TECHNICAL MEMORANDUM

FISHER CLASSIFIER AND ITS PROBABILITY
OF ERROR ESTIMATION

By

C. B. Chittineni

Approved By: J. C. Minter, Supervisor Techniques Development Section

(NASA-CR-160181) FISHER CLASSIFIER AND ITS
PROBABILITY OF ERROR ESTIMATION (Lockheed
Electronics Co.) 22 p HC A02/MF A01

Unclas

G3/64 23309

May 1979

LEC-13301
Distribution of this document is limited to those people whose names are followed by an asterisk in the following list; all others receive an abstract (JSC Form 1424) only.†

USDA/G. O. Boatwright/SF3 A. D. Frank/SF221 R. E. Hatch/SF221 J. D. Murphy/SF221 R. L. Packard/SF221

NOAA/J. D. Hill/SF2 D. G. McCrary/SF4

LEC/J. G. Baron M. L. Bertrand J. E. Davis P. L. Krumm D. G. Saile P. C. Swanzy J. J. Vaccaro Data Research and Control (3)* Technical Library (5)* Job Order File*

ERIM/Q. A. Holmes* R. Horvath D. Rice

KSU/A. M. Feyerherm E. T. Kanemasu

LARS/M. E. Bauer D. A. Landgrebe* T. L. Phillips P. H. Swain

TAMU/L. F. Guseman J. C. Harlan H. O. Hartley

UCB/R. N. Colwell C. M. Hay R. W. Thomas

ESCS/W. H. Wigton

†To obtain a copy of this document, contact one of the following:

J. D. Erickson — NASA/JSC Research, Test, and Evaluation Branch (SF3)

B. L. Carroll — LEC/SSD EO Development and Evaluation Department (626-42, C09)
Abstract

This paper considers the Fisher classifier and the problem of estimating its probability of error. Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Furthermore, computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

Key Words (Suggested by Author(s))
- computationally efficient expressions
- Fisher classifier
- leave-one-out method
- multiple classes
- optimal threshold
- probability of error
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION.</td>
<td>1</td>
</tr>
<tr>
<td>2. FISHER CLASSIFIER</td>
<td>2</td>
</tr>
<tr>
<td>3. RECURSIVE RELATIONS FOR THE FISHER WEIGHT VECTOR AND THRESHOLD</td>
<td>3</td>
</tr>
<tr>
<td>4. SELECTION OF AN OPTIMAL THRESHOLD</td>
<td>7</td>
</tr>
<tr>
<td>5. GENERALIZATION OF THE FISHER CLASSIFIER TO MULTIPLE CLASSES</td>
<td>10</td>
</tr>
<tr>
<td>6. COMPUTATIONAL EXPRESSIONS FOR THE LEAVE-ONE-OUT METHOD IN A MULTICLASS CASE</td>
<td>11</td>
</tr>
<tr>
<td>7. CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>8. REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

In the practical applications of pattern recognition, such as in remote sensing, there is considerable interest in the use of linear classifiers because they are simple and because fewer parameters need to be estimated. In many cases, it is required to estimate the probability of error in addition to designing the classifier. (For example in remote sensing, a separate set of labeled patterns is used in estimating the probability of error.) For designing the classifiers, the labels of the training patterns need to be obtained, and often acquiring labels is expensive. Hence, available training samples should be effectively used for designing the classifier and estimating the probability of error.

The leave-one-out method (ref. 1) is proposed in the literature as an effective way of estimating the probability of error from the training samples. The method is as follows. If there is a total of N-labeled patterns, leave out one pattern, design the classifier on remaining (N - 1) patterns, and test on the pattern that is left out. Repeat this process N times, every time leaving a different pattern, and then estimate the probability of error as an average of these errors. Use of this method, however, requires N classifiers to be designed. Fukunaga and Kessell (ref. 2) present a computational method for estimating the probability of error of a Bayes classifier using the leave-one-out method. Chittineni (ref. 3) developed a computational technique based on eigen perturbation theory for estimating the probability of error of the Fisher classifier using the leave-groups-out method.

This paper considers the Fisher classifier (refs. 4 and 5). The Fisher classifier is one of the most widely used linear classifiers. Computational expressions are developed based on matrix theory for estimating the probability of error of the Fisher classifier using the leave-one-out method.

This paper is organized as follows.

Section 2 briefly presents the Fisher classifier. Section 3 develops computational expressions for using the leave-one-out method for estimating
Fisher's error probability. Section 4 discusses the effect of the Fisher threshold and presents expressions for obtaining the optimal threshold by minimizing the probability of error. Section 5 presents a simple generalization of the Fisher classifier to multiple classes. Section 6 develops computationally efficient expressions for the estimation of multiclass Fisher error using the leave-one-out method. Some matrix relations used in the paper are derived in the appendix (ref. 6).

2. FISHER CLASSIFIER

The Fisher classifier is a linear classifier that uses a direction W for the discriminant function,

$$g(X) = W^T X - t$$

(1)

so that when the training patterns are projected onto this direction, the intraclass patterns are clustered and the interclass patterns are separated to the extent possible as depicted in figure 1.

![Figure 1. Fisher's weight vector and threshold.](image)
Let $X^i_{k\omega_i}$, $k = 1, 2, \ldots, N_i$, $i = 1, 2$ be the training pattern set. The unbiased estimates of means \hat{m}_i and covariance matrices $\hat{\Sigma}_i$ of the patterns in the classes ω_i are given by the following:

\[\hat{m}_i = \frac{1}{N_i} \sum_{j=1}^{N_i} X^i_j \]
\[\hat{\Sigma}_i = \frac{1}{(N_i - 1)} \sum_{j=1}^{N_i} (X^i_j - \hat{m}_i)(X^i_j - \hat{m}_i)^T \]

The Fisher classifier chooses the weight vector W, such that the criterion β is maximized, where

\[\beta = \frac{W^T \hat{m}_1 - \hat{m}_2}{W^T \hat{\Sigma}_W W} \]

where $\hat{\Sigma}_W = \hat{\Sigma}_1 + \hat{\Sigma}_2$. The weight vector W, which maximizes β, can be shown to be

\[W = \left(\hat{\Sigma}_W \right)^{-1} (\hat{m}_1 - \hat{m}_2) \]

The Fisher threshold t is chosen as

\[t = \frac{W^T (\hat{m}_1 + \hat{m}_2)}{2} \]

The direction W and the threshold t are illustrated in figure 1. Fisher's decision rule is as follows:

\[\begin{array}{ll}
\text{Decide } X_{\omega_1} \text{ if } g(X) > 0 \\
\text{Decide } X_{\omega_2} \text{ if } g(X) < 0
\end{array} \]

3. RECURSIVE RELATIONS FOR THE FISHER WEIGHT VECTOR AND THRESHOLD

In this section, computational expressions are developed for using the leave-one-out method with the Fisher classifier. The justification for the
The leave-one-out method for estimating the probability of error is as follows. In general, the probability of error, e, is a function of two arguments:

$$e(\Theta_1, \Theta_2)$$

(7)

where Θ_1 is the set of parameters for the distributions used to design the classifier and Θ_2 is the set of parameters for the distributions used to test the performance. Let θ and $\hat{\theta}$ be the set of true parameters and their estimates. The $\hat{\theta}$ is a random vector that depends on the particular sample used in its estimation. Let $\hat{\theta}_N$ be a particular value of $\hat{\theta}$. Then (from ref. 7),

$$e(\theta, \theta) \leq e(\hat{\theta}_N, \theta)$$

(8)

Taking expectations on both sides, one gets

$$e(\theta, \theta) \leq E[e(\hat{\theta}_N, \theta)]$$

(9)

One of the ways of estimating the quantity on the RHS of equation (9) is with the leave-one-out method described in section 1. Presented in the following paragraphs are computational expressions for implementing the leave-one-out method with the Fisher classifier described in section 2. The cases in which a pattern X^1_k from class ω_1 is left out and in which a pattern from class ω_2 is left out can be treated similarly.

Let a pattern X^1_k from class ω_1 be left out and the patterns from class ω_2 remain. The means m_i, $i = 1, 2$ and the covariance matrix Σ_2 are defined as in equations (2a) and (2b). Define the covariance matrix $\hat{\Sigma}_1$ of the total pattern set from class ω_1 as

$$\hat{\Sigma}_1 = \frac{1}{(N_1 - 2)} \sum_{j=1}^{N_1} (X^1_j - \hat{m}_1)(X^1_j - \hat{m}_1)^T$$

(10)

Let

$$\hat{\Sigma}_W = \hat{\Sigma}_1 + \hat{\Sigma}_2.$$

(11)
Note that $\hat{\Sigma}_1$ is defined differently from the usual unbiased estimate for covariance matrices for mathematical simplicity; this definition will not affect the results. Now compute W and t as

$$W = \hat{S}^{-1}_W (\hat{m}_1 - \hat{m}_2)$$

and

$$t = \frac{\hat{m}_1 + \hat{m}_2}{2}$$

When a pattern X_k^1 from class ω_1 is left out, the unbiased estimates of the mean, \hat{m}_{1k} and the covariance matrix $\hat{\Sigma}_{1k}$ of the patterns in class ω_1 are given by the following:

$$\hat{m}_{1k} = \frac{1}{(N_1 - 1)} \sum_{j=1 \atop j \neq k}^{N_1} X_j^1$$

and

$$\hat{\Sigma}_{1k} = \frac{1}{(N_1 - 2)} \sum_{j=1 \atop j \neq k}^{N_1} (X_j^1 - \hat{m}_{1k})(X_j^1 - \hat{m}_{1k})^T$$

Let $\hat{\Sigma}_{W1k} = \hat{\Sigma}_{1k} + \hat{\Sigma}_2$. Then the Fisher weight vector W_{1k} and threshold t_{1k}, when a pattern X_k^1 from class ω_1 is left out, are given by

$$W_{1k} = \hat{S}^{-1}_{W1k} (\hat{m}_{1k} - \hat{m}_2)$$

and

$$t_{1k} = \frac{W_{1k}^T (\hat{m}_{1k} + \hat{m}_2)}{2}$$

Expressions are now developed for the computation of W_{1k} and t_{1k} in terms of W and t. The relationships between \hat{m}_{1k}, $\hat{\Sigma}_{1k}$, $\hat{\Sigma}_{W1k}$ and \hat{m}_1, $\hat{\Sigma}_1$, and \hat{S}_W can be shown to be as follows (see the appendix):

$$\hat{m}_{1k} = \hat{m}_1 - \frac{1}{(N_1 - 1)} (X_k^1 - \hat{m}_1)$$

5
\[
\hat{\Sigma}_{1k} = \Sigma_1 - \frac{N_1}{(N_1 - 1)(N_1 - 2)} (x_k^1 - \hat{m}_1)(x_k^1 - \hat{m}_1)^T
\]

(19)

\[
\hat{S}_{W1k} = \hat{S}_W - \frac{N_1}{(N_1 - 1)(N_1 - 2)} (x_k^1 - \hat{m}_1)(x_k^1 - \hat{m}_1)^T
\]

(20)

From equation (18), one obtains

\[
(\hat{m}_1 - \hat{m}_2) = (\hat{m}_1 - \hat{m}_2) - \frac{1}{(N_1 - 1)} (x_k^1 - \hat{m}_1)
\]

(21)

From equation (20), one obtains (appendix)

\[
\hat{S}_{W1k}^{-1} = \hat{S}_W^{-1} + \frac{\alpha \hat{S}_W^{-1}(x_k^1 - \hat{m}_1)(x_k^1 - \hat{m}_1)^T \hat{S}_W^{-1}}{1 - \alpha (x_k^1 - \hat{m}_1)^T \hat{S}_W^{-1}(x_k^1 - \hat{m}_1)}
\]

(22)

where

\[
\alpha = \frac{N_1}{(N_1 - 1)(N_1 - 2)}
\]

(23)

Let

\[
\gamma(x_k^1) = \hat{S}_W^{-1}(x_k^1 - \hat{m}_1)
\]

(24)

\[
\beta(x_k^1) = (x_k^1 - \hat{m}_1)^T \hat{S}_W^{-1}(x_k^1 - \hat{m}_1)
\]

(25)

\[
\nu(x_k^1) = 1 - \alpha \beta(x_k^1)
\]

(26)

\[
\hat{m} = \frac{\hat{m}_1 + \hat{m}_2}{2}
\]

(27)

\[
Z(x_k^1) = \gamma^T(x_k^1)(\hat{m}_1 - \hat{m}_2)
\]

(28)

Using the definitions of equations (23) to (28), one obtains the following.
\[
W_{lk} = \hat{S}_{Wlk}^{-1}(\hat{m}_{lk} - \hat{m}_2)
\]
\[
= \left[\hat{S}_{W}^{-1} + \frac{\alpha \nu(x_k^1) Y(x_k^1)}{\nu(x_k^1)} \right] \left[(\hat{m}_1 - \hat{m}_2) - \frac{1}{(N_1 - 1)}(x_k^1 - \hat{m}_1) \right]
\]
\[
= W - \frac{1}{(N_1 - 1) \nu(x_k^1)} Y(x_k^1) + \frac{\alpha \nu(x_k^1) Y(x_k^1)}{\nu(x_k^1)} \tag{29}
\]
\[
t_{lk} = \frac{\nu_T(x_k^1 + \hat{m}_2)}{2}
\]
\[
= t - \frac{W^T(x_k^1 - \hat{m}_1)}{2(N_1 - 1)} - \frac{Y^T(x_k^1) \hat{m}_1}{2(N_1 - 1) \nu(x_k^1)} + \frac{\beta(x_k^1)}{2(N_1 - 1) \nu(x_k^1)}
\]
\[
+ \frac{\alpha \nu(x_k^1) Y(x_k^1)}{\nu(x_k^1)} \frac{\beta(x_k^1)}{2(N_1 - 1) \nu(x_k^1)} \tag{30}
\]

Equations (29) and (30) can be used to compute \(W_{lk}\) and \(t_{lk}\) from \(W\) and \(t\), every time that a pattern \(x_k^1\) is left out from class \(\omega_1\) and the pattern \(x_k^2\) is tested. Similarly, recursive expressions can be derived when a pattern \(x_k^2\) is left out from class \(\omega_2\). It is to be noted that because the covariance matrices are defined as in equation (10), the matrix \(\hat{S}_W\) is to be computed and inverted twice, once when patterns from class \(\omega_1\) are left out and again when patterns from class \(\omega_2\) are left out.

4. SELECTION OF AN OPTIMAL THRESHOLD

This section considers the problem of finding the optimum threshold, \(t\), to achieve minimum probability of error for the projected patterns onto Fisher's direction. The patterns in class \(\omega_1\) are assumed to be normally distributed; i.e., \(p(x|\omega_1) = N(m_i, \Sigma_i)\). Let \(y\) be the projection of pattern \(X\) onto Fisher's direction \(W\); i.e.,
\[
y = W^T x \tag{31}
\]
Since X is normally distributed, y is also normally distributed; i.e.,

$$p(y|\omega_i) \sim N(\mu_i, \sigma_i^2), \quad i = 1, 2$$ \hspace{1cm} (32)

where

$$\mu_i = \mathbf{w}^T \mathbf{m}_i$$ \hspace{1cm} (33)

and

$$\sigma_i^2 = \mathbf{w}^T \mathbf{\Sigma}_i \mathbf{w}$$ \hspace{1cm} (34)

If Fisher's decision rule is used, decide $y \in \omega_1$ if $y > t$; otherwise decide $y \in \omega_2$, the probability of error incurred can be written as

$$P_e = P_1 \int_{-\infty}^{t} p(y|\omega_1)dy + P_2 \int_{t}^{\infty} p(y|\omega_2)dy$$

$$= P_1 \int_{-\infty}^{t-\mu_1} \frac{1}{\sigma_1} \phi(\frac{\zeta}{\sigma_1})d\zeta + P_2 \int_{t-\mu_2}^{\infty} \frac{1}{\sigma_2} \phi(\frac{\zeta}{\sigma_2})d\zeta$$ \hspace{1cm} (35)

where $\phi(\zeta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \zeta^2\right)$ and P_1 are the a priori probabilities of the classes ω_i, $i = 1, 2$. On differentiating equation (35) with respect to t, the following is obtained:

$$\frac{\partial P_e}{\partial t} = P_1 \phi\left(\frac{t-\mu_1}{\sigma_1}\right) \frac{1}{\sigma_1} - P_2 \phi\left(\frac{t-\mu_2}{\sigma_2}\right) \frac{1}{\sigma_2}$$ \hspace{1cm} (36)

Equating $\frac{\partial P_e}{\partial t}$ to zero and then simplifying it, one obtains

$$\left(\frac{t-\mu_2}{\sigma_2}\right)^2 - \left(\frac{t-\mu_1}{\sigma_1}\right)^2 = 2 \log\left(\frac{P_2 \sigma_1}{P_1 \sigma_2}\right)$$ \hspace{1cm} (37)

The following cases are considered:

Case (1): $P_1 = P_2$, $\sigma_1 = \sigma_2$
Obtained from equation (37) is the optimum value of t that minimizes the probability of error for Fisher's direction as

$$t = \frac{\mu_1 + \mu_2}{2}$$

Equations (13) and (38) show that this is the threshold that is often implemented with the Fisher classifier.

Case (2): $P_1 \neq P_2$, $\sigma_1 = \sigma_2 = \sigma$

In this case, the optimum value of threshold t can be obtained from equation (37) as

$$t = \frac{\sigma^2}{(\mu_1 - \mu_2)} \log \left(\frac{P_2}{P_1} \right) + \left(\frac{\mu_1 + \mu_2}{2} \right)$$

Case (3): $P_1 \neq P_2$, $\sigma_1 \neq \sigma_2$

On simplification, the following is obtained from equation (37):

$$t^2 + \left(\frac{2\mu_1 \sigma_2^2 - 2\mu_2 \sigma_1^2}{\sigma_1^2 - \sigma_2^2} \right) t + \left(\frac{\sigma_1^2 \mu_2^2 - \sigma_2^2 \mu_1^2}{\sigma_1^2 - \sigma_2^2} \right) - \frac{2\sigma_1^2 \sigma_2^2}{\sigma_1^2 - \sigma_2^2} \log \left(\frac{P_2}{P_1} \frac{\sigma_1}{\sigma_2} \right) = 0$$

This is a quadratic equation of the form $at^2 + bt + c = 0$. The discriminant of the equation $\eta = b^2 - 4ac$ can be shown to be

$$\eta = \frac{4}{\left(\frac{\sigma_1}{\sigma_2} - \frac{\sigma_2}{\sigma_1} \right)^2} \left[\left(\mu_1 - \mu_2 \right)^2 + 2 \left(\sigma_1^2 - \sigma_2^2 \right) \log \left(\frac{P_2}{P_1} \frac{\sigma_1}{\sigma_2} \right) \right]$$

From equation (41), it is seen that when $P_1 = P_2$, η is always positive, thus giving real roots for equation (40). Even when $P_1 \neq P_2$, if η is positive, real roots are obtained for t. The η is negative when there exists no real threshold that minimizes the probability of error. Equation (40) gives two
roots for t. Since P_e is continuous in t, the t that minimizes P_e can be obtained by looking at the second derivative of P_e. Differentiating equation (36) with respect to t, one obtains

$$\frac{\partial^2 P}{\partial t^2} = \left[\rho_2 \frac{1}{\sigma_2^2} \left(\frac{t - m_2}{\sigma_2} \right) \phi \left(\frac{t - m_2}{\sigma_2} \right) - \rho_1 \frac{1}{\sigma_1^2} \left(\frac{t - m_1}{\sigma_1} \right) \phi \left(\frac{t - m_1}{\sigma_1} \right) \right]$$

(42)

The root of equation (40) that gives a positive value for equation (42) is taken as the value of t, which minimizes the probability of error. Using the results of the last section, one can update the threshold t for use with the leave-one-out method since it is a function of means and covariance matrices.

5. GENERALIZATION OF THE FISHER CLASSIFIER TO MULTIPLE CLASSES

Rewriting equations (12) and (13) in terms of the discriminant functions $g_i(X) = v_i^T X + v_i$, $i = 1, 2$, the following decision rule is implemented:

Decide $X \in \omega_1$ if $g_1(X) > g_2(X)$
(43)

Decide $X \in \omega_2$ if $g_1(X) < g_2(X)$
(44)

Thus

$$v_i = \hat{S}_W^{-1} m_i$$

(45)

and

$$v_i = -\hat{m}_i^T \hat{S}_W^{-1} \left(\frac{\hat{m}_1 + \hat{m}_2}{2} \right)$$

(46)

It is seen that equations (43) to (46) implement the decision rule of equation (6). This suggests the definition of discriminant functions for an M-class problem as

$$g_i(X) = v_i^T X + v_i, \ i = 1, 2, \ldots, M$$
where

\[V_i = \hat{S}_W^{-1} \hat{m}_i, \quad i = 1, 2, \ldots, M \]

\[V_i = -\hat{m}_i \hat{S}_W^{-1} (\hat{m}_1 + \hat{m}_2 + \cdots + \hat{m}_M) \]

\[\hat{S}_W = \hat{\Sigma}_1 + \hat{\Sigma}_2 + \cdots + \hat{\Sigma}_M \]

Then the decision rule is the following: Decide $X \in \omega_i$ if

\[g_i(X) > g_j(X) \]

\[j = 1, 2, \ldots, M \quad i \neq j \]

(48)

6. COMPUTATIONAL EXPRESSIONS FOR THE LEAVE-ONE-OUT METHOD
IN A MULTICLASS CASE

This section presents computational expressions for the leave-one-out method for updating V_i and v_i. Let there be M classes. Consider the case when a pattern X^1_k from class ω_1 is left out. Define the means and covariance matrices of the total pattern set as

\[\hat{m}_i = \frac{1}{N_i} \sum_{j=1}^{N_i} X^1_j, \quad i = 1, 2, \ldots, M \]

\[\hat{\Sigma}_1 = \frac{1}{(N_1 - 2)} \sum_{j=1}^{N_1} (X^1_j - \hat{m}_1)(X^1_j - \hat{m}_1)^T \]

\[\hat{\Sigma}_i = \frac{1}{(N_i - 1)} \sum_{j=1}^{N_i} (X^1_j - \hat{m}_i)(X^1_j - \hat{m}_i)^T, \quad i = 2, \ldots, M \]
Let $\hat{S}_W = \hat{\Sigma}_1 + \hat{\Sigma}_2 + \ldots + \hat{\Sigma}_M$. Compute V_i and v_i, $i = 1, 2, \ldots, M$ as

\[
V_i = \hat{S}_W^{-1} \hat{m}_i
\]

\[
v_i = -\hat{m}_i^T \hat{S}_W^{-1} (\hat{m}_1 + \hat{m}_2 + \ldots + \hat{m}_M) / M
\]

When the pattern $X_k^{(1)}$ from class ω_1 is left out, Fisher's parameters are computed as

\[
V_i(X_k^{(1)}) = \hat{S}_{W1k}^{-1} \hat{m}_i
\]

\[
v_{11}(X_k^{(1)}) = -\hat{m}_{11}^T \hat{S}_{W1k}^{-1} (\hat{m}_{11} + \hat{m}_{21} + \ldots + \hat{m}_{M1}) / M
\]

\[
v_i(X_k^{(1)}) = \hat{S}_{W1k}^{-1} \hat{m}_i, \quad i = 2, \ldots, M
\]

\[
v_i(X_k^{(1)}) = -\hat{m}_i^T \hat{S}_{W1k}^{-1} (\hat{m}_{11} + \hat{m}_{21} + \ldots + \hat{m}_{M1}) / M, \quad i = 2, \ldots, M
\]

where

\[
\hat{m}_{11} = \frac{1}{(N_1 - 1)} \sum_{j=1}^{N_1} X_j^{(1)}
\]

\[
\hat{\Sigma}_{11} = \frac{1}{(N_1 - 2)} \sum_{j=1}^{N_1} (X_j^{(1)} - \hat{m}_1)(X_j^{(1)} - \hat{m}_1)^T
\]

\[
\hat{S}_{W11} = \hat{\Sigma}_{11} + \hat{\Sigma}_2 + \ldots + \hat{\Sigma}_M
\]
The \hat{m}_i and $\hat{\Sigma}_i$, $i = 2, \ldots, M$ are defined as in equation (49). Proceeding as in section 3.1, one obtains recursive relations for Fisher's parameters as follows:

\begin{align*}
V_1(x_k^1) &= V_1 + \frac{a e_i}{\nu(x_k^1)} Y(x_k^1) - \frac{1}{(N_1 - 1) \nu(x_k^1)} Y(x_k^1) - \frac{1}{(N_1 - 1) \nu(x_k^1)} Y(x_k^1) \\
V_1(x_k^1) &= V_1 - \frac{\alpha}{\nu(x_k^1)} d_1 d_2 + \frac{d_2}{(N_1 - 1) \nu(x_k^1)} + \frac{d_1}{2(N_1 - 1)} - \frac{1}{2(N_1 - 1)} \frac{\beta(x_k^1)}{\nu(x_k^1)} \\
V_i(x_k^1) &= V_i + \frac{\alpha e_i}{\nu(x_k^1)} Y(x_k^1), \ i = 2, \ldots, M \\
V_i(x_k^1) &= V_i - \frac{\alpha e_i}{\nu(x_k^1)} d_2 + \frac{e_i}{2(N_1 - 1) \nu(x_k^1)}, \ i = 2, \ldots, M
\end{align*}
where

\[
\alpha = \frac{N_1}{(N_1 - 1)(N_1 - 2)}
\]

\[
\gamma(x_k^l) = \hat{S}_w^{-1}(x_k^l - \hat{m}_1)
\]

\[
\beta(x_k^l) = (x_k^l - \hat{m}_1)^T \hat{S}_w^{-1}(x_k^l - \hat{m}_1)
\]

\[
\nu(x_k^l) = 1 - \alpha \beta(x_k^l)
\]

\[
d_1 = \gamma(x_k^l) \hat{m}_1
\]

\[
d_2 = \gamma(x_k^l) \left(\frac{\hat{m}_1 + \hat{m}_2 + \ldots + \hat{m}_M}{M} \right)
\]

\[
e_i = \gamma(x_k^l) \hat{m}_i, \ i = 2, \ldots, M
\]

Recursive relations can be obtained similarly when a pattern \(x_k^l\) from class \(\omega_i\) is left out. It is to be noted that the matrix \(\hat{S}_w\) is to be inverted once for each class. The use of these recursive relations results in a computationally efficient way of implementing the leave-one-out method.

7. CONCLUSIONS

The Fisher classifier is one of the simplest and most widely used linear classifiers. Recently, considerable interest in its application for the classification of multispectral data acquired by Landsat has been expressed. Acquiring labels of the training patterns is expensive, and in many cases the probability of error is to be estimated in addition to the designing of a classifier. (For example in remote sensing, a separate set of labeled patterns is used for estimating the probability of error.) Hence, in practical applications, it is advantageous to use the available labeled patterns more effectively.
This paper has presented computational expressions for estimating the probability of error using the leave-one-out method. Thus, the available labeled patterns can be used effectively, both for designing the classifier and estimating the probability of error. Since the classification accuracy depends on the threshold used with the Fisher classifier, expressions for optimal threshold for minimizing the probability of error in Fisher's direction are presented.
APPENDIX A
DERIVATION OF MATRIX RELATIONS

From equation (14), one obtains

$$\hat{m}_{1k} = \frac{1}{N_1 - 1} \left(\sum_{j=1, j \neq k}^{N_1} x_{j}^{1} - x_{k}^{1} \right)$$

$$= \frac{1}{(N_1 - 1)} \left(\sum_{j=1}^{N_1} x_{j}^{1} - x_{k}^{1} \right)$$

$$= \frac{N_1}{N_1 - 1} \hat{m}_{1} - x_{k}^{1}$$

$$= \hat{m}_{1} - \frac{1}{(N_1 - 1)} (x_{k}^{1} - \hat{m}_{1}) \quad (A-1)$$

thus obtaining equation (18). From equation (15),

$$\hat{u}_{1k} = \frac{1}{N_1 - 2} \sum_{j=1, j \neq k}^{N_1} (x_{j}^{1} - \hat{m}_{1k})(x_{j}^{1} - \hat{m}_{1k})^{T}$$

$$= \frac{1}{N_1 - 2} \left[\sum_{j=1}^{N_1} (x_{j}^{1} - \hat{m}_{1k})(x_{j}^{1} - \hat{m}_{1k})^{T} - (x_{k}^{1} - \hat{m}_{1k})(x_{k}^{1} - \hat{m}_{1k})^{T} \right] \quad (A-2)$$

A-7
Consider the following:

\[
\sum_{j=1}^{N_1} (\mathbf{x}_j - \hat{m}_{1k})^T (\mathbf{x}_j - \hat{m}_{1k}) = \sum_{j=1}^{N_1} \left[\mathbf{x}_j^T \hat{m}_1 + \frac{1}{N_1-I} (\mathbf{x}_j^T - \hat{m}_1)^T \right] (\mathbf{x}_j^T - \hat{m}_1) \\
- \hat{m}_1 + \frac{1}{N_1-I} (\mathbf{x}_k^T - \hat{m}_1)^T \right] \\
= \sum_{j=1}^{N_1} (\mathbf{x}_j^T - \hat{m}_1)^T (\mathbf{x}_j^T - \hat{m}_1) \\
+ \frac{1}{(N_1-I)} (\mathbf{x}_k^T - \hat{m}_1) \sum_{j=1}^{N_1} (\mathbf{x}_j^T - \hat{m}_1)^T \\
+ \left[\sum_{j=1}^{N_1} (\mathbf{x}_j^T - \hat{m}_1) \right] \frac{1}{(N_1-I)} (\mathbf{x}_k^T - \hat{m}_1)^T \\
+ \frac{N_1}{(N_1-I)^2} (\mathbf{x}_k^T - \hat{m}_1)^T (\mathbf{x}_k^T - \hat{m}_1)^T \\
= (N_1 - 2) \Omega_1 + \frac{N_1}{(N_1-I)^2} (\mathbf{x}_k^T - \hat{m}_1)^T (\mathbf{x}_k^T - \hat{m}_1)^T \quad (A-3)
\]

Consider

\[
(\mathbf{x}_k^T - \hat{m}_{1k}) = \mathbf{x}_k^T \hat{m}_1 + \frac{1}{(N_1-I)} (\mathbf{x}_k^T - \hat{m}_1) \\
- \frac{N_1}{N_1-I} (\mathbf{x}_k^T - \hat{m}_1) \quad (A-4)
\]

A-2
Substituting equations (A-3) and (A-4) into (A-2) results in the following:

\[
\hat{\Sigma}_{1k} = \frac{1}{(N_1 - 2)} \left(N_1 - 2 \right) \hat{\Sigma}_1 + \frac{N_1}{(N_1 - 1)^2} \left(\chi^*_k - \hat{m}_1 \right) \left(\chi^*_k - \hat{m}_1 \right)^T \\
- \frac{N_1^2}{(N_1 - 1)^2} \left(\chi^*_k - \hat{m}_1 \right) \left(\chi^*_k - \hat{m}_1 \right)^T \\
= \hat{\Sigma}_1 - \frac{N_1}{(N_1 - 1)(N_1 - 2)} \left[\left(\chi^*_k - \hat{m}_1 \right) \left(\chi^*_k - \hat{m}_1 \right)^T \right]
\]

thus obtaining (A-5).

Let \(S = \Sigma - \alpha M M^T \), where \(S \) and \(\Sigma \) are nonsingular matrices and \(M \) is a vector. Then the inverse of \(S \) can be expressed in terms of the inverse of \(\Sigma \) as in reference 6:

\[
S^{-1} = \Sigma^{-1} + \frac{\alpha \Sigma^{-1} M M^T \Sigma^{-1}}{1 - \alpha \Sigma^{-1} M \Sigma^{-1} M}
\]

thus obtaining equation (22).
APPENDIX B

REFERENCES

