE(11) X

200  CONTINUE

500  CONTINUE
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URPOSE
TO DESIGN THE OPTIMUM SENSOR FOR A GIVEN DATA SET.
USAGE

CALLED FROM EXEC ROU%INE

DESCRIPTION OF PARAMETERS

LM - MEAN VECTOR OF DATA

Cov - COVARIANCE MATRIX OF DATA
PHI - MATRIX OF EIGENVECTORS.
GAM = EIGENVALUES

N -~ DIMENSIONALITY OF DATA SET
NCLS -~ NUMBER OF CLASSES

SUBROUT INE_AND FUNCTION SUBPROGRAMS CALLED

EIGENP ,EISORT,SPWGT 1

METHOD

THE KARHUNEN-LOEVE EXPANSION WITH THE HAX!HUH LIKELIHOOD ESTIMATE
OF THE COVARIANCE MATRIX AS THE KERNEL IS USED TO REPRESENT THE

RANDOM PROCESS.

REVISED IR Ty
14 AUC, 1978 ; I

COMMON ID(109)

REAL®4 AM(100),Y(100),C0V(5050) ,PHIP (100, 100) )
REAL®S VECI (109, 100) ,EVI(100) , INDIC(180) , ACOV (16, 180) ,GAM(100)
REAL®S PHI (100, 100) ,SUM /
REAL®*4 X(100) ,W (100} ]
REWIND 2 h

WRITE(16,5)
FORMAT (5X, *OPTIMUM SENSOR DESIGN’)

READ(2) 'iD
WRITE(6,8)
FORMAT(IHI 5/
CALL SPLB

N = ID(lS)

NCT = N®¢ N+l)/2

T o e e e

v e et

s

T R AT SR A L

R 20

SERTRILE
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S

X

&8

('2008

210

COMPUTE COVARIANCE

WRITE(16, 10)
FORMAT (X, 'COVARIANCE BEING EST INATED

NCLS = ID(17

‘NFT = ©

DO 20 I=1,NCLS
NFT = NFT + ID(20+D)
CON-- B’DFLOAT(NFT)/DFLOAT(NFI‘-I)

g
EG

AMCI) M(l) + X(I)/DF'DOAT(NFT)
DO Se J l .
IN = IN *

237

(SPOPTN) *)

V4

COV(IN) = COV(IN) * X(I)®X(J)/DFLOAT(NFT-1)

CONT INUE
CONTINUE
IN = 0 .
DO 60 I=1,N
DO 60 J=1,I

IN = IN + 1
COV(IN) = COV(IN) - CON'AM(I)‘AM(J)

' CONTINUE
WEIGHT ING FUNCT ION

IN =0

DO 210 l-l,N

DO 210 J=1,

IN = IN + 1
ACOV(I,J) = COV(IN)
ACOV(J,I) = COV(IN)
CONTINUE

CALL S'PVG!‘Z(H) R
) 239 l-l N

DO/ /250 J
ACOV(I ’J) ACOV(I WD

C .
g COMPUTE TRACE OF COVARIANCE

a ('2008

+N
SUM = S'UM + ACOV(I I

COMPUTE EIGENVALUES AND EIGENVEC!'ORS

. WRITE(16,75)
xpgmar'r{(sx, "EIGENVALUES AND EIGENVECTORS

- T =856,

(EIGENP)*)

CALL EIGENP(N,NM,ACOV,T,GAM, EVI PHI, VEC! INDIC W)

CALL ElSORT(N,GAM PB!

Y
S
;
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C
g PRINT EIGENVALUES AND MEAN-SQUARE ERROR

110

11§
120

145
150

1SS

1€0
180

&8

C® = FLOAT (NFT)/ (FLOAT (NFT-1) ®FLOAT (NFT-1))

Cl = FLOAT (4°NFT- 1)/ (FLOAT (NFT-1) ®FLOAT (NFT-1))

WRITE(6, 110)

Fomnéw 'N* sx *EIGENVALUE' ,5X, 'VAR(GAM) * , 5X, 'VAR(PBI) ', SX,
uuu& ERROR’

no 150 i=1,30

VARP = 0.0’

DO 120 J=1,100

IFJ . iheo 10 'S

VAR™ = VARP + ..a-cu\.wcuu)/(mm - GAN()))®e2

CON' INUE

CONT INUE

VARG = C1®GAM(I)®GAM(I)

SUM = SUM - GAM(I)

WRITE(6, 145) I,GAN(I) , vm VARP ,SUM

FORMAT (4X, 12,4X,F10.4,4X,F10.4.2X,F10.4,2X,F14.6)

CONT INUE

DO 155 J=1,N
DO 155 I=1.N

PHIP(I, .n . rnm n

DO 180 J

WRITE(7, 166) (PRIP(1,D),1=1,0)
FORMAT (20A4

CONT INUE

STOP

END

SUBROUT INE EISORT (N,EVR, VECR)
REAL®8 STORE,EVR(N), STOVEC (109) , VECR(N,N)

A

A i s 50
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e e o
SUBROUT INE SPLBL PROVIDES A LABEL TO DESCRIBE THE DATA USED IN THE
EXPERIMENT. INFORMATION #INCLUDED IN THE LABEL CONSISTS OF THE DATE
EXFERIMENT NUMBER, NUMBER OF CLASSES, NUMBER OF SAMPLES IN EACH CLASS
AND INFORMATION ON EACH CLASS.

7 JULY, 1977

(slelelrlolrlolplole]

SUBROUT INE SPLBL
COMMON 1D(100)
INTEGER®4 DATE(15) , INFO(1
EQUIVALENCE(ID(1) ,DATE(1)
¢ (INFO(1,3), ID(59)) , ( INFO(
_ WRITE(6,20)
WRITE(6,39)
WRITE (6, 40) DATE
WRITE(6,50) ID(16)
WRITE(6,55) ID(17)
NCLS = 1D(17)
DO 10 J=1,NCLS
WRITE(6,60) (INFO(1,J),1=1,10)
imms(sieo) 1D(20+J)

CONT I
ll)’ORlA‘l'(llll,////lSX,'LABORA‘I‘ORY FOR APPLICATIONS OF RENOTE SENSING'

FORMAT (29X, *PURDUE UNIVERSITY')

FORMAT (12X, ' SAMPLE FUNCI'!ON INFORIATION' 11X, 1SA1/)
" PORMAT ( 10X, 'EXP. NO, ' v27C°. ')‘l

FORIAT(IOX.’NUIBER OF CLASSES’,18('."),12)

FORMAT (10X, 'CLASS’ ,30(°. ’).201

%(mx "NUMBER OF SAMPLE FUNCTIONS',9('."),13)

(10,5)
1)) . CINFO(1 nmn (INFO(1,2) , ID(40))
1.4), ID( sé NFO(1.5),1D(76)) " :

8381888 8s

WEIGHTING FUNCTION NUMBER 1

vslelvlele]

SUBROUT INE SPWGT 1 (W)
REAL®4 VW(100)

WRITE(6, 1S)

15 mwu//sx 'WEIGHT ING FUNCTION NUMBER 1'//)
DO 20 I=1
W= 1, 6

20  CONTINUE
RETURN

END

Q
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888

anaa

Q

HE!GHTING FUNCTION NUIBER 2

¢ o
SUBROUTINE SPWGT2 (W) N, P
REAL®4 W(100) , |

WRITE(6, 15)
'FOR!AI(//SX.’WEIGBTING FUNCTION NUMBER' 2/

DO 20 I=1,100
W = 1.0

WEIGHT ING FUNCTION NUMBER 3

SUBROUTINE SPWGT3(W)

REAL®4 W(100)
WRITE(6, 1S5)
5?¥¥AT(/4SX *WEIGHTING FUNCTION NUMBER 3'//)
W(2) = .91
W(3) = 1.08
W(4) = |.18
W(S) = ].22
W(6) = 1.20
W(7) = 1.20
W) = 1.18
W(g) = 1.17
W(19) = 1.17
wW(li) = 1.17
W(12) = 1.18
W(i3) = 1.17
¥(14) = 1.15
W(1S5) = 1.11
w(16) = .83
W(17) = 1.04 .
W(18) = .57
W(19) = .91
W(20) = .86
w(21) = .80
W(22) = .86
w(23) = .81
Wi{24) = .6}
R(25) = .48
W(26) = .26
w(27) = .28
W(28) = .58
W(29) = .65
W(38) = .63

240
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c
L
/78 WEIGHT FUNCTION NUMBER 4

c -
SUBROUT INE SPWGT4 (W)

c REAL®4 % (100)

~ WRITE(6,15)

15 FORMAT(//SX.'HEIGHT FUNCTION NUMBER 4°'//)
Do 30 i=1,15

30 W(I) = 0.7
DO 40 1=16,45

40 H(I) = 1.0
DO S0 1=46,52 /

s8  W(D = o.1 , 4
DO 60 1=53,67

69 W = 1.0
DO 70 1=68,77

70 W(l) = 0.01
DO 80 1=78, 100

80 WD = 1.0
RETURN

! END \

SPTES TRANSFORMS THE DATA USING THE OPTIMUM SET OF BASIS
VECTORS, COMPUTES THE MEAN-SQUARE ERROR, AND COMPUTES THE
STATISTICS FOR EACH CLASS.

6 FEBRUARY, 1978

(vleivielelvlololy]

COMMON ID(100)
REAL®*4 P(10) ,PHI(100,20),X(160),Y(100), Z(IOO)
REAL®4 AH(]%) AVE(20 10) COV(ZIO 10) \

C
g SELECT NUMBER OF TERMS

WRITE(16, 10) ‘ , ‘
10 FORMAT (5X, 'NUMBER OF TERMS?') _ |

. READ (1S, 1S)NTERM
1S FORMAT (12)

N = ID(18)

3
3
5
§
§

“. DO 25 I=1,NCLS
: P(I) = l /FLOAT(NCLS)
25 CONT INUE
WRITE(7,28)NCLS,NTERM :
28 FORMAT(IZ 3X, 12) N
WRITE(7, 30)(?(1) I= l.NCLS) !
30 FORMAT ( 10F6.4)




y

AN
A\S

c .
g COMPUTE MEAN FUNCTION

DO 300 I=1,N
300  AM(D) = 0.0
DO 320 K"‘l +NFT

DO 320 I=1,N

AM(I) = AM(D) + X(I)/FLOAT(NFI')
320 CONTINUE .

REWIND 2
READ(2) ID

c -
C READ EIGENVECTORS ST

DO 40 J=],NTERM

READ(S,35) (PBICI, D ,I=1,N) -
35 FORMAT (20A4) e
CONTINUE

LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET

AVESQ = 0.6
DO 200 ICLS=1,NCLS
DO 50 I=1,NTERM
505  AVE(I,ICLS) = 0.0
DO 55 I=1,NCT o ;
g5 COV(I,ICLS) - 0.0 f
g |

NF = ID(20+ICLS)
CON = FLOAT(NF) /FLOAT (NF-1)
DO 150 ISAM=1,NF

READ SAMPLE POINTS FROM FUNCTION
READ(2) X
TRANSFORM DATA USING BASIS FUNCTIONS

DO 70 J 1,NTERM
YJ) = 0
DO 70 iI=1,N
Y = YD) + PHI(I DX - AM(D))

CONT!NUE
- COMPUTE SQUARED ERROR

DO 80 I=1,N

Z(I) = 0.0 _

DO 85 J=l NTERM
85 l,N

(I) + PHIC(I, DY)

Qoa aaan

8 0008

3
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COMPUTE STAT IS'!' I CS

* DO 100 I=1,NTERM
AVE(I, ICLS) = "AVE(I,, ICLS) + Y(l)/FLOAT(NF)

100 CONTINUE

DO 110 fo.mm S R ;
DO 110 1:1,3

= ms.mJLi ) o e g
| COV(IN, ICLS) = COV(IN,ICLS) + Y(D)®Y(J)/FLOAT(NF~1}
110  CONTINUE e R

150 CONTINUE

€ PRINT STATISTICS

N )

DO 160 J=1,NTERN g T
Wy
'COV(IN, ICLS) = COV(IN, ICLS) - .C CON®AVE(, ICLS) *AVEW, 16LS)
166  CONTINUE |
WRITE(6, 165) ICLS

' 1,65 , ‘ FORMAT(S(/) IOX.‘SI'ATIS‘!‘ICS FOR CLASS', 14) '

- CALL MCOVP (NTERM,AVE(1, ICLS) ,COV (1, ICLS))
WRITE(7,170) (AVE(I ICLS) I=1 ,NTERH)
170 '~ FORMAT(20A4)
- -WRITE(7,175) (COV(! ICLS) l=l NCI')
175 FORHAT (20A4 Yoo :

200 CONTINUE SRR 4

. -AVESQ = AVESQ/FLOAT (NFT)
WRITE(6,210) AVESQ

210 g?g})ﬂ'l‘ (/// IOX K MEAN-SOUARE ERROR ' ,E10.4)

END
\
C_________________*______‘____:)___ ____
e
- € SPDECK.
& FPURPOTO PROVIDE STATS IN APPROPRIATE FORM FOR SEPARABILITY
PROCESSOR .
& 2. T0 SELECT FRATURES TO BE INPUT TO ERROR ESTIMATOR.
C
C 11 AUG., 1978 ,
C B e
S ------------
EGER®4 IC(10)
‘ 1115?\1,-4 AVE(29, 10, COV(210 10) ,P(10), cov*rr(ze 20)

WRITEUIS, 10)

10 FORMAT(SX,'SEP = @, SEL ='~.m -

READ(1S, 15) IS
15 FORHAT(II)
' - READ(S, ZG)NCIS,N

20 FORHAT(IZ 3X,12)

'NCT = N®(N+1)/2
READ(S,25) (P(D) , I=1, NCLS)

25 FORMAT(10F6.4)
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C . TR TR
C READ STATS.. -

o DO 40 K=1,NCLS

‘READ(S, 30) (AVE(I,K) ,1=1,N)
READ(5,30) (COV(I.K) , I1=1,NCT)
FORMAT (20A4)

CONTINVE A
IF(1S)45,45,100 -

CONTINUE

PUNCH STAT DECK

DO S8 K=1,NCLS -

WRITE(7, 76) (AVE(I K) I=1,N)
DO 60 K=1 yNCLS

WRITE(7, 80) (cov(l, K) I=1, NCD)
FORMAT (° MN’ 1744)

FORMAT (°CV’, 1744)

STop

(9]
A

QO8RIT & 0% &8

WRITE(16,110)

FORMAT (SX, *TYPE NUMBER OF CHANNELS DESIRED (12)*)

READ(1S, 115)NT

115 FORMAT(IZ) - |

" DO 150 K=1,NT f ‘ ‘

VRITE(16, 120)

120 FORMAT (5X, *SELECT CHANNELS (I2)')
READ(15, 125) IC(K)

125  FORMAT(i2) , :

150 . CONTINUE = - e

WRITE(7,20)NCLS,NT : s
WRITE(7.25) (P(D, I=1,NCL) ¢

NCTP = NT®(NT+D)/2 - .
DO 206 ICLS=1,NCLS \

DO 160 K=1,NT - 7 s

b
3

S ———

Lot S e

160

165

ICP = IC(K) S 7y

AVE(K, ICLS) = AVE(ICP,ICLS)
WRITE(? 30) (AVE(I, ICLS) I=1,NT)

IN = |
1 ’/

COV(IN, ICLS)
COV(IN, ITLS)

CONTI NUE

L=20

DO 188 K=1,NT

L=L+1

DO 18@ KL=1

ICK = IC(K)

ICL = IC(KL) ’
COVTP(K,KL) = COVTP(ICK, ICL)
CONT INUE '

IN =0

DO 185 i=1,NT -

DO 185 J=1,1 .

IN = IN + 1 ;
COV(IN, ICLS) = COVTP(I,J)

. CONTINUE

WRITE (7,38 (COV(I, ICLS) , I=1,NCTP)
CONT INUE ImieT

STOP
END
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SPSUB SIHULATES S SUBOPTIHUM SENSORS AND COMPUTES MEAN-SOUARE
ERROR AND CLASS STATISTICS FOR A SET OF DATA .

‘31 JANUARY. 1978

e e we e we em mm mm mm wm o ew e om me mm s de e o am me o e e em e we mm e em e e

COMMON ID(1le@) - L . : |
INTEGER®*4 SENSOR, IR(S) E
REAL®4--PHI (100, 26) X(100),Y(100), Z(l@@) AVE(ZG 10) COV(ZIO 10)
REAL®4 PHIN(IO@ 20) P(IG) WAL(IOO) V(IOO) S

(slvlvivielolalole I

LIST OF VARIABLES
AVE(I,D) = MEAN VECTOR FOR CLASS J
COV(K,J) = COVARIANCE MATRIX FOR CLASS J
' ESQ SOUARED ERROR FOR ONE SAMPLE FUNCTION -
' -NUMBEE .OF TERMS IN THE REPRESENTATION
NCLS = NUMGER OF CLASSES
NF = NUMBER OF SAMPLES IN THE CLASS
PHI¢I,J) = BASIS VECTOR FOR THE JTH TERM IN THE REPRESENTAT!ON
SAMPLE FUNCTION FROM ORIGINAL DATA
REPRESENTATION VECTOR '
RECONSTRUCTIGN VECTOR

-
ngn

lololololololol=ToTo Il ToTo Io T N

SELECT SENSOR FROM TERMINAL

WRITE( 16, 19)

FORMAT(SX *SELECT SENSOR® /lOX,’l. LANDSAT” /10X, °2. TBEMATIC MAPP
®ER’, /10X, '3, TEST', /10X, >4 PROPOSED’,/ 10X, ¥s. PROPOSED 2')
READ(IS 15) SENSOR’ v

FORMAT (11)

ZERO BASIS FUNCTIONS AND SET UP SELECTED SENSOR

DO 49 J=1,20
DO 46 I=1, 100 . o
PHI(I,)) = 0.0 - S
G0 TO' (50,100, 150, 200,250, SENSOR g

SET UP BASIS FUNCTIONS FOR LANDSAT

CONT INUE
N=4
NCT = 10
PO 60 1=5,9
PHI(I,) = 1.0
DO 65 1=10,14
PRI(I, 2) ='1.0
DO 70 1=15,19
PHI(I, 3) ='1.0
DO 75 1=20,34
75 PHI(I,4) = 1.0
GO TO 300

$

s(‘)OO g o

3 &8




_g SET UP BASIS FUNCTIONS FOR THEHATIC MAPPER

. 100

110
115
120
125
130
135

. DO 120 1=}

CONTINUE ‘

PHI(1,2) =

-
©  put Pt
(s]

PHIC(I,3) = 1,

PHI(I 4) = 1.0
DO 130 1=58,68
PHI(I,5) = 1.0

DO 135 1=84,97 -

PHI(I,6) = 1.0

C
g SET UP TEST BANDS

150

aQa

%O

CONTINUE
N=6
NCT = 21
PBI(10,1)
PHI(30,2)
PHI(52,3)
PHI(64,4)
PHI(74,5)
PHI(92,6)
GO TO 300

500000

Pt Gt Pt Pkt Bt Pt

u

i
9

-

n
0., X
> puase

"
DI or o 10 QO I =

[

]
3"
Pt Pt puts D@ et ek Sk Pt f

"
TR

[+
. e O)e

ogsqeﬁbgbmomswb

SET UP PROPOSED SENSOR BASIS FUNCTIONS
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Vi

P

275 1=33,35
275 - PHI(],5) = 1.0
DO 280 1=36,45
280 PHI(I.6) = 1,0
. DO 285 1=56,67
285  PHI(1,7) = 1.6
DO 290 .1=78, 100
%90 PHI(1,8) = 1.0
g@é CONT INUE
c : S ,17
g NORMALIZE BASiS~FUNCTIONS
DO 439 L=1,N
SUM = @. 0
DO 41@ I=1,100
SUM = SUM . ABS(PHI(I,L))
410  CONTINUE .
DO 420 l=l 100
PHINC(I,L) 2 PHI(I,L)/SUM
420  CONTINUE p
430 CONTINUE s T
g POSITION TAPE AND READ ID INFORMATION
REWIND_Z
READ(2) ID
NCLS = ID(17)
NFT =0
AVESQ = 0.0

302

305

308

3109

312
314

C i
g LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET
DO 600 ICLS=1,NCLS '

315
320
C
C

Qoo

DO 302 IL=1,NCLS

NFT = NFT + ID(20+IL)
NXP = ID(16)

WRITE (6,305) NXP ,NCLS, N

248

FORMAT(IHI S¢), ZGX 'SUBOPTIMUM SENSOR SIMULATION FOR EXP. NUMBER®

i5,//20X, 'NUMBER OF CLASSES ='

‘13)

WRITE{6,3068) SENSOR

FORMAT (//20X, 'SENSOR *,I1)
WRITE(7,310)NCLS,N

FORMAT (12,3X, I2)

DO 312 IL=1,NCLS

NF = ID(20+IL)

P(IL) = 1./FLOAT(NCLS)
WRITE(7,314) (P({},I=1,NCLS)
FORMAT (10F6.4)

CALL SPWGT2(W)

DO 315 I=1,N
AVE(I,ICLS) = 6.0
DO 320 I=1,NCT
COV(I,ICLS) = 0.0

NF = ID(20+ICLS) .. -~
CON = FLOAT(NF)/FLOAT(NF-I)
DO 500 ISAM=1,N

READ SAMPLE POINTS FROM FUNCTION

READ(2) X

» 13,//720X,

*NUMBER OF DIMENSIONS =°',
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e ; L
C mmsmma DATA USING BASIS nmcnon L |
DO 330 J=1,N DR R e
Y(3) = e.e, o | G SR Tl L

D0 330 1|

=1, 100
YO = YQJ) + (anu J)'X(l)) .
CONTINUE :

COMPUTE SQUARED ERROR

1000§v__ o

DO 340 J=i,N
PO 340 I=1,1
Z) = Z(l) + PHI(I J)’Y(J) :

340 CONTI | , : SRR
2= 00 . e S
DO S I=1,100 :
XSQ = + XD eXI) oW
ZS8Q = + ZCD*Z(DeN(I) -
XZ = XZ + 2.0°X(D*Z{D)*N(D)

M5 BN &so - ¥z ez

. = - +*

o - AVESQ = AVESQ vESQ /

8 CDMPUTE STATISTICS
DO 350 1= N

AVE(1, ICLS) = AVE(I,ICLS) + Y(I)/FLOAT (NF)
350 CONTINUE
IN =
DO 360 J=1,N
DO 360 I=1,J
IN=IN+ 1 ,
COV(IN, ICLS) = COV(IN,ICLS) + Y(I)®Y(J)/FLOAT(NF=1)
360  CONTINUE
500  CONTINUE

C v
!,(g - PRINT STAT!ST]CS FOR THE CLASS
\:‘ 7N = Q .

) w=D0 S10 J=l N

DO 510 1=1.J

et - IN = IN + l

o COV(IN, ICLS) = COV(IN, ICLS) - CON®AVE(I, ICLS)®AVE(]J, ICLS)
. 510  CONTINUE R :
WRITE(6,515) ICLS
SIS ,FORMAT(S(/) 10X, *STATISTICS FOR CLASS',14)
; CALL HCOVP(N AVE(1, ICLS) COV(I ICLS))

- | WRITE(7,520) (AVE(I ICLS) , I=1,N) :
520..~ FORMAT (20A4) ’ ,

~ WRITE(7,530) (COV(I, ICLS) l 1,NCT) : : - =
530  FORMAT (2044) L

608 AuegTSém VEQ FLOAT(NFT
. ot )\
WRITE(6,610)AVESQ - :
610 ggggAT(///mX 'MEAN-WUARE ERROR = ';Ei4.8

’f/ﬁ\\\\\ . . X ) ’ 7



C ' ‘
g COMPUTATION OF AVERAGE ERROR OVER A DATA SET.

100

120
C

Qaan aooao

ot

0

olale

18

COMMON 1D(100)
REAL®4 X(109),%(169)

REWIND 2

'READ(2) ID

CALL SPLBL

CALL SPWGT4(W)

N = IDUI8)

NCLS = ID(17)

DELTA = ©.07

AVE = 0 (<

NFT =

DO 109 K=l NCLS

NF = ID(20+K)

NFT = NFT + NF

PO 100 L=1,NF

READ(2) X

SUM = 6.0

DO 20 I=1,N . : '
SUM = SUM + DELTA®DELTA®X(I)®X{I)®*W(I)
CONTINUE

AVE = AVE + SUM

CONTINVE

AVE = AVE/FLOAT(NFT)

WRITE(G, 120) AVE

FORMAT (S5(/),5X, 'AVERAGE MEASUREMENT ERROR =°,E29.8)

STopP
END

CONTROL PROGRAM FOR SPEST TO PROVIDE FOR VARIABLE DIMENSIONING.
24 JAN., 1978 | :
REAL®4 PR(10),PHI (10,16, 10),P(10) ,AM(10, 18) ,COV(SS, 10)
READ_INPUT VARIABLES

- CLASSES: N - DIMENSIONS

READ(S, 10)M,N
FORMAT(IZ 3X,12)

P(I) - APRIORI PROBABILITIES

NCT = N®(N+1)/2
READ(S, {SY(P(I),I=1, M)
FORMAT ( 10F6 . 4)

250
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C AN
g MEANS AND COV%RIANCES FOR EACH CLASS

DO.30 I=1,M
. READ(S, 26)(AM(J 1}, J=1 N)
READ(S, ,20) (COV(K l) K=1,NCT)

20 FORMAT (20A4)
CALL MCOVP(N,AM(1,1),COV(1,1))
30  CONTINUE :
~ génkas¥§s1n(n.n,rnl +P,AM,COV,PR,PC)
49 WRITE(6,50)1,PR(I)
50 .fORMATég/iox 'PROBAB!LITY OF CORRECT CLASSIFICATION FOR CLASS’, I3
=
‘ WRITE(6,60) PC
60 FORMAT(///lGX ’OVERALL PROBABILITY OF CORRECT RECOGNITION *,F6.4
sror
END
¥
;"k C - = = = ;e m = m m = e e e e e e e e e = e e e e =
C
C SPESTM IS AN ESTIMATOR OF THE CLASSIFICATION PERFORMANCE FROM A
C GIVEN SET OF STATISTICS FROM M CLASSES. THE ESTIMATOR IS A
C STRATIFIED POSTERIOR ESTIMATOR (REF. WHITSITT AND LANDGREBE) .
C THE PROBABILITY DISTRIBUTIONS ARE ASSUMED TO BE MULTIVARIATE
g GAUSSIAN
b
~ g 19 JANUARY, 1978
C ____________________________________
SUBROUTINE SPESTM(M,N,PHI,P,AM,COV,PR,PC)
REAL®4 QP(10),P(10) ,PR(1@) ,AM (i@, 10) ,COV (55, 10) ,COVT (55)
REAL®4 GAM(10,10) ,PHI (N,N,H) ,DET (10) ,COVIN(55,10)
REAL®4 Y(10) ,TE1(i8) ,DEL(10) ,COVU(19, 10)
c REAL*8 PX(1@),BIG,DEN,SDET(19),BETA,Z0,Z1,22,23
i T T T
CES C .
B C LIST OF VARIABLES -
I C M = NUMBER OF CLASSES
: C N = NUMBER OF DIMENSIONS
ﬁ C  P(I) = APRIORI PROBABILITIES OF CLASS 1
3 C  PR(D) = CLASS CONDITIONAL PERFORMANCE
: C PC-= OVERALL PERFORMANCE
i C  AMWU,D) = MEAN VECTOR OF CLAS
] g . CovVA, D = ggxﬁ§1ANCE MATRIX OF CLASS 1(STORED IN UPPER TRIANGULAR
) Crmommmmmmem e e e e e e e e e - =
£ - C

IX = 947913 ( ;
NCT = N®(N+1)/2 o
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C .
g COMPUTE EIGENVALUES AND EIGENVECTORS FOR EACH MATRIX

MV = 0

EPS = 1.,0E-6

DO 160 1J=1,M
DO 55 I=1,NCT

55 COVT (1) = COV(I,1D)

CALL EIGEN (COVT, "PHI1,1, IJ) N, MV)
DO 60 1 =1,N

L=L+1 L

GAM(I,1J) = COVT(L)

69

C . ‘

g COMPUTE DETERMINANT AND INVERSE OF EACH MATRIX
65

DO 65 1=1,NCT
COVT (D) = COV(I IJ

. CALL, SMINV(COVT N.DET(IJ) MV,EPS, IER)
IF(1ER) 1000,70, 000

SDET(1J) = SORT(DET(!J))
- DO 75 1=1,NCT
7S COVIN(I, IJ) = COVT(D)
100  CONTINUE
MV = 0O
DO 1065 1=1,M

éBS QP(I) = 0.0
g LOOP ON CLASS ICL
PC = 0.0
DO S00 ICL=1,M
AVEQ = 0.0
LOOP ON THE NUMBER OF SAMPLES

NS = 1000
DO 300 1J=1,NS

GENERATE Y VECTOR FROM CLASS ICL

DO 110 I=1,N
CALL RANDU(IX, 1Y,XP)
IX = IY .

 CALL NDTRI (XP,Y(I) ,XD, IER)
14 . CONTINUE

COMPUTE CONDITIONAL PROBABILITIES FOR EACH CLASS
DO 208 JCL=1,M
IF(JCL .EQ. ICL) GO TC 180
DO 130 =1,N

TE1(I)
AM(I IcL) - AH(I,JCL)

ololel

QQQ -

DEL(1)
DO 130

'-‘ll 10—t

LN :
TE1(I) = TEI(I) + SQRT(GAM(J, ICL))>*Y(J)®PHI(],]J, ICL)
- 130  CONTINUE

JJ =0

DO 140 1=1

DO 149 J=1

JJ = JJ +

COvVu(I,J)

CovudJ, D
149  CONTINUE

N
I

COVIN(JJ,JCL)
COVIN(JJ,JCL)

H il pme -

252



150

170
180

185

199
200

9
C
C
C
C

N

30

§§ nna

Si0

1000
1100

253

Pt
RNl O

HREESUN

28
3
s
L4
]

Z3
IF(2SUM .LT. ~106) GO TO 196 -
BETA = P(JCL)*1.0
PX(JCL) = BETA‘DEXP(Zl+ZZ+Z3)/SDET(JCL)

.éS(PX§5gL) -EQ. 0.9) WRITE(16,919) ICL, JCL,ZSUM, SDET(JCL) PX(JCL)

E .
IF(Za- .LT. -100) GO TO 199
BETA = P(JCL)*1.0
PX{(JCL) = BETA‘DEXP(ZB)/SDET(JCL) :
ég(¥§(%g%) .EQ. 0.8) WRITE(16,919) ICL,JCL,Z0,SDET(JCL),PX(JCL)

PX(JCL) = 0.0
CONT INUE
FORMAT (5X,215,3E12.4)

CHOOSE THE LARGEST

BIG = ~1000

D0 228 1=1,M

IF(PX(I) .GT. BIG) LOC = I
IF(PX(I) .GT. BIG) BIG = PX(I)
CONT INUE

DEN = 0. 0

DO 230 I=1,M

DEN = DEN + PX(I)

CONT INUE

.Q = BIG/DEN
AVERAGE

QP(LOC) = QP(LOC) + P(ICL)*Q/P(LOC)
CONT INUE

CONT INUE

DO S1@ ICL=1,M

PRUICL) = QP(ICL)/FLOAT (NS)

PC = PC + P(ICL)®*PR(ICL)

CONTINUE .

RETURN )

WRITE(6, llOO)IER

FORNAT(!GX ""INVERSION ERROR(’,12,%)®ee?)
B





