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1. INTRODUCTION

In the practical applications of pattern recognition, such as in remote sensing,
there is considerable interest in the use of linear classifiers because they
are simple and because fewer parameters need to be estimated. 1In many

cases, it is required to estimate the probability of error in addition to
designing the classifier. (For example in remote sensing, a separate set

of labeled patterns is used in estimating the probability of error.) For
designing the classifiers, the labels of the training patterns need to be
obtained, and often acquiring Tabels is expensive. Hence, available training
samples should be effectively used for designing the classifier and esti-
mating the probability of error.

The leave-one-out method (ref. 1) is proposed in the literature as an effec-
tive way of estimating the probability of error from the training sampies.
The method is as follows. If there is a total of N-Tabeled patterns, leave
out one pattern, design the classifier on remaining {N - 1) patterns, and
test on the pattern that is left out. Repeat this process N times, every
time Teaving a different pattern, and then estimate the probabitity of error
as an average of these errors. Use of this method, however, requires N
classifiers to be designed. Fukunaga and Kessell (ref. 2) present a computa~-
tional method for estimating the probability of error of a Bayes classifier
using the leave-one-out method. Chittineni {ref. 3) developed a computa-
tional technique based on eigen perturbation theory for estimating the proba-
bility of error of the Fisher classifier using the Teave-groups-out method.

This paper considers the Fisher classifier (refs. 4 and 5). The Fisher
classifier s one of the most widely used linear classifiers. Computational
expressions are developed based on matrix theory for estimating the proba-
biTity of error of the Fisher classifier using the leave-one-out method.
This paper is organized as follows.

Section 2 briefly presents the Fisher classifier. Section 3 develops compu-
tational expressions for using the leave-one-out method for estimating



Fisher's error probability. Section 4 discusses the effect of the Fisher
threshold and presents expressions for obtaining the optimal threshold by
minimizing the probability of error. Section 5 presents a simpte generaliza-
tion of the Fisher classifier to multiple classes. Section 6 develops compu-
tationelly efficient expression§ for the estimation of multicategory Fisher
error using the leave-one-out method. Some matrix relations used in the
paper are derived in the appendix (ref. 6).

2. FISHER CLASSIFIER

The Fisher classifier is a linear classifier that uses a direction W for the
discriminant function,

g(X) = WX - t (1)

s0 that when the training patterns are projected onto this direction, the
intraclass patterns are clustered and the interclass patterns are separated
to the extent possible as depicted in figure 1.

g x]

Figure T.— Fisher's weight vector and threshoid.



‘Let X;ew , k=1, cees Ni’ 1 =1, 2 be the training pattern set, The

unbiased estlmates of means m and covariance matrices Z of the patterns
in the classes w; are given by the following:

N :
1 1 (2a)
N“ZX
j=1
~ 1 Ni ’
g = _ P aNfui AT
T 3 (xj . mi)(xj R mi) (2b)

The Fisher classifier chooses the weight vector W, such that the criterion B

is maximized, where
~ Fal 2
[WT(m] - mzll
B = L - (3)

Te-

W sww
where §ﬁ = 51 + 22. The weight vector W, which maximizes B, can be shown to
be '

w= (5 (B - #y) (a)

The Fisher threshold t is chosen as

My + m
¢ - - (5)

. The direction W and the threshold t are illustrated in f1gure 1. Fisher's
decision rule is as fo]]ows

Decide ch1 if g(X) >0
Decide Xew, F g(X) < 0

3. RECURSIVE RELATIONS FOR THE FISHER WEIGHT VECTOR AND THRESHOLD

In this section, computational -expressions are developed for using the leave-
one-out method with the Fisher classifier. The Jjustification for the



leave-one-out method for estimating the probability of error is as follows.
In general, the probability of error, €, is a function of two arguments:

=(01> &) (7,
where e] is the set of parameters for the distributions used to design the
classifier and @, is the set of parameters for the distributions used to test
the performance. Let © and © be the set of true parameters and their estimates.

The & is a random vector that depends on the particular sample used in its
estimation. let éN be a particular value of ©. Then (from ref. 7),

c(0, 0) < (8, o) (8)

Taking expectations on both sides, one gets
e(0, 8) < E[e(@)N, G)] ‘ (9)

One of the ways of estimating the quantity on the RHS of equation (9) is with
the Teave-one-out method described in section 1. Presented in the following
paragraphs are computational expressions for implementing the leave-one-out
method with the Fisher classifier described in section 2. The cases in

which a pattern X; from class o is Teft out and in which a pattern from
class o is Teft out can be treated similarly.

Let a pattern X; from class w, be Teft out and the patterns from class W
remain. The means ﬁi, i =1, 2 and the covariance matrix 22 are defined as
in equations (2a) and (2b). Define the covariance matrix §1 of the total
pattern set from class wy as

N

] T
& ] T AV,
e 2 (4 ) - &) (o)
J=1 _
Let
Sw = Z-I + Ez. ._-(.”)



Note that E] is defined differently from the usual unbiased estimate for
covariance matrices for mathematical simplicity; this definition will not
affect the results. Now compute W and t as

_’\._1/\ ~
W= § (mI - mz) (12)

and

~

(™ *+ W)

t=W 5

(13)

When a pattern X; from class Wy is 1eft out, the unbiased estimates of the
mean, m]k and the covariance matrix Zlk of the patterns in class wy are
given by the following:

1
Mk T T T 2.1 (14)
T J
j=1
#k
and
. Ny
Iy = T x} - a V- n )T (15)
(M =\ M ( i ™k
7k
Let Sw1k-= sz +]Zz. Then the Fisher weight vector w1k and threshold tlk’
when a pattern Xk from class wy is left out, are given by
AT B e -~
M = Syl = mo) (16)
T ~ Fa%
W, (m-p, +m
_ M (myy o)
t]k = > a7

Expressions are now developed for the computat1on of w]k and t]k in terms of
W and t. The relationships between m]k, 1k’ w1k and m1, ZT’ and S can be
shown to be as follows (see the appendix):

-

oA 'I ] ~ .
Mk T ™ TN T cxk - m]) (18)



Wik = (

R TR it ek
1ot - m ) S - my)
where
o Nl
=T 2
Let

z(xy) = Y'(x])(R, - )

(19)

(20)

(21)

(22)

(23)"

(24)

(25)

(26)

(27)

(28)

Using the definitions of equations (23) to (28), one obtains the following.



Tk ~
Ty T/y ]
a XL 1.
= w t "?Xi) (i - fy) - N]1— 1)(Xk“"‘1)
]
1 1y 9z {K)
=W - v(xl) + v(x (29)
(v - 1u(x]) (%) w{x! ) ()
by = My (i Z "2
. wT(xl -y ) YT(xl)iﬁ ) 8(x1 )
2M =T 2l - 1)e(x) 2y - 1)P(x])
1 (1
L X.'[‘) YT(xlk)ﬁ - aZ(Xk)B xk]) (30)
v{X, Z(N] - ])v(Xk)

Equations (29) and {30) can1be used to compute w1k and t]k from W and t,1
every time that a pattern Xk is left out from class Wy and the pattern Xk2is
tested. Similarly, recursive expressions can be derived when a pattern Xk
is Teft out from class wy. It is to be noted that besause ?he covariance
matrices are defined as in equation (10), the matrix Sw is to be computed
and inverted twice, once when patterns from class w; are left out and again

when patterns from c]ass-m2 are left out.
4. SELECTION OF AN OPTIMAL THRESHOLD

This section considers the problem of finding. the optimum threshold, t, to
achieve minimum probability of error for the projected patterns onto
Fisher's direction. The patterns in class w; are assumed to be normally
distributed; i.e., p(Xhuﬂ ~ N(mi, 21). Let y be the projection of pattern X

onto Fisher's direction W; i.e.,

y = Wy (31)


http:recursi.ve

Since X is normally distributed, y is also normally distributed; i.e.,

p(vleg) ~ Wiy of), 121, 2 (32)
where
T
Wi = W m, (33)
and
01? ) wT;:].w (34)

If Fisher's decision rule is used, decide yewy if y > 15 otherwise decide
Yew,, the probability of error incurred can be written as

i o0
Py = P f p(ylw;)dy + sz p(¥luw, )dy
. - t
t—ul .
= P]j' o1 ¢({z)dg + sz ¢ (c)de ~ {35)
o . t‘ug .
92

exp| - %- 2) and Pi are the a priori probabilities of the

¥, 2. On differentiating equation (35) with respect to t,
the following is obtained:

where ¢{zg) =
classes Ws i

ugﬂrq

aP t-u t -
e _ 11 211
F PTq)( o] )a - P2¢( oy )0'2 (36)
aPe
Equating-§E~ to zero and then simplifying it, one obtains
2 2

t - q t - u P, o ‘
2 1 27T
- = 2 logls= — (37)
( % ) ( o ) (P1 "2)
The following cases are considered:

Case (1): P1 = PZ’ o = o,



Obtained from equation (37) is the optimum value of t that minimizes the
probability of error for Fisher's direction as

yy tu
t= L 5 2 (38)

Equations (13) and (38) show that this is the threshold that is often imple-
mented with the Fisher classifier.

Case (2): P] # PZ’ 0 =0y =0

In this case, the optimum value of threshold t can be obtained from
equation (37) as

P P Uy Tou
t = - U_ 10g(ﬁg) + —3—3r—£§ (39)
(M - 1) 1

Case (3): P] # P2, o, # 05

On simpTification, the following is obtained from equation (37):

2u o - 2u 02)0 dzuz - Uzuz) 26202 P, o
2 12 271 17 271 172 2 1Y _
t+ 5 t + 5 5 -7 > 10g e B 0 (40)
2

This is a quadratic equation of the form at“ + bt + ¢ = 0. The discriminant
of the equation n = b2 - 4ac can be shown to be

P, O
_ 4 2 ? 2 2 1
n=——= (”1 - “2) * 2(61 - 02) ]Og(ﬁ—_E?_ (41)
o © 1%
1_22 ‘
% 9
From equation (41), it is seen that when P] = P2, n is always positive, thus
giving real roots for equation (40). Even when P] a P, if n is positive,

real roots are obtained for t. The n is negative when there exists no real
threshold that minimizes the probability of error. Equation (40) gives two



roots for t. Since P is continuous in t, the t that minimizes P can be
obtained by looking at the second derivative of P D1fferent1at1ng equa-
tion (36) with respect to t, one obtains

2

] Pe ) 1 t - m2 t - m2 1 t - m] t - m]
2 P2 2 a N Pz o N (42)
ot o5 2 P o] 1 1

The root of equation (40} that gives a positive value for equation (42) is
taken as the value of t, which miﬁimizes the probability of error. Using the
resuits of the last section, one can update the threshold t for use with the
lTeave-one-out method since it is a function of means and covariance matrices.

5. GEMERALIZATION OF THE FISHER CLASSIFIER TO MULTIPLE CLASSES

Rewriting equations (12) and (13) in terms of the discriminant functions
g;{X) = viTx * Vi, 1= 1, 2, the following decision rule is implemented:

Decide Xew; if 91(X) > gZ(X) (43)
Decide Xew, if gi(X) < g,(X) . (44)
Thus
_ A_]A
. Vi = Sw m; {45)
and
o ATAT (’"1 tm,
Vi = mLSy 7 (46)

It is seen that equations‘(43) to (46) implement the decision rule of
equation (6). This suggests the definition of discriminant functions for
an M-class problem as

T

g'l(x) = V]X + Vi’ i=1, 2y vu.s M

10



where

- -1“
~ ~ ~ ’1=]’2’
b aTe (M P e )
1 1°W M
Sw = 21 + 22 + ...+ ZM

Then the decision rule is the following: Decide Xewi if
g;(X) > g.(X)

J=1,2, ..., M

(47)

(48)

6. COMPUTATIONAL EXPRESSIONS FOR THE LEAVE-ONE~-OUT METHOD

IN A MULTICLASS CASE

This section presents computational expressions for the leave-one-out method
for updating Vi and Vs Let there be M classes. Consider the -case when a

pattern X; from class 0y is Teft out. Define the means and covariance

matrices of the total pattern set as

N
~ 1
m'i 'N_ 9 1 23 2 M
Jj=1
B = S Xt - (x] n )T
17 [{ =2 L ( BT AN
=1
N.
- . T
S 1 i i A -
Ly = Usa :E:(Xj - mi)(xj - mi) . i=2,

11

(49)



Let Sw = 21 t I, bt EM' Compute Vi and Vis i=1,2, ..., M as
- a~la
(50)
o ;aTg_](m] tm, t oLt mM)
i i“W M
When the pattern X; frgm class Wy is left out, Fisher's parameters are com-

puted as

where

1) _ 2-1 &
V](Xk) SuTkMk
1\ _ AT o1 (Mg e Mot oo+ fiy)
Vi (Xk) = Mk T
- {51)
vy 28T n o M
Sk Wik 1° > g
N <Ta (‘“w“?‘z ”'EM),,1=_2, .M
Vi(xk) = NSy M ,
Ny \
A 1
Mg = M -T) Z A3
i=1
#k
N
1 T (52)
Lyg M- 2) > (Xj - m])(xj - ‘"1)
7551
£k
Wik = B gt e T Iy

12



The ﬁi and Z,, 1 =2, ..., M are defined as in equation (49). Proceeding
as in section 3.1, one obtains recursive relations for Fisher's parameters
as follows:

d
x']) Sy 2) - 1 Y(X])
V1( ) ST u(x]k) b (i, - T)v(x;) k
1 o CI2 d'l
X, )= - d.d, + — +
v1( k) Y “(X;) 12 (N] _ ])“(Xl) Z(N] - 1) (53)
“B(X;) 1 B-(X]k)
Y —.1)\)X] % 2w —12\))(])
N I (A ;
vi(x;) =V, + ﬁji—) v(xé) P22, 00, M

13



where

e
o

(55)

(=
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=35
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f
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Recursive relations can be obtained similarly whfn a pattern X; from class Ws
is 1eft out. It is to be noted that the matrix Sw is to be inverted once
for each class. The use of these recursive relations results in a computa-
tionally efficient way of implementing the leave-one-out method.

7. CONCLUSIONS

The Fisher classifier is one of the simplest and most widely used Tinear
classifiers. Recently, considerable interest in 1ts application for the
classification of multispectral data acquired by Landsat has been expressed.
Acquiring Tabels of the training patterns is expensive, and in many cases
the probability of error is to be estimated in addition to the designing

of a classifier. (For example in remote sensing, a separate set of labeled
patterns is used for estimating the probability of error.) Hence, in prac-
tica1'app1icatﬁons, it is advantageous to use the available labeled patterns
more effectively.

14



This paper has presented computational expressions for estimating the proba-
biTity of error using the leave-one-out method. Thus, the available labeled
patterns can be used effectively, both for designing the classifier and esti-
mating the probability of error. Since the classification accuracy depends
on the threshold used with the Fisher classifier, expressions for optimal
threshold for minimizing the probability of error in Fisher's direction are
presented.

15



APPENDIX A
DERIVATION OF MATRIX RELATIONS

From equation (14), one obtains

N
A~ 1
Mk TN X5
5=
#k
N,
o 1
- N] -1 :E: XJ B Xk
J=1
.M m. - X

>

=m - (N],]-'ﬂ) (Xl - ﬁl) (A-1)

thus obtaining equation (18). From equation (15},

N
1 sn oyl oa Myt Y
Tk N]—ZE 3T MK\ T Mk
J:
7k

1>
I

A-1



Consider the following:

N

1 ] ~ 1 A T
2. (Xj - m]k)(xj - m?k) =

j /

N T
. R | PR
j 1 J 1
J=1
PR I A i a7
N =1 k‘“’}) j‘"‘])
=
N
1 T
-I ~ -t ] A
T Z(x "'“1) =1 (Xk “'“1)
J=1
N T
] ] ~ ] /\)
3 Z(Xk - m])(xk -
Ny - 1

Consider

——
>
H
=
—
~
e
1
>
o
i
=5
—
o+
—]
=
—t
—
|
—
>
T
H
=R
—
S

- _J_](xl . n“l]) (A-4)

A-2



Substituting equations (A-3) and (A-4) into {A-2) results in the following:
N T
1 T =& 1T -

T Z(Xk - m])(xk - '“1)

& 1 ~
1k NUEE) (N1 - 2)31 * (N
1

T
1 1 ~ 1 -
(M= 1) - ZJ[(XR - ){x - '"1)] (A-5)
thus obtaining (19). .

let S =% - aMMT, where S and I are nonsingular matrices and M is a vector.
Then the inverse of S can be expressed in terms of the inverse of I as
in reference 6:

' 1T
-1 2-1 + ar MMT

7! -
1 - oM

2'1

z“iM

thus obtaining equation (22).

A-3
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