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ABSTRACT

-	
^l

Several experimental and projected Czochralski crystal growing 	 1

process methods were studied and compared to available operations.

and cost-data of recent production Cz-pulling, in order to

elucidate the role of the dominant cost contributing factors.

From this analysis, it becomes apparent that substantial cost

reductions can be realized from technical advancements which fall

into four categories: an increase in furnace productivity; the

reduction of crucible costs through use of the crucible for the

equivalent of multiple state-of-the-art crystals; the combined

effect of .several smaller technical improvements; and a carry-

over effect of the expected availability of semiconductor grade

polysilicon at greatly reduced prices. Consequently, the specific

add-on costs of the Cz-process can be ,expected to be reduced by

about a factor of three by 1982, and about a factor of five by

1986.

A format to guide in the accumulation of the data needed for

thorough techno-economic analysis of solar cell production processes

has been developed, called the University of Pennsylvania Process

Characterization (UPPC) format, and has first been applied,_ as well

as refined, in the Cz crystal pulling analysis. The accumulated

Cz process data are presented in this format in the Appendix.

The application of this UPPC format with the SAMICS cost and price

determination methodology, at least in its "Interim Price Estimating

Guidelines" (IPEG) form,, has been established and is detailed in

this report.

I
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1.	 INTRODUCTION
Y

The manufacturing methods for photovoltaic solar energy utiliza-

tion systems consist, in complete generality,-of a sequence of indivi-

dual processes.	 This process_ sequence has been, for convenience, logically

segmented into five major "work areas":	 Reduction and purification

of the semiconductor material, sheet or film generation, device genera-

ton, module assembly and encapsulation, and system completion, including

installation of the array and the other subsystems. 	 For silicon solar

arrays, each work area has been divided into 10 generalized "processes"

in which certain required modifications of the work-in-process are per-

formed.	 In general, more than one method is known by which such modi-

fications can be carried out. 	 The various methods for each individual

process are identified as process "options". 	 This system of processes

and options forms a two-dimen:Tonal array, which 	 is here called the

i
"process matrix".

In the search to achieve improved process sequences for producing

silicon solar	 cell modules, numerous options have been proposed _and/or
F

developed, and will still be proposed and developed in the future. 	 It

v	 i is a near necessity to be able to evaluate such proposals for the technical

merits relative to other known approaches, for their economic benefits,

and 'for other techno-economic attributes such as energy consumption,

generation and disposal of waste by-products, etc. 	 Such evaluations

have to be as objective as possible in light of the available informa-

tion, or the lack thereof, and have to be periodically updated as

development progresses and new information becomes available.- Since

3 each individual process option has to fit into a process sequence,

technical interfaces between consecutive processes must be compatible.

This places emphasis on the specifications for the work-in-process-

r	 ,.
entering into and emanating from a particular process`. option.



F

f

2	 ^E

I

The objective of this project is to accumulate the necessary

information as input for such evaluations, to develop appropriate 	 Z

methodologies for the performance of such techno-economic analyses,

and to perform such evaluations at variouslevels. The first

application, of this developing methodology was made to the Czochralski

crystal pulling process.

The Czochralski crystal pulling process is currently, the only

4

	

	 practically applied techniquefor converting high-purity polycrystalline

silicon to sinq,.",e crystal, cylindrical ingots for the purpose of

producing solar cells. To provide a baseline, this process option I

i
was therefore studied in detail its imortantp	 parameters were

tabulated, and the resulting add-on costs for this pull process were

calculated. These data were based either on recent; production ex-

perience, on experimental` runs, or on projections. The detailed

production experience data provided by Leybold-Heraeus-were found

r

	

	 useful in assessing data based on experimental rums or projection

relative to those from current commercial experience. These data

include crystal geometries, operating parameters, energy, material,

labor, equipment and facility requirements, and corresponding add-on

costs and prices.

f
This report was 'originally planned to be issued as a regular

quarterly report, describing the data collection and analysis of the

Czochralski crystal pulling process which was predominantly performed
i

during the 4th quarter of last year. However, partially incomplete

F=	 analyses, significant open questions, the e-^.ergence of the SAMICS-

IPEG,methodology, etc., created the feeling, that issuance of the

benefit.data at that stage might cause more confusion th an'^	 _.^ . u 	 The

Y

	 i

4(
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completion of this quarterly report was thus delayed, while the

data and their presentation were successively refined, and the

price calculations were re-done in the current SAMICS-IPEG ^<

methodology.	 This task has now been completed, and the "quarterly

report" is perhaps more in the nature of a "topical report" as a

4

result.

,

i

i
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2.1 ANALYSIS OF THE CZOCHRALSKI CRYSTAL GROWING PROCESS

2.1.1	 INTRODUCTION TO THE CZOCHRALSKL STUDIES

We have studied eight processes for growing single, cylindri-

cal silicon crystals using the Czochralski process.

In order to elucidate the economic factors involved in the

Czochralski crystal pulling process, available data from four sources

were compared.	 The data used were experience values from Leybold-

Heraeus for 7.8 cm diameter ingots (l), with projections made by
z

M. Wolf for 10.2 and 15.2 cm diameter ingots based on this data and

on data from IBM (2).	 Experimental data for a single charge and pro-

-. jected data for multi- and semicontinuous charge techniques contained

in Texas Instruments'reports (3) for 12 cm ingots were similarly tab-

ulated, as were sequential and continuous growth projections for

16 cm diameter ingots by Dow Corning (4),

. The data were separated into the categories of crystal_geom-

etry, operation times including annual output, material requirements

including energy consumption, labor needs, and initial capital needs.

Costs for all of these items were tabulated, first in their original

version of the "per ingot grown" basis, and then normalized to the

"per unit mass of useable cylindrical ' ingot" form for comparison, unit

mass being the kg.
k

It may be noted that so far, only data available from 'project`

r reports have been collected, without normalizations or independent

projections performed.	 An exception to this rule is the normalization
k,.

to an 8280 hour work year, the use of SAMICS'energy, labor, indirect

F

cost and return-on-investment rates.

b:

0

qe
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	 Among the data--the energy consumption, labor, material used,

capital costs, and overhead costs were scrutinized. In order to be

able to compare the more relevent "specific add-on-costs" for the

process rather than the total cost of the work in process resulting

1
from it, the polysilicon costs have been separated out.

Of those	 processes studied, only data from one (Leybold-

Heraeus single charge technique) are based on production experience.

Another data set, Texas Instruments' single charge method, is de-

rived from experiments, while the rest are based on projections.

Experiments do not involve continuously repeated: specialized

operations as are required in a production process. Therefore, data

r
based on experimental runs generally can not correctly yield the

necessary labor, material and energy requirements.

The available data sets have not been equally detailed or

complete. The Leybold-Heraeus data have been the most detailed, and

have therefore been taken as the guide in the data presentation and

; analysis.

In proceeding to the evaluation of processes which are still

.	 in the development or even conceptional stages, substantial gaps or

uncertainties were found in important information required for both

technical and economical evaluations. It was -then necessary to fill

these gaps with estimates based on extrapolations or analogies. Such

estimates always leave some doubt on the accuracy of the evaluations,

so that, in the future, "probable error" estimates need to be made to

reduce decision mistakes based on yearly evaluations. Nevertheless,

E.	 I	 collecting -this information and carrying out these evaluations at

. A the earliest possible time aids in uncovering the important attri-

butes for which information needs to be obtained at an early stage

of the development process.

i
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2.1.2	 PROCESS DATA COLLECTION

Tables 2 to IX summarize most of the data for the Czochralski

pulling processes which have been studied in this task.	 In order to

complement these data with the details of the process descriptions

which were used in carrying out the analyses, the input-output

specifications, material and labor descriptions, material re-cycling,

waste treatments, price calculations, etc., University of Pennsylvania

characterization (UPPC) formats are included in the appendices for

the Leybold-I3eraeus, single charge, 7.8 cm diameter ingot method and

Wolf's projections for growing 10.2 and 15.2 cm diameter ingots.	 The

prices and costs for Leybold-Heraeus' method was calculated assuming I'

the current silicon price, while the Wolf projections for 10.2 and

15.2 cm diameter ingots were made using the 1982 and 1986 silicon

prices, respectively.

The return on equity, which is labeled as "profit plus amorti-

zation computation" in the UPPC format has a slightly different format

t	
than that listed in Table IX. 	 We have updated the return on equity

F:	 calculations, after this reporting quarter, in order to conform closer

with IPEG.	 Additional details on the methodology of calculating

overhead, handling charges, miscellaneous expenses, capital. costs
t.	 return on equity,	 etc. is given in	 Section 2.2.2.
i
P

r:,	 I-
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2.1.3	 CRYSTAL GEOMETRY

One of the important parameters affecting efficiency and

-economics of the Czochralski crystal growing process is thegeometry

of the ingot to be pulled.	 Therefore, Table I lists the dimensional

data of the ingots subjected to analysis by the four groups.	 Impor-

' tant are the nominal diameter and length of the cylindrical portion

of the silicon ingot produced, and the silicon mass not incorporated

into the cylindrical ingot.	 The crystal mass is calculated using the

density value of 2.34 g/cm 3 for silicon to relate the ingot dimensions

to mass.	 Defined as the theoretical crystal yield is the mass of the

nominal cylindrical portion of the ingot divided by the mass of the

silicon furnace charge.	 A high theoretical yield loses somewhat in

relative economic importance as the cost of poly Si decreases from its

current high values.	 All projections included a theoretical crystal

yield of 90% or better.
t:

The ingot dimensions, particularly the diameter, could be

- limited by the requirements of the follow-on processes, particularly-

the slicing process, rather than the Czochralski pull technique itself.

The current workpiece capacity of the Yasunaga multiwire saw, for
i

instance, is 10 cm x 10 cm x 10 cm.' 	 However, it should be expected,

for the long view, that either more accomodating follow-on processes

will be developed,, or that workarounds, such as "ingot splitting"
r

(lengthwise sawing), will be employed to take advantage of more

economical crystal growing methods. - Therefore, the requirements of

E the follow-on processes are not imposed as limitations on the

K

Czochralski technology.

v	 r

k:	 y

f^

r i
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a

Leybold-
Heraeus ( 1 )
Experience
Single
Charge

Wolf's projections from ( 1 )
Leybold-Heraeus' data
Single charge with
crucible re-use

Texas Instruments, (2)
(April 1977)

Experimental	 Projected
Single	 Multi-	 Semi'-
Charge	 charge	 continuous

Dow Corning,(3)
(July 1977)
Projected

Sequential	 Continuous
Growth	 Growth

Designation LH1 Wl W2 TIl TI2 T13 DC1 DC2

1. Number of Ingots'
per Run 1 1 1 1 3 3 10 10

2. Crystal
Diameter (cm) 7.8 10.2 15.2 12 12 12 16 16

3, Cyl. Crystal
Length	 (cm) 135 140 140 56 56 84 81 81

4, 7y]. Crystal
Mass	 (kg) 15.1 26.6 60.0 14.5 14-.8 22.2 37.8 37.8

5. Mass of
Tapers	 (kg) 0.7 0.65 2.2 0.7 0.7 0.7 n.a. n.a.

6,. Mass left in
Crucible (kg) 0.4 0.55 0.8 0.8 0.3 0.3 n.a. n.a.

7. Total Silicon
not used	 (kg) 1.1 1.2 3.0 1.5 1.0 1.0 4.2 4.2

8. Silicon Charge
per ingot (kg) 16.2 27.8 63 16.3 15.8 23.2 42 42

9. Theoretical
Crystal Yield 93.0 95.7 95.2 90.8 93.8 95.7 90.0 90.0

(I. 4il.8*100)

a	 (1) C.D. Graham, et al., "Research and Development of Low-Cost Processes for Integrated Solar Arrays," University vi
°i	 Pennsylvania, pp. 190-95, rRDA/a1/EC(ll-1)-27l/FR/76/1 (January 1976).

(2)	 S.N. Rea and P.S. Gleim, "Large Area Czochralcki	 Silicon," Texas Instruments Incorporated, ERDA/JPL-95447y79/4
(April,- 1977) .

s	 (3)	 L.P.	 Hunt,	 et al., "Solar Silicon via Improved and Expanded Metallurgical Silicon Technology," Dow Corning, ERDA/JPL-
954559-77/2 (July, 1977).

y
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2.1.4	 OPERATION TIMES

Operation times are important for calculating labor requirements

and depreciation costs. The total cycle time is needed for calculating
i
the total number of crystals grown; in a year, and thus relating annual

capital costs to the individual ingot pulled This total cycle time

is divided into segments to permit a labor analysis, as various seg-

ments show greatly differing labor content. For example, the segment

called "loading the poly-Si into the crucible" requires 1000 of a

;laborer's time whereas, during the "pull segment" only occasional

x	 , monitoring is required so that a laborer can dividehis time between

several pullers. The length of the pull segment is determined by the

crystal size and the mass pull rate, which is defined as the amount

!of mass of cylindrical silicon crystal pulled per unit time. The

;mass pull rate is, through the crossectional area and silicon density,

,related to the "linear 'pull rate". The latter, however, is limited by

thermodynamic effects, leading to the concept of a "limiting pull rate",

and to the custom of expressing the actual pull rate as a fraction of

the limiting pull rate. From Table II, it is noticeable that actual

pull rates between 25 and 620 of the limiting rate are anticipated.

4

	

	 The-theoretical limiting pull rate is governed by the silicon

solidification rate at the growth (solid-liquid) interface, which, in

(turn, is directly proportional to the temperature gradient at the

 growth interface. The temperature gradient is obtained from a non-

linear differential equation which is generally solved under various

simplifying assumptions or approximations`.

IM
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I	 II. OPERATION TIMES

Leybold- Wolf's projectionsfrom Te::as Instruments, Dow Corning,

a Heraeus Leybold-Heraeus' data (April 1977) (July 1977)
Experiencep Singleg e charge with Experim'1	 Projected Projected

2. Single crucible. re-use single	 .Multi-	 :Semi- Sequential	 Continuous

v Charge Charge-	 Charge	 continuous Growth 	 I	 (;rnwth
F
o Designation Lill Wl W2 TIT TI2 T13 DC2

1. Ingot Diameter
r16(cm) 7.8 10.2 15.2 12 12 12 16

2. Max pull <rate4
(cm/h) 39.0 34.1 28.0 31.2 31.2 31.2 27.3 27.3

.3. Assumed linear
pull rate (cm/h) 9.6 12 17.4 9.0 9.0 10.8 8 6

4. Pull rate fraction 0.25 0.35 0.62 0.29 0.29 0.35 0.29 0.29

5. Mass pull rate
(kg/h) 1.1 2.3 7.4 2.4 2.4 2.9 3.75 3.75

6. Load time/ingot
(h) 0.2 0.3 0.5 n.a. n.a. n.a. n.a.. n.a.

7. Melt time/ingot
(h) :C.5 1.7 2.0 n.a._ n.a. n.a. n.a. n.a.

8. Balance temp.
time/ingot	 (h) 0.1 0.1 0.1 n.a. n.a. n.a. n.a. n.a.

9. Preparation seg-
ment time/ingot
(h)
(ti.	 + 7.	 + 8.) 118 2.1 2.6 1.8 1.5 0.8 n.a. n.a.

10. Seed and Top
time/ingot (h) n.a. n.a. n.a. 2.0 2.0 1.3 n.a. n.a.

11. Cylindrical
crystal pull
time/ingot (h) n.a. n.a. n.a. 6.2 6.2 7.8 10.1 10.1

12. Taper growth
time/ingot	 (h) n.a. n.a. n.a. 1.0 1	 1-.0. 1.0 :	 n.a. n.a.

13. Pull segment
time/ingot (h)
(10.	 +11.	 +12.)- 16.2	 - 11.7 :8.1 9.2 9.2 10.1 10.1 10.1

14. Cooling time
(h) 2.0 2.5 3.0 1.0 0.3 0.3 n.a. n.a.

15. unload time/
ingot (h) 0_2 0.5 0.75 1.0 0.4(ei 0.8 n.a. n.a_

16. Clean up time/
- ingot 00 0.25 0.33 015 0.5	 - 0.2 0.2 n.a.' n.a.

17. CPOl-unload
segment
time/ingot	 (h)
(14.	 +15.	 +16.)' 2.45 3.33 4.25 2.5 0.9 1.3 n.a. n.a..

18. Total cycle time/
ingot	 (h)
(9. + 13.	 +17.)= 20.5 17.1 15.0 13.5 11.6 12.2 14.7 10.7

1.9. :Downtime (incl. -
service and
repair)/ingot (h) 0.8 0.67 0.67 n.a. n.a. n.a. n.a. n.a.-

20. Gross cycle time/ -
ingot	 (18.	 + 19.)
(h? 21.2 17.8 .15.6 'n.a. n.a-. n.a. n.a. n.a.

21. Total cycle time
per unit mass of -
cyl.,Si	 ( h/kq)
(IL 18 b	 2.4)_- 1.4 0.64 0.25 0.91 0.78 0.55 0.39 0.28
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(5)Wilcox et al.	 obtained an analytical solution to this

differential equation by setting to zero the term containing the

differential of thermal conductivity with respect to temperature.

An improvement of the just mentioned solution is to substitute an

inverse temperature dependence of the thermal conductivity in the

above mentioned term before any integration operations are performed.

`	 I This was done by T. F. Ciszek (3) who obtained values which are a

factor of (3/2) 12 , or 22 percent, larger than those of Wilcox et al.
f

i The limiting pull rate as determined by Ciszek is

j

vlim - 77.1/r1/2 cm/h,

where r is the cylindrical radius.	 Another way of solving for the

limiting growth velocity was found by J.A. Wohlgemuth, M. Wolf and

. G.T. Noel which permitted using a more accurate presentation of the

silicon thermal conductivity(6)Their approach permits expansion

i
of the thermal conductivity into a power series in T and fitting

the coefficients to the experimental values by the least squares

method._ The values for vlim thus obtained are 50 lower than those
r

of Ciszek.

' The above three theoretical analyses examine an idealized

situation of an ingot, suspended in an ambient temperature or low

-temperature environment, with heat flow into the ingot originating

only from the molten zone. 	 Thus. , ,these analyses are approaches

-towards determining a fundamental upper limit for the pull speed.
{{
i These approaches do not include, design or technology based effects,

such as the radiative heat flow from the heating element and the

liquid silicon surface to the grown crystal above the liquid-solid-

interface.	 This additional radiative heat flow to the ingot, decreases
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the temperature gradient within the ingot and consequently the

(3)actually achievable maximum pull rate. Rea	 considered this

additional heat flow and computed values for v 	 based on themax

geometrical conditions obtained by growing a cylindrical ingot

from a 12 kg crucible using a Varian Model 2848A furnace4 The

maximum pull rate obtained by Rea through numerical computations

is about 50% of Ciszek's limiting pull rate. Considering Rea's

results leads to the conclusion that the assumed linear pull rate shown

in column W2, which is over 60% of Wilcox's rate, might be slightly

above the currently possible.

Properly designed heat shields should be able to reduce this

effect of radiative heat pick-up by the ingot, although probably not

entirely eliminate it. An experiment in this direction was carried

out at Texas Instruments, but was not successful. Whether, however,

the high cooling rate required for such fast growth will be com-

patible with the attainment of good electrical properties of the

grown ingots, is an aspect which will require further investigation.

(3)In Texas Instruments' pull rate experiments 	 with a 12 cm

diameter ingot, maximum experimental rates of 12.7 - 15 cm/h, or

less than one-half of Ciszek's were obtained. The Texas Instruments

workers believe that a practical maximum rate of 12 cm/h can be

sustained over long periods. This value is about one-third of the

maximum rate listed for the 12 cm diameter ingot in Table II for TI.

In those cases, where the operation times were not adequately

broken down into the segments by the data sources, times were,

where possible, estimated as indicated by "(e)" or otherwise marked

11 n.a. 10 (not available). Only the Leybold-Heraeus data and Wolf's



i

projections from the Leybold-Heraeus data contained times for

furnace service and repair. How these time requirements were handled	 ^M
=	

by the other two data sources is not clear. 	
4

Omitting, the soon to be superceded technology level of the

single charge techniques described by Leybold-Heraeus and Texas

Instruments, the "unit mass cycle times" (total cycle times divided

by the mass of the usable cylindrical portion of the ingot) differ

by a factor of about three between the highest (column T12) and the

lowest value (column W2). Theoretically, the unit mass cycle time

would firstly be expected to depend on the inverse square of the

cylindrical radius of the ingot, for constant linear pull rate, as

the silicon mass per unit cylindrical ingot length is proportional

to r2. However, since the -limiting linear pull rate varies with

i

	

	 r-1/2, the unit mass cycle time should increase with r 1^ 2 , The result

of these two factors should be a unit mass pull segment time pro-

portional to r-3 2.	
I

Additional operating data are listed in Table III. one of

:	 these is the relation between the amount of input of high purity

i

	 grade, polycrystalline silicon and the output of single crystal

4	 cylindrical silicon ingots, examined on an annual basis. In addition,

his table contains the cooling ,water and argon consumption for a

single charge.

The potential number of pulls per year for each puller was

calculated, using the total cycle times ;(line 18 of Table II), and

a
	 assuming the puller operates for 8280 hours each-year. These

F
	 operating hours are approximately equivalent to a plant operating

4

a

continuously during the year except for one one-week plant vacation

(including two ` weekends), two 3-day holidays and one 4-day holiday.

L



Leybold- Wolfe projections	 rom Texas Instruments, Dow Corning,

Heraeus Leybold-Heraeus' data (April 1977) (July 1977)
c Experience Single charge with Expe 

r 
im , 11 	Projected Projected

;j Single crucible re-use Single	 Mu1C:-	 Sentl 5equcntial	 Continuous
Charge Char rye	 Charge	 " I n f. Growth	 (; rowth

1)osignorion Lill W1 W2 TI1 TI2 Tl3 UC1 01:2

1. Potential No. of
pulls per years

(Y-1)
(8200 h : II.2G) 390 465 530 (6)580

(6)
680

(6)
645 (6)535

(6)
735

2. Fraction of pulls
successful	 (b) 90 90_ 90 100 100 100 100 100

3. No. of success-
ful pulls per
year	 (y-1) 350 420 475 580 680 645 535 735

4. Practical yield
of cylindrical.
crystal	 (i) 80 80 80 90.8 93.8 95.7 90 90
(incl. I.9)

5. Annual output of
good cylindrical
Si	 (k9/y) 4,540 9,340 23,940 8,585 10,060 14,320 20,225 27,7e0
(II1.3*112.4*
1.8)

6. Silicon in
abandoned pulls

a a_

(kg/y) 650 1,250 3,465 0 0 0 0 0

7. Silicon in tapers
and left in
crucible
(III.3*I.7) :.

(kg/y) 385 505 1,425 870 680 _ 645 2,250 3,090

8. Silicon in other
non-good parts
of ingots

(1-(IIi.4))
- SII.7) (kg/y) 750 1.,830 4,560 0 0 0- 0 0

9. Total non-out-
.put silicon

(kg/y)
(III.6+111.7+
i11.8). 1,785- 3,585	 .. 9,450 870 680 645 2,2.50 3,090

10. Fraction of non
output Si re-

67 23(7) 35(7) 35(.7) 0 0cyclable (8) 67 67

11. lion-recyclable,
silicon	 (kg/y).
i12_B(1-d IIL 1.0)) 595 1,195 3,150 670 440 420 2,250 3,090

12, Gross silicon
input	 (III,I*	 -
I_.e)	 (kg/y) 6,320 12,925 33,390 9,455 10,740 14,965 22,470 30,870

13. Net virgin -
silicon input
(III.12-III,9+ -
III.11)	 (kg/y) 5,130 10,535 27,090 9,255 10,500 14,740 22,470 30,870

14.. Mass of silicon
lost in process
(kg/charge)
(11=1) 1.5.: 2.6 -5.9 1.1:5(8) 0.65(8. 0.65 (8) 4..2(") 4.7(9) 

15. Cooling water
consumption
per charge	 (m3 ) 127 n.a. n.a. n.a. n.a. n.a, n.a, n.a.

16, Argon consump-
tion per charge

(m3 ) 6.4 0 0 n.ai n.a. n.a. n.a. n.a.

a

(5) Assuming a 82,10 h work ypar
(6) Estimated for 95% availability
(7) Calculated from III.14
(8) I.6 + 0.5"I.5

Y	 (9) I.7
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This basically continuous work schedule was chosen because it

minimizes lost pulling time due to interference of the long pull
-t

cycles with plant closing times, since puller shutdowns in the

middle of a, pull cycle are not possible,,and -unattended pull

completion is not within current equipment capabilities. Closing

the factory one day a week would result, on average, in the loss of

up to one growth cycle per week. 	 X

Only in the Leybold-Heraeus data and in Wolf's projections

a	 .was the experience of unsuccessful pulls and practical yields lower

than the theoretical yields acknowledged. It seems optimistic to

expect that no pulls would be aborted due to polycrystal formation,

crucible breakage, equipment or power failures, etc. The annual

output of cylindrical silicon was, in all cases, calculated by

multiplying the number of successful pulls by the product of the

charge mass and the practical yield, which in most cases was assumed'

equal to the theoretical yield For the Leybold-Heraeus data and

Yolf's projections, the recyclable silicon was taken as two-thirds of

the silicon mass input not incorporated into the output. For Texas

Instruments, the recyclable silicon fraction has been taken as equal

to one-half of the taper mass, to represent the top taper, divided

by the sum' of the silicon mass left in the crucible and the total

taper mass. In Dow-Corning's projections, the "non-cylindrical

silicon" mass was given only as the silicon left in the crucible,

as there is no recyclable silicon available in this process.
F

The 'cooling water consumption was only given for column LH1

while the actual argon consumption was known for columns LH1,'Wl and

W2. In the latter two processes, pulling is performed under vacuum.

F



n y

17,

i

2.1_.5 ENERGY REQUIREMENTS

The energy requirements shown in Table IV are of interest

by themselves as well as for their cost contribution. In crystal

pulling, the direct energy consumption is exclusively electrical

energy. The energy costs are computed on the basis of an energy

rate of $0.0319/kWh. (SAMICS, (7)).

Where the electrical energy requirements are broken down
i

into the segment consumptions, it can be observed that most of the
z

electrical energy is used (>95%) to compensate for the heat losses
s	 ^;

during melting the poly-Si 'chunks and during pulling the cylindrical

crystal and the tapers, rather than for performing useful work such

as supplying sensible heat or heat of fusion, raising the ingot,

i
activating control functions, etc. The heat losses occur predominantly

by radiation from the furnace elements (crucible, heater, etc.) at

j

	

	 temperatures above 1400 0C to the water-cooled furnace enclosure,

despite some interspersed heat shields. Additional active heat loss

mechanisms are convection through the helium or argon protective

atmosphere in the furnace, and conduction primarily through the

heater and crucible supports and the seed-holder.

Since the energy flow rate due to the first two mentioned

'	 heat loss mechanisms, radiation and convection, is directly propor-

tional to the surface area of the heated bodies, the energy loss, E,
I

per unit mass of ingot grown will be affected by an increase of the

crystal diameter, if this would result in a change of the geometry

of the hot zone parts of the furnace. The surface area of the hot

zone parts of the furnace which can be taken as of essentially
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IV. ENERGY REQUIREMENTS

(Given in kWh/charge except where stated otherwise.)
(Energy costs are obtained at the price of $0.0319/kWh)

N Leybold- Wolf's projections from Texas Instruments, Dow Corning,
Q) Energy Require- Heraeus Leybold-Heraeus' data (April 1977) (July ]977)

ments Experience Single Charge with Experim'1	 Projected Projected
z Ingot (kWh) Single crucible re-use Single	 Multi-	 Semi- Sequential	 Continuous
ai
c  Charge Charge	 charge	 continuous Growth	 Growth

'4 F Designation LH1 Wl W2 TIl _	 TI2 T33 - DC1 - DC2

1. Theoretical melt
energy per-ingot
(kWh) 13 22 50 12 12 18 30 30

2. Energy loss dur-
ing meltdown
per ingot (kWh) 90 110 200 n.a. n.a. n.a. n.a. n.a.

3. Total meltdown- -
energy ,(1. +.) 103 132 250 n.a. n.a. n.a. n.a. n.a.

4.. Energy Toss dur--
ing pull segment
(kWh) 1000 920 1000 n.a. n.a. n.a. n.a. n.a.

5. Total energy
consumption per
charge
(3'.	 + 4.)(kWh), 1100 1050 1250 510 520 555 1135 1135

6. Total energy con-
sumption per unit
mass of cylindri-
cal silicon
(kWh/kg')
((IV.5*III.1)
III.5) 95 52.5 27-.5 34.5 35 25 30 30

7. Energy cost/per
charge ($)	 - -	 35.10 33.50 -40 16.27 16.59 17.70 36.21 36.21

8. Energy cost per
unit mass of
cylindrical
crystal ;($/kg) 3.03 1.67 0.88 1.10 1.12 0.80 0.96 0,96
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A =' 2nR•L + 2-7rR2

= 27[R • (R + L)

If the crystal radius is increased from r 1 to r 2 , the radius R of

the hot zone parts will need to be increased from R 1 to some value

R2 ,  and possibly the length L of the hot zone parts has to be

changed also. The area ratio resulting from a change in hot zone

parts radius is:

A	 R 	 R22	 2	 2 L 2
R, + Ll

R
2

L	 L2	 1 +
R2 R1 L	 R1	 1+
R L L11	 1

1L R

+ 1	
R	

4- 1 

This ratio thus depends on the three dimensionless quantities

R	 L	
L,2	 2 , and	 These are to be related to the change in crystalR_

rl	 L 1	
R 1

r2
diameter r 1

Several cases of such relationships can be readily analyzed.
L

Generally, if the length is not changed 1), the second term
L1

inside the brackets becomes unity.	 If the ratio R additionally is
large, implying that the hot zone parts are of elongated cylindrical

is
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geometry (which, however, usually is not the case) then the first

term becomes negligible and the area ratio would simply equal the

ratio of the hot zone parts radii. 	 If this ratio would be made l:

equal to the ratio of the crystal radii after and before the in-

crease,	 then:

A2	 r2

Al	rl

and the energy loss rate P would increase by the same ratio. 	 Since

the unit mass pull time (UMPT) had been found to be proportional toi

^

r	 - 3/2
2 . 12	 loss per unit crystal mass(P	 ) ^ the energygY	 pulled.P	 Y	 P
1

would, be given by:

_ 3/2	 _ 1/2
E2 	

P2	
(UMPT) 2 	 r2	 r2	 __ r2

E1	 P1 (UMPT) 1	 rl	 r 
	 r.1

u
k

e For this case, the energy consumption per unit mass pulled would
r2	 - z

thus decrease proportionally to r.	 .	 In general, however,1
F this case which 'neglects the heat transfer from the ends of the

cylinder would be considered as somewhat optimistic, since the axial

section of the cylinder representing the hot zone parts, approaches
L

(
in actual cases more the shape of a square, so that 	 2 < R1 < 4

1
k would be more appropriate,.
is

Another single case, although probably beyond theg	 g	 P	 Y	 Y	 Practical

worst case, is described by the conditionR? = L2
	

_ wherer2l	 1	
1

the length of the hot zone posts would also change in the ratio of
Ll

the crystal diameters.	 This case is independent of the ratio R ,
1

F
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a

T	 y. X• i
E 21 it

E,

t

and yields:

2	 2A2 	R2	 r2
A	 =	 2 _	

2
1	 R1	 r s4

i	

l

'

r
Thus, the energy loss per unit mass pulled would increase with rl

_.	 l

• In reality, the hot zone parts do not have to increase their

diameter in the same ratio as the crystal diameter. 	 More appropriate

:I
may be a relationship of constant differences A, such as caused by

the clearance between the crystal and the crucible inside, by the

wall thicknesses of the crucible and of the crucible holder, by

the clearance between the crucible holder and the heater, etc.	 This

relationship would thus be expressed as;

R1=r1+Q

I	
R2r2+D`

` Consequently:

R2	 r2 + p
R1 	r1 + p

1 ,+	 r2 	 1	 1

r l 	 1 + r
:. 1

' This function takes the following_ values:

.a

E,I
i
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A R2

w
r-1 Rw

f

r 2 a,0 rr
1

1 1	 2

2
(r2)

3 + 
3 r-

1

' r-

2 0.4	 0.6(r21

1+ 1	 r_21
2	 2	 rl

2 2	 1+
(r2

3	 3	
r 1

4	
1

_4 +	
(r2

t
•

5	 5	 rl

l

The area ratio 'becomes then:

t	 --	 1 2
A2

Q L2 Ll

-
+ (r 2

 r - 1	 1 1	 l+ -rl 
-
Ll

-+
Rl 1

^l
rl + +

F

r_

1

L L

i Rl + 
1

1 Rl + 1

s
l

or:

A  L2	 Ll

A2
(r2 +

r r
(r2 + 	 +

 rl	 rl	 L1	 rl 
l

Al 1 + A 1 + r. + L1

^. 1
1

r l

0

_' J
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i
This relationship ha.s the form: .	 s

2

PZ - A?	
C1 r.--2 	+ C2 (rr2 + C3

1	 1	 1	 l	 ,i

j,	 and, consequently, yields the ratio of the energy losses per unit

mass.. pulled:
j

3/2
I	 E2 _	 r2 2+	

r
2

E 	 ^l r 	 C2( rr2 )l 	 C 3	 r1

1

-^	 - 3/2
(r 2	

r2	 r2
C1 ri	 + C2 

r l	 + C3 rl

1	 L1Entering some practical values, such as r	 4 and r 15, and1	 1
L
—

z-
1 	 = 1, yields the following values;L

f	 1

j

j	 A2 = 1	
r2 2+ 2 r?

	

3	
+ 76

Al	 5.20	 r1	 rl 

2

_	 1 ( r 2	 23	
r2	

76
100	 rl	 + 100 rl + 100

rs	 It may be observed, that, at 2 = 2, the magnitude of the linear
r	 rl

term of r? is only 60% of that of the constant term, but is more1
than an order of magnitude larger than the quadratic term. The

k.
	

A

ratio A2 is only 1.26 in this case, and the energy loss per unit.	 1

I

.A
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+ mass pulled would be reduced to less than half the value experienced m:.

before the doubling of the crystal radius. 	 Even if the length L2 of r

the hot zone parts is increased from L 	 by 20%, the ratio A2 becomes: `t

i

;. A	 2r
21 	 2+ 26	 + 88

1(r2)

Al	 100	 r 	 r  

or, with r2 = 2, A-2 = 1.44, which means approximately halving the
1	 1

r, energy loss per unit mass pulled.

In consequence of the preceding considerations, it seems

reasonable to assume that the energy consumption, per unit mass pulled,

can be reduced by 25 to 50% in going from the currently prevailing

-ingot diameter of nominally 3 11 to one of 6°	 (i.e.	 15 cm).	 For sim-

plicity, this reduction will be assumed, in the following, to be 33

from its current value.	 In addition, it has been assumed that the

4 energy losses can be reduced by better furnace design, that means,

e	 j better heat shielding and insulation of the heater/curcible region.

j
This has been assumed to result in the decrease of the electrical

energy requirements by another 17% for a total reduction of 50%.

The energy costs shown in Table IV account only for the

process energy consumption, that is, energy input during meltingG,.

E

F;

the poly-Si and growing the single crystal ingot.	 It does not

e
include indirect material and equipment energy content, or the

energy consumption for general facility operation. 	 The cost of the

electrical energy consumed has been found, however, 	 beto	 small

compared to the total add-on costs in all cases, including the pro-

j'ections to advanced crystal pulling techniques, except for the
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2 .1.6	 MATERIAL COSTS

The following materials required for Cz -crystal pulling

have been identified:	 the polycrystal silicon (semiconductor grade

or solar grade) and doping charge as direct materials, the seed

crystal, argon or helium for protective gas, and the cooling water

as indirect materials, and the quartz crucible and furnace replace-

`" (	 ment parts as expendable tooling.

wolf's projected data are based on vacuum crystal pullingz

and therefore do not include argon or helium in the crystal growth

L
process.	 Vacuum crystal pulling is a method highly recommended

by some, but is generally disliked by most practitioners.	 Consequently,

the Texas Instruments group included argon usage at the rate between-

about 300 and 500 Q/kg-Si, and the DowCorning group of approximately

one-tenth of that rate.	 The cost of argon can be quite significant,

given, for instance, as over $30/load in the Texas Instruments	 data

for the single and multi-charge techniques. 	 It has been mentioned,

however, that the use of argon can reduce deterioration of 'furnace

elements, preserve the purity of the cylindrical silicon, improve

temperature distribution, and extend the lifetime of the quartz

crucible-.

As previously recognized, with current production techniques,

i
the crucible costis a determining factor in the add-on costs in

growing Czochralski ingots.	 Crucible costs can be dramatically re-

duced by "re-utilization". 	 In Wolf's projections from Leybold-'

II^ Heraeus' data, the crucible is used to grow ten ingots, resulting
f

in a saving of over 50% in indirect material costs. 	 Similarly, in

Texas Instruments' multi-charge and semi-continuous growth projections,

I
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	 three ingots are grown before the crucible is replaced. This yields

a savings of about one-third of the indirect costs compared to the

single use of the crucible. Dow Corning calculated a; similar savings'

'	 by re-using their quartz crucibles to grow ten ingots. This is re-

flected in the data of Table V, where for the single charge technique,

Leybold-Heraeus gives the crucible cost as $225/charge. In contrast,

Dow Corning lists a crucible cost of $20/charge by multi-use. The

regular ten times re-use of a crucible has yet to be demonstrated,

but 4 LSA projects in progress on semi -continuous crystal growth are
1

" expected tolead to these data expeditiously. No scientific reasons

are known which would prevent multiple crucible use, as long as the

crucible is not cooled down significantly, the wall thickness is

adequate to survive the slow dissolution by the liquid silicon,deritri-

fication'is kept under control, and contamination build-up can be kept

•	 %	 under control. If the crucibles, could be used to grow ten ingots,'

their add-on-cost contributions turn out to be, by all projections,

Still over $0.50/kg-cyl.Si, or at an assumed conversion' rate of

1 m2 /kg, more than $0.50 m 2 , or approximately l% of the 1986 goal

module cost, rather independently of differences in the remaining
K	 attributes of the crystal pulling technology applied.

After reducing crucible costs by multi-use, the next largest
s<

I	 material add-on cost item in Leybold-Heraeus' data, Wolf's projections,

I and Texas Instruments' experimental data is the cost for furnace re-

placement parts. The'Leybold-Heraeus data and Wolf's projections
!

	

	
derived from them do not give the number of pulls for which heater

elements are used, but the large amount for furnace replacement parts
F 

costs apparently represents the practical experience with that parti-

cular puller. The magnitude of the replacement parts costs in the

x



Leybold- wolf's Projections From Texas Instruments, Dow Corning,
w Heraeus Leybold-Ileraeus' Data (April 1977) (July 1977)

Experience Single. Charge with Experim'1	 Projected Projected
Material single Cruciblq Re use Single	 Multi-	 semi- Sequential	 Continuous

Q, costs ($/charge) Chargc --- Charge	 charge	 continuous •Growth	 Growth
a JDoii 11111	 - Wi W2 TIL P12 TI3 ncl DC2a

1. Seed (10) (10) (10) 5 5 5 (10) (10)
2. Argon 31.65 0 0 34.50 33 35 (10) (10)
3. Crpcible 225 20 41$. 15 125 42 42 20 20
4. Cooling water 6.23 5.95 7.08 2.89 2.90 3.14 6.42 6.42
S. Furnace replace-

ment parts 140 93.50: 138.50 54 23 23 10 10
6. Misc. harts and

materials n.a. n.a. n.a. n.a. n.a. n.a. 17.50 15
7. Total indirect

materials incl.
expendable tool-
ing	 (Sum 1. to 6.) j	 402.90

j
119.45- 191.73 221.40 105.90 108.15 53.90 51.40

Polycrystalline_Silicon''@ $65/kg (present price)	 N

8. Silicon lost in
process (from
III.14) 97.50 169 383.50 74.751 42.25 42.25 273` 273

9. Total add-on
materials
(7. + SO 495 282.50 568 293 .145 i 147 321 418

10. Poly Si in
charge 10511 1807 4095 1060 1027 1508 2730 2730

11. Total materials
17.	 + 10.) 1456 1927 4287 1281 1133 1616 2784 2781

12. Credit from re-
cycled Silicon 195 338 767	 _ 22.75 22.75 22.75 0 0

13. Net,total
(11.	 12.) 12 15? 1589 3520 1258 1111 1593 2784 2781

Polycrystalline silicon @ $40/kg (1982 LSA projection)

14. Silicon lost in
process 60 104 236 46 26 26 168 168

15. Total add-on
materials
(7.	 + 14.) 457 218 421 265 129 131 216 213

16. Poly Si in
charge 648 1112 2520 652 612 928 1680, 168D

17. Total materials
(7._ + 16.) 1051 1232 2512 874 718 1033 1734 1731

18. Credit for re-
cycled silicon 120 218 - 472 14 14 14 0 0

19. Net Total
(17. = 18.) 931. 1014 2240 860 714 .1019` 1734 1731

Polycrystalline silicon @ 510/kg (1986 LSA projection)

20. Silicon lost in
process is 26 59 11.50  6.50 6.50 42 42

21. Total add-on
materials i
(7.	 + 20.) 412 - 140 244: 230	

I
110 112 90 87

22. Poly Si in
charge 162 278 630 163 153 232 420 420

23. Total materials f
(7..	 +.22.). :+565 398 822.- 322 259 338 474 471'

24. Credit for
recycled
silicon 30 52 108 3.50 3.50 3.50 0 0

25. Net Total
(23	 - 24.) 535 346 714 319 255 334 474 471`

`r

(10) Included in mist. parts and materials
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Leybold-Heraeus and Wolf data is striking and seems much larger than

industry experience in general.	 The latter seems reflected in the

Texas Instruments and Dow Corning data.	 This question of longevity l

and cost of furnace replacement parts certainly merits further j

attention.	 The frequency of replacement of the hot zone parts may
i

possibly be reduced by pulling without intervening aooldowns, which

is being instituted with the crucible multi-use. 	 The Texas Instruments

projections include use of the heater elements for 25 crystal pulls,

k while those of Dow Corning assume their use for 100 pulls.

I

F
Cooling water costs were determined by using the SAMICS (7)

value of $0.-566_per 100 kWh of energy dissipated.	 The actual water

quantity required to cool a puller during the growth cycle was not

given by three of the four sources.	 It was assumed by some sources

` that cooling water costs can be reduced to a small amount by use of

a cooling tower (1,4), 	 However, a cooling tower will increase capital

and maintenance costs somewhat.

In the available data, only Dow Corning has separated 	 un-

p	replacementsI specified	 miscellaneous costs	 from furnace re lacements 	 arts. Such

"miscellaneous costs" should include the seed crystal, the doping

•r
charge, and materials and tools needed for handling the material before

f and after the pull, etc.

The direct material, that is the polysilicon, costs currently

about $65/kg.	 It comprises the overwhelming part of the total material

costs.	 Since large Si price reductions are expected in the future, a

cost comparison will be more meaningful if the poly-Si cost is separated

Y"
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$, from the other costs.	 Line 7 of Table V thus shows the add-on material

cost per Si charge, excluding the cost of the silicon. 	 The cost of

the silicon lost in-process is given -separately in Table V for the
r

three different,polysilicon process	 (Lines 8, 14 and 20). 	 The total

add-on materials cost is the sum of the indirect materials used and

- the lost silicon cost. 	 As the price of polycrystalline silicon de-

creases, the cost contribution of the lost silicon decreases signifi-

cantly.	 The Dow Corning projections include the highest fraction of

r lost silicon.	 In consequence, they show relatively high total add-on

material costs (Table V, lines 9 and 15) for the high silicon prices

of $65/kg and $40/kg respectively, but the lowest total add-on material

' costs of the LSA projected 1986 polysilicon price of $10/kg (Table V,

line 21) .

Since 'part of the silicon which does not enter into the

cylindrical, silicon crystal	 can be re-used, a credit has been given

to the gross add-on materials costs for the re-cycled silicon. 	 This

credit is ,shown in lines 12, 18 and 24 for the three different silicon

prices.	 The net total cost thus includes the credit for recycled

silicon.	 This recycling of silicon not incorporated into the ingot

can lead to significant cost reductions. 	 In the Leybold-Heraeus data

and in Wolf's projections, only 72% of the gross silicon input is

- initially incorporated into the ingot.	 But two-thirds of the non-

output silicon is re-processed, which significantly decreases the {
cost burden, for instance, of the "unsuccessful pulls". 	 The signifi-

cance of this material recycling is exemplified by a comparison be-

tween Wolf's and Dow Corning's projections. 	 The price for a 60 kg

I

ingot, derived from Wolf-'s projection is about the same as that re-<
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r l sulting from the Dow Corning projections, despite the much higher 3

indirect materials cost and the inclusion of "unsuccessful pulls." ,

in Wolf's calculations, whereas Dow Corning did not include recycling.'

If the silicon recycling assumption would not have been made by

Wolf, he would have obtained a significantly higher silicon crystal

price than Dow Corning arrived at later. It may be noted that Dow

Corning uses in Cz-pulling process for purification, with a significant

amount of non-recyclable, impurity-enriched Si resulting as a'by-product.

The total material costs for each ingot, which also includes

I
	 the direct material contained in the good cylindrical silicon (lines

'	 11, 17 and 23), were calculated employing the three different high

purity silicon prices: $65/kg, $40/kg,and $10/kg. The first number

represents the approximate current price for solar grade polycrystalline
i	

silicon. The second price is the LSA 1982 assumption, while the last

G•	 I 	 price is the 198E LSA goal. The higher the silicon price, the more it

p

	

	dominates the total material cost per unit mass. For example, at

$65/kg, the polysilicon cost comprises from 72% (Leybold-Heraeus) to

98% (Dow Corning growth techniques) of the total materials costs. How-

ever, comparing the add-on costs of the process is more valid than

comparing total costs, since the Czochralski process itself is'pra-

ctically independent of the silicon price, except for the silicon lost

in the crystal growing process which 'seems currently to be about 9

of the input for the Leybold-Heraeus data and the Wolf projections,

And between 3 and 10% for the other data

All costs in Table V are calculated on a "per charge" basis,

which means any start to pull a single crystal ingot. Due to un-

successful pulls and practical yields below the theoretical yields
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of line 9 in Table I i the "cost per unit mass of good cylindrical

silicon" cannot be simply obtained by dividing the cost per charge'°'

by the cylindrical silicon mass given in Line 4 of Table I. The

real cost per unit mass of good cylindrical silicon, rather, has
1

to be calculated by dividing the respective annual cost by the annual
i

production of cylindrical silicon.
I

r
i

I

i

I^

i

1

I`	 I

^
f	

.

Y	 I
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2.1 .7	 LABOR COSTS_

To calculate the direct (operator) costs, a labor rate of

$6.47/h including fringe benefits was chosen. This value was

calculated from the wages paid a machine shop operator II (SAMICS

occupation classification no. 609885) whose yearly wage of $9,400

7 converts	 4 52	 for a 40 h eek or$6.47/h with frin( ) cony t to $	 /h	 /fringeg

benefits and miscellaneous expenses. The fringe benefits were

assumed to be 36% of the basic wage (8) and miscellaneous expenses

as 5.26% of the total labor costs. The labor hour needs for each

ingot grown can be segmented into two areas. One portion consists

it of the labor monitoring required during the pull cycle, when an

j

	

	 operator's time can be divided among several furnaces. There are

also fixed operator times for each cycle, taken from the various data

II

	

	sources, during operations such as loading, balancing temperature,

and unloading when 100 of a laborer's time is required. In all but

!	 one instance, the labor times are approximately one-third of the

I	 `
total cycle time. The exception, Dow Corning's continuous growth

process, requires relatively little labor monitoring because of its

automatic nature. Servicing labor times were only given for Leybold

`i	 Heraeus' single charge technique and Wolf's projections. The servicing

labor costs were based on the wages of a maintenance mechanic II

(SAMICS No. 638281)(7)	 The indirect labor costs in Table VI were

taken as 25% of the direct labor charges following SAMICS' suggestions (8) .

The total labor costs per charge betweenthe three sources

differ by a factor of about four; however the low contribution of the

labor cost to the total costs makes this difference appear as an

insignificant variation in the total add-on costs.

x



VI. LABOR HOUR REQUIREMENTS AND COSTS (on "Per Charge" basis

Leybold- Wolf's projections from Texas Instruments; Dow Corning,
y Heraeus Leybol&-Eeraeus' data (April 1977) (July 1977)

Experience Single Charge with Experim'l	 Projected Projected
Single crucible re-use Single	 Multi-	 Semi Sequential	 Continuous
Charge Charge	 charge	 continuous Growth	 Growth

a Designation Lfil W1 W2 TIl TI2 TI3 DC1 DC2

1. Fixed operator
time	 (h) 1.5 2.0 2.5 n.a. n.a. n.a. n.a. n.a.

2. Machine monitor-
ing time	 (h) 2.8 2.5 2.7 n.a. n.a. n.a. n.a. n.a.

3. Total operator -
time	 (h) 4.3 4.5 5.2 4.5 3.9 4.1 6.5 1.6

4. Operator cost
(11)	 {$) 27.83 29.10 33.65 29.10 25.25 26.55 42.05 10.35

5. Servicing labor
time	 {h) 0.8 0..67 0.67 n.a. n.a. -- ---n.a. n.a. n.a.

6. Servicing labor -
(12)	 M 6.50 5.,40 5.40 - - - - -

7 Total direct
labor cost
(4.	 + 6.)'{$) 34.30	 - 34.50 39.05 29.12 25.24 26.53- 42.07 10..35_

8. Total indirect -	 - -
labor cost
(25% of 7.)	 ($) 8.58 8.63 9.79 7.28 6.31 6.63 10.52 2.59

9. Total labor
cost	 (7..	 + 8._)

($) 42.88 43.13 48.84 36.40 31.55 33.16 52.59 12.94

j

i
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2.1.8	 CAPITAL COSTS

The capital costs shown in Table VII have been calculated on an

annual basis.	 only for Leybold-Heraeus' data and Wolf's projections.'

were installation costs (between 1.9 and 25% of puller costs) given.

For Texas Instruments, the installation cost was assumed to be 25% of

R	 the puller cost.	 Dow Corning gave, in their data, the capital costs

without equipment costs as 1.5 times the equipment, costs.	 Iij Table y

VII, this value has been divided between installation, misc. equip-

ment and building costs.	 The other equipment cost (line 3) accounts''

for items such as resistivity probes, argon regulators, _cylindrical _

silicon handling devices etc., and was taken, in all cases, as 5% of

the puller cost.

The total equipment charge rate was calculated from a seven

year depreciation, 2% property tax (with equipment assessed at 50%

of its cost), 4% insurance premium rate, and a 12% interest on debt

on 8.3% of the equipment. 	 To account for miscellaneous expenses the
f

charge rate was divided by 0.95.	 The above values were suggested by

SAMICS	 (8) .`

t The allocatable building costs were either taken from the data

sources, estimated, or marked n.a. 	 (not available).	 The facilities

charge rate was obtained as just described for the equipment charge

k rate, save a'40 year depreciation was used for the building.	 A charge

for overhead utility use of 31% of the annual capital cost was added

to complete the facilities charge given by'SAMICS (8).	 The allocatible

building area is equal to area occupied by the equipment plus the

space needed for the operator and that needed for servicing access to

i
v

the equipment.	 The total building area needed is taken as twice this



Leybold Wolf's Projections from Texas Instrur!ients, Dow Corning,
Heraeus Leybold-Heraeus' Data (April 1977) (July 1977)
Experience Single Charge with Experim'l	 Projected Projected

z Single Crucible Re-use Single	 Multi-	 Semi- Sequential	 Continuous
o
c

Charge Charge	 charge	 continuous Growth	 Growth
-,4 Designation LH1 Wl W2 TI1 TI2 TI3 DC1 DC2

1. Puller Cost $ 80,000 110,000 185_,000 100,000 125,000 200,000 175,000 200,000

2. installation
Cost	 $. 20,000(13) 25,000 35,000 25,000(13) 31,000 50,000(13) 130,000(e) 150,000(e)

3. Other Equipment
Cost'	 $ 4,000 5,000 9,000 5,000- 6,000 10,000 9,000 10,000
(50 of 1.)

4 Total Equipment
Cost	 $ 104,000 140,000 229,000 130,000 162,000 260,000 314,000 360,000

5. Depreciable
Life	 y 7 7 7 7 7 7 7 7

6. Charge Rate -y 1 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214

7. Annual Cost $ 22,200 29,900 49,000 27,800 34,600 55,500 67,000 83,300

8 Allocatable
Building Area

M2 °' 24 24 40 n.a. n.a. n.a. 163 185

9. Allocatable
Building Cost $ 18,000 18,000 30,000 n.a. -n.a. n.a. 123,000 140,000

10.'Depreciable Life-y 40 40 40 40 40 40 40 40

11. Charge Rate	 y'1 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117

12. Annual Cost $ 2,100 2,100 3,510 - - 14,400 16,400

13. Total Capital
Costs	 (7. + 12.)

$ 24,300 32,000 52,500 27,800 34;600 55,500 81,400 99,700

ti

i

1

i

i

w
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2.1.9	 ADD-ON COST SUMMARY

w	 For a comparison of different Cz-pull techniques, it is
i

more important to examine the add-on rather than the total costs,,

because the high direct material costs of the silicon (the silicon

incorporated into good cylindrical crystal) can easily mask other-

wise significant cost differences between processes. The-add-on

costs, though, must include the cost of silicon lost in the process,

because the lost direct material forms a valid and significant cost

element which is determined by the specific process applied:

The add -on costs lis ped in Table VIII are given on the "per

unit mass of good cylindrical crystal pulled" basis. They were cal-

culated, unless otherwise indicated, by multiplying the item charge

cost by the total number of charges per year and dividing this pro-

duct by the output of good silicon.

The total add-on cost (lines 17, 20 and 23) for the crystal

growing process is its totalcost, minus the cost of the polycrystalline

s

	

	 silicon incorporated into the saleable part of the ingot. It is thus;

the cost of converting polycrystalline silicon to single crystal

cylindrical silicon. As one would expect, the add-on cost exhibits

sensitivity to the various crystal growing procedures, while the total

cost is more influenced bythe poly- silicon cost. ` The Dow Corning

projection for a continuous growth technique` gives the lowest total'

add-on cost ($7.36/kg-Si with silicon at $10/kg) because of their low

material and labor numbers. At the other extreme is the single charge

state-of-the-art method described by Leybold-Heraeus with its high

i	 costs for crucible, replacement parts, argon,' and labor. Of these
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VIII. -ADD-ON COST SUMMARY ($/kg cyl. silicon)

Leybold- Wolf's projections from Texas Instruments, Dow Corning,
Heraeus- Leybold-lferaeus' data (April 1977) (July 1977)w
Experience ` Single Charge with Experim'l	 Projected Projected
single Crucible Re-use single.	 Multi-	 Semi- Sequential	 Continuous
Charge .• Charge	 .Charge	 .continuous Growth	 Growth

e
r Designation Lill W1 W2 TI1 TI2 TI3 DCL 0C2
a

1. Direct Labor (14) 2.40 1.46 0.74 1.97 1.70 1.19 1.11 0.27`

2. Maintenance Labor 0.56 0.27 0.12 n.a. n.a. n.!a. n.a. n.a.
(14)

3. other Indirect
Labor (14) 0.74 0.43 0.21 0.49 0.43 0.30 0.28 0.07

4. Total Labor
- ... .

(1. + 1. + 3.) 3:70 2.16 1.07 2.46 2.13_ 1.49 1.39 0.34

5. Equipment cost
(VII.7	 ;^i 	 III.5) 4.89 3.20 2.05 3.24 3.44 3188 3.31	 j 3.00

6. Facility cost
(VII.12 i	 III.5) 0.46	 - 0..23 0.14 - - -. 0.71 0.58

7. capital Cost
(5.; }	 6.) 5. S5 3.43 2.19 3.24 3.44 3.88 4.02 3.5c'

8. Crucible	 (14) 19.43 1.00 1.02 8.45 2.84 1.89 0.53 0.53

9. Replacement
ants and out-
side service (14) 12.09 4.68 3.05 3.65 1.55 1.04 0.73 0.66

10. seed	 (14) n.a._ n.a. n..a. 0.34 0.34 0.20 n.a. n.a._

11. . Argon (14) 2.73	 (15) 0; 0 2.33 2.23 1.58 n.a. n.a.

12. Energy: 3.03	 - 1.67 0.88 1.10 1.12 0.80 0.96 0.96

13. Cooling
Water (36) 0.54 0.30 0.15 0.20 0.20 0.14 0.17 0.17

14. Total Indirect
Materials 37.82 7.65 5.10 14.75 8.28 5.65 2.39 2,32

15. Total add-on
cost excluding -
silicon
(4,+7.+14.) 46.91 13.25 8.36 21.76 13.85 11.02 7.80 6.25'

16. Lost Si at
$65/k9

(V.8 4 I.4) 8.43 8.43 8.43 5.05 2.85 1.90 7.22 7.22

1 7. Total add-on..
cost	 (15.+16.) 55.34 21.68 16.79 26.81	 ! 16.70 12.92 15.02 13.47

18. Total Materials. -
(14.+16.+$65) 111.25 81.08 78.53 84.80 76.13 72.55 74.61 74.54

9. Lost_S^ at
$40/kg
(V!.14.	 +	 1.4) 5.19 5.19 5.19 3.11- 1.76 1.17 4.44 4.44

20. Total add -on -
cost (15.+19.) 52.10 18.44: 13.59

i
24.87 '15.61 12.19 12.24 10.69

21. Total Materials
(14.+19.+$40) 83.01 52.84 50.29 57.86 1 50.04 46.82 46.83 46.76

22. Lost Si at
$10/kg
(R.2^ _	 1.4.) 1.30 1.30 1.30 0.78 0.44 0.29 1.11 1.11

23. Total add-on
cost (15.+22.) 48.21 14.55 9.66 22.54 14.29 11.31 8.91 7.36

24. Total materials
(14.	 + 22.-+$10)	 ,'49.12 18.95 16.40 25.53 18.72 15.94 - 13.50 13.43

-.(14) Based on cost per charge times III.1 : III.S

(15)Based on $0.14/8. cu. ft. and V2.16

(16)Based on $0.566 per 100 kWh furnace dissipation.
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four, the dominating items are, in the state-of-the-art process, the

crucible costs and the furnace replacement parts costs, which are

listed in Table V on a per load basis, and in Table VIII related to 	
f

unit mass of crystal pulled. If both crucibles and furnace parts°.

were replaced five to ten times less frequently, then this cost item

would become less significant than the capital costs.

As for any single charge technique of current practice, the
t

total 'add-on cost (line 15) could be reduced significantly by using
i

the crucible for more than one charge and by eliminating the need	 -
I

for argon (i.e. growing the single crystal under vacuum)	 However;

a key item for reaching the projected low costs, higher mass pull

rates are needed`. The relatively low productivity of today's pullers

has the consequence of high labor, depreciation, and overhead costs

per-unit mass of silicon ingot grown.

The multi-charge and semicontinuous techniques, described

by TI offer several advantages over their single charge method. The

crucible cost of the single charge method is reduced by 57 and re-

placement parts cost by more than 50%. The multi-charge indirect

materials add-on costs are '44% less than those for the single charge

method, while TI's semicontinuous add-on indirect materials cost is

more than 62% less.

Dow Corning's total indirect material add-on costs/kg-Si

are the lowest listed because of the extremely low labor and materials

usage, to 'which they have been factored. The total material add-on

costs ($2.32/kg-Si) for their continuous growth method are given as

less than one-half those of the other companies. The D.C. data show

very low crucible cost (it is used for ten charges before replacement),
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and furnace replacement parts costs (the heater elements are re-used

100 times). The low labor costs result, in part, from one operator

handling 6 furnaces,. The major cost difference between Dow Corning's	 N

sequential and continuous growth processes is the labor requirement.

The sequential process needs 0.44 operators /puliei:, resulting in a	 r

total labor cost of approximately $1;kyl more than for the continuous

growth process. The relatively large fraction of non-recylable sili-
r

con in the Dow Corning's processes makes their total add-on costs,

i for the three ,silicon prices applied, appear more comparable to the

process data from the other sources listed than they should otherwise

be. The large amount of lost Si is, however, the result of the

process applied primarily for purification ratherthan to crystal
I

growing purposes.

It may be noted that it is recognizable that the cost tab-

ulations based on experimental runs have a tendency to not anticipate

all the material, tooling, servicing, and labor requirements ex-

perienced in actual production. Consequently, those projections

which include seemingly optimistic assumptions should be subjected

to some further scrutiny. Similarly, the 100% successful pull rates

projected by Texas Instruments and Dow Corning seem optimistic.

There are also indications that the prices from the

"commercial experience- data" which were used here, are low. one

reason foi this is that no indirect charges have been applied to the

direct material cost. But this alone,_ apparently,, does not bring the

costs up to other recently suggested experience' values. Further in

vest gaiJo..,,.,:, would be needed to clarify= this point.
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2.1.10	 PRICE CALCULATIONS

In order to obtain single crystal ingot prices according `f

to SAMICS' price formula (8) , the costs listed in Tables- IV to VIII

have to be augmented by an "overhead", and "materials' handling

charge", ` and a "return-on-equipylf.'

The correspondence of these items, between our calculations

and SAMICS is detailed in the next section.

The overhead listed in Table IX consists of the costs of

the working capital, that is the charges of property tax (2%), in-

surance premiums (4%), and interest on debt (12% on one-sixth the

book value).	 The working capital is assumed to be 15% of the cost

of equipment and facility.	 It should be noted that this overhead is

small; however, many of the charges normally assigned to overhead

are in this analysis 	 listed in other categories.	 For instance, the

facility charge rate (Table VII)	 includes the costs of supporting or
x	 ..

overhead facilities, such as process support areas, aisles, adminis-

trative offices, etc.in addition to the required equipment areas.

Also, the "miscellaneous expenses" included by dividing the equipment,

facilities, and labor costs by 0.95, would normally be considered to

be an overhead expense.	 The same division by 0.95 applied to the
t

`	 materials costs is here considered a "materials handling charge".

The return on equity, or profit, is calculated by using a

20% rate of return and a financial leverage of 1.20 (the ratio of the

total capital to equity capital).	 The low leverage value has beenr.

-	 assumed for SAMICS because the expanding photovoltaic industry will be.e

a high risk venture not able to attract large amounts of debt capital,

4-

-_
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IX.. OVERHEAD, HANDLING. CHARGES, RETURN ON EQUITY AND PRICE ($/kg. cyl. Si)

- Leybold- Wolf's projections from Texas InstrumEnts, 	 _., Dow Corning,
Heraeus Leybold-Heraeus' data (April 1.977) (July 1977)
Experience single charge with ExPerim'l'	 Projected - Projected''

z Sing le crucible re-use Singl e	 Multi-	 Semi- Sequential	 Continuous
y
a

Charge Charge	 charge	 continuous Growth	 Growth

4 Designation' LH1 W1
.^

W2 TIl TI2 TI3 DC1 DC2

1. Overhead
(3.059*VIII.5 +
0.108"VIII.6) 0.34 0,21 0.14 0.19 0.20 0.23 0.27 0.24

2. Materials --
handling	 (5.261
of VIII.14) 1.99 0.40 0.27 0.78 0.44 0.30 0.13 0.,12

3. Return of equity
(0.195*(VIII.14
+IX,2)+ 0.19"
VIii.4 + 1.24*
VIII..5 + 4.255•
VIII.6) 16.48 6.93 4.39 7.51 6.37 6.22 7.88 6.77

4. Add-on price
@ $65/kg
(VII.17 + IX.1
+ IX.2 + IX.3) 74.15 29.22 21.59 35.29 23.71 19.70 23.30 20.50

5. Price @ $65/kg
(IX.4 + $65) 139.15 94,22 86.59 100.29 88.71 84.70 88.30 85.60

6. Add-on price
@ $40/k9
(VII.20 + IX.1 - -
+. IX.2 +IX.3) 70.91 25.98 18.39 33.35 22.62 18,.94 20.52 17.82

7. Price @ $40/k9
(IX.6 + $40) 110.91 65.98 58.39 73.35 62.62 58.94 60.52 57.82

8. Add-on price @
$10/kg
(VII.23 + I%.1
+ IX.2 + IX.3) 67.02 22.09 14.46 31.02 21.30 18.06 17.19 14.49

9. Price @ $10/kg
(IX.8 + $10) 77.02 32.09 24.46 41.02 31.30 28.06 27.19 24.49_
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The "return-on-equity" also contains a return on the start -up

capital required in the early years of the plant's life, before

profitable production has started. This "one -time amortization cost"

actually forms the larger part of the "return-on-equity".

The addition of the above three factors to the add-on

cost yields the add-on price. The price is then the sum of the add-

on price and the cost of the silicon contained in the cylindrical

ingot.

In comparing the cylindrical silicon prices for the different

Cz-growing methods, the data for the Leybold-Heraeus and Texas Instru-

ments single charge technique, and Wolf's projections for a 10.16 cm

diameter ingot are high compared to the other projections at the

polysilicon-prices of $6'5'and $40/kg. The high crucible (as it is

used only once)_, argon, and replacement part costs lead to the high

price for Leybold-Heraeus' single charge technique. For Wolf's pro-

jection (Wl), high replacement part costs along with a high capital

cost result in a'high cylindrical silicon price per kg. The one-

-,time crucible use for TI's single charge technique is the biggest

factor in making this process relatively expensive. At these poly-

silicon prices, the current and 1982 LSA projected calculated cylindri-

cal ingot prices for the other projections are grouped closely to-

gether, 	 being less than a $5/kg difference between the highest

and lowest prices.

The 1986 projected cylindrical crystal ingot prices show

greater relative differences than observed for the earlier two years.
k_

Wolf's 15.2 diameter ` ' ingot projection and Dow Corning's continuous growth

technique because of their low crucible, argon and labor costs show the
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lowest (by about $3/kg) ingot prices listed, while the Texas Instru-

ments semicontinuous and Dow Corning's sequential growth methods form

the next lowest group, followed by Wolf's 10.16 cm, diameter projections

and TI's multicharge approach.

To illustrate the changes in the cost of a Czochralski pulled

crystal for the near future, the cost components from Leybold-Heraeus

and the Wolf projections from Leybold-Heraeus have been plotted (Fig-

ure 1). The 1978 bar is based on Leybold-Heraeus' product or experience

and a polysilicon price of $65/kg. The 1982 ingot price is Wolf's

26.6 kg 'ingot projection, and the 1986 price on Wolf's 60 kg ingot

projection.
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Czochralski Crystal Growth
Specific Add-on Costs

Labor
Capital Cost

SM Ind. Materials
\\M""\ Replacement Parts
Iilllllilillll Crucible

Lost Silicon
Ind. Costs Return
o Capitaln Ca i l

x P x Productivity Increase
Technology ,Advance

♦ c ♦ Crucible Re-Use

si	 Silicon Price
Decrease

--1.07
--1.03
--1.02
'*`1.30

1978	 1982	 1986
FIGURE 1.
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2.2 CORRELATION OF THE "UNIVERSITY OF PENNSYLVANIA PROCESS CHARA.CTER-
IZATION (UPPC)" AND THE SAMICS METHODOLOGIES

2.2.1	 DISCUSSION OF THE RELATIONSHIP OF SAMICS AND UPPC

With the beginning of this project, the evolution of a

standard format and methodology was started which was to guide and

ease the tasks of collecting an appropriate and adequate amount of

data for process evaluations, and also to provide a format for price

calculations. To properly fulfill its task, the format has to be

applicable to anyof the fabrication process options, which means that

it needs to be general and flexible, while it simultaneously has to be

adequately detailed. The format should be capable of accomodating

industry cost and price computation practices to permit the cross check-

ing of the accumulated data against the costs computed at their source.'

But then, the costs have to be equally readily computed by the SAMICS

methodology to provide a standardized cost picture. Most importantly,

however, the method has to provide clear visibility of the key cost

drivers of an individual process, as well as of 'other potential. problem

attributes'. This evolution resulted in the current version of the

"University of Pennsylvania Process Characterization (UPPC)" format,

in which the process details which were accumulated for the Cz(3chralski

crystal, pulling process, are presented in the Appendix.	 The following'

section details the relationship between the UPPC format and the SAMICS_'

methodology, and derives the various multipliers to be used in applying

UPPC in the SAMICS methodology.

4•K
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2.2.2	 CONCEPTUAL AND MATHEMATICAL CORRELATION

In the "Solar Array Manufacturing Industry Costing Standards"

(SAMICS) "Interim Price Estimation Guidelines" (IPEG) the "Annual

Nanufaeturing Cost" (including the return on investment) for a solar

module or its work-in-process is .expressed by the linear relationship

(JPL LSA Project document 5101-33, page 2-1):

AMC = C1*EQPT + C 2 *SQFT + C 3 *DLAB + C 4 *MATS + C 5 *UTIL.	 ( )

-	
where:

EQPT original cost of the equipment
E 	

q	 ISQFT- equipment  area in square feet

DLAB = annual direct labor cost

MATS annual expense for direct materials

UTIL = annual expense for utilities needed directly for the
process

According to the equations on page C-1 of JPL document 5101-33, the

annual manufacturing cost (unit price times quantity produced annually)

:-	 is calculated from the following relationship:

r
t	 AMC = PRICE x QUANTITY

„	 OPR + OTX + INS + INT + RPL T*DEP	 ITC + AOC + EQR BYP	 (2)
(1-x)	 (1-x) * (1-T)

Here, OPR are the annual operating expenses given by:

OPR	 (1 '+ FB) * (DLAB + INDLAB)

+ (MATS + INDMATS) + (UTIL + INDUTIL) 	 (3)
F

The prefix "IND" indicates expenses for the respective indirect cost

items, such as "INDMATS" for indirect materials and supplies. Similarly,;
C

OTX,, INS, and INT_are the annual charges on the capital for property

E

i ^

i
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taxes, insurance, and interest on debt, respectively, which are re-

lated to the costs of the facility (FAC) and of the equipment (EQPT)

and to the working capital (WCAP). RPL refers to the annual cost of

i
replacing capital items (equipment and facility), while DEP is the

depreciation used for income tax purposes, T being the income tax

rate (50%). ITC is the income tax credit, applicable to new purchases

of equipment, EQR is the expected return on investment, and AOC the

i
cost of debt and of the expected return on the equity for the capital

required for plant construction and start-up. BYP is the sum of any
i

credits obtained for byproducts sold. IPEG uses the "miscellaneous

I	
expense fraction"- x, with a value of 0.05, to cover various indirecti

costs not explicitly accounted for.

For the purposes of accumulating relevant information and

analyzing cost contributions of various process options, the 'Uni-

versity-of Pennsylvania Process Characterization" format (UPPC) has

been evolved. Such analyses are more readily performed by use of a

relationship whose structure resembles eq (1) rather than eq (2).

-This type of structure eases the task of identifying the major cost

contributors and of approaches towards eliminating or reducing their

impact. However, the _factors C1 through C5 of eq (1) need to be

broken into several components according to the origin of the cost
I

contribution, such as operating costs, indirect charges, return on

equity, etc. Following the SAMICS system, this can be accomplished

by reorganizing eq (2) in a form more similar to eq (1)

AMC	
OPR (MATS, INDMATS, UTIL)

+ OPR (DLAB, INDLAB)
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RPL (EQPT) -T DEP (EQPT)
OTX	 (EQPT)	 + INS	 (EQPT)	 + INT (EQPT)	 +	 ( 1-T) r=

(1-x)

RPL	 (FAC)- - TDEP	 (PAC)	 OPR	 (INDUTIL)''OTX	 (FAC)	 + INS	 (FAC)	 + INT (FAC)	 +	 ( 1 -T)+
(1-x)

+ OTX (WCAP) + INS (WCAP) + INT WCAP}
(1-x)

EQR (EQPT, FAC, WCAP) = ITC (EQPT)+
a (1—X)'	 ( 1 -1)

j

AOC (MATS, INDMATS, UTIL, BLAB, INDLAB, EQPT, FAC, INDUTIL) (4)
(1_x)	

( 1 -T)

' In this form, each term represents a specific cost contribution. 	 The

first and second terms express the operating costs based on all

materials and supplies usage, and on all labor, respectively,_ while

the third and fourth terms represent; the tax, insurance, debt service,

t, and depreciation costs of the equipment and the facility, respectively,

and, in the latter case, also the "indirect utility" operating costs
j
i for space conditioning and lighting the facility.	 The fifth term in-
i

cludes the tax, insurance, and debt service costs for the 'working

F capital, while the sixth term describes the cost of the expected after-,

tax return on equity, reduced by the investment tax credit. 	 The

seventh term, finally, represents the annual cost of the capital needed

r for plant construction and start-up, as explained before.
gam_

'
V

It may be noted that the assignment of the costs of debt

t
.T

service to equipment and facility "costs", and of the expected return
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on equity to "profit", although common because of existing tax laws,

`	 appears somewhat arbitrary in view of the dependence of this division`'

on the leverage exercised by the individual company, and tends to re-

sult in variations of the process "costs".	 It is therefore preferable

to include the "profit" in economic comparisons, that is, to make such
L

evaluations on the "price" rather than the "cost" basis-. 	 Similarly,

\	 the-"start-up costs" include filling up the production line with work-

in-process, and to build up raw material, supply, and finished goods,

inventories.	 Consequently, the real costs of the working capital, as

far as they refer to taxes and insurance, may be understated in this
r

treatment.	 This again emphasizes the benefit of using the price rather

than 'cost for economic evaluations.

In accordance with the organization of cost contributions

described by eq (4), the UPPC format provides for tabulation of the

materials costs on forms 3 through 5. 	 Form 2 details the input work-

in-process, whose input cost (item 1.3)	 is not loaded with any indirect

charges for purposes of calculating the add-on cost or the price of

F=	 the output work-in-process or finished product._' Form 3 allows tab-

;.	 ulation of other direct materials (MATS), with their costs summarized -
in item 2.1, while form 4 similarly summarizes the indirect materials

and supplies costs (INDMATS) in item 2.2. 	 Form 5 allows the accumu-

lation of the costs of <expendable tooling in item 2.`3, and of energy and
4.

`	 other 'utility costs in item 2.4. 	 All material costs are subtotaled in

item 2.5.	 The'iniscellaneous cost fraction" x is applied as a factor
r 	 _1

(l-x)	 to item 2.5, as expressed in the first term of eq (4) , and

is here called a "materials handling charge", as commonly applied in

industry.
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In correspondence with_eq (3) and (4), the direct labor costs ,,a

are summarized on form 6 of UPPC in item 3.1, after applying the

factor (1 + FB)for fringe benefits which 	 causes	 a 36% load on the p

direct labor.	 Following IPEG, INDLAB is then applied at 0.25 * 	 (1+FB)*

DLAB for item- 3.2 of the UPPC. 	 The "miscellaneous expense fraction" (x)

is applied by multiplying with (1-x) - 	adding an "overhead" charge

on Tabor of 5.26% in item 3.4 of UPPC.	 As mentioned previously, in the

simplified, IPEG type use of the UPPC format, any service labor needed

to repair or otherwise maintain the process equipment or to perfor-M any

auxiliary functions, is treated as direct labor and included in item

3.1.	 If single shift, 5 day/week operation is evaluated, the annual

labor hours required for one operator at a given process station are

multiplied with 1.185, to obtain the total annual labor hours to be

expensed in order to assure continuous attention at the work station,

even during absenteeism periods.	 If, however, continuous (7 day per

week)	 3 shift operation is evaluated, this multiplier becomes 47,

according to "SAMICS Usage Update Number 1", JPL document 5101-59.

F. The annual equipment costs are computed according to the third

` form of eq (4).	 According to JPL document 5101-33,- it is:

° OTX = R * VAL tax(5)

f
r	 i

VALtax	 1*	 (FAC + EQPT) + WCAP	 (6)
t

VALbook	 -_
r

where:

WCAP = 0.15*	 (FAC + EQPT)	 (7)

t--
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is used in the fifth and seventh terms of eq (4) only. SAMICS-IPEG

sets:

`	

FAC	 142 ($/sgft) * SQFT,	 (8)	
g^

Similar to eq (5) , it is:

INS	 V*(FAC + EQPT + WCAP) 	 (9)

and:

INT = i * ^
-1 * VALbook	 (10)

k	
Here, R is the property tax rate, taken in !PEG as 0.02, v the in

I

surance premiums, taken as 0._04, i the interest rate on debt at 0.12,

i
and X the financial leverage, used in IPEG at the value of 1.20

I
The building area(SQF9) is used as the area needed for the

workstation itself, including the equipment area and the space needed

for the operator and for servicing the workstation. Since we are

I
working in the international systems of units, FAC becomes

J

FAC = 1528.5 ($/m2 ) * AREA (m 2 )	 (11)

where AREA is equivalent to SQFT except for its dimension in m2.

E With

RPL = DEP	 * EQPT + 4 0 * FAC	 (12)

corresponding to straight-line depreciation over 7 years for equip-

ment and 40 years for buildings. The annual capital costs (.ACEQT) for

the equipment itself, that is excluding the working capital, can be

expressed, according to eq's ,(2) , (4) to (6) , and (9) to (12) , as:

r	 ,
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r

The factor 0.2135 is applied as the annual "charge rate" in item
i

4.1 of UPPC.

i The annual costs ACFAC of the facility are similarly treated,

in accordance with the fourth term of eq (4). Excluding the indirect

'i	utility costs, the annual facility charges are:

ACF = ( z* R +V+?*i* a-1 +.) * 1 , _ * 152'8.5 * AREA	 (14 }
i

a	 40	 1-x

;
136.76 * AREA ($/Y)	 (14a)

Equation (14) is the basis of the charge rate of $136.72/(m 2 y)

applied in item 4.2 of UPPC.

The use of indirect energy for lighting and conditioning the

facility is, following IPEG, also proportional to the area used:

OPR (INDUTIL)	 3.74 ($/(ft 2 y)) *SQFT	 (15)

= 3.74 * 10.764 ($/(m2 y)) * AREA (m2)

40.26 ($/(m2 Y)) * AREA (m2 )	 (15a)

°	 The sum of eq (14a) and (15a) yields the total annual cost of the

facility. Applying the inverse (1-x) factor yields an energy use

charge of_$42.38/(m 2 y) for item 4.2 of UPPC. The sum of eq (14a)

and the energy use charge them correspond to the fourth term of

ACEQT = (z* 0 + v + z*i* l 1 + 1 ) * 
l
lx * EQPT	 (13)

T	 T	 T
OTX INS INT	 DEP

	

0.2135 * EQPT ($/Y)
	

(13a)
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eq (4), yielding

ACFAC = ACF + INDUTIL 	 179.14 ($/(M2 Y)) * AREA (m2 )	 (16)
(1-x)

F
as the subtotal item 4.2 of UPPC for its simplified IPEG appli-

cation.

From the analytical viewpoint, this simplified breakout is

not quite as transparent as desirable, since maintenance costs for

both equipment and facility are included in the labor operating costs,

while outside repair services and replacement parts are assigned to

the materials operating costs. mhe UPPC format includes provision for

full association of all equipment or facility related costs, including

maintenance labor and replacement parts and/or outside services. When

the format is used in the SAMICS-IPEG mode, this provision is not

utilized in the interest of compatibility with the SAMICS methodology.

As previously discussed, the "Other Indirect Costs", shown

as item 7.22 of UPPC`, are the annual costs of the working capital

according to the fifth term of eq (4) According to IPEG, these

costs are calculated as

ACWC	 (j3 + v + i* ^`-1) * 1 *
a	 l-x	 0.15 * (EQPT + FAC )^ 

For the equipment, this becomes-0.059 * ACEQT of eq (13) or 0.059

times the amount found on line 4.1 of UPPC. Similarly, the contribu-

tion to the annual cost of working capital from the facility, expressed

as a factor to the annual facility costs ACFAC of eq (16), shown on
I

line 4 of UPPC, becomes:

I



^,, rr„rs ^,^",^'at'^'+uf."^`^:'°"„a..	 .. - ,	 ..... ..	 _..	 ^.	 .. -^.., .-	 wyaa^---	 -^s'+s.a^f•++!,,..

i

56

6 + v +

' ^a-1	 1+	 +	 i	 + INDUTIL	 * 0.15 _ 0.108 (18) Y

s	 X	 40 FAC

. so that.

ACWC = 0.059 *	 (value line 4.1)	 + 0.108 *	 (value line 4.2)	 (19)

The costs NREQ of the net expected return on equity are given

by the sixth term of eq (4). Following page C-4 of JPL document r

5101-33, it is:

EQR = r * ^`* VAL book = 0.1667	 (VALbook) (20)

with the expected rate r of return on equity being 20%, and:

ITC =a * EQPT _ 0.0143 * EQPT (21)

s

a being 0.1.
^

F Following eq	 (6)	 and	 (7)

VALbook = 0.65 EQPT + 0.65 FAC (22)

so that:

NREQ = EQR - ITC_

(0.1667*0.65	 - 0.0143)	 * EQPT + 0.1667 * 0.65	 * FACE	 (23)°. 1-x	 (1-7)

_ 0.1980 * EQPT + 0.2281 * FAC (23a)

”- Applying eq's	 (13a)	 and	 (16) together with	 (11), eq	 (23a) can readily

be expressed in terms of quantities previously obtained in the UPPC

_

format (lines 4.1 and 4.2):

t
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NREQ = 0.1980 * ACEQT + 0.2281 * 1528.5 * ACFAC
0.2135	 179.14

0.9274 * ACEQT + 1.946 * ACFAC 	 (24)

Finally, there is the seventh term of eq (4), the "amortization

of start-up costs"; AOC, to be dealt with. JPL document 5101- 33 gives,

pagea e C-6, AOC as:
1 

AOC = 0.030 * EQPT + 21.9 * SQFT + 0.163 * DLAB

i.
+ 0.096 * MATS + 0.096 * UTIL 	 (25)

i

The last three terms of eq (25) arise solely from the quantity

PVSU on top of pare C-6 of JPL document 5101-33, which contains
I

1.70 * DLAB + MATS + UTIL. The 1.70 factor of DLAB results from the

product (1 + FB) * (1+0.2,5) , the latter ,factor accounting for the in-

direct labor, so that this 1.70 * DLAB term corresponds to item 3.3

of the UPPC format. Similarly, MATS + UTIL correspond to item 2.5

of the UPPC format. In PVSU, both items are multiplied by 0.09,6,

i
and for the seventh term of eq (4), they are divided by (1-x)*(1-T)_.

I Items 2.7 and 3.5 of UPPCcontain the division.by  (1-x) already, so

that the corresponding part of the annual cost ACAOC of the amorti-

zation of start -̀up costs (7th term eq (4)_) becomes:

ACAOC (MATSINDMATS, UTIL, DLAB,,INDLAB)
f

090.6

09 
* [(value item 2.7) + (value item 3.5), 	 (26)

0.192 * [(value item 2.7) + (value item 3.5)^ 	 (26a)

I
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The equipment part of ACAOC is obtained as:
z

ACAOC (EQPT)	 0.030 * EQPT	 (27)(1-x) ( 1 -T)

0.030	 * ACEQT
0.95 * 0.5 	 0.2135

I

0.2958 *'ACEQT,	 (27a)

making use of eq (13a) and the value obtained in item 4.1 of the

UPPC format.

Similarly, the facility part of ACAOC, including the indirect_

utility costs part of PVSU, becomes:

ACAOC (FAC) - 21.9 * SQFT	 (28)
(1-x) ( 1 -2)

_	 21.9	 * AREA * 10.7640.95 * 0.5

I With eq (16),, this is again relatable to a quantity already obtained

in the UPPC format (ACFAC, item 4.2), so that:

ACAOC (FAC) = 21.9 * 10.764 
* ACFAC

0.95 * 05	 179.14

I
I	

2.770 * ACFAC	 (28a)

The sum of all these annual cost terms provides the total annual plant

cost, and, after division by the quantity of good output work-in-

process or finished product, its price.

I"

i

I



3	 CONCLUSIONS AND RECOMMENDATIONS	 1=

A comparison of the current crystal growing costs with the

projected future costs shows that the latter are all based on

assumed advancements in technology which have not yet been fully

demonstrated.	 The considerable magnitude of the expected decrease

of the add-on costs emphasizes the importance of the realization

of the anticipated technology advances.	 These advances fall into

four categories;	 an increase in furnace productivity, the reduction

` through multiple use of crucible costs 	 the combined effect ofp

miscellaneous smaller improvements, and the carry-forward effect of
I

advances in the silicon purification area, which are expected to

make polycrystalline silicon available at greatly reduced prices.

Approximately half of the projected increase in crystal pulling

furnace productivity results from larger diameters than the presently

produced crystals have. 	 The diameter is expected to increase from

` nominally 78mm diameter at present to nominally 102mm by 1982, and

to 152mm by 1986.	 The other half of the productivity increase, how-

ever, is expected to come from a higher linear pull rate, which would

more closely approximate the thermodynamically computed limit pull
rate than current practice does.	 This prediction of a linear pull

:. rate increase is more risky as two, currently not adequately explored
phenomena are involved.	 The first concerns crystal perfection which'

4 may decrease with increasing pulling speed, and may possibly prevent

the practical use of the expected pull rates.	 The second phenomenon'

E	
;- is related to the common furnace designs which result in considerable

radiative heat transfer from the melt surface and the heater -environ-

ment to the grown crystal, thus preventing a close approach to the

s_ fy

 J
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s	 a

i	 I

limit growth rates.	 This spurious radiative heat transfer could,

in principle, be reduced by introduction of appropriate heat shields.

To what degree this can be achieved in practice, without interfering

with other aspects of the crystal growing process, needs to be ex-

plored.

The projected crucible cost reductions are also based on two

aspects.	 The primary one is the assumption that crucibles can be
e

used for the equivalent of up to 10 individual crystal pulls, either

with re- seeding or with (quasi-) continuous pulling, rather than the

currently practiced usage of the crucibles for only one crystal each.

The second aspect is related to the finding that crucibles for big

charges (oven 15 kg)_ as required for the improvement of furnace

productivity, cost considerably more per unit volume than the more
p commonly used crucible sizes.	 It has been projected that the fabri-

cation technology for large volume crucibles can be sufficiently

improved to bring their cost per unit volume down to the same value

as commonly paid for crucibles in the two to eight kilogram charge

range.

Included in the "miscellaneous improvements" is the reduction

of the energy consumption per unit mass of crystal pulled, which

has been assumed to be reduced to approximately half of the current

value.	 Approximately two-thirds of this reduction result from the

assumption that the heat losses per unit mass pulled are directly 	 1

related to the crystal geometry change, and thus can be reduced by

the growing of larger diameter ingots. 	 The other third of the re-

duction in energy consumption is assumed to be achievable through

improvements in furnace design with respect to heat shielding and
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x
thermal insulation.

Other technology advances in the area of furnace design have

A

been postulated as achieving considerably reduced annual costs for 	 a

equipment replacement parts, which become significant after elimi-

nation of the now-predominant crucible costs.

The final element in the projected cost reduction is the

projected decrease of the polycrystalline silicon price from the

current _level of $65/kg to $40/kg by 1982, and to $10 /kg by 1986.

In the analysis of the specific add--on costs, the silicon price

enters only through the fraction of the charge which is lost in the

process, primarily through the silicon contained in the bottom taper

and the small amount remaining in the crucible, both of which are

u enriched with impurities and therefore not re-usable. As the price

of the,polycrystine silicon decreases, the cost contribution from I

this lost silicon will be significantly reduced._

Summarizing, it can be observed that the various recent in

} vestigations of the Czochralski crystal growing process came to the

same conclusion, with relatively minor variations in detailed approach,

that the best approaches to growing cylindrical silicon single crystals

at low cost lie in production rate increases through growth of larger
k.

	

	
diameter ingots, in crucible re-use, and in longer life-time of

furnace parts. The four currently active LSA projects in this area

are directed at realizing these improvements. Once the results 0i

these efforts are attained, it would be appropriate tore-examine

t,

	

	 the process attributes and the cost structure of the Czochralski

crystal pulling process, and to identify the items to be investigated
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for the next round of improvements. In this connection, it may be

interesting to note that in the multi-charge and semi-continuous

pulling techniques (projections by Texas Instruments and Dow Corning),

where the crucible costs have been drastically reduced, the capital

costs appear as the largest single cost item.

^I

II
1
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Form 2

Page	 1 of	 1
Revision	 Date	 2/78

Process° No.	 ^ .	 17 .	 0, 1	 _" 0	 1 0,1 Value-Added: $/

Process	 Description:	 Single crystal ingot-growth by Czochralski pulling, using the --- -

LUbol d-Heraeus puller tyge EK2 , 1600/6000
°-_ _

1._	 Input Specification: --

Name of Item:	 Polycrystal silicon ---

Dimensions:	 Crushed Polyrod or shaped charge

Material:	 Solar Grade Silicon' 

other specifications:	 As agreed between individual users and vendors -

1.1 Quantity Required: 16.2	 kg / charrge Unit Cost:	 65	 $/ kg

1.2 Input Value: $/

1.3 Input Cost:	 1053 $/charge —

Note to 'Item 1.3:	 Use price, if input produced in own plants



Process No. -Q'. i 1J	 Q Form--3—,

Page. 1	 -of	 1	 ..
2.1 Direct Materials: Revision Date	 2/78

2.11 Type:	 Doping charge

^ Specification:	 As specified by user -

/	 ;	 Unit Cost:	 $/	 ;	 Cost: na	 $kharae—Quantity Required:

2.I Type:
y

? Specification: ; - - -------

x /	 ;	 Unit Cost:	 $/	 ;	 Cost: $/ 1Quantity Required:	 _

2.1 Type:

l Specification:

1

1

Quantity Required: /	 Unit Cost:	 $/	 --Cost: $/

1

2.1	 Subtotal Direct Materials: / 0	 $	 Chd

a



Process No. 2	 1	 0	 1	 —'	 0	 1
Form 4

_ Page 1	 of	 1

2.2	 Indirect Materials	 (incl.	 supplies and non-energy utilities) :
Revision

-'
Date Z178

2.2 1 Type: - Cool i ny Water

Specification:	 127 m3 of cooling water per charge to dissi pate 1100 kWh of heat

w P (SAMICS No. C1128D)

Quantity Required:	 1100 kWh/charge Unit Cost: 0.566 $/100 kWh;	 Cost: 6.23 $/ charge

2.2 2 Type: Argon. pre-purified

e	 " Specification:	 (SAMIC'S No...,E.1112D)

Purity minimum is 99.998%

Quantity Required:	 6.4 m3_/char a Unit cost: 4.945 $/ m3	 Cost: 31.65 S/charge

2.2 Type. L	 -

Specification:

Quantity Required: /	 Unit Cost: $/'	 Cost: $/

2.2	 t;ubtotal Indirect Materials: 37.88 $/charge

r

• 	
^ do	 _	 a	 ,.^:""
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b
Process–No.--2--. `1 0 — 10 ^1

Form 5
Page 1	 of	 1 ..

i 2.3	 Expendable Tooling:

Revision Date 2/7$
2.3__ Type: Furnace replacement–parts-

Quantity Required: /	 Unit Cost: $/	 cost: 140 $/	 change

2.3 2 Type. Quartz crucible liner (25 x 25 cmi. capacity 30 kkq)

Quantity Required: Unit':; cost: 	 225 $/cruc.cost: 225 _$/ Charge
;i

2.3 _ Type:

if
I

Quantity Required: /	 Unit Cost: $/	 cost: $/

2.3 Type:

Quantity Required:	 ___ /	 :	 Unit Cost: $/	 Cost: $/

2.3	 Subtotal Expendable Tooling: 365- - - $/ch r

2.4	 Energy__:

'
I

2.4 1.Type c—
Electricity--

-

' Quantity Required:_ 1100 'kWh/charge Unit Cost: 0.0319 $/ kWh Cost: 35.09 $/ charge

2.4 _ Type': a

- Quantity Required: :	 Unit Cost: $/	 Cost: $/ s

2.4	 Subtotal Energy Costs: 35.09 $ /ch^ara_e

--$/charge2.5 Subtotal 2.2	 to 2.4i 437.98

2.6 Handling Charge: 5.26 % of item 2.5 23.03 S/charge

r 2.7 Subtotal Materials and Supplies: 4F1.01	 $/dj rqe

(2.5 + 2.6)

^ I

i



1

Process No. M'	 10	 1	 0 Form 6
L^J • Page 1	 of L

' Revision Date 2/78^

3.1	 Direct Labor:-

3,11 Category: _ Crystal Puller Operator (SAMICS Activity:	 Marhi p monitoring

#609885)
j

Amount Required:	 2.8 h/charge	 ; Rate:	 $ 4,_52	 /h; Load 36 %; Cost: 17 21	 $/_ r

3.12 Category: Crystal puller operator (SAMICS Actvit Y:	 Loading, unload ing C1PAR71]S^ etc.h	
- #609885)

r
Amount Required:	 1.5 h/ charge Rate:	 $4.52'	 /h; Load	 % Cost: 9.22	 $/ charge

3.1 3 Category:	 Maintenance' Mechanic (SAMICS Activity:	 Servicing
638281'

f Amount Required:	 0.8 h/ Charge Rate: $ 5.67	 /h; Load	 s	 %; Cost:_ 6.17	 $/charge

G 3.1 Direct Labor Subtotal: 32,60	 $ /charge

3.2 Indirect Labor: 	 Total taken as 25%	 of direct

3.2 Category: Activity:

i
Amount Required: h/ Rate: $	 /h; Load %; Cost: $/

f	 3.2 Category: Activity:

Amount Required:' h/ Rate: $	 /h; Load % Cost: $/

3.2 Category: Activity: _

Amount Required: h/	 ;-Bate: $	 /h; Load %; Cost: $/

3.2 Indirect Labor Subtotal: 8.15	 $/charge

3.3 Subtotal 3.1 and 3.2. 40.75'	 $/charge

3.4 Overhead on Labor:/ 2.125	 $/charge

3.5 Subtotal Labor - - 42.875	 $/charge



2.19 $/ chi
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Press No. 2	 4	 0	 1	 0	 1	 Pge 1	 foc	 . 1

Revision	 Date 2/78
4.1 ...Equipment	 --

4.11 	 Type: C, Crystal Puller, Leybold-He'raeus type EK2 1600/6000

Cost:	 80,000 $;	 Installation Cost: 20,000	 $; Throughput:	 4540 kq
Y

/k;

Plant Oper'g Time	 8280	 h/y	 Machine Avail'ty:	 95%%, Machine Oper'g Time	 7866 h/y

Servicing Costs: Labor see 3.13	 h /y at $/h;Parts or Outside Service: See 2-.31 $/y

Useful Life:	 7 y; Charge Rate: 21.4	 % of Cost/y; Capital Cost:	 21400 $/y

4.12	 Type:.	 Other equipment .(resistivity tPstPr,_sralP,_etc.)

Cost':	 4190 $;	 Installation Cost: $; Throughputi /h;

Plant Oper'g Time h/y; Machine Avail'ty:	 %; Machine Oper'g Time h/v

Servicing Costs: Labor	 11/y at $/h;Parts or Outside Service: $/y

Useful Life: y; Charge Rate:	 21.4	 % of Cost/y; Capital Cost:	 856 $/v

4.1	 Types

Cost: Installation Cost: $; Throughput: /h;

Plant Oper'g Time h/y; Machine Avail'ty:	 %; Machine Oper'g Time h/y

Servicing Costs. Labor	 h/y at $/h;Parts or Outside Service: $/y

Useful Life: y; Charge Rate: % of Cost/y; Capital Cost: S/y

4.1	 Subtotal Equipment Cost:

i

I

54.87 $1 charge



1'	 4.2 Subtotal Facilities:

4.3 Equipment and Facilities Subtotal :

	

5.51	 S/ charge

	

62.58	 S/charge

A

r1	 ;`o.
I 	 -__.-Fo-rm -8-,--	 --	 --

Process Page 	 1	 of 1
x Revision Date 2178

4.2 	 Facilities:

4.21	Type: Crystal growing area
^

Floor Area:	 12	 m2; Throughput:	 39Q	 r,^ar^oc	 /Y

Charge Kate: 179.13* S /(m2'y):

w ^—w ^^ ^^ w..^ ^ 0

­0;lainte.nance Costs:

^.^ r •..r ^^ ^.►

Energy Use: i Labor: h/y: at $/h

Heating /y at $/ , Supplies: $/Y

Air Cond'g

_ 
/y at $/ Outside Services: $/y

L.... 0.0 . one r .:mss.	 A (
Lighting /y at $/

Total cost: 2149.56	 $/^ 5.51	 $/charg e

4.2_	 Type: Floor Area:
2

m	 Throughput: /y

Charge Rate:
2

$/(m 'Y):
Maintenance Costs:

U L bEnergy se.	 a or.	 y

Heating	 /y at	 $/
.Supplies:	 _	 $/Y

Air Cond'g — _	 /y at $/ Outside Services: $ /y

Lighting, /y at
Total Cosa: $/Y

4.2 '_ Type: Floor Area:
2

m ; Throughput: /y

Charge Fate:
2	 r._^ r

$/(m -Y);^
^ V r ^	 O...M w.. 0^ W~

Maintenance Casts:
QW00 maw r.0 O.

Energy Use: Labor: h/y at $/-h----
Heating /y at $/

Supplies: $/y
Air Cond'g_ /y at

'
$/

L Outside Services: $/y

Lighting /y at 40.. ...	 d~	 .,...	 ....	 ...	 .... 4ft-m	 n." =-a'a.
t Total Cost: $ /y'

$/



Form 9-1 1

Page	 1 of 1

[2]
Revision	 Date 2/78

Process No. ^	 1 0	 1 1!	 ^ (^	 11	 f

5.	 Salvaged Material (Work-in-process)'

5.1 Quantity of Work-in-Process 1. 	 Contained in Good output
Work- in -Process (per Computation Unit) 4540 kg	 /	 y

5.21 Input	 Work-in-process 1. Not. Contained in Good Output
Work-in-Process ("Amount Required" from 1.1 minus 5.1) 1785, kg	 /	 y

5.22 Net Amount of 5.21 which is sold for Credit As-Is or

After Applying Re-Process	 tJ	 W -^ 1190 kg /	 y

5.23 Credit for 5.22 at the Market Value of	 65	 k9 $/.

5.24 Cost of-Reprocessing Material of 5.22
at the Average Reprocessing Cost of	 $/' $/

5.25 Net Credit for 5.22 	 (5.23 minus 5.24): $/

f	 5.26 Material of Type 1. host in Process	 (5.21 minus 5.22) 595 k9	 %	 y

"•	 5.3 Cost of Work-in-Process Lost (Amount 5.26 Times Unit Cost 1.1) 99..16-	 $/Charae,;

5.4 Cost of Work-in-Process Contained in Good Output Work-in-Process
(Amount 5.2' Times Unit Cost from 1.1) 756.66	 $/Charge,

1

Salvaged Materials Summary: :a

5.8

f

T Material s .2	 + 5	 7	 .761Tonal Net Credits for All Salvaged 	 (5	 5	 .6	 ^ 5 $/

S



Form 10

Process No. 2	 F-1 Page _1_ of 1_

6. Byproducts and Wastes 	
Revision	 Date 2178

6.1 Solid Byproducts/Wastes

6.11 Type (Composition)':	 Quartz crucible	 Quantity Produced:	 1	 /Charge
i

Physical Shape/Size: 25 X 25 cm	 Energy Contents	 kWh/

'Density: 2.63-2.66_g/cm ; Water Solubility:	 0	 g/1 at	 C;	 pH:f-

Toxicity:_	 Biodegradable: no	 Other Remarks:

Type of Disposal:	 land fill

Input Material for: 	 Cost/(Credit)	 S/	 Cost:	 $/

I

6.2 Liquid Byproducts/Wastes (inorganic):

6.22 Type (Composition):_ Cooling water 	 Quantity Produced:127 m3/ Charge .d

Density: 1 g/cm3; Suspended Solids:	 Amount	 mg/1 pH: 7

Toxicity:	 -	 Heavy Metal Content: - rig /1 Other Remarks

Type of Disposal: recycled through cooling tower

Input Material for: 	 Cost/(Credit)	 $/	 Cost:	 $/

4

Carry:	 $/

{



i

f,

tt

Form 11
Page 1 of 1

	Process No. 	 0	 1 "'^ 0 T	 Revision	 Date 2/78

	

6.3 Liquid Byproducts/Wastes (organic)	 Carry from Form 10

	

6.3	 Type (Composition): 	 Quantity Produced:

	

_	
a

3Density:	 g/cm ; Toxicit}	 COD:	 mg/l;`BOD:	 mg/l

Ignition Point:	 °C; Explosive Mixture in Air: 	 % to 	 Other Remarks:

Type of Disposal

Input Material for: 	 Cost(Credit)	 $/	 Cost:

6.4 Fumes, Gaseous Byproducts/Wastes

	

6.4' Type (Composition): Argon 	Quantity Produced: 6.4 m3 / Charge

Energy Content (Combustion): 0	 kWh/	 Explosive Mixture in Air na % to	 %.

Ignition Point:	 0C; Aerosolm Precipitates in 	 minutes	 pH

Toxicity	 Requires Scrubbing Type of Scrubber:

(enter scrubber under 4.1, 4.2, scrubber effluent under 6.1 to 6.3)

Other remarks:	 Argon is contaminated with dopant fumes, Si0 , etc

Type of Dispo-al:,	 Exhausted into air

Operating Costs:	 S/	 Cost:

6. Subtotal Byproduct/Waste Disposal Cost:

S

ij



Form 12
Page 1 of 1

- ^	 Revision	 Date 2/78_
Process ho.	 -

7. Process Cost Computation	 7.11 Manufacturing Add-On Costs (sum of 2.7, 3.5, 4.3, 6.)!

7.	 e	 n r c	 s•	 % of 7.11

7.21 Total Operating Add-on Costs of Process:

7.22 G & A	 -	 % of 7,.21

1

7.31 Total Gross Add-On Cost of Process

7. 32 Credit for Salvaged Material (5.8)

7.33 Cost of Work-in-Process Lost (5.3)'

7.34 Specific Add-On Cost of Process (7.31 + 7.33)- (7.32)

7.35, Cost of -Input Work-in-Process Contained in Good
Output Work-in-Process (5.4)

7.36 Loading on Item 7.35 at Rate	 %	 .

7.37 -Cost of Output Work-in-Process (7.34 + 7.35, + 7.36)
Jlrew^^^^a ..af ilia __ -_ _	 -`•:

7.41 Theoretical Yield (or Conversion Rate, if output units of
work-in-process do not equal input units)	 16.2	 kg	 / charge

7.42 practical Yield	 --	 -	 72 - 
%

7.43 Effective Yield (7.41 x 7.42)	 11.66 kg / charge

7 .44 Number of Units of Good Output Work-in-Process per
Computation Unit Used up to 7.35	 11.66 kq	 /charge

7.51 Cost of Unit of Good Outp;iL Work-in--

	

Process (7.37	 7.44)	 122.31

'	 7.52 Specific Add-On Cosa per Unit of Good
Output Work-in-Process (7.34 - 7.44)

566.45 $/charge_

3.96 $/charge

570.41 '$/charge

570.41 $/charge

99.16 $/charge

669.57 $/ charge

- 756.66 
$/

charge-	 -
r

0	 $/	 0

1426.23 $/charge

k9	

mom

$/

57.42 S/ kg





    

8.2	 Alternate 2 (SAMICS Methodology);

8.21 Profit Computation:

0.9274* 57.065	 $/ charge	 from subtotal 4.1 _	 52.92 $/charge

1.946*	 5.51 $/ -charge	 from subtotal 4.2 10.72 $/charge

Subtotal =	 63.64 $/charge

8.22 Costs of Amortization of the One-Time Cast:

0.192* 461.01	 $/	 charge	 from subtotal 2.7 =	 88.51 $/ charge

0.192* 42.875	 $/	 charge	 from subtotal 3.5 8.23 $/ charge

0.2958* 57.065	 $/	 charge	 from Subtotal 4.1 =	 16.88 $/ charge

2:77*	 5.51	 $/	 charge	 from subtotal 4.2 =	 15.26 $/ charge

subtotal- = 1-2:8.-88-____.,$/ -change,

8.23 Total Net Cost of Equity 	 (8.21 +'8.22):

8.24 Profit and Amortization of Start-up Costs per Unit of Good Output
Work-in-Process:
(Divide Subtotal 8.23 by	 11.66 kg	 / charge from 7.44)

16.51	 $/ kg

8.25 Price of Process	 (7.52 + 8.24)

8.26 Price of Work--in-Process (7.51 + 8.24)

Process No.	 2 1 0	 1 0	 1	 - Form 13-2
Page 1_	 of	 1

Revision-	 Date 2/78

192.53	 $/charge

73.93	 $/ kg

138.82	 $/ kg



Process No. FL, 0 1	 0 1

9. Process Economic Evaluation:	 Revision

9.1 Process Cost Balance (7.52	 0.1)

9.2 Relative Process Performance (9.1 = 0.1) 	 y

9.3 Output Cost (7.51)	 i

9.4 Output Value (0.2 + 0.1)

9.5 Relative Excess Cost 	 i 9.3 - 9.4)	 9.4]

Form _14

Page 1 of 1

Date 2/78

$I

j



0. Output Specification:

Name of item:	 Cyl--crysta i'

Dimensions:	 7.8 cm di a., 135 cm l ength

Material:	 single crystal silicon

other 'Specifications:	 Cyl. Crystal _mass = 15.1 kg

resistivity is as specified

ti

3

d

J

l

f

',

A

..	 4	 ^'



Process No.	 —	 Form 2Q. 1 	 0 1	 0 6

University of Pennsylvania

PROCESS CHARACTERIZATION

(UPPC)

Process:	 Sheet Generation

Subprocess: Ingot Generation

Option:	 Crystal Pulling

Wolf's Projection (1982)

(10.2 cm in diameter)

INDEX i

Form Pages Rev. Date Remarks

1

2

3

4

5

6

7

8
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9-2
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10

11

12
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13-2

14

15

16

1 to	 1
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1 t 1
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1 to Q_

1 to _
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1 to	 1

1 to	 0

3/78 ' All forms have same date
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Form 2

Page	 1	 of	 1

Revision Date	 3/78

Process \o.	 2	 1.	 0	 1	 0	 6P	
T	 ^ 0.1 Value ^aaed:

Process	 Description:	 Single crystal	 done bv Czochralski pUlling tindfr _

r vacuum and with melt re lenishment.	 From	 o f'

of data obtained for a Leybold-Heraeus Ek2 160016001

type puller.
c

f

1.	 Input Specification:

Name of Item:	 Polycrystalline silicon

Crushed polyrod	 or shaped charge
Dimensions

Material:	 Solar grade silicon (SSG)

Other Specifications:	 As agreed between individual users and ve^ors

1.1 Quantity Required: 27.8	 kg	 /charge Unit Cost:	 40

1.2 Input Value: $/ l

1.3 Input Cost: 1112.0	 $f

' Note to Item 1.3:	 Use price, if input produced in own plant,



' Process No. 2^ .	 0	 1 - Q 6 Form 3
Page 1	 of l

2.1 Direct Materials:
Revision Date 3/78

2.1 1 Type:	 Doping charge ►

Specification:	 as specified by user

t

t

' Quantity Required: /	 Unit Cost: $/	 ;	 Cost: na $/ charge
r

i, 2.1 Type i
is

'r

Specification: i

$/	 Cost: $/

i

Quantity Required: /	 Unit Cost:

2.1— Type : i
t Specification:

^ 1

I

$/	 ;	 Cost: $/Quantity Required: /	 Unit Cost:

2.1	 Subtotal Direct Materials: - $/Charge

, l



7

	

Process No. 2^ a 0 l— 0 6	 Form 4

Page 1 of 1
2.2 Indirect Materials (incl. supplies and non-energy utilities):

Revision	 Date 3178
2.2 1 Type: Cooling water

Specification: 1050 kWh of heat to be dissipated per charge

j" 	 quantity of water not known
i

SAMICS no. C11281))

o	 Quantity- Required:_	 1050	 kWh /charge Unit Cost: 0.566 $' /c ar	 : Cost:	 5.95 $/ Charge

2.2_2 Type:	 misc. darts and materials

Specification:

Quantity Required:	 /_	 Unit Cost:	 $/	 Cost:	 5/

2.2	 Type:

Specification:

F

Quantity Require:	 /	 Unit Cost:	 $/	 Cost:	 $/

	

2.2 Subtotal Indirect Materials:	 5.95	 $/charge

_	 ,y



2. 3'l Type: Furnace replacement parts

Quantity Required: na	 /	 Unit Cost:	 na	 $/ Cost:

2.3 2 Type: quartz crucible

crucible
Quantity Required: 0.1	 crucible kharge	 Unit Cost:	 20Q	 $/ Cost:

2.3 _ Type:

Quantity Required: /	 Unit Cost:	 $/ Cost:

Y.	 2.3 , Type:

Quantity Required: /	 Unit Cost:	 $/ Cost:

2.3	 Subtotal__Expendable Tooling:

2.4	 Energy

2.4 1 Type: Electricity

Quantity Required: 1050 kWh	 charge	 Unit Cost : 0.0319 $/ Cost:

2.4 Type:

Quantity Required: Unit Cost:	 $/ Cost:

2.4	 Subtotal Energy Costs:

2.5 Subtotal 2.1 to 2.4;

2.6 Handling Charge:	 5.26 % of item 2.5

2.7 Subtotal Materials and Supplies:
(2.5 + 2.6)

93.5	 $/ rha4e

20 _$/ 	 e

33.50 $ / ch1arae_

113.5Q $/ chaarya

33.50 $/ charge

152.59	 $/charge

8.025 Slcharge

lbw_$/ 4a.r-ge



41.04	 $Icharge

charge

4-1-15	 V charge

^L	 ^	 t

31 '. Direct Labor:

3.11 Category; Crystal Puller Operator _(SAMIC 	 _Activity: Lachine monitoring
-609885)

Amount. Required:	 2.5	 h/charge	 Rate: $4,U	 /h; Load 36	 %; Cost:

3.1 2 Category: Crystal Puller 'Operator (SAMIU	 Activity: Loading, unloading, cleaning, etc.

#609885)
Amount Required': 	 2	 h/charcie	 Rate: $_4 ,52	 /h; Load 36	 %; Cost:

3.13 Category:rmaintenence mechaniCs_W'IIrs	 Activity: Servicing
#638281

Amount Required: 0.67	 h/ charge	 Rate: $ 5 6Z	 /h Load 36	 % Cost:	 5,. 7	 $/ charge

3.1 Direct Labor Subtotal-:-	 32.83	 $/ charge
}

3.2 Indirect Labor: Total taken as 25% of direct 	 -

3..2	 Category:	 Activity:

Amount Reauired:	 h/	 Rate: $	 /h; Load	 %; Cost:

3.2	 Category:	 Activity:

Amount Required:	 h/	 Rate: $	 /h; Load	 %; Cost:

3.2 _Category:	 Activity.

Amount Required:	 h/	 Rate: $	 /h; Load	 %; Cost:	 $/

3.2 Indirect Labor Subtotal:	 ,21	 $/C'narcLe

IS_37	 $/ ch arge—

12-- / s:ha rap-



i	 Form 7
Process No.D	 0	 1	 Q 6	 Page 1 of 1

Revision	 Date 3/78
4.1 Equipment 1

t

'	 4.11	 Type: C7 -crystall
—

puller (modified Leybold-Heraeus)
r

Cost: 110,000
_

$; Installation Cost: 25,000 $; Throughput:	 465 charge
Y

Plant Oper'g Time h/y; Machine Avail'ty: %; Machine Oper'g Time h/y

Servicing Costs: Labor see 3.13 h/y at $/h;Parts or Outside Service: see 2.31	 $.1y_

Useful Life: y; Charge Rate: 21.4 % of Cost/y; Capital Cost:	 28890 $/y

4.12	 Type:	 Other equipment (resistivity tester, scalp. Pts)

Costa 5000 $; Installation Cost: $; Throughput:

Plant Oper'g Time -	 h/y; machine.Avail'ty: %:; Machine Oper'g Time h/y

Servicing Costs: Labor	 h/y at $/h;Parts or Outside Service: $/y

Useful Life:' y; Charge Rate:	 21.4	 % of Cost/y; Capital Cost:	 1070- $/y

4.1	 Type:

Cost: $; Installation Cost: $; Throughput: /h;

Plant Oper'g Time h/y; Machine Avail'ty:. %; Machine Oper'g Time h/y

Servicing Costs: Labor	 h/y at $A;Parts or Outside Service: $/y

Useful Life: y; Charge Rate': % of Cost/y; Capital Cost: $/y

s,
4.1_	 Subtotal Equipment Cost:

62.12	 $/ rharne

2.30 _$/ charge

64.42	 $/ arce



.-a _ -M^+^- qYW Fe _	 rY^l^ies	 v^
yam.. .

€,!	 Process No.	 2	 1- 	 Form 8
Page 1 of 1

Revision	 Date 3/78
4.2 Facilities

2
4.21 -Type:Crystal growing area Floor Area: 12 m ; Throughput:	 465 charge	 /y

Charge Rate: 179.13*
2	

..^
$/(m	 y );

..^	 ^. ..,.	 _....^

Maintenance Costs:

..... .00 .....-

Energy Use: 1 Labor: h/y at $/h

t	
Heating

F

/y at $/ Supplies: $/y

Air Cond'g /y at $/ Outside Services: $/y

Y ^ .^ r ^...^ w arm ^w^. ^.^ w w^ ^^ ^w^ ^^
Lighting	 /Y at	 $/	 _

Total cost: 2 149.56 __	
$I.-_	 4.62	 $/charge

`-	 42_	 Type:	
_

Floor Area:
2

m ; Throughput: _/y

Charge Rate: $/(m2•y); `lantenance Cos ts :

...^	 ..^ ....	 .^. ^...	 ...^ .s M. w	 .°,. .... ..^ .^
Energy Use: Labor: h/y at $/h

Heating _ /y at $/-- supplies: $ /y>

Air Cond'g /y at $/ Outside Services:. $/y

Lighting /y at $/
Total Cost: $%y

4 ° 2_ Type. Floor Area: m2; Throughput: /Y

Chargo Rate; S/(m`.Y), Maintenance Costs:

Energy Use:
'Labor: h/y at $/h

Heating /y at $/
Supplies: $/y

Air Cond'g  /y 'at $/
`

Outside Services: $/y

Lighting	 _____/y at	 $/ -	 ^.. .... w a."* ---a M.-W 	 -.... .•..
	Total Cost.	$/y	 $/

-- * Tnrl iirlac AnArnv iica 	 4.2 Subtotal Facilities	 4.62	 $/charge	 a

s/charge



V.

Form 9-1

Page,	 1 of	 1

Process No.
^	

0	 1— 0	 6` 1
Revision	 Date	 3/78

.

5.	 Salvaged Material (Work-in-process)

51 Quantity of Work-in-Process 1. 	 Contained in Good Output
:•:otx-in-Process (per Computation Unit) 9340 kg	 /	 y

5.21 Input	 Work-in-process 1. Not Contained in Good Output
Work-in-Process ("Amount Required" from 1.1 minus 5.1) 3585 kg	 /	 y is

5.22 Net Amount of 5.21 which is sold for Credit As-Is or

[
lAfter Applying Re-Process 2390 kg	 / y

5.23 Credit for 5.22 at the Market Value of 	 -	 $/ $/

5.24 Cost of Reprocessing Material of 5.22,
at the Average Reprocessing Cost of	 $/	 - $4,

5.25 Net Credit for 5.22	 (5.23 minus 5.24): - $/ -

5.26 Material of Type 1. Lost in Process	 (5.21 minus 5.22) 1195

5.3 Cost of Work-in- Process Lost (Amount 5.26 Times Unit Cost 1.1) 102.79 $/S.C4@ '
I
`	 5.4 Cost of Work-in-Process Contained in Good Output Work-in-Process - -------- ----______.___

(Amount 5.2 Times Unit Cost from 1.1) 803.44 $/ch_arge

Salvaged MAterials Summary:

5:8 Total Net Credits for All Salvaged Materials	 (5.25 + 5.67 +-5.76) $/

a

_
a

E^



Form 12
Page 1 of	 1

F2̂	 Fl^ -- Revision	 Date 3/78
Process No.

7. 'Process Cost Computation 7.11 Manufacturing Add-On Costs (sum of 2.7, 3.5, 4.3, 6.) 272.79 $/Charge

!
Q	 Ia7 •	

e*r r+	 o t	
% of 7.11

off	 4n 1
4.30 $/charge

7.21 Total Operating Add-on Costs of Process: 277.08 $/Charge j

' 7.22 G & _A,	 -	 -	 -	 % of 7.21 $/

7.31 Total Gross Add-On Cost of Process 277.08 $ /charge -

7.32 Credit for Salvaged-Material (5.8) - $/	 -

i'. 7.33 Cost of Work-in-Process Lost (5.3) 102.79 $/charge

7.34 Specific Add-On ,Cost of - Process (7.31 + 7.33) -(7.32) 379.87 $/ Charge

7.35 Cost of Input Work-in-Process Contained.-in-Good	 -- -
Output Work-in-Process (5.4) 803.44 $/_ charge

7.36 Loading on Item, 7.35 at Rate	 % $/

' 7.37 Cost of Output Work-in-Process (7.34 + 7.35 .+ 7.36) - 1183.31 $/ 'Cha'rj 	 y -

7.41 Theoretical-Yield (or Conversion Rate -if output units of
work-in-process do not equal input units)	 27. 8 	 kg / Charge

7.42 Practical Yield 72

7.43 Effective. Yield	 (7.41 x 7.42) 20.01 kg	 charge

{	 7.44 ?dumber of Units of Good Output Work-in-Process per
i` Computation Unit'Used up to 7.35 20.01	 kg	 _/charge

7.51 'Cost of Unit of Good Output Work-in-
Process	 (7.37	 7.44) 59.13 $/	 kg

7,52 Specific Add-On Cost per Unit of Good

r^=
Output Work-in-Process (7.34 	 7.44) 18.98 $/	 kg





8.2	 Alternate 2 (SAMICS Methodology):

8.21 Profit Computation:

0.9274* 64.42	 $/ charge from subtotal 4'.1 =	 59.74 $/charge

j 1.946* 	 4.62	 charge from Subtotal 4.2 =	 8.99- $/charge

Subtotal =	 68.46 $/charge

8.22 Costs of Amortization of the One-Time Cost: -	 --

0.192*	 160.60	 $/ charge from Subtotal 2.7 =	 30.83_ $/ charge

0.192*	 43.15	 $/ charge from Subtotal 3.5 =	 8.28 $/ charge

0.2958*	 64 . 42 	 S/ charge from Subtotal 4.1 =	 78.59 $/ charge

2.77*-	 4.62	 $/	 charge' from Subtotal 4.2 =	 21.85 $/ charge

Subtotal = 139.55 $/ charge-

8'.23 Total Net Cost of Equity (8.21 + 8.22):

1
8.24 _Profit and Amortization of ;Start-up Costs per Unit of Good Output

Work-in-Process:'
(Divide Subtotal 8.23 by	 20.01 kq	 /charge from 7.44)

L 10.395	 $/	 kg

8.25 Price of Process (7.52 + 8.24)

8.26 Price of Work-in-Process (7.51 +,8.24)

	

208.01
	

$/charge

	

2.9.37	 $/ kg

69.525$/ kg

I	 Process No. to 11	 0	 6 Form 13-2
' • Page 1 of	 1

Revision	 Date 3178
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Process No. D
	 1 6

Form 14
. u • Page	 1	 of	 1
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9.	 Process Economic Evaluation:
1

.
Revision	 Date	 378

9.1 Process Cost Balance (7.5.2 - 0.1) $/

9.2 Relative Process Performance (9.1 = 0.1)

9.? output Cost (7.51) 59.13	 $/-- kg

9.4 Output Value (0.2 + 0.1) $/

i
w;

9.5 Relative Excess Cost 	 i(9.3 - 9.4) 9.4]

I

i.	 l

i
r

v

i

a

f

-- ` ^• .
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Process Na. 2	 1	 0 1	 0 7	 Form I^_ ^^
University of Pennsylvania

PROCESS CHARACTERIZATION

i	 (UPPC)	
^µ ;

Process: Sheet Generation

Subprocess:	 Ingot Generation

Option:	 Crystal Pulling (Single Charge)

Wolf's Projection (1986)
(15.2 cm diameter)
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Form 2

	

Page 1 of	 1

Revision	 Date 3/78	
y

•,1̂ .- 0 1	 0- 7 O. Value AddedcProcess \'o. _ 2	 — ---	 $/

Process Description: Single crystal ingot growth via Czochralski multi- ullina:__done-

under vacuum with melt replenishment from Wolf's 1986 DroipCti on

of data obtained for a Le bold-Heraeus Ek2 160046

type puller.

1.	 Input Specification:

Sarre of Item:	 Polycrystalline Silicon

Dimensions:	 Pel lets

Material:	 Solar grade si 1 i cnn	 -

Other Specif i cations'. As agreed betwe en--individual _ ser_S and ypn(inr

1.1 Quantity Required: 63	 kg	 / char e^	 _ __ Unit Cost:	 10	 $f .—kq

1.2- Input Value:	 -10	 $/ k2

1.3 Input Cost s 	 10	 $/ kg_,._

'ote to ?tern 1.3: Use price, if -input produced in own plant.

a



-	 $/ charge

Process No. 2^	 0 1 + j 0 7	 Form 3

Page 1 of 1
2.1 Dire,a Materials:	 "-

Revision	 Date 3/78

2.11 Type:	 Doping-Charge

Specification: as specified by 'user

Quantity Required:'	 /	 ; Unit Cos y:	 $/	 Cost	 n.a.	 $/ charge

2.1	 Type:

Specification:

Quantity Required.	 /	 Unit Cost:	 Cost:	 $/

2.1— Type:	 i

Specification:

Quantity Required: 	 /	 Unit Cost:	 $/	 Cost:

2.1 Subtotal Direct :Materials:

r

5



Process No.	 F27	 El
Form 4

Page 1	 of

2.2	 Indirect Materials	 (incl,	 suppliesand non-energy utilities):
Revisior• Date 3/78

2.21	 Type:	 Cooling water

Specification: 1250 kWh of heat to be dispached/charge;

requiring 127 m 3 /charge  of water

(SAMIS C1128D)

Ouantitv Required: 	 1100 kWh /charge Unit Cost:	 0.566 $/ 100kWh;	 Cost: 7.08 /charge

2.22	 Type:	 Misc.	 parts and materials

Specification:

Quantitv Required: $/	 Cost:Unit Cost:

2.2_	 Type:

Specification:

Quantit y Required: $/	 Cost: $/Uait Cost:

$ coh a Ae.^r2.2	 Subtotal Indirect Materials: 7:08



Process No. 2 1 0	 1	 X10	 7
Firm 5

page	 1	 of	 1
2.3	 Expendable Tooling:

Revision	 Date 3/78
2.3 -1 Type: Furnace replacement parts

Quantity Required: na	 /	 Unit Cost: na	 $/	 Cosa: 138.50	 $/ charge

2.32 Type: Quartz crucible

Quantity Required: 0.1 crucible	 / charge Unit Cost: 461.5
$/ cruci8o2t: 46.15 _V charge

2.3	 'TYPe

Quantity Required: /	 Unit Cost: $/	 Cosa: $/

2.3 _ 'Type:

Quantity Required: /	 Unit Cost: $/	 Cost: $/

=2-3	 Subtotal Expendable Tooling: 184	 $/Lhar=

2.4	 Energy

2.41 ;Type. Electricity

quantity Required: 1250 kWh	 % charge	 Unit Cost: 0.0319 $/charg (fost 39.875 $/charg

2.4 Type: - — -

Quantity Required: Unit Cost: $/	 Cost: $/

2.4	 Subtotal Energy Costs: 39.875 $/ch_,arge

231.60	 $,/Charge2.5 Subtotal 2.2 to 2.4;

2.6 Handling Charge: 	 5.26 % of item 2.5 12.182 S/c a r

2.7 Subtotal Materials and Supplies: 243._78 —$
(2.5 + 2.6)



Processo, 2	 1	 0	 1	 0	 7 Form 6
Page 1 of

Revision Date	 3/78

3.1	 Direct Labor:

3.1 1 Category: Crystal Puller Operator (SAMICS Activity: Marhinp Mpnitnraag
#609885)

Amount Required:	 2.7 h/ charge - Rate:	 $4.52 /h; Load	 36	 %; Cost: 16.60 $/S`ae

3.1 2 Category : Crystal Puller Operator (SAMICS Activity: Loading, unloading; clearing, etc.

Amount Required:	 2.5
'1 609885

h / charge
)

Rate:	 $ 4.52 /h; Load	 36	 l; Cost: _15.35 $/charge

3.13 Category: ,Maintenance Mechani c (SAMICS Activity: Servicing
Y638281)

~Amount Required:	 0.67 h/ charge	 ; Rate:	 $ 5.67 /h; Load	 36	 A0,; Cost: 5.14	 $/,charae

3.1 Direct Labor Subtotal: 37.09 $/ charge

3.2 Indirect Labor: Total taken as 25/ of direct

3.2 Category: Activity:

Amount Required: h/ Rate:	 $ /h; Load	 %; Cost: $/
y

3.2 Category: Activity:

Amount Required: h/ Rate: $ /h; Load	 %; Cost: $/

3.2 Category: Activity:

Amount Required: h/ Rate:	 $ /h•̂ Load	 %`̂ Cost: $/

3.2 Indirect Labor Subtotal: 9.27 $/charge

I S	,

3.3 Subtotal 3.1 and 3.2 46.36 $/charge

3.4 Overhead on Labor:	 5.26% 2.46 $ /charge

! 
3.5 Subtotal Labor 48.82 _$/charge



Process No. ^^	 0 1	 0 7	

Form 7
Page 1 of 1

-	 Revision	 Date 3/78
4.1	 Equipment _.

4.1 1	 Type:	 C;,-Crystal Puller, Leyhold -Heraeus Type E

Cost: 185,000 $;	 Installation Cost: 35,000 $; Throughput: 530 charge _/y;

Plant Oper'g Time h/y; Machine Avail'ty : %; Machine Oper'g Time h/y

Servicing Costs; Labor See 3.13	 h/y at $/h;Parts or Outside Service: SPP 2.31	 $/y

Useful Life: y;	 Charge Rate: 21. 4 % of Cost/y; Capital Cost:	 .47080 $/y

4.12	 TYPe: , Other egLRmen nit (resin :ivity tPSter, scale, etc ;--

Cost:	 9,000 $;	 Installation Cost: ^$; Throughput: /h;

Plant Oper'g Time h/y; Machine Avail'ty: %; Machine Oper'g Time h/y

Servicing Costs: Labor	 h/y at $/h;Parts or Outside Service:_ $/y

Useful Life: ti•;	 Charge Rate:	 21.4	 % of Cost/y; Capital Cost:	 1926.0 $/y

4.1	 Type

Cost: $;	 Installation Cost: $; Throughput: /h;

Plant Oper'g Time h/y; Machine Avail'ty: %; Machine Oper'g Time h/y

Servicing Costs: Labor	 h/y at $/b;Parts or Outside Service: $/v

Useful Life: v; Charge Rate: of Cost/y; Capital Cost: $/y

4.1	 Subtotal Equipment Cost:

88.83	 $/ charge

3.62 $/charge

S/

92.45 S /chareed



	6.76 	 S/charge

	

99.21	 /charge

k'°rw. ;{k`+MS+aH*!•v,P""w ...,vR°'h'F..—.^^,m*^; — n . ,...	 1_ 4.,...,;,.^	 , ,	 n-.	 -...:

5	 ;	 Ik
`	 r

Process No.	 0 1 + LO 7	 Form 8
Page 1 of 1

Revision	 Date 3178,
4 2 F ilities •,,	 ac

4.2 1	 Type: Crystal' growing area Floor Area:	 12 m2; Throughput: 530 /y

Charge 'Rate: 179.13* S/(m	
•
Y): Maintenance Costs:

Energy Use: Labor: h/y'at $/h

Heating /y at $/ 1 Supplies: S/y

-Air Cond'g /y at $/ + Outside Services: $/y

Lighting /y at $/ Total Cost:	 3582.60 $/Y
m

4.2_	 Tvpe: Floor Area:
2

m	 Throughput: /v

E	 Charge Rate:
2

$/(m 'Y);
ma*7 tenance Costs:

Energy Use: Labor; h/y at $/h

Heating /y at $/ Supplies: $/y

Air Cond'g /y at $/ Outside Services: S/tip_

Lighting /Y
Total Cost: $Iy

4.2_ Type: Floor Area:	 m 
2
; Throughput: /y

Charge Rate: S/(m -y):,

	
Maintenance Costs:

Energy Use:
Labor:	 h/y at $/h

Heating /Y at $I
Supplies: $/y

Air Cond'g /y at $/
Outside Services:L $/y

Lighting /y at $/ 4M.0	 W w	 6..M<.....&	 ...	 d,	 ." -M-0V-6	 ...	 4"..0
Total Cost: S/y

4.2	 Subtotal Facilities:
* Includes energy use

4.3 Equipment and Facilities Subtotal



Form 9-1

Page	 1 of

2	 1	 0	 1	 0	 7
Revision	 Date 3/78

Process Na.

5.	 Salvaged Material (Work-in-process)

5.1 Quantity of Work-in-Process 1.	 Contained in Good Output
Work-in-Process (per Computation Unit) 23940	 kg / «_

5 .21 Input	 Work-in-process 1. Not Contained in Good Output
Work-in-Process ("Amount Required" from 1.1 minus 5.1) 9450	 kg	 /' y

5.22 Net Amount of 5.21 which is sold for Credit As-Is or

-After	 Re- C^ 	 1:1.Applying	 Process	 ,	 1^1^J 6300	 kg	 / Y

5.23 Credit for 5.22 at the Market Value of	 $/ $/
i

5.24 Cost of Reprocessing Material of 5.22
at the Average Reprocessing Cost of 	 $/ $/

5.25 Net Credit for 5.22	 (5.23 minus 5.24). $/

5.26 Material of Type 1. Lost in Process (5.21 minus 5.22) 3150	 _ kg_ /	 y

5.3 Cost of Work-in-Process Lost (Amount 5.26 Times Unit Cost 1.1) 59.4'	 $/e

5.4 Cost of Work-in-Process Contained in Good Output Work-in-Process
(Amount 5.2 Times unit Cost from 1.1) 451.69	 $/Char%e 	 1

Salvaged Materials Sunmary;

5.8 Dotal Net Credits for All Salvaged Materials (5.25 + 5.67 - 5.76) $/



^....,......,_..7;7,.^,., 	 ,-^.	 ..c• _	 r^	 F	 .n ....	 :.^s„wYa.e..Ak 	 ,.e.T,+'...aw	 .fin.	 ._.,'!

^j	 Form 10
Process No . F2	 0 1 — 0 ' 7	 Page 1 of j	 #

6. Byproducts and Wastes 	 Revision	 Date 3/78

6.1 S'olid 'Byproducts/Wastes

6.1	 Type (Composition):	 Quartz crucible Quantity Produced:

Physical Shape/ Size:	 25 X -25 cm Energy Content:	 kWh/

Density: 2.63-2.66 g/cm 3 ; Water Solubilit y :	 0_ g/l at	 C:	 pH:

To:;i'ity:	 none 	 Biodegradable:	 no Other Remarks:

Type of Disposal:

Input Haterial	 for: _	 Cast/(Credit)	 S/	 Cost:	 _	 $/

k'	 6.2 Liquid	 Byproducts/Wastes	 (inorganic):

I,

6.2	 Type (Composition):	 cooling water Quantity Produced:	 nd

3
Density:	 _g/cm	 Suspended Solids: Amount:	 mg/1	 pH:

`	 Toxicity:	 Heavy Metal Content: mg/l	 Other Remarks:	 costs

are included in 2.21

Type of Disposal:	 recycled_ through coolingtower 

Input Material for: Cost/(Credit)	 $/	 Cost:	 $/

Carry:	 $i

W	 ^



Form 12
Page 1	 of	 1

0	 1 --	 0	 7 Revision	 Date 3/78
Process No.	

(- 1
•

7. Process Cost Computation 7.11 Manufacturing Add-On Costs (sum of 2.7, 3.5, 4.3, 6.) 39-1.8 $/Charge

7.22: Other Indirect Costs:	 % of 7.11 6.182 $/charge
*	 *

7.21 Total Operating Add-on Costs of Process. 397.98 $/ charge -

7.22 G & A	 / of 7.21 $/

7.31 Total Gross Add-On Cost of Process 397.98 $/ charge

7.32 Credit for Salvaged Material (5.8) 	 ---- -'	 - $/:
7.33 Cost of Work-in-Process Lost (5.3) 59.43 $/ charge

7.34 Specific Add-On Cost of Process (7.31 +-7.33)-tl(7:3-2) 457.41

s,
$/ charge

7.35 Cost of Input Work-in-Process Contained_in'Good
Output Work-in-Process (5.4) 451.69 $/ charge

7.36 Loading on Item 7.35 at Rate	 %
it

$/	
I

7.37 Cost of Output Work-in-Process (7.34 + 7.35 + 7.36) 909.1 $/ charge

7,41 Theoretical Yield	 (or Conversion Rate, if output units of
work-in-process 'do not equal input units)	 63	 ,kg/ Charge

7.42 Practical Yield 72

7.43 Effective Yield	 (7.41 x 7.42) 45.36 kq	 / charge

7.44 _umber of Units of Good Output-Work-in-Process per - 1

Computation Unit Used up to 7.35 45.36 kq	 /charge

7.51 Cost of Unit of Good Output Work-in-
Process	 (7.37 - 7.44) 90.04 $/ kg

7.52 Specific Add-On Cost per Unit of Good
Output Work-in-Process (7.34 = 7.44) 10.08 $/	 kg	 .
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Process No .	 2	 1	 0	 1	 0	 7'
Form 13-1

.Page.	 1	 of 1

Revision	 Date	 3179
> 8.	 Price Computation

—._

8.1	 A'ltern.nte 	 1'

8.11 Profit at Expected Rate of	 20	 %:	 2.01	 $/	 kg
(Profit before income taxes 	 applied to 7.52)

8.12 Price of Process (7.52 + 8.11) 12.09	 $	 kg

8.13 Price of Work-in-Process (7.51 + 8.11) 22.05	 $/_ kg

i

i
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Process No.	 • 
	 Form 13-2

El 	 Page 1 of l
Revision	 Date 3/78

8.2	 Alternate 2 (SAMICS Methodology):

8.21 Profit Computation:

0.9274* 22.45	 $/chharge	 from Subtotal 4.1 = 85.74 $/charge

1.946*	 6.76	 $/charge	 from Subtotal 4.2 = 13.15 $/charge

Subtotal = 98.89 $/charge

8.22 Costs of Amortization of the One-Time Cost: ------	 _---

0.192* 243.78	 -$/charge	 from Subtotal0.192* 2.7 = 46.80 _	 $/ charge

0.192*	 48.82	 -$/charge	 from Subtotal 3.5 = 9.37 $/ charge

- 0.2958* 92.45	 $/charge	 from Subtotal 4.1 = 11.2.789 $/ charge

2.77*-	6.76	 _$/charge 	 from Subtotal 4.2 = 31.97 $/ charge

Subtotal-- -.-. --=2-00.93 $/-.charge ---	 -

8.23 Total Net Cost of Equity (8.21 + 8.22):

8.24 Profit and Amortization of Start-up Costs per Unit of Good Output
Work-in-Process:
(Divide Subtotal 8.23 by	 45.36	 k5 / chargefrom 7.44)

6.6	 $/	 kg

8.25 Price of Process	 (7.52 + 8.24)

8.26 Price of Work-in s-Process (7.51 + 8.24)

III

a

	

16.68	 $/ kg

	

26.64	 $/ kg

299= 92---$ / G h-o h a rge
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Process No.U u 0 `1	 0 7	 Form 14
Page 1	 of 1

9. Process Economic Evaluation:' - Revision	 Date 3/78

9.1 Process Cost Balance (7.52	 0.1)	 $/

9.2 Relative Process Performance (9.1 	 0.1)

9.3 Output Cost (7.51)	 20.04	 $/ .k9

1	
9.4 Output Value (0.2 + 0.1)	 $/

h	 Y
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Process No.	 2	 1	 0	 1	 0	 7	 Form 15
• a•_ Page _1 of ..L

Revision	 Date 3/78

0. Output Specification:

Name of item:	 Cyl Crystal

Dimensions:	 15.2 cm in dia. 140 cm in length.

Material:	 single crystal silicon

other Specifications:	 cyl. crystal mass =' 60.0 kg

resistivity is as specified




