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1. INTRODUCTION
 

In the practical applications of pattern recognition, such as in 
remote sensing,

there is considerable interest in the use of linear classifiers because they
 
are simple and because fewer parameters need to be estimated. Inmany
 
cases, it is required to estimate the probability of error in addition to
 
designing the classifier. (For example in 
remote sensing, a separate set
 
of labeled patterns is used in estimating the probability of error.) 
 For
 
designing the classifiers, the labels of the training patterns need to be

obtained, and often acquiring labels is expensive. Hence, available training

samples should be effectively used for designing the classifier and esti­
mating the probability of error.
 

The leave-one-out method (ref. 1) is proposed in the literature as an effec­
tive way of estimating the probability of error from the training samples.

The method is as follows. If there is
a total of N-labeled patterns, leave
 
out one pattern, design the classifier on remaining (N
- 1) patterns, and
 
test on the pattern that is left out. 
Repeat this process N times, every

time leaving a different pattern, and then estimate the probability of error
 
as an average of these errors. 
Use of this method, however, requires N
 
classifiers to be designed. 
Fukunaga and Kessell 
(ref. 2) present a computa­
tional method for estimating the probability of error of a Bayes classifier
 
using the leave-one-out method. Chittineni (ref. 3) developed a computa­
tional technique based on eigen perturbation theory for estimating the proba­
bility of error of the Fisher classifier using the leave-groups-out method.
 

This paper considers the Fisher classifier (refs. 4 and 5). 
 The Fisher
 
classifier is 
one of the most widely used linear classifiers. Computational

expressions are developed based on matrix theory for estimating the proba­
bility of error of the Fisher classifier using the leave-one-out method.
 
This paper is organized as follows.
 

Section 2 briefly presents the Fisher classifier. Section 3 develops compu­
tational expressions for using the leave-one-out method for estimating
 



Fisher's error probability. Section 4 discusses the effect of the Fisher
 
threshold and presents expressions for obtaining the optimal threshold by
 
minimizing the probability of error. 
Section 5 presents a simple generaliza­
tion of the Fisher classifier to multiple classes. Section 6 develops compu­
tationally efficient expressions for the estimation of multicategory Fisher
 
error using the leave-one-out method. Some matrix relations used in the
 
paper are derived in the appendix (ref. 6).
 

2. FISHER CLASSIFIER
 

The Fisher classifier is a linear classifier that uses a direction W for the
 
discriminant function,
 

g(X) = wTx - t (I)
 

so that when the training patterns are projected onto this direction, the
 
intraclass patterns are clustered and the interclass patterns are separated
 
to the extent possible as depicted infigure 1.
 

x
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Figure l.- Fisher's weight vector and threshold.
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Let X miw,k = 
1,2, ..., Nil i = 1,2 be the training pattern set. The
 
unbiased estimates of means mi and covariance matrices Ei of the patterns

inthe classes wi 
are given by the following:
 

Ni -


Ni Xj 
(2a)
mi 


Ni
 
-' 1 i ( i - ­ )
 

-
2i ( jl(Xj -am)x m) (2b) 

The Fisher classifier chooses the weight vector W, such that the criterion 8
 
ismaximized, where
 

WITAm1 mA 2 

wTsw (3)
 

where SW Z + Z 
 The weight vector W,which maximizes 8, can be shown to
 
be
 

w = (Sw m M2) 
 (4)
 

The Fisher threshold t is chosen as
 
+ m
 

t = W ml +(5)
2
 

.The direction W and the threshold t 
are illustrated in figure 1. Fisher's
 
decision rule is as follows:
 

Decide Xcn if g(X) > 0
 

(6)
Decide Xc 2 if g(X) < 0
 

3. RECURSIVE RELATIONS FOR THE FISHER WEIGHT VECTOR AND THRESHOLD
 

Inthis section, computational-expressions are developed for using the leave­
one-out method with the Fisher classifier. The justification for the
 

3
 



leave-one-out method for estimating the probability of error is as follows.
 
In general,the probability of error, e, is 
a function of two arguments:
 

6(lit 02) 
 (7)
 

where 
 isandthe set of parameters for the distributions used to design the
classifier and E)
2 is the set of parameters for the distributions used to test
 
the performance. 
Let 0 and 6 be the set of true parameters and their estimates. 
The 6 is a random vector that depends on the particular sample used in its
 
estimation. 
Let ®N be a particular value of G. Then (from ref. 7),
 

cE, S) (8)c(6N, 0) 


Taking expectations on both sides, one gets
 

e(o, 0)<E Es(N' ) (9) 

One of the ways of estimating the quantity on the RHS of equation (9)is with
 
the leave-one-out method described in section 1. Presented in the following

paragraphs are computational expressions for implementing the leave-one-out
 
method with the Fisher classifier described in section 2. The cases in
 
which a pattern X1 from class w 
is left out and in which a pattern from
 
class w2 is left out can be treated similarly.
 

Let a pattern Xk from class w 
be left out and the patterns from class w2
 
remain. 
 The means mi i = 1, 2 and the covariance matrix Z2 are defined as
 
in equations (2a) and (2b). 1I
Define the covariance matrix ZI 
of the total
 
pattern set from class w, 
as
 

^ 

El ( -2) x - mIjx mI 

I N 1 )Xl _) 

- (10)
 

Let
 

I +Sw l( )
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Note that El is defined differently from the usual unbiased estimate for
 
covariance matrices for mathematical simplicity; this definition will not
 

affect the results. Now compute W and t as
 

=W m - 2) (12) 

and
 

-
t= WT( +2 
M
2) (13)
 

When a pattern X from class w, is left out, the unbiased estimates of the

k
 

mean, mik and the covariance matrix Elk of the patterns in class wl are
 

given by the following:
 

N1 
mlk = (N, 1 X (14) 

k
 
and
 

1 N1 T 

k - 2 E (X( mlk)(X-l (15) 

kk 

=
Let SWlk lk + 2. Then the Fisher weight vector WIk and threshold tlk,
 

when a pattern Xk from class w, is left out, are given by
 
^-I1(6
 

Wlk = SWlk(mlk - m2) (16) 

T - ^ 

Wlk(mlk + m2)

tlk (17)
2
 

Expressions are now developed for the computation of Wik and tlk in terms of
 
AA A 

W and t. The relationships between mlk, Elk, SWlk and mI1, El, 
I 

and SW can be
 

shown to be as follows (see the appendix):
 

= x
mlk ml - -T ( - (18) 
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in)TE - 1 N X m m (19)
1N N1 - _ )T 

SWlk = - 1 N2- -SW (N N, 2)' miX - ml (20) 

From equation (18), one obtains
 
(lk - m2 = (l - 2) - (N1 - )x l) 

From equation (,20), one obtains (appendix)
 

I-as^- W (Xk ml X ml TS 

SIk s + k )T I( _)^ (22)

Wl1 - - -1Itx i)T^-I(XI 

where 

a N -i (NI- 2T 23)-

Let 

Y( s( - m) (24)
s(xk)-W (x-m)T'l(xk - (25) 

1- U (x,)
(X) I (26)
 

- 12(27)
 

Z(X) yT(xk)( l - m2) (28)
-

Using the definitions of equations (23) to 
(28), one obtains the following,
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Ik SWlk(mlk - ') 

[i Y(X )T(xIF 
 l ^)

= + a (x ]l- m2) - Ni- I)(Xk l 

(N1vx)Y(4)+ (Xk(4 ) (29)S(NlIkk
 

tik :WT
1lk 

( lk +5 2)
 
2
 

wTxl T l^
 
k 1) k) + _ k 

2(N2 i)v(o) 2(N- 1)244)
 

+ ') 4 YT(xl)Izxx2N -1 

(30)$ZCl4) 

Equations (29) and (30) can be used to compute Wlk and tlk from W and t,
 
every time that a pattern X is left out from class wI and the pattern Xk is
 
tested. Similarly, recursi.ve expressions can be derived when a pattern Xk
 
is left out from class w2. It is to be noted that because the covariance
 
matrices are defined as in equation (10), the matrix S is to be computed
 
and inverted twice, once when patterns from class wI are left out and again
 

when patterns from class-w2 are left out.
 

4. SELECTION OF AN OPTIMAL THRESHOLD
 

This section considers the problem of finding the optimum threshold, t, to
 
achieve minimum probability of error for the projected patterns onto
 
Fisher's direction. The patterns in class wi are assumed to be normally
 
distributed; i.e., p(Xli)- N(mi, Zi). Let y be the projection of pattern X
 
onto Fisher's direction W; i.e.,
 

y = wTx (31) 
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Since X is normally distributed, y is also normally distributed; i.e.,
 

pl 
 il a'), i = 1, 2 (32)
 

where
 

Pi WT
wmi 
 (33)
 

and
 

2= wTziW 
 (34)
 

If Fisher's decision rule is used, decide yew1 
ify > t; otherwise decide
 
yeW2 , the probability of error incurred can be written as
 

Pe= Pl ft p(Ylwl)dy + P2f P(Y!0 2)dY 

t- 1 t 
=lf I *(c)dc + P2 *(1 dc (35)
 

2
 

where (c)= exp(_A 2) and P are the a priori probabilities of the 
classes wi, i = 1,2. On differentiating equation (35) with respect to t, 
the following isobtained: 

@Pe it l1,l - P12aP (36) 

Equating --e to zero and then simplifying it,one obtains 

(t 2) 0r2 ( a, 11)= 2 log 2p1) (37) 

The following cases are considered: 

Case (1): P1 = P2' UI= 2 
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Obtained from equation (37) is the optimum value of t 
that minimizes the
 
probability of error for Fisher's direction as
 

= t "1 " 2 
2 
 (38)
 

Equations (13) and (38) show that this is the threshold that is often imple­
mented with the Fisher classifier.
 

Case (2): P1 P2' aI C2 = a
 

In this case, the optimum value of threshold t can be obtained from
 
equation (37) as
 

. 11 lo( + (39) 

# 02
Case (3): P1 P2 ' a1 


On simplification, the following is obtained from equation (37):
 

- - 2012 P2 a1
 
2 2 22i1tP (40) 

a1 t +0 1 2 2 o / 
22~2 + 12 _ -2 -- a - -o 

This is a quadratic equation of the form at2 + bt + c 
= 0. The discriminant 

b2of the equation n = - 4ac can be shown to be 

4 21 - 2 + ( 2 2 ,o,('2(l] (41) 

From equation (41), it is seen that when P1 
= P2' n is always positive, thus 
giving real roots for equation (40). Even when P1 t P2' if n is positive,
 
real roots are obtained for t. The f is negative when there exists no real
 
threshold that minimizes the probability of error. Equation (40) gives two
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roots for t. Since Pe is continuous in t, the t that minimizes Pe can be
 
obtained by looking at the second derivative of Pe* Differentiating equa­
tion (36) with respect to t, one obtains
 

2P 
 l tI - m2_ p- ml - t - ml 

2(t -,2m),-,2at2 P2 CFI 2)] (2 

The root of equation (40) that gives a positive value for equation (42) is
 
taken as the value of t, which minimizes the probability of error. Using the
 
results of the last section, one can update the threshold t for use with the
 
leave-one-out method since it is
a function of means and covariance matrices.
 

5. GENERALIZATION OF THE FISHER CLASSIFIER TO MULTIPLE CLASSES
 

Rewriting equations (12) and (13) in terms of the discriminant functions
 

gi(X) = viTx + vi, i = 1, 2, the following decision rule is implemented: 

Decide Xew1 if gl(X) > g2(X) 
 (43)
 

Decide Xso2 if gl(X) < g2(X) 
 j(44)
 

Thus
 

Vi = 
SW mi (45)
 

and
 

' -iw 


It is seen that equations (43) to (46) implement the decision rule of
 
equation (6). 


i = T -̂l (ml +m2 2 ) (46)
 

This suggests the definition of discriminant functions for
 

an M-class problem as
 

gi(X) = VX + v , i = 1,2, ..., M 
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where
 

V 
 SW mi
 
^ ^ ^ ,i 1 , 2, .. ,M

i WM
 
vi M(47) -mi S ­

_ T-l(ml + M2 + ... + mM)
 

SW E1j+ 2 + m"+ + rM 

Then the decision rule is the following: Decide Xsm i if
 

gi(X.) > gj(X)
 

1I,2, ..., M (48)
 

/i
 

6. COMPUTATIONAL EXPRESSIONS FOR THE LEAVE-ONE-OUT METHOD
 

IN A MULTICLASS CASE
 

This section presents computational expressions for the leave-one-out method
 
for updating Vi and vi. Let there be M classes. Consider the-case when a
 
pattern X from class w, is left out. Define the means and covariance
 

matrices of the total pattern set as
 

Ni
 
mi= X' i ,2, .,
 

j=1
 

E I N 2) N. X m (41 

N 
 T 
i i j X - X ,i) ... Mi =2, , 

Zj=l
 

(N~1 jl 1JJ 1I 



Let SW E + E2 + ... + EM" Compute Vi and vi, i = 1, 2, ... , M as 

=
Vi W m
 

(50)
 
mT lm I + m
2 + .. + M)
 

v. =- iSW M
 

When the pattern XI from class w is left out, Fisher's parameters are com­
puted as
 

v (x) - SWlkmlk 

vi(xl AT "-1 (&1 m2+ "' + 'M)k IlkWlk M 
• (51)
 

v1 V'Xk) 5Wlk m̂i i M,.. 

+ .
/k I 
 "'"
 

where
 (N1- , ,...
 

1)
 
MIk =N -I)
l 
 xj
 

T (52)
(NN I 


k
 

A A A 

SWik Ik 2 ± + M 
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The mi and Ei, i = 2, ..., M are defined as in equation (49). Proceeding
 
as in section 3.1, one obtains recursive relations for Fisher's parameters
 

as follows:
 

-V (4) = V + 0x N ( X(1) (x3) 

vlKXk) = v, % dd + 2 + d1 (3
k~N 1 2(N4 -7 153 

v~() +v )>XYkkX* %-1, *~2 2 T() 

ced 2 e. (54) 

,(X) 
 --i + i2(X , 1, M 2,,3 
v(X + 2jN 1 1)v(X 
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where
 

N1
 

-- (x- l -) 2
 

-
(Xk ) = ­

d YT(Xl) 

- YT(Xl)(l + 2 + ... +m) 
M
 

=-YT(X] .( 

Recursive relations can be obtained similarly when a pattern Xi from class wx
 
is left out. 
 Itis to be noted that the matrix SW isto be inverted once
 
for each class. 
The use of these recursive relations results ina computa­
tionally efficient way of implementing the leave-one-out method.
 

7. CONCLUSIONS
 

The Fisher classifier isone of the simplest and most widely used linear
 
classifiers. Recently, considerable interest in its application for the
 
classification of multispectral data acquired by Landsat has been expressed.
 
Acquiring labels of the training patterns isexpensive, and i'n many cases
 
the probability of error is to be estimated inaddition to the designing
 
of a classifier. (For example in remote sensing, a separate set of labeled
 
patterns is used for estimating the probability of error.) Hence, in prac­
tical applications, itis advantageous to use the available labeled patterns
 
more effectively.
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This paper has presented computational expressions for estimating the proba­
bility of error using the leave-one-out method. Thus, the available labeled
 
patterns can be used effectively, both for designing the classifier and esti­
mating the probability of error. Since the classification accuracy depends
 
on the threshold used with the Fisher classifier, expressions for optimal
 
threshold for minimizing the probability of error in Fisher's direction are
 
presented.
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APPENDIX A
 

DERIVATION OF MATRIX RELATIONS
 

From equation (14), one obtains
 

= 
MI k / -- - X
 
mikk
 

N1
 
N1 1m l 1)
 

-(Xk Nml l) 	 (A-1) 

thus obtaining equation (18). From equation (15),
 

Elk N1 - 2 	E X - k)X mIk
 
j=l
 
/k
 

-
= N_I 2[ (X mlk)(X. - lk) (Xk mlk)(Xk mlk)] (A-2) 

A-i
 



Consider the following: 

(i mk)(X1 mlk) NI N xk 

j=j= 

-I + N I ' - ml 

N (xi m,)(xj )T 

j=l 

1 1 1 T 

X- NI - 1 (-m 

+ _l 
= ~~-2z 

+NI 

1 + (N 

1- 1 2( - (4, )T(-

Consider 

N1 (i) (Ak4) 

A-2
 



Substituting equations (A-3) and (A-4) into (A-2) results in the following:
 

4 2)1 N1 T
 
(NI 

= 

[(N - 2E + ( I 2(xk - ^l(X1 


Ik(NI 2 knx k
- 21 (TN 


E (N - N - 24(Xk-1 1 k mI x -ml] (a-5) 

thus obtaining (19).
 

Let S = E - aMMT, where S and E are nonsingular matrices and M is a vector. 
Then the inverse of S can be expressed in terms of the inverse of E as 
in reference 6: 

S-I =Z -I + -IMMTE-I, (A-6)
 
- M
1 - AMTS


thus obtaining equation (22).
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