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ABSTRACT
^f

Satellites provide an excellent platform from which to observe crops on

the scale and frequency required to provide accurate crop production estimates

on a worldwide basis. Multi-spectral imaging sensor y aboard these platforms

are capable of providing data from which to derive acreage and production

estimates. Major issues requiring resolution before an operational satellite-

based system for global crop production forecasting can be specified are:/(

i	 o When and how frequently must each crop in each world region be
observed?

}	 o How large an area in each region must be sampled?

o What combination of (1) number of platforms, (2) orbits of platforms,
and (3) sensor swath width is most cost-effective in obtaining the
required observations?

lIn a preceding study, these questions were addressed and partially an-

swered. Crop observation "windows" were established, sampling strategies were

developed, and the number of orbits of platforms evaluated. The potential of

reducing the number of required satellites by increasing the sensor swath

width was identified. In the present study, this issue of sensor swath width

was examined. The quantitative trade data necessary to resolve the combiner

issue of sensor swath width, number of platforms, and their orbits was gen-

erated-and are included in this report. Problems with different swath width

sensors were analyzed and an assessment of system trade—offs of swath width

versus number of satellites was made for achieving Global Crop Production

Forecasting,
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1.0 INTRODUCTION

'

	

	 This-report was prepared under contract to the National Aeronautics and

Space Administration, George C. Marshall Space Flight Center (MSFC), as

1
partial fulfillment of the requirements of Contract NAS8-32491, Mod 1. This

report documents an investigation of the benefits and problems of using 2';.;

multispectral scanning sensor having a swath width wider than the 185 km

Thematic Mapper:. The investigation was based upon previous analyses performed

by General Electric and others on tae far term, 1985 and beyond, Office of

Space and Terrestrial Application's objective of applying space technology to,,

0

i,

an operational	 Global	 Crop Production Forecasting 	 (GCPF)	 System (Ref.	 1).

From those studies	 (Ref.,2,	 3),	 the use of wider swath sensors was 	 identified

as a possible cost effective way to achieve the desired observations with a

minimum number of satellites. 	 The objective of the study was to trade-off the
4

=cost of increasing sensor swath width against the cost of additional 	 satellites

to provide the data required for Global 	 Crop Production Forecasting.

a

It was desired to develop a systems concept that would provide for the l

acquisition of at least 98 percent of the samples desired to inventory the

amount of land in production for particular crops.	 A major constraint was to

--'. not degrade the utility of the acquired	 image data for non-agricultural 	 appli-

cations.

2.0	 SUMMARY OF RESULTS

Quantified data is presented	 in the form of curves of percent of targets

acquired versus swath width. 	 This data has application to both mission

designers and sensor designers. 	 This data	 includes the effect of agricultural

t windows and cloud statistics for the conditions described 	 in this	 report.

1. Swath width data extends from the nominal Thematic Mapper swath of 185 km to

±.
350 km.

!j

^r

A coupling was observed between swath width and orbit in achieving

successful	 acquisitions.	 While there are benefits	 resulting from wider sen-

sors, there are additional- benefits from altering the orbit to distribute



the opportunities more evenly over the target areas. A change from a 704 km

16-day revisit orbit to a 771 kf---14-day revisit orbit offers more effective

use of the wider swath, especially in the cloudy regions at 1 owes latitudes

that exhi4i t fewer acquisitions with the planned 185 km swath and orbit.
Deviations from the planned deployment of the Thematic Mapper is also suggested.

The incorporation of terrain corrections during data processing and employing

an off-nadir scan to take better advantage of sunlight illumination is suggested.

7.

The benefits achievable with wider swath sensors were compared with the

penalties and relative costs of obtaining the wider swaths. The study results

indicate how a sacrifice in spatial resolution from 30 meters to 32.85 meters
can be combined with a 14-day revisit cycle orbit to acquire 98 percent of the
desired samples on a worldwide basis with two satellites. This alternate has

the least relative cost of all the options considered.

Another alternate with a 315 km swath sensor is also suggested. This
swath width was chosen using the data of this study to compare the performance

of two satellites against three satellites._ Some of the difficulties of using

this wide a sensor are explored and the recommendation is should this alternate

be selected--to concentrate on a pushbroom type sensor.

3.0 REQUIREMENTS

The Global Crop Production Forecasting requirements for multispectral

kdata were developed in the preceding studies (Ref. 4, 5). The driving parameter
for monitoring agricultural production is revisit time between successive obser-
vations, or temporal resolution. The ability to reliably obtain cloud free

images at precise time during the growing seasons determines the number of

satellites required. When ,combined with other information called collateral
r.	

}g-	 data, the system will: 1) measure or inventory the amount of land in production

}	 for particular crops, 2) determine plant vigor as an indication of growth stage

and potential yield, and 3) assess the extent of stress from either environ-

mental or induced episodes as it affects yield._ Each of these uses imposes
	 r+

-

constraints on the timing of data acquisition.	 i
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1 Spectral	 Resolution 5 visible & near	 IR + l	 thermal	 IR as

defined for Thematic Mapper

2 Radiometric Quantization 128	 levels

3 Spatial	 Resolution Approximately 30 meters

4 Temporal	 Resolution Defined by crop species calendars and
sensor radiometric resolution

5 Coverage	 - Sample segments	 1	 Km 

6 Number of Samples Determined by region and crop density

7 Crops Wheat, corn,	 soybeans, and rice

8 Countries 22 major producers	 (36 regions)

y Acquisition Confidence 19 years out of 20

10 Sample Quality Less	 than	 10% cloud	 cc;nditions

WWI

This study is directed toward a more indep_th analyses of wider swath

sensors than was explored in the "Global Crop Production Forecasting (GCPF)"

Study (Ref. 4). In the previous study, an increase in the sensor swath width

was identified as a potential for improving an operational GCPF system per-

	

`.	 formance. That study concentrated on the performance of the inventory function.

Likewise, this study will be based on the requirements as developed for the

	

}	 inventory functions. With the identification of different acquisition times,

the results will also apply to the monitoring of plant vigor.

This study concentrated on data related problems rather than the science

of using the data. Where the use of the data drives the data requiremer,°ts,

	

{	 values frum 3 r^agmatic considerations such as currently planned NASA programs

were accepted as "givens." In order to properly bound the problem and pro-

vide utility o #_;the results as precise-'requirements evolve, the requirements

developed during the preceding study (Ref. 4) were extrapolated. The require-'-:

ments pertinent to the study of swath width are listed in Tables 1 and 2.

Table 1. Selected Requirements for GCPF



Table 2. Assumptions for Study

Assumptions Pertaining to the Science of GCPF and the System Concept

1 Visible and infrared image data requirementsfor GCPF can be met
with three satellites of the planned Landsat = D type using sensor
systems having characteristics as planned for the Thematic Mapper.

2 The spectral and radiometric resolutions of the planned Thematic
Mapper are firm requirements for GCPF satellite image data.

3 The satellites providing GCPF data will	 and should be	 in helio-
synchronous low earth orbits.

Assumptions Pertaining to the Modeling Concept and 	 its Validity

4 An operational	 GCPF system can be hypothesized such that the
effect of sensor swath width on GCPF can be determined.

5 The percentage of targets acquired	 is a valid measure of GCPF sys-
tem performance.

6 The results of comparisons of sensor performance based upon sample
acquisitions within windows chosen	 for simple discrimination con-
ditions are valid for more complex conditions.

7 One observation per window is required.

Assumptions Pertaining to Technology

8 The planned Thematic Mapper represents the state-of-the-art in
a)	 primary sensor element manufacture,	 b) optical materials
manufacture, and c) mechanical whisk-broom sensor technology.

The requirements of Table d cons.;.;*gain the permissible trade-offs of sensor

system swath width. Requirements one through three impact the methods avail-

able to obtain wider swaths. ` Requirements four through ten impact the utility

of a given swath sensor system.

While classification of crop species solely by two-class discrimination	 is

not expectedto be an operationally accepted approach,	 it provides a way to

determine the temporal 	 resolution needed to compare the performance of alternate	
ri

ir.
sensor systems.	 Windows during which cloud free acquistions are required were

determined based upon the twe (X `year crop calendars historical data for the drops

and their major confusers 	 in each region.

^ µ
L

IA

u



Several assumptions were necessary at the start of the study in order that

the main objective could be investigated. They fall into ti,)ree categories.

The first category pertains to the basic science of Global Crop Production Fore-

casting. It is necessary that some sort of operational system be conceived in

order that requirements can be defined. The conceived system is based upon

technologies that have been tried as experiments but have not yet been put

together as an operational system. The assumptions are listed in Table 2.

Assumption 1 of this table provides the benchmark against which sensor system

alternatives can be measured. Assumptions 2 and 3 provide some constraints on

the permissible approaches to achieving wider swath widths.

The second category of assumptions, 4 through 7, pertains to the criteria

of evaluating alternate sensor systems. Assumption 4 bounds the evaluation of

sensor system performance to a fixed set of conditions for all alternatives.

For the system hypothesized, an acquisition of 98 percent of the desired

samples was set as a goal to minimize accuracy degradation because of sampling

error. The development of the sample distributions used for measuring sensor

system performance was based upon this goal. Changes i,n the science of class-

ification and GCPF technology could conceivably have some impact on the impor-

tance of the percentage of samples acquired. No attempt was made in this study

to assess either the extent or likelihood of such events. The temporal resolu-

tion requirements used were based upon assumptions 6 and 7 . 	 The present
-I	

status of the science of plant''specie classification is such that many data

acquisitions are required, often at very precise temporal resolution. The
s

recently completed LACIE Program (reference 6) and other studies (references

7 and 8) have identified the extreme complexity of determining the temporal
i.

	

	
resolution requirements for an operational multi-crop classification system.

The determination of temporal resolution requirements is still in an R&D stage

with no approved solution. For this study, the-temporal resolution was assumed

based upon one observation within each window. Windows were chosen for

i:.

	

	 homogeneous crop growing regions, based upon the mix of the four chosen crops

in the region as in reference 4.

A

The third category of assumptions pertains to sensor system technology.

Assumption 8 constrains the permissible methods of obtaining wider swaths. It

simplifies the study by removing the need to conjecture any radical improvements
ffi

5

K.	 d



in the sensitivity of electro-optical materials or the development of super-

light, super-rigid, super-reflective mirror materials, etc. The practical

consideration of this assumption is that the time required to obtain a signal,

an acceptable signal to noise ratio and radiometric quantization, is fixed

to the Thematic Mapper design.

4.0 SWATH WIDTH, SATELLITES, AND COSTS

This study was undertaken in two parts. One part dete-rmined a quanti-

fied measure of the benefits of using wider swath sensors for obtaining

GCPF data and the other part determined their costs. Costs included penalties

of performance, technical limitations, and processing throughout the data

acquisition system as well as relative dollar considerations. The benefits
1

and penalties were considered jointly to obtain rankings of,,_alternate approaches.

e
The benefits of different swath width sensors were measured using the

approach developed during the preceding study (Ref. 3). The satellities, their

movement and observa,t lbn capability, world cloud conditions, and major growing

regions for wheat, corn, soybeans, and rice were modeled using the MSFC Data

System Dynamic Simulator (DSDS) (Ref. 9).

Sample targets were identified along with pertinent regional cloud con-

ditions and crop mixes, statistics were collected on individual samples and

regions. This permitted a measure of the effects of opportunity variations

due to overlap in coverage, length of time during which observations could=

be obtained, and the effects of localized cloud conditions. During this

study, sensors of different swath widths were modeled and the acquisition

success was determined for one, two, and three satellite systems. The effect

of orbit selection to maximize the benefits of using wider swath senscrs was

also investigated.

-,	 A series of issues surface when the design, implementation, and use of

a wider swath sensor are considered. There are penalties incurred because of

the cost of development and testing, performance degradation, and operational

difficulty. , The issues are not all on the samelevel. As choices are made

6
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between alternatives, subsequent issues arise that are a direct result of the

selection made. The complete assessment of alternatives is depende(t upon

completing the analysis through all subsequent issues to an acceptab l e solution.

This sequence of issues is J<llus=trated by the decision tree of Figure 1.

This study used the Thematic Mapper design as planned for use on Landsat-D

as the baseline for analyzing wider swath width penalties. Attempts were made
g

to identify possible approaches to increasing the sensor swath width with a

minimum of penalty. Technical limitations were considered and possible alter-

rate solutions were assessed. The overall data acquistion system costs were

S`

	

	 then evaluated in conjunction with the benefits previously determined for each

system.

4.1 APPROACH TO MEASURING BENEFITS Of WIDER SWATH

Twenty-two countries were chosen based on the criteria that each con-

tributed two percent or more to the world harvest of one of the selected crops.

11The larger countries were divided into geographic regions corresponding to sta-

tistical reporting districts. The point target capability of DSDS was used	 I
J

to provide a statistically sound measure of variations due to geographic loca-

ex tion and cloud conditions. A minimum number of samples in a simulation region

was set at 30 for a geographic region containing only one crop. The number of

samples was adjusted to a maximum of 60 when all four crops were grown in a

^.	 region.
A

This approach resulted in 1553 samples for the world and permitted the

collection of statistics on individual samples and regions. The number of
1`	a

t ,	 samples drawn for an operation system varies for each region according to

Ei	 accuracy considerations and can be scaled from the simulation data. The

countries chosen, along with their crops, and the number of samples allocated
h

to each are listed in Table 3.



MODIFY THEMATIC MAPPER TO OBTAIN
BENEFITS OF S?TALL INCREASE

NOTE: SYSTEM 1 IS BASELINE

INCREASE SENSOR SWATH WIDTH

T,

BUILD A NEW SENSOR WITH SWATH WIDTH
`	 CHOSEN OPTIMALLY FOR NUMBER OF SATELLITES USED

co

r,

BUILD A WIDE SWATH	 BUILD A TOTALLY NEW	 MAINTAIN 30	 ACCEPT SOME SPATIAL
THEMATIC MAPPER	 PUSHBROOM TYPE SENSOR	 METER RESOLUTION 	 RESOLUTION DEGRADATION

.,"	 (SYSTEM 4)	 (SYSTEM 5)	 (SYSTEM 3)

INCREASE SCAN EFFICIENCY	 INCREASt-SENSOR ELEMENTS
(NON-VIABLE)	 (SYSTEM 2)

Figure 1. Decision Tree for Implementing Increased Sensor Swath



Table 3. Countries, Regions, Crops, and Number of Samples Used for Study

Country & Region Crops
Number of

Simulation	 Samples
Estimate of U of Oper-
ational	 Sample Segments

Argentina W,C 45 1500
Australia W 30 1000
Bangladesh R 30 1000
Brazil	 North C 30 1000
Brazil	 South C,S,R 53 1767
Canada W 30 1000
China North W,C,S,R 60 2000
China Central W,C,S,R 60 2000
China South W,C,S,R 60 2000
Egypt C 30 1000
France W,C 45 1500
India Punjab W,C 45 1500
India Ganges W,C,R 53 1767
India	 Central W,C,R 53 1767
India	 Bilaspur W,C,R 53 1767
India	 Coastal R 30 1000
Indonesia R 30 1000
Italy W,C,R 53 1767
Japan R 30 1000
Mexico C 30 1000
Pakistan W 30 1000
Romania W,C 45 1500
South Africa C 30 1000
Philippines R 30 1000
Thailand R 30 1000
Turkey W 30 1000
USA -Southern Midwest W,C,S 53 1500
USA -Western Great Plains W,C 45 2000
USA -A11	 Other W,C,S,R 60 2000

USA - Southern	
(

W,C,S,R 60 2000
USSR Latvia W,C 45 1500
USSR Ukraine W,C 45 1500
USSR Transvolga W,C 45 1500
USSR Volga-Ural W,C 45 1500
USSR Siberia W,C 45 1500
Yugoslavia W,C 45 1500

TOTAL 1553 51355

W = Wheat, C = Corn, S 	 Soybeans, R = Rice

9

ri

a

ny



y

f

The DSDS at MSFC was . used to determine the following:

o Orbital position of the satellites as a function of time and orbital
parameters.

f	 o The sensor field of view as a function of satellite position and
swath width.

o The state of the samples within the field of view as a function of
the cloud model.

o The statistics on the target acquisitions as a function of the above,
the preprocessing acceptance criteria and 0e processing requirements.

The DSDS combined the dynamics of satellite position, crop models,

cloud models, and processing requirements. A Monte-Carlo method was used in

conjunction with a cloud model to inject the realism of cloud cover- in the

simulation.

The simulation was segmented as illustrated in Figure 2. For economy

of simulation time, the results of each successive simulation segment were

saved and used for later parametric variations. For example, for a one year

simulation of satellite positions repeating every 16 days, the mission ephemeris

was generated for 16 days and reused. For different v nsor swath widths for the

same satellite positions, the same mission model data was used. The results of

the Mission Model, sensor swath, and target described the data available from

one satellite. Any combination of satellites desired was combined in the

multi-vehicle crop model to constitute one of the candidate systems. Thus, such

subtle effects asthe difference in insertion time and position offset for a 3

Laold's-at vehicle system were included. The effects of cloud conditions were

$'

	

	 determined by a comparison of a random number against 'the predesignated cloud

condition breakpoints for the cloud region corresponding to each sample. The

acceptable cloud conditions for preprocessing was the first criterion to be

met for all the samples in a scene 90 nautical miles along track and one swath

l	 width wide. A subsequent random number was compared with the scene cloud con-.	 E

ditions to determine if each sample was clear or cloudy. A more detailed dis-

cussion of the DSDS models and the available data is presented in References

3 and 4.
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SENSOR SWATH TARr,ET
MULTI-VEHICLE

CROP MODEL
MISSION MODEL

CLOUD MODEL

• Determine acquisition

statistics as function

of processing require-

ment

• Include crop calendar

• Include cloud effects

• Combine multiple

satellites

• Cover complete year

o Determine Satellite
	

o Determine Sensor
	

o De to rr~, i ne Samples

position as function
	

field of view
	

seen as a function

of time and orbital
	

of satellite

parameters position and sensor

FOV for one repeat

cycle

Fiqure 2. DSDS Model



4.2 TARGETS OBTAINED USING 1, 2, AND 3 LANDSAT-D SATELLITES

The first step in this study was to determine a curve of acquisition

versus swath .width with a standard Landsat-D orbit repeating every 16 days

after 233 orbits. This curve provides information on the benefit of wider

swath with no consideration as to how it may be obtained.

Simulation runs were made with 1, 2, and 3 Landsat-D satellites to deter-

mine the percent of desired target areas for which cloud free image data could

be obtained with increased swath width. When 2 satellites were employed, they

were spaced so that each point on the ground is covered every 8 days and when

3 satellites were employed, each point on the ground is covered every 5 1/3

days. For each combination of satellites, the swath width was increased in

discrete steps from 185 kin to 350 km. For each swath width, five; one-year

runs were made with different random number seeds in the cloud model to

represent five different years of data. The results of.-these runs are plotted

on Figure 3. For each combination of satellites and swath widths, the range

of the percent of desired, samples for which cloud free image data was obtained

is plotted as a bar on Figure 3. Five runs do not cover the entire range of

expected results for any combination of satellites and swath widths. The

smooth curve fitted _through the range marks represents the expected mean per-

formance when using 1, 2, or 3 Landsat-D satellites.

As expected, there was more variation in the range for the one satellite

#

	

	 case. This occurs because there are fewer opportunities to "see" each target	 iJ

area (sample) during its specified windows. The system with one satellite does

not meet the goal of acquiring 98 percent of desired samples during prescribed

windows. This acquisition goal was set to minimize the sampling error for crop

production forecasting. 	 #'

i	 With two satellites deployed and a swath width of 222 kin 	 20 percent-^	 i
increase in nominal swath width) the mean percent of samples acquired is at

the 98 percent level. All f ive test cases exceeded the 98 percent goal. With

3 satellites deployed, the mean percent of samples acquired globally was 99.3

with the nominal 185 kin
	 width. To achieve this performance level with

9	 2 satellites, would require increasing the swath width to' 	 km.

12
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In all	 three cases,	 the curves exhibit a knee beyond which 	 increased

swath width results in a	 lower rate of	 increase in the percent of samples

r acquired.	 The	 initial increase in swath width enhances the probability of

acquiring missed	 samples	 in	 regions where acquisition	 is moderately difficult.

Beyond this point, further 	 increase does not appreciably enhance the prob-

ability of obtaining samples	 in	 regions which exhibit high cloud probability.

The knees in the curves occur at approximately 285 km, 240 km, and 200 km 	 i
i'

swath width for	 1,	 2, or 3 satei,,tes,	 respectively.

4.3	 REGIONAL EFFECTS

While an operation GCPF system is concerned with regional requirements,

global data	 is more meaningful 	 for evaluation of most swath width trades.

Regional data	 is pertinent for specificconsiderations.	 Additional	 regional

studies can be performed as required. 	 Because of the statistical 	 variations

introduced by clouds,	 the larger data sets available using the worldwide

aggregation were chosen as thep rime indicators of performances. 	 Results

from the previous studies	 (Ref.	 3, 4) were used to the maximum extent possible.

Those results for the 185 km swath for 20 simulations are reproduced 	 in Figure 4.

The targets, windows, and cloud conditions of this data correspond to the con-

"

i
ditons required for this study. 	 In this study, five simulations were used for

each condition.

Two regions, Central	 China and Ganges	 India, were chosen for	 identifying	 -

regional effects. 	 These regions represent difficult acquisition regions. 	 Data

was also analyzed for ,,^the Russian regions for comparison of effects for the

easy regions.	 (A region	 is easy because of a combination of prevalent cloud

conditions and overlap	 in coverage at polar latitudes.)	 The China-India

l two satellitedata was averaged and plotted as a percent of targets acquired
o,
i 3 versus swath width.,A

3

u
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The data,	 as plotted on Figure 5,	 illustrates a	 linear relationship

in the range from 185 to 250 km. 	 This	 is consistent with the curves of

*'"} Figure 3.	 A least squares curve fit of the data yields the equation below:

y = 72.30 + 0.1019x

where " y is the percent of targets acquired and

x	 is the swath width 	 in kilometers.

t
9

The realistic variations 	 in cloud coverage causes a wide variance in the

`	 y data for an	 articular region and swath width. 	 This	 is a res	 It of the com-Y P	 9	 !d

paratively few target windows 	 in a region	 (120 for Central	 China, 212 for

} Ganges India).	 For the basic study of swath width effects, the use of global

^

data with 2926 target windows is more	 illustrative.	 When an analysis of the

data	 is performed for determining_ regional effects, 	 it	 is necessary to per-

`
form some averaging or smoothing. 	 To illustrate how the data of Figure 5 was

r
obtained, the data from the individual	 regions	 is presented	 in Table 4.	 The

mean of 5 runs, plus the minimum and maximum is presented. 	 This data is

plotted	 in Figures 6 and 7.	 A visual "best fit" curve is drawn that exhibits
,^

similar characteristics to the global	 curves of Figure 3.

Because of the frequent observations encountered at the higher latitudes

due to overlap,	 there is little benefit from increased swath width. 	 Two

satellite data from the five Russian regions 	 is presented	 in Table 5 to illus-

trate this phenomena.

4.4	 EFFECT OF REDUCING THE REPEAT CYCLE

The previous sections show that 	 increased swath width does provide a

M-

}>

benefit in terms of thepercent of target areas-for which cloud free image

data	 is obtained.	 It was also noted that beyond a certain point, the in-

cremental	 benefit fell off.	 This occurred becasue further	 increase	 in swath

width did not provide additional 	 viewing opportunities for targets 	 in the

non-overlap regions at the lower_ latitudes. 	 These regions also correspond	 i.

with areas of high clould persistence. 	 To maximize`the probability of obtain-_

ing desired samples from all	 regions,	 it requires increasing the number of

16
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Note: This data was plotted using the interactive capabill'-	 of DSDS. The data
points were truncated to permit a straight line curve fit. A flattening occurs

t,
at wider swath widths as exhibited by Figures 6 and 7.
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Table 5. Average ACq, Ui g ition for Five Runs for Russia

SWATH WIDTH,
KM LATVIA UKRAINE TRANSVOLGA VOLGA-URAL SIBERIA AVERAGE

185 100.0 99.8 99.3 99.8 99.1 99.65

Igo 99.6 100.0 99.6 100.0 98.7 99.65

200 100.0 100.0 99.8 100.0 98.7 99.80

210 100.0 100.0 100.0 100.0 100.0 100.00

222 100.0 100.0 99.8 99.8 99.6 99-85

230 100.0 100.0 100.0 100.0 99.6 99.85

rp
Table 4. Unsmoothed Data for Central China an(

PERCENT OF SAMPLES ACQUIRED

CENTRAL CHINA GANGES	 INDIA
SWATH WIDTH AVERAGE

KM MINIMUM MAXIMUM MEAN MINIMUM MAXIMUM MEAN

185 go.8 95.0 93.0 83.0 94.3 88.5 90-75

190 90.0 94.2 92.3 84.0 97.2 92.2 92.25

200 87.5 95.8 92.3 87.7 98.6 92.8 92-55

210 91.7 95.8 93.7 76,A 93.9 90.6 92.15

222 94.2 96.7 94.8 94.3 96.7 95.4 95-10

230 92.5 96.7 94.6 93.9 98.1 96.4 95-50

92.1 99.2 98.2 91.5 99.1 97.1 97.65

300 98.3 100.01 99.2 95.3 99.5 97.8 98.00

350	 1 98.3 100.0 99.3 97.6	 1 100.0	 1 99.2	 1 99.25

I?
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Figure 6. Percent of Samples Acquired for Central China with
2 Landsat-D Satellites
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viewing opportunities for all regions regardless of latitude. This can be

accomplished by reducing the orbit repeat cycle.

The effect of increased swath width as a function of latitude for the

Landsat-D orbit is shown on Figure 8.
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The ratio of swath width to the distance between adjacent ground tracks

was calculated as follows:

3

R = Ratio of Swath Width	 N*SW

	

S	
to between track distance	 CE COS 6

where:	 N = Number of orbits per repeat cycle

t
= 233 (for Landsat D)

SW = Swath Width

'

	

	 CE = Equatorial Circumference of Earth
40075.2 km

B = Latitude

The percent of overlap versus latitude is then simply:

a
% Overlap = 100(RS-1)

Also shown on Figure 8, are the mean latitude for the crop growing

regions of USSR, USA, China, and India. The percent of overlap at the equator

and for the median crop growing regions of India and the USSR are listed in
1

`	 Table 6.

Table 6, Parameter Affecting Coverage at Selected
Crop Regions

SWATH
WIDTH

% INCREASE	 IN
SWATH WIDTH

PERCENT OVERLAP
EQUATOR INDIA USSR

185 0 7.5 18.0 76.7

210 13.5 22.1 34.0 99.2

222 20.0 29.1 41.7 112.0

1.
With 185 km swath width, the Landsat -D provides 7.5% overlap at the

equator,	 18% for India and 76.7% for USSR. A	 13.5% increase in swath width
r;
4 provides total overlap for USSR whereas only 1/3 of the area of India receives

overlap coverage.

Increasing the swath width doubles the-number-of observations for targets

in the overlap area but does not benefit the targets in the non-overlap area.
A

If "increased swath width is used with a modified orbit to reduce the repeat

--
22



PARAMETER ORBIT

Nominal	 Altitude	 (km) 704 771 867

Repeat Cycle	 (days) 16

233

14 14

197Repeat Cycle	 (orbits) 201

Swath Width Required for
5% Overlap at Equator	 (km) 180 209 214

Period	 (seconds) 5933 6018 6140

Ground Trace Velocity	 (km/sec) 6.87 6.77 6.64

Inclination	 (degrees) 98.2 98.5 98.9

Resolution with Standard
T.M.	 Optics	 (meters) 30 32 .9 37

Other Landsat-D Min-Drift

cycle,	 all	 target	 areas	 benefit	 equally.Y	 9 That	 is,	 with a 42-day observation

window,	 a	 14-day repeat cycle provides a minimum of 3 observations for	 all

targets whereas with a	 16-day	 repeat cycle 3/8's of the targets are only

covered twice.	 To evaluate the benefits obtained from a reduced	 repeat cycle,

two	 14-day repeat orbits were evaluated. The parameters for the two orbits are

listed	 in Table 7	 with	 the corresponding parameters for the	 16-day	 repeat

{{
1 Landsat-D orbit.	 The orbital	 parameters were determined using the methods

proposed	 by	 King	 (Ref.	 10).	 For all	 cases,	 the	 inclination angle was set	 to

obtain a	 sun-synchronous orbit.

The ratio of swath width to the distance between adjacent satellite

ground tracks as a function of latitude is shown in Figure 9 for the 14-day

repeat orbit at 771 km. With a 185 km swath width, this orbit will not provide

total coverage at the equator. 	 If the swath width is increased to 222 km, there

is 11.4% overlap at the equator and 22% and 83% overlap, respectively, for India

and the USSR.

Table 7. Parameter for Orbits Studied
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The theoretical viewing opportunities for India and USSR are presented in y

Table 8 for the following conditions, 	 a

o	 1 Ir and 16-duty repeat cycles
o	 42-day observation period

o	 Swath width of 185, 210, and 222 km

4 0	 200 ta rge t a re€rs	 in KICII country

r# for each case,	 the targets are divided into groups based on the number of

observations they would have dui• i ng a 42-day window considering both the prob-

abil ity of observation based oil 	 as a function of latitude and the ratio

of the observation period to the repeat cycle.	 With a 11r-day repent cycle, all

K targets , in bath regions have at least 3 viewing opportunities	 ;t^gt,-8̀ rdlrass- of	 t
sensor swath width.	 With a 16-day repeat cycle, even with the swath width in-

greased to 222 km,	 there are 44 targets (22%) 	 in India that only have two View-

1119 OPiaQI-Will-ties dewing the window# Under the some conditions, because the
` overlap exceeds	 100%,	 there	 are 15 tar ggets in the USSR with 9 viewing opportunities,

n^
t z4

w	 ^^
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Table 8. Coverage Comparison for India and USSR

14-DAY REPEAT CYCLE 16-DAY REPEAT CYCLE

WITHOUT 185 210 222 WITHOUT 185 210 222
OVERLAP SWATH SWATH SWATH OVERLAPSWATH SWATH SWATH

PERCENT OVERLAP 0 2 15 22 0 18 34 42

2 75 61 50 44
,^ z
° 0 3 200 196 170 156 125 103 83 73

INDIA LU 14 25 314 --
= Wz m 5
0

6 0 4 30 44 23 42 52

IOTAL OBSERVATIONS 600 612 690 1 732 525 622 701 742

PERCENT OVERLAP 0 52 73 83 77 99 112

2 75 17 1 0

3 200 96 54 34 125 29 1 0

4 58 74 66W oo_
5USSR aW^

CM
W 146 166 96 124 1196 0 104

Z LnCD
_

c 7

8

9 15

TOTAL OBSERVATIONS 600 912 1038 1098 525 929 io45 1113

If the system requirement is for one cloud free observation during the

window, as for GCPF, the additional opportunities in the USSR have a much

lower probability of providing needed information than do the additional

opportunities gained in India by going to a 14-day repeat cycle.

In both countries, when considering the same swath width, there are r1ore

total observations for the 16-day repeat orbit. The 16-day repeat orbit has

a shorter orbital period and completes approximately 9 additional orbits during

the 42-day window.

25
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4.5	 TARGETS OBTAINED USING A REDUCED REPEAT CYCLE

Simulation runs were made to compare the 14-day and 16-day repeat orbits

on the basis of the percent of desired samples obtained. 	 The conditions simu-

lated were:

o	 Orbital	 altitude - 771	 km and 867 km 1

o	 Number of satellites - 2

o	 Five 1-year runs

o	 Scene acceptance - less than 50% cloud cover

o	 Sample acceptance - 	 less than 10	 cloud cover

o	 Swath width - 210 and 222 km ^I

The results obtained for the 771 	 km and 867 km orbits are plotted on

i Figure 10.	 Also shown are the corresponding curves for the 2 and 3 satellite x

704 km Landsat-D orbits. 	 The 771	 km and 867 km orbits were only run for two

swath widths.: 	 It was assumed that the shape of the curves would be the same

as the 704 km orbit. 	 The 771	 km and 867 km orbits require a minimum swath r.	 W

y

width of 209 km and 214 km,	 respectively,	 to achieve 5% overlap at the equator.

Thus, the curves for these orbits are only plotted for swath widths greater

than these values.

rt If the swath width for the 704 km Landsat-D orbit	 is	 increased by 20%

(to 222 km), the percent of targets for which cloud free samples are obtained

increases from 96 .67% to 98%.	 This reduces the percent of samples missed from

3.33% to 2% which represents a- 40% reduction.	 The results also	 indicate that

an	 incremental	 benefit can be achieved by using the 771	 km 14-day	 repeat orbit

I- regardless of swath width. 	 With a 222 km swath width, 	 the 771	 km orbits pro-

vide a 46% reduction 	 in the percent of samples missed when compared with the

nominal	 Landsat orbit.	 In addition to providing additional 	 reduction	 in the

a percent of samples missed for a given swath width, the 771	 km orbit also

provides total	 coverage every 7 days when two satellites are deployed. 	 This

'	 zt provides a significant benefit from an operational	 standpoint. 	 Since reports

' are generally	 issued on a weekly or biweekly basis, each update would contain

data from all areas of the world.	 This would reduce any bias caused by a 	 lack

of data from areas not covered by 'a longer repeat orbit.

I
R
f
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The 867 km minimum drift orbit did not perform as well as the other

orbits. To match the performance of the 704 km orbit, the 867 km orbit would

require a 139 wider swath.
k

The results of the 771 km orbit on regional acquisition was analyzed using

two satellite data for Central China and Ganges India. The partially smoothed

data is presented in Table 9. Considerable smoothing is required to draw any

inference from so few dataoints involvingp	 v	 ing such wide variances as result from

cloud conditions. The regional data from the previous study (Ref. 3) is in

Column A. Since it was the result of 20 runs, it more nearly reflects the true

mean than the results from only 5 runs. A comparison of-Columns ' B and A pro-

vides an appreciation for the statistical variations that can be expected. One

method of decreasing the variations is to increase the base by combining both

sets. This combined set is the average in row 3. The average percent acquisition

for the 704 km orbits are in entry B3, C3, and D3. They exhibit increasing bene-

fits at the regional level consistent with the global level. Caution must still

be exercised because of the wide variance due to the still small populations.

A qualitative comparison of the data in E3 and E3 to C3 and D3 indicates improve-..	 i

ment at the regional level for the 771 km orbit. An average of the 210 km and

222 km swath data yields an acquisition of 92.4% for 704 km and 94.0% for 771 km.

4	 ::	 This is only a 1.7% increase. However, keeping in mind the requirement for high

acquisition is to reduce sampling errors from missed samples. The 771 km orbit

provides a 21% reduction in the samples missed for the difficult regions.

Table 9. Two Satellite Data Comparing 704 km and 771 km Orbit Effects
on Central China and Ganges India

COLUMN, -Ow	 A	 B	 C	 D	 E	 F

PREVIOUS

(20	 RUN
STUDY	

PRESENT STUDY (5 RUN AVERAGE)

AVERAGE)

Row	 704/185	 7o4/185	 704/210	 704/222	 771/210	 771/222

1	 CENTRAL CHINA	 90.4	 93.0	 93.7	 94.8	 95.0	 93.7

2	 GANGES-INDIA	 91,8	 88.5	 90.6	 95.4	 93.2	 94.2

3	 AVERAGE	 91.1	 90.8	 94.1	 95.1	 94.1	 94.0

i
1

B

3

ORBIT/SWATH IN KILOMETERS 	 ACQUISITION IN PERCENT^P

y	
28



If a new sensor is designed for this application, further reduction in

repeat cycle should be considered. Each reduction in repeat cycle requires

an increase in swath width which is inversely proportional to the reduced re-

peat cycle. Also, a reduction below the 14-day repeat cycle negates the ad-

vantage of having total coverage on a weekly basis with two satellites.

The alternatives for achieving increased swath width for each orbit and

the associated penalties are discussed in the next section.

;t
4.6 CHALLENGES OF WIDER SWATH SENSORS

Challenges are encountered because of the costs of developing and testing,

performance degradation, and operational difficulty. 	 An approach to selecting

n alternatives	 is to consider	 incremental penalties for deviations from a given

baseline.	 In this study,	 trade-offs	 involved	 in	 increasing the Thematic Mapper
.

swath width from the currently planned 185 km are considered.

` The development of a totally new sensor system, a linear arr ay,	 is alsoP	 Y	 Y	 ^	 Y ►

considered	 in a cursory manner. 	 It will	 require a greater amount of testing

and space qualification than will 	 a modification.	 However,	 it will	 overcome

several of the difficulties that are analyzed 	 in the following paragraphs.

i,

4.6.1	 THEMATIC MAPPER BASELINE

As an aid to understanding the challenges encountered and an assessment

of the trade-offs	 involved	 in	 increasing the Thematic Mapper, swath width,

kk
the current design 	 (Ref.	 11)	 is summarized.

^:

The Thematic Mapper is ,a whisk broom type scanning sensor system that

produces a strip image of the earth in seven spectral	 bands as shown	 in

Table 10.	 The princiapl	 uses	 (Ref.	 12)	 of eachband are also identified.

The IFOV	 is 30 meters with eight 	 (8) bits of digitized quantization 	 levels.

' The characteristic parameters of the Thematic Mapper 	 (Ref.	 11) are repro-

duced in Table 11.	 An oscillating mirror provides a sweep of 7 bands

29
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^.^	 Table 10. Thematic Mapper Spectral Bands

BAND TYPE
BAND	 LIMITS,
MICROMETERS TYPE PRINCIPAL	 SENSITIVITY

1 Si 0.45	 —	 0.52 BLUE CAROTENOID CONCENTRATIONS
2 1	 Si 0.52	 - 0.60 GREEN CHLOROPHYLL
3 Si 0.6	 - 0.69 RED CHLOROPHYLL
4 Si 0.76 - 0.90 NEAR	 IR BIOMASS

InSb 1.	 -	 1.75 IR MOISTURE STRESS
6 HgCdTe 10.4	 -	 12.5 FAR	 IR MOISTURE STRESS
7 N/A 2.08 - 2.35 IR THERMAL,	 GEOLOGY,	 POSSIBLY

YIELD

Table 11. Thematic Mapper Characteristic Parameters

ORBIT TELESCOPE

• Type Sun Synchronous o Type Ritchey-Chretien

• Altitude 705 KM o Effective Focal

• Orbit Near Polar
Length 96	 In.

• Earth Coverage 16-Day Period
o Optical	 Diameter 16	 In.

• Swath Width 185 KM
o Aperture Stop f/6.0

• Resolution 30	 M	 (Visual)
o Optics All	 Mirror Surfaces

120	 M	 (IR)
SCAN MIRROR

SCAN SYSTEM o Size 21	 In.	 x	 16	 In.
Elliptical

• Type	 Object Plane Mirror

• Scan Rate 7.1	 Hz
o Material Beryllium

• Scan Angle +7.5 Deg o Mirror Motion +3.750

• Scan	 Efficiency 85% DETECTORS

• Mirror Motion Bidirectional	 Scan o

o

Bands	 1-5,7

Band 6

16 per Band

4 per Band
PHYSICAL

• Weight 362	 Lb. DATA

o Type High Speed• Length	 77	 In.

• Width 24	 In.
Multiplex

• Height 39	 In. o Data Rate 84.5 MP BS

• Electrical
o Resolution 8	 Bit	 PCM

Power 171	 W. o Data Relay TDRSS

30
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simultaneously as illustrated in Figure 11. Six of the bands are of primary

interest for agricultural applications. A seventh infrared band was added at

about 2.2 micrometers.	 Its use is not considered in the analysis of wider

sensors for GCPF except data from this band is considered in communication
k
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4.6.2 SWEEP TIME REQUIREMENTS WITH INCREASED SWATH

In this section, alternatives for achieving increased swath width for the

704 km Landsat-D orbit and the 771 km 14-day repeat,orbit are discussed. For

a given orbit, with a constant ground trace velocity, controlling the time per

sweep is analogous to controlling the distance along track from the start of

1 sweep to the start of the next. The along track distance covered per sweep

for a given orbit can only be changed by changing the number of sensor elements

for each band. To maintain the 4:1 ratio in resolution between the visible

bands and the IR band, only incremental increases of four sensor elements were

considered in this analysis.

The sweep period must include time for mirror turnaround plus a scan

time that increases linearly with swath width. For this analysis, the

following conditions were assumed. The sensor materials used in the TM

represent the state of the art in sensor development. Thus, the cross track

scan time per pixel was held at 9.8 microseconds to maintain the radiometric

resolution, quantization levels and signal to noise ratio specified for the

TM. A minimum of 9.5 milliseconds is required, for mirror turnaround. The

mirror turnaround time is not a function of the scan angle because the mirror

size increase is not significant.

The added scan time will be achieved either by increasing the number of

sensor elements per band or by taking advantage of the decreased resolution

of the 771 km orbit to provide both additional time between sweeps and

additional width per pixel.

The achievable swath width is calculated in Table 12 for the following

conditions.

o Landsat-D orbit with the number of sensor elements per band

n increased from 16 to 20.

b.
^.	 o The 771 km orbit with the number of sensor elements per band

increased from 16 to 20 with 30 meter resolution.

o The 771 km orbit with the spatial resolution reduction caused by
'	 increased altitude (i.e., 32.85 meters/pixel).

o The 771 km orbit with reduced spatial resolution and the number of
sensor elements per band, increased from 16 to 20.

r_
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Table 12.	 Increased Swath Width Alter

w
w

NOMINAL

LANDSAT-D

LANDSAT-D

20 SENSORS
PER BAND

771	 KM ORBIT
20 SENSORS
PER BAND

771	 KM ORBIT
20 SENSOR:
PER BAND

REDUCED

RESOLUTION

771	 KM ORBIT
16 SENSORS

PER BAND

REDUCED

RESOLUTION

NOMINAL ALTITUDE 704 704 771 771 771

SPATIAL RESOLUTION 30 30 30 32.85 32.85

GROUND TRACE VELOCITY	 (METERS/SEC) 6870 6870 6770 6770 6770

NUMBER SENSOR ELEMENTS/HI	 RESOLUTION BAND 16 20 20 20 16

ALONG TRACK TRAVEL/SWEEP	 (METERS) 480 600 600 657 525.6

SWEEP	 PERIOD	 (MILLI	 SEC) 69.87 87.34 88.63 97.05 77.64

MIRROR TURNAROUND TIME	 (MILLI	 SEC) 1	 9.5 9.5 9.5 9.5 9.5

SCAN TIME/SWEEP	 (MILLI	 SEC) 60.37 ,'1.84 79.13 87.55 68.14

SCAN TIME/PIXEL	 (MICRO SEC) 9.8 9.8 9.8 9.8 9.8

MAX.	 CROSS TRACK PIXELS 6160 7943 8074 8933 6953

ATTAINABLE SWATH WIDTH 	 (KM) 185 238 242 293 228

SCAN ANGLE	 (DEGREES) 15.0 19.2 17.9 21.6 16.9

PERCENT OF TARGETS ACQUIRED

WITH 2 SATELLITES 96.65 98.5 98.8 99.3 98.4
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For comparison, the values for the nominal 185 km swath Landsat-D orbit

are shown in Column 1 of Table 12.

In each case:

Along Track Travel/Sweep = (Number Picture Element/Band)*(Spatial

Resolution)

Total Time/Sweep = Along Track Travel/Sweep

Ground Trace Velocity

Scan Time/Sweep = Total Time/Sweep - Mirror Turnaround Time

Max. Cross Track Pixels = Scan Time/Sweep

9.8 microseconds

Attainable Swath Width = (Max. Cross Track Pixels)* (Spatial Resolution)

Scan Angle = 2` Tan_1 Swath/2
Altitude

Table 12 indicates that a swath width of up to 238 km can be achieved with

the Landsat-D orbit if the number of sensor elements per band is increased from

16 to 20. The penalties associated with this change are increased weight,

complexity, and data rate. These penalties are discussed in later paragraphs.

The swath width for the 771 km 14-day repeat orbit can be increased to
228 km by sacrificing the spatial resolution incurred W going from a 704 km
orbit to a 771 km orbit, that is by allowing a picture element to increase

approximately 10 on a side. 	 In addition, the timing circuits would have to

change because of the increased number of minor frames per major frame.

Also, if the number of sensor elements per band is increased from 16 to

20, the swath width for the 771 km orbit can be increased to 242 km with a 30

meter spatial resolution or to 293 km with a 32,85 meter spatial resolution.

These changes would increase the weight, complexity, and data rate for the TM.

In addition, changing the resolution from 32.85 meters back to 30 meters

would require a change in the optical system. In all cases, there is an

increased scan angle which would necessitate a mechanical repositioning of the

scan mirror bumper assembly.

*The asterisk is used to indicate multiplication.
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4.7 PHYSICAL LIMITATIONS

There are physical limitations on the performance of a whisk broom

sensor that limit the swath width obtainable. They are a result of the basic

physics of sensing electromagnetic energy and converting it to a measurable

quantity of electrical energy. A minimum quantity of light must fall on the

element to produce a given amount of electrical current. The quantity of light

required depends upon the photosensitive material, the frequency of the light,

t	 and the physical properties of the material.

Generally, a satellite-borne sensor will 	 exhibit the following character-

istics:

1.	 The output current	 is predictably related to the amount of light
incident on the sensor element.

;i

2.	 The physical size, weight, and power requirements of the sensor ele-
ments are modest and conform to restrictive budgets.

I
3.	 The amount of light needed for the operational 	 range is reasonably

attainable.

. The above characteristics force a trade-off of sensor spectral 	 resolution,i1

radiometric resolution, 	 spatial	 resolution,	 and physical	 complexity whenever

swath width	 is	 increased.	 For a given	 light gathering geometry, 	 radiometric

resolution depends upon the sensitivity of the primary sensor material, 	 the
ti

spectral	 frequencies accepted, and the signal 	 to noise ratio of the system.

It was a premise of this study that the Thematic Mapper design represents the

state-of-the-art	 in primary sensor element manufacture. 	 It was also _assumed

that the requirements for spectral 	 resolution and radiometric resolution

y _. for which it was designed would have to be met by any modified sensor system.

These assumptions and groundrules restricted the areas of trade-offs to

obtaining	 increased swath width by either a sacrifice in spatial	 resolution

or by increasing the sensor system complexity.- An objective was to not

sacrifice the planned 30 meter spatial 	 resolution; however,	 some alternatives
F	 ^-

W.

admitted minor degration of the parameter.
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Within the	 limitation of size, weight,	 and power,	 certain	 increases	 in

z system complexity were subjected to trade-off analyses to optimize overall

performance.	 These fall	 into three categories.	 One	 is to maintain the pre-

sent resolution	 (spatial, spectral, and radiometric)	 by adding elements. 	 Two

is to maintain the present resolution for minor swath width 	 increase by using

some of the turnaround time for sensing additional 	 pixels.	 The third category	 1

of alternatives	 is	 to accept a slight degradation 	 in spatial	 resolution and

achieve a slight	 increase	 in swath width by altering the orbital altitude.

Each of these alternatives have associated problems which required

additional	 alternative trade-offs. 	 The problems. analyzed fall	 into six Cate-

gories.	 They are	 1)	 electronic complexity, 2)	 mirror size and	 inertia,

3) Maintenance of pixel aspect ratio, 4) communication bandwidth requirements,

5)	 scene dynamic radiometric range, and 6)	 ground processing complexities.

They are summarized in Table	 13 and discussed below.

Table	 1 13.	 Trade-Study Alternatives

f
SENSOR SYSTEM ALTERNATIVES

r
o	 More Elements

g o	 More effective use of turnaround time
o	 Reduced spatial	 resolution

PROBLEMS

o	 Electronic complexity

o	 Mirror size and	 inertia

o	 Pixel	 aspect ratio

o	 Communication bandwidth

o	 Scene dynamic range

o	 Ground processing complexity

1

.£
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4.7.1	 INCREASE SENSOR ELEMENTS

This alternative maintains the spatial 	 and°radiometric resolutions of the

current design with existing materials.	 Additional	 swath width	 is achievable

by allowing additional 	 time for each sweep. 	 The ground-trace will	 advance

further along track as the sweep time is 	 increased so it	 is necessary to

increase the along track coverage for each sweep. 	 With this alternative,

additional	 sensor elements for a total of n are used.	 Thus,	 instead of 16

elewants, as 1,n the Thematic Mapper, sweeping a ground swath of 480 meters,

n elements will	 sweep a swath 30 times n meters according to the time required,

r

7The implementation of this alternative for a whisk broom type scanner

incurs the fol l owing di sadvantages:11	 i	 g

o	 It	 is a major design change

o	 It requires a change 	 in data formatsr

o	 It requires	 increased communications bandwidth

o	 It requires more weight for the sensor system	 j

o	 It requires more power to operate the system

o	 It requires more physical 	 space for the sensor system

r
A

Any major design change	 incurs a substantial	 penalty	 in cost and schedule.

There will	 be a small	 penalty	 in reliability because of the need for additional

1. parts.	 Additionally,	 the data frame formatting would need modification to

accommodate additional elements. 	 This change will	 impact both the on-board

?: formatting electronics and the ground processing software.	 The impact on the

on-board electronics is minor but the effect upon ground processing depends

' upon the timing of any changes.	 Format changes after the currently planned

system is	 implemented would have a'major	 impact.

The impact upon communications bandwidth must be evaluated according

^
p

to degree.	 Wider swath with no compromise in resolution requires more

I communication bandwidth.	 If the additional data	 is truly needed,	 then the

{ bandwidth must be provided`. 	 The planned rate of 84.5 megabits per second	 is

not at the limits of technology.	 Any increase in swath width should be

modest to stay within the limits of available communications bandwidth. 	 A	 y
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guideline is to not exceed an instantaneous demand for more than 120 megabits

per second.	 Within this guideline, a swath width of 275(km could be accom-

modated with 6 high resolution and 	 l	 low resolution band while maintaining

the currently planned resolutions. 	 For additional	 swath width within the

current communi cations bandwidth of 120 megabits per second,	 Instantaneous

compromise must be accepted.	 Some onboard data compression or tightly con-

trolled data taking must be incorporated.	 Control on data taking may take

the form of restricting the data to specific bands or portions of the total

sweep.	 ,These alternatives are only suggested and are not evaluated here. = 	 i

Any major increase in swath of a sensor system using a mechanical scan

will	 require penalties	 in space, weight, and power requirements. 	 These are

primarily due to the need to provide the optic: 	 of rigid high quality to

r gather sufficient light.	 As the swath increases, so does the miror angle

and the need for a Nigger mirror. 	 The bigger mirror must have greater mass

to maintain the needed rigidity ,and to provide reliable operations under

repeated acceleration.	 Since this mechanical	 limitation is currently near-

the state-of-the-art for the Thematic Mapper, 	 little additional sweep can be

expected for this type sensor system.

The analysis of the alternative of providing 	 increased swath while main-

- fiaining current resolution	 is summarized	 in Table 14.	 The. conclusion of this

analysis	 is any major	 increase such that a new development and qualification

program would be required, 	 is not practical.	 A minor increase of 20% or 	 less

will	 be investigated further.

4.7.2 7	USE SWEEP TIME MORE EFFECTIVELY

1 This alternative calls for data taking over a larger percentage of each

sweep.	 If no sacrifices	 in radiometric resolution or si gnal	 to noise ratios

are permitted and no improvement in the sensor element is postulated, any

increase must come from the time used for calibration and mirror turnaround.

However, the currently allotted time of 9.5 milliseconds far mirror turnaround

appears to be the minimum that can be accepted using currently available, mirror
q

and mechanical materials. Thus, this alternative is not viable.y	 ,
rte:.
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Table 14. Co-Darative Analysis of Adding Elerents

w

FEATURE/IMPACT COMMENT EFFECT

• MAINTAINS RESOLUTION -	 "1AJOR REASON FOR IMPLEMENTING -	 VERY DESIRABLE

• INCREASE SWATH BEYOND -	 MAJOR DESIGN CHANGE -	 FIRST COST -50 MILLION
220 KM DOLLARS

• INCREASED COMPLEXITY -	 SLIGHT COST INCREASE -	 NEGLIGIBLE

-	 SLIGHT RELIABILITY DECREASE

• INCREASED SIZE AND WEIGHT -	 INCREASED PAYLOAD CAPACITY WILL -	 TOLEPABLE
ACCOMMODATE THIS PENALTY

• INCREASED POWER -	 PRIMARILY FROM	 INCREASE	 IN MIRROR -	 PROBAbLE LIMITING
SIZE FOR WHISK BROOM SCANNER PARAMETER

• CHANGE	 IN FORMATS -	 IMPACT PROPORTIONAL TO TIME DELAY -	 SERIOUS IMPACT ON
III	 IMPLEMENTING USERS

• INCREASED COMMUNICATIONS -	 MAY REQUIRE TEMPORARY SACRIFICE OF -	 REDUCES COST ADVANTAGE
BANDWIDTH REQUIREMENT CHANNELS OF USING WIDER SWATH

SENSOR



4.7.3 , ACCEPT SO	 REDUCTION IN SPATIAL RESOLUTION

This alternative is viable because it has a minimum impact on the current1
sensor design.	 It is only viable for a slight increase in effective swath

width and is suggested only for a near term application pending future develop-

ment of pushbroom type sensors. The parameters achievable with the Thematic
x	

Mapper flown at 771 km in a 16 - day repeat cycle are Listed in Table 12.

4.7.4 OTHER ALTERNATIVES

Another alternative for more effective use of the planned Thematic Mapper

applies advances in ground processing capability to improve the signal to noise
4

n

	

	 ratio and to minimize the scene dynamic range. Scene dynamic range is of

particular concern as the swath width is increased. For the application of this

analysis, a constant sun angle is postulated. This simplifies the considerations

of scene dynamic range.. The light reaching the sensor is all reflected from

the sun's illumination. When the sensor is pointed toward the sun, the majority

of the light is ,directly reflected off the earth's surface. When the sensor is

	

.	 pointed away from the sun, all of the reflected `light is a result of scattered
illumination,^either from the atmosphere or surface roughness. The variation in

the amount of light directly reflected as the sensor changes pointing direction

from toward the sun to away from the sun is the biggest contributor to the

scene dynamic range. Other contributing factors are the variation in the object
1

reflections, and variation in atmospheric absorption. Clouds over a portion of

a scene may cause shadowing:

The variations in directly reflected light resulting from the pointing

direction of the sensor are illustrated in Figure 12 for a sensor scan angle of

	

1	
15.4 degrees which corresponds to the planned Thematic Mapper design. Three

cases are illustrated. Case l directs the scan towards the sun. Case 3 scans

	

¢i	 around nadir as do the sensors on Landsats 1, 2, and 3. Two important effects

►,	 are influenced by the sensor pointing direction. One is the absol ute signal

 strength and the other is the variation in signal strength across the :scene.

A large value of absolute signal stre;igth is desirable as it allows better signal

to noise ratios. A small value of scene dynamic range is desirable as it re-

duces the bandwidth required to quantize a given radiometric resolution. 	 }

;i
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	 REFLECTED SUNLIGHT

C.
	

^ 15°
A	 B	 N	 C k D

EARTH SURFACE	 74.60

CASE LEFT ANGLE RIGHT ANGLE COSBL COSOR DELTA

I
u

NADIR TOWARDS SUN	 (A-N):.;_ 59.6 75 . 506 .,259 .247

2 NADIR AWAY FROM SUN (N-D) 75 89.6 . 2.59 _:007 .266

3 AROUND NADIR	 (B-C) 67.3	 1 82.7 1	 .386 .127 •259

Figure 12. Relative Strength of Directly Reflected Signal
(Signal exclusive of scattering is proportional to COS8)

- A comparison of these effects for the three cases favors case one. The

absolute illumination available for case 1 is nearly twice that available for

the around nadir scan pattern. The scene dynamic range is also reduced. A

scan pattern away from the sun, as in case 2, is particularly undesirable be-

cause at the far edge of the scene all the illumination must originate from

1
	 scattered light as evidenced by the negative cosine.

The penalty for scanning off nadir towards the sun is an increase in the

geometric distortion at the scene edges. The amount of distortion increases

with the distance away from nadir. The error at 92.5 km off nadir is approx-

imately 15 meters for every 100 meters in elevation. This effect is illustrated

in Figure 13. However, this effect can be compensated for by the use of terrain 	 3

maps when performing geometric corrections. The Defense Mapping Agency current-
-	

ly has digitized data onthe 1: 250000 scale maps for the entire United States	 {

which has been placed with the U.S. Geological Survey for archiving, main
n 

tenance, and dissemination. Several programs are underway to obtain digital

terrain data for other countries as well as for the U.S. at a finer resolution

(Ref. 13). With the advent of high speed pipe line processors, as are
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Figure 13. Terrain Distortion
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frequently used for the geometric correction operation, this added complexity

can be incorporated with a minimum impact on processing time (Ref. 	 14).

There is an additional consideration 	 involved with	 toward the sun scanning

and that	 is the so called "hot spot" occurring at the point of maximum reflec-

tion.	 While this region, when used exclusively, can provide additional 	 infor-

mation,	 it	 is troublesome,	 increasing	 the scene dynamic range when 	 it appears as

a spot in the larger image. 	 However,	 for the swath widths attainable through

the modifications previously discussed, 	 this	 bright spot will	 fall	 outside the

sensor field of view.

!t

-	 4.8	 LINEAR ARRAY SENSOR

The previously discussed physical 	 limitations are applicable to modifica-

tions of the planned Thematic Mapper.	 A more radical	 approach to obtaining

wider swaths	 is to develop a totally new sensor system of the pushbroom type.

Such a sensor would utilize an array of sensors across the entire width of the
3

swath.	 Readout	 is accomplished by electronically scanning the array of sensors

during the time the spacecraft advances one resolution element along track.

The advantages of such a sensor system, which include better signal 	 to noise

ratio, geometric registration, 	 light weight,	 low power,	 high sensitivity,	 and

i i^specially noomoving optics are discussed by Thompson 	 (Ref.	 15).
a

l While the technology of producing multispectral 	 linear arrays	 is not as

mature as for mechanical	 scanners,	 it	 is appropriate to consider	 it as an

i alternate to any major redevelopment to the Thematic Mapper. 	 There are some

peculiar processing problems, 	 such as the need to radiometrically calibrate

thousands of individual detector elements. 	 However, this does not appear to
P

be a significant problem. 	 Tracy and Noll	 (Ref.	 16) discuss the processing

implications.	 They ,indicate the feasibility of accomplishing all 	 the necessary,
i
3 processing in real	 time with the added benefils of be't ter geometric stability

t'
and an increased dynami c range.

v-
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A brief survey of the	 literature	 (Ref.	 12,	 15,	 16,	 17,	 18,	 and	 19)

indicates there is significant progress and acceptance of linear array sensor

systems	 in the visible and near	 infrared spectrum.	 Further	 investigation

directly with the major manufacturers of the detector arrays indicate that the

technology of accomplishing the electronic readout'is reasonably mature using

Charge Coupled Devices	 (CCD)	 for sensors	 in the visible and near	 IR range.	 For

most applications,	 the thermal	 IR (10.4 to 12.5 micrometers)	 band	 is very

desirable	 (Ref.	 12).	 The technology of	 interfacing CCD electronics to detectors

sensitive to this band	 is not as 'mature;	 however, no technological	 breakthrough

is	 required.
I

1%

A preamp stage is required between the sensor and the CCD readout. 	 Also,

the current detectors operate in the photo resistive mode, 	 requiring approxi-

mately one-milliwatt	 of bias power.	 It	 is also necessary to cool	 the detector

to liquid nitrogen temperatures. 	 For a single detector element, or small 	 array,

y
this poses no problem.	 However, when an array of 1500 elements 	 is conducted,

the bias power of one and one-half watts poses a difficult cryogenic cooling

problem.	 With the advent of the shuttle space transportation system, 	 this pro-

'blem is directly solvable. 	 An even more elegant solution that appears 	 likely

is the development of basic detectors for the thermal 	 IR regions that operate

in a photovoltaic 	 mode,	 thus eliminating the requirement for bias current and

the	 concomitant	 cryogenic cooling, problems.	 The development of a thermal	 IR

linear array is considered feasible by the major sensor system suppliers and

an availability by	 1985	 is not	 unrealistic.

f

4.9	 SELECTIVE DATA TAKING

An increase in swath width will	 result	 in an	 increased need for communica-

r'

tions bandwidth.	 Various data compression schemes have been considered 	 in an

i effort to minimize the communications bandwidth requirement. 	 For Global ,Crop

Production Forecasting, one of the most effective methods of data compression

is to perform selective on-board sample extraction.	 This option is particularly

viable for a new sensor development using electronic array scanning such as CCD
t

imp leme!ntati'on.	 The incorporation of such a feature would provide the fTexi-

;`	 bii;ity of frequent revisit opportunity.	 While not quantitatively	 investigated
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during this study, the concept could employ a sensor with a swath width of

three times the planned 185 km. This would allow a revisit opportunity every

four days. A 185 km image could be selectively extracted from any portion of

the swath with no increased communications bandwidth. If agricultural samples

only were selected, the communications requirement would be considerably less.

Such a system would meet the needs for GCPF with only one satellite.

5.0 DATA ACQUISITION COSTS

The total cost of data acquisition includes not only the cost of the data

sensor system, but the non-recurring costs of the platform and support equip

men•t and the operational costs. It is beyond the scope of this report to

develop detailed cost breakdowns for the different sensor systems considered.

What will be attempted is to compare the relative costs of five sensor systems

using engineering judgments to obtain a rough order of magnitude cost for each

major cost element. The hope is this approach will provide a vehicle of

identifying the major differences in the costs of each approach. This will

permit a reduction in choices and provide some guidelines for more detailed

costing analyses of the recommended alternative.

The performance of the alternative sensor system was compared using the
i

	

	
data plotted on Figure 3. The baseline for comparison is a three satellite

system using Landsat-D type vehicles with Thematic Mappers as the basic

sensor system. This was chosen because it was the only planned approach that

acquired 98 percent of the desired targets with no modifications. This base-

i	 line is sensor system I in Table 14.

IH Each ofthe other alternatives is distinguished from the baseline system
►:	 w
r

	

	 in using two instead of three satellites. The alternatives offer methods of

meeting the agricultural objective of obtaining 98 percent of the desired

targets. The tradeoffs are between costs and technical problems of modifying

the sensor and the cost of obtaining and operating an additional satellite.

,i
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Table 15. Alterp,ative Sensor Systems

i
SWATH

SENSOR NO OF WIDTH
SYSTEM DESIGNATION SATELLITES (km) SIGNIFICANT FEATURES

1 Baseline 3 185 o	 Uses planned hardware with no modifications.
o	 Acquires over 98 percent of desired agricultural

targets.

2 14-Day 2 242 o	 Uses planned hardware with modifications.
Maintained o	 Acquires over 98 percent of desired agricultural
Resolution targets,	 but not as ,many as system 1.

o	 Permits sizing of data processing facilities to
weekly cycle.

o	 No sacrifice	 in spatial	 resolution.

3 14-day 2 228 o	 Uses planned hardware with minor modifications.
Reduced o	 Acquires over 98 percent of desired agricultural
Resolution targets, but not as many as system 2.

o	 Permits sizing of data processing facilities-_:o
weekly cycle.

o	 Spatial	 resolution sacrificed to 32.85 meters to
minimize hardware modifications.

4 - Wide 2 315 o	 Performs as well	 as system i	 using two satellites.
Swath o	 Requires major sensor system redesign.
Thematic
Mapper

5 Wide 2 315 o	 Performs as well	 as system 1	 using two satellites.
Swath o	 Is a new sensor system.
Pushbroom o	 Avoids mechanical problems of system 4.
Sensor o	 Eliminates many problems of older technology of

system 4.

r
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Alternate system 2 uses a Thematic Mapper modified to obtain a swath

sufficiently wide to permit acquisition of 98 percent of the targets and to

p achieve total earth coverage for each satellite every 14 days.	 The signifi-

cance of	 14 days with 2 satellites	 is the data loading will	 repeat on a

^.
weekly cycle.	 The datay	 y	 processing system can be sized and operations 	 involving

f
personnel	 can be planned more efficiently when the loading can be determined

on a weekly basis.	 This system maintains a 30 meter spatial 	 resolution by the

addition of sensor elements.	 Four elements are added to maintain coincidence

with the low resolution sensor which requires one-fourth the number of elements

as the high resolution bands.

E`

Alternate system 3 uses a Thematic Mapper with a minimum of modifications.

No additional elements are added to the sensor:	 The swath angle is maintained

and a wider ground swath is achieved by using a higher altitude orbit. 	 An

orbit at 771	 km provides 100 percent earth coverage in a sun-synchronous

i orbit that	 repeats every 14 days.	 This swath width of 228 km does not acquire

as many targets as system 2, but 	 it does meet the 98 percent goal.	 This higher

altitude orbit has a slower along track ground trace than system 1. 	 To main-	 i

Lain the square aspect ratio of each pixel and to avoid overlap on adjacent

sweeps,-'because of the increased along track distance represented by each pixel,

a modification to the total	 sweep time	 is	 required.	 This	 increased turnaround

` delay can be accomplished by adjusting the mirror spring stops and cams. 	 This

is a minor modification that will	 not incur the large non-recurring costs of

a major sensor redesign.	 The penalty for employing this alternative 	 is a

slight sacrifice	 in spatial	 resolution from 30 meters to 32.85 meters.

Alternative 4 employs a Thematic. Mapper modified to achieve the same

performance from two satellites as 	 is obtained from three satellites with the

a present design.	 Using the simulation	 results plotted on Figure 2,, this	 is

determined to be 315 km.

g ' Alternative 5 employs a push broom type sensor to achieve similar results.

This alternative was not subjected to the same degree of analyses as the

other alternatives.	 It	 is presented as a solution to the difficulties antici-

-ported in	 implementing alternative 4.
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The cost of Data Acquisition as a function of the sensor system is por-

trayed ii1 Table 16. The major cost impact for each alternate system is

analyzed. A consistency was maintained in comparing systems within each cost

category. Weighting factors were employed to obtain overall cost comparisons

based on a'five year operating lifetime.

The first cost considered is the non-recurring cost for the sensor sys-

tem. A representative estimate to produce a new sensor system such as the

Thematic Mapper is fifty million dollars. This includes the design costs and
e	

all the costs of testing, prototyping, and qualifying the sensor system for

space flight. Using the numerical value of 50 as applicable to systems 4 and

5, and the value of 0 for the baseline system, systems 2 and 3 were estima w

at 10 and 5 respectively. This is based upon an engineering judgment of th^^

relative amount of modification required.

t

	

	

The second cost consideration is the delta in recurring costs for the

system as the sensor system is increased in complexity. The numbers were

chosen based upon the relative value of this cost compared to the non-recurring

cost of column 1.

t	
The third cost consideration is the cost of the vehicle. It is the

u	 major differentiation between the baseline and the alternate systems. These

numbers were chosen to be consistent with the number of columns 1 and 2, thus,

for comparison, each column can be weighted at 1.
'f

An additional operating cost can be expected for each satellite in orbit.

This is primarily due to the need for additional control center personnel,

the generation of control data, the analyses of engineering data from the

^M

	
satellite, and additional tracking requirements. As a rule of thumb, the

incremental operational cost for each additional satellite in a program costs

30% more than for the first unit only. Thus, if a three satellite system, as

in alternate 1, is the baseline, the two satellite system will cost .8125

as much to operate. To permit a comparison with the other cost elements, an

operation cost of 20 million per year was assumed for the basic system. Over

^.^

	

	 a five year operating life, a negative incremental value may be expected for

each of the 2 satellite systems.
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The cost of communications was viewed as linearly related to volume

and rate over the ranges involved in this comparison. The basic system uses a

- bandwidth of 84.5 megabits per second for each satellite. Each alternative

has a bandwidth requirement as identified by the first number in the column.

The relative cost is indicated by the second number which is n/3 for n equal

to the number of satellites in the system.

tF

The next colui

those factors thus

the present sensor

least cost option.

is sufficient, and

nn provides a ranking of the alternate systems when only

far identified are considered. This indicates the use of

system in a higher orbit with reduced resolution as the

This is based on the supposition that 98% of the samples

that the slightly reduced spatial resolution is acceptable.

l

However, it is reasonable to attach a value to the missed samples on the

theory that they directly impact the accuracy of a Global Crop Production

Forecast. The next column attempts to include this factor in the system

comparison. The first numbers are the percent of samples acquired. If a

d
value of 30 is attached to each percentage point difference between the

alternate system nd the baseline system, the second numbers in the column

are obtained.

An additional concern that is somewhat difficult to quantify is the

technical risk involved with each alternative. There is obviously no

technical risk if the sensor isnot redesigned as in options 1 and 3. The

greatest risk is involved with option 4 because of the mechanical limitations.

The numbers in this column quantify the risk of not being able to achieve'

design performance for a particular option

The next column is the summation of the preceding three columns. The

^1 J	inclusion of the -additional factors did not alter the numerical ranking of

r	 ?	 the alternatives--it just brought them closer together.';	
s



b

.	 6.0 CONCLUSION

In Figure 14, the numerical rank for each system from Table 15 is

plotted against the percent of targets acquired. This illustrates how
7x

	

	
system 3 with its best numerical rank may be preferred. If the reduced

spatial resolution and the reduced absolute acquisition performance are not

r acceptable b the a pp lication scientists th=sit system 5 is the logical choice.P	 Y	 PP	 ^	 Y	 9
k

^I

The conclusions of this study are summarized below:
d

:'. o Implement the system for Global !'prop Production Forecasting	 (GCPF)
in phases.

o Two Landsat D satellites with slightly modified Thematic Mapper is
favored over three satellites.

o Modify swath width to approximately 315 km.

o Choose a 14-day revisit orbit for maximum effectiveness of wider
swath.

` o Obtain wider swath by raising altitude of satellite.

o Concentrate major effort on new sensor development.

o Incorporate terrain data into geometric correction process for wide
swath images.

o

i"

,ff6r selec-L:ive data taking from less than the full 	 swath. 

n;

i;
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