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NUMERICAL METHODS OF SOLVING A-SYSTEM OF MULTI-
DIMENSIONAL NONLINEAR EQUATTONS OF THE
DTFFUSTON TYPE

A. V. Agapov, B. I. Kolosov

INTRODUCTION

The non-steady state-eguations of the diffusion type are the most widely
used equations, to which the description of many important physical phencmena are
reduced. The literature [5, 6] has made an extensive study of the linear class of
these equations, and many numerical methgds for solving them on computers in the
one~dimensional and the multidimensional geomettry have been developed and have
become classiecal. The situation is different in the case of the nonlinear depen-
dence of the diffusion coefficients on tﬁe initial solution, which frequently
arise when studying nonlinear effects in:fhe theory of quasi-linear plasma oscil-
lations, in the problems of heat and mass transfer, and other present day physical
applications. This article proposes a universal numerical algorithm for solving
these problems, having the property of comservation and numerical stability, The
formulation and study of the algorithms ﬁresented below are based on a priori in-

formation comnected with the initial problem,

We .should also note that since certain existing physical phenomena are ex-
amined, which are modeled by nonlinear eéuations of the diffusion type, the exis-
tence for solutions of these equations is a natural requirement, which indicates
the useful information of the initial ph?sical model. It is known that diffusion
equations are based on a balance of .the flow of physical quantities determined by
a differential ?ﬁp;g§sion‘of the form \A?;%ﬁ , where f is the physical quantit?
examinedjz%p.ﬁﬂﬁ=%2)m- diffusion coeffi¢ient. Since in modern physics the laws
of conservation are only considered in géometric space, but in the phase space of

velocity or the Fourier transformation space, in the following .the variable

¢ -
1

"Numbers in the margin indicate paginati?n of original foreign text,



§= (g‘g gi) will designate the parametexs of the corresponding space [for example,
{1, U}‘) or (k‘i,Kz) ], in which the diffusion processes are studied. Asg a rule,
numerical modeling of non-steady state phenomena is always reduced to discretiza-
tion of the time wvariable for a sequence of evolutionary layers, for which the
"conservation" of the solution algorithm. is of great importance. This solution
is the consequence of the necessary agreement between the a priori requirements
of the differential problem and the properties of its difference analog. Here,
"conservation" is reached when, when the stable algorithms are formulated, the
values of £ and *D«ﬁ (1{) ) are taken on the same evolutionary layer, which leads in
its turn to implicit-difference analogs of the initial equations with respect to
the solution and, as a result, ‘to systems of nonlinear equations which may be

solved only using jiterakion approaches.

In conclusion, we should note that since numerical methods of solving multi-

dimensicnal ~equations are. examined here, whose realization falls within the frame-
work of modern computers, one of the basic requirements imposed on the algorithms
is a minimum number of computational operations for a given accuracy of--the ap-

proximation to the solution.

1. TFORMULATION AND ‘BASIC PROPERTIES OF THE PROBLEM.

Let us now formulate the problem, TFoxr this purpose we shall consider

Fuclidéan - space B

Z’JGRL' g (ji;yz.)e Yand 3 1 tﬁ)é R} s (}‘ _)E({"Jgnl'{i') .

Let us now assume that GC R is a certain region in R and let us set G Q x{() 'T)

and ?Sr Px (0 T) is the lateral surface Q . Now let us examine on (., a certain

real function £ , having the first and second generalized-derivative. For each

‘{:G[_D 'T_] , let us introduce the Banach space A (Q) and the Sobolev space W:( @) s

which consists of the functions of the space Z' (G) having in Q the generalized
derivatives summed with the squsre, W, (Q) produces Hilbert space with respect

to the norm

Qb é fhdax é:bff J)éic!a +V[f;>7@ bf AQ' @

Let us now assume f belongs to the class of these functions F in QT,

which for each.:tefo,'r_] produces Hilbert space H(Q) either with respect to the

/5



NoTm W ( Q) or with respect to its equivalent.

Under these conditions, let us examine the quasi-linear equation in the

domain .@T with the divergent right side

B 2200

Py (2)
9t " aF Yu F%gp‘?f 3
for which ‘? S is given on the surface S Then for the known diffusion coeffi-

cients ‘z&ﬁ the equation (2) determines the uniqgue solution. We shall also assume

that the operator

a 2

Lo="g% '%'a’f "#P

exists in Hilbert space A (Q) . and the set @(A) is its domain of definition,
A
consisting of the functions Xéé (G) such that [,of’ﬂ[,‘,_(a),_ , and it is not degener—

ate, i.e., for any non-zero vector %-_-( ?h?z)- , the inequality is satisfied

g ﬂ«f (6 Yo T 3085 (%) orlge) € Qs (3)

where ¥ ")“ are positive numbers. The condition (3) will be called the condition

of strong ellipticity. If

=Dt )
Dap ._”96( '3{"7*:; Y22y, Ja-
then the condition of strong ellipticity has the form

M e A

v 3"?“ : % (oo by 2 (D7 @
where E;U-g-*}:}‘ UQ%) are certain continuous positive functions.

Now to complete the formulation of the problem, we must add additional con-

ditions on equation (2) which determine the dependence of the coefficients &;};

on the solution f . For this purpose, let us write the following equation in the

domain QT

___...._...__,._,

A g (% ‘Z- 'D«a;s) @4 (3



where 2 in rthe general case is a certain linear operator which acts in Hilbert
space H, produced by W:(Q)‘, at ‘};’tg[’olTj . We may give a sufficient criterion
for ellipticity of the operator ,_/.‘i and as a result the parabolic nature of the
system of equations (2) - (5). Liai: us assume [l exists and is positive. Then

we have-the following:

n
Lemma 1. TIf for V?G Q-r the inequalities g.(,,?jmgm" 5 and G@‘aﬁ‘;’ﬂgﬂt‘!
hold, then the matrix &Jﬁ PR ) is positive defimite.

ot
Actually, it follows from the positive nature of £  that 'é, [(d%,

where K is the cone for QT' Since according to the conditions of the Lemma

b
) ‘ o
’ ;f,a“ %‘Eﬁl}m w 23¢ .F(A—)-xdgat (2-»I ): and "E(f\#)>0$flm;n$:aé-§', in a similar way ~$§i x Amn

|12
from which we have {QFI?M\“D“*DR or in view of /PBS/ dmin'® , which designates

the positive definiteness {Dﬁ,; Although the properties of the smoothness of
the function & { ,Z, dp) ,» with respect to which we shall assume that the condi-

tion of the Lipschltz continuity is satisfied at the norm W {a) , mainly

N (03 NN PP S Ao Bl
aggp(-g u,u .;P)"g:)&(gz,z:ﬁ;b..tp)"&ﬂqa”ﬁ"-ﬁ”‘"'%ﬁgl ¢ - o' N (6)
We should note that equation (5) means that from the functional equation determin- 17

ing the diffusion coefficients, we may distinguish a certain linear part for Q‘fv .
Thus, the system of equations (2) and (5) under the elllpt:Lc:.ty conditions {3) and

given on the surface S of the boundary conditions completely determines the solu-

tion '(b,gi?'j:) and Z).x ( Jil'!””

Let us turn &0 a numerical solution of the problem. For this purpose, we
write the semi-difference analog of the system of equations (2) ~ (5), which has

the following form in view of the conservation requirements:

-F f =;*"i'2"3dg“§‘ﬁ e;lfo'f 7

“PW‘?)’ ) (8

where n designates the number of the evolutionary layer and the time layer in



the given case, and At -— the discretization step of the variable ‘%; ﬁ[G,T} (3

Let us examine the elliptical operator in the domain Q

A Y}
é =T 'BEQD“,P‘BJP Aé’g__ 2
where ’0 @Jasg is determined on @:Q:T —g ée%(@é?? for Vﬁ&_‘ @w}f'

Since the solution of the system of equations (7) for each walue of the
"
evolutionary layer n is reduced to inversion of the elliptical opewators @

>
whi.ch may be satisfied in view of the nonlinear nature only using iteration ap-
proaches, we shall now examine several properties of the operators which are not

omitted (9).

Let us assume QL’A &‘f are continvous at Q+F for A =1 | and
we shall assume wba 1s a factor of all the finite functlons in Hilbert space H,
which produce 4 (@) .{. ‘? € _{ ‘ . We shall use Qé to des:.gnate the

0

closure:- [J; «  Then é: is called the minimum operator producing 8 The defini-
. - H’:

tion domain 'gd-' is the space W:‘(Q} at ’?)F 20 and ?g =0 . By the expan-
N iy
51011 of the operator é: , We designate the operator g;"g ﬂ-f at the set
W (Q), where W {Q‘) is the set W (Q) such that f} ~ . + Then, the solutien
r‘

of the equation _ ) - /8
F= P
&f = P
is called, as is known, the solution of the first boundary value problem, For it

the following estimate holds
b .“‘g“wifq).:‘:“ H 8/4-? Hﬁzlﬁ) < %fl% Hw;(Q), (10)

2. TITERATTON SOLUTION OF A SYSTEM OF NONLINEAR ELLIPTICAL EQUATIONS.

Iteration methods are widely used for inversion of linear elliptical sya™v.-
stems of the form (7) - (8). However, here the requirement for them is dictated
also by the nonlinearity of the system, and in contrast to the linear case, a
study of the convergence of the iteration process is of great importance., TFor

convenience, we shall examine the initial proximation individually



: .,9'3 ;.g"*,; 2 gdﬁj;%, S A’c . JR&ED

By @; (fu Z"ﬁ "1)8“' (12)

ks

and the iteration continuation of the system (11) - (12) for the =solution

(7 = (8)J

'l 'a-b ’ (13)
-mm ‘? At%q‘., P‘a‘}l;. n >
a-um,
Z :&(P ::‘? °‘JB (#(%i}),};l > (14

The advantage of distinguishing the initial approximation is due to the
fact that for certain functions éﬁ_ , the unbounded operatoxs LEQ. , and the
presence of a large amount of a priori information regarding the solution is guffi-
cient to confine ourselves to a one-step process (11) - (12), if the solution of
the equation (11) is found with a high oxder of accuracy. This approach, which is
related to the introduction of non-control grids, will be examined below. In the
case of bounded operators [ , a system of the predictor—corrector type (13) - (14)

is preferable. We shall study its convergence.

Let us assume .(’. ie positive definite in H and a bounded operator, i.e., /9
!"74 /t;ﬁjxiamg, . Then the following is valid:
Xil=

Theorem 1. The iteration process {13} - (14) converges for each n to

the solution of the system (7) -~ (8), if the 1nverse operator L :'Ls positive and

the inequalities a,(u, ﬁmé.?ﬁ,th A g P,(‘):»E >a};4 r =. A, 4 z” 2y Z Z_ A‘ P < m;
hold. - Cup T

A

In view of the positive nature of L , there is an inverse operator, and

" [:'“4- —= , from which the solution of the equation (8) follows.

Let us introduce the notation

Go= PP AM m 15
um -fP ‘f{m) 7 A&P D‘_‘ﬁ . (5)
Then, subtracting equation (13) from equation (7), with allowance for the notation

in (15), we obtain



f ﬁ! qu‘ :{p ';ﬁ '?(m) . (16
Now let us determine the rlgld expansion determined by the operator
'p am"a ¥hj )
f(u«) At 7Q£m) g % 7 f‘ ?j,a e
Since the matrices ZEP and %p > in view of . the conditions imposed on the

function {93, , have 15051t1ve minimum eigenvalues, the inequality (10) follows.

We have the following from Lemma 1

¢ (P ?m Iy < Hef* ?twn fizay < C ¥¢,.,, I W (17)
and (13) ‘ifﬁ)ﬂ-zm)“w‘ = —g—h‘@ . Comnsequently [[g(m)”a&;' is bounded.
Let us also assume ﬂfm w\?-‘-'/_V . Determining (16) ﬂ@: “ml?k,” I éﬁ %_& b:;, 6'33? ‘F!:« ;_HL,,

we obtain

Tl = 208 D {887+ 2RO + 18 oz -

In its turn, from (17) we have

Gy € 2000 e §2 18505,

Now, subtracting equation (8) from (14) and applying the condition of the Lipschitz

continuity (6) for the function, , we find

e

ﬁﬁa;; AP('F(NI):‘ 4) e (:]F;HP)'D“F)

(18)
N850 < & LA W+ 2 ATIATN

from which, by summing the inequalities (18) with respect .to o and 8 , we obtain

the conditions of the theorem, which completes the proof.

A necessary condition for the implementation of the iteration process (13)
- (14) is, as is konown, its stability with respect to small perturbations. Since
the stability is due to the correct nature of the difference problem, we shall ex-
amine a certain general approach to the control of the system (13) - (14) for an
arbitrary positive—definite and bounded operator L, and then its specific modifica-

tions as applied to the integral operator L and the differential (unbounded) opera~

tor Q.



3. GENERAL (CONSERVATIVE) ALGORITHM OF THE ITERATION CONTROL.

Let us consider the numerical implementation of the process (13) - (14),
when L is a positive definite operator. TFor this purpose, we use the following
control iteration process. We introduce a certain positive self-conjugate opera-
tor K in Hilbert space H, in which L exists. Let us assume K:

EaH HLL Hf—'?H' M- -;Ti’.x Xy m.;,‘ Mt"”

T T s e - . lUxu=4 .
Let us set M,= ;’;-_P (f.!.z X) Let us examine the follow1ng iteration process [1]
¥ ~mo- m (19)
R LR TARL A s
RS A . (20)

per” pe

I‘I!AI'
If L& ( {[,,..}, g }5)' belongs to the region of values L{‘L » then the following

theorem is valid {1].

Theorem 2. For V?‘o € H- the sequence {‘?.?,(:3} from (19) - (20)

converges to the solution of the equatlon (14).

To prove this statement, instead of the space exanmined H, i.e., Z‘r (@-)
with (ﬁﬂ,{ﬂ .gxff)g{r)ﬁ% s a certain new space H; is introduced for / (5_,) N
namely, ) (”6)4 i\éé+hjh g) - 1t may be readily shown-that the operator
N N N . Bl
(A£+i<)f< is self—conjugajze in h+ « -Let us set ﬁ (‘L‘Z 5( f{

and then

0 < (CX,%), € (XX} (21)
We should note that the norms produced by the scalar products z‘zt:;ﬂ and ( Xg).{.

are equivalent. It follows from (12) that ' JQ(C)Q_I%‘ . The proof of Theorem 2

follows from this fact and the Krasnosel'skiy theoren,

However, Theorem 2 does not make it possible to applyithe process (19) -
(20) to-the solution of the system (13) - (14), In dits turn, the possibility of
a numerical approximation of the process (19) - (20) establishes Theorem 2 [1].

Let us examine the process

"=
L

(ﬁa{s““ﬁ[z)&}i 7 KZE;;}:K fﬁ‘t'} Aéﬁ*’é&@ﬁ (22)



¥
i.e., we assume the operatox !.’aZv ig known with a certain non-self-conjugate
error ﬁlz , and we assume the same hold for ngﬁ_ﬁ . We shall assume that
. e " v ¥ - .
"?‘6".‘3,. égf.mﬂaf: iz;“fé\rﬁ ﬁ'g‘¢J%}§§ga Hfa éﬁfﬁﬂﬁf and the equation

!(L jRs ’)é“i < :fi, is satisfied.

Theorem 3. Let _a!ﬁ‘ be the solution of equation (8). Then the follow—
ing estimate holds:

1. If _j§5¢”‘3,< H;- , then

zi | ﬁw;g .:W@J [M%ﬁ .if- !‘WM 5 a(._;_;f |

where ©¢ % F‘fof\'t}v?"@_ﬁ oo

2. 1If q =1, then

5 S W+ 5
H:ﬁp %smi t?'f ,? “'EWPJ+ £+G( i

The proof of Theorem 3 follows from the proof of the preceding estimate /12

. - ) 'l‘.'-u"h 7
T e ™ -.-i =t ) « -+ + 0 f]
2y dffﬁ”“ - -i_'”K g £ 4
Let us consider the convergence rate of .the 1terat10n processes (11} - (14).
Here, the following Theorem 3 is valid [2]. If 2) -— ‘Bcjﬁle)f belongs to the

reglon of values for the operator LL and [L"A K} , then

I dﬁ(‘t) ”

The proof of the theorem is based on the following

7 5= [k (B B )

Theorem 3 may be refined for finite-dimensional space, namely, for finite-dimen-
sional space 3s applied to the process (12). It is known that '_.'ji are two matrices
g-‘ and Z » S0 that

ZJ&AZ aﬁag(Ah ) R
2o (Ll sLYE=ditg (Mrahs, .,y ;\pwp)

Here we may assume that the following estimate is satisfied [1]



N, [ ML bt
Then . . ) E
oG- ﬂ;am“ *[‘Q:i“ﬁi_ag}ff e ‘_‘}i'g?’_
where

{
- —
S¥T Feage T

Let us refine the form of the matrices Z and Z Z is the matrix whose
columng are K-normed vectors z‘~K h‘ ,» where {; are the elgenvectors of the

symmetric matrix 'H‘ZQQK? 3 P - dlmen51onallty of the matrix; K —- the quantity
A= 0. - ' :

Thus, the solution.of the system (7) — (8) may be reduced to two iteration
processes: the process (13) - (14) and the process (19) - (20). Both of these
processes cannot be implemented in practice, since the two-dimensional nature of /13
the parabolic equation makes the time for the solution of (7) -~ (8) beyond the
limits of present day computers. This article proves the comvergence of both

processes to one, namely, the following processes examined

. 1Etm) -?n"nzrt Z,E %Z 3:-;% ﬁic:«n ‘ o 2
_ -t md

ALZ}%*KD = EB +Lgdp(£(fﬂ=) "_P’ “F’ ) @0

TR W A .

4, CERTAIN SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF THE CONTROL PROCESS
(23) - (25).

Let us comgider the process (23) - (25), where the ooperator K is selected

as follows:

LK%,z m(%,x)s (%X 2 (K, %),

-1

2. X 7 acts in the cone, i.e., it is positive.

10


http:solution.of

Lét;us examine the new operator EK , where &= v is a given number. We shall
select £ so that the conditions for the convergence (‘Jf the process (23} ~ (25) are

satisfied with respect to ‘{£ "i"‘_’l‘; , i.e., this operator changes a cone into a

S

cone. In addition, ¥ = g,’i{ . Under these conditions in space H, which produces

W:’ {Q'}- , the following is valid:

Theorem 4. In the space B examined, the process (23) - (25) converges if

’ji 2 59 /u 8““‘)%}% ii'}g 355 $ ﬁ:{.—_}}’i /u..u: Q ey
'ft} /3

&M My 5 AUF ’35 !! /3 }
mﬂ-:-{‘m“-" Wt EFY ﬂ,js @ C,(é‘cn)) ‘J d? {;} 41;

Let us subtract equation {3) from equation (12)

A f Y ' 4‘.;’9_{‘3 2 p (26)
T% ,,33 »F?g;,{g"'“) )-’ig P “Paﬁs

3
It may be veadily shown that - j:;. satisfies the ellipticity condition

- ‘ /14
‘D (L “k) K 3 + {U"‘K) 4,61 ﬁ?(w);atﬁ atj::-:}a.
rf(az) ﬁf:,-,;’/a (Liﬁﬁ}‘(( Q,(“) Bty g’}#({ﬁk) !ﬁ,m;},(,,fn%

= ,' = (z fK)K@,“"’"H’LL*@’ﬁa} (,:m:}_é_ > o

Let us set

"
These equations are strictly larger than zero on 5 (F'} . A similar statement is
;0 o
valid for % m . which is readily proven by induction. Actually j}"’u) Ja,w bﬁ;-o,;.
4 ) . o s - . med
JLP;(;}-?i » but Z)” = ﬁkﬂ- i ¢ bu b ¢ 2'& D-’.t- ?
since for the first iteration indicated above, the induction is valid. At the same

time we should note that the minimum eigenvalue of the matrix

oF ¥ -
,.,--" el -

Be Doy
. ) p,?-; ﬁ'@ . '“‘llit
[ Y. ‘b 5,:‘ ﬁ“> i

. 8,3, 53 g .
is P K> 07 2a¢ » E%:%_L ) pl= (A‘Zﬁr}% >0

Let us introduce the expamsion of ./, for the pperator
=P A

11



g T O Fwm 2
‘;Z{"ﬁ A%: q.,am;’qajs

for which, as was shown above, the following estimate is valied (10)
lpo o Ml < HL00 LS Collfbg

In addition, from this equation, taking into account (26}, we obtain

l‘{‘/"(lflm) '?)FL{Q‘) !‘% “‘F ‘Zz* )& ghy WEI

Now, taking the fact iato account that the So'bolev spaces Wi or ":S/V,Q form a

Hilbert scale of space, we have the inequality

Wl s APl (51 35 kel

Let ug subtract (4) from (13), We thus have

A : K i g, f;tz"“
{CLeeR)(By - .;};_)waK(.D:“' «pﬁé[éﬂ(#&mé} nis

or
Let us determine the nmorm (27), from which we use the Lipschitz continuity condi- /15
tion -

w6ty

d . d.;; 'h.1-|i .
HM;H“EMK ”’}"‘PH rm){ F”#(WHQ”"%%‘J "A{_J“}’

~

where we set 'Am 3 22,;-

Finally, combining the inequalities obtained, we have

o €M 1oz e, A
éfﬂ.{}ILZ"A "{}YL-}EW? m‘.-}-fm: P ' C'(?"P"’) +ng‘jx J-{Z,l

which must be proven,

We should note that everywhere for - \wg s, the following norm is selected:

e . it et
xfiwe = Ixllz + D OXl: ...+ D

For this norm, all of the computations examined above may be satisfied most simply.

The proven theorem establishes the convergence of the iteration process in Scbolev

space. However, certain estimates, for the purpose of distinguishing the control

12



process from the non-control process, may be obtained in the metric G, which will

be given below.

5. STABLE ITERATION ALGORITHM FOR SOLVING THE SYSTEM (13) - (14), WHERE L IS
THE INTEGRAL OPERATOR OF THE FIRST KIND,

Let us examine the system {13) - (14) for a specific form of the operator

L, namely:

L= PRI G0,

&

where ;e Q ¥ dﬁ()l,g {J,f) is a certain positive kernel, Then the system (13) -

(14) assumes the form

n w1 D Zma not
_,‘Ffm}— F!‘ -': t %} ‘)g,,z‘“f Rgpim (28)
. e
SS Py l(,?“’) D«}Jg s (%), (29)

where e e - . ~
m-l- mi=g

(){‘1’.) Rip(w;f;n‘ﬁ: )e(mr)) F‘ ) é’
7mt(§¢) 6“;5“ ?{MJ)’“P)DM‘ naf)) édp

The presence of the Fredholm operator of the first kind does not make it
possible to immediately solve ‘the equations (33) -~ (14), Therefore, we shall use
the algorithm (23) - (25). Let us reduce (29) to a system of integral relation-

ships, namely, let us introduce in the domain Q the difference nodes and we shall

designate them by letters in the text, Then for X (Iééda) g Xgpiédenasy Xp e Q

we obtain-the following integral relatlonshlps.

rc‘m-i,j - ) "HJ
%}'«-,s () ) D o (1) d}} @ (30)

where i s

"G-J = M-l m ‘JA
((‘j)" Ef-j& (Xa)lj) u}} ( &)
The study [2] was devoted to solving the system of the form (30). If the system

(30) 13 exam:.ned in operator form, then the operator will act from L (where

M(J) e Z, (Q) ) in }?9 - e =~ dimensional Euclidéan space, i.e.,

13
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Ami_"'m
fup B -

k;?%

P Py
Thus, we may readily see that the operator (Eﬁ') which is conjugate to p™!,
(=3

- '
will act from Rg in A Uﬂ and we may show that the operator ( ) E&:

is the integral operator with the kernel
;'ﬂl’ 2 Fre=l,
T (X7 ) Z "(i\’)P J(g)

If we now take K=§I as the operator K&tX » then equation (24) may be written
in the form

Sj {xg)b (g dgﬂ: .4;(?) c‘D““"(?)+2 /' (31)

In its turn, equation (31) has the following analytical solution:

T Rl & ;H
jﬁg(fP% )*Z '3(5%’3639 G2y /17

£2d . -
where = (d;,ﬂ.,ég) is found from the inversion of the matrix }(A-tﬁé or

' (ﬁ-‘rg)ﬁff ‘E. .ck;t-g ‘ A {Qadj

where

g b

%" é'&b“j;‘@)P g ?*.%SP '*‘gm,ﬁw’fﬁ.

Formula (32) has a very simple form. However, the analytical solution may
also be obtained for the operator w&“fﬁdb'pﬁﬁ . We should alsc note that there
are methods making it possible to have a system of integral relationships and equa-
tion (28). Thus, the integral relationships apparently are the finite form to
which the systems of nonlinear parabolic equations are reduced, If we take a cer—
tain more complex operator, as compared with that examined here, as the opetator
K = K, then in this case it is first advantageous to reduce ‘the Fredholm operator
to matrix form and then to use the algorithm (24) in the projection on the grid

space.

14



6. CONSERVATIVE SINGLE STEP ALGORITHM (11) ~ (12), USING A KNOWLEDGE OF THE
SYSTEM PREHISTORY.

The iteration algorithm examined below must ‘be effective when .35, is a
bounded, poorly defined operator. When :Z is a non-bounded operator in .4 {Q£)
for example, the differentiation operator with respect to the evolutionary vagiégle,
the iteration process is directly used, We shall take its conservation to mean
conservation within an accuracy of the system approximation. However, with a
knowledge of the system prehistory, which supplies certain a priofi informatiom,

a single step process is avoided. The quantities £ and D are retained in the com- /18
puter memory not only in the n-1 layer, but also at certain previoug layers up to

n-S inclusively. It is matural .to assume that the older is the derivative of the
function, the smoother it is. This is the basic a priori assumption here. Then,
instead of the procese (13) - (14), we may regard the system (11) - (12), whexe

instead of equation (12)

we shall solve the equation

. n ) f-
oy (L2t Hals 1 )

‘3*1.3 Tep? Pt j.ra,

q'?n.

Vi)

ir

The derivatives of all the functions used here may be caleculated using the follow-

ing formulas B e -

L A S v A
LT Tat

L By o¥ozeni, gm
- ’32’5 < ALT i_- 6 .

where we set @' {5,& JZ%H" It is apparent that the better knowm are the deriva-
tives, the greater the amount of the prehistory for solving the system, which is
retained in the computer memory. We should note that if the dependence g ( J‘i) ﬁ)

is strongly nonlinear, namely

é,wljh Iﬁ(bﬁjf)aff ‘, %’?o.
gl

where g 1is a smooth function of 2¥-£. , in this cageoall the methods of di-
rectly calculating 5; for the differential operator-L give an increasing error,
which disturbs the comnservation. Let us examine the approach making it possible
to retain a solution which is constant wifth respect to the error even in the case

of strong nonlinearity. TFor this purpose, we turn to conjugate equations for which

15
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the following is walid;

Theorem 6. The relative error of the diffusion coefficient is retained when
changing to conjugate equations, This control of the basic system differs primari- /(19
ly from the control of that examined above related to the addition of .éﬁ . The
change to conjugate equations for the diffusion coefficient contains two basic ap-

proaches, namely, the change to an implicit characteristic and then the change to

» -
the conjugate equation. If tha operator ﬁ‘f" ’-EQ , then AA{P g A_,_"“’l:zfﬂ)_
or

"y i TR - LY n ~
.’-b‘_}; .'./.. é“_ : P:—"- @; (-?{m.]),‘?-,b;:'

Below, the indices a, ‘B are omitted for purposes of simplicity, Then
L] e ?
2= 0D (33)

Now let us multiply (33) by a certain function ‘E (regulator)

dDE .
L= ={ (—é) o 27 (34)

We require that the equation DE:ww¢l(k is satisfied. Then the equation (33)

is equivalent to the following equation:

_. E.. 0y ?tdﬂi £n_ ﬁﬂhm MOLF ]qz (35)

We should note that the diffusion coefficient D in (35) may be taken from the pre-
ceding evolutionary layer, since the function E decreases and, consequently, its
error does not increase. In turn, to calculate E we must use an implicit schenme.
The accuracy of determining it will be O(A#q., where at,zat . For this

purpose, let us introduce the implicit characteristics (Fig. 1),

. 't' ﬁ . . ) . M
. 1:h~+ww—_ X .
A‘l: . o
i : - . o - A Figr 1
. T-—w— oo ?‘,?-—"-"‘.—‘—.?_4.
[ . ‘-9.'
o 513 ; . -

i6



In conclusion, we should note that in connection with Fig. 1, the charac- /20
teristics may be considered according to an implicit schenme, if their directions

only depend on 'i,gp’ and simultaneously we use the step Aty  as the step At.

7. ALGORTTHMS FOR SOLVING THE SYSTEM OF EQUATIONS (7) - (8), USING THE
APPROXTMATTION 'OF HIGH ACCURACY.

As was shown above, the conservation requirement imposed on numerical al-
gorithms for solving systems of nonlinear parabolic equations; is reduced to com-
plex computational schemes with iteration control. However, in certain cases this
requirement may be reduced, if we solve the equation (11) very precisely, for
example, nsing the introduction of non-control difference grids or grids with

"frequency increase," i

if this does not lead to a great increase in the amount of
operations. This can be done if when solving equation (11) we use the mathod of
variable directions. Briefly, we shall show how to retain the advantages of the
methad of wvariable directions for an increased frequency difference grid (Fig. 2).
These variable directions consist of reducing the numerical solution to satisfying

the subsequent "trial run,"

Fig. 2

. . }%i“: :

P PR

Yor simplicity, we shall gssume that'lhp has a diagonal form. Let us examine (11)
of Z. Dﬁ
G 4 )5QJP
Its difference amalog in finite dimensional space, produced by the grid in the /21
domain Q, will be a linear system which within the framework of the variable direc-
tion method may be written by the recursion relationship

(Lf-w ’)CP * (Le\"‘ ED(P
(0% ud1)8= G-
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Generalizing the method of Variable direction to a class of non-regular
difference grids Was_performed in [3]; where it was. _shown how to separate the
main operator ;Lg Lg*‘L& into the operators Lﬁ‘ and Ai i for grids with
partial frequeﬂz§_zﬁzzggée in a two-dimensional domain. Thé%hgthod introduced in
[3] makes it possible to reduce all the operator inversions ‘to satisfying the sub-

sequent trial runs, with a small-increase in the number of equations.

.

8. ‘SCHEMATIC CLASSIFICATION OF NUMERTCAL ALGORITHMS FOR SOLVING SYSTEMS OF
NONLINEAR PARABOLIC EQUATIONS.

- Now let us briefly give certain practieal results of applying the approach .
given above to solving systems of equatiéns with nonlinear diffusion. Since this
problem is very cumbersome, each of the.algorithms proposed for ‘the solution may
not be used completely, but only partlally. For.example, -we -shall assume that the

dependence of the diffusion coefficients! Z%p[f) on’ the solution is known. In

this case, we should be able to expand Q¢ Ain Fourier series. However another
approach “is advantageous .here, namely ——Tiﬁ accordance with. the laws of conserva-
tdon, == from the parabollc system (2}, we‘separate the retained quantities -such

as energy, energy flux, etc. Than Z& 'éay be subjected to ‘iteration, so that they
satisfy the laws of conservation. .In coﬁclusion, we would - like to give a certain
schematic classification of.the numerical. algorithms, which may be useful when

selecting a method for solving -the systeéa(Z) - (5).

18
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'Fig. 3. Practical diagram for selecting the algorithm for
the numerical solution of systems of nonlinear
parabolic equatioms.
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