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THE BIREFRINGENT FILTER
AND ITS APPLICATIONS IN SOLAR PHYSICS

By
Bernard Liyot

SUMMARY. Observation of the corona by the light of
its emission lines requires the use of a very luminous, highly
monochromatic filter with a wide field. None of the instruments
in use twenty years ago fulfilled these three conditions simul-
taneously, and this led the author to conceive and construct a
new one, the birefringent filter. The history of this filter is
given.

The Theory of the Birefringent Filter,

A description of the principle of the instrument and its
operation for rays normal to the entry and exit faces is presenied.
Variations of the transmitted wavelength as a function of tem-
perature and two methods for varying this wavelength are studied.
Variations pf the transmitted wavelength as a function of the rays'
obligquity and three methods for increasing the field of the instru-
ment are considered,

First Filter, The first variable wavelength filter is
described, together with its thick and thin crystalline plates,
its general arrangement and its adjustment.

Second Filter. A second filter which 1solates six fixed
radiations belonging to the chromosphere and to the corona is
also described. Its characteristics and mounting are discussed
as is the thermostat which adjusts the transmitted wavelengths
and insures their constancy. First observations of the corona
and prominences are discussed.

Replacement of the {ilter's polaroids by calcite polarizers,
the advantages of this modification and the new results obtained
thereby are explained. Details of the corona are studied and the
red and green coronas are compared.

Three~Color Cine Photography. A method for separating
four radiations transmiited by the filter and for recording three
of them on motion picture film is described. A description is
also given of the three-color camera for simultaneous photography
of the corona with the red line, of prominences with the H_ line
and the corona with the green line. Films obtained in this'manner
are discussed., Changes in the corona and their interpretation
through relative variations of intensity are examined.
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Study of the Chromosphere. The addition of a plate to
the filter to enhance its monochromatic quality is explained as
is the addition of a compensator for varying the transmitted
wavelengths to observe radial velocities. Observation of the
chromosphere at the solar limb and motion pictures of the boil-
ing of the chromospheric surface are discussed. The observa-
tion of the chromosphere on the solar disk and motion pictures
of flares are also treated, o

INTRODUCTION

There are certain heavenly bodies whose observation
requires that their image be formed, not by using all their light
as 1s generally done, but by using only one "of the radiations they
emit to the exclusion of the rest of the spectrum. This is the
case, for example, when one wishes to study the chromosphere
against the solar disk, prominences through 2 clear sky or the

corona by the light of its bright lines,

The problem consists therefore in observing an extended
object while allowing only a more or less narrow region of its
spectrum containing a given radiation to be transmitted. Any
device which solves this problem is a filter; the marrower the
portion of the spectrum transmitted, the more monochromatic

such a filter is,

The transparency of such a filter varies rapidly as & func-
tion of wavelength and the curve representing its variations

passes through a maximum for a given wavelength,

The filter's properties may be summed up by three quan-
tities:

1. Its maximum transparancy.

2. The corresponding wavelength,

3. Its equivalent width, i.e., the width of a rectangle
which has the same area and same height as the curve, This
third quantity indicates to what degree the filter is monochro-
matic. It defines the purity of the transmitted light and allows

calculation of the proportion of stray radiations that it transmits.
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The First Monochromatic Filters. Three types of filters

were in use about twenty years ago:

1. Glass or gelatine filters tinted with mineral salts or

with organic coloring,

These filters, long known and convenient to use, are only
very slightly monochromatic, Their equivalent width rarely
drops below 300 Jok for a transparency of 10%; it can be reduced
slightly by increasing the filtei‘ thickness, but at the same time

transparency rapidly falls below tolerable values.

Tor some spectral regions, the salts of rare earths,
mainly those of neodymium, improve these filters and reduce
their equivalent width to about 100 K [1]; however, such widths
are still at least 10 times too large to allow detection of the
chromosphere against the solar disk or to consider observation

of the corona with the light of its bright lines.

2. A second type of filter, more monochromatic, was

devised by Christiansen,

It is made of powdered glass impregnated with a much
more dispersive liquid, For a certain wavelength, the index of
the liquid equals that of the glass and the mixture is transparent,
like a homogeneous bedy, When the wavelength varies, the two
indices differ more and more, and the mixture diffuses the light

at increasingly large angies.

This very luminous filter transmits a band whose equiva-
lent width can drop to a few angstroms; the band can be shifted
by temperature variation. Unfortunately, the radiations of other
wavelengths are not absorbed, but are diffused and mask the
irmage of the source as soon as the latter's apparent diameter
ceases to be very small, This serious drawback makes the

Christiansen filter almost useless for solar study,

3. A third type of filter, the rmost monochromatic of all,
is the spectroheliograph invented by Deslandres and by Hale in
1905,



-

This spectroscope images the spectrum on the jaws of a
second slit located where the radiation to be isclated 1s projected.
Both the image of the sun beiore the first slit and the photographic
plate behind the second are displaced simultaneously and continu-
ously by a special mechanism. Thus the instrument records pro-
gressively, line by line but without discontinuity, & monochromatic

image of the entire sun.

This apparatus may be considered a very monochromatic
filter. Its equivalent width depends on the widths oi the two slits
and on the dispersion and resolving power of the spectrograph.
The instrument in the Meudon Observatory for continuous chromo-
spheric observation has an equivalent width of about 2/10 f’i in the
violet and —'1-/10 2\. in the red, i,e,, a thousand times lower than
that of the best colored filters. The wavelength of the spectro-
heliograph is adjustable, but its light yield is very weak because
it photographs the sun's different linear regions successively;
this reduces the light transmitted by the spectrograph in the rela-
tion of the width of the first slit to that of the solar image. Thus
the light yield of the spectroheliograph falls to a few ten-thou-
sandths,

On the chromosphere, which is very bright, this instru-
ment has long given excellent results, However, it is not suffic-
tently luminous for study of the coronz, whose brightness is

)

several hundred thousand times weaker,

History of the Birefringent Filter, These considerations

led me, in 1920, to search for 2 new type of filter which would be

¥ verified this fact in 1951 at the Pic du Midi, using a corono-
graph with 8 cm aperture followed by &2 spectroheliograph having
two large 60° prisms with bases of 160 mm and wide slits igsola-
ting the coronal green line in an equivalent bard width of 2 A,

The image of the sun on the plate was reduced to 16 mm to increase
its brightrness. A 90-minute exposure gave a weak image of the
corona on which a single coronal jet is visible; moreover, the
diffusion caused by atmospheric dust varied during the exposure,
and the variable illumination of the second slit gave 2 streaked
plate [ 2].
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highly monochromatic and very luminous. After trying to utilize
the interierence given by a series of half-silvered plates and
finding that the images obtained were not sufficiently bright, I
studied the interference produced by a series of crystalline
platés in polarized light and, in 1927, established the principle
of the filter considered in this paper.*)ln 1933 I published a brief
note [ 8] stating this principle, describing the properties of the
composite crystalline plates and giving the data needed to calcu-
late and construct a filter which, in a very wide field, would
isolate a spectral band, variable in wavelength, with an equiva-
lent width of 1 .‘g in the green, The filter's main plates, 25 mm
in diameter, were cut in 1933 and tested in the laboratory. The
instrument was to contain 10 large Glazebrook-type polarizers,
but I could not obtain the required calcite, and thus my research

was halted temporarily,

In 1937, having the advantage of Polaroid polarizing films
then newly offered on the market, Ohman (who was unaware of
~my work on this subject although, shortly afterward, he acknow-
ledged its precedence in point of time [9]) was able to build in a
short titne a much more elementary filter based on the same
principle [ 10]. His filter isolated a spectral band with an equiva-
lent width of 40 & and at a fixed wavelength equal to that of
chromospheric radiation Ha; this instrument enabled its author
to observe and photograph the brightest prominences with a sim-

ple telescope.

In 1938, I procured sheets of sufficiently transparent
polaroid and built a second monochromatic filter, 36 mm in

diameter, which made temporary use of this new type of polarizer

'r)Several Physicists had used the band spectra given by a single
crystalline plate: some, like Mascart [ 3], Fabry and Perot [ 4],
R. W, Wood [ 5], used them to eliminate one of the two sodium
D-lines;others, like O, Wiener [6] , Berek-Rinne, I, G, Priest
[ 7], used them to make complementary colored filters; but they
had not studied sets of plates and none of them had produced a
monochromatic filter,
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and allowed me to isolate at will 4 chromospheric and 2 coronal
radiations, It transmits bands with a mean width of 2 .gt. in the
green and 3 2 in the red, Its transparency is 10% in the green
and 25% in the red. In July and August 1939 at the Pic du Midi,
using this filter, whose wavelength is "tuned' and stabilized by
a thermostat, I photographed the chromosphere at the solar limb
as well as prominences against a very dark background, using
Ha radiation, and, employing radiatiens 5,303 and 6,371 A, I
obtained good monochromatic photographs of the corona, the
first of their kind, Publication of these results was delaved by

the course of events [11].

Since then, severzl physicists have constructed filters
like that of Ohman; these are increasingly selective but do not
achieve the selectivity of the one mentioned above; moresover,

they zll isclate only I-ICL radiation.

In 1939 the Zeiss Company of Jena built two filters: the
first, 13 mm in diameter, transmits a band of 43 8& mean width
with a maximum transparency of 21% [12]; the second, 30 mm
in diameter, transmits a band 20 ?& wide with a transparency of

30% (12, 13].

In the United States, John Evans constructed a filter
20 mm in diameter which transmaits a band with a mean width
of 5 ?&. This instrument, equipped with a heater, was adapted
to a refracting apparatus with an optical system like that of the
Lyot coronograph and, since June 1940, has enabled its builder

to photograph prominences against a dark background [14],

Edison Pettit then constructed a similar {filter provided
with a thermostat and has filmed prominences with it since May

1941 [15]. '

In 1940 and 1941 [ obtained two fine samples of calcite and
replaced the polaroids temporarily mounted in the 1938 filter by
calcite polarizers of the proper type; this increased the instru-

ment's luminosity, doubled its selectivity in the red and reduced



the diffused light, and I could observe the chromosphere against
the solar disk and see the courona simultaneously with its green

and red radiations. Using this instrument, provided with a radia-
tion separator, I could take three motion picture films simultane-
ously: the first showing the prominences with the Ha line, the‘
second showing the corona with the 6,374 A line and the third show-
ing the corona with the 5,303 A line,

In 1942, I added another -alcite plate to the filter, which
reduced the width of the transmitted bands to 1 f&. in the green
and to 1.5 % in the red. With this improvement I could observe
and film, with Ha radiation, the movements of the chromosphere
at the limb, the movements of the filaments on the solar disk,
and the evolution of numerous chromospheric flares, and I could
bring out their raélial velocities with an elliptical polarization

analyzer.

My two filters of 1933 and 1938 were described in two very
brief notes which seem generally to have escaped the atiention of
-rea.ders; moreover, the other publications cited present the theory
of these filters in an incomplete or an inaccurate manner. There-
fore, I feel it may be useful to restate in greater detail their prin-
ciple, their respective properties, constructioﬁ and the main

results which they made possible,

A description of the various solutions tried since 1927
may aid physicists to construct filters suitable for different pur-

poses,

THEORY OF THE BIREFRINGENT FILTER

The Principle, This device makes the light to be filtered

pass successively through a series of polarizers Pl’ PZ’ etc.
(fig. 1) whose planes of polarization are parallel, A crystalline
plate 1, 2, etc., for example, of quartz, cut paraliel to the opti~
cal axis of the crystal, is placed between each polarizer and the

next one. The faces of these plates are parallel to each other
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and perpendicular to the light rays; their optical axes are
parallel and form angles of 45° with the planes of polarization
of the polarizers, Each plate is twice as thick as the preced-

ing one,
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Figure 1

Diagram and principle of the
polarizing monochromatic filter,

Light Transmitted in & Normal Direction, Let us calcu-

late the light intensity transmitted by the filter as a function of
wavelength, assuming that the incident beam is perpendicular to

the plane of the plates and disregarding light losses.

Let A be the amplitude of the light wave which leaves the

first polarizer, and let \ be its wavelength, n the number of
plates, e the thickness of the thinnest plate, and i the difference

between the ordinary and extraordinary indices of the plates.



-9-

Wave A is broken up by the thinnest plate into two
vibrations of amplitude A/N2, showing a phase difference of

2 .
p = _1%\;_1._13_‘ The second polarizer makes these two waves

parallel and reduces their amplitude to A/2,
: \

We can recombine these two parallel waves at the exit

from the second polarizer; the resulting amplitude is A cos L

THE | 2
K 3

or A cos the resulting intensity is A2c082 E—%e—.

Let us do the same for each plate; the intensity trans-
mitted by the filter equals the produact of the intensities trans-

mitted by each plate, or:

e . 2moe . lepe e
T8 cos® )‘ cont ,[ ..... cos® 21 (1)
, A n

R

Figure 1 shows how a six-plate filter works. The fac-
tors of the product, i.e,, the transparencies of the six plates
for the various values of \, are represented by the ordinates
of curves 1, 2, 3, 4, 5 and 6. These curves may be likened
to sine curves whose abscissae scale slowly expands when
wavelength increases; each bhas its maxima twice as close

together as the preceding one.

The transparency of the filter is represented by the
lower curve, which has, as its ordinate at each point, the
product of the corresponding ordinates of the 6 other curves,
It passes through some principal maxima equal to unity which
are narrow and flanked by some weak secondary maxima
whose intensity tends rapidly toward 0. These principal max-
ima are few in number; indeed the figure shows that the filter
transmits one maximum of plate é out of 32, Only those max-
ima common to all plates are transmitted, the others being

absorbed by one of the first five plates,

Figure 2 (on Plate 1) shows a photo taken between
5,770 A and 6,680 A which gives the band spectra of six quartz
plates whosé thicknesses are proportional to successive powers

of 2, The wavelengths increase from left to right.

Reproduced from
best available -copy,
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" Figure 3 (on Plate I) shows the spectra of the light
which has passed through plate 6, through plates 6 and 3,
through plates 6, 5 and 4, etc, Each plate added to the pre-

ceding ones divides the number of bands by two,

The light intensity transmitted by the filter can be
calculated numerically by using formula (1), and the calcu-
lation can be facglitated by using a second expression, which
can be obtained directly by combining the elementary waves

at the filter exit only,

After the first plate and t.he second polarizer, we
have two parallel vibrations of amplitude A/2 with 2 phase
difference ¢. By the same mechanism, after the second plate
and the third polarizer, we have four parallel waves of ampli-
tude A/4 and of phases 0, ¢, 2¢, 3o.

At the filter exit, we have 2 parallel vibrations of
amplitude A/Z and of phases 0, ¢, 2¢... (Zn - 1o,

Their resulting amplitude is given, as in the conven-

: . n
tional case of a grating with 27 grooves, by the formula

The intensity at the filter exit equals the square of

this amplitude, or:

AR U (2)

According to formulas {1) and (2), the filter trans-

mission passes through a maximum equal to unity for each
. e . .
of the values of N which make the facior —5'5\—- an integer, while
¥
it is canceled for the other values of A which make the factor
20e

Y

an integer,
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For the intermediate wavelengths, the transmission
passes through a series of secondary maxima, which amount
to (zn - 2) between two principal maxima, but when n is large
{(e.g., greater than 4), their intensities tend rapidly toward 0
whenever one moves away from a principal maximum, They
occur for values of Ef— near an integer of the numbers: 1. S/Zn,
2.5/2", etc., for which the numerator in formula (2) is equal

to unity,

In the vicinity of a principal maximum, since pe/\ is
close to an integer, sin 1%:-3— in the denominator of formula (2)
can be replaced by the smallest corresponding arc; thus, for
the intensities of the successive secondary maxima, we get the

approximate values:

.l_ * c{(- L l I 1 i I
iz 235% 27 77733 67713 300 - -

i,
With increasing distance from the principal maxima,
the ratio of the arc to the sine increases and the intensities
diminish a little less rapidly; the figures of this series must
be multiplied by a factor which is equal to unity near the princi- -
pal maxima but which reaches the value (%)2, or 2.47 in the

middle of the intervals,

Thus, the spectrum of the light transmitted by the filter
'is composed chiefly of a small number of bright, narrow bands,
The total width of each of these bands is twice the interval
between two consecutive zeros, i.e., twice the wavelength
variation AX, which increases or diminishes the quantity Zn%&
by an integer, The exact calculation can be made with the aid
of the dispersion curve of the crystal by deducing from it the

curve which gives u/\ as a function of \.

Writing that the increase of p/\ is equal to - 1]1l . we get:

27e
2z i
A=D1
3"(’.;1.1 A (3)
A

Reproduced from S,
best av_ailabig copy. ’414‘41\\%:"
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The first factor contains thickness e of the thinnest
plate and the difference p of its principal indices., The second
factor takes into account the dispersion 88)\ In the case of
quartz it is 0.923 for line C and 0. 90 for line F. For calcite,

it is 0. 91 for line C and 0, 85 for line F.

The spacing of the principal bands is ZnA)\; it must be
calculated by taking the mean values of \, yu, 9/8\ for the

spectral region considered.

Formula (3) permits calculation of a filter which iso-
lates a radiation of any given wavelength X in the center of a
band whose mean width differs little from a given value, A\.
The smallest of the integers for which the closest bands, 2™AM
away, can be absorbed with ordinary colored filters will be
chosen for n; the multiple of A nearest the value given by for-

mula {3) will be chosen for the thickness e of the thinnest plate,

An identical result may be obtzined by giving the thin-
nest plate a thickness e which is an uneven multiple of \/2y,
but this plate, which contains an odd number of half-wave-
lengths, must be placed between crossed polarizers, The
other plates, which contain even numbers of hali-wavelengths,

must remain between parallel polarizers.

The equivalent width of the filter can be derived directly
from formula {1). Let us take a band transmitted by the filter
for whose center pe/\ equals an integer K, The interval
between K - 1/2 and K + 1/2 corresponds to the separa.non of . i .ji:l
the two principal bands; it contains the band K and all t‘1e corres-
ponding secondary maxima., Moreover, this mterva.l contams
a whole number of periods for each of the, n factors in cos of
formula (1). It can easily be shown that in thlS interval the

mean value of the product of these n factors is l/2n.

If, therefore, the K band and its secondary maxima are
isolated, the.equivalent width of the filter, in accordance with

the definition given at the beginning of this paper, is equal to
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the interval K - 1/2 K + 1/2 divided by 2%, or to the half-width
AMN of the isolated K band,

If the polarizers are polaroids which do not polarize
the light completely, they transmit stray radiations which

increase the filter's equivalent width.,

Influence of Temperature. Temperature changes cause

both the thickness e and difference y of its indices to vary for
each plate; this modifies the resulting phase difference ¢ = ———E—
by the gquantity Ag. For a temperature variation At, and assum—-

ing N\ constant, we have:

1. ~t

f
' b ‘ (4)

e,
o R
o~

~ €
e
(tl--'

a quantity having the form A At and which is the same for all

plates,

This causes a shift in the spectrum of the transmitted
bands; their wavelengths vary, causing an additional variation
of index p so that phase difference ¢ remains constant. There-

fore let us write:

:‘.l_'_-’;-.;()=lfll“"’_{__"_lf'lig_g_la_f_"a;\___l.gyk,
® \wdt e FINPN
whence we get:
LL.&_-__'I?_'.J'_:__]_”_% .__l:__ AL,
s \wdt Tede [ how ) (5)
oA

a quantity having the form A B At,

The first faé:tor, A, introduces index p and its tempera-
ture coefficient as well as the coefficient of expansion of the
crystal perpendicular to the plane of the plates, The second
factor, B, is the dispersion factor of formula (3); we have

already given its value,

The calculation made for the D line and for a 1° C rise

d
in temperature gives A—;= A = -10 " for quartz and A = -0, 62 x 10

for calcite.

-4
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Measurements made on the green line of mercury at
5,46l A with a quartz plate 60.7 mm thick, between 20° z2nd

71.5°, gave for a 1° temperature increase the more exact

value:
23 =A = —1,14, [U=5,
?
whence one derives
AR
= AB = —1,04. 101,

Measurements made with the green line of mercury on

a calcite plate 6.625 mm thick between 16, 8° and 46, 2° gave:

A
}* A = 0,646, 10—,

whence we derive

b=

_:-f" = AB = 0.36. 10~,

All these values are negative, because the relative
reduction of index 1 exceeds the relative increase of thickness

e.

Variable Wavelength Filter. Thus, the wavelength of

the filter can be varied merely by changing the temperature of
the filter. By this method one of the transmitted bands can be
made to coincide exactly with the radiation to be isolated, but
the filter cannot be used in a wide spectral region, e.g.,
between 10° and 60° the bands transmitted by a quartz filter
move only 32 R in the red and 22 2 in the blue,

To explore the whole spectrum, we must change the
thicknesses of the plates; we shall see that a":;slfglit ‘variation

of thickness is enough to give this result,

Let us take a filter, for example, of quartz, which has
been built for a wavelength Ao and which we want to use for

another wavelength Ao To obtain 2 transmission maximum of
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wavelength }‘l for each plate, it is sufficient'to increase or
decrease the plate thickness by an amdunt less than or equal
to k1/2p., thus producing a half-wave phase shift; about 40 p

suffice for the whole visible spectrum.

This alteration modifies very slightly the closeness of
the bands; in the vicinity of )Ll, the spectrum of the transmitted
light is the same as if the filter had been calculated for this
wavelength, but as one departs from 7\1, the transmission max-
ima of the various plates are progressively displaced with
respect to each other, - The spectrum changes -slightl}r and the
intensity of the principal maxima diminishes while new, increas-

ingly intense secondary maxima appear.

Thus, the filter transmits straj radiations whose mean
intensity increases more and more rapidly &s one departs from
Ao We shall calculate the.approximate values of their intensi-

ties in a .particularly unfavorable case,

Consider a six-plate filter whose thicknesses are exactly
proportional to successive powers of 2; let ?\l and )x3 be the
wavelengths of two consecutive bands transmitted by this filter.
For these bands the thinnest plate produces phase shifts ¢ 'l=27rK
and @ '3= 2m(¥K<-1}), 'K being an integer. Let us suppose that, with-
out changing its temperature, we wish to set it for another wave-

1 .
length X, so that X, = )\ =§()\3 - kl). For this wavelength X,,

2
filter plates 1, 2, 3, 4, etc, .., whose dispersion we assume to

be constant in the interval considered, will producé phase shifts:

1 o ;

P = .).'."\li ——"-3'): Go = 37:.'&\ ) —-% = :27:'\21\—. —1 = :};--“:t,
{_ o v _' - 1 o < /
Cp - -u-‘\ 1-1\. —_—— = 27 {4—1\ 1 _"f Q4 = 37‘{\ ST —-3-) = 235‘ Sk —3 - é-) cte
N A

We want c:os2 ¢ /2 to be unity for all plates; for this, we
alternately reduce and increase phase shifts ¢,, ¢,, etc., by

2%w/3 and, thus, alternately reducepaxg:leincrease the thickness
2772 1

of plates 1, 2, efc, by Ae, s0 that—x-z—-_ 3
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Let )\4 be the wavelength of one of the two bands close
to ?LZ transmitted by the filter thus modified. Thkis band does
not have a transparency equal to unity; in fact, this would
require thg variation in the thickness of the plates to be +Ae

so that Fa 4 = i.
}\4 3

The phase shifts introduced by the six plates are not

4’

zZaro but

]
-

Iy

1=
2
FlE

u
It
ity

(~1lu

:'__ -n.—(.lf’-. -—At.’i) =

=i
A

1
:
-
da
-
da

L
v

Let us assume, for example, that )\. = 5,300 A and

hA;=5,900 A, For quartz, we have Bp = 0. 00920 ;.;.4 = (, 00911,

IP‘

"For wavelength A, the phase shifts are ﬁ%— x 0,108 = 13°,

The corresponding band has a transparency (c05213°/2)

= 0.925. The missing light must be in the sec-ondary maxima,

part of which lie between A, and Age

For any wavelength whatever, the phase shifts differ by
a quantity Ay from those one would have with a perfect filter;

Ag is canceled out for \,, for A, it varies almost linearly and

reaches a value of -bl3o. :
Let us consider successively plates 1, 2, 3, 4, § (fig. 1).
Each of their minima must eliminate one of the sixth plate's
maxima, which is weakened by the preceding plates and is freely
transmitted by the following ones. This absorption is no longer
total; in the place of a zero of wavelength AL, the plate consid- "~ -

ered has a transmission equal to
PN . 2 A

sint =0,143 . ——--: 2
3 . A

a quantity of the form AZPZ with AZ = 0. 0128,

Thus, for plate 1, there is z single secondary maximum
located in the middle of the interval for which P é, its intensity
in ’-elatmn to that of the principal maximum \ is I = AZPZ

0. 25A = 0, 0032,
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For plate 2 we find two maxima partially absorbed by
plate 1, located at 1/4 and 3/4 of the interval:

S

Pos it b= AR eont m/t = 00313 A% <2 000010,
P =3/ oo AT eondmM . 0281 A2 = 0,0036.

For plate 3, there are four maxima partly absorbed by

plates 1 and 2:

P18 1= APZeon? /S cos? m/4 = 00066 A2 == 0,000084,
P = 3/8 T = .A%D2 cos? 3r/8 conl 3 /4 = 0,0104 A% == 1000133,
Po=5hs 1 o= AZP2 coo? 5w /8 cond A= ML == 0,0286 AT = 0,000366,
P o= 78 I = AP gos? T8 cont Trrd = 0,327 AT = 0,0042.

For plate 4, we find eight maxima partially absorbed
by plates 1, 2 and 3, for which P =1/16, 3/16,...15/16. The
corresponding coefficients of AZ are: 0,0016, 0. 0018, 0, 0071,
0. 0008, 0.0052, 0, 0132, 0, 0317, 0. 360.

A plate of n order thus gives rise to 2n—l secondary
maxima whose intensities increase, on the average, when one
departs from wavelength lz isolated by the filter., Only the one

farthest removed, i,e., that closest to \,, is intense, For

4,
plates 1, 2, 3, 4 and 5, the respective values of its coefficient

are: 0,250, 0,281, 0,327, 0,360, 0, 38],

The sum of the coefficients of AZ for each plate is
respectively: 0,25, 0.312, 0,372, 0,420, 0,449; when n is
large, it tends toward the value 1/2, For all plates, this sum
is 1. 76; its product times A gives the total light of the second-
ary maxima, or 0, 022, This figure is only an order of magni~
tude; we have not taken into account the secondary effects, the
chief of which is that the bands of the sixth plate shift in a direc-
tion opposite those of the fifth; the relative displacement is thus
multiplied by 1, 5. Allowance can be made for this by multiply-
ing the coefficient of the fifth plate by L 52, which gives the
figure of 3% for the global intensity of the secondary maxima.
The bands transmitted by plates 5 and 6 together undergo almost
no displacement and there is no need to modify the coefficients

of the other plates,
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Therefore, if we use colored filters to eliminate the
two maxima located on either side of the isolated radiation J\z
ag well as the radiations located beyond them, the stray light
due to modification of the filter will not exceed 6% of that of
the principal maximum. Actually, it is reduced much more,
because the colored filters do not have distinct absorption
limits; they weaken the secondary maxima farthest from XZ'

which are, at the same time, the most intense,

Light Transmitted in an Oblique Direction, The phase

shifts produced by the filter's crystalline plates vary whenever
the incident light beam deviates from the normal to their faces.
First, let us calculate these variations in the general case of a
biaxial crystal, from which we can easily deduce the case of a

uniaxial crystal,

Let n, 0y, 1, be the smallest, intermediate and great-
est principalindices of a plate of thickness e, assumed to be
cut perpendicularly to the principal direction for which the
waves have index n,; since n, represents the intermediate

index, the faces of the plate are parallel to the crystal's opti=-

cal axes,

First case, The plane of incidence is parallel to the
principal directions of indices g and ns. Let XX'and YY!
{fig. 4) be the faces of the plate; the section of the wave sur-
face in the crystal through the plane of incidence is represented
by a circle of radius'OA3 = l/n3 for vibrations normal to this
plane and by an ellipse with semi-axes OA, = ]./n2 and OA, = l/nl
:Eor_ vibrations parallel to it, while the section of the wave sur-

face in air is a circle of radius OB = 1,

Let OD be the normal to the plate at point O and i the
angle of incidence; the Huygens construction gives the two
rays refracted in the plate, OE3 and OEl‘ Let E H be the per-
pendicular dropped in air from the one ray's point of emergence

to the other, The birefringence introduced by the plate is:
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3 T length E3H —- optical path OEI' The

vibrations normal to the plane of incidence are refracted along

[31 = optical path OE

OE, with path OE, = nse/cos r3 and sin i=n; sin r,.

v ]

Figure 4

Birefringence of 2 biaxial plate
as a function of angle of incidence.

The vibrations contained in the plane of incidence are
refracted along OEl._ If the plate were isotropic with index N5,
the vibrations would be refracted along OE,, with OE, = nze/
cos ry and sin'i = n, sin Ty The ellipse is a projection of the
circle of radius -.l/n2 expanded perpendicularly to the plane of
the plate in the ratio nz/n ; hence, in the real case the velocity
component perpendicular to the plane of the plate is greater in

the ratio nz/nl, which gives:

M8 ny 7,

COST, Ha  COn g

optical path Ok, =

We have, moreover, E3I—I = EZEl sin i = eftan T, - tan r3)

sin i, A process like this gives

iy - »
tgr, = 7 bg ru vinence B H = a\ﬁ tgry —tg ra) sin 1.
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and the birefringence in plane 1-2 is:

Ity
cos 7,

T (S te 7 } sin 7 i
ot —ter s — }
T \na &7z g ",j eus T,

-

Introduction of the relations sin i = n, sin T, = n3 sin 3

simplifies the formula and yields:

B = e(ny cos 1y —, %y GOS Io).

(6)

Second case. The plane of incidence is parallel to the

principal directions of indices n, and n,.

The calculation can be made as above: the result may
be obtained directly by transposing indices 1 and 3 in the pre-
ceding formula and by changing the sign of the result, which
gives:

Py = elng cos 7y —n,; cos 7,).
_ (7)

If the incident beam diverges only slightly from the
normal to the plate, the cosines can he replaced by the first

two terms of their series expansions and we obtain:

It is also possible to equate the arc with its sine and

write i = nr, which gives us:

LV 1
B elrg —m) + 52—
- \?12 ﬂ:
or.
2 oam, —nt
B =¢fny —n)|l - L3 S i,
" (s ])k 2 (g —myjning” {(8)

a quantity having the form

e(ny —ng) (1 + K9,

The first two factors represent the birefringence of
the plate for normal incidence; the third Zactor gives its rela-
tive variation, Analogously we have:

] il 1
:3: = —.e(‘nl _-1'13) (] - i Mita — o, (9)
2{ny —ngjn Fuw) "
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a quantity with the form
U =) {1 4+ R,

Coefficients Kl and K3 are opposite in sign, with
Kl/K3 = ~n1,/n3. The variations of t_he birefringence are
maxima and have opposite directions in the two rectan-
gular planes containing, respectively, the vibrations of
indices n, and 1. Examined in the focal plane of a2 lens,
the isochromatic lines of the second degree are hyperbolas

whose asymptotes form an angle e with plane 1 so that

A
.,
.

p— ,!-

tg? Yy = — -
3 i

=

o

The case of quartz. Let us say thatn, = n, =n

1
{ordinary index} and ny=1n, (extraordinary index). Formu-

las {8)and (9) give us:

>
K;=+1/2nn_ and K, = -1/2n

The birefringencé diminishes in the plane containing
the optical axis and increases in the perpendicular plane,

For thf:_: D line, we have
no = 1, 54424 n = 155335

whence;

Kl = +0, 20844 K3 = -0,20967

The case of calcite, For the D line, ny=n = 1, 48643;

. 2
n, =n; =n_ =165837. Inthe same way we find K, = -1/2.n0 =

~0,18180; K, = +1/2n _n_ = -0, 20283,

3

As in the case of quartz, the birefringence decreases
in the plane which contains the optical axis and increases in the

perpendicular plane,

The relative wavelength variation corresponding to an

angle of incidence i is obtained by multiplying the relative



IJ

birefringence variation by the dispersion factor of formula

(3), We get:
2ok L\
% - __f:?i:_'- {10)
ok

Usable field. Let us assume, for example, that the

maximum admissible relative wavelength variation is il/lO, GC0;

we will have the inequality:

1 ~ ]'-«3 1
oo ~ M 3a
b — o=
YA
2

which, for quartz, gives i< 2,29 x10™", The field is limited
by a nearly equilateral hyperbola in which a 2°38! square can

be inscribed.

For calcite, we find il <2.50 x10°% and i3 < 2.37 x 10-2,
giving a field limited by a hyperbola in which a rectangle 2%2t

by 2°43" can be inscribed.

A wider field could be obtained by choosing a biaxial

crystal in which the quantity (nln3 - nzz} is as low as possible,

Tartaric acid, for example, has indices of n; = 1, 495,
n, = 1. 535, ng = 1, 604 and coefficients of Kl = +0, 055 and
K3 = ~-0.059; the field would be limited by a hyperbola in which

a rectangle of about 5°10' x 5° could be inscribed,

Composite plates, A very wide field can be obtained

by mezns of the following three arrangements:

1. The first of these arrangements consists in replac-
ing one crystalline plate of thickness e by two identical plates
of thicknesses e/2, superposed and oriented in their plane so
that their principal directions of the same index are perpendic-
ular, Inthis relative position, their birefringences would be
subtracted if no particular precaution were taken. To cause
them to be added, a half-wave plate whose axis is at 45° to the

principal directions of the two plates is inserted between them,
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This half-wave plate gives a 90° rotation to the planes of the
two vibrations transmitted by the first plate; thus, each of
them passes through the second plate with the same index as
the first. Thus, the birefringences are added, while their
variations, which have opposite signs, are largely compen-
sated, In the two principal planes of indices 1 and 3, the rela-~
tive variation of the birefringence is the same and we have

B=p 1+ Ki%), with

K — K, + Ky ot —ung

(=T ‘ (11)

R P

and, in the case of a uniaxial crystal:

K - M —

dneng? (12)

The isochromatic surfaces, being second-degree
curves, are circles and these circles have much larger diam-
eters than the axes of the hyperbolas given by a simple plate

of the same crystal.

For guartz, for example, which has a2 weak birefring-
ence, K= -0, 0006; for a relative wavelength variation of -
+1/10, 000 in the center and -1/10, 000 at the edge, this would
give a circular field 68° in diameter, if the approximations
which we have made were still valid for angles of 34°, The

field is 26 times larger than that of a simple plate.

For calcite, which is much more birefringent than
guartz, K = +0, 0105; the circular field is 170 in diameter, or

6 times larger than the field of a simple plate,

This arrangement has the drawback of being applicable
only in a restricted spectral region., Indeed, if the wavelength
varies by diverging {rom the value for which the hali-wave
plate has been calculated, the system of circular frinées pro-
duced at infinity by the composite plate is weakened; while its
minirna cease to be zero, the intensity of its maxima decreases,

The transmission of the filter decreases, while it passes an
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increasingly large quantity of light outside of the principal

maxima; also, the hyperbolic.fringes given by a simple plate
of thickness e appear at infinity, These fringes, much more
closely packed, furrow thg field and may make it hard to see

details clearly.

’

.Let mka be the phase shift introduced by the hali~wave
plate. If the plate is placed in parailel light, the contrast of
these fringes, in the middle of the field, is tanz(a/Z}; a rela-
tive wavelength variation of 6% is therefore enough-to give

them a contrast of 1%.

I the plate is placed, not in parallel light, but suffi-
ciently close to the image of the object to be observed, these
parasitic fringes are not in focus; they remain invisible and
@ greater wavelength variation can be tolerated; on the other
hand, plate defects may interfere with visibility of details if

they are too near the image.

2. The second arrangement consists in replacing the
simple crystalline plate by two plates cut from different crys-
tals whose coefficients K have opposite signs, e, g., a positive
uniaxial crystal like quartz and a negative uniaxial one like

calcite,

These two plates are simply superposed in such a way
that their directions corrsponding to the lowest index are rar-
allel; the optical axes of quartz and calcite, for example,
must be perpendicular. The birefringences of the two plates

are added without the insertion of the half-wave plate,

Let ﬁ:j be the birefringence of the first plate under nor-
mal incidence and Ki and Ké its coeifficients of variation: let
p}':a, K’i and K'é be the corresponding quantities of the second
plate.

The Birefringence of the double plate, in the incidence

plane of the low indices, is:
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£ e At . - e B " . - . [0 Ol Y- T i A 0y
wr= 8L + K 1) - BT - ]\'",J-; = (4%, = a7 Y1 L l"“l\l + 570 12}
T T T b

a quantity with the form

B=2, - Kg¥ -

and, in the incidence plane of the high indices:
2 = (3g - ) 1 -

a quantity having the form

For the isochromatic lines to be circular, it is neces-

sary (and sufficient) that Kl = K, = K (coefficient of the com-

3
posite plate),

The preceding formulas give us

e Ky —TRY
&, PGa— (13)
and
ey e . —ep e - cr pen S
L (I — R — WK — K" WKy — K"K,
=7 =7 IR o = - - .
(K, — Ry — (), — &7 Ny — s — KT, — ey (14)

The thicknesses e' and e'' of the two component plates
are related by the two equations (15) and (16}, The first is
obtained directly:

r [3 - -
el &y N, — K, u

‘J - { r Fls 3 -y - —_

€ 5w K — K {15)

Furthermore, let AN be the spacing desired for the ‘
bands of the double plate., Spacings A'N and AV of the bands

of the component plai:es are related by the expressions

-

", s ol g A
4% = ! lng.’\ and A" = 7 Y307
. it ] g Mt o
s p- A v ,\ ”a” D
We have, moreover: R L,
Ax AR T AT
whence e,'uf'fl I AR o ,,fl _:‘\_35’“"\ -~
B 75 | & it T T =
By L wh AR AR

(16}
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Relations (.5; and (16) enable us: o calculate thicknesses
e' and ¢'', For a doukle plate of caleite and quartz ard for the
D line, we find;:

J
. ]

K=-£00052 2o 10 : = 0.0577.

»

The spacing sf the bands of the composite plate is squal
to that oi the bands of 2 quartz plate 2,10 e! thick near 7, 000 A,
2,14 e' thick near the D line and 2. 21 e! thick near 4 000 A,

Accepting a relative wavelength variation of 1/10, 000,
the field is circular and has a diameter of 250; it is5 9 times as

large as that of a simple quartz plate.

This composite plate gives a field that is net so larye
a3 taat of the dvuble quartz plate, but it is twice as thin ans

can be used in a very wide spectral region.

3. A third arrangement consists in superposing a plaie
cut from one crystal and twe plates with crossed axes cut irorm-
another crystal whese coefficient K is opposite in sign to that
of the first, A quartz plate and two calcite plates cut parallel
to the optical axis mighr be superposed, for example; the twc
calcite plates would be oriented so that the axis of one would
be parallel to that of the quartz and the axis of the other pzr-

penaicular to i,

By varying the thicknesses of the three plates, the
desired birefringsnce can be giver to the compeosits plate and

its two variation cozfficierts carceled out,
Let us male the following assumptions:

[Bé is the birsiringence ot the {irst plate under normal
1
incidence znd K]‘_ aad Ké are its waciation coefficlents;

ﬁlé‘ K.'l' and K‘?') are the corressonding quantities of the

second rlata;
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ﬁ”o’, K“i and K”g are the corresponding quantities of
the third plate.

A calculation like the foregoing gives us the two varla.n

tion coeffunents K and K of the composite plate:

I— _ a’ﬂl{’] n 1{ + Smﬂ‘[{nl
\-1 - — Ga Bmo ?
n -
K. = 5’013.3 "‘5 oy = 2F "1,
3 =

?"0 - E"O + :3'"0

By canceling out the two numerators, we obtain a sys-

tem of two equations which gives us

By K,K7 — KK,
. T Za 0 “a
and ’ E’ [1} I\*S“ — K H
v, KK — KK,
g, Kp—E7

As before, we can calculate the thicknesses of each of
the two plates of th.e second crystal in relation to that of the
blate of the first, as well as the spacing of the spectral bands
‘of a given composite plate; for the thickness of the second cTysS-~
tal," we must take the difference of the thicknesses of the two

plates cut from it,

In the case of quartz and calcite, we find, for the
birefringences of the calcite plates in relation to that of the
guartz plate:

fa¥. 4

12
£ 0514 and L2 == 0,573,
170 E 7Y
rj 0 o

which enables us to calculate their thicknesses:

o
= = 0,0272, ¢ e 0,0310.
e ¢’

The spacing of the bands of the composite plate.is equal
to that of a quartz plate 1, 089 e! thick near 7, 000 A, 1, 091 e!?
thick near the D line and 1. 097 e' thick near 4, 000 A, This
composite plate is as thick as the double quartz plate, but it

canbe used in a much wider spectral region and it gives even
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lower birefringence variations as a function of incidence since
such variations are reduced to fourth-order terms near the

wavelength for which the plate is calculated,

FIRST FILTER

The preceding calculations were worked out and checked
on crystalline plates between 1927 and 1933, They were pre-
sented in a sealed letter delivered to the Academy of Science on
29 May 1933, Shortly thereafter, the principal results of those

calculations were published in the note already cited [ 8].

Construction of a first filter based oh these results was
begun in 1933. This instrurnent was to have 2 wide field and
was to make possible isolation of a narrow spectral band; its
wavelength was to be adjustable from the start of the ultraviolet
to the near infrared. In the green, near line 5,303 A, this band
was to have a mean width of 1A and was to be located zhout 500 A

from nearby bands which a colored filter would easily isolate,

To produce this result, the filter was to comprise 10
polari.zers and 9 crystalline plates with sides 25 mm long; their
birefringences could be varied according to the principle given
on page 16 of this paper since the three thickest plates were to

be formed of two different crystals,

Thick crystalline plates, Certain crystals in combina-

tion with calcite will give a high, constant birefringence in 2
very wide field and can be very thin, Unfortunately I was unable
to obtain sufficiently large homogeneous samples of such cryvstal,
Consequently, I adopted for the three most strongly birefringent
plates the calcite-and-gquartz combination; this is thick but can
be made easily and is perfectly transparent in the whole spectral

range considered,

Three composite plates were cut in 1934; they are shown

in figure 5,



:
H
[
H
i
.
e N
i L
- o Taer
i B : i
b s 5
i o W & 1 T
LA R 3 ) .
2 ittt i TR B
Figure 5,

The three composite plates of the first filter.

The thickest is formed of a calcite plate S, 3. 635 min thick,
and two slightly prismatic quartz plates Ql and QZ' Together
they form a plate with parzllel faces, variable 1n thickness
between 63, 46 and 63, 76 mm. The next plate, No. 8, less
birefringent by a factor of 2, 1s formed of a calcite plate L. 818
mm thick and a quartz plate for a total variable thickness of
31, 66 to 31.96 mm. Plate No. 7 likewise consists of an 0,909-
mm calcite plate and a quariz plate; this composite plate is
variable from 15,75 to 16. 054 mm. The Q?_ prisms are identi-

cal for the three plates, -

The relative orientation of the S and Q plates requires
exact adjustment; this can be affected easily by watching the
appearance of the isochromatic lines at infinity given by the
ensemble, with the green line of mercury, for example, One
rotation of plate S around its optical axis or around an axis
normal to the latter and parallel to its plane displaces the
fringe system without modifying ils general form and allows
its center to be brought into the longitudinal axis of plate Q.
One rotation of plate S around the longitudinal axis of plate Q,

on the other hand, modifies the form of the fringe system with-

out displacing its center of symmetry.

When the angle of the optical axes of the calcite and

quartz approach 900, the fringes, which are hyperbolas at
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first, are enl'arged and changed into a system of parallel
straight lines, then into ellipses whose axes are parallel to
the bisectrices of the optical axes., The eccentricity of the
ellipses decreases, and when the optical axes are reéta;igular,
it is canceled, providing the quartz and calcite thickness ratio
has exactly the value desired, otherwise it passes through a
minimum and the long axis of the ellipse is then parallel to

the optical axis of the plate that is too thick.

Figure 6 shows a photo, reduced 2x, of the isochro-
matic lines given by the quartz of the thickest plate (63,6 mm
thick). They were photographed with the green line of mercury,
A= 5,460 A, in the focal plane of a lens with a focal length of
115 mm. The optical axis of the quartz is vertical; the lowest
index corresponds to the horizontal direction, The lines are
nearly equilateral hyperbolas. The degrees marked at the

bottorm permit an evaluation of the usable field, about 2. 50.

Figure 7 shows the isochromatic lines of the corres-
ponding calcite plate, which 1s 3, 63 mm thick, They were
photographed to the same scale with the green line of mercury.
The optical axis is horizontal; as for the quartz, the lowest
index corresponds to the horizontal vibrations, The hyperbolas
are no longer equilateral‘; their asymptotes form, with this
direction, a angles such as tanza = nl/n3 = ne/no, whence
a= 43025'. Also, the differences of coefficients Kl and K3

may be seemn.

Figure 8 shows, on the same scale, the isochromatic
lines obtzined with the green line of mercury by superposing
the quartz and calcite, oriented as in figures 6 and 7. The
birefringence is greater than twice that of the quartz alone.
yet the diameter of the isochromatic lines is four times as
large. They are slightly elliptic and the long axis of the

ellipses is parallel to the optical axis of the quarta.

If the wavelength is changed, the ellipticity varies

because the dispersion oi the calcite is greater than that of



~33.

the quartz, When the wavelength diminishes, the ellipses are
shortened along the axis of the quartz, as shown in figure 9,
which was taken under the same conditions with the blue line of

mercury, A= 4,358 A,

et
1.
1
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Figures 6 and 7.

Isochromatic lines of the quartz plate
and the calcite plaie (thicknesses 65, 8
aad 3, 63 mm; mexcury line 5, 460).

Figures 8 and 9

Isochromatic lines cf the 2 plates
superposed {(mercury lines 5,460 and
4,358),

Thin crystalline plates. To give a very wide field, the

next plate (No. 6) should consist of a 0, 455-mm calcite and a
quartz of 7.802 to 8,102 mm. The cutting of very thin calcite
plates presents difficulties which complicate the production of
plate No, 6 and those that follow, These plates -can be made

only of two slightly prismatic quartz elements.

The total thickness of plate No, 6 can be calculated by
replacing the 0, 455-mm calcite by the quartz thickness which
gives a band spectrum with the same spacing, This thickness
is greater in a ratio which varies with the spectral region
considered; this ratio equals 18,9 in the infrared from 14, 000
to 10,000 A, 19 to 19.5 in the red, 19, 8 in the green and 20 to
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20.9 in the ultraviolet. By adopting the extreme figures 18,9
and 20. 9, we find minimum and maximum thicknesses of 16, 402
and 17, 611 mm for plate No. 6; the thicknesses of plates 5, 4,

etc, .. can easily be derived from these thicknesses.

The field of the filter is limited chiefly by pla.tei_é;\
For 5,303 A, this plate contains 296 wavelengths; a relative
birefringence variation of 1/2,960 causes the transmission of
this plate to pass from unity to COSZTF/].O, or 90.5%. Similarly,
plate 5 transmits cosz'rr/ZO, or 97.5%, etec. It finally i::asses
87%.

This weakening corresponds to an angle of incidence i

so that K3i2 = 1/2,960, whence i = 0, 04 radian, or a field with
a diameter of 4°36!, Plates 9, 8 and 7 together would give a

larger field in the relation '\]K37§K = 2.2, or 10° of dizameter,

In order to have the maximum field, I studied another
solution for plates 6, 5, and 4, wviz,, to take a calcite thick
encugh so that it could be cut easily and to combine it with .
two quartz plates, one of which has its axis parallel to that of
the calcite and the other with its axis perpendicular to it, The
thicknesses of the two quartz elements were figured in such a
way that the fringes would be circular and that these plates
together would give a band spectrum whose maxima would have
the desired spacing. The sum of their thicknesses would have
to be almost the same as if they had parallel axes; the dimen-
sions of the isochromeatic lines would remain the same, and

only the bireiringence would decrease.

Unfortunately, the dispersion of such a combination
differs greatly from that of double quartz-and-calcite plates.
This increases the stray light as soon as one departs irom the
wavelength for which the filter is set, To use this arrangement
in widely different spectral regions, the thickness of one of the
quartz plates would have to be made variable by as much as
twice the thickness of the calcite, depending on the spectral

region used.
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General arrangement of the instrument. The filter was
to comprise 10 Glazebrook-type polarizers,

measuring 20 mm
to a side and 40 mm thick, 3 calcite-and-quartz plates with

total thicknesses of 67,3, 33,2 and 16. 9 mm, variable by +£0.15
mm, and 6 quartz plates 17, 8.5, 4.25, 2, 125, 1. 062 and 0, 531
mm thick and variable by 3% +120 . (the thickness which corres-
ponds to a half-wave for the 2u radiation), or +0. 63 mm for the
thickest and £0. 15 mam for the thinnest plate,

"'The total length of the polarizers was therefore to be
400 mm; that of the'plates about 153 mim; consequently, the

total thickness of all the optical components was to be about
553 mm,

The following arrangement was adopted to keep this
great thickness from reducing the field of the instrument:

The optical components are divided into 3 groups (fig. 10)

o el
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Figure 10

Diagram of the first filter,
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The first group includes 4 polarizers Pl’ 17’2 P3, P4
and plates 9, 2, and l; its overall length is 235 mm;
The second group includes 2 polarizers P5, P6 and

plates 6, 5, and 4; total length: 1l mm;

The third group includes 4 polarizer:s P?’ P8’ P9 PlO
and plates 8, 7, and 3; its overall length: 217 mm,

Each of these groups is contained in 2 glass tube closed
by two end glasses Ll and L2 and filled with 2 liquid whose index
is close to 1. 5. This liquid almost entirely eliminates light
losses by reflection; moreover, it improves the images by
nullifying the wave surface alterations produced by surface
defects of the optical components. If a liquid such as carbon
tetrachloride, which has no absorption band in the near infrared,

is chosen, the filter can be used to 2 microns,

An even number of polarizers is used in each group;
they are crossed two by two to avoid the astigmatism which

they would otherwise introduce on non-parallel light beams.

The three tubes are placed end to end behind a tele-
séope. The first tube's entry face, located behind focal plane
F1 of the telescope, is a plano-convex lens Ll with a focal
length of about 220 mm in air which images the telescope lens

in plane M, near the middle of the second tube.

Between the first and second tube is a lens O with a
focal length of about 180 mam in air which forms, at 1nf1n1ty,
an image of focal plane Fl of the telescope. DBetween tubes 2
and 3 is an identical lens O2 which forms, outside the instru-
ment in FZ’ 17 mm from the exit face, a second image of the

telescope’s focal plane; this is the final monochromatic image.

The lenses can be worked out so that they correct the

curvature of the field introduced by plano-convex lens Ll’
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The beam opening is limited by the polarizers, whereas
the field is limited chiefly by the birefringence variations of
the thickest quartz plates (nes. 6, 5, and 4) as a function of

the inclination of the ravys,

The rays which are parallel to the filter's axis and
which pass through the edges of the polarizers of the first tube
are generatrices of a cylinder with a square base, 20 mm x
20 mm, Lens O changes this cylinder into a cone whose ver-
tex is 265 mm from this lens, The section of this cone through
plane M, located in the middle of the second tube, 73 mm from
Ol’ is a square 14,5 mm x 14,5 mm. If we circumscribe this
section by a diaphragm with 14,5 mm sides, the field of full
light covers the whole entry face of the first pelarizer., If we
increase this diaphragm up to 20 mm, the field of full light

decreases and is finally reduced to the central point.

As we saw on page 34, the angular field of plates 6, 5,
and 4 together is a square with sides of 0, 08 radian in air, or
0. 053 radian in liquid. On the entry face of the first polarizer,
it corresponds to a square of 0, 053 x 265 = 14 mm per side;
hence this face does not limit the field, The same argument

is applicable to the exit face of the last polarizer.

. Under these conditions, it is advantageous to increase

the focal lengths of lenses O, and 02. by a few centimeters.

1
Then the spots can be avoided which would be produced by
defects of the optical components located near the entry and
exit focal planes; at the same time, the useful aperture of the

instrument is increased slightly,

Observed from the entry face of the first polarizer, the
14, 5 mm diaphragm which would be placed in the center of the
filter would subtend an angle of 14, 5/265 = 0. 055 radian., In

alr, this aﬁgle becomes 0. 055 x 1.5, or 0. 082 radian.

The filter, placed behind a telescope with a 12-cm aper-

ture and a 1, 50-m focal length, would give a field of 0. 0097
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radian, or 33' and would permit observation of the whole

sun.

Adjustments. In order to isolate a radiation of any

given wavelength A‘o’ it is necessary to:

1. Give each filter plate a thickness for which one of

its transmission maxima has }\0 as its wavelength;

2. Choose for each of the plates 8, 7, ete., of decreas-
ing thickness, that value for which, near ko, the quotient of the
spacing of its maxima divided by the spacing of the maxima of
pl.ate 9 (the thickest) is closest to 2, 22, 23, etc.

This result could be obtained by trial-and-error, but it
is much better to prepare a table which gives, for a given tem-
perature and for each wavelength, the thickness which must be
given to each oi the 9 plates. This thickness is shown by a
scale marked on the edge of plate Qz; it can be varied by slid-
ing this plate in its plane with the aid of a ratchet, The ratchets
can be actuated from outside by metal rods which traverse the

end faces through ground joints,

The three tubes are enclosed in a thermostat which

keeps temperature constant to within one-tenth of 2 degres.

SECOND FILTER

Construction of the first filter was interrupted in 1934
because of lack of the calcite needed for cutting the polarizers,
Some years later, polaroid sheets appeared and quickly became

a commercial product.

With this new, very thin type of polarizer I could reduce
the filter length considerably and thus simplify its optical sys-

tem while preserving an adequate, although weaker, field,

Furthermore, to study the sun, I did not have to isclate

every wavelength (as could be done with the first filter), but
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only the principal radiations of the chromosphere and corona;
however, in certain cases it was useful to isolate them simul-

taneously,

These conditions induced me to apply the same principle

to a second, simplified filter; its characteristics are as follows:

Characteristics of the second filter. The principal part

of this irstrument, shown in fig. 1, consists of six quartz plates
1, 2, 3, 4, 5, and 6, each with parallel faces 36 mm square.
The optical axes of these plates are parallel to the entry and
exit faces and to one of their sides. They are superposed, as
their optical axes are parallel; each of them is twice as thick
as the preceding one, Polaroid sheets Pl’ PZ’ etc....are
placed between these plates, before the first one and after the
last one; their planes of polarization are paraqllel to each other

and are oriented at 45° to the optical axes of the quartz,

As we have seen, the spectrum of the light transmitted
by this ensemble consists of a small number of narrow, regu-
larly distributed bands, whose positions and spacing are deter-
mined by the thickness of the thinnest plate; the thickness of
all the other plates may be derived from this one by doubling,

. I tried to give this thinnest plate a thickness such that
few radiations would be transmitted, and that six of them
should have wavelengths as close as possible to those of the
four main chromospheric, and two main coronal, radiations of
the visible spectrum, viz,: for hydrogen: Ha and Hﬁ; for
helium: D_; for magnesium: bl, and for the corona: the green

3
and red lines 5,302.8 and 6,374, 5 A,

Fortunately, the distribution of these six radiations and
the dispersion law of quartz agree so well that these six condi~
tions are fulfilled satisfactorily for a thickness of 2, 22 mm.,
With this thickness as a design constant, and knowing that wave-

lengths decrease by 1, 04 x lO"4 per degree of temperature
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increase, the temperature of the filter need be varied only
slightly to make one of its transmitted radiations coincide

exactly with the radiation to be isolated.

The first column of Table I shows the six radiations
chosen. Column 2 gives their wavelengths A. The third col-
umn gives the retardation §/\ introduced by the thinnest plate
at a temperature of 30° for each of the six radiations. This
retardation, expressed in wavelengths, is almost equal to an
integer plus 1/2; perfect equality occurs at a temperature T
different from 300, as given in the fourth colunsn. At this
te:hperature the filter isolates exactly the corresponding radi-
ation, if care is taken to place the thinnest plate {with an uneven
number of half-wavelengths) between crossed polarizers. The
other plates, double, quadruple, etc. the thickness of the
thinnest plate, contain whole numbers of waves and must stay

between parallel polarizers,

It can be seen from the Table that the coronal red and
green lines 6,374.5 and 5,302.8 A are isolated at very similar
temperatures: 38, 6° and 490, 20; indeed,, the retardations they
experience in quartz at 30° are in a ratio almost equal to 38,5/
3.5, or 11/9, Imeasured this ratio; it varies very slightly
with temperature: 11/9 + 2/10, 000 at 49° 11/9 + 1/10, 000 at 0°.

TABLE 1
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This peculiar property of quartz enabled me to isolate
simultanecusly the two principal coronal radiations by slightly
modifying the thickness of the two thickest plates of the filter.

I reduced the sixth plate, 7L, 144 mm thick, by a thickness
corresponding to a yellow wavelength, or 64 yu; the fifth plate,
35,572 mm, by a thickness corresponding to a yellow half-wave,
or 32u and placed it between crossed polarizers. This slight
modification did not cause any appreciable change of the filtexr's

properties in the visible spectrum.

The last column of the Table gives the T' temperature ,
at+ which the filter, thus modified, functions., T!is equalto T
in the yellow, is a little higher in the red, a little lower in the
blue, so that the two coronal lines are isolated at exactly the
same temperature 39, 40. In addition, chromospheric D3 and
H_, radiations are isolated at closer temperatlires than before:
14. 9° and 19, 6°.

Figure 11 (Plate I) shows five spectra of the light trans-
mitted by the filter at the different T' given in Table I, in the
red and yellow at the top, in the green and blue at the bottom.
Comparison solar spectra taken with the same slit are inserted
between these spectra. On them we recognize the principal
solar lines: at the top from right to left, Ho, and the two D lines
of sodium; at the bottom from right to left, the triplet of mag-

nesium and the H_ line.

p

Between 6, 600 and 4,800 A, the filter transmits 13
narrow bands; the sixth principal radiation from the right is

not visible on the figure,

At 150, the 5th band, of 34,5 order, coincides exa.étly

with the D3 line of helium (invisible in the solar spectrum).

At 19, 6°, the 13th band, of 42,5 order, falls exactly on
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At 35.1%, the 10th band, of 39.5 order, coincides with
one of the lines of magnesium, bl’

At 39, 40, it can be seen that the 2nd and 9th bands, of
31, 5 and 38,5 orders, coincide simultaneously with the red and

green lines of the corona (invisible in the solar spectrum).

Lastly, at 47, 50, the first band, of 30,5 order, coincides
with the Ha. line,

One of the radiations transmitted by the filter can be
separated at will by adding, after the filter, a group of three
thin quartz plates, whose retardations for the D3 line are: 17,
8.5 and 4.5 waves, The first plate must be placed between
parallel polarizers, the second between crossed polarizers.

If the third is between crossed polarizers, the ensernble trans-

mits <-)nly bands D, and Hﬁ; if it is between parallel polarizers,

3
the ensemble transmits bands Hu. and 5,302.8 A of the corona,
Gelatine or colored filters can be used to separate the remain-

ing radiations, if desired,

* Another group of three plates, producing retardations
of 18,9 and 4.5 waves for line 6,374 A, transmit the two cor-

onal lines simultaneocusly, excluding the other radiations.

It is surprising to see the same instrument satisfy
such a large number of independent conditions. Indeed, the
probability that it would be possible to isolate six radiations
in this way in the interval of 15° to 48° without having the total
number of bands transmitted between 6, 600 and 4, 800 A exceed
13, was about 1/400, and the probability that the temperatures
relative to the two coronal lines would not differ by more than
2° was about 1/4, 000, If one takes into account the filter's
other properties, such as the small temperature deviation

between D, and Hﬁ and the regular distribution of the Hu, D

3 37
5,303 corona and HB bands which makes it possible to separate

them at will with a single group of three plates, the probabilities
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are-of the order of 1/100, 000. The simultaneous realization of
such a large number of conditions is therefore partly the result

of chance.

The filter also has other properties for which it had not
been calculated: e.g., with it one can make the bands of 35,5
and 36.5 orders coincide with coronal line 5, 694 and line 5,577

of the night sky and polar aurora.

Construction of the filter. The six plates were cut from

the most homogeneous parts of some fine Quartz samples. The
sixth and fifth, 71, 080 and 35. 540 mm thick, were formed by
two plates superposed of half-thickness; hence, if necessary,
their field could be increased by inserting a half-wave plate as

explained on pages 24-25, -

The birefringence of the plates was then compared
directly two by two by an interference method by which the
difference in index between the samples and between parts of
the same sample could be corrected by éetouching the faces
of the plates. This brought their thicknesses to the desired
values at all points with a tolerance of better than one micron
and, thus, the phase shifts introduced by the various plates .

were accurate to a value of less than 2/100 of a wavelength,

The six quartz plates and the seven polaroids were
stacked and cemented with Canada balsam between two end
glasses to avoid light losses by reflection and to improve the

images.

The ensemble formed a square-~based prarallelepiped,
150 mm long 2nd 36 mm per side, This parallelepiped was
placed in a tube of thick aluminum whose cylindrical outer sur-
face was 64 mm in diameter; its conical inner surface measured

48 mm and 52 mm at the ends.

The space between this tube wall and the optical compo-

nents was filled completely by four aluminum blocks having one



plane side, facing the optical components, and one conical side,

facing the tube's inner surface. By pushing slightly on these

blocks, one could reduce the play as desired and insure a good

thermal contact between the quartz elements and their mounting,

An even layer of silk-insulated copper wire, bakelite-

bonded and covered with an insulating sheath of wool 2 mm thick,

was wound around the entire cylindrical outer surface of the tube,

This winding, shown schematically as A in fig., 12, had a

resistance of 60 ohms and constituted one of the arms of Wheat-

stone bridge ABCD. The comparison resistance, B, alsc 60

ohms, made of manganin, was entirely independent of the tem-

perature.

Arms C and D, also of 60 ohms, were identical and

were made of constantan,
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Figure 12

of Wheatstone bridge and thermostat,
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A potentiometer E of 5 ohms and 800 turns of manganin
was used to balance the bridge. When this balance was achieved,
microammeter ¥ with'a range of £100 pa, connected diagonally,
acted as a null detector. A temperature variation of a few hun-

dredths of a degree produced an observable deflection,

The position of the sliding contact which produced the
halance depended solely on the resistance of the winding of the
filter, hence on its temperature, This sliding contact had a
needle which moved over z scale giving the filter temperature

to 2 tenth of a degree, between 0° and 55°,

The mounting had a longitudinal hole in which a ther-
mometeéer could be placed to calibrate the bridge; it followed
the temperature variations of the winding very rapidly. The
balancing of the quartz elements, which was checked optically,
took longer; for example, if the temperature of the winding
were adjusted to 47, 5° with the bridge, prominences would

appear in 1 minute and shine with full brightness in 3 minutes.

The instrument was provided with a very simple tem-~
peratlllre regulator, consisting of three cascade relays. The
first relay G had a rotating loop connected to the two terminals
of microammeter F located 1n the diagonal of the bridge; a
current of 1 pa sufficed to operate it because 1t cut off a current
of 100 pa only. The current was sent in turn into the rotating
loop of a second similar relay H, which sent a currentof O.1a
into the electro~magnet of a third vane-type relay I. The latter
short-circuited an adjustable resistor J, cut in on the current
feeding the bridge; this current was taken off from a 110-volt

d-c line through a resistor K. The auxiliary current of the

relays was provided b;,r a battery.

If the temperature was higher than that indicated by the
potentiometer needle, the first relay shifted in such a way that
contacts were not made; the power current was too weak and

temperature decreased, As soon as the latter fell below the
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figure shown by the needle, the first relay reversed, all contacts
were established and resistor J was short-circuited; this

increased the current and raised the temperature,

Thus, the temperature of the winding oscillated from one
side to the other of the value indicated by potentiometer E with a
period of the order of one second and an amplitude less than one-
tenth of a degree. The temperature of the mounting and the
quariz elements did not experience these oscillations, but

remained remarkably constant during a whole day.

The power consumption of the bridge was always less

than 1.5 a.

Figure 13 {Plate iI) simows the Wheatstone bridge built in
the form of a panel 50 cm square and 16 cm thick. At the bottom
is the annular coil of the potentiometer, surzounded by its scale;
to the right and left of the needle's axis are the two arms of the
bridge; at the top, arranged horizontally, the balance resistor
and the two-contact power resistor, To the right is the zero
microammeter; to the left, an ammeter which shows power con-
su.mp'tion. At the bottom, to the left, the lead-in of the 110-volt
supply; at the right, the leads to the filter. Behind the panel are
the three relays of the thermostat as well 2s 2 fourth relay
designed to shunt both the microammeter and the first relay to
protect them from surges that might break a conductor in the
filter circuit; the rotating loop of this relay is connected to the

microammeter terminals.

This thermostatic system is very conx’rement; the filter,
which is not very bulky, can eas:lly be placed behind a corono-
graph or telescope; a flexwire, L, 2 mm, links it with the Wheat-
stone bridge; the latter is more bulky but can be placed on the

ground or on the observation ladder.

First observations. The filter, completed in June 1939,

was adjustad the following month at the Pic du Midi and instzllied

on the coronograph eyepiece tube behind the instrument's lens,
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It was preceded by -a divergent lens which returned, at infinity,
the image of the coronograph's occulting disk and was followed
by & lens which formed, in an eyepiece or on a photographic

plate, the monochromatic image of this disk surrounded by the

corona and the prominences,

The filter was placed in parallel light and each point of
the final imnage was formed by a beam of parallel rays through
the filter. Under these conditions, the transmitted wavelengths
were the same for all the rays of a beam; on the other hand,
the wavelengths varied according to the angle these rays made
with that normal to the filter plates, hence from one point of

the field to another.

As we have seen, an inclination of 1019' produced, in
the most unfavorable directions, a relative wavelength varia-
tion of 1/10, 000, which is admissible; therefore, a ficld of
2°38' could be used. The fres aperture of the coronograph was
usually 120 mm; the corresponding diameter of the beam through
the filter was 20 mm; consequently one could observe, without
troublesome change of wavelength, a field of 2° 38' x 20/120 =251,

or 5/6 of the solar diameter,

Cbservation through the eyepiece disclosed the following
phenomena: When all the bands transmitted by the filter were
allowed to pass, the sky around the sun showed a dark brown
tint, which was due to the pelaroids., By increasing the tempera-~
ture progressively, at 15° the prominences were seen to appear
brightly against a dark background in yellow with the helium D3
radiation; then, at 19, 60, they were 1lluminated in blue with
hydrogen H@; near 17° they showed an interrnediate coloration,
greenish in cast which turned to blue or yellow on the points

which move with positive or negative radial velocities, Near

210 they disappeared.

At 35° the most intense prominences again appeared, in

green, with magnesium 5,183 A,
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At 39.40 the corona appeared again, simultaneocusly
with its radiations 6,734 and 5,303 A; the latter was dominant
and gave the corona a vivid green color; numerous details
were visible, Simultaneously, the prominences were already
showing in dark red through the polaroids because of the great

intensity of Ho.'

At 47, SD, finally, the prominences shone bright red

with H .
a

When the band corresponding to H was isolated, the
solar limb could be zllowed to exceed the coronograph occulling
disk without dazzling the observer; the c.:hromosphere appeared,
adding to this edge a multitude of little jets.

The prominences could be photographed even under poor
stmospheric conditicz}s, e.g., through cirrus; two good films
were obtained thus, on Il August 1939 from 0836 to 1803 and on
12 August 1939 from 0737 to 1205, Figure 14 {Plate II} shows a
picture from the second film: the sun's rim slightly exceeds
that, of the coronograph’s black disk and is fringed by the chromo-
sphere; The watch dial photographed at the left of the film frame

gives the time of the view, 1126,

On the other hand, by isolating the bands corresponding
to the green or red line, we could photograph the corona with
jts ronochromatic radiations. Figure 15 {Plate II} shows the
first rnonochromatic photograph of the corona thus obtained with
the green line on 10 August 1939 at 0920 on the west solar limb.
The sun measures 60 mm in diameter on the negative; exposure
time was 10 minutes, This image is very different from an
ordinary photograph taken in total light; the jets have much
greater contrast and appear against & dark background; they
show more numerous details, and one of them may be followed
up to 2 height of 8!, more than half of the solar radius, The
same image, taken shortly after with the red line, shows very

different details,
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New calcite pelarizers, Despite these highly encouraging

results, the filter had several drawbacks, attributable to the

polaroids,

1. In the green, the polaroids strongly absorbed the
light and reduced the filter transparency to 13%; in the blue, they

absorbed even more,

2. In the red they were less absorbent and the filter
transmitted 21%, but they did not polarize the light completely,
and the non-polarized radiations, of various wavelengths, had
a-higher total intensity than that of the transmitted bands,
Therefore, the equivalent width of the filter, which should have
been appreciably equal to the half-width of one of these bands,
i.e., 3 A, reached 7 A for Ha' The‘ chromosphere was visible
on the disk, but could be seen only with difficulty; only the most

intense filaments could be observed,

3. Furthermore, the polaroids diffused the light strongly;
they did so to such a degree that in order to see the prominences

.or the chromosphere at the limb well, almost the whole solar
disk .ha.d to be masked.

4, The thickness of the polaroid sheets was irregular,
which usually produced streaks., These defects were lessened
considerably by immersing the sheets in Canada balsam of
- similar index, but they did not disappear entirely and interfered

somewhat with the sharpness of the pictures,

In view of all these drawbacks, I decided to return partly.
to the original project and to replace the polaroids with calcite
polarizers as soon as I could obtain the necessary material from
which to cut them. Fortunately, in the fall of 1939 the Société
1'Optique Scientifigue processed a fine rhombohedron of iceland

spar and production of the polarizers was begun at once.

In order to reduce both their thickness and the amount of

material needed, these polarizers were composed of birefringent
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prisms, one of calcite and one of glass, of the same angle;
these were joined by one face with their bases opposed so that

their edges and exterior faces were parallel,

The angle of the prisms was 16°40* and their exterior
faces were 36 mm square, Thus the combination formedla
parallelepiped 14 mm thick, The optical axis of the calcite
was parallel to the exterior faces of the polarizer and to one
of their diagonals, The glass prism was cut from crown fluor
whose index for the D line, 1,4895, was chosen as close as

possible to the extraordinary index of calcite, 1, 4864,

We caused a ray of natural light to fall on the polarizer
approximately normal to its faces; at the exit we obtained an
extraordinary ray which passed through the ensemble almost
without deviation, and an ordinary ray, for which the calcite
has an index of 1. 6583, which was deflected 3°7' toward the

base of the calcite prism.

This arrangement offers two advantages: it is suffi-
cient to substifute the bireiringent prism for one of the polar-
oids of the filter; the undeflected ray vibrates at 45° from the
sides of the quartz plates, hence along one of the bisecirices
of their optical axes. Also, this plane can be rotated 90°
without changing the direction in which the ordinary ray is
deflected, simply by turning the polarizer around an axis

perpendicular to its edges, thus reversing its faces,

Figure 16 shows the assembly diagram of the filter
with the birefringent polarizers: the sign + indicates on which
side the optical axis of each of them 1s ahead of the image
plane. The seventh polarizer, placed outside the mounting,
is not shown. The filter is operated in the same manner as with
the polaroids, except that a diaphragm whose image at iniinity
circumscribes the field is added in the focal plane of the lens
which precedes the filter, Several images of this diaphragm
can, in fact, be observed in the foczl plane of the lens which

follows the filter:
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1. A direct, undeflected image, A, which 1s the one,

* that will be used;

2, Below, in B, 7 superposed images, formed by the

rays deflected once by each of the 7 prisms;

3, Below, in C, 21 superposed images, deflected twice

by each of the double combinations of the 7 prisms;

4, Also below, in D, 35 superposed images deflected

three times by each triple combination cf the 7 prisms;
5, In E, 35 superposed images, deflected four times;
6. 21 superposed images, deflected five times;
7. 7T superposed images, deflected 6 times;
8. 1 image, deflected 7 times.

The last inages cannot be detected under normal condi-

tions, for their rays do not leave the filter,

The diaphragm which limits the field is given a height
which leaves the first image completely separated from the
others, This height, which must not exceed 307‘, 1s more than
sufficient to allow the use of all the field in which the wavelength
is practically constant, In the eyepiece one observes only the
direct image A; contrary to what one might expect, the 127
unused images do not represent any loss of light; as a matter-of
fact, the wavelengths are not the same as that of the radiation

isolated in the direct imnage; none of them contains this radiation.

The transparency of the filter is no longer Hmited except
by the need for polarizing the light; it is much greater than with

the polaroids, reaching 40% in the entire visible spectrum,

Polarization is complete for all radiations., There is no

longer any stray radiation, and the equivalent width of the filter
becomes equal to that of a band, i,e,, 3 A in the red.

|
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One would expect the 127 unused images to produce a
strong diffused light, but this is not the case; the diffused

ligflt is much lower than with the polaroids,
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Figure 16

Diagram of the second filter with
birefringent polarizers and arrange-
ment of the images given by this instru-
ment,

Lastly, the faces of the calcite prisms are much more
regular than those of the polaroids and, cemented with Canada
balsam, they make it possible tc obtain perfect images, pro-
vided the beams passing through them are sufficiently parallel,

i.e., that they do not converge 2t less than 3 meters distance.

The index and especially the dispersion of the crown
fluor are not at all the same as those of the calcite for the extra-
ordinary ray; this gives rise to a slight deflection of the direct
beam and 2 dispersion-which is iroublesome when observations
with several radiations are made simultaneously, This disper-
sion is compensated, for the green and the red, by adding a

small-angle direct-vision prism to the left end of the filter.
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New coronal observations., The monochromatic filter

with its calcite polarizers, mounted behind the coronograph
of the Pic du Midi, gave brighter and sharper images in 1941
than in 1939, when it had polaroids.

When Ho. was isolated, the chromosphere appeared at
the solar limb without any need to mask the rest of the disk;
filaments and some flares in sunspot groups were seen simul-

taneously.

When the red and green coronal radiations were allowed
to pass at the same time, the corona al;peared with a vivid green
hue because the eye is more sensitive to this color, but certain
parts were seen to be strongly shaded with red; some of the jets
which do not emit green radiation were even distinctly red. In
the-red, the instrument gave more sharply contrasted photo-
graphs than in 1939; exposure times were shorter, especi;ally in

the green,

Figure 17 (Plate IIl} shows the green corona of 3 Septem-
ber 1941 at 0805, recorded at the west limb, with a 6-~minute
’ expos.ure. On the negative the solar image measures 70 mm
in diameter; the corona has a very complex structure, seem-

ingly formed of entangled arches, fine jets and small bright

clouds,

Below, we see the red corona photographed at the same
place 15 minutes later, with a 7-minute exposure. Its structure
is much simpler and the arches stand out better. The large jet )
of the red image, to the leit at the bottom, is weak and short on
the green image; farther to the left, 2 parallel jet, more intense
in the green, is invisible in the red. The most intense jet of the
green image, in the upper right, is very weak on the red image,
where only its outline is seen, In the center, the same arches
appear on both images, in the green with 2 knotty structure,

and sharp and regular in the red.
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Generally speaking, the green and red coronas differ
from each other as much as the chromosphere photographed

with hydrogen and calcium; these two kinds of images also
differ greatly from that obtained without a filter with the con-

tinuous spectrum,

Figure 18 (Plate 1) shows the green corona of 15 Sep-
tember at 1125, on the east limb, The jets, generally double,
seem to fold back towarc} the interior of the luminous mass,

like the petals of a raose.

Figure 19 (Plate [II} represents the green corona of
14 September at 0900, to the west., The concentration of light
at the equator is much less marked and a very dark interval
may even be seen in the center. Thess is no arch but only

incurved jets,

THREE-COLOR CINE PHOTOGRAPHY

Radiation separator. During 1940 and 1941 | studied

and adapted for use with the monochromatic filter a radiation

separator and a cine camera which allowed <hree different
radiations to be filmed simultaneously: green coronal line
5,302, 8 A, red coronal line 6, 374.5 A and the Ha line of
prominences 6,562.8 A, The first two radiations were iso~
lated at 39, 40, but the third was isoclated at 47. 50 whereas at
39, 4.-0 it was strongly absorbed by the fifth plate of the filter,
36 mm thick, the wavelength of the nearest filter band being

6,562.8 + 5,6 = 6,568.4, [ employed the following method to

avoid this:

Since the plates of the filter can be placed in any order,
I placed the 36 mm plate (A in figure 20) last. I replaced the
exit polarizer by a double-image calcite-and-glass prism B,
which separated the rays in a plane perpendicular to that of
the other polarizers; the sign =~ indicates on what side the

optical axis of the calcite is ahead of the Image plane.
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PLATE III

Figure 17. Green corona and red corona at the west limb,
3 September 1941, 0810.

Figure 18. Green corona at the east limb, 15 September
1941, 1125.

Figure 19. Green corona at the west limb, 14 September
1941, 0900.
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PLATE IV

Figure 23. Portion of 3 simultaneous films o1 lu August
1941 (0822 and 0824) red line, Ha line, green
line.

Figure 24. Portion of 2 simultaneous films of 1 September
1941 (1225 and 1226), red line and Ha. line.
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Figure 20

Diagram of the radiation separator
placed after the filter. Arrangement
of the images.

I obtained two series of pictures, F and G, in this way.
Series F was produced by the extraordinary ray of prism B;
the upper picture contained the normal radiations of the filter,
each consisting, as shown by the curve beneath it, of a princi=-
pal maximum and weai: secondary maxima. At 39, 4° one of

the transmitted radiations coincided with the green coronal

line; another coincided with the red line.

-

Picture series G was produced by the ordinary ray of

prism B; the upper picture of this series contained double
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radiations; in fact, for this ray, the 36-mm plate absorbed the
center of the radiation transmitted by the rest of the filter; it
passed, on each side, two bands with an intensity of 0. 44, The
band of wavelength 6,568.4 A was split into two components

11.6 A apart,the weaker of which, wavelength component 6, 562, 6

A, practically coincided with Ha'

In the next position I added a quartz plate E, 1. 0966 mm
thick, and a Wollaston-type birefringent prism CD whose split-
ting effect was twice that of the preceding one, This combination
separated the whole bands from the split bands and finally obtained

the following result:

There were 4 series of prctures. H. I 'J. K: only the first

picture of each series was of interest.

Image H, which was formed by an extraordinary ray in
prism B and an ordinary ray in prism C and will be termed "odd, "'
contains the whole bands, one of which coincides with the red

coronal line,

Image I, which was formed by an ordinary ray in prisms B
and C and will be termed ''even, ! contains the split bands, one of
which, of wavelengths 6,562,6 and 6,574, 2 A, has its short wave-

length component on Ha'

Image J, which was formed by an extraordinary ray in
prisms B and C and will also be called ""even, ' contains the whole

bands, one of which coincides with the green coronal line,

The fourth image, K, which was formed by an ordinary

ray in prism B and by an extraordinary ray in prism C, contains

no interesting radiation.

The first image passed through a suitable red filter to a
panchromatic film which recorded only the corona with its red

radiation 6, 374,5 A.
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The second image passed through a darker red filter to
a second panchromatic film which recorded only the prominences

with the red Ha radiation,

The third image passed through a suitable green filter to
an orthochromatic film which recorded only the corona with its

green radiation 5,302, 8 A.

The fourth image was seen in an eyepiece and was used to
keep the disk of the coronograph centered on the sun throughout

the whole time of filming.

Thus,l the principal radiations were separated almost

without loss of light.

Camera. Like the mounting for the monochromatic filter,
the three-color movie camera was built entirely by A. Martin,

who was then the machinist at the Meudon Observatory.

Figure 21 shows a view of the camera attached by clamp

A to the end of tube B.

1]

Figure 21

The three-color cimera attached
to the coronogriiph,
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This tube, carried by the coronograph, contains the mono-
chromatic {ilter, the radiation separator and a lens with an
800-mm focal length which forms the monochromatic images
on the three films and in the eyepiece. In order to install the
complete unit in the dome of the Pic du Midi Observatory, we
had to bend the light beams back,reflecting them from a mirror
at the bottom of the apparatus. The mirror is supported by

three set screws, C, D, E, which regulate its orientation.

Each of the four reflected light beams goes through an
appropriate filter set in plane AF and reaches the movie films
contained in box G, at the top. Eyepiece H permits observation
of the fourth image in a fixed mirror and, if need be, the other
three in a movable mirror attached to the shutter and operated
by a lever; for this purpose it is provided with a slide I. A
box containing a watch may be attached to the end of tube F,
The watch is then photographed automatically on each frame of
one of the films,

Figure 22 shows the inside of the film box: to the left
are the three feeder spools, to tl;e right the three take-up
spools, and in the middle, the three film channels. Slightly to
the right we see the three sprockets which move the film. They
are operated by a lever, at the top, by which they can be made
to rotate exactly one-half turn, thanks to a ratchet wheel, A
chain, located at the bottom, transmits the movement to the
take-up reels, At the bottom right, attached to its lens (which

has a focal length of 80 cm), is the radiation separator.

Motion picture films, Figure 23 (Plate IV) shows, by

way of example, a portion of three simultaneous films taken at
the west limb on 10 August 1941; at the top are two successive

pictures of the red corona on which the watch dial indicates the
hours (0822 at the right and 0824 at the left); in the middle are
the corresponding pictures of the prominences with Hu.; and at

the bottom, those of the green corona.
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Figure 22

Three-color camcra and radiation separator,

These films were taken at the rate of | picture every
two minutes with an exposire of about | minute 50 seconds,
With this exposure time. the roed corona is overexposed about
3 times; the green corona. on the contrary. is slightly under-
exposed because of the lower sens:itivity of the best emulsions
in this region. The prominences of normal intensity are a
hundred times overexposed when recorded with the same emul-
sion as the red corona. but the H il of 10 August was taken
with an emulsion ten times faster, T reXposure destroys
the relief but shows very weak promincnces which would other-
wise remailn invisible,

These simultaneous pictures confirm the dissimilarity
of the green and red coronas and they show that the corona and

the prominences are almost completely independent,
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In the film of 10 August, for example, the arched
prominence located at the left does not correspond to any
coronal detail; it appears lightly on the picture of the red
corona, but only because of its very great brightness. The
hook-shaped prominence located more to the right also does
not correspond to any definite coronal detail., In contrast
with this, the most intense coronal jets coincide only with

the smallest and weakest prominences,

On the three-color films, the black disk which masks
the sun appears edged with a double fringe, because the main
lens of the coronograph is not achromatic; the image of the
sun was not in focus on the disk for all radiations at one time;
this focusing, carried out in the yellow, was mediocre in the

green and red,

To avoid this, in certain cases [ neglected the green
corona and took only the red corona and the prominences,
which allowed me to place the disk at the focal point, reduce

the exposure time to 50 seconds, and take one shot per minute,

Figure 24 (Plate IV) shows 2 successive pictures from
a film obtained under these conditions at the west limb on
1 September 1941 at the hours indicated by the watch: 1225 at
the right and 1226 at the left; at the top is the red corona, and
at the bottom, the prominences with Ha. These pictures still
show the complete lack of similarity between the prominences

and the corona.

On all films, each picture of the red corona is accom-
panied by a picture of the watch dial, Some of them, like this
one, ran for 12 consecutive hours without interruption, thanks
to the marvelous atmospheric conditions so frequently to be

found at the Pic du Midi.

All pictures, of Leica format 24 x 37 mm, were later

reproduced on a positive with a printer which reduced them and



63~

corrected for opacity differences due to the variations of
atmospheric diffusion, according to the readings of a galva-

nometer connected to a photoelectric cell.

Movements of the corona, These cine films allow

solution of an important problem: Are there movements in

the corona?

Observers of eclipses had tried to show movements‘
in the corona; unfortunately, total solar eclipses are short;
t}:;ey never last more than seven minutes and the coronal
details, which do not have definite outlines and which are offen
projected in front of each other, do not lend themselves to
settings. exact enough so that their displacements can be recog-

nized with certainty in such short intervals of time.

Indeed, Perrine, comparing photographs of the 1901
eclipse and Hansky, studying those of the 1905 eclipse, found
that the speeds of the movements should not exceed about 25
km/sec [16].

Other observers have compared photographs taken at
different stations which were crossed successively by the lunar

shadow cone.

The photographs of the Lick Observatory, for example,
taken during the 1905 eclipse in Spain and in Egypt at an inter-
val of 70 minutes, show well-defined condensations in which
structural details seemed to change but with speeds of less

than 1. 6 km/sec [17].

On the other hand, the photographs of the Lick and
Sproul Observatories, taken during the 1918 eclipse in the
United States in Washington and Kansas, showed coronal arches
which surrounded prominences and which seemed to have moved

in 26 minutes with speeds ofrabout 16 km/sec [18].
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Furthermore, in 1924, Horn d'Arturo compared the
photographs of the Italian expedition in East Africa with those
of Sumatra and found movements of coronal domes which con-

firmed the preceding results | 197,

Lastly, during the eclipse of 19 June 1936, which
crossed all of Siberia. photographs were taken at six stations
with standard instruments at times spaced out over an interval
of 2 hours 13 minutes, TFour stations had fine weather; the
photos show very small displacements of jets, while small
coronal clouds reportedly moved more rapidly, at about 4 or

5 km/sec [ 20].

Apart from eclipses, Waldmeier {21]. during the morn-
ing of 16 February 1939, with the coronograph of the Arosa
Observatory equipped with a wide-~slit spectroscope isolating
the green line, saw two coronal arches which rose with mean
speeds of 7,25 and il, 6 ki 7sec. This observation would seem

to prove the existence of quite rapid movements in the corona,

However. in 1936 1937. and 1938. years of great solar
acti 'i-r.y, in my coronal observations I frequently applied the
wide-slit method with the Pic du Midi coronograph, which is
more powerful than that of Aroesa and which has a more disper-
sive spectroscope [ 22]. wirhout obtaining satisfactory results.
The images lacked sharpness because of the great width of the
green line. With a2 fine slit, the forms could not be seen well
because the field was too limited; with a wider slit, the continu-
ous spectrum weakened the contrasts and caused the faint details
fo disappear. Consequently. the method would not seem to give
suificiently clear results to allow definite conclusions about the

movernants of the corona,

Several hundred photographs of the coronal spectrum
were taken at the Pic du Midi. In these photos, the lines of the
prominences do show cons:derable movements at certain points,

due to high radial . velocities. but the lines of the corona show
SN - - -

I P
mF Ly SAr e Ea
% Ll r iz

i

i?‘{‘rh

Wit oo



-65 -

only very slight dissymmetries and only very rarely experience
observable deviations. Hence it seems improbable that these
are rapid movements in the corona. To settle this question,
one must obtain numerous good corcnal images, spread, as far

as possible, over a whole day.

In 1938 I took a series of direct photographs of the corona
in total light [ 23]; they depicted very substantial changes in the
space of a few hours, but were too widely-spaced in time to show
the evolution of,a particular detail and to indicate whether the

changes observed were really due to movements,

The photographs of the green line and the red line taken
in 1941 with the polarizing {ilter in monochromatic light show
clearer details and more evident changes. Among the most

interesting series, we see (fig. 25, Plate V) 8 photos of the
green corona, at the east limb, tzken on 30 July 1941,

Between 0750 and 0905 a small cloud was illuminated in
the main group, to the right; at 1216 it reached maximum bright-
ness, and at 1230 disappeared completely, The arches surround-
ing this cloud also underwent considerable brightness variations;
at 1555 the right side of two of them became bright, At 0905,
slightly more to the right, a new arch appeared; at 1116 it was
no longer visible, but at 1330 a larger arch, concave toward the
left, rose from the same place, by 1555 it had developed in length

and at 1720 it surrounded the group of preceding arches.

Figure 26 (Plate V) shows 5 photos of the red corona of
2 September 1941, at the west limb, These i1mages show, to the
left of center, a large bright jet which remained practically
constant; by the end of the day, its upper half had weakened., To
its right is a group of arches, of which the two main ones, ellip-
tical in form, have their long axis vertical and are almost con-
centric, The outer arch reached a maximum brightness and
sharpness at 1150; the inner arch was very distinct at 1050 and at

1150; then its right side disappeared and its broadened left side
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coincided with the left side cfa 1arger, paler arch which
remained visible all day, To the right of the group of arches
is a small cloud which was quite bright at 0915, weakened at
1050 and disappeared at 1150,

These photos show considerable variations of bright-
ness, but they do not show any movement, properly so-called;
certain parts grow bright and others dim by turns without one's

being able to follow the movement of a given object,

When these views are compared in a stereoscope,
photographs taken at intervals up to 4 hours can be examined
simultaneously without the difference in appearance of the
corona as seen by each eye being too d1|sturbing. The arches
show only slight effects of relief, which correspond to relative
movements of less than 1 km/sec; these slow movements do
not necessarily originate in the corona; the combined effect of

perspective and solar rotation are enough to explain them.

Despite these negative results, more complex move-
ments might exist in the corona, e.g., vortices, which would
be hard to detect in isolated photographs; only time-lapse

photographs would verify them,

In 1939 and 1941, I obtained 8 series of pictures of the
corona taken in total light at the rate of | picture per minute;
each series contzins, on the average, 500 pictures and covers
a period of 8 to 13 hours, Two of these series have been repro-
duced on film; when they are projected at the normal rate, i,e.,
accelerated 1200 times, they disclose no movement but only

relative variations of intensity,

A greater number of films was taken in 1941 with the
monochromatic filter, They cover a total observation time of
92 hours. Those of 10 and 17 August and | Sepgtember, for exam-
ple, each last 12 consecutive hours., They show sharper, beiter
contrasted and more abundant details of the corona than those

taken 1n total light; they are also much less affected by variations
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of atmospheric diffusion, When they are projected at normal
speed, i, e., accelerated 1200 and 2400 times, they fully con-’

firm the preceding conclusions,

While the prominences appear to be a.nirx;ated by very
rapid movements, the corona in monochromatic light (either
of the green line or of the red line) remains entirely immobile,
Arches, jets or clouds brighten by turns like the rays of a polar

aurora, but no displacement can be seen. .

These series of photos and films have not yet been
studied thoroughly; however, the cursory examination given
them by no means confirms the rapid movements reported by
some observers. Obviously, these series of pictures do not
prove that such movements cannoct exist, but they do cover a
period of 23 hours for the photographs and 92 hours for the
moving picture films, which is more than 10 times the total
length of eclipse observations; moreover, they show sharper,
more contrasted details in the inner corona. If movements of
10 km/sec were as frequent as the observations previously
cited would lead us to suppose, the mounochromatic images

should have -revealed them several times.

On the other hand, the films show that the relative varia-
tions of intensity of details which partially coincide, the succes-~
sive appearance of clouds and arches, for example, at different
distances from the sun frequently give rise to the semblance of
movements, It would seem that one could attribute to phenomena

of this kind the movements which have been reported.

At the present, the following conclusions may be drawn

from the evidence provided by the birefringent filter.

In general, the corona changes in form and aspect, not
like most of the prominences {that is, by relative movements of
their various parts), but by the appearance and disappearance

and relative intensity variation of the elements which compose if.
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The coronal arches and coronal clouds, which often form
complex ensembles, are born in one place along invisible
trajectories which existed beforehand and whose origin and

mode of formation we cannot explain.

This very curious phenomenon seems quite generzal
and theories concerning the corona must take it into consid-~

eration.

STUDY OF THE CHROMOSPHERE

As we have seen previously, with Ha radiation the filter
showed the chromosphere at the solar limb, but on the solar
disk itself the contrasts were insuifficient; only the most intense
filaments appeared. The chromospheric structure was difficult

to discern; hence the filter had to be made more monochromatic,

Arrangement., In August 1932, at the Pic du Midi, I

added a plate to the filter; this reduced the equivalent width of
the transmitted band on Hcr. from 3 Atol.5 A, To keep the
instrument within the requisite length, I had to use a calcite
plate; it was 8. 3 mm thick and was equivalent to a 130 mm
quartz plate, I placed it after the filter, in the same mounting
as the quartz elements, thus keeping its temperature at a con-
stant valae of 47,5°,
This plate had not been cut for the filter: at 47,5° none
of its bands coincided exactly with Ho.‘ In order to shift its
bands at will in the spectra, I placed an elliptical polarization

compensator after it,

I cemented a quarter-wave mica plate for the red between
the calcite plate and the end glass, and oriented its axes at 45°
to those of the calcite plate. It transformed the elliptical vibra-
tion produced by the crystal for a2 given wavelength into a recti-
linear vibration whose plane turned when this wavelength was
varied. The interval between the two bands corresponded to a_

B} o)
rotation of 1807,
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I followed the quarter-wave plate with a final polarizer,
a polaroid plate which was placed outside the filter near the
eyepiece and which could be turned in its plane, When this was
suitably orientated, a bright band could be brought on Ha; the
sun then had 2 minimum glare. Starting from this position, the
transmission maximum of the filter could be shifted slightly
toward the red or toward the violet; radial velocities could thus

be detected without varying the temperature.

About the middle of August 1942, the filter thus modified
was installed at the eyepiece end of the Pic du Mida telescope,
temporarily equipped with an excellent lens having a 38 c¢m aper-
ture and a focal length of 6 m, loaned by the Toulouse Observatory.

As the unit was too long, the beam had to be bent back,

At the telescope's focal point, a silvered ccopper plate A
(fig. 27), on which the solar image formed, deflected the éreater
part of the solar rays. An aperture B, 8 mm x 12 mm, circum-
scribed the field. The rays of this portion of the sun fell on the
total-reflection prism C, then on lens D, with a 300-mm focal
length, which made them appreciably parallel, The rays passed
through the monochromatic filter F, then through lens G {{focal
length: 300 mm), followed by a divergent lens H, This ensemble
constituted a Galilean telescope which formed an enlarged image
of the sun with an equivalent focal length variable from 15 to 25 m,
depending on the divergent lens used; this image could be focused

by displacing lens H with button 1.

Next came polaroid J, cemented between two glasses,
which could be turned in its plane with knob X to vary the wave-
length, Lastly came fi‘lter L, which selected the Ha band, and
tube M at the end of which an eyepiece or 2 cine camera was

placed.

Observations, During the last part of August and the

beginning of September 1942, chiefly in the morning, the solar

images were often perfect, The filter did not change appreciably
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the optical qualities of the 38 mm telescope, which could be
used at full aperture, thus permitting observation of the chro-
mosphere under excellent conditions with magnifications as
high as 500 x; very fine details were visible, and the pro\mi-

nences showed, in particular, a2 remarkable fibrous structure.

In the cine camera the image of the sun on the film
measured 15 to 20 cm in diameter. However, the great bright-
ness of the chromosphere permitted the use of high-contrast
emulsions and reduction of exposure time to 1/40 sec in order

to obtain sharper images.,
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Figure 27

Arrangement of the filter behind the
telescope.

Under these conditions, 130 m of film were shot at the

rate of 2 pictures per minute; a watch dial photographed on

each frame indicates the corresponding time,

Plate. VI {figs, 28 through 37) shows portions of some
of thesé pictures, enlarged 3, 8 times; on this sczle, the diam-~

eter of the whole sun would be 57 centimeters,
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Variations of the corona

Figure 25. 30 July 1941, the green line, east solar limb.

Figure 26. 2 September 1941, the red line, west solar limb.
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PLATE VI

Pictures of the chromosphere in 1942,
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Figures 34 through 37 show the solar limb. The latter
is double; it includes a very clear, perfectly circular line, the
edge of the photosphere, which appeared thanks to the light
transmitted by the filter on each side of the Ha line and a less
bright fringe whose outer edge is irregular; this fringe is

merely the chromosphere seen edgewise with the Ho. radiation.

Thus, the chromosphere does not appear as a homo-
geneous atmosphere, but as a multitude of luminous jets or
sheets like small prominences which spurt )érom the photosphere,
sometimes vertically, sometimes in oblique directions. They
are projected in front of each other, giving the impression of a
continuous fluid, but if the wavelength of the band transmitted
by the filter is decreased slightly by turning the last polarizer,
the jets which approach the oBserver appear to be more intense
than the others; the chromosphere becomes more transparent

and appears striated.

On these photographs. the chromospheric iringe seems

to be composed of three parts:

1. A dense layer who-se outer edge is quite well-defined;
its height, variable from one place to another, is most often
from 5" to 7", or a little more than half the total height generally
admitted for the chromosphere; it drops at some points as low
as 3" {fig. 36);

2. A very faintly luminous layer, visible only in places,
in front of prominences whose light it appears to absorb to a

height of 1" to 2" (figs. 35 and 36);

3. A series of weak jets, whose height it is hard to state
since the highest of them may be considered very small promi-

nences,

When projected at normal speed, the films accelerate the
movements from 400 to 600 times; they show that these chromo-

spheric jets are short lived, of the order of a few minutes; they
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are extinguished while others spurt out in turn and the dense
layer of the chromosphere seems animated by a continuous

boiling,

Certain prominences, generally very small. may be
brighter than the chromosphere; when they are located behind
the solar limb, the chromosphere, which i1s completely opaque
for the radiations which they emit, 1s projected as 2 shadow

before them (fig. 37).

Over the whole solar disk, the chromosphere appears
with a characteristic structure simalar to that which one observes
in the spectroheliograph with a wide slit; it is covered by small
dark plages, variable in size and intensity, Around sunspot
groups, these plages stretch out in radiating directions, form-

ing figures reminiscent of magnetic spectra (fig. 31).

The spots are sometimes accompanied by bright, exten-
sive chromospheric flares, emutting a radiation with very short
wavelength which profoundly modifies radiowave propagation.
The observations made in 1942 with the polarizing filter show
that besides these relztively rare and beautiful phenomena, a
very great number of flares, whose brightness generally
exceeds that of the continuous spectrum outside of Ho. but whose
diameter often measures less than 1 second of arc, occur around

the spots.,

In 2 small group of sunspots which formed at the central
meridian on 22 August as many as 17 flares a.ppea.l;t'afilj;‘ :i:e -
hour; they lasted from 5 to 15 minutes. sorr-etlmes longe’r, oiten
several flares occurred successively in the sameuplace On
25 August, for example, at 0655 (fig. 28) at the edge of the prin-
cipal spot, below and to the right, we see a ‘small prommence
projected in front of the sun in the form of a dark filament.
About 0700 (fig. 29), the filament became very dark, while its
left end was :Mluminated. At 0717 (fig. 30), the latter shone with
a bright ilash and extended by irradiation. At 0755 (fig..3l),

was completely extinguished,
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Beginning at 0700, at the right edge of the penumbra
of the main spot, a small point was lighted up for 10 minutes
(fig. 29).

At 0710, a small bright line appeared above the third
spot from the left (fig. 30); 20 minutes later, it broadened
and weakened to form a light plage {fig, 31).

At 0720 two small points formed on the upper edge of
the umbra of the spot to the right of the principal one. By
0755 (fig, 31), thev had disappeared, but a Vez.'y small, very
bright point can be seen a little higher up: two other points

appeared under the second and fourth spots from the left,

At 0828 (fig., 32}, the first point was still distinct;
the second was diffuse, and a third appeared to the right and

a little below the second spot.

These flares were animated at their beginning by strong
radial velocities., If the wavelength of the {filter was d@crea'sed
by about 1 A, it passed chiefly the light of the continuous spec-
trum outside of I—Iu; the sun b;acame brighter, the chromospheric
structure weakened considerably and one could see the much
more compact network of the photospheric granulation. Certain
flares were disappearing, but others were becoming brighter,
The picture in fig, 29 and especially in fig. 33 were obtained
under these conditions; a flare measuring 1'. 5 in diameter can
be seen between the second and third spots from the right in
fig. 33; it far exceeds the brightness of the continuous spectrum

of the photosphere,

The monochromatic filter also showed the filaments.
When these dark streamers, formed by the prominences, are
projected in front of the brighter background of the chromosphere,
generally they show rapid mt;vements on the films; they spurt

out at a given point and plunge into the r“égions near the sunspots.
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Only very small filaments appeared during the observations,
the most evident ended at the spot to the right of the main spot;

it was intense at 0655 (fig. 28) and later weakened,

CONCLUSION

The birefringent monochromatic filter should have a
wide variety of applications thanks to its high light yield and to
the breadth of field which can be observed with it, The results
just presented show that it constitutes a new means of investi-
gation by which we may acquire more complete data on the

constitution of the sun.

Manuscript received 5 June 1944
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Optical birefringent filters, which depend for their action on the interference of polarized light, can
be designed to transmit very sharp bands (down to a fraction of an angstrom in width). The ele-
mentary theory necessary for their design is given.

Three forms of wide field filters designed by Lyot are described in detail. A more recently developed
split element, wide field filter requires only half as many polarizers as the earlier tvpes, which may
be an advaniage for some applications.

Various methods of adjusting the transmission bands of a birefringent filter, including the use of
elements of variable thickness, and phase shifters are discussed. For most purposes the electro-optical
phase shifters are probably the most promising. For special purposes, such as spectrophotometry,
phase shifters composed of rotating fractional wave plates may be more advantageous. Two such
phase shifters and their application in simple and split 2slement filters are described.

A few crystalline materials which have been used or might be used to advantage in birefringent
filters are mentioned. .

Finally, the possibility of using polarizing interferometers in combination with birefringent elements

MARCH. 1949

for filters with ektremely sharp transmission bands

an angstrom) is very briefly discussed.

{in the range of hundredths or thousandths of

L INTRODUCTION

DURING the past few years the “birefringent

filter has proved an effective tool in astro-

- nomical research. Its utility, however, is not con-

fined to astronomy and the purpose of the present

paper is partly to bring it to the attention of
investigators in other fields.

Briefly, the birefringent filter serves the purpose
of a monochromator over an extended field. It can
be designed to transmit a wave-length band of any
desired width (down to a fraction of an angstrom)
Centered at any selected wave-length. It is used
very much like an ordinary glass or gelatin filter in
either a collimated or a converging beam of light,
but with some limitation in field size or focal ratio,
according to the type of construction, material,
and band width. . ’

The invention of the birefringent filter is one of
the many important contributions of the French
astronomer, Bernard Lyot,! to instrumental as-
Ironomy. He first published the basic principles of
its operation in 1933, Ohman® independently in-
vented the filter and in 1938 constructed the first
One to be used for solar observations, with a
Jtansmission band about 40-angstroms wide cen-
tered on the ITa line. With it he succeeded in seeing
and photographing the brighter prominences, al-
though it was evident that a much sharper band
would be necessary for the best results.

Hfjla later paper Lyot? has given a very complete

dp Wf the history, theory, and construction
/ Iy Eoa, 4t filters. For the benefit of readers to
. 6d
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whom his papers are not readily available, the pres-
ent paper reviews enough of the elementary theory
to sufhice for the design of filters of any feasible char-
acteristics. The remainder of the paper is a discussion
of newer developmeats which serve to simplify the
construction of the filters and extend their field of
usefulness.

II. THE SIMPLE BIREFRINGENT FILTER

Several forms of the birefringent flter are
possible, differing in width of field and complexity
of construction. They ail depend, however, on the
interference of polarized light transmitted through
layers of birefringent crystal in the direction perpen-
dicular to the plane of the optic axes if the crystal
is’ biaxial, or any direction perpendicular to the
optic axis if the crystal is uniaxial.

Since we can regard the uniaxial crystal as a
degenerate biaxial crystal, most of the following
discussions will consider only the biaxial case. Let
€ and w be the extraordinary and ordinary incices
of refraction of any uniaxial crystal, and «, 8, v be
the smallest, intermediate, and greatest principal
indices of refraction of a biaxial crystal, respectively.
Any expression for a biaxial crystal is valid for a
uniaxial crystal if one of the following substitutions
is made:

B=uw,
=,

Unless otherwise specified, the mutually perpen-
dicular directions of vibration of light for which the
refractive indices are «, 8, and v will be referred
to as the e-axis, g-axis, and y-axis. These are, of
course, the principal axes of the index ellipsoid.

=g, and y=e¢ 1if

e—w>0,
or
e—w <.

o=, and y=w if
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Fi1G. 1. Birefringent flter of three elements.

The quantity p is defined by
p=y—a.

The term “retardation” will be used to indicate a
path difference in terms of wave-lengths.

For brevity, the direction of vibration of light
transmitted by a polarizer (prism or film) will be
referred to as the axis of the polarizer.

Consider a block of some birefringent crystal,
b, in Fig. 1, cut with its surfaces normal to its
B-axis. Let light plane polarized at an angle of
15° to the a-axis enter the crystal along the f-axis.
In the crystal the light divides into two components
polarized with vibrations parallel to the a- and
v-axes, traveling with different velocities, ¢/a and
¢/v. On emerging from the crystal, the two compo-
nents have therefore a relative retardation of 71,
given by:

ﬂ]:'= (dl/h)f-‘)

where d is the thickness of the crystal in the g-
direction, and A is the wave-length of the light.

If now the light traverses a-polarizer, p: (which
may be either a Nicol or similar prism, or a film
polarizer), with its axis parallel to the vibration
plane of the entering light, the two components
interfere. The transmission, 71, of the by, £1 combi-
nation is:

(11.1)

71=CO8%m 5.

{11.2)

If white light traverses the combination, the
spectrum of the emergent light consists of regularly
spaced alternate bright and dark bands at wave-
lengths where #, is alternately integral and hali-
integral. The transmission as a function of wave-
length is represented by curve a, Fig. 2.

The wave-length interval between successive
bright bands is inversely proportional to the thick-
ness of the crystal. To obtain an approximation of

W.
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the interval, set Az=1in the equation

AN An 1

N o (/w(es/oN) -1

We now add a second crystal, be, and a polarizer p,
oriented parallel to &; and 1. 1f do=2d,, the trans.
mission of the bs, p: combination, represented by
curve b, Fig. 2, is:

(i1.3)

(1.4

The transmission of the whole assembly, by, p1, 3.,
#=, shown in curve c, Fig. 2, is therefore:

T2 = cosiate = cos’w 22y,

712 =cosirn, cos*z 2.

(11.5)

A third crystal element, bs, with d;=2ds, followed
by the polarizer, $;, has individual transmission
shown in curve d. The transmission of the assembly,
b, to ps, is then represented by curve e, Fig. 2.

It is evident that further crvstal elements and
polarizers can be added. The result is the basc
type of birefringent filter, which will be termed the
simple filter. It is comprised of a series of units,
each consisting of a plane-parallel birefringeat
element (b-element) followed by a polarizer. All
b-elements have surfaces normal to their B-axes
and are mounted with their c-axes parallel. All
polarizers have their axes parallel to the vibratien
plane of the entering polarized light at 43° to the
a-axes. The thickness of the rth b-element is such
that
(11.6)

The spectrum of light transmitted by the filter
consists of a series of widely spaced narrow bancs.
Their separation is equal to the separation of tte
transmission maxima of the thinnest element alore,

Ne= 2"__1”1.
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BIREFRINGENT FILTER

while their effective width is the half-width of the
maxima of the thickest element alone. For polarized
entering light, the transmission of a filter of [
b-clements (neglecting absorption in the material
of the flter) is:

r=cos’rn, cos’x2n,- - -cos?r2t'n,.

(IL.7)

The quantity », must, of course, be an integer at
the wave-length of the desired transmission band.
Its magnitude should be small enough to separate
the adjacent bands sufficiently to permit the isola-
tion of the selected band by means of ordinarv
hlters.

It can readily be shown that the total transmis-
sion of flux in an equal energy spectrum is 2%
Regardless of the width and separation of the
bands, the total residual flux transmitted between
successive principal maxima in a filter with />3 is
a substantially constant fraction (about 0.11) of
the flux transmitted in a single band.

The filter at the Climax, Colorado station of the
High Altitude Observatory of Harvard University
and the University of Colorado has been in satis-
factory operation in the observation of solar promi-
nences since early 1943. It is a simple filter of six
quartz elements with n;=23, ns=736, d;=1.677
mm, and dg=33.658 mm and has a transmission
band of effective width 4.1 angstroms centered on
the Ha line of hydrogen (\6363) at an operating
temperature of 35.3°C. Its purpose is to eliminate
the overpowering scattered light (continuous spec-
trum) near the limb of the sun while still trans-
mitting the Ha-emission from the prominences,
which are otherwise completely invisible. The
success of the filter can be judged from the photo-
graphs in Plate 1.

_ In practice, a filter should either be cemented or
immersed in oil to avoid multiple reflections. I[nitial
Polarization is usually obtained by a polarizer
mounted in front of the first b-element with its axis
parallel to the axes of the other polarizers.

_In any birefringent crystal, both the geometrical
dimensions and p are functions of temperature.

he result is a small shift in the wave-lengths of
the transmission maxima when the temperature
changes, In quartz, for instance, AN/AT = —0.66
angstrom per degree centigrade in the red. Hence
the temperature of the filter must be controlled
With sufficient accuracy to keep the maximum
eXcursions of wave-length within tolerable limits.
-'\_tOtal range of two-tenths of the effective band
Width is small enough for most purposes.

IOI. OFF-AXIS EFFECTS IN SIMPLE FILTERS

It is evident that when light traverses a simple
'er at an angle to the instrumental axis, the light
{’:th _through the birefringent material and the

ocity difference of the fast and slow waves are

Plate I. Photographs of prominences at the limb of the
sun taken through the birefringent filter of the High Altitude
Observatory in the light of the Ha-line of hydrogen.

altered. The effect is simply to alter the value of
nyin Eq. (11.7).

Lyot® has calculated the off-axis effect for light
incident in the two principal planes normal to the
a- and y-axes in a biaxial crystal cut with its
surfaces normal to the §-axis. Although the equa-
tions are not exact, since terms of the fourth and
higher degrees in ¢ (the angle of incidence) are
neglected, the approximation is excellent for the
moderate angles of incidence encountered in the
use of filters.

Lyvot's equations can be very simply generalized
to give the off axis effects for light incident in any
plane normal to the surface of the crystal (and
parallel, therefore, to the g-axis). Figure 3 repre-
sents a block of biaxial erystal with its a-, 8-, and
v-axes in the directions indicated. Let polarized
light with vibrations in a plane at 45° to the a-axis
enter the crystal in the direction (¢, 8). Here ¢ is
the angle of incidence, and 8 is the azimuth of the
incident plane measured from the a-axis. The light
emerges from the crystal in the direction (¢, 8) in
two polarized components with vibrations wvery
closely parallel to the a- and y-axes. They have a
relative retardation, », which is to be determined
as a function of ¢, 8, and n,, where 7y is the retarda-
tion for light entering the crystal from the direction
e=0.

A consideration of the isochromatic surfaces of

g3
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F1G. 3. Off-axis ray in the crystal coordinate system.

biaxial crystals* leads to the conclusion that the
equations of the curves of constant retardation, n
(written in terms of ¢ and ), represent hyperbolas
if terms in the fourth and higher powers of ¢ are
neglected. Their transverse axes are along the
a-axis for n/n,=1 and along the y-axis for n/n,=
for crystals in which ay—p?=1. The asymptotes
are the lines

(I11.1)

Lyot's equations give the squares of the semi-
transverse axes, which are:

tan*f=a/y.

n b 4
w::(__l); in the plane #=0,

Mo
(111.2)
n o
1.5;12"'=(——1)“ in the plane 6=x/2,
No k 4
where
ay—
= (111.3)
2(y—a)p?

We have, therefore, sufficient information to deter-
mine both sets of hyperbolas, which can be repre-
sented by a single equation A

cos’@ sin®f
rz-—-—no[l-{-p’k( - )] (I11.4)
Y Ry

The exact expression for 2 in uniaxial crystals is
readily derived by a straightforward application of
Huygens' principle and analytic geometry. Con-
sider a plane-parallel uniaxial crystal in a rectan-
gular x, v, s coordinate svstem with the origin in the
first surface. Let it be oriented with its surfaces
normal to the z axis. Let the x axis be parallel to
the crvstal optic axis (i.e., parallel to the a-axis in
negative crystals or to the v-axis in positive
crystals). Choose units of time and distance to
make the velocity of light in space unity. The
equation of an entering plane light wave is then:

ax+by+ez—1t=0, (I11.5)

*T. Preston, Theory of Light, 3rd Edition (MacMillan
Company, Lid., London, 1901), p. 397.
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where a, b, and ¢ are the direction cosines of the
normal to the wave front and ¢ is the time.

As the wave passes the origin in entering the
crystal, it initiates a sccondary wavelet which ex-
pands into an ellipsoid with the equation:

Ct gty it -2 =0, “(111.6)

where {, 7, and v are reciprocals of the velocitics
along the x, v, and =z directions, respectively.

At a given instant, that portion of the plane
wave which is inside the crystal, coincides with a
plane tangent to the ellipsoid of Eq. (111.6) and
containing the line of intersection of the plane
wave of Eq. (I11.5) with the first surface of the
crystal (i.e., the plane z=0). The tangent plane
through the point (x;, ¥1, z1) on the ellipsoid is

(111.7)

the planes of Egs.
first surface of the

afx+ymty+oivs—£=0.

The lines of intersection of
(I11.5) and (II1.7) with the
crystal are, respectively,

- ax+by—t=0, z=0, (111.8,
and
i+ yty—£=0, z=0. (111.9;:
These two lines must coincide. Hence:
x;=(a/*)t and y,=(0/9%)t. (111.10

Since (x1, 1, 21) must be a point on the ellipsoid of
Eq. (I11.6), we find for z;:

t a? b\ i
=1=-(1———— _
v R o

(I11.11)

Equations (111.10) and (II1.11) define the path of
a ray through the origin.

Let d be the thickness of the crystal in the =
direction. The time, #, when a ray through the
origin reaches the second surface is, then:

h=dv/[1—(a®/{?)— @/ (111.12)

On emerging from the crystal the plane wave is
parallel to the entering wave, with the equation:

ax+by+ecz—(t—A)=0. (I11.13;

At time, f,, this plane must contain the point
(x1, ¥1, d). Hence,

A=t —(ax,+by,+cd).

The distance, g, of the plane wave of Eq. (I111.13,
from the origin is therefore:

p=t—A=t—t+ax,+by,+cd,

or, from Eqs. (111.10) and (111.12):
a: o
R 7ol

-2 2

3 m

(111.14

i
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BIREFRINGENT FILTER

Now, for the extraordinary wave
5‘ =w1 T’ =u= e’
and for the ordinary wave

f=g=v=uw,

Hence, the distances of the extraordinary and
ordinary waves from the origin after their traversal
of the crystal can be written, respectively:

a2 B
p¢=£—-d|:é(1-——ﬁ—"—) —C].
[ €
atb2y\ }
pu=£—d[w(1-— ) —c].
wz

The retardation, =, is simply (p.—p.)/A, or:

e a® by} atLhry 1
[e(l-——--—:——:) —m(l— . ) ] (ITL.17)
€— W o € w=
Equation (II1.17) is the exact expression for the
off-axis effect in uniaxial erystals. It is readily
reduced to the more convenient approximation of

Eq. (111.4). Expanding the radicals, and neglecting
fourth and higher powers of @ and &, we find:

(I11.16)

F

g I_ € i i
n= E—w a’ 5 (aﬂ—l—bﬂ)]. (I11.18)

2e” 2e 2]

£

The direction cosines can be expressed in terms of
¢ and 8 by the transformation: )

— ot H LN — ol !
a=singsind’; b=siny cosd’,

where
=0 i e—w>0,
and
#'=84+=/2 if. e—w<O.
Equation (II1.18) becomes, then:
* fcos’®’  sin%’
n=no|:1{ ( )] (I11.19)
2w € ™)

Equation (I11.19) is identical with Eq. ([11.4) for
uniaxial crystals.

The corresponding exact eguation for biaxial Crys-
tals-c;m be derived by the same methods, but the re-
sulting expressions become so lengthy and compli-
Qted that it has not seemed worth while to push
them through. The accuracy of Eq. (ILL4) is
aduquate for all practical purposes whether uniaxial
°r biaxial crystals are considered.

It should be noted that the use of the equations
of isochromatic surfaces in the derivation of off-axis
“flects does not lead to an exace result, since they
are derived on the inexact assumption that the fivo
':""‘Ponents of light polarized at right angles
Faverse the crystal along identical paths.
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The usable field of a given filter is determined by
the maximum permissible value of |n—z,]| for the
thickest b-element.

The maximum permissible angle of incidence in
the Climax Rlter in the 6=1/2 plane is

o=0.025 radian,
if we require that over the field
|7n—no] £0.1
for the thickest b-element.

IV. LYOT'S WIDE FIELD FILTERS

The maximum total Hux from a given light source
that can be squeezed through a filter is roughly
proportional to the square of the product of the
filter aperture and the maximum usable value of «.
The aperture is limited by the sizes of available
birefringent crystals, and it is therefore important
to find means for obtaining large fields. The most
obvious device is to find a birefringent material for
which % is very small. Although thé author knows
of no such material which is available in useful
sizes of optical quality, this is a definite possibility
which should be investigated further.

Lyvot® has described three wide-field filters with
compound elements made of available materials.
They will be referred to as Lyot's first-type,
second-type, and third-type filters.

The first-type filter differs from the simple filter
in having each J-element divided into two equal
halves by a cut perpendicular to the #-axis. The
second half of each element is rotated about the
B-axis until the e-axes of the two components are
crossed. A half-wave plate is inserted between the
components with its a-axis at 43° to the a-axes of
the two. It serves to rotate the planes of polarization
90°. Light which enters the first component {rom
the direction (¢, §) enters the second component
from the direction (g, 8+7/2). The: retardation
introduced by the assembled element is then:

=[< 0n(v0+5) ]

cos’@  sin®d
=§ng{1+¢2k( —_ ]
Y o

sin*g

cos%g ) ]
¥ o ,

(IV.1)

-i—%nn[i-l-so’k(

Es1 1
n =nu|:1 -{—oe—(———)\].
2\y o

The loci of constant retardation are civcles with
radii larger than the axes of the hyperbolas of a
simple filter (in the 8==/2 plane) by a factor of

g%

or
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[2v/(vy—a)}]l. For a given tolerable wvalue of
[#—mn,), the radius of the uscful field can be further
increased by a factor of vZ if we set the retardation
at the center of the field at one extreme of the
range.

Lyot's first-type filter, unlike the simple filter,
can be used only over a small range of wave-lengths.
If the wave-length differs greatly from-the optimum
for which the half-wave plates are made, the
residual light between transmission bands increases
at the expense of light in the bands. The added
residual light appears superposed on the field in the
form of faint hyperbolic fringes very similar to the
fringes produced by the equivalent simple filter.
The fringes are loci of constant retardation, #»',

given by
n =—-—k¢—( ) cos2g.

I, however, the filter is either used for one wave-
length only, or supplied with interchangeable half-
wave plates for the different spectral regions, its
performance is highly satisfactory. This is one of
the many instances where the development of an
achromatic half-wave plate would be very useful.

Lyot’s second-type wide-field filter has compound
b-elements of two components of different materials.
The quantity % is of opposite sign in the two
components, which are mounted with their «-axes
parzallel. No half-wave plates are required.

Let #n; and #, be the retardations arising from
the first and second components for light entering
from the direction ¢=0. The retardatmn for the
assembled element is then:

cos?®  sin?

ronfiron (2222

Y1 ag

cos’@ sin*
' +n2[1+¢2k2( - )],
T2 21

mk; ‘ngke
n=ns+ (_92[(10523( -+ )

) Y1 Yz

. ﬂlk]_ ’ 'ﬂgkg
—smﬂﬁ( +

(=51 oy

(IvV.2)

)} (IV.3)

(Iv.4)

It is evident that while the coefficient of ©* cannot
be made to vanish by any choice of #, and 7., we
can obtain circular fringes by eliminating 8. The
condition is

:_:“( )[( )/(-+— ] (av.s)

where now
Ng=171+2

22
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Equations (IV.4} and (IV.5) give #; and . The
retardation of the assembled clement can now he
written

ngkg
+_._.
T2

n1ky

n=n¢t+ 992( (1V.6)

1

The second-type filter can be used over a wide
range of wave-lengths, although the fringes do not
remain strictly circular throughout the range.

Lyot's third-type filter generally has the largest
field. Each b-eclement consists of three birefringeat
components. Two of the components are of the same
material and are mounted with their e-axes crossed.
The third is of a different birefringent material with
a k value opposite in sign to the k value for the first
two components. It is mounted with its e-ads
parallel to that of one of the first two. By a proper

_ choice of thicknesses it is always possible to mate

1 constant over the whole field within the accurazy
of Eq. (1I1.4).

Let e1, B, v1 and az, Bs, v2 be the refractive
indices of the crystals composing the single compo-
nent and the two crossed components, respectively.
The crystals must be selected to satisfy the condi-
tion

oy Ya > Yicen.

Let 7, be the retardation of the single componezt
and #; and =, the retardations of the two comro-
nents of the same material. Let the a-axes of the
¢ and & components be in the §=0 plane, and :he
a-axis of the ¢ component in the 8=7/2 plaze.
Then

cos®d  sin®f
)
Y1 o
cos?¥  sin®
+nb[1+5’2}?2( - )]
Y2 [+ £

sin®f cos? )
—nc[l-—i-:p'-’kg( - )] UYL
RE] o

If we set ng+ny—n.=u, and require that -he
coefficient of ¢ vanish, we find

e’ 1 . 1
ﬂc::_k'.’g —_— )o

A ar s
7o 1 1 .
7Ib=—k1kg(—‘— . tI~.%)
4 Yry: oas
= '—k ko ———— ],
ayyYs: Yids
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wheze
By k2 ke
n @
A=k kPR (IvV.9)
@ moa
i -1 1

The retardation of the assembled element for any
direction (¢, 8) is then:

R=Tg+ ==,

(IV.10)

Tke third-type Alter, like the second-type, can
be 1sed over a wide range of wave-lengths. The
coesicient of 2, however, will generally vanish
accurately at only one wave-length. '

The design of 2 wide angle filter does not neces-
sarzz require that the thinner elements be com-
pouzd. Their transmission bands are so broad that
the slight shift in wave-length for off-axis rays is
negizible in comparison. If the higher order com-
pound elements are made of two materials, however,
it may not be possible to use transmission bands in
widely separated regions of the spectrum, because
the dispersions of different materials are generally
not strictly proportional. If the rth element is the
thiczest simple element, (7,4,)/72,=2 at-only one
wave-length.

The following sections are devoted to the theory
of various modifications of birefringent filters which
have been recently developed.

V. THE SPLIT ELEMENT FILTER

The split-element filter resembles Lyot's first-
type filter, and shares its wide field characteristics.
The half-wave plates, however, are replaced by
birefringent elements, and successive polarizers are
crossed. After the initial polarization, it requires
only half as many polarizers as the equivalent
simple filter. The result is a considerable reduction
in absorption and scattered light if filin polarizers
are used, or a notable saving in bulk and expense if
polarizing prisms are used.

The splic-element flter has already been de-
scribed briefly.’ A more detailed account of its
theory is given here. .

A single unit of the split-element flter (which
Wwould be mounted between crossed polarizers) is
shown schematicaily in Fig. 4. The x, y, and =z axes
constitute a rectangular coordinate system. The
positive r and s axes in the xy plane bisect the
angles between the-posttive x and y and the positive
¥ and negative x directions, respectively. The unit
———

1. Evans, Ciencia e Investgacion (Argentuna) Vol, IIE,
No.'9, p. 365 (1947).

Fic. 4. Birefringent components of a single unit of a split
element filter.

consists of a split element with components m and
¢, and a simple element, p, sandwiched between m
and g. They are all mounted with S-axes parallel to
the z axis. The y-axes are aligned parallel to the
%, 7, and y directions, respectively, in the #, p, and
g components. Let the thicknesses of m, $, and ¢ be
@n, 83, and d,, and let the unit of time be the
vibration period of the light.

Assume that the entering light is polarized in the
r plane. The transmissions of the unit for emerging
light polarized in the r plane-and s plane are to be
determined. :

The vibration of the entering light is

(V.1

r=ag sin2xt.

This can be resolved along the x and v directions
giving -
x=(a/VZ) sin2xt, y=(a/VI)sin2=t (V.2)

In traversing m, a phase difference is introduced
and the vibration of the emerging light is

Xm={a/VZ) sin2x(f ~d ),

Yo = (/) Sin2n(f—dor). v.3)

The resultant disturbance along the r and s axes is:

Tm =0 COSTH, SIN2wL,
Sm =& Sinwit, cos2ri’,

(V.4)

where
V=t—(@n/2N) (ct+v):

ir}_ the traversal of p, an additional phase difference
is introduced ;

Fp=0 COSTN sin2alt' — (d,/A) ], (V.5)
sp=a sinmi, cos2al ' —(d,/N)a]. ’
Resolving this vibration along the x and y axes, and
adding the phase difference due to transmission

1
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through ¢, we obtain

i - (’ d, dg )
X4=— COSTR, Sinw| # ——y——a
Y XA
a d, dg
—— SINT . coser(L’ ---—a-——a) ,
Y A A
(V.6)
e - ( , dy dy
Vo =—— COSTN, SIN2a| £ ——y——
Y Y
a d, dy
+— sinwn, cosQw(t’——a - .
VZ A N

To determine the final transmission through a
polarizer with its axis along either the.r or s direc-
tion, we must resolve this vibration along the r
- and s axes:

rq=0 COSF M COsT g sin2a{t”’ — (d,/A) 7]

+a sinwn., sinrn, sinZe " — {d,/ e,
S¢=G SiNTHm cosTh, cos2alt’ — (do/M)v]

— @ COSTHm sinmitg cos2a ¢ — (dy/N)e],

(vV.7)

where ’
V' =1—[{dntdq)/2NJ(a+7).

Let the emergent amplitudes be 4, and A,. The
transmissions in the r and s vibration planes are,
then:
=A@ =cos’7(1nn—1ny)

—sin2wn. sin2an, sinsn,,
r.=A 2 =510 (nn—1n,)
+sin2wn, sin2wn, sin®*zn,.

(V.8)

In the split-element filter the m and g components
are made of equal thicknesses. Hence
M =1
If we let
Nny= 20 =211y,
Eqgs. {V.8) reduce to:
7,=1—gin?rn; sin*zn,,
7o =sin’zn ; sin*r .

(V.9)

2%
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FiG. 5. (2) Phase shifter of two
quarter-wave plates. (b) Phase
shifter of one half-wave and two
quarter-wave plates,

The transmission of an element of Lyot's first-
type filter is 7, in Eqs. (V.9) if we set n,=1.

The transmission of a unit of the split-element
filter is .. A split-element filter of I elements has
exactly the same off-axis characteristics as a filter
of Lyot’s first type with the first [/2 elements
simple, and the I/2 thicker elements compound.
Whether the field is limited by the simple elements
or the compound elements depends upon whether
or not (ni/ny)[{y —e)/{2v)] is greater or less than
1. If the simple elements limit the field, they cas,
of course, be made compound in any of Lyor's
three types.

The transmission of an assembled split-element
filter composed of two-element uniis betweea
crossed polarizers is:

r=sin%; sinrn.- - -sins k. (V.10

Since transmission bands occur only at wave-
lengths for which all the #'s are half-integral, ths
n’s cannot be simply proportional to the powers f
2. If we let n=n'+% at the wave-length of =2
particular band, the best we can do is to make th=
values of #’ proportional to the powers of 2. Thes

o na=2rly 4l (V.ain
The transmission can then be written
T=cos*rmy’ cosrlng' - -costr2tn,’. (V.12

Unfortunately Eq. (V.11) can be strictly valid =t
only one wave-length, and the usefulness of tt=
filter is restricted to a limited spectral region in the
neighborhood of that wave-length. This is a secon?
instance where achromatic half wave plates would
be useful. If the r-th element of the filter were
made to give a retardation #n,” = 21x,’, the additic=
of an achromatic half-wave plate {two quarte-
wave plates for split elements) would satisfly Ec.
{V.11) at all wave-lengths.

The thought will doubtless have occurred to 2=
reader that the middle element in each unit of a
split-element filter could itself be split, and a third
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elkment inserted between the halves. This plan
deoe=s not work theoretically, and so far no arrange-
m:nt has been found that allows more than two
el=ments in a unit between successive polarizers.

V1 FILTERS OF ADJUSTABLE WAVE-LENGTH

It is obvious that the usefulness of the bire-
frizzent filter is enormously enhanced if a trans-
. mizion maximum can be adjusted to center on any
desired wave-length, The fine adjustment resulting
from the control of temperature is generally quite
inzlequate as it has a range of only a few angstroms
(a::hough Lyot found that with the aid of tempera-
ture control it is possible to bring no less than six
of the maxima of a quartz filter into coincidence
with lines of major importance in the solar spec-
trzm).

The obvious method of controlling the wave-
lezgth of the transmission bands is by means of
elements of varable thickness, made of pairs of
werfges which can be adjusted with respect to each
otaer like the componénts of a Babinet compen-
sawor. It is then possible to set

#y=an integer,
and
Hr= 2’“1711

at any chosen wave-length. Such an arrangement
is perfectly feasible and works equally well at all
wave-fengths. In the split-element flter. both
halves of the split element must, of course, be
adjustable since 7,,—n,=0. The range of variation
in thickness need be only sufficient to shift the
principal transmission maxima of the filter through
a range equal to their separation. With a proper
choice of wedge angles all the movable wedges can
be mounted and adjusted as a single unit.

Although theoretically excellent, the wvariable-
thickness filter requires considerable mechanical
refinement, and one wedge in each element must
have an aperture much larger than the instrumental
aperture (a matter of importance in filters of large
aperture}. The use of phase shifters for wave-length
adjustment is simpler and, for most purposes,
equ.lly satisfactory. If achromatic phase shifters
can be devised, they will give results as theoretically
perfect as variable thickness.

Suppose we equip each b-element of a filter with
a phase shifter which permits the addition of a
small controllable phase difference, 27, to the
phase difference, 2m#, introduced by the d-element.
The transmission of the flter is then

=l

r={] cos’w{n+£,).

rm}

(V1.1)

Again, with the split-element filter, the added phase
diffcrence must be divided equally between the two
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halves of the split elements to keep #,—n,=0. A
transmission maximum of the filter can then be
centered on any given wave-length, A, by adjusting
£ until #--£ is an integer for each element. This is
always possible if £ can be adjusted over the range
—1 to +3. If the phase shifter is achromatic, i.e.,
£ is independent of wave-length at a given setting,
the result is merely a shift of the transmission curve
of the filter along the spectrum and its performance
is equally good at all wave-length settings. If, on
the other hand, £ is a function of wave-length, the
spacings of the transmission maxima of a given
element are altered. Hence the relative positions of
the transmission maxima and minima of the differ-
ent elements depart more and more from exact
superposition as’ the wave-length departs from i
The result is an increase in the residual light
transmitted in the intervals between principal
maxima of the filter as |A—X,| increases.

Lyot® and Billings® have both made numerical
calculations of the additional residual light resulting
from the use of non-achromatic phase shifters.
They concluded that over a reasonable wave-length
range (which can readily be isolated with glass or
gelatine filters) the increase in residual light is
negligible. The adjustment of wave-length with
phase shifters is therefore a practical possibility
whether the phase shifters are achromatic or not.

Several forms of variable phase shifters have
besn proposed.

Lyvot® made elements of variable thickness like

&P 2 Xe
1 Y] \Y}
0 b, be by —” p
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FIG. 6. (a) Simple filtee of three elements with quarter-wave
plate phase shifters. (b} One unit of a split element fAlter with
fractional wave plate phase shifters,

¢ Bruce H. Billtngs, J. Opt. Soc. Am. 37, 738 (1947).
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those described above for the variable thickness
filter, but with .the difference that the range of
adjustment of retardation was restricted to one
wave-length,

Billings® made an experimental filter with photo-
elastic phase shifters composed of sheets of poly-
vinyl butyrate under adjustable tension.

While both these arrangements give a satislactory
wave-length adjustment, they are tedious to use.
Ordinarily each element must be individually ad-
justed. The alternative is a complicated mechanical
synchronization of the adjustments of all the ele-
ments, which would make operation with a single
control feasible. Without some such arrangement
it would be impossible to vary the wave-length
continuously.

A much more promising approach is the use of
the electro-optical phase shifters discussed by
Billings.® A plate of the uniaxial crystal ammonium
di-hydrogen phosphate (NH,H,PO,), known com-
mercially as PN, cut perpendicular to the optic axis
and mounted between transparent electrodes, be-
comes biaxial and exhibits a retardation when a
potential difference is applied to the electrodes.
The retardation is proportional to the potential
difference and is independent of the thickness of the
PN plate. A filter made with a Billings plate added
to each element (to each half of the split elements
in the split element flter) could be adjusted
electrically, and the problem of synchronizing the
phase shifts of successive elements would be rela-
tively simple. At the present writing Dr. Billings
is actively engaged in the development of such
electrically tunable filters.

All three tuning methods have one difficulty in
commen. It is impracticable to push the phase shift
beyond a very limited range. If a range from —x
to -+= is adopted, a continuous variation of wave-
length involves a discontinuous adjustment of each
phase shifter. The phase shift must progress
smoothly from —mto 4= (at a rate proportional
to the thickness of the associated b-element) and
then jump back to —w. For most purposes there
may be no serious disadvantage in this. If, however,
the filter is to be used for spectrophotometric work,
for example, it may be very difficult te avoid a
spurious bump in the filter transmission every time
a phase shifter passes a point of discontinuity, even
with the electrical tuning. For such special purposes
phase shifters composed of rotating fractional wave
plates can be used. They have already been de-
scribed briefly.® A fuller account of their theory is
given here.

The specific problem is to dewse a combination
of fractional wave plates which will alter the phase
difference between the vibrations aleng two mutu-
ally perpendicular axes, x and ¥, by any chosen

w.
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amount, without altering their amplitudes. At a
given wave-length, this is equivalent to a variable
thickness of birefringent material with its y-axis
along the x or y direction Such an arrangement is
shown at a, Fig. 3. It consists of two quarter-wave
plates. The first is fixed with its y-axis along the r
axis (at 45° to the x axis). The second can be
rotated around the instrumental axis. At a given
setting its y-axis lies along the +* direction at angle
p to the r direction,

The vibration of the light entering the syvstem is
generally represented by

x=bsin2xl, (V1.2

Resolving this vibration along the r and s axes aad
adding a phase difference of #/2 introduced by the
first quarter-wave plate we obtain for the emerging
vibration:

r={(b/V2) sin2#t+ (c¢/VZ) sin2=({+ ),
s=—{(b/VZ) cos2zt+(c/VI) cos2=(t+ ).

Resclving this vibration along the ' and s5° axes
and adding another phase difference of »/2 inmo-

y=c sin2x({-}a).

(V1.3)

duced by the second quarter-wave plate, we obtzin,

r'=(b/VI) sin[27i—p]

+(¢/VI) sin[ 2= (t+ o) +0],
5= (b/\/j) sin[ 2wi—p]

—(e/V2) sin[ 2= (¢+o)+p].

Finally, if we resolve this vibration along the
and ¥’ axes, at an angle of p+( #/2) to the x ar.d v
axes, we obtain for the emerging vibration:

x'=bsin[2xt—p], . s
¥ =csin[27(i+ o) 4o+ 7] (Vi.5)

A comparison of Egs. (V1.2) with (V1.5) shows
that while the emerging amplitudes along x" and v’
are the same as the entering amplitudes alors x
and y, the phase difference has been increased from
2xo to 2we+2p++, i.e., the phase shift, 27&, is

2rt=n+2p. (VL6)

Obviously the phase difference can be set 1o any
desired value by adjusting p.

This two-element phase shifter has the diad-
vantage that the x" and 3’ axes rotate with the
second gquarter-wave plate. For some applicaZons
this is no inconvenience but in others it renlers
this phase shifter useless. The =" and »" axes can
be restored to parallelism with the x and ¥ axes by
the addition of a rotatable half-wave plate, w=ich
has the property of reflecting anv polarization 3zure
in Iits y-axis.

The most convenient system, shown.at b, Fz:. 3,
consists of two fixed quarter-wave plates wizk the
rotatable half-wave plate sandwiched beiveen
them. Suppose the y-axes of both quarter-vave
plates are in the r direction, while the y-axis < the

(Vi
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ha’f-wave plate is along the # direction at an angle
¥ =0 the r direction.

Tae vibration emerging from the first quarter-
wzve plate is given by Eg. (VI.3). Resolving this
vitration along the z and v axes, and adding a
phzse difference of 7, we obtain for the vibration
.emzrying from the half-wave plate:

u=1i5"vI) sin[2m—¢]
+(c/V2) sin[2x(t+0)+¢ 1,
v=/3"vZ} cos[ 2wt —¢] .
—(&/V7) cos[ 2= (t-+a) -y ].

Resolving this vibration agzin along the r and s
axes, and adding a phase difference of =/2, we
obtzin for the vibration emerging from the second
quarter-wave plate:

r=b"vI) sin[2nt—~ 24 ]
. +(c/V2) sin[ 2= (t+ o) +2¢],
s=—(b,"V2) sin[ 2wt —2¢]

+(c/V2) sin[2r{t+e) 429 ].
Finzlly, resolving this vibration along the original
x and y axes, we find

x=bsin[2xt—2¢],
y=c¢sin[ 2x(i+e)+2¢].

The phase shift introduced by the three-element
system 13, therefore,

(VLT

(V1.8)

(VL9)

IrE=4y. (VI.10)

The principal advantage in the use of fractional
wave plate phase shifters in birefringent flters is
in the possibility of a continuous variation of wave-
leng:h without discontinuities in the adjustment of
the moving elements. Since p or ¥ can be increased
or decreased indefnitely, 2rE is not restricted as it
is in the other types of phase shifters discussed
above. )

It should be noted that the fractional wave plate
phase shifter is in a sense achromatic, since £ is
independent of the wave-length for a given value
of p or y—a very desirable property (see the
discussion following Eq. (VI.1)). With ordinary
quarier- angd half-wave plates, however, this ad-
vaniage is somewhat illusory. Their usefulness is
limited to the rather restricted region of the spec-
trum where their retardations are very close to
quarter-wave and half-wave. This is another appli-
cation where the desirability of achromatic frac-
tional wave plates is evident.

If continuity of adjustment over a large range of
the spectrum is a necessity, the fractional wave
plates themselves could be made adjustable. The
addition of an electro-optical Billings plate to each
fractional wave plate would perhaps be the simplest
method. A relatively moderate potential applied to
the Billings plate would then adjust the retardation
accurakely to a half-wave or quarter-wave at the
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wave-length of the transmission band of the filter.
This seems a rather desperate measure, however.

The construction of the fractional wave plate
phase shifters is considerably simplified when they
.are used in birefringent filters. Some of the quarter-
wave plates simply take the form of an addition to
the thickness of the birefringent elements. In in-
stances where the v-axis of a quarter-wave plate is
parallel or perpendicular to the axis of an immedi-
ately following polarizer, it is evident that the
polarizer utilizes only one component of the vibra-
tion emerging from the quarter-wave plate. The
w/2 phase difference therefore serves no real
purpose, and the quarter-wave plate can be omitted.

Consider first an element of a simple filter.
Suppose the b-element, oriented with its y-axis
along the x direction, is followed by a quarter-wave
plate with its v-axis along the 7 direction. If we let
b=c=a/VZ, t=¢—(d/2\)p, and ¢=(d/N)x Eaq.
(V1.3) for the vibration emerging from the quarter-
wave plate reduces to:

(VI1.11)

This is a linear vibration at an angle of zzn to the
r-axis. We can omit the second quarter-wave plate
and let the light enter a polarizer with its plane of
polarization at angle p to the r axis. The transmis-
sion of the assembly is then

r=g cosxn sin2xt’, s=a sinwn sin2=t,

(V1.12)

By adjusting p (i.e., by rotating the polarizer) until
m~-p/r=an integer, we can set r=1 for any
chosen wave-length.

Lyot® has utilized this device to effect a slight
shift in the wave-length of the transmission band
of his filter. He used a quarter-wave plate with the
last (thickest) element, and provided for the rota-
tion of the final polarizer. The same method can
be applied to the whole filter, however.

An adjustable simple birefringent filter would
consist, then, of a series of units shown at ¢, Fig. 6.
each composed of a polarizer, a birefringent element
with its y-axis at 43° to the axis of the polarizer,
and a quarter-wave plate with its y-axis parallel to
the axis of the polarizer. The three parts of each
unit remain fixed with respect to each other, but
the unit itself must be rotatable around the instru-
mental axis. The angle p- is then the angle between
the vy-axis of the rth quarter-wave plate and the
axis of the immediately following polarizer. The
‘birefringent elements have the same thickness as
in the non-adjustable filter. The transmission of
the whole is

r=cos*(wn—p).

r=cos*(wn,—p1) cos?(x2ny—pa)- - -
Xeost (w2 —p), (VIL3)
and

(VI.14)

p:=121r"1p,

- q
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Since the values of p are proportional 1o the powers
of 2, it is a relatively simple matter to devise a
gear train by which the wave-length of the {rans-
mission band can be adjusted with a single contirol
knob. A contintous variation of wave-length now
involves no discontinuity in the adjustinent of the
various units, since p can be made to increase or
decrease indefinitely,

Matters are somewhat more complicated in the
split-element filter. The wide field characteristics
depend upon the wm and g components being crossed.
Hence the phase shifts must be accomplished with-
out any relative rotation of the two. Various
arrangements are possible, some of which involve
rotation of the center p-elements, or rotation of the
unit as a whele with respect to the polarizers, or
both. However, the unit shown at b, Fig. 6, is as
simple as any.

The orientation of each element is indicated in
the diagram by the short line above it for the fixed
elements, or by the symbol {(m,/2) or ¢, for the
adjustable half-wave plates. The angle (¢me/2) or
¥ is the angle between the y-axis of the half-wave
plate and the y-axis of the preceding guarter-wave
plate. The second quarter-wave plates following =
and $ are indicated zs an addition to the thicknesses
of p and g, while that following g has been omitted,
since its y-axis would be parallel to the axis of the
following polarizer. The transmission of a split-
element filter composed of such units is

]

T
=11 cos”(:m,—— 2;&,—-—2-).

T

(Vi,if:)

It should be noted here that the buiit-in quarter-
wave plates which are added to the thicknesses of

Fie. 7. (a) One form of polarizing interferometer. (b) High
resolution filter composed of polarizing interferometers and
birefringent elements,

JOHN w.

EVANS

the #- and g-elements are not inchided in the
calculation of # for these clements,

The values of ¢, should be proportional to », in
Eq. (V1.15). Hence if #,=2"n3—%)4 3 as in the
non-adjustable split-element filter, the ¢'s are pro-
portional to large odd nambers, and the problem of
synchronizing the rotations of the half-wave plates
becomes complicated (but not at aii impossible).
if, on the other hand, the #'s are made proportional
to the powers of two, the phase changers can
compensate for the subtraction of % from each
value of = in addition to their normal function.
Then

n:‘=2!_1nlr
and .
2, =w/ 2427 22— (w/ 2} ]

Since a rotation of the zero point from which angle
¢ is measured to =/4 reduces this equation to

29, = 21 207), (VL1

it is evident that the variable parts of the ¢'s are
proportional to the powers of two, and the problen
of synchronization becomes relatively simple,

The synchronization of the other types of phase
shifters {variable thickness, photo elastic, or electro
optical) is similarly simplified in a spiit element
filter by constructing it with »’s proportional w0
powers of two, Equations (VL.14) and (VLID
apply H we substitute =£ for 24,

A final remark about filters of adjusrable wave.
length seems worth while. The birefringent elements
need not he made to any exact thicknesses as in the
fixed wave-length filters. It is destrable, but not
necessary, to preserve the relation #n,=2"%3; as
closely as possible, since the synchronization of 1he
various adjustments is then easier. There iz no
necessity, however, for #; to be an integer for axy
spacified wave-length. This simplifies the consuruee-
tion somewhat. M £<0.03, the thicknesses of the
elements can be adjusted with sufficient accuracy
by mechanical measurements alone. The erot
tolerance in thickness is inversely proportional w
g and 1s about «=0.00! mm for p=0.03.

{V1.16;

(Vi1

VII. MATERIALS FOR BIREFRINGENT FILTERS

For the benefit of potential builders of bi-e-
fringent filters, a brief discussion of available —a-
terinls is given below, I must be emphasized =2
the list given is certainly far from complete. The
author simply lists materials which have come o
his attention and either have been successivdy
used, or look promising. Unfortunately, lack of
time has prevenied 2 really thorough search for
suitable and available materials, and it would be
surprising if some very useful ones had not heen
overlooked,

Gz



BIREFRINGENT FILTER

Zome of the desirable properties of crystals for
bir=fringent flters are a large value of p with a small
temperature coefficient; a high degree of hardness;
chemical stability and insolubility in water; high
frzasparency in the region of the spectrum for
which the filter is to be used; and availability in
larze pieces of high optical quality.

For filters with band widths of 3 angstroms or
mere, quartz is an ideal material. [t is excellent on
all counts except for its rather small value of
p(=0.009). The birefringent elements of all the
ase-onomical filters now in operation are made of
auartz except for the final element of Lyot's filter,
wkich is calcite. )

Calcite would be excellent for elements of large
% values if it were readily available in large sizes.
Uzfortunately it is so difficult to obtain that its
general use in filters is probably impossible. While
it 3 not as easily ground and polished as quartz,
it presents no real difficulty. p=0.17.

Gypsum occurs naturally in large crystals and
should be readily available. Iis birefringence is
similar to that of quartz, and it should be useful in
the same places. Unfortunately, it is quite soft
and might be difficult to polish. x=0.009,

Ammonium di-hydrogen phosphate has excellent
opsical characteristics, although it is sensitive to
pressure and must be mounted with care. It is
available in large sizes. lts optical working has
proved rather difficult, though not impossible, and
its high solubility in water necessitates careful
protection from atmospheric moisture. p=10.043.

Ethylene diamine tartrate has promising optical
characteristics accompanied by the disadvantages
of high solubility in water and softness. The author
kmows of no attempts to- polish it, but it would
probably be quite difficnlt. [t is available in large
sizes. p = (.084.

Sodium nitrate has a larger p-value than cal-
dte, and should be useful for elements of large
n-valucs. However, it is very soluble in water and
difficult to work. At present it is not availablé in
large sizes with the necessary homogeneity. p=0.25.

YIII. POLARIZING INTERFEROMETER FILTERS

An account of birefringent filters should not be
dosed without some mention of the polarizing
interferometer, a device which has the effect of an
impossibly thick birefringent element. It offers the
possibility of filters of very high resolution with
band widths in the range of hundredths or thou-
sandths of an angstrom. The advantages of the
polarizing over the usual forms of interferometers
1810 the possibility of an accurate and stable control
of the wave-lengths of transmission maxima (by
means of. phase shifters) and a high light efficiency.

The cssential feature of the polarizing interfer-
ometer is that the emerging light consists of two

241

coherent sets of waves which differ in phase (be-
cauvse of path difference) and are polarized at right
angles to each other. The effect is similar to that
of a birefringent element, and a series of polarizing
interferometers can be used exactly like a series of
birefringent elements to construct a filter. The
wave-length of the transmission band can be
controlled with adjustable phase shifters, and
interferometers can be sandwiched between bire-
fringent elements to form split-element units.

The advantage of the polarizing interferometer
over a simple birefringent element is that very large
values of » can be obtained in a comparatively
compact element. The saving in bulk may not be
important, but the difficulty of obtaining bire-
fringent material in very great thicknesses is
significant. An element of calcite, for instance, must
be about eleven times as thick as a path difference
in glass. The principal disadvantage is the expense
of construction.common to all interferometers of
the split amplitude class. The feld is small for
large values of n, and while it is theoretically quite
simple to make a birefringent field compensator,
it is impractical because the thickness of bire-
fringent material required nullifies the advantage
of compactness.

Many forms of polarizing interferometers are
possible. One type which is well adapted for the
construction of filters is shown at a, Fig. 7. Itis a
modified solid Michelson interferometer with a
polarizing beam splitter. [t consists of two glass
prisms, 4 and B, with a very thin slip, &, of sodium
nitrate (or other highly birefringent material}
cemented between them with its optic axis normal
to the surface. If the angles are properly chosen,
the b-layer totally reflects the light vibrating in the
plane of the drawing and transmits the light
vibrating at right angles to it. A spacer element,
C, introduces a path difference. Surfaces S and T
are silvered or aluminized. Light which enters in
the direction OS5, emerges in the reverse direction,
S0, In two components polarized at right angles,
with a phase difference given by

2rn =47 (' /N)de cose (VIii.1)

where u’ is the refractive index and o is the angle
of incidence on S and 7. The prism P {constructed
like 4, B) has the double function of polarizing
entering light and separating out the desired part
of the emerging light. It is shown in an incorrect
orientation for simplicity in drawing. Actually
prism P is rotated about the OS5 direction, to bring-
its axis to an angle of 45° to that of prism AB.
The transmission of the whole dssembly for light

emerging in the R direction is then
r=sin*zu.

(VIL1.2)
The remainder of the light emerges along SO.

3:;, . q&



242 ALPHONSE

The most serious difficulty in the construction of
such an interferometer is the optical working and
cementing of the b-layer to the required accuracy.
The orientation of the S and T surfaces with respect
to each other is not so critical, since a slight
misalignment can be compensated by a thin wedge
of birefringent material between prism P and the
interferometer.

One method of using polarizing interferometers
combined with birefringent elements in a filter is

shown schematically at b, Fig. 7. Between each

polarizer, P, and the following interferometer, I, is
a b-element, which constitutes the m (for entering
light) and ¢ (for emerging light) components of a
split element. The interferometer then takes the
place of the p component. Between successive
polarizers are purely birefringent split element
units. The assembly includes 4 interferometers, 4
polarizing prisms, and 10 b-elements. The interfer-

The Birefringent Filter: A Correction

fJ. Opt. Soc, Am. 39, 229 (1946}]
JorN W. Evans
Harvard Observatory, Harvord University, Combridge Massachusells

SHORTLY after this paper went to press, the author was
greatly embarrassed to discover an error in his remarks
concerning the field of the split element filter. The feld, is,
in general, approximately the same as that of the equivalent
simple fiter. Within this limitation, however, the split element
filter performs satisfactorily, and for some purposes the reduc-
tion in the number of polarizers required is important.
If, using the notation of the original paper, we let

N g B 1
”ﬂg'!'“q:"r‘: “
Egs. (V.8) reduce to
Tr= 1 —~cos®71y sin®r§ —sintra; sinto, @

T4 =C08*rnp SiR®xé-Hsin®zs, sinfrr,.

The filter is constructed with 7, and ng equal for hight paral-
lel to the instrumental axis {¢=0). For light inclined to this
axis, however, they are no longer equal, and, from Eq. {IV.2),

5= ﬁkp’(l+§c0526. 3)
A T .

There is, therefore, a system of hyperbolic fringes (composed of -

light in the wave-length intervals between the transmission
maxima of the $ component) superposed on a field of broad
circular {ringes indicated by Eq. (IV.1). If #, Is approximately
1 over the spectral region considered, we have essentially
Lyot’s first type filter, and the fringes are very weak. The field
of the split element filter can be increased by constructing the
two components of the split elements individually in any one

CHAPANIS

ometers and b-elements should be equipped with
phase shifters (not shown). As an example, the
interferometers might have retardations of 245,760
122,880; 61,440; 30,720; and the b-elements, re-
tardations from 13360.5 to 30.5 at A=3000 ang-
stroms. The system would transmit bands of about
0.01 angstrom effective width, spaced about 130
angstroms apart. Adjustment of the phase shifters
will cause a selected band to scan the spectrum.

If the light transmitted by the filter is received
on a photoelectric cell, its output gives a high
resolution spectrophotometric curve of the entering
light. Such a filter would be preferable to a grating
spectrograph for spectrophotometric purposes, be-
cause, in spite of its small field (maximum usable ¢
about 0.0012 radian), it can be dssigned to transmit
something like 1000 times as much light—a matter
of considerable importance when such sharp bands
are used, even in solar studies.

1

of Lyot's three wide-field forms. Since the fringes are then
circular and identical in each of the two components, §=0
for all values of ¢. The off axis effects are then given by the
appropriate equations of section IV of the original paper.

Since no gain in field results from crossing the y-axes of tha
m and g components, it is pertinent to ask whether this coz-
struction is the most advantageous. The transmission of 2
split element unit with the v-axes of the m and ¢ componen=
parallel readily follows from Eq. (V.6) of the original paper ¥
we interchange « and v as multipliers of dy/Ax. We find

7r=C08*1{1tn — 119} —SIn25y, SIN25771, COSTH

y . A A £
T =sin’w(fim —1ng)+sin2in,, sin2xn, costru,. &)
Expressed in terms of § and #;, this becomes:
7ra= 1 ~sin®rn, sin®r§ —sinrn; cosirn,, )

Ty==sin*mn,, sin®ri+sintri, costan,.
P £ bl

If 5 is zero for light paralel to the instrumental axis, it r=
mains zero at all values of ¢. The field is the same as that of Toe
equivalent simple fitter. The expression for 7, is then

To=8in*rr; costa .

This arrangement does offer some advantage over the =Tz
element unit with the v-axes of the m and g components
crossed. A filter of ! birefringent elements can be construc!
with its first 2/2 elements (i.e., the thin elements) sandwichsd
between the halves of the I/2 thick elements. Since the tren=
mission of the middlé element in each unit is costrm, e
n-values are integral at the desired wave-length, and ean e
made proportional to the powers of 2. The I/2 thin eleme==s
therefore function equally well throughout the spectr=—
Since the burden of suppressing the light at wave-lengths =
removed from those of the transmission bands falls mai="
on these thinner elements, this property is a real advantage,
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A new type of birefringont filter is described in which
relatively small birefringent plates, all of cgual thickness,
and two polaroids are used. A new method of analyszing two
complensntary modele is demonstrated, and an example is given
of the actual preperadion of the filter,

TNTRODUCTLON

In 191k, R. W. Wood L7 employed birefringence to isolate the first
o% éecond line of the doublet of Na, using & quartz plate cut in the di-
rechion of the optie axis and inserted between two Nicol prisms. Since
then this experiment has been repeated mamy times, bub only in 1933 did
B. Iyct /72 7 find a method for applying birefringence o obtain monachro-
matic light. Independently of him, in 1938, Y. Onman /73 7 began similar
sxperiments. He employsd several quartz plates with interleyers of polarcids
and obtained a monochromatic filter. Following this, Lyot ifh;? again began
work in this field and constructed a birefringent filter to be used for
cbservations of solar prominences, Lyot also designed and enginesred more
complex filters. Recemtly, J. W. Bvans /75 7, who also suggested con-
structing an interferometer on the birelringence principle, has made a
detailed study of birefringent filters. 4%t a number of sstronomjeal ob-
servakories solar investigations are being carried out with birefringent
filters; the advantage of a light monochromster without siits and with a
large field of vision affords ever increasing possibilities for application

of birefringent filters in science, technology, and industry.
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THE FRESENT STATUS OF BIREFRINGENT FILTERS

The simplest kind of birefringent filter has been described inda-
pendently by Lyot and Ohman, This filter is a system of quartz plates
prepared from optically perfect crystal so that the optic axis z lies in
the plane of the plate and the thickness of each successive plate is twice
that of the preceding. Polaroids ars inserted between the individual quartz
plates. The shortcomings of this filter (if a narrow transmission band is
required) are the negligible permissible convergence of light and the ex-
cessive thickness of the last plate, Lyot obtained a large permissible |
convergence, using new kinds of birefringent filters, which-are now referred
to as Lyot's first, second, and third type filters. Iyot's first type
filter is similar to the above-mentioned basic resolution.of the birefringent
filter; however, each quartz elemsnt is divided in two, and a half-wave plats
is inserted, between the two elements. In Lyot's second type filter counected
birefringent elements are also employed, each of which; however, is prepared
from a different material and both materials have to satisfy a definite
condition. The most idsal filter is Lyot's third type, in which every bire-
fringent element of the basic filter is réplaced by three platss, two of
which are prepared from thé same maﬁérial, and the third from a different
material,

Evans! work £f§;7 represents & new attainment in the construction of
birefringent filters. He developed = filter containing only half the number
of polaroids required in previous filters. This {ilter, which Evans calls

the Ysplit element filter," is a modification of Lyot's first type. At
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present.the Evans filter is considered to have the most ideal construction.
Further investigations into the construction of birefringent filters have
been directed toward the perfection of a tuning filter, Already, during
the initial experiments, first results have been obtained by Lyot and 6hman,
who have established that it is possible to shift the positioﬁ of . the
transmission-band maxima within knovn limits by appropriate inclination.
Evans, who has indicated the Possibility of employing wedge-shaped plates,
is concerned with the general solution of the problem of filter tuning,

Lyot discovered the possibility of fine filter tuning by temperature'changeo
Finally, B. H. BillingsA£_7_7 found a new method for tuning birefringent
filters using electro-optical materials {e.g., ADP).

Whole series of birefringent plates of different thickness are used
in all filters known to date, In developing the birefringent filter with
the narrow transmission band, i.e. with great resolving power, the construction
of the' thickest elements gives rise to considerable difficulties: either very
thick plates of rare quartz are required or it is necessary o find very com -
plex combinations. What is more, the thickness of the plates must be kept
correct to the order of .'L()"lL mn., 3ince each filter has an assembly of
plates of different thickness, the manufacture of these filters is very
difficult and expensive.

In every filter there is a whole series of polaroids,-which leads to
large absorption (especially when imperfectly colorsed polaroids ars used) and
thus there is 2 large loss of transmission, In this respect, the Evans filter
is a step forward, sinco only'ﬂélf the number of polarecids zﬁormally require§7

suffice, other conditions being equal.

9
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A NEW TYTE OF BIREFRINGENT FLLTER

A new type of birefringent filier has been constructed in the labo-
ratories of the Seientific-Research Institute of Electrotechnical Physics
in Praguea+) The advantapge of this {ilter ovar the filters known to date
is that comparatively thin birefringent plates of the same thickness are
used and are ground from identiecal material. Ancother great advantage of
this new filter is that two polareoids suffice., Furthermore, the resolution
of the filter has two modifications, the second of which gives resulis
complementary to the firsi,

The general features of the filter are analyzed and described below,

and an example is given of its acinal construction from quaris.

a) The first modification of the filter

In this filter, m birefringent plates of identical thickness d and
2 pcl_aroa‘.és are used. In each plate there are two principal dirsciions in
which the linearly polarized light wave is propagated, where the index of
refraction in one direction is n,, and in the other n,; the directicons are
perpendicular to each other, The difference of the two indices of refraction
determines the birefringence value of the material used.

Using familiar methods we find both the ~main directions of the prepared

plates within an accuracy of +10', and mark them.

Nauchno-issledovatel'skil Imstitut Rlekirotekhnicheskol Fiziki v Prage.
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The examined light passes through the first polaroid. The lingarly

polarized light wave emerging from the polarocid is defined by ithe equation
T =s5in 2rf ° t | (1)

where r is the instantaneous deflection, f the frequency of the oscillations,
and t time., The amplitude of the entering light is assumed to bLe unity,
which does not affect the generality of the result. This linearly polarized
wave falls on the first ’c;irefringent plate. One of the principal directions
of the plate forms a small angle € , to the right, with the direction of the
vibrations of the polarized light, The light, leaving the first plate, falls
on the second, which is turned with the same principal direction at the same
.angle £ to the left of the plane of direction of the vibrati;Jns of the
polaroid. The third and all the remaining odd-numbered plates are in the
same position as the first plate, and all the even—numbered plates. are in
the same position as the second plate., We will use the conventional

symbol for wavelength, A. The following definitions are introduced for

brevity:

-

sinfé =4, cos € =B, sin 2& =C, cos 2 € =D, sinke =717

3
in2r° | £f.t-= '= knq + jn.) = 8(kn; + jn,)
sin 2n o (X Jns 1 Jn2.,

where k and j are whele numbers.
After passing through a certain number of plates, the light always

assumes the two principal directions of the last plate. Iet us call the

instantaneous deflections in these two directions xg

and yg, when the light

(o}
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has passed through g~1 plates. After the light has passed through the

first plate, the following expressions hold:

xl A ° S(nl),

N

(2)

B S(nz).

.

The following recurrent formulas may be derived for the passage of light

through the succeeding plates: With aven g + ls

*D-y +C
gL e et (3a)

yg-j-l = i C + g D-

1}
»a

X

"
oq
e

With odd g + 1:
= }OC o D + ¥ ¢ G
xg"'l g Yg ? (3b)

yg+l = Xg c =+ fg D.

In these equations the dot gbove 2 levter means that S is followed by (nl),
2 dash means that § is followed by (ny). '

The calculation for the entire series of plates is carried out very
simply on the basis of the above formulas; the results obtained, however,
-are 50 extensive that they are not inciuded here,

A further step is the reduction of the rays leaving the last plate in
two mutually perpendicular directions xg and yg to the general direction of
the vibrations T . This is accomplished by means of the second polaroid,
whose diresction of vibratioﬁs is exactly perpendicular to that of the first
polaroid. Thus, the polaroids c¢ross. Mathematically this may be expressed

by the equation:



...'?...

Examining the expression for T, we derive the basic properties of the
filter. T will give the resulis of the long calculation only: the filter

shiows sharp maxima, whose position in the spectrum is defined by equation

d“(ﬂl—na)z_m_.?v-l?\o ‘ (h)

In this eqguation v is a whole mumber, v = 1, 2, 3, oos o
Besides the principal maxima there is a comsidarable number of secondary
maxima, whose intensity, however, may be disregarded. The centers of the

minima are defined by the equation:
d°{ny -mp) =v-hr. {5}

Thus, the positions of the maxima and minima of the filter are completely
jdentical with the positions of the maxima and minima of one of its plates
placad between ths crossad polaroids;

From this we derive the first significant resulﬁ::‘ The spacing of the
maxima and minima in the spectrum is determined only by the birefringence
and ths thiclméss of ome filter plate. The sharpness of the mexima is
determined by the width of the ‘arénsmissien bands: for the principal maxima,

the bandwidth AN is determined by the formula:

' 2
AN 2 0.6 A , (6)
g=d-(n - nz) .

where g is the total number of plates. Formula (6), which is only approxi=-
mate, indicates thet the width of the band is approximately the same as the

width of the maxima of one of the platss, the thickness of which squals the

{02
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sum of all the filter plates, in a diagonal position. This shows one of
the substantial advantages of the new filter. If we place the second
polareid in a position parallel to the first, a complementary phenomenon
occurs, in that the maxima and minima interchange in position and width,
Thus, a series of sharp dark bands is observed on the spectrum; their
position is deiermined by equation (L) and their widin by {6).

Angle £ is relatively small and varies apprcximately‘within the- limits
G°SO and 10°, It is aifficult ko compute the optimum value of this angle
mathematically. FHowever, it is relatively easy to set it up by experimental
means.

"If we disregard the absorption in the polaroids and the reflection at
the individuval polished surfaces (the plates may be cemented with Canada
balsam), the transmission of the filter amounts to 50 pet, as indicated by
quantitative photemetric msasurements and an approximate theorstical evalu-~
atlon, In the cass of the cemented filter, we need only consider the total
absorption and the reflsciion fromycne plang., Thersfore, with 2 given
margin /of error/ let us assume -the transmission of the filter for the
position of the maxima to be 30 pet. Thus far, not one of the selesctive
filters has attained this‘transmission capacity. A schematic sketch of
the filter is given in Fig. 1. In the experimental part we give some

results of mpasurements on a filter made of quartz plates.

Tl
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b) Second modification of the filter

In the sscond modification of the filter, m birefringent plates of
equal thickness d and two polaroids were used, as in the first modification.
The difference between the two types lies in the plate arrangement only. In
the second medification, the plates are arranged in such a way that each
Successive plate is turned at the same angle £€ and in the same direction as
the preceding plate. Thus, a fan-shaped layout of the plates is obtained.
The axis of symmetry of the fan of brincipal directions runs diagonally to
the “input Zflrs_t] polaroid. The second polaroid is parallel to the first.

Let us once again give a general ciescription of the process taking
place in the filter. We will introduce the follewing notations:

Sin& =A, cos £ =B, sin 2 £ = C,.cos 2€ =D, sin ¥ =L, cos ¥ = M,
. L. d N .
sin 2n [f * % - T (g + Jn,) | = S(kny + Jns).
¥ is defined by the expression:

p= L . m- 1.
L p)

The polarized light from the first polaroid passes through the first plate.
After this light has passed through the first plate, the vibration is de—

fined by the expressions:
xl = 7, ° S(nl); Y1 = M- S(nz)o (7)

The following recurrent formulas are valid for the passége through the

remaining plates:

105
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3

xg+l = ig o« B + ﬁg A (8)
Tg+1 = gg * B~ Eg - A, .
The dots and dashes over the x and y have the same weaning as before,
After passing through a certain number of birefringent quartz plates,
the light passes. through the second polaroid, after which both waves again
reduce to the general difection of vibraticns. Méfhematically, this process

is expressed by the equation:
= F ] I '
Tex, oL+ Vg ° Mo (9}

The meaning of the letters is the same as tefore. Again we give only the
results of the analysis of the second filter modification. The filter has

sharp maxima, whose position in the spectrum is defined by the equation
de(m ~ny) =v-2%, (10)

The centers of the broad minima are defined by a similar equation:

2y -1

d° (n - n,) = 5 x . (11)

The width of the transmission band is expressed by equation (6). The second-
ary minima are quibe insignificant. The transmission of this filter is the
same as that of the first filter modification. If we placa the second
polaroid in the crossed position, sharp minima are formed, whose position
is determined by (10), and whose broad maxima are determined by (11),

Thus a complemshtary phenomenon again occurs. In general form; the

second modification of the filter is complementary in construction to the

(0
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first modification. The filter assembly is represented schematically
in Fig. 2.
In the experimental part of this work, several results are given

which were obtained from a filter of quartz plates.

OTHER POSSIBILITIES OF EMPLOYING AN ASSEMBLY OF IDENTICAL

BIREFRINGENT PLATES

It is possible to carry out a whole series of interesting experiments
with an assembly of birefringent plates of identical thickness, ground at
the sama angle,.from the same birefringent material, The filter construction
is always identical in that two pélaroids are used, between which the plates
are placed (Fig, Lb). The various modifications of an assembly of this type
differ only in the changes of the positiop‘of the directions of wvibrations,
and in the position of the principal directions of the birefringent plates,
i.e. the polaroids and the plates are graduaily rotated. In these experi-
ments a very diverse distribution of the transmission and absorpiion bands
in the spectrum is possible. Thus, for example, the whole spectrum consists
of sharp doublets, triplets, and quadruplets, light or dark. TInstead of a
detailed account, in the experinéntal part of this paper we will give
examples of several possibilities, which may be realized by keeping the

birefringent plates stationary and simply rotating the polaroids.

(01
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EXFERTIENTAL RESULTS

Of the experimenis conducted with different birefringent plates, T
ﬁill cite only tha results obtained with one assembly of ten plates. Quartsz
plates, cub in the direction of the optic axis, were used, The birefringence
value of the quartz in this direction, relative to the wavelength of the
light is shown-in Fig. 3.

In this directiéng the quartz also shows a slight capacity for turning
the plane of polarization. This capacity of the quartz is zsro at a cut
of 56°10', At the specified cut of 90°, a slight capacity for turning
remains, which causes an ellipticity of the light with an axis correspondence
of about 0.02, so that it may be assumed that the light is propagatéd practi~
cally linearly along the principal directions of the vibrations. The measure-
ments were concducted with plates 1.h417 mm thick., Two slightly colored
herapathite polarcids were used. 4 g;ectroscope with spectrometsr was used
for the visual experiment, a spectograph for the photoggaphic exrerimant.
Several of the spectrograms are given here. The spactrograms show that in
the red part of the spectrum they sre limited by the sensitivity of the

photofilms, while in the violet they are limited by the glass of the polaroid,

a) Measurement of the first filter modification

The arc spechrum of iron, which may be used as a scals for wavelength,
is given at the top of Spectrogram 1. Below it follow: a) the spectrum
obtained from the continuous spectrum after the light has passed through

the 10-plate filter, b} the same assembly with only 8 plates, c) with 6 plates,

{s17
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d) with L plates, e) with 3 plates, £) with 2 plates, and g) %ith 1 plate.
For comparison, spectrum h was also photographed using the same plate
placed in 2 diagonal position. Im all the other cases, it was assumed that
cangle £ = 5%, Since a reduction in the number of plates also resulted in
a reduction in the number of reflections on the individual surfaces, the
exposure time was reduced correspondingly. Cbvicusly, the exposure btims
was too short in the case of spectrograms e, f, and g. Spoctrogram 1
upholds the validity of eguations (k) and (5). These equations were also
acourately checked by spectrometric measurements. Furthermore, the valldity
of equation (6) was estéblished-thraugh photometric analysis of the spectro-
grams. The coefficient 0.6 was also determined through this analysis,

The properbties of the filter with respect to angle & were also defined
on the basis of Spectrogram 2. The arc speclrum of iron again appears at
the top. A gradual change of angle § book place, namely 1°hot, 39307, 59,
7°, 10°, 10930, in the spactra that follow, i.e. a, by ¢, & 6, and f, with
the same exposure. In spec£rabd 2nd & not all the & values were identical,
and in some plgtes the deviaiions amounted to approximately 20'. Ths effact
of this deviation on the symmetry of the separate passages of iight is
noticeable on the skebch. On the given spectra, one may s5ee the optimal
angle £ , 2t which additional passages /cf light/ can be ignored and where
the principal maximum is narrowest. The last two spectra, g and h, were
prepared for & final photometric chock of equation (6}, I will give,
briefly, the checking sequence: one of the polaroids was removed and placed
in front of the {irst polaroid. Xis direction of vibrations was placed

parallel to the direction of the vibrations of the first polarcid, With this

Lo
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layout, the lipht first passod through the scries of birefringent plates,
then through both polaroids, placed parallel to each other. The teotal
result of the transmission was as follows: all reflections in the systen
remained unchanged, 50 pct of the transmission was lost owing %o the ab-
sorpbion in the polaroides spectrum h was photographed in the sams way as
spectrum gj however, the polaroids were placed in front of the_birefringent
plate assembly. Thus there is an identical loss in bhoth casas g and h,
owing to absorption and reflecticn, as in the case of the 10-plate filter.
The photometric measurements have shown that the light intensity of the
£ilter maxima is exactly the same as that in the g and h spectra at corre-
sponding wavelengths. Thus, it was gstablished that the filter transmission
was exactly 50 pet, if we ignors absorption and reflections. This 50 pet

is due to the natural polarization mechanism and therefore cannot be insreased.
Furthernore, a partial polarization, caused by the plate assembly, appears

in spectrum K.

b) Measuring the second filter modification

These measﬁrements were a development of the first filier measurements.
The spsctrum of iron is again shown at the top of the spectrogram (No. 3).
In this spectrum some wavelengths ars approximte. Specirum a was obtained
with 6 birefringent plates and two polaroids with the szme aryrangenent as
in Spectrogram 2, h. This spectrum was also photographed to evaluate light
intensity. Spectrim b is the spectrum of the b~plate filter of the first
modification. Spactrum ¢ represents the specirum of the é~plate filter of

the second modification, Both spectra taken together show that the filters

(o
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complement each other. Spectrum d is also a spectrum of a 6-plate filter
of the first meodification, but one in which the polaroids wers placed
parallel to each other. Spectrum & represents the spectrum of the &~plate
filter of the second modification, bubt in which the polaroids were crosssd.
dgain the complement is evident. OSpectrum f represents 3 plates whose
directions of vibrations were set uniformly in a diagonal position with
respect {0 the crosssd polarcids. Spectrum g is similar, buk with parallel
polaroids, Both spectra f and g were photographed in order to evaluate the
width of the transmission.bands. In all previously known complex filters
the bandwidth is approximately the same as the bandwidth transmitied by one
plate in a2 diagonal position, the plate bBeing half the %otal thickness of
all the plates, From the above spectra, it foliows that the bands of the
filter are considerably narrower, if we consider the widﬁh of the trans-
misﬁion‘band of the 6~plate filter and the width of the transmission band
with 2 such plates in a dizgonal position., The messurerents again verify

the empirical coefficient 0,6 of equation (6).

¢) Examples of several other experiments with measurable plates

The plates were placed as in Fig. L. In all the spectra of Spectrogram L
this arrangement was kept ccﬁstant, only the position of the direction of
vibrations of the polaroids was changed. The spectrum of iron is giwven at
the top. OSpectrum a represents a 9-plate Lilter with directions of vibrations
of the plates as in Fig. L.

In the first polaroid as well as in the sécond, the direction of wvi-

brations is parallel to that of plate Wo. 5. Spectrum b was obtained with

i



- 16 -~

tho same plate assembly; the direction of vibrations of the first polaroid
was parallel to plate 5, the sscond polarcid was crossed. Spectrum ¢ was,
obtained from the same plate assembly with the directions of wvibrations of both
pelaroids parallel to plates 2 and 9. Spectrum d was photographed with the
same assembly; the first poiaroid was placed paréllel to plates 1 and 93 the
sgcond was crossed. Spectrum e was obtained with the direction of vibrations
of both polaroids along the axis of symmetry of plates 1, 9 and 5. Spectrum f
was photographed with the same assembly, however, the sascond pclaroid was
crossed. During the phobographing of spectrum g the direciion of vibrations
of the Iirst polarcid was parallel to plates 1 and 9, the second, to plate 5.
Finally, in the cass of spechrum hathe pogition of the vibrations of the
first pelaroid was parallel to plates 1 and 9 and the direction of vibrations
of the second polaroid was perpendicular to plate S,

From these examples it follows that there is the possibility of an
enormous number of combinations of positions of the principal directions of
the birefringent plates and of the directions of the vibrations of the polarcids,
Every new combination gives ever newer possibilities of the distribution of
transmission bands in the spectrum, It is also probable that‘this use of an

assembly of identical birefringent plates will find its practical application.

d) Some additional information

In making measurements, T also verified the possibility of shifting the
transmission bands of the spectrum by inclining the filter. The results obtained
verified the weasurement results obtained by Ohmen with the simplest filter. If
one wishes o include all wavelengihs, the first modification of the filter

should be changed to the second when tuning the filter to include wider 1limits.

(2
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I also tried quartz plates ground at an angle of 56°10' %o the optic
axis. A filter can be constructed from such plates, but it is much more
sensitive to the convergence of light. This also follows from the equation

which expresses the change in birefringence with respect to the change in

the angle of cuit

(ny - mple = (ny = n2)900 o sin® .

In finding the derivative of this appracimate squation, we obtain the relation

of the change of birsfringence to the change of the angls
Alny - nplg = (m ~mp)y ~ sin 24 AL

From this equation it clearly follows that the smallest change takes place
at angle $0°, that is, with the cut parallel to the optic axis. This squation
has its maximumﬁat o = 159, Thus, in this region the filters arc most
sensitive to the convergence of ligh%., When the bundle "of light is parallel
there are no objections %o the use of plates ground at an angle of 559101,
which has zero capacity for turning the plane of polarizaticn, T did noé
measure the relation of fhe transmission maximum to the tempera%nre. In the
literaturs cited, a shift of 0,06 4 in the direction of shorter waves for
a2 1°C rise in temperature is given for quartz.

Tn consbructing a filter with great resolving power, the direction of
tha out must bo maintained very strictly. In cubiing quartz parallel to
the opbtic axis it is expedient to keep the tolerance of the angle at +107.

X~ray verification of the cub, using & Zeeman spectrograph, is well suited

(3
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to this purpésec The thickness of the plates must also be strictly
controlled. The thickness ané planeness can be closely regulated inter-
ferometrically.

Prof. Bedvd¥ called my attention to the growing imporiance of bire-
fringent filters and thus led me to think aboub new possibilities. In
concluding, T wish to express wmy gratitude to him. The present work is one
. of a number of dissertations under way at the Scientific-Research Institute

of Elsctrotechnical Physies in Préguee

submitied

20 April 1953

Nauchno-issledovatel fnyi Institut
Blektrotekhnicheskoi . Fiziki v Prage.
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This continues an ariicle which appeared in the Czechoslovak
Journal of Physics, ht 53-66, 195h, where the relationship be-
Tween the angle and the number of plates was found. A qualitative
study is made of the influence of the inclination of the filter
and an approximate expression is dorived for the maximum permissi-
ble convergence of light and for the relation of the wavelength of
the transmitied light bo the ilemperaturs. -

In my article "A new type of birefringent filter” which appeared in
this journal, the qﬁestion of tha size of the angle Bétween the directions
of the vibrations of phe individual plates had been left unsolved when this
filter was construcied, In this work T wish to show the mechanism by which
this angle £ is determined. ‘ -
Analytical investigatlons of the angls £ did not lead to clear resulbs.
Therefore, I used the experimental method to study the influence of this
angle on the birefringent filter, I used the visual spectrometer method,
since the weal secondary maxima can be determined more reliably visually
than by photographic plate and photoslectric cell. The aim of the measure-—
ments was to find the relation between tho optimal angle ¢ and the mumber
of plates, their thickness, and birefringence. Furthermore, I was interested
in the influence of the departures of some plates {rom the optimal angls
_ on the quality of -the filter, and the influence of the irregular orientation
of the plates, their unequal thicknesses and optic heberogeneity. . Con-
currently, we carried out investigations of the influence of the inclination
of the whole filter witﬁ respect to the direction of the rays. The gstablished

relations ars very interesting and have a practical significance., The

5 - .
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measurements were conducted in air and in immersion. In all experiments
quartz was used as the birefringent moterial.

Below is a short report on the experiments, which often had unexpected
results, Tirst of zll it was established that the value of the optimal
angle £ does not depend on the thiclmess of the plates, and thus it is
also independent of the birefringence value of the material employed. Next
it was established that the optimal anple is constant for 21l wavelengths. -
The optimal angle depends only on the number of plates, hence its value may

be expressed very approximately by the following formula:

o]
Eopt = h — , {g being the total number of plates) (1)

L

(1]

This formula holds for the first and second {ilter modifications.
Since the limiis of measurement of angle £ must be deflined aQGuratelyj T
again give sketches of the plan of the first and second filiter modifications
-with final notations (Figs. la and 1b). In thess skeiches the directions of
vibrations of the polarizers are depicted by broken lines, the principal
cptie axes of the plates are represonted by sclid lines,

In the fellowing I will give some of the details obscrved during experi-
ments with the first filter wmedification., The second modification in a

mumber of respects has the sawme properities.
THE BEHAVICOR OF A FILTER WITH FINZ TUHIHG

Iet us examine more closely the effect of the changes of angle £ on
the behavior of & filter and let us define more exactly what constitutes

the concept of the cptimal angle., 7The interference picture changes with a

{2
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changs of angle, Thus, the width and intensity of a transmitted line can
be changed within given limits and can oxert a strong influence on the
intensity of the secondary maxima, We tried in so far as possible to
suppress the secondary maxima, at the same time keeping the transmission .
band as narrow and as light as possible. This requirement was satisfied
at optimal angle Eﬂpt' By experiment I dstermined that in ganeral thrae

zones of angle £ may be distinguished, where the [ollowing characteristic

phenomens take place:

a) Zone 1: g smaller than &£ opt® When the angle becomss smaller, the
band of the transmitted line gradually broadens, whereby the characterisiie
@ur1r§_7 of the transmission intensity with respect to the wavelengih becomes
bell-shaped, while the characiteristic of the optimal angle is nearly straight.
Ag the angle decreases, the intensity of the transmission also decreases, at
first slowly, then rapidly.. However, the intensity of the secondary unrglesirsad
mexim decreases sim;ltaneausly, and congiderably more }apidly, The trans-—
mission band becomes approximately 40 pct wider than the initial width, As
angle & approabhes 0°, the whole process becomes rapidly weaker. When

£ = ()o, naturally the whole field of vision is dark.

b) Zone 2@ In this zone the angle £ = Eopt-' according to formula {1).
In the first filter modification, the optimal angle may be changed within
fairly wide limits, without causing;' any considerable change in ths character
of the spactrum. It was established by experiment that in this case & change
of 10-20 pet in angle £ is permissible. Thus it seems that in the first

filter modification it would be expedient to keep the £ values approximately

\ 23
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10 pet below those given by the abovo formulas:; The computed valus of

the angle is betier for thoe second filter modification.

¢) Zone 33 Angle £ larger than P The width of the transmission

opt®
band decreases somewhat at first, by several percents, but when the angle.
inereases, the transmission band begins to bifurcate. The intensiiy of the
secondary maxima quickly increases, the phenomenon loses its typical charac~
ter and the filter ceases to be monochromatic,

Such are the results of the experiments which established the directions

of vibrations and in which absolutely identical and homogensous plates wore

employed,
THE EFFECTS OF INACCURATE YOUNTING AND HETERCGENEITY

If the directions of wvibrations are not established accurately enough,
i.e. 1f the angles of the different plates differ, various changes occur in
the initial position of the spectrum of the birefringent filter. If the
departufe of the mounting angle for the individual plates doss not exceed
5 pot of the eétablished £ valus, only an insignificant irregularity is
observed.in the distribution of intensities of the secondary maxima, and the
transmission curve of the principal maximum ceases to be symmetrical, If
the departure of any plate cxceeds the above velue, there will be a consider—
able increase in the intensity of one of the sccondary maxima or a general
irregularity in the distribution of intensities. With greater departures
(20 pet or greater), the secdndary maxima csuse interfarence, 4n incorrectl

arrangement of the polarizer will also have this effect.

(24
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The heterogeneity of the plates, their differences in thickness and
trinning alsc cause undesirable phenomena, particularly in filters with
great resclving power. IHowever, the twinnings may be excluded in advance,
and the thickness can easily be controlled intefferometrically and by
polishing within an accuracy of 0.0001 mm, which ig sufficient in .all cases.

Another question is the possibility of maintaining the direction of the
cut. In my first article on filters I wrote of the possibility of using
cuts that are not parallel to the optic axis of the crystal. T also introduced
a small permissible converpgence of the bundle of light. I should amend my
statement. Oblicue cubs may only be used in filters with a small number of
plates. In other cases, oblique cuts should not be used. The reason is very-yu
simple: only in cuts parallel to the opitic axis does the perpendicularly
incident ray pass in a constant direction in the direction of the extraordinary
ray, i,eq, Ferpendicular %o the plate, With other cuts, as follows from
Huygens ! construction, the extraordinary ray departs from bhe initial direction,
as & result of which there is an ever ilarger divergence of the bundle of
light in the successive plates, which finally makes monochromatization im-
possible with-a larger number of plates. Thus in construeting birefringent
filters it is expedient to use only cuts which are parallsl to the optic
axis of the erystals. These cuts mey be adjusted with an accuracy of 10!
{by the optic method or the L-ray method), which is sufficient for filter
production.

Before aésambliné the filter, a simple control can be effected over the
optic homogeneity and the uniformity of thickness of the plates. For this

Purpose two prepared polished plates are placed one on the other so that the

-
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direction of the maximum coefficient of refraction of the first plate will
cross that of the second plate. The birefringence of the plates arranged

in this manner will caneel., If this pair éf plates is examined in parallel
polarized light in crossed polarizers, on rotation the pair of plates
should appesr uniformly dark along the whole surface. This system will be
highly sensitive %to any heterogeneity, irregularity in thickness, ete. This

method, e.g., can also reveal electric twinnings in the quartz.

THE RELATION BETWEEN THE BEHAVIOR OF THE FLLTER AND ITS
INCLINATION TO THE IICHT RAYS .

Usually a filter is placed in parallel light, whose rays are perpen—
dicularly inecidendt con thalfilter. Hoﬁever, it is very useful to know the
maximum permisgible convergence of the bundle of light which still will not
disrupt ths inberference to any appreciable exitent, Then the filier can be
tilted somewhait so that the rays will fall on the surface of the filier at
a different angle; in this way the filter can be tuned within wide limits.

Experiments alcng this line led o the following resulis:

The first and second filter modifications can be tilted such that
the axis of inclination coincides with the bisectrix of the optic axes of
the maximem or minimom coefficient of refraction. Thus there are two
mutually perperdicular directions around which the filter can be inclined
(the chosen direction remains parallel at all times during this process).

The following uniform results were established for both filter medifications: ”

126



a) IT the axis of inclination is the bisectrix of the optical axes
of the maximum coefficient of refraction, the transmission bands will shift
in the direction of shorier wavelengths, whether or not the filiter is tilted

in the same or in a different direction from that of the rays.

b} If the axis of inclination is the bisectrix of the optic axes of the
minimum coafficient of réfraction, the transmission bands will shift in the
direction of longer wavelengths, wheather or not the filter is tilied in the

same or in a different direction o that of the rays.

¢} The directions of the wavelength are exacily the sames, whether the
filter be tilted arcund the bisectrix in one direction from the dirsction

of the rays or in the other,

d) The absolute value of the change in wavelength during the inclination
arcund the bisectrix of the optic axes of the waximum refraction coefficient
ig the same 23 the absolute value of the change with inclinatien around the

hisectrix of the winimum ccoefficient of refraction.

e) Changes of wavelength in both filter modifications are idsntical

with respect to the angle of inclination.

f) The following general law was found which defines the change in

waéalength with respect to the angle of inclination of the filfer 3
A% = const X ° Flo) . [2)

In the case of not-tooc-large values of the angle; we can assums F{p)

2 or sinp, The sssential relationship of AN to the

(27
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number of plates or to their thiclness was not found.

After tle indicated value for F(p) is set up and the numerical constant

computed, formula (2) bacomss

AN = L5 * % - 92 « 1073, (3)

N

vwhere A is the shift of the known transmission band, A the wavelength of
the transmission band, ¢ the angle of inclination {in degrees) of the filter
from the perpendicular incidence of the light ray.

The measurements were conducted on many filters for various wavelengihs,
in all cases with the angle £ optimum. By way of example I give the measure-
ments made with the first filter modification congisting of saven gquartsz
plates 1.5852 mm thick. This filter was construcied for observation of the
sclar corona. The required wavelength of the transmitted light was 5693 A.
The relation of wavedength to angle of imclination of the filter was investi-
gated. The measurement results are shown graphically in Fig. 2. The ascending
line pertains to the filter inclination aQound the bisectrix of the principal
axes of the minimum index of refraction. The descending line pertains to the
inclination of the filter around the bisectrix of the maximum index of re-
fraction. The measured filter was cemented with Canada balsam and was without
frame; tﬁis mede it possible to measure the filter up to an angle of incli-
nation of 85°, The applicability of formila {3} to this case was alsc studied.
The results are shown graphically in Fig. 3. The broken—line hyperbols
indicates the computation according to formula (3), the measurements are shown
by dots on the graph. The dots with crosses relate to the descending branéh

of graph 1, the dots in circles to the ascending branch. .
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g) The width of the transmission baﬁd is practically independent of
the angle of inclination of the filter, which was established with incli-
nations up %o 85°.

These results show the possibility of btuning filters within wide limits,
Since a filter has a whole series of transmission bands, it is easy to build
a smeothly tunmable birefringent filter.

The inclination of the filter with restsct to the direction of the light
réys in the ordinary dirsction causes much more complex speciral changes.
However, with a known degree of accuracy, this inclination may be resolved
into the sum of the inclinations in the directions of the bisectrix of the
optic axes of the maximum coefficient of refraction and the inclination
along the bisectrix of the minimum coefficlent of refraction, these being
mutually perpendicular, 4s follgws from the above, these directions exert
opposite effects. Therefors, with greater inclination, the lines should
bifurcate, with slight inclination the width of +the transmission band should
increasas, since both parts of the bvifurcated line somewhat overlap or come
into contact with each other. Such phenomera ars actually observed in their
general featurss. This case of inclination of the filter in its gensral
form in of great importance since it gives us datz on the maximum permissibvle
convergence of the rays (as long as the required moncchromatization is not
disrupted). ILet us attempt to compute the permissible convergence on the
basis of the abowve relations., II we assume a 10~pci broadening of the trans-
mission band, these formulas make it easy to obiain the expression for the

maximum angle of convergence, where %A )\ indicates the original width of the

transmission band:
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Poony = 10 ° /42, (k)

The maximum convergence, which in general can be assumed, is that for which
the bifurcating parts of the maximum are contiguous. The value of this

angle is approximately equal to three times the value computed from (L).
CONCLUSTIONS

In the preceding I have shown that a certain optimal angle £ exists,
which depends only on the number of birefringent plates from which the filier
is composed. This angl? may be determined by formula (1); experience, however!'
has showm that with the first--modification filters it is expedient- to employ
somewhat smaller angles, The intensity characteristic can even be ;mproved
somewhat by small deviations in some of the plates. This adaptation of a
filter, however, requires great patience and experience; it may be comparesd
with retouching in sensitive optical systems. Usually‘it is sufficient to
‘maintain 2 uniform angle £ in all plates and to be sure the plates are
uniform. The folerances have already been indicated. Further, I proved by
experiment that it is possible to tune filters within wide limits in the
directions of increasing and decreasing wavelength. The approximate formulas
for the computation of these-shifts are also given. At the same time, an
analysis of the maximum permissible convergence was made on the basis of the
foregoing results; this was also expresscd by an approximation formula.,

The present work is part of a docforal dissertation done at the Institute
of Electrotechnical Physics, Prague,

submitted

o
5 20 Kay 1954
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CHATN BIREFRINGENT FILTERS

by
W
Ivan Sole

INTRODUCTION

Wa use the term chein birefringent filter to designate the arrangement
of birefringent plates in which no plate is separated from another by pela~
roids and in which the path difference of the individuzl filter elemenis 1s
repeated periodically. Hence, the simplest arrangement answering this de-
fimition ig 2 system of plates of equal thickness, ground from the same mate-
rial and with the same orientation of the angle of cut. Filters are either
asymmetrical (the filter effect can be changed by changing the direction of
the rays) or symmetrical (the filter effect is independent of the direction
of the rays), depending on the arrangement of the azimuths of the individual
filter elements. For practical reasons, symmetrical filters are the most
convenient, so we shall concentrate on them in this paper. Birefringent
filters are generally used to make light monochromatic, and thus it is our
cbject to atitain the optimum effect along these lines.

BASTC ASSUMPTIONS

‘A ray may net change its path direction while passing through the filter.
Hence it follows that only one cut of a crystal is suitable, namely the cul
parallel to the plane of the optic axes (uniaxial crystals are cut parallel
with the optic axis). Huygen's consiruction of the refraction of light in
crystals shows clearly that all other cuts are unsuitable. I described the
simplest type of chain filter in an article published in 1953 [i1. A more
detailed analysis of such filjers can be found in {23, The system of gquations
derived by Hsien~Yd Hsll, h. Richartz and Ying-Xang Liang in 1947 (5] from the
general formula for compubing the intensity of polarized 1light passing through
a series of birefringent plates has proved to be effective for analysis of
the filter funciion

oo [ St % ol -

S} h=d Kl
2t 2
A 1)
- 2221 {—)* Gu)] + ’ {
niy 2!"1 2!:1 F3 I 2
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{23
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In this formula, ¢ is the azimuth angle of the analyzer with respect to the
azimuth of the polaroid, x, = tan ﬁs, v = 65/2, & is the phase difference, pl
the azimubth of the i-th plate, J, the intensity of the light after the first
polaroid. The phase difference and the path difference are relatéd by the
familiar relationship

20
6::.x_..d-D (2)

in which M is the wavelength of light, d is the plate thickness and D is the
index of réfraction.

To make satisfactory birefringent filters, one must use suitable, highly
- homogeneous birefringent crystal material, maintain a strictly accurate angle
of cut, and control the grinding such that the plate thickness remains
strictly within the assigned tolerances. A condition for the use of bire-
fringent filters is that they must fit into an optical system in which the
allowed angle of convergence of the rays is not exceeded.

GENERAL RELATIONSHIFS FOR SIMPLE CHAIN FIITERS
For gimple chain filters, with which we are concerned here, the individual
elements have the same path difference, which is expressed by the condition
YL TYy T3 T e T, T
then, zlso,
Xy U Ey TXg = ... =X%X (3)

In further computations, intensity JO will be takeint as 1.
We will use Kn for the double brackets in general expression (1). Then,
for example,

Xy=cos*d [ [r, cos(H - 200,
X, [eosd — pury cos (8 —- 20, 4 20)] -
r[xzeos (- 2p,) j-x con{d - 203,
Xy = feos® — xax, cos (D ~- 2pg -1 20) - ryrpeos {29, 20 -
0 (D = 2o, b 200 [rens (0 20
+xyeo8 (D — 20} -+ x cos (P -~ 20)) N L
Lens (0 — g 4 20, — 297,
etc.

Next, let us introduce the expression Lu,v’
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u r

Joyoo = > cos (f!J — 2 Y (e I 9,,‘) .
f)el Sh=1

&)

By successive substitulion, we get

Ly =2 eos (& i),
Ly = cos (O L) b cos (4 - 2o, ),
[1_..2 = DS (fl'-’ . '_’U_, ' :"!.,l) s

L'll ER RN {(IJ - 2{“) TS (([} — 2{,2) - oeps ((I»’ - 201) ,

rOs _.w L S .
Lis . cos (4 =ty b Zoy) b ocos (@ — 20q -+ 2y} -k cos (@ - 20, + 20},
Lyy = vos (b -. 2oy - 20, — 200), )
atc.

For the sake of clarity, we may express thess relatiﬁnships by the following
numerical scheme:

-

l‘l.l ------ ]

Lyy oo 201

L., .21

Ty ceenn, 32,1

oy e e 3203121

L o321

Ly oen oo 4,3,2,1

Tvg onnn, 43, 42, 41,32, 31, 31
Lo . ...432,0431, 421, 321
A 2

atc.

By successive substituiion of Iﬁ,v and relationships (3) for Kn, we arrive at

squations ’
X = c0e* @ + {=L, 0,
}g: = [coa ® — L, )+ fxly, )2,
A, = [con P — 2Ly P+ (L, — 2L, .},
X =[cos® — 2L, + Lt + (=L, — 2L ,P, '
Xy = [008 P —~ 23, , + TL, J* + (=Ll — 2L, , + L0,

X, = [co8 ® — 2L, —
E;O;‘L‘.']g ] 1+ I‘L..‘ + x‘Lq,J' + {an.l. Z‘L,J + . +

In this equation, a is the largest even number that fulfills the condition
n, and t is the largest odd musber that fulfills the similar condition

N

WA A

s
t

It is convenient 10 arrange these expressions by decreasing powers of xi

Ny o=t et
Xy = L, - ar¥(LE - 2L, cos ) + cost O

1
Ny 8RR, - 2Ly, L) 1LYy — 2L;, cos ) -+ cos* @,
= IH[‘E,{ t .1"'(];;"3 -2l )k .1:‘([4%', — 2L, Ly + 2L, vos D) -
- .r‘{L},l — 2Ly, con P) 4- cos? D,
X o= -rwl*?.',s it PG — 2Ly 0y ) + z‘(Lg.a — 2L Ly + 2Ly L) +
M LE - 2l L e 2L cos @) - HL{, — 205, con @) +

s oy

ete. |5
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The brackets with functions Lu v with values of x are of the nature of coef=-
2

ficients and express the characteristic properties of a chain filter.
call them Ak,g’

Then,

A= Li,x »
A4,, = L;J .
Aa.l = Lﬁ,n .
‘41.1 == ‘L:‘l. '

— z .
Ay = L3
A= cos

s 32 "
A:..: = L?.: -

Aa.: - Lg.t )

Azz == 1‘:.1 -
A,

— 2z
Apa = Ly

Ay =10,
A,y =coa P,

Agg = L':i,l. -

Ai.s = L%.z =

Ass= 1§, —

Aegq = L:_‘ —_

Aga Lz_bz
L]

41 , =0

f,,--1,

Ay = cosn
A, 4= Lf.x -
Au = ng o

Agy = L3,

- 2Ly

2L, eo8 P
2y I
2[‘4 .:Lu ’

g gleg s
salsss

2 T

2l cus b

2L Ly — 2L cas |
2fagadog g - 2 Loy o,
QL,_;‘L,‘ stk '-)-Lu.ch.s ’

CT FRURY SUSEEE <3 PRI PP

2L, eonth
2!15 1]15 2 ‘E' 2[.!5 a cas (f) .
Ugolyy - 2LgyLys -

2g g tus &

Ara= L3, - 2La by F L2; 50,6 -+ 2L, Ls;

— 2 3 . 3
-'Ik'l - J‘k_k—a - -ka de f-x le '.Lx.x--: - JLL.A-H"‘AJ '
Al s =0,

‘4."5 -0 ]

,-!3 5 = o,

Ay meos |
2

Age= L5, —

. — 2

dgs = [’s.:
..

:l-,-__., = L?.a -

As.s = Lg.t -

Ags = L;; -

2 wos

g lgy F 2Ly cosdh

Bl alg o - 20 Ly s — 2L, s vas

ELn.JLn.s ':"‘ gLn.st.a -

QLB.JJ:M + :?'Lﬂ 3L9.7 -

2Ly Las + 2Ly yco8 @,
2L°_2Lg_s + 2L;,1Lv.9 ¥

Lat us

— J2 : g
4 Ky — Lk,k—% - "”J't & 5"&.1—3 +- 2Lk.k - Lk.k-z - ‘?'Lk.k-—TLl.k-I +‘ sz.k—aLt.k 3

stc.
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The formulas combine formally if we introduce the symbol cos @ = Ik,o‘ Then

the general relationship for expression A ¢ has the form
H ) 2 )
-‘Ix.z = Lx.::-u: - -LJ..L—zLx.k-nz -+ -L:.,t—z-:[ﬂ.k-ua - (5)

-t 2 4;..1:-:-sz.:=-:+; (RN :'}: 2]‘1.1[‘& L
Iff we use coefficients of Ak ¢ the formula for Xn agssumes the form
3

Xy =2t 0 costy

N = rtd, f atd,, §-cot

Xyg= el by, b etd,, + cos2 &b,

Nyg= 284 i, f-atd,, 224, - cont b . (6)
X, =504, , ¢ .r“.{.“ S AL PIPS FL PRI 3% PR et R

Xo=rind, brm-td, 1o iy, T cont e

With the aid of formula (1)} we may convert equation (6) into expressions suite
able for direct calculation of intensity:

Jy=amry. 4, + cos? y cor? ¢ |

Jy=nginty A, - sintyeosty, d;4 + cost y cos D,
Jy=sin®y.dy, + sndpocost y . 4, - sint yeosty . Ay F cost yoeost @
Jo=snty . A, aintyocos? Ay 4+ sint ycost y . A4, o+ sin? v cust ¥ {(7)
Ao+ coxdyeont |
TS, =siny A, STy cort y A4, L+ osint y ooty 4, L

-+ cosit s cunt

- Equations (U}, (5) and (7) are general relationships describing simple chain
filters, both symmetrical and asymmetrical.

In what follows, we shall concenirate on symmetrical filters. We shall
use the term "ideal" to define the filter assembly with the simplest arrange- .
ment of azimuths of the individual plates. We shall use the term Toptimum"
to define the filter assembly in which the attempt is made to reduce the
sgcondary maximg as much as possible through arrangement of the azimuths of
the individual plates, ﬁe shall also distinguish two different cascs de-
scribed by angle @, In the first case, angle®d will be either 0° vr 90°
(basic positions), in the second case angle & will be general (genesal po~
sitions). Of course, all cases will have to be divided into two mod* ®<~: jons,
the first and the second, which are mutually complementary. We shall ta.c up
all the aforementioned cases systematically but separately.

THE FIRST HODIFICATION OF THE CHAIN FILTER IN THE BASIC FOSITION,
IDEAL ASSELBLY [OF PLATES]

In this case,

h=90", 4 =0 = fugwg = 0, (8)

Qe = — 0.
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Through substitution, equation (L) takes on the form

Ly, =sin2g,

Lz.l =0 ’

L,_g = — sin 4p,
Ly, = 8in2g,

La.: =0,

Lyy; =sin6p,

Ll.l = 0 )

Ly, = — 2gin 4p,
L&.a =10,

Ly = —sin 8o,
Lgy = sin 2o,

Ls.z =0,

L,y = 3sin 6p { sm 20,
L5.4 =0,

Lgs = sin 100,

ate.

Equation (5) simplifies as follows:

A, =sint2p,
A,, =sint 4p,
Aj, = 8in®6g,
A, = sin? 8o,
A5, = sin? 10g ;
4,.,=0,
A,.=0,

= — 2in 6p sin Lo,
= 4 sin-8p sin 4p ,
— 64in 10p sini Bp -~ 2 sin 10g sn 25,

0, ' (5a)
=0, -

o
[ .]
[

th -
LN
il

f

== 5in? 2p,

Bl oo
|
I

13
w3 = 48int dp
Ay = 9sin? Go L 8in? 2p .- Gsin 6o sin 2o - 2min 10g sin 29
A,=10,
A =10,
Aa.c = U,
A=0,
Ay == — Gsinipsin 29 — 2 xin? 2p
- ebe.

Due to substitution in intensity formulas (7), a condition is created by which
the intensity is maximum in the main maxima. This is the case when Al 1"

. . ]
Tl A3 e v A L 2 Lo

(28



for 1 plate L, —sin?2p =1
for 2 plates L}, =sin*4g =1
for 3 plates Li,=sint6p =1

for k plates L}, =sin*2kp =1.

The fundamental relationship for attaining maximum transmission
Lg®

nunber of plates

o= 9)

follows from the above equations. By substitution of condition (9) in equation
(4)s we can construct the following table of numerical values of L o
]

v
Table 1
N w -
: 1 2
N 3 4 5 8 1 8| 9
! 1 l
2 0 -1 |
3 0:500 o '
+ ] ~1414 ' 0 —1
5 1 0300 o | 23, o 1
n 0 -1,500 | 0 —4484 | © -1
7 0,222 0 ' 4,418 0 8,375 0 !
8 o —15630 , 0 —u,758 | © —-9,137 | o -1
0 0,174 0 ] 8.0+ | 0 16,60 0 12,082 el 1
i

Values of Ih,v with higher indexes can be approximated roughly, e.g.; by
extrapolation on graph paper.

Using table 1, .We can construct table 2 for Ak,z’ on the basis of re-
lationship (5).

Table 2

1™, !
!L 1 2 3 4 5 8 7 8 1
|1 1
2 1 0
i 3 1 | -1 0,250

4 1 |~ 2818 2,000 0

5 1 | — 5472 B,1041— 1601 0.0955

8 — k928 | 22,027i— 13,302 1,260 0

7 1 | —12,780 | 40,477 '— 56,774| 23,260 |— 1,082 0,049

8 1 | —18274 | 103,001 [—181,38 |133,179 |- 39,889 2,341 0
8 1 | —-24,164 | 178,07 [—410,79 |411,134 |[—3203,626| 42,224 | —2,102 | 0,090
1

Substituting numerical values in forsula (7), we establish thes regularity of
the variation of intensity of an ideal assembly of the first-modification

chain filter: - \ @GI



J, =sinty,
Jy = sinty,
Jy = sin*y — gint y cos? 7 1+ 0,258in% y cost y |

Ji=sgin* y — 2,818 gin¢ ¥ co8® y + 2 8in® y cost y |

Jy =sinl®y — 5472 gins Y cos’ y + 8,104 sin* y cost y — 1,691, (72)
. 8in' y cost y + 0,005 gin? ¥ coat y |

etec.

By successive substitution of the path differences, we find the curve of
the transmission capacity of the filter. The expressions for intensity are
polynomial in form. The main maximum is characterized by the first term, the
subsequent terms pertain to the secondary maxima and minima. Their number
also determines the number of secondary extremes.

By analyzing the first term, we can arrive at ths position of the main
Baximum, which becomes

e 2 3 2k + 1
YT T e )

By substituting this condition in equation (2), we get the familiar relation-
ship for the wavelengths of maxima,
TP i
d. D T—' ll
The position of the Second..y maxima can also be defined roughly as the ex-
tremes of the Subsequent individual terms of the polynomizl, which have the
form

¥y = sin eky' 005237 .

The extremes of this function are given by the equation

. /S k
Sln‘Y=m.

In these extremes, the function has the value

i, gt
7, =“"_"-k—£-'
max _(k"‘g).’-

The true position of the secondary maxima is always somewhat different, since
the extremes of the entire polynomial must be considered. Thus, only half
the extremes act as maxima, the other half correspord approximately to minima.

The curves of the transmission { of li[ghtj; for filters with one to nine
A0
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This is illustrated in figure 1,

a 20 0 a0 80y

plates are computed on the basis of equations (7).
An interesting
fact becomes apparent from squations (7), namely
that a filter with two plates has no Secondary max-
imum. This could be used in consiructing a Lyot
filter. Further, computation shows that the trans-
mission curve is considerably steeper near the
main maximum than one would expect from the first
term of the polynomial itself. The main maximum

is always somewhat broader than the case of a

Figure 1. The variation of single plate which is as thick as the total number

i:iigzlzgagi g;{i;;:Odiitg of plates of a chain filter.
one to nine plates, ideal
assembly in the basic po-

sition,

IHE SECOND MODIFICATION OF A CHAIN FILTER IN THE BASIC POSITION

WITH AN IDEAL ASSEMBLY (OF PLATES]

In this case,
D=0% g =¢ 0:=30 0 =250 ..., a=(n —1)p.
By substitution in equations (4) we get

Ll.! =90 +

Lt.:l =90,

Lyy= —cosdp,

Ls.l =Y,

Ly,y = 28in 29 — cos 4p,
Lyy=10,

Lm =0, .

L,; = cos 49 — cos 129,
Lia=0,

Li«=r¢cos8p,

La.:. =0,

Ly s = 28in 6p < 28in 29 — 2 cos 80 — cos 129 + cos 4p,
Ly, =0,

Ly, = cos 8p,

Lig=0,

ste.

Equation (5) simplifies as follows:

A:.: =0,
Ax.l = cos? 40,
A:.x =9,
Ay = cos? 80,
Ay =0;

14 {



- 10 -

Aa=1,

Ay = 2cos dg,

Ayy = 48in? 29 4- cos? 4p — 4a1n 29 cos 4p
A2 = cos 12p cos Bp — cos 8p cos 4p ,

4 5.3 = coag? 89 M

0,

=1,

Asy = 2cos 4p — 48in 2p,

cos? 4¢ + cos* 12p — 2 cos 4g cos 12p + 2 cos 8p

Aga = 4 cos? 8p 4 2 cos 12¢ cos 89 — 4 cos 8p sin 6p — 4 cos Bp sin 8p —
~— 2 cos 8p cos 49 ;

B e e
I I

e
I
(==

I
[ =]

2008 12p — 2 cos 4g ,

4 8in® 6o + 4 sin? 20 - 4 cos? 8p =- 082 12p - cost 4o
-+ 8 8in Bg sin 2p — 8 8in Bp cos Bp — 4 sin bo cos 120 -
+ 4 8in 6g cos 4p -+ 4 sin 2p cos 40 ~ 4 sin 2p cos 120 —
— 8sin 2p cos 8p + 4 cos 12¢ cos 80 — 4 cos Bg cos 49 —
— 2 cos 12p cos 4p -+ 2 cos Ep

N N N N N
.-:'
I

-

etc.

The maximm intensity in the main maxima of thé gecond medification need not
be verified separately, since the last term of equations (7) has the coef-
ficient cos®a = 1. ‘

However, the second modification can be made complementary to the first
by proper choice of angle p. This angle is given by relationship (9).. Through
subatitution of its numerical values in equationé (4}, we can again construct

a table for Lh,v'

Table 3
N IRREREE |
1 2 3 4 5 ! [ 7 3 ]
n | .
{ i i i !

1 0 [ i i :

2 ¢ 0 ! ! ! i

3 0 1,500 e [ | : I :
| o 1414 u b | ! . : :

5 ! o 2,736 0 way on ) . l |
[ i 0 4.464 ] R T H
.7 7l 8,375 0 ! 4,418 R 0232 ;

: 8 0 8137 1] © N75R 1 | t.aso ] " !

t 0 l 12,082 0 I 16,50 1" biE 0 l 174 ;

1

A comparison of this table with table 1 shows the mutual relationship of
coefficients Lu v for both filter modifications.
>
42
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Again we can construct a table for coafficients of Ak g ©on the basis of

relationships (5).

Table L
\ .
i 2 3 4 ] b ; K 9

k i

i ]

2 al10

3 016,250 —1

4 nio +-2 - 2.HIR [

5 01000955 | —1,691 | + 8,104 {— 5472

8 olou +2,250 | —13,382 {4 22,027)-- H,y2x

7 0| 0,049 — 1,962 | +22,350 |— 36,774 |+ 49.4771— 12,750

8 LR +2,341 | —20,850 |-+123,179 [— 181,38 |4 193.00 |— 18.274

9 ¥ {0,030 —~2,102 | 142,224 |—203,525 [4+411,124 [—410,79 + 178,07 | —24,184

This time we construct the equation for intensity in the reverse order of

terms of the polynomial.
fications more clearly:

This shows the complementary nature of the two‘modi~

J, = costy,

Jy = cost ¥,

/3 = cos* y — cost y sin? y -+ 0,25 cos? y sint y ,

J=cos®y — 2,818 cos* y sin? y - 2 cos sint y , (70)
Jy = coal® — 5,472 cos® y ain? y 4 8,104 cos® y aint 7 — 1,691 cost sin® y +

+ 0,0055 coa? ¥ sin® y |

ete.

The system of-equations (7b) is formally identical with system (7a), ex-
cept that the functions of sin 4 and cos vy eére interchanged. We get complets

agreement by introducing a complementary angle. In other words, the trans~
mission curves of the second-modification filter are shifted 90° with respect
to those of the first-medification filter, but otherwise are in agreement.,

The condition for the position of the main maxima of the “second~modification

filter, v = ws 21y ..., kn, follows from equations (7b), which leads to re-

lationship

d*D

=k.‘8o

Otherwise, the analysis of the intensity variation is the same zs that dis-
cussed for the first filter modification.

(4>



THE FIRST HMODIFICATION OF A SYsMETRICAL CHAIN FILTER IN THE BASIC
POSITION, OPTINUM ASSEMBLY [OF PLATES]

It is quite difficult to define the optimim assembly, for it is difficult
to defins this case mathematically, since the variation of the main maximm
deteriorates somewhat due t¢ the condition that the secondary maxima be sup-
pressed. Bafore we begin the main analysis of the requirements of an optimum
assembly, let us derive the general equation for a symmetrical first-modi-
fication filter in the basic position.

In this case, -

D = "‘3 » :Ql: = EQn[- EQ:; = f@n_l,l, vang f{?l{ = IQ#Q--:‘P;: .

Again the signs of the azimuths alternate. The condition for maximum trans-
mission of the filter follows from the general equation

Mo, =4 == e R

or else

L,1°

Aceording to squation (L), this relationship lsads to the result
sed +od ol + .. ol = 460, - {10)
which ig the generalized relationship (9). Then, in equations (b}, we will

© gubgtitute, successively,

288 = L2

2,2 = 13,3 © P

fO-I' 1 pla‘b& 2. 0y = 45° )

for 2 plates gy = —g,, o - 2y = 45°,

for 3 plates gy = o,, 20, — g, = 45°,
93 z

for 4 plates g = — o, 20, — 25, = 43°,
(’a T e e?x ¥

for 5 plates ¢ = p,, 2oy — 20, -F py = 45°,
?{ = -9: ]
2y,

for & plates g, = ~g,, 24, - Zog - 2ay w450
@5 ™= — 0,
Py == — 24,

elc,

The general formulas (4) specialize 2s followss

Ly = sin 2g, (= 1), L
. LY e
B:.z =0, ( }

za = 8in {2p, ) (= — 1},

(49
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Ly, = 2sint p; — sin 2p,, -
Ly,=0, '
Lyy = sin (40, — 2p,) (= 1),
Ll = 0 »
Ly = — sindg) — mndp, — 2sin (20, = 25,) + 2sin (20, — 20,),
L«a =10,
Lo =sin ($0, — 49y) (= — 1), (Le)
Lg; = 2sin 2p, + 2gin 29, - sin 2p, ,
cont,.
La.z =10 H] -
"L, = 2sin(2p, — 2p, + 2p;) + 2gin 24, - 2 s (to, = 2p,) +
) + Zsin (20, + 20, — 20;) + sin (400 — 204} -5 sin (40, — 204},
1"5.& =0,

Ly, = sin (4o, — 40, + 293} (= 1),

ete,

According to equations- (7a), one- and two~-plate filters in the ideal assembly
do not have secondary maximas; therefore, they are, simultaneously; filters in
the optimum assambl:{r. The three-plate filter has secondary maxima character- *
ized by the coefficients A3, end Ay 35 according to equation (7). Now let
us seek such a solution for azimuths = and P in which these coefficients are
minimum. According to formulas {5},
A= L3 — 2L, Ly ,,
Agy=Lj, — 2Ly c08 &
According to (hie), the expressions reduce to
Ayy = — 2Ly, ,
Asa=L%,.
Then we need congern ourselves only with the éxpression L3,l' Iet us seek
the condition for its minimum, which can be used in this cass to solwve the
equations

Ll-l - 25in 291 + Kin 29: = 0 N
20, — g, = 457,

The gquadratic equation ‘
2sin® lp; 4 28in 2p, — 1 =0,
stems from these equations) its solution gives the angles
py =10.7°, p, = - 23.6%
With these plate azimuths, the three-plate filter has no secondary max-
imum. The equation for the variation of intensity has the form

J=sin6-r.

145



":U-L"‘

Froceeding in a similar manner, let us seek the solution of the equation
1&,2 = 0 for a four-plate filter, or

BN 49, +- 8in 49, - 28in (29, + 2p,) + 2sin (2p, — 20,) = 0,

20, — 2p, = 45°,
By a simple operation we arrive at the equation

an 49, . (1 4+ 2 cos 45°) — cos 4g,{1 + 2 sin 45°) + 2ain 45° = 0,
whose solution gives the angles
pl = 7-601 92 E - 11-10900

A filter with these azimuths of the plates again has only a main maximum and
00

its intensity variation is given by the equation
5 .
é0t J = sinz Yo
a0 e can continue thus, but with ever-increasing
A computational difficulties. For instance, the
“y solution of a single trigonometric equation no
longer suffices, The distinction between the
mt ildeal assembly and the same assembly without
0 - Secondary maxima is an important one, The two

) 20 4a 50 8y
types of filters can best be judged on the basis
Figure 2, Variation of the . . .. . .
intensity of a firstemodi - of the intensity variation, which is shown in

fication chain filber with flgure 2 for a four-plate filter.

four plates in an dideal as- X .
sembly (the steeper cur va It is easy to see that when the secondary

with the secondary maximum) maxima are eliminated, the main maximum broadens
?225i?122t§5t§3§$eai§iﬁzﬁi perceptibly. Therefore we need not concern our-

a secondary maximum) selves with an exact analysis of the possibility
of eliminating the secondary maxima in filters with a large number of plates,
but we can be satisfied with soms compromise solution in the choice of the
azimaths of the plates. Furthermofe, we are concerned with a considerabls re~
duction of the intensity of the secondery-maxima without essentially inereasing
the width of the main maximum. The following method has proved best: Select
the azimuth angle of the first platej for filters with more than two plates
this angle is less than that indicated by formula (9) and, according to circum-
stances, reaches 50-75% of the value of the angles for an ideal assembly. The
absolute values of the azimuth angles of the plates themselves increase pro=

gressively toward the center of the filter. The growth functions can be chosen
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differently, and the arithmatic progression will also serve the purpose well.
ey ea=—la+a), es=o+2x, o =— (o +3a),
0s = ¢ + bx ete.
The azimuths of all the plates must then fulfill condition (10) '/,
As an example of such an optimum assembly, let us analyze a filter with
seven plates. We shall choose the coefficient of reduction of the firs{
azimuth as 70%, the azimuths inerease in arithmetic progression. ILet us com-

pute the angles

&= 4150: gy = — 9,

0; = — 6,0°, s = 4 7,56°,

6= 75, ge = —6°,
- 0y = 4,5°.

For seven plates, equations (4) have the form

Ly, = 2 8in 2p, 4 2Ein 20, + 2‘sin 2p, -} 8in 2, ,
Lm = ¢, .
L, = 4 gin 2p, + 2sin 2g, 4 4 sin (2¢, — 29, + 203) +

+ 2sin (29, — 2p, + 20,) + 4 8in (29, + 20, — 20,) +
+ 2 sin (4, — 2p,) + 28in (49, — 2p,) + 2 5in (402 — 294) +
+ 28in (29, — 2p; 4 2g,) + 2 8in (20, + 20, — 20,) +
+ 28in (29, + 20, — 20,} + 28in (29, + 20, — 29,) +
-+ 2sin (20, — 2¢; + 2¢,) + sin (4g, — ) -
+ #in (4o — 2¢,} +sin (dgy, — 204) ,
4= 0, ) .
s = - 2sin 2p, 4 2 8in (4p, — 2p,} 4 2 sin {2p; + 20, — 20) +
+ 2ain (29, — 2p; - 2p,) + 2sin (40, - 20, + 20, — 20 +
+ 2sin (49, — 4py + 205} + 2sin (20, — 40, + 20, + 2p,) +
+ 28in (40, — 20, — 205 + 20,) + sin (40, — 4p; + 20,) +
-+ sin (49, — 4g, + 2p,) + sin {40y — du; + 2p) +
+ 28in (2p; - 2p; + 4o, — 29,),
. L';.s = 0,
L;,; = sin {4p; — 40, + 403 — 2p,) .

From these formulas we get the following values of Liz,v -

Ly, = 40,106,
L?.z = 0,
L1y = + 2,851,
L'.r.l.»“‘ 0 H
Lm = 4714,
L?.l = 0,
Ly;= 1.

*) The azimuth of the first plate can even be chosen as 005 however, in this
case the first and last plates will not function and one must reckon with a
filter which has iwo more plates. The first.and last plates are omitted in
constructing the filter. [4”
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The corresponding coefficients of Ak,& for cquations (5) are

Am = 1 +
A=+ 9428,
A= 27924,
A= — 27,002,
A, = 9,127,
s = — 0,6064,
4., = 0,0123 .

-~

Then the variation of intensity is given by the equation

co —————

Iyt Jy = sin' y — 9,428 sin't y cost y 4
- gol - -+ 27,924 8in'® y cost y — )
— 27,002 5in® y cos* y +

-+ 9,127 sin* y cos? y —

— 0,606 gin* y cos!® y 4

+ 0,012 gin? p cos? » ,

o

<0t

YU R UGV R

A comparison-of the intensity variation of

20

|
I the Yoptimum" assembly of a chain birefringent
} filter with the "ideal" assembly shows a marked

o

20 0 " g0 B ¥

[SYuE———

o
suppression-of the secondary maxima (figure 3).
Figure 3. The variation of

intensity of a first-modi- It should also be mentioned that yhen the azimuth

fication chain filter with of the individual plates is changed, not only the
seven plates, in an.ideal
" assembly (the curvewith the
higher secondary maxima) maxima change.
and in the optimum assembly
(the curve with the lower

secondary maxima) that the concept of the optimum can be adapted as

intensity but also the position of the secondary
Analysis of the optimum filter assembly shows

needed., For example, one may wish to find the sharpest main maximum without
considering the secondary maxima. DlMost often,‘however, it is important to
suppress the secondary maxima. Then the relationship of the azimuths based
on arithmetic progression is of use, and this applies not-only to filters
with a .small mumber of plates but also to filters with tens or hundreds of
platses,

THE SECOND HODIFICATION OF A SYMMETRICAL CHAIN FILTER IN THE BASIC
' POSITION, OPTIMUM ASSEMBIY [OF PLATES]

This example again yields similar results, so we will treat it but brisfls
Here

=10 3 0, = 80° — Oy Opy = 90° — B2y veey Opmy = boo = Bit+y »

4%



- 17 =

Yihen there is an odd number of plates, due to symmetry the middle plate will
have an azimuth of hSo. The condition of maximum fransmission need not be
determined separately.

Formilas (4) specialize as follows:

Ll.l =0,

Ly,=0,

Lyy = — cos 40, ,

Lyy=0,

Ly, = 28in 2p, — cos 4p, ,

L::.:s =0,

L(.l =0 ,

Li2 = — cos 4p; — cos 4p, — 2 cos (20, =+ 20,) + 2 cos (20, — 29,),

La.: =0,

L4 = cos {40, — 40,),

Li,=10,

Lgy = 2 cos (20, — 2p,) — 2 cos (2o, + 2p,) -- cos 4o, - cos dp, +
+ Zgin 2o, 4 2sin g, ,

Lx.a =0,

Ly = cos.(dp, — 4p,) -+ 28in 29, (4p, — 20,) — 2sin 2p,,

Ls.t =0,

ate.

According to equations (7b), one- and two-plate filters do not have
secondary maxima. Again the elimination of a secondary maximum in three-plate
filters is formulated by the condition LB 5 = 0; or

2

2sin 20, — cos 4p;, = 0.

This equatioﬁ has the same solution as in the case of the first filter
modificatlion; only angle Fb need be computed with respect to symmetry, hence
it is different:

gy = 10,7°, p, = 79,3°.
The curve of the transmission [of light] is the same as for éhe first filter
modification, except that it is shifted by w/2,

Once again, the solution is similar for a four-plate, second-modification
filter without secondary maxima. Conditions Ih 5 © 0 and Ih ok = 0 must be
fulfilled. Then*the following squations must be solved:

— cos 40y -- co8 49, — 2 co8 (20, + 2p,) + 208 (29, — 2p,) =0,
40, — $p, = -+ H0°,
This system leads to equatien .

— cos 40,(1 -+ 2 cos 45°) 4 sin 40,(1 + 28in 45°) - 2 cos 43° = 0,
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which is equivalent to the equations derived for the first-modification filter.
The solution gives the values

o0, = T,6°, py=50,0°,

Py = 30,1°, o, = 82,4°.

Again, this filter does not have secondary maxima. Solutions can be
reached for multi~-plate filters, but greater difficulties are involved; how-
ever, what has been said about the first modification also applies to the
second modification, so let us be'satisfied with the analogy of the arithmetic
increase of azimuths applicable to the first modification. In the second modi-~
fication, the incréase of the azimuths from the edge toward the center of the
filter can be expressed as follows:

1y =3+, =580+ (1+3«, g, =79 +{(1 +3+5}a,

=9 +(1+3+5+Ta ... gooy=[2n—2)—1]g, + (1 + 3+ 5 +

T4+ T+, g =2 =1 =1+ (1+34+5+7+...+

T7+5+3x, ta=@En—-1a+(1+3+5+7T+...+74543+
. + ea.

In selecting the azimuths, A and ¥ can be defined as in the case of the first
modification, Thus, the seven-plate first-modification filter of which we
spoke in the preceding section has the same azimuths (QL = h.SO, 6= 1.50)
for the second modification:

hosog 150’ 28050; ,-LSOJ 61'503 ?SOJ 85'5?'

"Further analysis of this filter shows that the transmission curve is shifted
by w/2, as in the cass of the first filter modification.

CPAIN FILTERS IN THE GENERAL POSITION

Up to this point, all types of birefringent filters have besn calculated
and constructed for the basic position of the polarizing elements only, whether
for parallel or crossed polaroids. However, these two fundamental positions
are not a necessary condition for good filter funection. Therefore, at this
point we will indicate (albeit briefly) a method of solving for chain filters
in a general position.

To explain the fundamental relationships, let us begin with one plate.

For intensity, according to (7):

Jy = sin? y cos? (P — 2p,) + cos? y coa? P .

Angle ¢ is arbitrary in the gensral position. The first step in the analysis
(50
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is to find angles A that will cerrespond to the first and second modification
of the filter. The first modification shows secondary maxima for y = w/2s
Then,

J ey = cOSY (B — 29,)

or e,==€g== Q,.
2 (11)
Here, too, the maxima reach full values. The minima have the intensity
_ S e = COBT P,

The minima are not pure; their intensities increase as the distance of
angles & from w/2. The minima vanish when ¢ = 0°.

The second filter modification has its mexima at v = O, its minima at
v = w/2. For one plate,

Jan = co82 (@ — 20,),

or
@—201=:,
= 2
= H (12)
{_11=-I—_—.2-=.Q=.
The maxima reach values of
2
Jmax = cos~®

Therafore, the‘énalogy of the second modification has pure minimaj how=
ever, the maxima do not reach full values and decrease as angle ¢ increases.
The maxima vanish when & = /2.

This analysis indicates that two distinect azimuths of a birefringent
plate, defined by equations (11) and (12}, can alsoc be established for a common
angle &. In the case of equation (11), the plate behaves analogously with
the first filter modification; the maxima and minima have the same wavelengths
as when ¢ = /2. The intensity variation is then given by the relationship

J = sin* y + cos? y cos* @ .

When the azimuth of the plate agrees with equation (12), the result is
analogous to the second filter modification and the intensity variation is

given by the equation

J = cos* ycosr @,

If there are more plates, the general squations can be used in the analy-
s§is. For the first filter modification we get the following result: the azi-
(s
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muths of the individual plates deviate alternatelyto the left and right of the
mean angle T,

F'-—-‘--.QR.

The following relationship holds for the azimuth angles measured from the
mean angle I'

B+ lodf + Gl + - - - 9, (13)

In filters with a large number of plates, there are also clear minima for
angles ¢ which differ considerably from n/2. By selection of angles E&, a
filter with the ideal assembly of plates and one with the optimum assembly can
be constructed in a manner completely analogous to that used for the basic
position, except that equation (13) will apply instead of equation (8).

In the case of the second filter modification, again we arrange the azi-
muths of the plates in the shape of a fan. The center of the fan must agres
with angle 8,, according to equation (12). The azimuth difference of -the first
and last plate is determined by the eguation

e — 0 = 2. (1h)

One can construct a filter with either the ideal or the optimum assembly,

" depending on the arrangement of azimuths. When the number of plates is in-
creased, the intensity <4in the maxima also increases and approadhes full value.

_The special property of filters that operate at a general angle of the polar-
oids and apalyzers is that they offer the possibility of tuning filters in the
basic position. Thus, through slight departures from the parallél or crossed
positions of the polaroids and analyzer, the filter can be tuned still more.
This generalization of the chain filters is also important from the theoretical
standpoint.

SUFEARY

In their application, chain birefringent filters fall intc the same cate-
gory as multilayered interference filters prepared by steaming in vacuum., The
most selective multilayered interference filters have a transmission band of
about 20 A in the visible region and it can be assumed that, for technical
reﬁsons, the selectivily of these filters will not be increased. Birefringent
filters are suitable for a range of band widths of about 50 2 +o 0.5 2.

Therefore it is desirable to develop birefringent filters with high trans-
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mission and, simultaneously, with the purest possible spectral characteristic.
Apropos, the numerical analysis® performed here shows a method for producing
filters-with high transmission and neerly pure maxima without secondary trans-

missions.
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Bireiringent chain filters were first described 10 years ago. Sirce then such filters have undergone con-
siderable development, and experience has been gained with their use, This article includes oniy a brief
review of. previous work, which is supplemented with new inforrmation.

FUNDAMENTAL STATEMENTS

IREFRINGENT chain filters! are composed of a
pile of birefringent elements which have the same
or periodically repeating phase difference. The azimuths
of the individual elements are arranged in prescribed
manners, mostly symmetrically with respect to the
center of the filter. The filter is placed between two
polarizers. The theory of chain birefringent filters was
thoroughly described in Ref. 2. The simplest filter is
composed of a series of equal birefringent plates. cut
parzallel to the optic axis of the crystals. The azimuth
p of the plane of polarization of each plate is measured
from the plane of polarization of the first polarizer. The
total oumber of plates is designated V.
There are two modificaticns of birefringent chain
filters. The first modification works berween crossed
polarizers. The azimuths of the individual plates are:

Element Azimuth
Entrance polarizer P,=0°
Plate 1 M=p
Plate 2 pr=—p
Plate 3 a3=tp
P!ate 1 p4= - p
Piate i pr=— (-—— i)
Exit polarizer = 00°

The angle g is:
p=43%/N. (0

If each plate has thickness ¢ and double refraction
He— o= 1, its path difference A is given by the product:
A=d-D. (2)

11, Zolg, Cesk. Casopis Fys. 3, 366 (1933).
= 1. Solc, Cesk. Casopis Fys. 10 16 (1960).
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The phase difierence J or its half-value + are connected
with the path difference A and the wavelength X by:

F=2y=(2w/\)- A. (3)

The wavelengths of maximum transmittance of a chain
Glter of vype I are:
A=F-) L)

where K=0.3, 1.3, 2.3- - -. The detailed couzse of the
transmittance of the chain birefringent filter was
calculated with a matrix method by Evans.? From his
analysis follow all the properties of chain flters,
including comparisons of the transmittances of second-
ary maxima with those of Lyot’s filter, in which the
transmittances of the secondary maxima are consider-
ably greater. Similar calculations were #rst made in
Ref. 2, based on the theory originally given in Ref. 4.
Here we give only the final equations for the trans-
mitted intensity relative to the intensity emerging from
the first pola.nzer, for filters composed of one, two, three
four, or five plates:

Iy=siny

To=gin'y

I3=sinfy—sin*y cos*y—+0.25 3in’y cos'y

I =sin®y—2.818 sin®y cos*y—+2 sinty cos'y

Ty=sin%y—3.472 sin®y cos*y-8.104 sin®y cos™y
—1.691 sin® cos?y+0.093 sin*y cos¥y.  (3)

In Table I the coedicients of Egs. (3) are given for

filters containing as many as nine plates.

2 1. . Evans, J. Opt. Soc. Am. 48, 142 (1938).
1 Hsu Hoien, Liang Yung-Kang, and M. Richartz, J. Opt. Soc.
Am. 37, 99 (1947).
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Tasre L Coefficients of Eq. (§) for filters containing as many as 9 plates.

N
k 1 2 3 4 3 6 7 8 4
i 1
2 1 0
3 1 -1 0.250
4 ! —2.818 2.600 G
3 1 —5.472 8.104 -1.691 0.0955
& 1 —3.928 22.927 —13.392 2.250 0
7 1 —12.730 49,477 —36.774 22.330 -1.962 +0.049
8 1 —17.274 103.001 —131.38 123.179 ~29.859 2341 0
9 1 =23.164 178.97 —410.79 411124 —203.5235 42,221 —~2.102 0.030

The second type of chain filter works between parallel
polarizers. The azimuths of the individual plates are:

Element Azimuth
Entrance polarjzer P=0°
Plate 1 p=p
Plate 2 pr=3p
Plate 3 p3=3p
Blare 4 asle
Blate ; pims (Bi—1)p
Plate ¥ pn= (AN —1)p=90=p
Erxit polarizer Pa=()®

The value of p is again given by Eq. (1). The variation of
intensity with phase difference (or wavelength) can be
described by equations resembling those given for type
I filters:

Ii=cos™y

I= COS"‘;r

T3=cosby—cos'y sin®y--0.25 costy sin®y

Iy== cos*y—12.818 cos®y sin*y-+2 cos'y siny

Is=cos'by—35.472 cosly sin?y-+8.104 cos®y siny
—1.691 cos'y sin®y-+0.095 cos®y sin®y, (6)

3

0o

0+ -4
304
O+
604
S04
0L
3ol
20

10

0 ¥ ] A | {

!
0 10 20 0 0 0 0 70 30 0 4

Fig. 1. Variation of intensity of 7-plate chain filter with©=31.3°
compared with 7-plate chamn slter sath =457 {narrower principal
maximum, but greater neighboring maximum at 422 37°),

The values of the coefficients for filters containing as
many as 9 plates are given in Table I,

If we compare Eqgs. (3) and (6} we find that only the
siny and cosy functions are interchanged, which means
that transmittance curves have the same shape; they
are only mutually displaced 90°. The coefficients in the
expression for the wavelengths of the principal maxima
are integers:

A=K-A, (-1-&)

where KX=0, 1, 2, 3 ---, The disadvantages of chain
filters of types I and II are comparatively strong ad-
jacent secondary maxima, as Evans has shown.®

IMPROVEMENT OF CHAIN FILTERS

Types I and II of chain filters can be significantly
improved by arranging the azimuths of the plates so
that the adjacent secondary maxima are suppressed
and have negligible values. Modified type-I chain filters
with suppressed secondary maxima are constructed by
making the azimuths of the end plates smaller than the
azimuths of the central plates. In the simplest arrange-
ment, the azimurhs increase according to an arithmetic
series, from the end towards the center of the hlter.
Theory (2) imposes the fundamental condition:

'
> | Pi} =45

=i

Ii Eq. (7) is not fulfilled, the main maximum is lower
than the attainable value. The azimuths of the indi-
vidual plates are given by:

Element

Entrance polarizer
Plate 1
Plate 2
Plate 3
Plate £

Plate ¥—1
Plate ¥
Exic polarizor

Angle p is given by p=0/N, where Q is an angie smaller

(56



June 1963 BIREFRINGENT
than 45° The value of @ depends upon the number of
plates and the desired characteristics of the flter.
Smaller angles @ cause better suppression of neighbor-
ing maxima, but the main maximum widens somewhat.
Larger angles @ give a sharper principal maximum but
the neighboring maxima become more preminent.

Angle o must be such that Eq. (1) is fulfilled. For
example, consider a filter with 7 plates. We choose the
angle between minimum and central, for example:
p=31.3%/7T=4.5°. We use angle «=1.5°. The azimuths
of the fiiter plates are then:

n= 4.50, Do~ '"'6.0°,
ps=1.3°%  p=—65

By using the theory given in Ref. 2 we derive the

CHAIN FILTERS 623

formula for the intensity variation of this filter:

Ty gintiy—0,1428 sinl™y cos’y-+27.924 sint% cos'y
—27.092 sin®y cosby-1-9.127 sin®y cosdy
—0.012 sin*y cos?y.

The main maximum of a filter of this type is given by
Eq. (4). The variation of intensity of this flter is
compared with that of the 7-plate filter with azimuths
according to the simplest arrangement (@=413°) in
Fig. 1.

The suppression of the neighboring secondary max-
ima is evident in Fig. 1. Similar modifications of type
II filters can be constructed so that neighboring
maxima ave effectively suppressed. By analogy with the
previous case, the azimuihs should be arranged as
follows:

Element Azimuth
Entrance polarizer Py=0°
Plate 1 =p
Plate 2 pr=dpta
Plate 3 ps=3p+(143)a
Pk}te + _;:..:‘—T-Tp-:- (1-}—3-;—5)&
Plate ¥—2 prar=[2¥—2)—1Tp+
Plate ¥—1 o= 2N —-1)—10p+
Plate ¥

Exit polarizer

pa=

py=(2Y¥—1)p+(1+3
05

The angle p is again determined by Eq. (8), the
angle « is subject to condition (7). As an example of
such a filter, consider again a filter with 7 plates:

1= 4'50: 93=23-5°; p-%:%sq.v

25="06L3, pr=283.3°
From Ref. 2 we may derive the variation of intensity
of this Alter:
Tr=cosMy—9.4283 cos!y sin>y1+27.924 cosi®y siny
—27.092 cosly sinfy--9.127 cosby siny
—0.012 cos™y sin'ty.

The transmittance of this flter resembles that shown in
Fig. 1, except that it is displaced =.

Chain filters can alse be constructed for azimuths of
the two polarizers other than 0° or 90° Plates also
can be used with different path diferences. These
examples are briefly analyzed in Refs. 1, 2, and 5. The
width of the passband AN depends on the thickness of
the individual plates and on their number. The high
transmission of chain flters in comparison with Lyot
filters 15 & consequence of the use of only two polarizers,
which are all that are needed for chain filters.

Numbers of elements
of chain filrers

Numbers of elements

Numbers of elements
of chain flrers

Lyor slter with 2=45° with 2=30°

1 plate-+2 polarizers 1 plate+2 polarizers 1 plate+-2 polarizers
2 1 +3 2 ;42 E R B

3 +4 4 12 5 =2

4 -3 : 8 : +2 10 +2

3 15 H 16 § 42 20 +2

6 +7 32 1 42 10 -2

7 i 48 61§ 12 80 i 42

8 9 "~ i 128 : +2 150 +2

Theory indicates that the width of the specrrum
band transmitted by a chain filter can be approximated
by the simple formula:

M=(N2K-N)-H. )]

157

Here K is the same as in Eq. {{). N is the number of
plates and F is a correction factor corresponding to the
widening of the main maximum, accompanying sup-

+1. Solc, Czech. J. Phys. 9, 237 (1939).
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pression of neighboring maxima. The values of H are
usually between 1 and 1.5.

CHANGE OF WAVELENGTH BY INCLINATION
OF FILTER

For double-refraction filters, plates cut parallel with
optical axis are mostly used. {Other cuts are not suit-
able because the rays inside the plates would deviate
from the original direction, which would interfere with
the proper function of the filter.) We can derive the
dependence of passband wavelength on inclination by
consideration of a single plate. The resulting relations
are valid for both modifications of chain filters.

() The best analysis of wavelength variation was
given by Lyot.® Approximate theory® leads to simple
results which are sufficient for the majority of practical
calculations, With uniaxial crystals such as quartz,
calcite, or ADP, rotation of the plate around the optical
axis displaces the wavelength of the maximum toward
the red end of spectrum. If the angle of incidence is
@, and if the average index of refraction of the crvstal
is z, then the wavelength M transmitted best is:

M= (&-D/K) [/ (1P —sin®c) ¥]. (10)
If we rotate the plate around a line perpendicular to the
optical axis, the maximum is displaced toward the
violet end of spectrum, approximately as given by the
equation:

M= (@8- D/ K}-[(n—sin®o)i/n].

If we denote by Mo the wavelength of maximum
transmittance for perpendicular incidence, then ap-
proximately:

(10a)

(11)
{11a)

Mont=Ao- [t/ (P —sinte) V],
Ner=Aer [ (P —since) ¥/n].

Curves based on Egs. (11} are shown in Fig. 2. These
results apply to type I and to type I chain flters.

(b) The formulas given permit the determination of
the transmittances of chain filters for planes of in-
cidence in different azimurhs. Therefore, they can he
used for analysis of convergent incidence. For small
angles we can develop Eq. (10) in series and replace
sin ¢ by the angle ¢:

Ne=A[1— (%207 ].

e need not consider the second equation, because the
curves are symmnietrical in the neighborhood of «=0°.
Let us assume further that the change of wavelength
of maximum may be at most 1/D the width of the
passhband. We may then write Eq. (9):

(AOII?.OK'.EV) . H=Ao . (&/2)&3).
3 B. Lyot. Ann, Astrophys. 7, 31 (1544),
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F1e. 2. Tuning of chain filter by inclination. Left: inclination
perpendicular to optical axis. Right: inclination parallel to optical
axds.

Hence it follows for admssible angles of convergence
that:
ex=n-[H/(10K -¥)]JL (12)

For less severe requirements, when simple chain
filters are used, even greater convergence is permissible
than indicated by Eq. (12). That is because the inter-
ference pattern of the whole chain fiter is almost
identical with the interference pattern of ome plate
from which the filter is assembled.

For extraordinary requirements, it is possible to
increase the admissible convergence of rays on a chain
filter, for example by replacing simple plates with Lyot
or Evans split elements or with compound piates con-
sisting of positive and negative crystals.

PRACTICAL USE OF CHAIN FILTERS

(a} Most often it is possible to work with simple
plates in type I or II arrangement usual with sup-
pressed secondary maxima. These filters are made with
as many as 30 plares, usually guartz, from 0.1 o 135
mm thick, exceptionally with ADP crystals from 1 to
10 mm thick, or with calcite plates 0.3 to 3 mm thick.
The desired maximum is often isolated by use of a
dielectric interference filter; or two chain flters are
combined which fulfill the condition for the desired
maximum \ at different orders K. There are two pos-
sibilities for changmg wavelength by inclination of
combined chain filters. For the first the azimuths of both
filters are identical. For ravs incident at any angle to
the axis the wavelength maxima of both glters are
shifted by the same amount to the same side of the
spectrum. Therefore, both filters can be tuned by
common inclination, but convergent ravs distort the
main maximum.

" In the second case, the azimurhs of the two filters are
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mutually perpendicular. Contrary to the previous
case, rays incident at the same angle to the axis shift
the wavelengths of the maxima of the two filters in
opposite directions in. the spectrum. In this case, the
mamn maximum is not distorted by convergent ravs,
but the transmittance for convergent rays is lower than
for the parallel rays. Filters with narrow passbands
must be thermostatted.

(b) If large convergence is required with narrow
bandpass, there are two possibilities: either a chain
filter made from wide-field elements of Lyot or Evans
construction, which are technologically very difficult,
or & chain flter is combined with one or two Lyot or
Evans® split elements. The first alternative has the
advantage of less weight, but it cannot be tuned by use
of a quarter-wave plate (line-shifter); the second
alternative is easy to tune. Very much preferred, for
instance, is a combination consisting essentially of from
one up to three chain filters of quartz, which are placed
in a thermostat. At both ends of this filter are calcite
split elements with tuning quarter-wave plates. This
system is easily tunable over the usual range of wave-
lengths; at the same time it is possible to suppress
quite completely all of neighboring maxima. It is also
Very easy to isolate the wanted wavelength from all
other maxima in a wide spectral range.

(¢) With the help of the inclined arrangement, it is
possible to construct a filter that can be tuned over a

7J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949),

CHAIN FILTERS 625
very wide range of wavelengths, but this is usable only
for almost parallel ravs. Combination of two such
filters enables us to choose any arbitrary wavelength
without need for dielectric isolating slters.

In special cases, a chain filter can be made of plates
cut at an angle to the optical axis of the crystal. This
arrangement is convenient only for flters consisting of a
few thin plates.

(d) A tuned chain alter made of a pile of wedged
plates has a small aperture (e.g, 2 to 10 mm); the
convergence of the incident beam can be severai degrees.
Such a filter is very suitable, for example, for inter-
ferometric measurement where by pushing the wedge
the chosen wavelength is easily isolated from a line-
spectrum source. With a2 combination of two wedge
filters it is again possible to put together a continu-
ously tunable monochromator with resolving power
from about 100 up to 300. Such arrangement is usual,
for example, for colorimetry or for microscope illumina-
tion with a selected wavelength.

Similar arrangements, in which wedged plates are
used with supplementary wedged plates, were suggested
by Evans® for isolation of high orders in grating spectra,
Also, it is interesting to note that the “zchromaric haif-
wave plates” described in Ref. 9, are, in fact, identical
to the type II chain-birefringent filter with fewer plates.

The described arrangements of chain glters do not
exhaust all possibilities and combinations.

8 J. W. Evans, Appl. Opt. 2, 193 (1963).
. J. Koester, J. Opt. Soc. Am. 19, 103 (1959),
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A new birefringent filter composed of a series of retardation plates between a single pair of polarizers has
been described by Solc. The filter is analyzed and compared with the Lyot filter. It is found that the Sole
filter is inferior to the Lyot filter in the suppression of parasitie light in secondary mavima near the primary
transmission bands, although its band width is slightly less, and its transparency is very much better if both

filters use Polareid film for polarizers

BIREFRINGENT filters of the type invented by
Lyot, with transmission bands ranging from 0.5
to 5 A in width have become standard tools of solar
research. While they are not excessively difficult to
construct, and their performance is excellent, any
possible simplification or improvement would be wel-
comed. A new form of birefringent filter recently de-
veloped in Czechoslovakia is therefore worth examina-
tion, and comparison with the Lyot filter,

In 1953 to 1955 Ivan Solc! published three papers on
a new form of birefringent filter which he apparently
developed and investigated purely by experiment. He
does not give a general expression for the transmission
of his filter as a function of wavelength because of its
mathematical complexity. He did, however, succeed in
determining its more important characteristics experi-
mentally with considerable accuracy. The purpose of
this paper is to derive an expression for the trans-
mission of the Solc filter, and to compare its perform-
ance with that of the Lyot flter,

The Solc filter consists of a pile of identical retarda-
tion plates of birefringent material, with only two linear
polarizers, one at each end. Figure 1 shows.the arrange-
ment. The plates are cut, as in the Lyot filter, with the
crystal optic axis parallel to the surfaces. Solc describes
two possible arrangements of the orientations of the
axes of successive plates, which we shall term the fan
and folded hlters, respectively.

Let the electric vector of light traversing the first
polatizer be the reference direction from which the
orientation, wj;, of the optic axis of the jth plate is
measured. In the fan filter the two polarizers are parallel,

P P

F16. 1. Section of a Solc filter, consisting of 16 retardation plates
between 2 pair of polarizers, P.

L 1. Sole, Czechoslov. Cesopis pro Fysikuy, 3, 366 (1953); 4, 607,
669 (1934); 5, 114 (1953).

and w progresses monatonically. The angle w; is given by
@i= (o/ 2} (j—1)a, (1

where o is 2 small angle which we shall determine.
In the folded filter the polarizers are crossed, and w
alternates between (a/2) and — (a/2). The angle w; is

given by
;= (= 1)#(a/2). @

Sole determined exXperimentally that both forms of the
filter appeared to work best when a=n/2n, where
n=the total number of plates. He states further that
the curve of transmission as a function of wavelength
closely resembles that of a Lyot filter in which the
thinnest element (which fixes the spacing of the bands)
has the same thickness as one of his retardation plates,

=
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F1c. 2. Transmission curve of a Solc filter of 16 plates asa function
of the retardation, v, of a single plate.

and the thickest element (which determines the band
width) has the thickness of the whole pile of Solc plates.

It is difficult to see intuitively how either form of the
Solc filter accomplishes its purpose. The problem of
deriving an expression for the transmission by the usual
methods does not appear to have an easy solution.
However, the use of the matrix calculus developed by
Jones® proves to be effective. The reader is referred to
his papers for a very clear explanation of the method.
In the {ollowing application, we retain his notation for.
convenience of reference.

Let the light travel zlong the 3 axis of a rectangular
coordinate system. The faces of the » retardation plates
of a Solc filter are normal to the z axis, and the electric
vector of light transmitted by the first polarizer is
parallel to the » axis. Let the electric vectors of light

*R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941); 31, 300 (1941),

142

10



March 1958

entering and emerging from the system be represented
by the one column matrices,

E:D E:n
eu=( ) and eﬂ=( ) {3)
Evﬂ Eyn

Then the initial matrix equations relating ¢ and e, in
the fan and folded filters are,

Ez“
=P S(a/DS8(#/D[S{(—a)G ]
(&)&1 (@/2)S(x/DIS(~ )G
- E:D
><S<~a)P:(E ) @
(E,.,)f°§§§=(_1)("IQJPVS(E!/Z)[S(—Q)GS(Q)G]‘“"”
’ E:U
XS(—a)P=(E ), &)

40
£,
(E )Fozd,d——‘i(—l) 0P S (a/2)
yn/ nodd
X GLS(—a)GS(x) G102

XS(—a)P,(z:). (6)

Here S() and G are matrices representing rotation
through the angle ¢, and the retardation of a single
plate, respectively, They are defined as follows:

cose —singa
s@= (" , )
sine  cosa
and )
o-("" 0) ®)
= , 8
0 e

wherey=x{d/X) (e—w)in the fan filter, y=7(d/\) (e—w)
+(x/2) in the folded filter, d=thickness of a single
retardation plate, A=wavelength of the light, and
e and w=refractive indexes of the birefringent material.

The matrices P. and P, represent polarizers trans-
mitting the electric vector parallel to the x and y axes,
respectively, and are defined by

m(l ) (D)

The transmission of the filter, 73, is the square of the
ratio of the amplitudes of the entering and emerging
electric vectors, € and e,. The problem of deriving a
useful expression for rs is basically the problem of
raising the factors in square brackets in Eqs. (4}, (5) and
{6} to the indicated powers without multiplying them
out explicitly, an impossibly laborious task when # is
large. These factors are two by two matrices. Jones has
devised zn ingenious method for rzising such matrices
to any desired power, His method leads to a single

SOLC BIREFRINGENT FILTER
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F16. 3. Section of a 5 .
Lyot filter of four bi-  |™y 2 B3 4
refringent elements, |
bi—-by, sandwiched be-
tween polarizers, P. | I' |
4

P P P

expression for the transmission of initially unpolarized
light through the fan and the even and odd folded
filters as follows,

(10)

TS=—

ts [sirmx
2

2
— COSX tana] .
sinx

The parameter x is related to the retardation, v, by
the following expression:

(11)

The factor /5 represents absorption and reflection losses
in the filter.

Examination of Eq. (10) shows that Solc was correct
in his experimental finding that o= (1/7)(x/2) is an
optimum condition, Adopting this value for o, we ob-
tain the transmission curve of Fig. 2, and derive the
following conclusions:

COSY, = COSy COosa.

(a) At the principal transmission bands, rs= (t5/2),
when x=« or x=7—a. The corresponding values of the
retardation are == 2w, where % is any integer.

(b) 75=0 when x= ({/n)7r=2l¢, where =1, 2, 3---
{n—1).

(c) Secondary maxima occur between the zeros.
Their exact positions are not readily determined,
although they are very near the midpoints between
successive zeros. At these points, x= (241}, where
=1, 2,3, ---{#n—2). The transmission at a midpoint
between zeros is, then,

ts [sinn(ZH—l)a
2 Lsin(@41a

2

cos{2l4+1)a ta.na] . (12)

For purposes of comparison, the reader will ind the
theory of the Lyot filter and its split-element modifica-
tion in papers by Lyot,* Evans,* and Dollfus.®* Toreview
briefly, the Lyot filter consists of a multiple sandwich
of birefringent crystal layers and polarizers. The crystal
layers, termed b-elements, are cut with the crystal optic
axis parallel to the surfaces, perpendicular to the instru-
mentzal optical axis. In the simplest form, the thick-
nesses of the d-elements form a series in powers of 2.
Polarizers, usually sheets of Polaroid film, are placed
between successive f-clements and at each end, with
their axes parallel. The arrangement is shown in Fig. 3.
The b-elements are also oriented with their axes
parallel, at an angle of 45° to the.electric vector trans-

1B. Lyot, Ann. astrophys. 7(1}, 2 (1944).
.1J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949).
5 A. Dollfus, Rev. opt. 35, 623 (1956).
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Fie. 4. Transmission curve of a Lyot filter of four elements as a
function of the retardation, vi, of the thinnest element.

mitted by the polarizers. The transmission, rr, of the
assembly is given by the equation,

(13)

where N=number of b-elements, yi=retardation of
the thinnest element=w{dy/\)(e—w), di=thickness of
the thinnest element, and i;=a factor representing
absorption and interface reflection losses in the filter,
Lyot?® shows that Eq. (13) can be written as follows

tr, [sinZN-n:r

r=(t/2)[cosy; cos2y; cosdyr- + -cos2¥ 1y, T,

(14)

TL=— .

2 L2% sinvy,
He points cut that this is identical to the expression for
the intensity curve of a diffraction grating of 2¥ rulings
at fixed angles of incidence and diffiraction. The curve,
shown in Fig. 4, consists of widely spaced sharp principal
maxima or transmission bands. Between successive
bands are 2¥—~1 zeros interspersed with 2¥—2 second-
ary maxima. The separation of successive bands is
inversely proportional to v;, and the band width to
2¥-ly, These are the retardations in the thinnest and
thickest b-elements, respectively.

Lyot filters, in both the simple and split element
forms, made of quartz and calcite, less than 20 cm long,
are now widely used for observation of the sun in the
light of the He line of hydrogen and the 5303 line of
Fe XIV in the corona. The band widths range from
0.5t0 5 AL ’

In assessing the practical value of a birefringent
filter, the relevant characteristics are the transmission
at the centers of the transmission bands; the band
width between the first zeros on each side of the band;
the transmission of parasitic light in the secondary
maxima, particularly those near the primary bands; and
finally, the cost of the filter. It is therefore of interest to
compare the Solc and Lyot filters in these particulars.
For convenience, the curves of 75 and 7, are superposed
in Fig. 5.

A comparison of Egs. (10) and (14} suggests that a
Lyot and Solc filter are equivalent if yg=,; and n=2%.
Then the spacing of the transmission bands in v (or A),
and the number of zeros and secondary maxima be-
tween bands is the same for the two, We therefore
cormpare a Solc filter composed of 2¥ identical retarda-
tion plates with a Lyot filter of N J-elements, the

JOHN W, EVANS
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thinnest of which is identical with one of the Solc
retardation plates. The total thickness of birefringent
material in the Solc filter exceeds that in the Lyot filter
by the thickness of one retardation plate. This is not in
accord with Solc’s experimental finding that the two
are equivalent when the thickness of his filter is approxi-
mately half that of a Lyot filter, an item of some
economic importance,

In transmission, the Solc filter is definitely superior
to the Lyot filter 25 usually constructed. The polarizers
are usually Polaroid film, which has a transmission in
the visible spectrum of about 0.75 for light polarized
parallel to the transmission direction. Thus in the Solc
filter ¢s=0.56, while in the Lyot filter {p= (0.73)¥+H,
The split element form of the Lyot filter is considerably
better, with f,=(0.75) ¥+ In most practical filters,
with transmission band widths between 0.5 and 5
angstroms, /N ranges from 6 to 10, and #; is between
0.14 and 0.05 in the simple Lyot filter, or 0.32 and 0.16
in the split element filter. These losses in the Lyot filter
can be avoided, however, by the use of more trans-
parent {and much more expensive) polarizers like
Rochon prisms. A Lyot filter of this construction is very
nearly as transparent as the equivalent Solc filter, but
with the practical disadvantage of some added optical
length which vignettes the field unless the aperture is
enlarged.

The band widths of the two filters may be most
readily compared in terms of Ay, the increment in
retardation of a single Solc plate (or the thinnest Lyot
b-element) between the center of a transmission band
and the first zero on either side. For the Lyot filter,
Ayr=(w/2N). For the Solc filter, Ax=2a¢. If = is
large (>16, say), « is small, and Avs approaches
{(V3/2)(=/n). Since #=2%, we conclude that the Solc
filter has the sharper transmission band by a factor of
(V3/2)=0.87.

The transmitted parasitic light in the secondary
maxima is approximately proportional to the trans-
mission at the midpoint between zeros. This is given in
Eq. (12) for the Solc filier. For the Lyot fiter,

2

T
l' sin (Q.H— 1)5

(19)

L
TLn ="
3

-

{2?{ sing(Zl—i- 1)/2%

We are interested in the ratic (rsm/is)/(rn/tz)
=73m'/TLs’ at the midpoints between corresponding
zeros in the two filters (i.e., for the same values of ).

This is

TSm [2v (21—‘;—1)( /2 1 w]’ (16)

==|2¥ cos T tan—-—1.
! 25 2§ 3

TLm

If n is large, the secondaries near the transmission
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bands {f small) approach the ratio
(rsa'/7La)= (x/2)2=24T. (17)

Thus the parasitic light in the immediate neighborhood
of the primary transmission bands is roughly 2.5 times
as great in the Solc fiiter as in the Lyot filter. Since the
furst secondaries on either side of the primary band of a
Lyot filter transmit together about 0.05 as much light
as the band itself, it Is evident that the parasitic light
of the Solc filter may be very serious in certain applica-
tions. A texthook example would be the observation of
solar flares in the light of the Ha line of hydrogen. Here
we must isolate the light at the center of an absorption
line roughly one angstrom broad. The light intensity
at the center of the line is 0.16. that of the neighboring
continuum. Thus a Lyot filter with an interval of 0.5 A
between the center of the band and the first zeros on
either side has its first secondaries well out in the con-
tinvumn, and the diluting parasitic light from these
secondaries is roughly 0.05/0.16=0.3 times the light
in the transmission band. This reduces the contrast of
the solar He features very appreciably. With the Solc
filter the diluting light would be nearly 2.5 times as
great, and only the most contrasty of the solar features
would de detectable. For the observation of emission
line objects against a continuous background, however,
Jike the prominences at the solar limb, the Sol¢ filter
should function reasonably well, although it is still
definitely inferior to the equivalent Lyot flter in
contrast.

One device for reducing the parasitic light in the
Sole filter would be the addition of a secondary sup-
pressor plate, in the form of a single thick retardation
plate with a transmission maximum coinciding with the
passband, and zeros coinciding with the first secondaries.
This calls for one additional polarizer. The same device
applies equally to the Lyot filter, and in practice it
improves the performance quite substantially. The
suppressor plate does not change the relative merits of
the two filters. .

The off-axis performance of the Solc filter has not
been investigated analytically. However, we should
expect that when » is large, the folded form should
have very nearly the same off-axis characteristics as
the simple Lyot filter. The field characteristics of the
fan filter, however, are not so readily apparent. Solc
states that the two forms have the same off-axis
characteristics, which Is surprising. e further states
that the wavelengths of the transmission bands can be
shifted over a broad range by tilting the filter. This
finding is correct in the same sense that it is true for a
Lyot filter. As the angle of inclination increases, how-
ever, the angular field over which the wavelength of the
transmission band is uniform within a given folerance
(0.1 of the band width, for instance) decreases approxi-
mately with the reciprocal of the angle of inclination.

SOLC BIREFRINGENT FILTER
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Fic 5. Superposed transmission curves of a 16-plate Sole filter
(solid curve) and a 4-element Lyot filter (dotted curve).

Thus this type of tuning would be useful for the cbserva-
tion of a point source at infinity, but is of little use in
the observation of an extended field, or in a converging
beam of light.

The useful field of the Solc flter can be greatly ex-
tended by the same devices that are applicable to the
Lyot filter, However, this calls for a compound con-
struction of each retardation plate, and multiplies the
complexity of construction several fold.

A Solc filter with only two polarizers is probahbly
more expensive than the equivalent Lyot filter for band

“widths greater than 3 A, and most certainly so for
sharper bands. A fiter with a 3-A band width calls for
60 or 70 retardation plates, and the number increases
with the reciprocal of band width, Since they are identi-
cal, many such plates can be ground and polished in one
operation. However, the loss in birefringent material in
the sawing process would be very considerzble, and
the mechanical problem of mounting and cementing so
many elements in their proper orientation might be
expensive. If the material is quartz, the thicknesses of
individual retardation plates presumably would be be-
tween 1 and 2 mm. For band widths of less than 2 A it
is almost necessary to use calcite to avoid excessively
thick filters. The thickness of a single plate is then of the
order of 0.06 to 0.12 mm, and the problem of working

_this rather difficult material to the requisite accuracy
in thickness and flatness (about 0.2 micron) in several
hundred plates becomes really formidable.

In practice, one would avoid excessively thin plates
in the Solc filter by compounding it. For example, a
4-A filter could be made with a first stage of 25 quartz
retardation plates about 1.1 mmn thick and a second
stage of 25 calcite plates 1.4 mm thick (the exact
thicknesses depend upon the desired wavelengths of the
transmission bands). An additional polarizer must, of
course, be inserted between the two stages. I suspect
that such a filter would be comparable in cost with an
equivalent Lyot filter equipped with Rochon prism
polarizers. Of the two the Lyot fiter is preferable
because of its superior suppression of parasitic light.

In summary, then, the Lyot filter performs better
than the Solc filter except for possible applications
where the parasitic light of the latter near the trans-
mission bands is of no importance.

(2
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ABSTRACT

The theory of the Solc birefringent filter is complicated and the general formulae
describing its optical properties do not invite to any simple physical picture. Due to these
formal difficulties, many of its inherent possibilities have not been fully appreciated. In this
paper we point oul some new possibilities for filters based on this general design.

The detailed shape of the transmisston profile is a function of the angles of the crystal
plate optic axes. It is shown how unwanted transmission sidelobes can be suppressed to any
desired level by altering the distribution of plate angles. By the same means, the transmission
band can be split into two symmetrically placed replicas, and the distance between the two
bands can be varied. In this way the filter can easily be tuned over half the free spectral range.

Some of the error sources that are important to the filter performance are discussed. An
expression is given for the amount of parasitic light introduced by errors in the orientation
of the plate optic axes and it is found that errors as large as 0 © 5 can be tolerated. A labora-
tory experiment with 16 birefringent plates has shown that accuracies an order of magnitude
better than this figure can easily be achieved. Manufacturing errors in the thickness of the
plates can be compensatec for by assembling the pile of plates in a particular way. The very
strict tolerances usually quoted can therefore be considerably relaxed.

Preceding page blank
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1. INTRODUCTION

Birefringent filters with narrow bandpass hive been used for many years in astronomical
research, primarily for monochromatic observations of the sun. The main advantage of such
filters is their speed: “;lthm the selected wavelength band, the light from the whole field of
view 15 available all the time. When observing with a conventional spectroheliograph, onlya
fraction of the total time is used for any one region as the siit 1s scanned across the field of view.
The instant view of the whole field 1s also a great advantage when observing rapidly changing
phenomena on the solar disc. .

The first type of birefringent filter was developed by Lyot (1933, 1944) and by Ghman
(1938). A second type was designed by Sole (1953, 1959, 1960, 1965). Both types of filter
have been further discussed by Evans (1949, 1958).

Both filters utilise retardation plates (usually of quartz or calcite) cut with the optic axis
parallel to the surface of the plate. In the Lyot-Ohman type filter, the plates are sandwiched
between linear polarizers and the thickness of each plate is twice that of the preceding plate.
All plates are oriented with their optic axes parallel and at 45° to the axes of the polariZers.
On entering a plate from the preceding polarizer, the light is divided into vector components
which travel through the plate at different phase velocities. The two components are combined
in the following polarizer and the transmitted wave will have an amplitude proportional to
cosy where 2y radians is the phase difference (retardation) introduced by the birefringent
plate at the wavelength in question. A.complete filter consisting of ¥ such units with plate
thicknesses in the ratio 1:2:4- ... 2-1 will have a transmission proportional to
[cosy,- cos 2y, cos dy, - cos 21y 12 which leads to the well-known expression For this
filter (Lyot 1944):

s 2V, \2

Tg~ — (1)
2V sin ,

where 2y, is the retardation of the thinnest plate.

The Sole type of birefringent filter employs a pile of equally thick, but differently
oriented, retardation plates and only two polarizers, one at each end of the pile. It is difficult
to see directly how the Soic filter accomplishes its purpose. The general formulae describing
the optical properties of such a pile of birefringent plates are complicated and do not invite
to any simple physical picture of the relation between the orientation of the plates and the
resulting transmission profile. Only for a few special cases has 1t been posstble to derive ana-
lytical expressions for the filter transmission. However by following, on the Poincaré sphere,
the polarization of the light as it passes through the different plates, one can gain some under-
standing of how the filter works.

Many of the inherent possibilities of this design have not been fully appreciated because
of these [ormal difficulties and consequently Solc filters have not been as widely used as the
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Lyot-Chman type. However, since the Solc filter uses only two polarizers it has obvious
advantages. especially in the near ultraviolet region, where available polarizers are either
bulky or else give imperfect polarization and significant absorption (Fredga 1969a, b,
Fredga and Hogbom 1970). We shall here discuss the properties of the Solc filter and
point out some new possibilities for filters based upon this general design.

OPTIC AXiS OF OPTIC AX15 OF
EVEN NUMBERED OOD NUMBERED
PLATES PLATES

\r:;“‘a*‘/

Iy
\ ——e e
1

4

POLARIZER RETARDATION PLATES POLARIZER

Figure 1.  Simple Solc filter of the folded type.

Fad

{10



2. MAIN PROPERTIES OF THE SOLC FILTER

Solc describes two main versions of the fiher. In his type I filter, called the folded filter
by Evans, the axes of the plates are all rotated the same angle with respect fo the axis of
the first polarizer, but alternate between w = +p and w=— p. The end polanizer is oriented
at right angles to the first (Figure 1). In his type II filter, called the fan filter by Evans, the
angles w,, of the retardation plates increase monotonically in the series g, 3p, 5p, ... (2¥- 1) p,
and the end polarizer is here oriented parallel to the first polarizer. For both filters the quantity
p is given by )

p=mu/4N (2)

where NV is the number of plates.

Evans (1958), using the Jones (1941 a, b) matrix calculus, found that the on-axis
transmission of the fan filter for unpolarized light can be written:

t { sinV 2
T=—(_l X -sin2p-cos'y) 3)
2 \sin x

The parameter x is defined by
" cos X = cosy cos2p 4

2 v (radians of phase) is the retardation of a single plate and related to the wavelength A\ by:

2y=2nduf X (5)

where d is the plale thickness and = ( n e — 1,) the difference between the extraordinary
and ordinary refractive indices. The constant ¢ represents the losses due to unwanted
reflections and absorption in the filter. The same formulae are valid for the folded filter

if cosv is replaced by sin . Transmission maxima occur at wavelengths for which
2vy=k-27 and 2y=(k+% ) 27 for the fan filter and the folded filter respectively ( & is

an integer). The main transmission bands are accompanied by sidelobes, the closest of which
are as high as 12 %. In section 3 we shall see how these can be reduced to any desired level
by choosing a modified distribution of angles w, for the plates in the pile.
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The width of individual transmission bands expressed as an interval in 7 can be calculated
from Eq. {3). Differentiating Eq. (3) we get the relation between this and the corresponding
wavelength interval. The bandwidth between half intensity points becomes

"\2
ANy, =080 « —2 _ g (6)
N-dp

The bandwidth is inversely proportional to the total thickness of the pile of retardation plates,
N-d-

The distance between successive transmission maxima (the free spectral range) is determined
by the properties of the individual plates.

AZ
Rm-i-[ _hm = d- -q )
and the finesse of the filter is
F= (M1 — Ay ) [ ANy = 125N (8)

For quartz, the factor ¢ is close to unity (= 0.9) for wavelengths above 5000 A. but
decreases rapidly as one approaches the ultraviolet part of the spectrum (g =0.72 at
7800 A and 0.55 at 2000 A). This makes the ultraviolet transmission bands even sharper
and closer spaced than indicated by the A* dependance alone.

The form of the.Jones caicuius chain of matrices for a pile of birefringent plates shows
that the most relevant parameters descnbing the {ilter are 1) the distribution of angle
differences o {between adjacent plates or between plate and polarizer) and 2) the semi-
rerardation v of the individual plates. The latter 1s related to the wavelength by Eg. (3).
Most equations become unnecessarily complicated when expressed directly in terms of
the plate angles w and the wavelength A and we shall replace these by the more convenent
parameters & and 7.
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3. CONTROL OF BANDWIDTH AND SIDELOBES

The 12 % sidelobes accompanying the mam transmission bands are too large for many
practical applications. Soic (1960, 1965) describes how the sidelobes can be suppressed by
tapering the distribution of plate angles. The quantity £ is made larser near the centre of
the pile and smaller towards the ends. Maximum transmission at the center of the band

occurs when the distribution of p 1s normalized so that a more general version of Eq. (2)
1s satisfied:

Elloz l=7/2 (%)

1 n T Wy (10)

For this purpose w o = O represents the orientation of the first polarizer, while the last
polarizer is oriented at right angles 1o “’N+1? Thus for the foided filter, Wpyy =0 and,
for the fan filter, Wy = 7/ 2. Eq.(9) can be denived by tracing the polarization of the
transmission maximum wavelength on the Poincaré sphere.

From a theoretical point of view it is more salisfactory to consider the tapering as
applied to the angle differences « rather than to the quantity p. A fan filter that 1s

untapered in o will have the plate angles 0 = first polanzer, o, 2. 3. .. (the folded
filter would have: 0,, 0, «. ..~ )and a transmission:
t sin My ) 2
T== | —— . sina (1)
2 siny

where COSX = COS7y COSd

and M =N+ 1 1s the number of angle differences in the filter. The versions discussed by
Solc and Evans (Eq. 3) should then strictly Speaking be regarded as tapered in that the two
extreme angle differences are only half as large as the others. The transmission profiles are
however practically identical when the filfers contain a large number of plates. The same is
true for the taperedwersions of these filters.

It is instructive to investigate the transmission profiles resulting from different
distributions of the angle differences «,,. Figure 2 shows computed iransmission profiles
for differently tapered filters. The second example represents the simple untapered filter
described by Eq. (11). The third example shows the “roof* tapering which is similar to
that often used by Solc. This gives a sidelobe level which is acceptable for most practical
applications. { 77
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Table 1. Bandwidth relative to that of an untapered filter and maximum transmission
in the first sidelobes for different tapering functions.

Tapering function Bandwidth First sidelobe Second sidelobe
(1n % of main peak) {in % of main peak)

Interferometer 0.76 (90.7) (30.8)
No tapering 1.00 11.6 3.9
Roof (2:1) 1.11 3.4 2.1
Cosine 1.36 1.8 22
Triangular 1.47 .09 47
Gaussian (100:1) 2.00 005 .0002

Figure 2 and Table 1 illustrate the general trend towards reduced sidelobes and increased
bandwidth as the tapering function is taken from the extreme “interferometer” shape to the
smooth gaussian form. Many other shapes of the main peak such as, for instance, a flat-top
profile can te produced by switable tapering functions. In order to obtain wider
bands than those shown in Figure 2, one simply applies correspondingly narrower tapering
functions of the same shape. A Solc filter m which the plates can be rotated independently
can therefore be used as a variable bandwidth device where, in addition, the detailed shape
of the profile can be chosen to suit the particular application in question.

The numerical calculations in this paper have been performed using various versions of a
computer program developed by Beckers and Dunn (1965) and based on the Jones {1941 a, b)

mairix calculus.

4. RELATION TO FOURIER TRANSFORMS

The general shape of the transmission bands and the changes in this shape resulting from
the various types of tapering illustrated in Figure 2, suggest that the relation beiween the
distribution of plate angle differences «, on the one hand and the transmssion profile on the °
other is similar to a Fourier transform.

The general relation to Fourier transforms can be understood with reference to Figure 3.
At each boundary between two plates (or between a plate and a polarizer) there is an exchange
between the wave components travelling in the ordinary and extracrdinary modes. A certain
fraction,sm «,,0f the wave component previously czrried in the ordinary mode will, after the
boundary, add vectorally to the component in the extracrdinary mode and vice versa. The
wave emerging from the end polarizer can then be descrnibed as the vector sum of field com-
ponents passing from the input to the output along all possible paths. The different paths
will produce output field components of different amplitudes, but the phase of every com-
ponent must have one of the values & 2y radians (A=0.1.2 ... .N) relative to that of
the component that has travelled in the ordinary mode all through the pile (dashed 1n Figure 3).

s
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Figure 3.  Illustrating the many different paths by which the light can travel from the input
to the output of the filter. The heavy line represents an ocutput vector componernt
that has crossed over three times between the two propagation modes. It has
passed through a total of six plates in the extraordinary mode and therefore
emerges at a phase of 6 . 24 relative to the component that has stayed 1n the
ordinary meode all through the {ilter (dashed).

Lst g, be the sum of the amplitudes of all field components that have passed through
the pile in such a way as to produce the phase »n- 2+ . The output wave field can then be
written (excluding the frequency factor &/%f):

E()=Z g,exp(j2yn) (12)

n

iz

This has the form of a Fourier series. The filter transmission is proportional to the square of
the field strength

T(y)~ 1| E(vy)1*® (13}

Eq. (12) shows that, independant of the arrangement of the plate angles, the transmission
profiles must obey certain well known rules of Fourier series mathematics. The transmission
peaks will be repetetive ai intervals of 7 in the coordinate vy . and the profiles will be
symmetrical about all points ¢ = k. v . Furthermore we can deduce that the finesse F for
a particular filter cannot be made much greater than the number of plates V. The exact
value depends upon how large sidelobes one is prepared to accept. An untapered fiiter for
instance has a finesse of 1.25\ but also 11.6 % sidelobes, while a cosine tapered filter has
F=0.92N and only 1.8 % sidelobes. No arrangement of the plate angles ¢an give 2 perfor-
mance rhat is significantly better in this respect.

Each coefficient &, is the sum of the contributions from all possible paths that
produce the phase n- 2. However. if all angle differences a <€ | radian, the by far greatest
single contribution will come via the path that makes only one transter between the itwo
modes. The coefficient g, wiil therefore be strongly infivenced by rhe one partcular angle
difference at which this transfer takes place: this explamns why the reiation between the

tapermng function and the transmussion behaves in 2 way that s similar o a Fourier transtorm.
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5. TUNING THE FILTER

Many different shapes of the transmission srofile can be produced by altering the dis-
tribution of plate angles. An especially interesting possibility, which does not conflict with
the symmetry requirement derived in the previous section, 1s that the normal transmission
band can be split into two symmetrically placed replicas of itself, The distance between the
two components can be chosen at will and an individual member of such a pair can therefore
be tuned in wavelength by rotating the plates.

The modulation theorem in Fourier analysis shows that such a split peak will result if
we can change the plate angles in such a way that the new coefficients G, are related to
those of the original filter according to the equation

G, =2g, cos 2msn (14)

The two component bands will then appear at a distance from the position of the origial
single band, which is s times the repetition interval. (Eq.7)

There exist general methods for calculating the plate angle distribution that will produce
a set of desired coefficients G, (Harns, Amman and Chang, 1964), but the mathematics
becomes discouragingly complex for large numbers of plates. Fortunately, the exact calculations
will not be necessary in this case: the desired cosine modulation of the coefficients will, to a
good approximation, result if one simply modulates the angle difference distribution «, in
exactly the same way:

A, =2 a, cos 2wsn (15)

In Appendix 1 we discuss the effect on the transmission profile of a modulation of the angle
difference distribution according to Eq. {15).

Figure 4 shows the result of numerical calculations for a set of 16 retardation plates
when a cosine modulation has been applied to the original angle difference distribution «,,.
As the medulation frequency s (expressed in cycles per plate) is carried from 0 to 0.5,
the filter changes from the fan type, via split peak versions, into the folded type. For s=1,
or any other integer, we have returned to the original angle distribution.

Note that the original angle distnbution may be that produced by any desired tapering
function. The shifted peaks keep the same shape as the unmodulated peak. In this example
the calculations were made for a cosine tapered angle difference distribution characterized by

2

) (16)

iy
o, = ————— -sin (w
n 4 (N+2) N+2

The first factor is the constant required to satisfy Eq. (9) for maximum peak transmission in the
unmodulated filter. "
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Sphitting the transmission bands and tuning the filter. Transmission profiles. plate

angles w and angle differences « are shown for different modulation frequencies s.
For s = 0, the piate angles go from 0 to 90°. By modulation through half a cycle

(s goes from O to 0.5) the filter has transformed from a fan filter into a {olded filtar.
Note that the bands become narrower and closer spaced at shorter wavelengths when
plotted on a wavelength scale. The compurations were made for a 16 plats cosine
tapered filter.
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The factor 2 1n Eqs. (14) and (15) is only valid when the two components of the split
peak are well separated. For small values of 5, when the bands overlap, the constant deviates
from the value 2, approaching vnity as s —+ 0. "‘hen calculating the examples in Figure 4
we have used a modified version of Eq. (13):

A, =2a,cosQrsln—n]+xw/3) (1n

The phase of the modulation at the filter centre, n, =" (N + 2) / 2, is then equal to 7 / 3.
This has little influence on the transmission profiles when the two bands are well separated,
but it gives a good approximation to the desired shape also when they are so close as o
overlap. For s = 0, this equation produces the original fan filter configuration. The actual
plate onentations are calculated from Eq. (10):

Wy, = w, 1+t A, (18)

where, as before, the first polarizer is oriented at wg = 0. Observe that the end polarizer,
which is always oriented at right angles to wp; |, Will not necessarily be parallel to or at
right angles to the first polarizer (Figure 5).

The region around s =0.25 is best suited for the tuning since neighbouring unwanted
bands will then be at their maximum distance and may be rejected by other means. The use-
ful tuning range expressed in bandwidths will clearly be larger than in the example of Figure
4 if the filter contains a larger number of plates.

N

30

Figure 5.  The orientation of the last polarizer as a function of the modulation frequency
s for the filter shown in Figure 4.
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6. ERROR SOURCES AND TOLERANCES

When designing and building a filter it is important to know the tolerances within which
the various design parameters must be kept. Many tvpes of error can be treated as equivalent
to errors erther in the plate angles w, or in the plate thicknesses d,, These two basic errors
affect the transmussion profile in different ways. Errorsin the angles «, will always produce
disturbances that are symmetrical with respect to the normal fan or folded filter band positions
because Eqs. {12} and (13) remain valid. The first of these equations was derived on the
assumptron that all plates are identical and errors in the plate thickness can. as we shall see.
produce both asymmetrcal disturbances and small shifts in the position of the main trans-
mission bands.

6.1 Errors in the plate angles

In Appendix 2 we denve an expression for the average transmission level of spurious
sidelobes caused by errors in w, (Eq.42):

T, = 4N 0,,* sin* ¥ (19)

O¢, 18 the standard deviation of the errors in the plate angles w,, expressed in radians. If Tey
is expressed in degrees, the constant 4 should be replaced by 1.22 1073,

The average parasitic transmission is zero at wavelengths for which a fan filter has its
peaks ( where ¥ is a multiple of 7) and increases to a maximum at wavelengths for which
a folded filter has its peaks ( where v is an odd multiple of #/2). This is independent of
whether the actual filter is of the fan type, the folded tvpe, or has been tuned to some inter-
mediate configuration. Figure 6 shows computed examples of sidelobes resulting from

normally distnbuted random errors with a large standard deviation ( = 1°).

The mean parasitic transmission averaged over all wavelengths (all v ) becomes

e=2Ng,,? (20)

We have computed e for several filters with random errors in the plate angles w,. The errors
added to the correct angles were normally distributed with standard deviations G, equal to
0°.3, 0°.6 and 1°.0. The calcuilations were made for cosine tapered fan filters with 20, 40
and 80 plates. The results are shown n Figure 7 and agree well with the values expected from
Eq t20).

| B0
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The ratio of the total energy transmitted in the error sidelobes to that transmitted in
the main bands will be approximately equal 10 € times the finesse £ For normally tapered
filters F = V (sections 2 and 4) and we get

eF=12N? 0’ 2n

A 40 plate filter, in which the plate angles have been adjusted to a tolerance of =0° 5
{corresponding to o, = 0°.3) will thus have a total parasitic transmission due to the errors
in w,, which is only 8 % of that in the main bands. This agrees with the empirical findings of
Beckers and Dunn (1963) that angle errors of this magnitude have litile influence on the
filter performance.

This result is somewhat surprising since errors of this magnitude are by no means small
compared with the angle differences «, themselves, which fora 40 plate filter are of the
order of a few degrees. In practice it is easy to control the plate settings to a considerably
higher accuracy (section 7), and the angle errors should therefore have a negligible influence
upon the transmission profile of a well designed filter.

Apart from producing unwanted sidelobes, the angle srrors can aiso distort the shape
of the main band. However. it appears from computed examples that this effect will usually
be less disturbing than the appearence of the sidelobes.

6.2 Errors in the plate thickness

The average sidelobe level away from the main bands of an untapered fan filter is
derived in Appendix 2 (Eq. 47). From computed examples it appears that the formula
can also be used for tapered filters.

»

Tq
N sin®y

{32a)

&l

=
Te zz

where g, 1s the standard deviation of the plates from their average thicknesses expressed
in orders of birefringence; the latter is related to the standard deviation g, in the actual
plate thicknesses by:

270y, =2y (04/ d) (22h)

The effects of these errors are seen to be more serious for short wavelengths
( = larger v, see Eq. 3). Furthermore, the sidelobes increase very steeply as one approaches
the positions of the main bands because sin*+4 becomes very small. The same picture
emerges when the calculations are performed for a folded filter or a tuned filter: in contrast
1o the behaviour of the angle error sidelobes, this error pattern will accompany a main band
as it is tuned to a different wavelength.

It should not be concluded from Eq. (22a) that the situation improves for large V. The
sidelobe level ar any specified wavelength does indeed improve as more plaies are added. At
the same time. however. the bandwidth decreases and the sidelobe level at a specified number

of bandwidths from the main peak gets{ worse. The result is that the total parasitic trams-
22
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mission becomes larger relative to the transmission in the main bands. Eq. (222) leads to an
expression for the ratio of the total error transmission outside the main bands - here taken
to be the region for which [siny| >« /N - to u = transmission within these bands (compare
Eq. 21):

Trl
efF== Noo? (22¢)

According to this formula, a 40 plate filter with o, = 1/40 order should have a total error
transmussion equal to 12 % of the main band transmission. Unfortunately, the tolerances
must often in practice be set stricter than this because the main bands themselves (and
their immediate surroundings) are very sensitive to errors of this kind. The main profile can
be seriously distorted and shifted in position by errors which would lead to an acceptable
parasitic transmussion according to Eq. (22¢). Figure 8a shows the computed transmission
for a filter with very large errors, 6, = 0.12 orders, in the plate thicknesses. The main peak
has collapsed and the profile is dominated by the sidelobes whose general behaviour is
described by Eq. (22a).

The very strict tolerances on the plate thicknesses makes it extremely difficult to
manufacture filters containing a large number of plates. However, 1t is relatively esasy to
measure the errors in the individual plates once they have been made, The whole pile of
plates can then be assembled in such a way that the man effects of the known mdividual
plate errors cancel.

An error in the thickness of an individual plate may be looked upon as causing errors
in the positions of all the angle differences along the filter axis relative to the positions they
would have had in an errorfree filter of the same total length (Appendix 2, Eq. 43). If we now
let one neighbournng piate have an error which is equal in magnitude but opposite in sign to
that of the first plate, we shall find that ali angle differences, except the single one between
the two incorrect plates, will fall on their correct positions. The actual pile of plates has
therefore become a much better approximation to the design configuration than when there
was only one incorrect plate. The main detrimental effects of errors in the plate thicknesses
can thus be cancelled if the filter is assembled in such a way that neighbouring plates have
errors Which are approximately equal in magnitude but opposite in sign. This can be done
simply by ranking the plates according to their errors and pairing the plates with the largest
errors of oppostte sign, those with the second largest errors etc.. A further improvement Is
obtained by concentrating the plates with large errors towards the two ends of the pile where,
as pointed out by Beckers and Dunn (1965), these errors are less critical to the filter
performance, especially for tapered filters. The example given in Figure 8 and Table 2
illustrates the general principle and the striking improvement of the filter behaviour that is
possible by this method.
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Figure 8.  Transmission profiles of a 31 plate cosine tapered filter with large errors in the
plate thicknesses d corresponding to a standard deviation-oy of 0.12 orders of
birefringence. a) the plates assembled without attention ro thewr individual
errors, b) the plates assembled so as t0 cancel the effects of the errors (see
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Table 2. Characteristics of the cosine tapereu filters illustrated in Figure 8. The plate
angles are given for both the fan and the folded versions. Column A gives the
plate thickness errors expressed in orders of birefringence as produced by a
random number generator (normal distribution with g, = 0.12 orders).
Column B gives the rearranged distribution of the same plates.

Plate nr. Plate angle w (degrees) Thickness error (orders)

fan folded A B

Fol. .0 .0
1 4 .4 .08 ~.29
2 1.2 - .4 -.02 .22
3 2.4 .8 .02 -.19
4 4,0 ~ .B .07 .20
5 6.0 1.2 -,08 -.14
6 8.3 ~-1.1 -.29 .08
T 11.0 1.5 -.09 -.09
8 13.9 ~1,5% -.22 .07
9 17.2 1.8 .20 -.05
10 20.6 -1.7 -.09 .05
11 24.4 2.0 .04 -.03
12 28.3 -1.9 .24 .04
135 32.3 2.2 .22 -,02
14 36,5 -2.0 .06 .02
15 40,7 2.2 .12 -.01
16 45.0 -2.0 -.02 .00
17 49.5 2.2 -.02 .01
18 53.5 -2.0 -.03% -.02
19 57.7 2.2 ~.04 .02
20 61,7 -1.9 .02 -.02
21 65.6 2.0 .05 .04
22 63.4 -1.7 .20 -.04
23 72.9 1.8 .08 .08
24 76-1 "105 --19 —-08
25 79.1 1.5 -,05 .08
26 81.7 =141 - 17 -.09
297 84.0 Te2 .04 .12
28 86.0 - .8 .01 ~-.17
29 - 87.6 .8 .00 .20
30 838.8 - .4 ~.01 -.22
31 89.6 -4 -.14 .24

Pol. 0.0 .0
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7. EXPERIMENTAL TESTS

The theoretical conclusions arrived atr above have been tested 1n the laboratory. The
aim was to investigate the practical difficulties and main sources of error, but not to construct
a final filter for some special purpose. 16 birefringent plates of quartz were used. These
plates were onginally part of a filter for the ultraviolet wavelength region built by Solc’s
group at the Dioptra Company n Turnov, Czechoslovakia. Each plate is only 0.4116< mm
thick which aives a large free spectral range in the ultraviolet.

The plates were mounted in a specially constructed filter holder where each plate couid
be independently rotated about the filter optic axis by means of micrometer screws (see
Figure 9). The plates were immersed in a fluid {Leitz Immersion oil) of refractive index
1.515 (NaD) which reduced the reflection at each surface to 0.01 %. HN 32 linear sheet
polaroids were used as polarizers.

The tests were carried out at the Technisch Physische Dienst in Delft, Netherlands, using
a I-m Hilger-Watt scanning monochromator with a Tungsten ribbon lamp as light source and
a | P21 RCA photomultiplier as detector. The filter was placed in the collimated beam after
the exit slit of the monochromartor.

For convenience the tests were carried out in the visible region around 3000 A. The
slitwidths of the monochromartor were chosen to give a spectral resoiution of 1.2 & which
made it possible to study the detailed shape of the profiles. which in the 5000 A region had
a bandwidth of about 30 A.

The crysial optic axes of the plates were aligned n the following wayv. The monochro-
mator was set at a wavelength corresponding to maxumum transmission for a folded filter.
and the polarizers at each end of the filter were oriented at right angles to one another. At
this wavelength each plate is a half-wave plate and, if its optic axis is aligned parallel to the
axis of one of the polarizers, no light will be transmitted but a small deviation from the
" parallel position-is casily detected. The plates were aligned in this way one after the other,
leaving the earlier aligned plates in their parallel position. This procedure turned ourt to be
very accurate and allowed the angles of the optic axes to be controlled to = 0.02°. Thisis
much better than actually needed (section 6).

The spectral response of the filter was determined relative to the transmission when the
end polarizer had been placed in front of. and paralle! to. the first polarizer. With thisas a
reference the transmission of the main peaks (ordinary peaks as well as tapered and shifted
peaks) should be 100%.

The absolute transmission of the filter ar 3000 A was determined to 13%. The
polarizers transmit 34 % of unpolarized light while the quartz plates and the ol (21 cm long
path) transmitted 56 % of the incident hght. With more transparent polarizers (e.g. Rochon
prisms) and a reduced pathiength through the oil. the transmussion can be considerably
improved. The filter may also be used in any wavelength region where quartz is transparent
if a suitable immersion oil and suirable polarizers are chosen.

No absolute wavelength calibration was performed but the experimental maxima as

shown on the monochromator waveiength scale fitted the theoretical values to within a few
Anestroms. The reduction of the measurements was done assuming that the experimental

and theoretical transmussion maxima comeidad m wavelength for the unshirted bands.
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Figure 9.  The filter holder used in the expertmental tests. The polarizers and plates can be
rotated independently about the filter axis by means of the micrometer screws.

‘The first test run concerned the tapered profiles illustrated in F igure 2. Table 3

summarizes the results giving theoretical and experimental parameters for the main bands %-o
and the first two sidelobes. The measured maximum transmission of the main peaks amounted . -F%‘
to 100+ | % relative to the reference described above. The error of £ 1% may be due to aﬁ

slow fluctuations in the output from the light source which occurred between actual regis- Y
tration and calibration runs. When evaluating the rest of the profiles all transmission values
are expressed in percent of the main peak. The experimentaily determined transmission values
fit the theoretical values to within 1.5 %. This means that the difference between the experi-
mental and the theoretical curves would hardly be noticabie on the scale of Figure 2.
InFigure 10the sidelobes of the straight, the cosine and the gaussian tapered filters are
shown on an expanded scale. The largest deviation from the theoretical curves occur in the
second sidelobes of the straight filter and amounts to + 1 %. The deviations are generally
antisymmetrical with respect to the main peak and therefore probably due to small errors in
the plate thicknesses. \877



%« TRANSMISSION

STRAIGHT
-
2o
“
s .
\\\ m
_

35 COSINE
10

5

T L

13 GAUSSIAN
10}

5

4900

Figure 10.

Table 3.

5150 5200 5250
WAVELENGTH IN ANGSTROM —

2950 s100
Result of laboratory measurements on a set of 16 retardations plates. Theoretical

(full drawn) and experimental (dashed) transmission curves are given for the
straight (untapered). the cosine tapered and the gaussian tapered arrangements.

Experimental results for a 16 plate filter with different tapering functions. Of
the two experimental values given for the sidelobes. the first refers to the long
wavelength side and the second to the short wavelength side of the main band.
Computed theoretical values are given in brackets.

Tapering function

Main band First sidelobe Second sidelobe

Tmax A}ufl A Tma-\f ¢ Tm ax %
[nterferometer 1.002 24 (23) 91.6 {90.1) 29.3 (30.5)
§2.9 32.0
No tapering 1.00% 30 (30) 11.6  {11.1) 2.4 (3.47)
10.8 4.4
Roof 0.990 35 (34) 3.4 (2.90) 1.5 {(1.71)
2.9 2.4
Cosine 0.997 a1t (41) 1.6 {1.52) 0.1 (0.17)
1.5 0.3
Triangnlar 1.007 46 (44.5) 0.3 (0.08) 0.3 (0.32)
0.3 0.7
Gaussian 1.005 60 (61.5) - (0.003) - -

(&0
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Table 4. Experimental results of tuning a cosine tapered filter with 16 plates starting
from the folded configuration (s = 0.5). Band | is tuned towards shorter
wavelengths, band 2 towards longer wavelengths. Computed theoretical values
are given in brackets. '

Modulation Tmax Distance between Ary A
frequency s the peaks in A
0.50 0.997 o . (0) 41 (41)
0.44 band 1 1.008 63.5 (65) 40 §4o)
) 1.007 41 (41.5)
0.38 1 0.997 139 (139) 40 (39)
2 1.002 44 (42)
0.25 1 0.995% 303 (305) 38 (37.5)
2 0.998 42 (43)
0.12 1 1.013 561  (564) 37  (36)
5 1.004 42 (44)

Table 4 summarizes the results of shifting the peaks of a cosine tapered filter for some
of the examples illustrated in Figure 4. Also in this case the agreement between the theoretical
and experimental profiles is such that the discrepancies would not be noticable on the scale
used in that figure. The largest deviation amounts to 1.3 % of the maximum transmission. An
adjustable and tunable filter based on these principles 1s clearly feasible.
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APPENDIX 1 The transmission profile of a filter with a modulated angle difference
distribution

The state of polarization of light passing through a pile of birefringent plates can be des-
cribed in terms of the Jones (1941 a, b) matrix calculus (see also Shurcliff 1962). The light,
as it emerges from a particular plate, is described by the Jones vector:

E. +AE, etiv 0 cosa sina E, ]
() o) 20 (5) =

E, + AE,, 0 e 7Y \—sina cosa E,
E, and Ey are here the elements in the Jones vector description of the polarization of the
light before entering the plate. « is the angle difference between this plate and the preceding
plate, and 2y radians is the retardation of the plate at the wavelengrh in question (Eg. 3).
We shall apply the Jones equation to Solc filters consisting of a large number of plates and
in which all angle differences «, < 1 radian. Treating the pile of plates as a continuous
birefringent medium in which the optic axis orientation w is a function of the position {

along the pile, we can from Eaq. (23) denve the differential equations for the Jones vecior
elements £, and £,

Ei — jr/2E, = +akE,
(24)
E, + jk/2E, = -ak,

E¢ and E); are derivatives w:ith respect to L. a (!} is the derivative dw /dl of the optic
axis angle: for a filter consisting of a pile of plates. a (/) becomes an array of delta functions
@, . k is the retardation per unit length of the birefringent material at the wavelength in
question. A plate of thickness d has a rerardation 2y given by

)
2
I
=
=Y

radians of phase (25

Let the light be 100 % polarized and its intensity be normalized to unity as it emerges
from the first polarizer at / = 0. The Jones vecror describing the light at this point is then

E. (@ 1
= (26}
E, (0) 0
The 2nd polanizer 1s onented at right angles to the optic axis at / = L. The intensity of the
light at the output of the {ilier 1s then given by-

=15 ) 190 e
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In order to obtain the transmission of the filter for unpolarized light, this normalized cutput
intensity must be multiplied by the absorption loss factor ¢ / 2 (Section 2).

Egs. (24) can be solved for some special cases. a (!} = const. represents a ‘continuous’
fan type filter in which the optic axis rotates smoothly throughout the birefringent material.
The solution

¢ 2
T= > sin? B L (28)

=18

where B= [(#/2)?+a? 1%

can also be derived from Eq. (3) or Eq. (11) as the limiting case for a pile of constant
thickness L as the number of plates N =o. A single peak with /2 maximum trans-

mission is obtained at k=0 when a=w /2L, i.e. the optic axis has turned through one
right angle between the input and the output of the filter

There will clearly be other special forms of a (1) which can also be solved explicitly.
However we are interested in the effect on the filter transmission of a modulation of the
angle difference distribution as specified by Eq. {15). If the original optic axis derivafive is

a (1), then the modulated version will have the derivative:
A od = 2a(l) cosm! (29)

where I=n.d and m=2rws/d

Introduce the new variables P and @ by the substitution

E, =Pexp (+jkf21)
(30)
E, =Qexp (—jKf21)
Egs. (24) then take the form
P'=4+Qaexp(—jkl)
3D
O'=— Paexp (+jk )
The corresponding eaquations for the modulated version of the same filter become
P, =+0, 2acosmliexp (—jkl)
(32)

Qm=—Pp 2acosmlexp (+7xl) Qi
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The problem can now be stated as follows. Assuming that we know the solution to Eqgs. (31).
then what is the solution to Egs. (32) for the modulated version ?

It a(i)=0.then P, and Q,, are constants all through the filter. We now make the
assumption that a (/) 1s so small, rhat the increments AP,, and AQ,, are always < | when
calculated over an interval occupied by one full modulation cycle. We make the further
assumption that the tapering function over the same interval can be approximated by its
valuz at the centre of the interval. This essentially means that the anele dirferences a, in
the unmodulated version of the filter do not change significantly over this mnterval. These
conditions will. in general. be satisfied for normally tapered filters which are modulated in
such a way thatthere are many full cycles along the filter. Egs. (32) can now be integrated
over individual modulation cycles while treating P,,, Q,, and a as constants. The modul-

ation cycle nr. k has its centre at
I, = (k—%)27/m (33)

and the increments for the cycle centered at /, become

2K
AP, =+ Q, a —— sin(we/m) exp (-] & i)
K —m?

34)
2

—— sm{wx/m}) exp (+j«x I.)
Ke—m~

AQ,, =-P, a
The same increments over the same intervals (or, for negative k, their complex conjugates)
are produced by the functions P and Q defined by

P'=+Qua, exp [—j (Ixl—m) /]

Q'=—Pa, exp[+j(lxl—-m)!]
where @y =a - 2kl / (el +m)

Thus, under the assumptions discussed above, these equarions can replace the original Egs. (32).
They have the same form as those for the unmodulated filter (31) but with « replaced by

{ 1k | — m). Consequently we shall now expect maxima at x = =m mstead of. as before. at

x« = 0. In the neighbourhood of these maxima we have a,, =a which shows that the shirted
bands will have the same shape as that of the unmodulated version. When the filter consists

of a large number of identical plates. the double band pattern must repeat 2bout the normal

fan filter positions. In terms of the parameters v and s we find that K ==2n corresponds o

~ = Hieger-mw = 3T {367

(normal position of fan filter bands) = 5 (repetition mterval)

(G2



APPENDIX 2 The influence of errors in the plate angle w and the plate
thickness d

When dealing with filters consisting of a large number of plates between which all angle
differences «, <€ 1 radian, we can make some simplifying approximations
for wavelengths (values of k) well removed from the main transmission bands. Under
these circumstances, the light will never depart significantly from a state of linear polarization

parallel to the local optic axis direction. This becomes obvious if one traces, on the Poincaré
sphere, the pclarization of such a wave as it passes through.the filter. Then | Q (1) | <€ 1 and

we can use the approximation P =1 since the deviations of P from this value will be of the
order of | Q1) |%. Eq.(31) for Q' can now be mtegrated directly:

QL) = — [ alh) exp(+jx D) dl 7)
4

If the filter contains NV plates of thickness d,, mounted with the angle difference distri-

bution c,

N+1
Q(L)=—n§Ioc,, exp (+/xl,) (33)

where [, is the position along the filter axis at which the corresponding angle difference occurs.
The transmission of the filter is (Egs. 27, 30):

b 2 _ b 2
T=21E, () =510@)

(39)
=210 (1) + 0. (T

Qo is here the ideal value according to the design and O, the error in this quantity due to
errors in the plate angles or the plate thicknesses. We are concerned with wavelengths well
removed from the main bands, and the transmission if significant. will be caused manly by
the filter errors. The parasitic transmission T, expressed as a fraction of the maximum
possible transmission, ¢ f 2, then becomes:

Te =10 (L)) (40)

Errors in the orientations of the plates

The error A, m the angle difference «, between plates number »n and (n—1) is
clearly equal to the difference between the errors A w, and Aw,_; in the actual plate
angles. Hence, for a filter with errors only n the plate orientations, Eq. (38) gives
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N+1
Qe (L)=—n§1(Awn —Aw,)exp(+72yn)

N
=2jsin7n§lAm,, exp(+i2y[m—un]) (41)

Assuming that the errors A w,, are randomly distributed about zero with a standard
deviation o, radians, we can derive an expression for the average sidelobe level T, =] Q. (L) P

Te = 4N 0,2 sin? vy (42)

Errors in the thickness of the plates

Consider a filter in which all plates are identical apart from plate number ne that has a
small error Ad in its thickness. Compared with an ideal filter of the same actual total length
L, all angle differences ¢, (except the first and the last) will appear slightly displaced. The
error Al, in the position of the angle difference number # is easily shown to be

Ad- (n=1)/N (n<ny)
Al = (43)
Ad- (n—1)/N — Ad (n>ng)
The actual position of the angle difference o, becomes:
L=n—DLIN+AI (44)

When this is substituted into Eq. {38) we can, after some algebra. derive the error g, due to
this one plate error. The answer depends in a complicated way on the distribution of the
angle differences. For an untapered fan filter. i. . one in which all angle differences are
-equal. we get.

- Ay

Q. (L) = -exp (G 27 [ne —%1) (45)

where 2-y is the retardation of a plate whose thickness 1s exactly L /.V, and

2Ay = k Ad < | (46)

is the retardation error in the faulty plate caused by the thickness error Ad. We now turn 10
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a filter in which all the plates have small errors Ad, . Adding the various individual error
contributions statistically we get the mean sidelobe level. For a normally constructed
untapered fan filter, x =7 / 2 (N + 1), and we vet.

71'4 002
T, Az —
4

N sin? v (47)

0, is the standard deviation of the plates from their average thickness expressed 1n orders of
birefringence; this is related to the standard deviation 04 in the plate thicknesses from their
average value d =L [/ N by-

2700 =27 (04/d) (48)
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Optical Network Synthesis Using Birefringent Crystals.* 1. Synthesis of
Lossless Networks of Equal-Length Crystals
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A procedure for the synthesis of birefringent networks having arbitrarily prescribed transfer functions is
-presented. The basic network configuration consists of » identical cascaded birefringent crystals between an
input and an output polanzer. The crystals are cut with their optic axes perpendicular to their length. The
varmables determined by the synthesis procedure are theangles of the optic axes of the crvstals and the angle
of the qutput polarizer. Any transfer function which is periodic with frequency and whose corresponding
impulse response is rezl and causal can, in theory, be realized. A network of # crystals allows the 2pproxima-
tion of a desired function by {(n--1) terms of a Fourier exponentiai series. Bandwidths of less than 1 A appear

pessible.

1. INTRODUCTION

HE advent of the laser has made possible various
types of optical systems. This has produced a
need for optical elements or networks whose {ransier
functions can be arbitrarily prescribed as 2 function of
frequency. In a manner analogous to that used at radio
frequencies, such optical networks could be utilized as
discriminators and ratio detectors, equalizers and com-
pensators, irequency selective hybrids, and delay pet-
works, to name just a few. Of particular importance is
the possibility of realizing very narrow-band flters
having prescribed transmission characteristics.

The purpose of this paper is to present a basic network
configuration and synthesis procedure whereby optical
networks having arbitrary transfer functions can be
constructed using 2 set of cascaded birefringent crystals.
Although synthesis procedures exist for other types of
optical devices,** the very narrow bandwidths and
tunability of birefringent devices make them particu-
larly attractive for the above-mentioned applications.
The type of network to be considered is shown in Fig. 1.
In simplest form, it consists of a number of identical
birefringent crystals placed between two polarizers.
Although Fig. 1 pictures a network containing four
stages (four birefringent crystals), any number can be
used. In principle, either uniaxial or biaxial® crystals

* This work was supported at Stanford University by the Space
Systems Division of the U. S. Air Force Systems Command under
Contract Number AF (4(695)-305 and at Sylvania by the Air
Force Avionies Laboratory at Wright-Parterson Air Force Base,
Ohio, under Contract AF 33(657)-8995.

1. Pohlack, Jenaer Jahrbuch, 1962, p. 181 (in German).

1. Young, J. Opt. Soc. Am. 51, 967 (1961).

3 7. S. Seeley, Proc. Phys. Soc. (London) 78, 998 (1961).

4+R. J. Pegis, I. Opt. Soc. Am. 51, 1253 (1961).

$If biaxial crvstals are used, crystals in the monoclinic and
triclinic systems will probably not he satisiactory since the divec-

tions of their principal axes are dependent upon temperature and
wavelength.

Preceding page blank '

may be emploved, but for simplicity we will assume
uniaxial crystals are used. Each crystal is cut with its
optic axis perpendicular to its length and with end faces
which are fiat and parallel. The S's and F’s in Fig. 1
denote the crvstals’ “slow” and “fast” axes, respectively.
If a negative crystal is used, the fast axis will be the
optic axis, while for 2 positive crystal the slow axis will
be the optic axis. The variables to be determined by the
synthesis procedure are the angles to which the crystals
are rotated, the angle of the output polatizer, and the
length L of the crystals used. In the following sections,
we will show that by propetly choosing these variables,
it is possible, in theory, to synthesize any desired trans-
fer function, subject only to the restriciions thar it be
periodic with frequency and that it satisfy the usual
requirements imposed by the necessity for 2 real and
causal impulse response. The basic periodicity of the
network response is determuned by the type and length
of birefringent crystals used. For example, if calcite
crystals 1 o in length are used, the basic period of

Fic. 1. Basic configuration of optical nerwork
(four stages), Polarizers are shown shaded.
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the response will be about 175 Ge (about 2 A in the
red}.

An important modification of the basic configuration
of Fig. 1 is the addition of a variable optical compen-
sator® before or after each birefringent crystal. The
compensators allow one to tune the network transier
function without distortion over its basic period and,
in addition, compensate for slightly incorrect crystal
lengths.

The optical network described here is a lossless or
nondissipative network in that it does not contain any
internal polarizers; if the final polarizer is nonabsorbing,
e.g., a Rochon prism, then ail of the optical energy
incident on the first birefringent crystal is, in principle,
available at the network butput. It is planned to con-
sider the synthesis of dissipative birefringent networks,
i.e., networks containing internal polarizers, in a follow-
ing paper. .

A central idea of this paper is the consideration of the
impulse response of a system of birefringent crystals.
This approach svas used by Mertz® to analyze the Solc
birefringent filter and was independently suggested as
an approach to the synthesis problem by Harris.® It is
first presented and then used to obtairan exact synthesis
procedure. The question of tunability is considered and
an example given.

II. HISTORY OF BIREFRINGENT DEVICES

Before proceeding further, it is appropriate to note
that two birefringent filters having particular transfer
functions have been proposed considerably earlier. The
first of these was proposed in 1933 by the French astrono-
mer, Lvot,? who suggested a birefringent filter consisting
of zlternating polarizers and birefringent crystals, The
length of each crystal is twice that of the preceding

Fi1g. 2. Four-stage Lyot filter. Polarizers are shown shaded.

sH. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

7L. Mertz, J. Opt. Soc. Am. 30 (June 1960} (advertisement
facing p. xii).

$S. E. Harris and’E. O. Ammann, Proc. IEEE 32, 411 (1964).

¢ B. Lyot, Compt. Rend. 197, 1593 (1933).
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F1e. 3. Four-stage Sole fan Alter.

crystal. A four-stage Lyot filter is shown in Fig. 2. The
transfer function of the Lyvot flter has the form sinx/x,
repeated at periodic intervals. More recently, Solc®
proposed two types of birefringent filters, termed fan
and folded filters. Figure 3 shows a four-stage Solc fan
RAlter. These filters have the same structural form as our
basic netiwork. In the Sole filters, however, the relative
rotation angle between each successtve crystal is related
in a simple manner to the number of birefringent crystals
employed. In contrast, the refative angles of the crystals
in our network are determined by the choice of optical
transfer function—which may be arbitrary. Complete
discussions of both the Lyot and Solc filters have been
given by Evans.™"?

Numerous Lvot and Solc filters have been built
and operated.!!-*-!% These filters are used primarily in
astronomy where their very narrow bandwidths are
utilized to observe solar prominences. Recently, Steel
ef al.'" have constructed a Lyot flter with a bandwidth
of } A in the red. By using the synthesis techniques
proposed in this paper, it should be possible to aitain
similar bandwidths with prescribed {ransmission
characteristics.

I, GENERAL CONSIDERATIONS

A. Tmpulse Response of a Series of
Birefringent Crystals

Analysis by means of impulse response is a concept
that is familiar to electrical engineers.'® If an impulse,
ie., a Dirac delta function in time is applied to a

© 1. Solc, Czech. J. Phys. 3, 366 (1953); 4, 607, 669 (1934); 5,
114 (1933).

1 . W. Evans, J. Opt. Soc. Am. 39, 229 (1949,

1T, W. Evans, J. Opt. Soc. Am. 48, 142 (1938).

BY, Qhman, Nature 141, 157 (1938); Nature 141, 291 (1938);
Pop. Astron. Tidskrift, No. 1-2, 11, 27 (i938).

W], W. Evans, Publ. Astron. Soc. Pacific 52, 303 (1940).

187, W. Evans, Ciencia Invest. {Buenos Aires} 3, 363 (1947).

15 B, H. Bllings, J. Opt. Soc. Am, 37, 738 (1947). .

% VY, H. Steel, R. N. Smartt, and R G. Giovarelli, Australian
J. Phys. 14, 201 (1961).

18 7. W. Evans, Appl. Opt. 2, 193 (1963).

37, A, Aseltine, Transform Method in Linear Systens Anclysis
(McGraw-Hill Book Company, Inc., New York, 1958).
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Fie. 4. Impulse re- - {>l cose |
sponee of a single bire- IpUT 1 -
fringent erystal. e ',,\s“

linear network, the Fourier transform of the impulse
response of the network is the frequency domain trans-
fer function of the network.

We first consider the impulse response of the single
birefringent crystal of Fig. 4. The crystal is cut with its
optic axis perpendicular to its length and with end faces
flat and parallel. A linearly polarized impulse of optical
electric field is assumed to be normaily incident on the
crystal. Since the incoming signal is normally incident,
double refraction will not accur. The impuise will divide
into orthogonally polarized ordinary and extraordinary
impulses whose amplitudes are dependent on the polari-
zation of the incident impulse with respect to the prin-
cipal axes of the birefringent crystal. These impulses
travel with different velocities, therefore emerging at
different times. The difference in the times at which
they emerge from the crvstal is given by

is—tp=LAn/c, (1)
where An is the difference between the extraordinary
and ordinary indices of refraction of the cryvstal, L is
the crvstal length, and ¢ is the velocity of light in a
vacuum.

We assume here that Az is a constant independent of
frequency. This is not the actual situation, however, for
Ay will be 2 function of frequency, at least to some de-
gree. The birefringence of calcite, for example, varies
approximately 11% between 4000 and 8000 A. The
effect of the dispersion of An has been ignored in this
paper for two reasons. First, to include its effect would
greatly complicate the synthesis procedure and obscure
the basic ideas. Second, the effects of dispersion upon
the resulting transier function will generally be small,
particularly if the synthesized network has a small
bandwidth. Existing analyses of the Lyot and Solc
filters have also neglected dispersion; yet experimental
resulfs have agreed quite well with theory.

Thus, the impulse response of a single birefringent
crystal is two orthogonally polarized impulses whose
amplitudes depend upon &, the angle between the prin-
cipal axes of the crystal and the incident optical polar-
ization. If ¢ is equal to zero, all of the light will emerge
at time fg; if ¢ is equal to 45°, the light will emerge as
two equal impulses at times {r and fs.

We next consider the impulse response of several
cascaded birefringent crvstals having arbitrary lengths
and orientations, as shown schematically in Fig. 3. This

OPTICAL NETWORK SYNTHESIS
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figure contains information about the time of emission
of the impulses, but none about their polarizations. First
consider the case of two crystals. The output of the first
crystal is, in general, two orthogénally polarized im-
pulses, Each of these impulses is incident on the second
crystal and produces two more impulses. Thus, in
general, the impulse response of two cascaded bire-
fringent crystals is four impulses, two of which are polar-
ized along the fast axis and two along the slow axis of
the second crystal. With more crystals this process
continues, giving us the result that the impulse response
of # birefringent crystals having arbitrary lengths and
orientations is a set of 2 impulses. The magnitudes and
polarizations of these impulses are determined by the
crystal angles, while their relative times of emergence
from the crvstal are determined by the birefringence
and lengths of the crvstals used. Thus we reach the
important conclusion that the impulse response of &
series of birefringent cryvstals is a train of impulses of
finite duration. In contrast, the impulse responses of
Fabryv-Perot and multilaver dielectric-flm filters con-
sist of infinite irains of impulses.

Now suppose that all of the » crystals are chosen to
be identical, i.e., the same material and equal lengths.
The output will now consist of only {x--1) rather than
27 impulses. Furthermore, the emerging impulses will
beequally spaced in time. Thereason that fewer impulses
emerge when the crystals are chosen of equal length is
seen by examining the two-crysial case. For two crystals
of equal length, the impulse which wravels along the
fast axis of the first and the slow axis of the second will
emerge at the same time as the impulse which travels
along the slow axis of the first and the fast axis of the
second. These two combine, and the output, therefore,
consists of three rather than four impulses.

Thus we are led to the network configuration of Fig. L.
The basic idea of the synthesis procedure is to utilize
the relative angles of » birefringent crystals and one
output polarizer to control the amplicudes of (#+1)
equally spaced output impulses. The first step of the
procedure is to specify the desired impulse amplitudes
at the output of the final polarizer. These amplitudes
may be selected arbitrarily as is seen in the following
section. We then use a systematic procedure fo arrive at
angles for the network elements so this final set of im-
pulses is obtained from a single impulse incident on the
first crystal of the network, This is equivalent to saving,
of course, that the desired set of impulses is the impulse
response of the network.

' n A

Fie. 3. Impulse re-
sponse of several bire-

) 77 DUTPUT IMPULSES
fringent crystals.

a CRYSTALS
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F16. 6, Impulse responses and corresponding transfer functions

for a network whose impulse response is (a) £(¢), and (b} g{#
sampled.

B. Specifying the Desired Response

Let us now consider what types of responses we can
realize and how we specifv them. As in lumped-element
circuit theory, a convenient approach is to first choose
an ideal response and then approximate this to the
necessary degree.

We should note that the frequency transfer function
of the optical network must be periodic. This can be seen
readily from Fourier theory or sampling theory. Suppose
that 2 network has an impuise response g{¢) and 2 cor-
responding transfer function G(w), where hoth g(#)
and G(w) are continuous and aperiodic as shown in Fig.
6(a). Next, suppose another network has an impulse
response which is g(¢) sampled at a uniform rate of 1/a
samples/sec. This is the case for a network consisting
of a set of birefringent crvstals, each of whose length is
such that fs~—{p of Eq. (1) equals z seconds. This net-
work will have a periodic transfer function like that
shown in Fig. 6(b), which is the original G(w) replicated
with a period of 2w/ rad/sec.®® Figure 7 shows the trans-
fer function periodicity that can be obtained using
readily available lengths of some common crystals.

Assume that a desired periodic transfer function G(a)
has been chosen. The next step is to find a satisfactory
approximation to G(w) which can be realized using the
optical network of Fig. 1. The approximation is made
by an exponential series containing a finite number of
terms.

C(w) =Cu+cle—mu+cse-—d.’au+ e _i_Cﬂe—iﬂam
. @
= z Cke—aiaw-

k=0

The impulse response corresponding to Eq. (2) is
found by taking the inverse Fourier transform, giving

C()=Cob () +Cid (l— ) +Cob(t—2a)+- - -
+Cho(t—na) (3)
= i Cro{t—ka).

2 E, A Guillemin, Theory of Linear Physical Systems (John
Wiley & Sons, Tnc., New York, 1963}, p. 430.
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Thus it is clear why an exponential series is used to
approximate the desired transfer function, The exponen-
tial series has a Fourier transform consisting of uniformly
spaced impulses, and this is the form of the impulse
response of our optical network. If there are n--1 terms
in C(w) [as there are in Eq. (2)J, an n-stage optical
network is required.

There are various methods available for finding the
C. of Eq. (3) from a given G(w). One obvious possibility
is to choose the C; to be the Fourier coefficients of the
series. However, if the desired G(w) contains discontinu-
ities, some other approximation such as a Cesaro ap-
proximation may well be more desirable. Such topics
have been treated in detail elsewhere® so we will not
discuss this problem further.

Tt is likely that {G(w)!? or arg G{w) will sometimes
be given instead of G(w). It will then be necessary to
approximate |G(w)|? or arg G(w) in 2 suitable manner
and calculate Clw) from this.

Two points should be noted concerning the approxi-
mating functions C(w) and C(£). First, since the impulse
response of a physical network must be real, the real
and imaginary parts of C(w} must be even and odd
functions of frequency, respectively. This means that all
C; must be real. Second, it is nof necessary that C(w)
and C(£) be causal. While it is true, of course, that the
impulse response of a network must be zero for <0, we
are free to shift our time scale to a new origin when writ-
ing C(w) and C(¥) if this will be more convenient. Thus,
in writing Eqs. (2) and (3), we have neglected most of
the uniform time delav associated with the network,
ize., the time delay accumulated by passage of the signal
through each crystal, in the space between crystals,
and in transit to the point of detection. We have chosen
our new time origin to be the time at which the first
output impuise occurs. For this choice of origin C (w)
is causal, but equally well, we could have chosen a time
origin which results in a noncausal C {w). As far as the
synthesis procedure is concerned, the important point
is that only the relative positions in time of the various
impulses are important. In this paper, we will always
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PERIODICITY OF TRANSFER FUNCTION — Gefsac

Fic. 7. Periodicity of network response for several types of
birefringent crystals. Q. quartz, An=0.009; M: mica, An=0.04;
C: calcite, An=0.17; S: sedium pitrate, An=0.24

2 Ref, 20, p. 408.
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Fi16. 8. Summary of impulse
notation: Impulse pyrarmd for
a two-stage network. Top:
input; next to top: output
from first crystal; next to
bottom: ocutput from second
crystal; bottom: output from
polarizer. Solid strokes: polar-
ized along fast axds of crystal.
Broken strokes: polarized along
slow axis of crystal.
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choose our time origin to be synonymous with the
occurrence of the first impulse of the train.

The number of birefringent crystals that are neces-
sary to synthesize a desired function will depend.on the
nature of the function and on the closeness of the zpprox-
imation desired. Many applications of the syhthesis
procedure to problems of optical communications will
require functions which do not possess discontinuities
and whose width is equal to their basie periodicity.
(One such function is the triangular waveform of Fig. 11
which might be used to convert a frequency-modulated
light signal to an amplitude-modulated light signal.)
For funciions of this type, the first five or six terms of an
exponential series (and, therefore, four or five bire-
fringent crystals) will generally vield a satisfactory
approximation.

For narrow-band filter applications, it is necessary io
synthesize trensfer functions whose basic periodicity
is considerably wider than their width. An estimate of
the number of crystals necessary for this case may be
obtained from sempling considerations and can be
written

periodicity

Number of crystals necessary=~g————,
bandwidth

where g is an integer which generally will be between
2 and 7. This statement can be understood by noting
that the length of the time-domain impulse response is
approximately related by the reciprocal width property
of Fourier transiorms to the bandwidth of the transier
function, and may be written as g/bandwidth, where g
is the aforementioned integer. By the length of the im-
pulse response, we mean the time between the first and
the last impulses which have significant amplitude. The
number of necessary impulses is then the length-of the
impulse train divided by the spacing between impulses,
plus one. Since the spacing between impulses is the
reciprocal of the periedicity, and since the number of
necessary birefringent crystals is one Iess than the neces-
sary number of impulses, Eq. (4) follows. The integer ¢
will depend on the function chosen, the degree of ap-
proximation desired, and on the definition of band-
width. As an example, ¢=2 if the desired function is
sinx/x and bandwidth is defined as the number of cycles
between its first zeros,

NETWOREK SYNTHESIS

IV. SYNTHESIS PROCEDURE

The object of the synthesis procedure is to find the » )
birefringent crystal angles and the output polarizer
angle which give the desired transfer function C(w).
The C, of Egs. (2) and (3) can have any value, provided:
that each is real.

A. Notation

The notation and conventions used in the synthesis
procedure are discussed here. We refer repeatedly to
Fig. 1 which pictures the basic optical network.

Rather than dealing with the ¢’s of Fig. 1, it is more
convenient to solve for the relative angles (additional
angles of rotation measured from the preceding com-
ponent) of the crystals and output polarizer. Therefore,
we define

0= o1,

G2=ga—4¢1, }
: ()

5n=¢n_¢’n—-h

Bp=dy—r

The magnitudes of the impulses composing the im-
pulse train emitted from the network are denoted by
the C, of Eqgs. (2) and (3). It is also necessary to de-
scribe quantitatively the impulse trains which occur
between the various stages within the network. In
describing them, we must convey information about
the polarization of the impulse train, as well as about
the magnitudes of the individual impulses. For aithough
we know that C(¢} is polarized parallel to the transmis-
sion axis of the output polarizer, the impulse train which
leaves one of the birefringent crystals on its way toward
the output has components polarized parallel to both
the S and F axes of that cristal. This points up a
fundamental difference between the synthesis procedure
described here and conventional synthesis procedures
in other fields. Namely, we must be concerned with
not only the time variation of the signal, but also with
its polarization as it passes through the network.

We illustrate the impulse notation with the aid of
the “impulse pyramid” of Fig. 8. Suppose 2 single
impulse (polarized parallel to the transmission axis of
the input polarizer) is incident upon a network consist-
ing of two birefringent crystals plus an output polarizer.
The resulting output from the second birefringent crystal
contains components polarized in both the S and F
directions of that.crvsial, .

F2(t)=F3(0)+Fi5(i—a), (6a)
S2 (1) =S5 (t—a)+ S8 (¢ —2a). (6b)

S denotes that an impulse is emitted polarized parailel
to the slow axis of the crvstal, while F denotes polari-
zation parallel to the fast axis. In Fig. 8, slow-axis and
fast-axis polarizations are denoted by dotted and solid
lines, respectively. The superscript 2 means that we are

2.0\
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F16. 9. n-stage network. Compare with two-stage
network in Fig. 8.

dealing with the output from the second crystal of the

network. The subscripts give the time of occurrence of

the impulses. The first impulse, emitted at i=0, has

the subscript 0; the next two impulses, emitted at i=gq,

have the subscript 1; and so on. Notice, in particular,
- that S¢* and F* are zero.

Since the impulses are evenly spaced in time, it is
not necessary henceforth to write the delta functions
when describing an impulse train. All the information of
Egs. (6) is given wher F¢?, F?, S\ and S.* are stated.

As noted earlier, the desired transfer function and
corresponding set of impulses are denoted by C(w)
and C,, respectively. There is also an orthogonally polar-
ized component which is stopped by the output polar-
izer. This signal and its corresponding set of impulses
is denoted by D(w) and D;. Finally, the area of the
impulse incident on the first crvstal of the network is
denoted by I The notation is further summarized in
Fig. 9,

B. Procedure

At the outset, two points should be stressed. First,
it is assumed that the birefringent crvstals of the net-
work are lossless. This means that at all points between
the input and output polarizers. energy must be con-
served. Energy conservation places certain important
restrictions on the F, and $, which are derived and listed
in Appendix B. Secondiv, it should be noted that
F=30"=0. This is just a statement of the fact that the
first and last impuises out of the ith crystal must have
propagated along its fast and slow axes, respectively.

We begin by assuming that C(w) and, therefore, the
desired C, of Egs. (2) and (3) have been chosen. We
must next find the orthogonal signal, i.e., the signal D{w)
that is stopped by the output polarizer. By conservation
of energy, we have

D(a) D*{w)= (T —C{w)C*{w). (7}

The left side of this equation must be non-negative for .

all frequencies and, therefore, for the equation to be
valid, (Z&")* must be chosen greater than the maximum
value of C (w)C"‘(m) As long as (7Y exceeds this value,
its choice is arbitrary. However, it will generally be
desirable to choose {J)? equal to the maximum value of
C(e)C*(w), since this insures 1009, transmission at the
frequency at which this maximum occurs. Appendix A
shows one method for calculating D{(w) from D{w}D*{w).
Tt is aiso shown in Appendix A that as long as (1"
is chosen suificiently large, at least one real set of D;
can always be found. Once (£")? has been chosen, D(w)
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is calculated and written in the form

D(w)=D¢+Dietov+ Dypettawt-. .. L D p—inaw, (8)
The corresponding orthogonal impulse response 1s then

D(6)= Dot Dié(t—a)+Da8(t—2a)+ - - -
+D,5(—na). (9)
With the C;and D, specified, we now have a complete
description of the input te the output polarizer. This, of
course, 1s also the output from the last (nth) crystal.

It is convenient here to transform this output into the
principal axis system of the final crystal. With the help

of Fig. 10(2), we have
e - ] 1o
S~ cosf, D,V
where 8, is the relative angle of the output polarizer.
As mentioned earlier, a requirement is that

—Cosé

10
sind, (10)

an= SO"= (11)
Using Eq. (10), we see that Eq. (11) will be satistied if
tan6p=anrCn (123.)

and
tﬂ.ﬂep= —Cu,r Dy, (12}))

In order for Egs. (12a) and (12h) to be satisfied stmul-
taneously, it must be true that CoCutDeD,=0. But
we know this is satisfied from conservation of energy,
since it is Eq. (B13) of Appendix B.

Thus by using either Eq. (12a) or {(12h), the angle of
the final polarizer is determined. Then, substituting this
calculated value of 8, into Eq. (10), we obtain F,* and
S.*, the outputs along the fast and slow axes of the last
crystal. We now must find the rotation angles of the &
crystals.

To accomplish this, we first find expressions relating
the input and output of each crystal. This is a matter of
taking projections along S and T axes of the crystals.
With the help of Figs. 10(b) and 10{c), we find that

QUTPUT POLARIZER
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\‘\\ / 9
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nth CRYSTAL
F
f\ 5 Fic. 10. Angle conven-
N s tions used in the synthesis
N8 5 procedure: (a) output polar-
TN izer; (b) relative crystal
e Y angles; {c) input polarizer.
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First Crystal
[Fu‘] = [—sin@;] 1], (13a)
St cost,
Second Cryvstal
{Fo?] = [cosfs 0 Fotl,
F],: 0 —-sinﬂg S]_l ( 13b)
S1" sin@a 0
LS¢,=_3 0 costs /
ith Crystal i "
Fo |={cos#: 0 O
Ff 0 cosff, O
Fg; 0 0 COSB;'
Fig v 0 0
F.2 0 0 0
F 0 0 0
S sind, 0 0
Sat 0 <cnf; O
84t 0 0 sind;
S 0 0 0
S;_._l‘ 0 0 0
L 54 b1 0 0 0

Our procedure is to start with the output from the last
crystal. From these F,” and S;*, we calculate the cristal
angle and the input to the crystal (the F;* and 3;°7%).
Since the input to the nth stage is the output irom
the (n—1)th stage, we can repeat the entire process ior
the (n—1)th crystal. Thus we work our way back
through- the entire network alternately finding crystal
angles and crystal inputs.

The czlculation of the angles and inputs is accom-
plished as follows: Consider, forexample, Eq. (13c) which
relates the input and output of the third crystal. We
know the output (the F,? and S,%) and wish to find 8; and
the input (the F* and S). In the language of linear
equation theory, the problem may be restated as, “Does
the system of nonhomogeneous equations (13c) have a
solution?”

A set of nonhomogeneous equations has a solution. if
and only if the rank of the matrix of the coefficients is
equal to the rank of the augmented matrix.* For Egs.
(13c), this means that a solution exists if the rank of

=7y, . Murdoch, Lincar Algebra for Undergraduates (John
Wiley & Sons, Inc., New York, 1947), p. 30-31.
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Third Crystal
F¥|=(cosfy O 0 0
Fe 0 cosf; —sind, 0
Fa? 0 0 0 —sinf;
Sy sinf; O 0 0 « {13c)
S 0 sinf; costy 0

3¢ ¢ .0 0

From the pattern established. we can write for the 1th
crystal

CDSBa

0 0 0o ][ F
0 0 0 F 1E—l
0 ] 0 F.!
- 511’16, 0 0 F{_si_l
0 —s5ind, 4] |
0 0 —sinf, 5,7t {13d)
4] 0 0 Sa*t
0 0 0 Syt
0 0 0 Syt
cosf, 0 0 St
¢ cosf, 0 L Sf_li—l
0 0 cosf, | iy
the coefficient matrix
cosf; 0 0 0
0  cosf; -—sindy 0 ]
0 0 0 —sinf,
sinfl 0 0 0
0 sinf; cosfs 0
0 0 0 coshs
equals the rank of the augmented matrix
cosfly 0 0 0 Fy
0 cosfy —sind; 0 Fy#
0 0 0 —sindy Fa¥y.
sinf; 0 0 0 S8
0 sin@a COSea 0 343
0 0 0 cosds S

Since the rank of the coefficient matrix is 4, the rank of
the augmented matrix must also be £ for a solution to
exist. Several procedures exist® for determining the
rank of a matrix. Applying one of these, we find the

rank of the augmented matrix to be 4 it
tanfy= - (F;x,u"Ssg) (1-’.-8.)

(14b)

and
FiF3+-5¢45:4=0.
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Tasre I, Related sets of D; and their corresponding 4;.

Selutions for D; Corresponding crystal and polarizer angles
ist 2nd 3rd 4th ist 2ud 3rd 4th
set set set set set set sat set

Dy Ag —4n dn —An L B’ -6, O, -8,
Dy Ay -4 Apat —dn 8Os Q. —~8h &, ~08,
D: LY —daz Ant —An.z 93 Os —8, &y —Bn
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The first equation gives the angle of the crystal. Using
this angle in Eq. {13c), we can now calculate the input
(Fo*, Fi?, 5¢% and S5%). The calculation is an easy one,
involving for any stage no worse than the solution of
two simultaneous equations. Appendix C shows a
systematic oiethod of performing this calculation, Equa-
tion (14b) is seen by comparison with Eq. (B9 to be
simply a restatement of the fact that the F,* and 5.
must satisfy conservation of energy. This requirement is
automatically satisfied by the F, and S; of all stages
since D{(w) was caiculated using conservation of energy.

In a similar manner, the conditions for existence of
solutions to Egs. (13a), (13b), and (13d) result in the
equations:

First Crystal
tanfy=— (Fo*/S:%), (152)
(FoP+ (8= (I3, (13b)
Second Crystal
tanfds=— (F1/SsY), (16a)
FrF+5,25.=0, (16b)
ith Crystal
tanf,= — (F._1%/8.9, (17a)
Fo'F 14885 =0. (17b)

The crystal angles are given by Egs. (15a), (16a), and
(17a), while Egs. (15b), (16b), and (17b) are statements
of conservation of energy. We now have all the infor-
mation necessary for performing the synthesis. The
entire procedure is summarized below.

C. Summary of Synthesis Procedure

(1) Choose the desired output response C(w) and
write it in the form of Eq. (2). The C; must be real.

(2) Calculate the crystal length L from Z=as/Ag.
The quantity e is obtained by comparing the C(w)
written in step (1) to C(w) as given by Eq. 2. A rough
estimate of L can be obtained from Fig. 7.

(3) Choose a value for Ig?; the choice is arbitrary so
long as (7%)* exceeds the maximum value of C(w)C*(w).

acq

It will often be advantageous to make (I")? equal to
the maximum value of C(w)C*(w).

(¥) Calculate D{w)D*(w) from Eq. (7). Solve for
D{w) from D(w)D*(w) using the method of Appendix
A (or some equivalent method). The D, must be real.

(5} Calculate the output polarizer angle 8, from
Eq. (12a).

(6) Calculate the F;* and S;” from Eq. (10).

(7) Calculate the crystal angle 8, of the last stage
using Eq. (17a). From Eqs. (C1) and (C2) calculate
the input to the last stage (which is the output from the
preceding stage).

(8) Repeat the procedure of (7) on each succeeding
stage until all crystal angles have been found.

D. Number of Possible Networks

It has been stated that at least one real set of D;
can always be found. It wouid perhaps be more correct
to amend this to read that at least four real sets can
always be found, for the calculated sets of D; can always
be placed conveniently into groups of four. The rela-
tions between the D; of these four sets and between the
corresponding #; are shown in Table I. We see that these
four sets give four network configurations which are
related. For example, the optical network corresponding
to the second set is the *‘mirror image” of the network
obtained from the first set. It can be obtained from
it siraply by rotating each crystal and the output polar-
izer a negative, instead of positive, angle.

In addition, it is of interest to note that the network
of the third set is precisely the same network that is
obtained by turning the first set network end for end.
This means that the output of a network will be the
same, regardless of which end is used as the input end.
Finally, the network resulting from the fourth set is the
mirror image of that network obtained from the third
set. Therefore, these four sets of D; do not really give
four different networks, but rather one network and
three variations,

It is stated in Appendix A that a desired transfer
function can be realized by 23+ diferent networks,
where m is the number of complex roots of Eq. (A8).
If we consider that the networks of Table I represent

.



October 1964

only one, rather than four, networks, the statement
should read 2{(n—3»-1) petworks.

V. EZAMPLE

A sample calculation will now be performed to ilius-
trate the synthesis procedure of Sec. IV. Suppose that
the ideal transfer function G(w)} which we wish to ap-
proximate is the triangular wave of Fig. 11. A network
having such a transfer function might be used as a
linear discriminator to accomplish the conversion of
frequency-modulated light to amplitude-modulated
light.®® As shown in Fig. 11, G{w) is real and has a basic
period of 27/a rad/sec. We must first approximate G{ew)
by a finite exponential series. A series containing six
terms will be used. The number of terms is arbitrary,
but in the case of the triangular wave six terms give a
satisfactory approximation. For this example the Fourier
approximation is used to find the series coefficients,
although there are other approximaticns which could
have been used.

The exponential Fourier series approximated to the
triangular wave is

Klw)=4/27 (1) 25)e+ 5004 (1/9) g+ Bau - gias
-:_ --mu+ (l/'g)e--l3uw+ (1‘.-"25)8—t5“u], (18)

which is plotted in Fig, 11. Note that K (w) is the trans--

fer function of a noncausal network. Tt is often more
convenient to first caiculate the approximating function
in a noncausal form such as Eq. (18), and then make the
function causal. We can make K(w) causal by multi-
plving it by ¢~°¥, which gives

Clw)=e 30K (w)=4/7{ 1/235-+ (1, 9)e— 120wt griaw
+g—t5am+ (1/'9)8—{Saw+(1/25)6—&0093. (19)

Multiplication by e7'%e is equivalent to introducing a
pure time delay in the time domain. Thus the network
impulse response and transier function are essentially
unchanged bw. this operation.

Since alternate harmonics in Egs. (18) and (19) are
zero, we may let 2aw=>fw. Using this in Eq. (19), we
obtain the final form for Clw)

Clw)=0.01621-10.01505e 51040328 —+2be
+0.40528¢=34-(.045036~ 0001621~ (20)

We must now calculate D{w). From Eq. (7) we have
| D(w} = D{w)D*(w)= (I~ C{&)C*(w),

= (I%)*—0.33309 —0.40443 coshe
—0.09928 cos2bew—0.03034 cos3bw
—0.00292 cosdbu—0.000526 cos3bw. (21)

The area [¢® of the input impuise must now be chosen
in order to obtain | D(w)|* It may have any real value
as long as (Iy")? is larger than the maximum value of
Cle)C*{w). From Fig. 11 we see that the maximum
value of C(w)}C*(w} occurs at w=0 and has a value of

2 §. E. Harrds, Appl. Phys. Letters 2, 47 (1963).

X1
-y =0.00432—¢0.13260,
X 1=0.63293.
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Fie. 11. Ideal and approximating transfer funciions of example.

Ideal transfer function is shown by dotted line and approximating
transfer function by solid line.

0.87039. Let us choose I’=1. Equation {21} then
becomes

[ D{w) [*=0.66691—0.40+43 cosbw—0.09928 cos2éw

—0.03034 cos35:0—0.00292 costhw
—0.000526 cos3bw.  (22)

We will now use the method outlined in Appendix A to

calculate D(w). We first form Eq. (A3)
—0- 060263

et -~ 0.0014627 —0.015317 8% — 0.0406 142

—0.20222x+-0.66691—0.20222x71—0.0496 42
~0.01517x7*—0.001-46x*—0.0002632~5=0. (23)

We next wish to put Eq. (23) in the form of {A6). To
determine the B;, we equate similar coefficients in (A3)
and (A6) which gives -

By=; ==HEW, To.ceazyg2
By=4, =—0.00146,
By=_.,—3d; = ~0.01333,
Ba=d.—1d, =—0.04380,

By=al1+345—345=-0.15803,
Be=dy+2d—2:4,=+0.76527.

Substituting these into (A6) and letting (x+ax =y,
we have

—0.000263y%—0.00146y*—0.01385345—0.04380y*

—0.15803y4-0.76327=0. (24)

The roots of (24) are
y1=—+073794:3.93269,
¥3=0.18957--/6.39332,
¥;=2.21289, (25)

ya=—1.07379~13.93269,
¥,=0.18957 — i6.39532,

From Eq. (A7) the corresponding x, are found to be
F1=—3.95066--74.05920, x.== —3.93066—i1.03920,
x2=0.18525-+16.54791,
x5=1.57997; {(26)

x=0.18523-16.54791,

= —0.12313—i0.12632, x;"'=—0.12313--:0.12632,
% =0.00432-10.15260,
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TasLE IT. The 16 real sets of D:.

Set Do D; Dg Ds .D{ Ds
TiXeXa¥ets ~0.73607 0.20887 0.07414 0.02091 0.00207 0.00033
TaTarX s 0.75607 --0.29887 —0.07414 —002901 —0.00207 —0.00035
P TR T —0.00035 —0.00207 —0.02091 —0 07412 —0.29887 0.73607
b by e G.00035 0.00207 002091 0.07414 0.29887 —Q.73607
wrxery e ks —0.01762 0.01334 —0.75640 0.29188 0.09413 0.01491
Tty e T 0.01762 —0.01334 0.75640 —0.29188 —0.09415 —0.01491
M et —0.01491 —0 09415 —~0.29188 0.75640 -0 01334 0.01762
ey Yegrad L 0.01491 0.09415 0.29188 —0.73640 0.01334 —0.01762
Zywaxs e ~0.01115 0.01901 ~0.£8006 0.63730 0.17107 0.02336
R T T 0.01115 —0.01501 0.18006 —0.63730 —=0.17107 ° —0.02336
2yl g —0.02356 =0.17107 —0.63730 0.48006 -0 01901 0.01115
T e 0.02356 0.17107 0 63730 —0.43006 0.01901 —001113
FX2XaTeTs —0.47854 0.64236 0.13462 003606 0.00379 0.00055
Ty TaXeTs 0.47854 -0.64236 —0.15462 —0 03696 —0.00379 —0.00055
e by e s —0.00055 —0.00379 —0.03696 =0.15462 —0.64236 047854
P Tt T 0.00033 0.00379 0.03696 0.15462 0.64236 —04785¢

Since there are four complex roots to Eq. (24), there will
be 2(n—mr) =16 real sets of D; which can be obtained
by multiplying the factors (v—=«.) together in various
ways. Eight of these sets are simply the negatives of
the other eight. Consider the set that is found by con-
structing the polynomial
(x— r)} (x—%2) (x—23) (£ — 1) (¥—%5).
Performing the indicated multiplication, we obtain
254-5.9508 54+ 60.168454%-+213.29090x°
4-839.85121x—2175.20862.

As stated by Eq. (Al1), a set of D; is proportional to

the coefficients of this polynomial.
Do=—2175.20862q, D;=2839.85121g,
D2==213.29090g, D;=60.16845g, - (27)

.D4= 595085g, D5= q.

The value of ¢ is different for each set of D;. For the
above set, ¢ is found from (A12) to be

g===3.47586X 10—+,

Substituting this value back into Eq. (27), we find that
one set of D, is

Dy=-0.75607, D,=0.208837,
D,=0.07414, D,=10.02091,
D,=0.002068, = Ds;=0.000343.

All 16 real sets of D; are shown in Table IX. We now go
through, in detail, the synthesis procedure for the first
set.

et 1 Feé
Fi= o s s
F:" {(Fa-+ (S an
Fy F#
Fg F

We first calculate the output polarizer angle from
Eq. (12a). Doing so, we obtain

tanf,= D5/ C;=0.02144,

which gives
8,=1°14".

Several equations provide checks on the numerical
computations and should be used during the synthesis.
For example, we should also calculate 8, irom (12b)
to verify that (12a) and (12b) do indeed give the same
result. These checks are available at various points in
the synthesis procedure and will be pointed out when
appropriate,

Equation (10) is now used to calculate the F.? and

S.5, giving
Fo =[ 0.75623 { Sﬁr 0.05143)
Fs| | —020784) |Ss| [0.40678
Fi| | —0.06343]. |53=i |0.40364 1
Fs| 1-o001222{ 51 lo.ods07
[Fu,s —0‘00110J LS;J 001621

We are now able to calculate 95, the angle of the last
birefringent crystal. Using (17a) we find

tanf;= — (Fy5'Se) =0.06799,

which gives
8;=3°33".

As a check, we should see that Eq. (17b) is satisfied.
The input impulses to the fifth crystal are calculated
next from Eqs. {C1) and (C2).

S [ Ss? ]= 0.73799
Sl | —Fs —0.26953
Syt —0.03777],
Ss ~0.00913
Sg3 0

206
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TasLE ITI. Summary of results of example.
Set 91 ga 6; s -] 6,,

XA LX XS ~88°%16° 3953 29°21° 20°21° 3°53" 1°14
LLERTIELTE 88°1y’ -3°53 —29°21" —19°21 —3953" —1°1y
o T P —1°14' —3°33" —29°21 —=29°21’ —3°53" 83°46/
e T A 1°1Y 39537 29921 29°217 3°33' —88°16'
atexy Lo lg —47°237 60°25" ~68°34 —08°3¢ 60°25 42°37’
2years e ey 47°33" —60°25" 68°34° 68°3¢ —60°25° —A42°37"
b T ~12°37" —60°25% 68°34 68°3.Y —60°25 47°2%
o s st 12937 60°25" —G68°3Y —68°34 60°23" - 4723
ETE Tt P T N 34932/ 61°3287 -=£519241 —61°2.8 64°28* 35928’
XyXoxg e ey d 34°32° —54°28" 64°24" G024 —G-1°28° —35°28/
2y e hrg s — 5528 — 64928 64°247 61°2¢ —64°28" 34°32/
f e Tt Y 55°28’ 64°287 —~ G424 -6 64°28° —~3°32/
TyXakytars —88°04 7°56" 43°4 +5°40 7°56° 1°56
LXK 4T 88°0v —T7°56" —43°40" —~453°40 —=T7°56 —1°56°
P e T —~1°56' —7936" —45°1y —d5°40 —7°56" 83°0Y
E S T P P 1°956" 7°56 45°40" 43°40" 756" —88°04

Sét 1 F3 §% [Fél= 0

S| = |FF S| | S |0.42603

s#| (EPFEIH s g5 040914 .

) S3t Fi# S 0.04579
Sé Fs& S5 0.01625
We can now calculate the angle of the fourth birefringent crystal using Eq. (17a}, which gives tanf;= — (F;/S)

=0.56197, and 8;=29°20’. Equation (17b) again affords a check.
The synthesis procedure may now be completed by alternately using Appendix C and Eq. (17a) until all crystal
angles have been determined. The steps are given below:

¥
Fg

and the synthesis is completed.

I 1 (Fo* S¢) [ s¢ ]= 0.86952)
o NCCERACRE Fl Il v
LF'5) Fit S840 0
S5} 1 (s Sy 'F;*]= 0 )
so| (EDFEIEL S BT oo
S5) Fst S 0.0186%
tanfy= — (F2/S¢) =0.56268, 8,=29°20'.
B 1 F? 5S¢ [ S¢* ]= 0.99746)
[F:;J —m[gi g; ~F [—0.%0143 J
So""_ 1 Fet S [F:3]= 0 )
[5;3 |t (Sf)‘-’}*[?ﬁ o 1 [8;82{3;]'

tanfa= — (F1%/S:) =0.06802, 6.=3°53"

]={(Flﬂ)2-{1-(sg‘!)e}k[£§ gl] [—5;?12]:[0'9%977]’

et ¥ (5] oot

tanf; = — (Fol/S8) = —146.629359, 8,=—83°1¢,

201
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The angles calculated from all sixteen real sets of D,
are summarized in Table III. Notice that it is necessary
to go through the.synthesis procedure for only four of
the sets of D.. The angles for the other 12 sets can be
deduced from Table L. The results of the example have
been verified by applying the matrix method of Jones™
to the resulting networks.

V1. DISCUSSION

An important modification of the basic network of
Fig. 1 results from associating a variable optical com-
pensator with each crystal of the network. Such compen-
sation can be accomplished either internally to the
crystal (for example, by thermal control) or externally®
(for example, by using a Soleil compensator). To the
extent that the transfer function is sufficiently narrow
band that the compensation may be considered achro-
matic, the transfer function may be tuned, without
distortion, over its basic period. If we associate a
compensation of § rad with each crystal of the network,
the resulting transfer function becomes

)
Crunealw) =X Crem*@e
i)

(28)
=Cuntuned (W_B/a)-

The tuned C (w) is thus equal to the original C(w) shifted
by 6/2 of its hasic period. Since the required compensa-
tion for each crystal is identical, a simple method of
tuning such as uniform temperature varfation of the
entire filter might be attempted. Methods of tuning
birefringent filters have been considered by a number of
authors.*7

The synthesis procedure is based on the assumption
that all crystals have the same length. At first this may
seem to be a rather severe restriction, but in reality it
is not, for networks containing crystals of different
lengths can result from the procedure. It is possible
that one or more calculated angles 8, will be zero, and
two crystals with a relative angle of zero degrees are
equivalent to a single crystal of twice the length.

An exact procedure for the synthesis of birefringent
networks possessing arbitrary transfer functions has
been presented. Interesting problems which merit
further investigation include: (1) consideration of the
effects of crystal misalignment, changes in birefringence,
and errors in crystal length; (2) analysis of the angular
aperture of these networks and maximization of it; and
(3) consideration of the effects of dispersion of As.

APPENDIX A

In this Appendix, we give a method for calculating
D{(w) from | D{w)|*. In addition, we show that at least
one real set of D, exists, provided | D(w) [* never becomes
negative.

# R, C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
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Suppose we are given the positive semidefinite
polynomial

[ D{w) = do+24; cosawt- - -+2:4, cosnaw. (A1)

Rewriting {Al) we have

[D(cu) |2=A T B T 2ot —
..-}-_‘_}_ le—mu_i_ POV _I..A_ n—16—'(""‘”“”+.~1 ne“‘""”_ (._\2)

Notice that the zeros of (A2) appear in reciprocal pairs.
Equation (A2) can, therefore, be factored as

1D(w) i = (D(!'I-Dleiau'i'Dge’e“"'-E— e —}-Dnemuu)

X (DotDigmoo4 - - - +Dagmme).  (A3)

The D, are not unique, but rather there are 2"*! possible
sets of them. Since 1 D{w)}?is even and always positive,
we may write it as

| D(w) {*=D(w)D*(w). (Ad)
Comparing (A3) and (Ad), we see that (A4) can be
satisfied only if the D, of (A3) are real. Therefore, at
least one reaf set of the coefficients must exist.

The following method of obtaining the D, is due to
Pegis.* For more details and explanation of the pro-
cedure, the reader should refer to his paper. We begin
with | D(w)[? as given by Eq. (Al1). Form the equation

Apert 4 it de i dw -

Fd oD 27 =0, (AS)
Put Eq. (A3) into the form
Bo(x4 54 Bac (o)t - - By=0. (A6)

and obtain the B, from the 4, by equating similar coef-
ficients. Make the substitution

rt+rxti=y (A7D)
into Eq. (A6), which gives
Bnyn+Bn—1yn_l+ st +BO=0- (AS)

Solve for the » roots of (A8) and call them 1, ¥2, - -,
yn. Using Eq. (AT), solve for the reciprocal pairs of
roots
X1, 1!".1.'1,
xa, 1/x, (A9)
Za. 1/%n.

Next, construct all possible equations having real
coefficients d, using one root from each row of (A9);
e.g., one possibility would be

(1) (= 1/m) (x= x5} - - - (@ %n)

=xttdp byt divtde.  (AL0)

203
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The D, are proportional to the d;

Du=qdo,
Dy=gdy, (Al1)
Dt g,
The quantity ¢ is found from
FldotFdiH - T daT)=ddo, (A12)

and upon substituting this value into (All), we obtain
the .D;.

The number of real sets of D, will depend upon the
number of y; which are complex. ¥ # of the y; are com-
plex, there will be 2(—i=+) regl sets of D, Half of these,
however, will just be the negative of the other half, for
g can be negative or positive.

APPENDIX B

We derive here the conditions which the F, and S,
satisfy because of conservation of energy. Assume, for
convenience, that we are dealing with a four-crystal
network. Since the birefringent crystals are assumed to
be lossless, the energy in the fast-axis output plus the
energy in the slow-axis output of the fourth crystal
rust equal the input energy. Mathematically, this is
expressed by

Fi(o)F*(0)+SH@)S™ @) = 16y, (BY)

Wiriting out (B1} and equating similar coefficients, we
obtain -

(Feet (P (Fafh (o) (S5 (52
+(SHEAP= T, (BD)
Fo'F i+ FiFat - FtF ot 81804+ SSe¥ 548, =0, (B3)

Fo'Fai+FiF - 89855 1 5,544 =10, (BYH
Fo'F4*+51'3,4=0. (B5)
Similarly, we can derive for the ith stage
(Foy+ (B -+ (F ) (G4 (8P t- -
+ (8=, (BS)
FolFpr+FitFat - o F,F. 45188
S8y - +SeSi=0, (BT)
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FoFrt - -+ FegFig+ S8+ - 4-8:.2'5,7=0, (BS)
Fo'Fuer+S0iSi=0. (BY)

1t should he pointed out that C{w) and D{w) also satisfy
conservation of energy, giving the equations

(CH+(C+ -+ (CI+ e+ D

+D=", (B10)
Cill14-CriCad o FCriCrtDoD Dy Dot -
+D,.0,.=0, (BlI)

CiCr+-CiCst -+ - +CatCat-DoDot-DiDt - -
+D.D,=0, (B12)

ColatDoDn=0. (B13)

APPENDIX C

This Appendix gives a systematic and rapid method of
calculating the input to 2 crystal once the outputf is
known. This is simply a formalized procedure of solving
for the F! and S*! of Eq. (13d) once the F* and S°
are known. In matrix form, the expressions are

5.
—Fay?

(€1
Fo' $¢) [F
Fyt Sqt S

€7

[ Fp! i
Fyi~t ; l Fif  Saf

oot | (Fopr o)

[Feor™!

(Spt) 1 [
!

: |

|

L

T Fr 80

uS ;_.1"_1}

One convenient check is that the calculated values
Fii™* and 5™ should always be zero.
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Optical Network Synthesis using Birefringent Crystals. II. Synthesis of Networks
Containiug One Crystal, Optical Compensator, and Polarizer per Stage®

E. 0. Aapraus
Electronic Defense Laboratories, Syleania Electrome Systems, Mountain View, Colifornia 94042

AND

I C.

CHANG

W. W. Hansen Laboratories, Stanford University, Stanford, California 94305
(Received 11 January £963)

A second technique for the synthesis of birefringent networks having arbitranly prescribed spectral
transmittance is presented. The network consists of an input polarizer followed by 1 cascaded stages. Each
stage contains {in general) a birefringent crystal, an optical compensator, and a polarizer. The quantities
determined for each stage by the synthesis procedure are the angle o which the crystalis rotated, the amount
of delay to be introduced by the optical compensator, and the angle of the polarzer. A desired function con-
sisting of (#--1) terms of an.exponential series can be realized by an »-stage network and. in certain cases,
by a network containing fewer than » stages. The synthests procedures of Part I and Part IT are compared,
and their relative merits discussed. Finally, two examples ave given using the procedure of Part IL.

I, INTRODUCTION

N Part I a procedure for the synthesis of birefringent
networks having arbitrarily prescribed periodic
spectral transmittance was given! The hasic network
consisted of » identical cascaded birefringent crystals
between an input and an output polarizer. Such a net-
work was termed a lossless or nondissipative network,
since it does not contain any internal polarizers.

Part II describes a second procedure for the synthesis
of birefringent networks, which results in a network
containing internal polerizers. As before, this procedure
allows realization of an arbitrary spectral transmittance,
provided it is periodic.

The type of network obtained from the svnthesis
procedure of Part II is shown in Fig. 1. Lt consists of an
input polarizer followed by a series of stages, each stage
confaining a birefringent crystal, optical compensator,
and polarizer. This network contains three stages: how-
ever, any number of stages mav be used. The birefring-
ent crvstals in all stages are identical (with a few im-
portant exceptions, noted later), each crystal being cut
with its optic axis? perpendicular to its length and with
end faces which are flat and parallel. The crystals’
“slow” and “‘fast” axes are denoted by S and F, respec-
tively, in Fig. 1. The quantities determined for each
stage by the synthesis procedure are the angle to which
the crystal is rotated, the amount of delay to be intro-
duced by the optical compensator, and the angle of the
polarizer. In addition, the length L of the crystals is

* This work was supported at Svlvania by the Air Force
Aviomics Laboratory at Wright-Patterson Arr Force Base, Ohio,
under contracts AF 33(637)-8995 and AF 33(613)-1938, and at
Stanford University by the U. 8. Office of Naval Research under
contract NONR 225(24).

i §. E. Harris, E. 0. Ammann, and I, C. Chang, . Opt. Soc. Am.
54, 1267 (1964). [Editor’s note: the term “transier function’ used
in this reference (Part I of this series) has been changed to the more
explicdit “spectral transmittance” and “amplitude transmittance,”
as the case may be, in this Part I

*In principal, either uniaxial or biaxial crystals may be em-
ployed. For simplicity we assume that uniaxial crystals are used.

—
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determined by the pericdicity of the desired spectral
transmittance.

The optical compensators contained in the network of
Fig. 1 are assumed to be achromatic and are therefore
impossible to realize in practice. For the range of
frequencies over which their behavior is approximately
achrornatic, the network spectral-amplitude transmit-
tance is the desired C(w). Qutside this range of fre-
quencies, the actual and desired characteristics diverge.
This is not a severe limitation, particularly since bire-
fringent devices are used primarily to obtain extremely
narrow bandwidths.

In the synthesis procedure of Part IT and the pro-
cedure of Part [, we have two different techniques {(and
two ditferenc birefringent networks) for realizing o given
spectral transmittance. The relative merits of these two
svnthesis procedures are discussed, and the expected
performances of the two tvpes of networks are com-
pared. Finally, two examples are given, one of which
shows how a Lyot flter can be obtained from the syn-
thesis procedure of this paper.

Fig. 1. Basic coniiguration of optical network (three stages)‘.
Polarizers are shown shaded. F and 5 denote the “fast’ and “slow™
axes of the birefringent crystals and optical compensators.
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b

FiG. 2. Components which make up s single stage of the net-
work: birefringent crystal, optical compensator, and polarizer.

1. SYNTHESIS PROCEDURE

Tn this section we show that the network of Fig. 11s
capable of producing any desired spectral transmittance.
Expressions are derived for the crystal angle, the optical
compensation, and the polerizer angle for each stage.
Several of the topics pertinent to this section are dis-
cussed at greater length in Ref. 1.

We begin by assuming that a desired spectral-
amptitude-iransmittance function, written in the form
of Eq. (1), has been chosen,

C{w}gce_i,clg-'{aa_{_cge—:lsw{_ .. ,_E_.Cng—mum. (‘i)

The C, may be real or complex. (Recall that the syn-
thesis procedure of Part T requires ali € to be real.)

Equation (1) can be considered a polvnomial in
g—tow gnd rewritten as

Cl)=CLCCHHC/C et Fe=]  (2)

=Cn(“’”31+5“m”) ('"s-"l'e“mu)' . (_5n+3“{w)a
3)
where the s ate the zeros of the polynomial. These
zeros are, in general, comples. If we express each zero in
terms of its magnitude {z| and phase angle &, Eq. 3
becomes

Clw)=Co{—1njefte )
¢ (il ek oios) - (= |ae] senckemoe). (8

We now show that each factor in Eq. (4) can be as-
sociated with one stage of the network of Fig. 1.

Let us consider one stage (say the jth stage) of the
network of Fig. 1. This stage contains a crystal, an
optical compensator, and a polarizer as shown in Fig. 2.
Using the Jopes-calculus formulation,’ the input and

*R., C. Jones, J. Opt. Soc. Am. 31, 488 (1941).

Jod ey

AMMANN-AND .
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output of the jth stage are found to be related by
( w)_ (1 0) ( cosCy,—$s) sin(v,qu;))
Ey 0 0/\—sin{yi—¢;) cos(v,—d)
g—tb 0 g—fnu 0
SV
0 1/\0 1

X( COS(¢:_TJ—I) Siﬂ(‘f’f‘”'\’f—aﬂ)(—gu)
EJ

(3)

—gin{d, 1) €os{@y=rs-1]

where E denotes the complex amplitude of the electric-
feld vector of the light. The w axis is parallel to the
transmission axis of the polarizer of the preceding stage.
The birefringent crystal introduces a phase difference of
s rad between the S and F components, with a==LAg/c.
(The quantity L is the crystal length, 4An the bire-
fringence, and ¢ the velocity of light in vacuum.) The
quantity b is the phase difference introduced by the
pptical compensator and is always between 0 and 2w
rad. The optical compensator is assunted to be achro-
matic; this is the only approximation involved in this
procedure.

Perhaps 2 more familiar form than that used in Eq.
(5) for the matrix of a birefringent crvstal is

& tereai® 0
({) emm.’>'

If we factor &2 out of {(6), the matrix used in Eq. ()
results. Furthermore, the factored &=+ term can be
dropped without affecting the-resuits.

From Eq. (3) we see that it is more convenient 1o deal
with relative angles (measured from the preceding com-
ponent) than absolute angles. Consequently, we define

(6)

fr=o,
fa=eh2—11,
3’5.=¢'J""Y'.‘.; (7}
=10
and
Bi=v1—oy
Bae=72— by (8}

8 =79

Performing the matrix multiplication indicated in
Eq. (3) and noting that E, Is zero, we obtain

Ep=e—* cosf, cosd, (—e®i tand; tandsteme) B, (9)

‘The amplitude-transmittance function for the entire net-
work (all stages) is the product of the amplitude-
transmittance Sunctions of the individual stages. Thus
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we have for the entire network,*

C'(w)=¢""*T cosfy cosB; cosfy cosBa- - €080, €SB,
X (—e* tand; tanf i)
X (—e? tanf, tanBs-te—ae}. - .

X (—gi®n tand,, tanf,+e—i%), (10)

where
(e—251) (e=3%) (g—i%0) - - - (1)

If all C, are real, then T =1, since all complex roots
will then occur as conjugate pairs.

We see that Egs. (1) and (10) have the same form.
Equating similar terms, we find

(e~v3n) =97,

tanth tanGi= [Ztl ., bhi=ai, (12&)
tanfs tanfs= |2}, Bo=ay, {12b)
tanf, tanﬁ,; AN b,-='a,-. {12c)

In Egs. (4) and (10), the order of the factors is, of
course, unimportant. It is only necessary to equate each
of the factors in Eq. (10) with one of the factors in Eq.
{1). Note that if a root is real and positive, e=56=0, and
an optical compensator is not required for that stage.
Terms in Eqs. () and (10) may also be equated in a
slightly different manner, namely, ’

tand, tang;=— EZ[I, bh=art, (13a)
tanf, tanBa=—|{z:|, da=atr, (13b)
tand, tanB,-:l- —lzl, & =.a,-{-‘:r. (13c)

Here if a root is real and negative, an optical com-
pensator is not required for that stage. Either Eqs. (12)
or Eqs. (13) may be used for obtaining 4, 3, and & for a
particular stage.

We have shown that it is possible to choose a crystal
angle, polarizer angle, and value .of optical compensa-
tion to match anyv factor of Eq. (). Thus any C(w) can
be realized fo within ¢ mulliplivative constant, by use of
the network of Fig, 1, This multiplicative constant will
be real if all C, are chosen real, and will be complex if
one or more of the C, are chosen complex. That the
actual and ideal C(w)’s differ by a complex constant is
not of consequence provided the network speciral trans-
mitiance is relatively narrew band.

Returning to Eqgs. (12), we see that 4 and 3 are not
uniguely determined for a particular stage. There are an
infinite number of combinations of #; and B; which
satisfy the equation tand; tan8,=|z;|{. Thus an addi-
tional criterion may be imposed when choosing the
particular §; and 3, to be used.

One important p0551b111ty is to choose §; and 8, so
that the magnitude.of the output is maﬂrmzed When
we satisfy Eqs. {12c) [or (13c)], we ensure that the

4 C’ (w} refers to the actual amplitude-transmittance function of
the birefringent network, while C{w) refers to the desired
amplitude-transmittance funcion. The two differ only by a con-
stant multiplier. .
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C,’ have the proper relative values. However, the magni-
tude of the entire response depends upon the particular
choices for the ; and 8,. We therefore wish to maximize
the magnitude of one of the C, subject to the con-
straints imposed by Eqs. (12).° Let us maximize the
magnitude of C.’, which is found by comparing Egs.
(1) and (10), to be

| '] = cosby cosBy coss cosBa- - - coshy c053..

(14)
This problem can be solved by the method of La-
grange multipliers. We obtain for the result
tanfi=tanb==% [z;[ },

tanﬁ‘== tanBy=== EARA

tand;= tanﬁ, e =S EALS

(15)

If we maximize Eq. (14} using Egs. (13) instead of
Eqs. (12) as the consiraint, we obtain

tan&—- i tan&.- = | 4

I3
|
tanﬁ»—-—tan,ﬁw—--‘-—lszi

tan8;=—tan,6,-= (16)

It is interesting to note that if the Egs. (13) and (16)
are used, all of the polarizers of the network will be
oriented with their transmission axes parallel to the
transmission axis of the input polarizer. This occurs
because §,= —6; for each stage of the network. If Egs.
(12) and (13) are employed, the polarizers will be
rotated at various angles.

:|‘_‘131‘1§.

Networis Containing Crystals of Unequal Lengths

In general, the synthesis procedure just described
requires an »n-stage network to realize a C(w) containing
{#-41) terms. Occasionally, however, it is possible to
realize a C(w) using fewer stages with longer crystals in
those stages. This comes about i the following manner.

We have shown that each of the factors of Eq. (3)
can be associated with one stage of the network. Each
stage contains a birefringent crystal of length L, an
optical compensator, and a polarizer. Suppese now that
two of the factors of Eq. (3), when multiplied together,
give a term of the form

(—3fem=e), (17

It is apparent that (17) can be realized by a single stage
containing a crystal of length ZL, an optical com-
pensator, and a polarizer. In general, if r factors of
Eq. (3) multiply fogether to produce a term of the

form
(—~zteres), (18)

this term can be realized by a single stage containing a
crystal of length rL, an optical compensator, and a

% Since the relative values of the C’s are fixed, maximizing any
one of them maximizes all of them.


http:magnitude.of
http:value.of
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polarizer. As before, the crystal angle, polarizer angle,
and the optical compensation are calculated from the
magnitude and phase angle of =

Once the zeros of € (w) have been found, it is an easy
task to determine whether factors can be combined to
produce a term similar to (18). The following rule is
useful. If 7 of the zeros have the same magnitude and
have o's which differ by 2z/7, the corresponding factors
can be multiplied together to produce a term of the
form of (18).

II. DISCUSSION

Suppose we wish to realize some C{w) with all C, real.
We now have two methods of accoraplishing this—the
svnthesis procedures of Part 1 and Part II. It is of
interest then to consider the relative merits of the two
procedures (and their corresponding networks) in order
to determine which should be used in a particular
situation. We compare them on the following points.

A. Number of Components Required to
Synthesize a Given Clw)

It is usually desirable to have an optical network
composed of as few components as possible. By mini-
mizing the number of components, we reduce the
number of surfaces at which reflection can occur, and
also minimize the number of crystal surfaces which
must be ground and polished. The required number of
components is of particular interest when a C(w) con-
taining a large number of terms is required. We com-
pare the two synthesis procedures by discussing for
each procedure: (1) the number of components re-
quired per stage; and (2) the number of stages required
to realize a given C{w).

Theoretically, each stage of the network of Part 1
consists of onlv a birefringent crystal while each stage
of the network of Part IT contains a birefringent
crystal, optical compensator, and polarizer. In practice,
however, an optical compensator is probably also
needed with each crystal of the network of Part L. Thus
the main difference between the two networks is often
one component (a polarizer) per stage.

Both types of networks, in general, require » stages
to realize a C{w) coniaining (n+1) terms. However, in
certain instances, it is possible to reduce the number of
stages needed for the network of Part I, while in still
other instances, it is possible to-reduce the number of
stages needed for the network of Part IL.

Consider first the neitwork of Part I. When two or
more successive crystals are rotated to the same angle,
the situation is equivalent to a single crysial of greater
length. Unfortunately, efforts to determine what
resirictions must be placed on C(w) to cause several
crystals to have the same angle thus far have been
unsuccessful.

On the other hand, it is relatively easy to determine
which C{w)’s result in fewer stages when the synthesis
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procedure of Part II is employed. Section II notes that
if r zeros {written in polar form) have the same magni-
tude and differ successively by 2=/r phase angle, then r
of the stages can be combined into a single stage having
a crystal of length rL. Therefore, once the zeros of C(w)
are known, it is immediately apparent whether multiple-
length crystals can be used. In some cases, it may even
he feasible to adjust some of the zeros so that they
satisfy the above condition. It is necessary, of course, to
make certain that this does not cause an unacceptable
change in C(w).

B. Magnitude of Output

A second basis of comparison involves the magnitudes
of the outputs of the two types of networks. Suppose
that we use both the synthesis precedure of Part IT
and that of Part I to obtain networks having the same
desired C{w) with all C, real. Will the amplitudes of the
responses of the two networks be the same? If not, what
will the relative magnitudes be?

To answer these questions, we first assume that

“perfect” polarizers are used in both networks. In

addition, we assume that the desired C(w) has a max-
imum magnitude of unitv. Censider the network ob-
tained from the procedure of Part I. Its amplitude-
transmittance is identical to the desired C(w}; i.e., both
the relative and absolute values of the €, are identical
to those of the C,.

Next consider the network obtained by the synthesis
procedure of Part I1. Its amplitude-transmittance func-
tion contains C; whose relative values are correct (ie.,
Ci/C, CYICY, ---ClayCyf), but whose absolute
values probably are not. This discrepancy occurs
because we are trving to use n stages to produce the
(n-+1) different C;. Thus we have one less degree of
freedom than is necessary.

In most instances, the actual C,’ obtained from the
network of Part IT are smaller than the desired C,. Ina
few cases, the two are the zame. The C; can never be
larger than the C;[unless the maximum magnitude of
the desired C{w) is less than unity]. We determine
below: (1) under what conditions the €, and C, have
the same magnitudes; and (2) what the reduction in
magnitude is when the C;' and C; are not the same.

Let us begin with point (1), keeping in mind that the
following discussion assumes that all C, are chosen real.
As stated earlier, the desired C(w) has a magnitude of |
unity at least once per period. In order for the network
of Part II to have unit transmittance at some fre-
quency, each stage must have unit transmittance.
Consider two stages of the network which correspond to
two complex roots (a conjugate pair). From Eq. (9),
their amplitude-transmittance functions are

(—e*? sin?@-1-g—@ cog*d) (—e™*? sin®f-Le 2w cos'd). (19}

We have made g=8, as prescribed by Eq. (13), for
maximum fransmittance.
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In order for the “first factor of (19) to have unit
magnitude, it must be true that

—git= e-im,
which gives
—b=aw+pr, (20)

where p is any odd integer. If we similarly require the
second factor of (19) to have unit magnitude, we obtain

+b=awtgr, (21)

where ¢ is any odd integer. Solving Eqs. (20) and (21)
simultaneously, we find that the only possible values
which & can have (between 0 and 2x) are O and «., These
values result in unit transmittance at

gw=m, 3, 3T, "
and

aw=0, 2, ix,- -,
respectively.

In other words, the networks of Part II can have )

unit transmittance {once per period of their transmit-
tance function) if: (1) all roots of the desired C{w) are
real and positive; or if (2) all roots of C(w) are real and
negative. Only under these two conditions do all stages
have 1009, transmittance at the same f{requency,
thereby resulting in C;’ which are identical in magnitude
to the desired C,.

If the roots of C(w) do not fit into one of these two
categories, the output from the network of Part IT will
be smaller than the output from the corresponding
network of Part I. We now determine how much
smaller it is. To do this, we compare the magnitudes of
C. of the two networks.

For the network of Part I, C,'is identical to C.. For
the network of Part II, we find from Eqgs. (14) and (15)
that

C.=cos*d; cos®fs- - -costd,. (22)

We can solve for cos?, in terms of |3, by noting from
(15) that

tan®f;= |z,]. (23)
From (23), it is easily shown that
. cost;=1/ (1t 5,]). (24)

Equation (22) can now be rewritten as

C=[1/(A+{=DI0/ A+1=2D1- - - [/ A+ zaD],
(23)

which is the desired result. Thus, by calculating C.
irom Eq. (25) and comparing this to C,, we have our
comparison between the amplitudes of the outputs of
the two networks.®

If nonideal polarizers are used in the birefringent
networks, the networks of Part IT will fare even more
poorly on the basis of output magnitude compared with

¢ Equatien (25) can also be used to calculate [C,'| when one or
more of the Cyis complex. :
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the networks of Part I. Polarizer losses are especially
damaging if the network contains a large number of
stages.

The relative merits of the two networks can also be
argued on the basis of various other criteria such as
angular aperture, effect of crystal misorientation, etc.
These and other topics remain to be investigated.

As g final comment, it is of interest to note that the
synthesis procedure of Part II is computationally much
easier than the procedure of Part I. Once the roots of
C{w) have been found, the work is essentially com-
pleted.

IV. STMMARY OF SYNTHESIS PROCEDURE

(1) Choose the desired spectral amplitude transmit-
tance C(w), and write it in the form of Eg. (). It is
usually desirable to choose the C; so that C{w) has a
maximum magnitude of unitv. The C, may be real or
complex; however, in most instances it is expedient to
use a real set.

(2) Rewrite Eq. (1) in the form of Eq. (2) and solve
for the roots (the z,) of the polynomial. Each root
should be written in polar form, le., in terms of a
magnitude |{z;] and a phase angle ¢*=:. Each factor of
Eq. (3) can be associated with one stage of the network
of Fig. 1.

(3) If r of the zeros have the same magnitude and
have o’s which differ successively by 2z/r, the factors
containing these zeros can be multiplied together to
produce a term of the form of (18). This makes possible
the replacement of r stages by a single stage containing
a crystal of length #Z, where rL=ras/Aq. (Otherwize,
the required cryvstal length L dor 2 stage will be L
=ac/An.)

(3) If maximum transmittance through the network is
desired, the crystal angle 8; polarizer angle d;, and
optical compensation &; of the jth stage should be
caleulated from

—_F = — ~ 1Y _—
G=g,=tan (=5}, b=aq,
ar

,=—8;=tan"Y (!5}, b=q+r

If the condition of maximum transmittance is not
necessary, Eqs. (12¢) or (13c) should be used. Seme
other criterion is then necessarv to determine 8; and
37 uniquely.

(3) If the @, and 3; are calculated to give maximum
transmittance, the amplitude of the network’s actual
spectral transmittance can be compared to the ampli-
tude of the ideal spectral transmittance by calculating
{C,’| from Eq. (25) and comparing it to C.. The actual
spectral trapsmittance usually is smaller than the
desired iransmittance,

V. EXAMPLES

Two examples are given to illustrate the synthesis
procedure. The first example is concerned with obtaining

A4
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TIG. 3. Ideal 2nd approximating amplitude-transmittance func-
tions of first examplé. Ideal amplitude-transmittance function is
shown by dotted line, and approximating function by solid line.

a network whose spectral amplitude {ransmittance
approximates a triangular wave. This is recognized as
the example used also in Part I. As before, we approxi-
mate the triangular wave by the first six terms of its
exponential Fourier series,

K ()= (/a2 (1/25)erow4- (1/9)elowtgrowt-e—iow
+(1/9)e~Ree4-(1/25)e™5ew].  (26)
The ideal and approximating transmittance functions
are plotted in Fig. 3. We next multiply K () by e to
cast the transmittance function in the form of Eq. (1),
Clw)=e99K ()= (4/7)[ (1/25)+(1/9)e~2a
+e—14am+e—-1ﬂaw+ (1/g)e—|8au+ (1/25)8_"'10““’]. (27)
Finally, letting 2aw=~0w, we obtain the final form for
C(“J))
C (w) =0.01621-+0.04503¢~#++0.40528¢ 25
4-0.10528¢~3444-0,04503¢*4094-0.01621e~5 4=,
(28)
Putting Eq. (28) in the form of Eq. (2}, we have
C(w)=0.01621{14-2.77778¢ "% --25.00000 5
1.25.00000¢ 302,77 778 *ibef-g30%)
=0.01621{~ |z | g1t emrte) (— | 3 @22 )
X (— | 53| eoette) (— | 7| exit-e05)
b (_ 155} el'as_:-e—ibu)_

(29)

Solving for the roots of Eq. (29}, we obtain

15, =0.208273, = 100°1¥,
25| =0.208273, az=—100°1¥,
5] =1.80134, ap= 100°1¢,
o] =4.80134L, @=—100°1¥,
|25] =1.000000, @5= 180°00.

Tpon inspecting these roots, we are unable to find »
roots whose amplitudes are equal and whose phase
angles differ by 2x/r. Five stages are therefore required
in the bireiringent network and the length of the crystal
for each stage is given by L=>5c/An.

o\l
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Tet us choose the crystal angles 8, and polarizer
angles 3; so the output amplitude is maximized. Using
Eq. (13) to calculate the b, and Egs. (16) to calculate
the 4, and §8;, we have
bl=a1+180°=280°1-§:’,
b9=a2+1800= 790-1-6’,
b3=a3+180°=280°1-}',
b4=a4-{-180°= 790461’
by=es+180°= 0°00,

= —By=tan!| 2, | 1= 2432,
By == —Ba== tant| za| $=24°32,
By= —By=tan |z} $=6328,
fy=—fy=tan~I |z} 1=65°28,
8;=—8;=tan"t|z;} }=15°00,

and the svnthesis is complete. Notice that by using
Eas. (16) and (13) on the fifth stage instead of Egs.
(15) and (12), we have eliminated the need for an
optical compensator.

We now compare the amplitudes of the spectral
transmittances of the networks of Parts I and II. The
network of Part I has €5’ =C5=0.01621. The C;' for the
network of Part IT is found from Eq. (23) to be Cy'
=0.01018. Thus we see that the amplitude-transmit-
tance function of the network of Part T is greater than
that of the corresponding network of Part II by a
factor of 1.392.

Let us now turn to the second example. Suppose we
wish to obtain the amplitude-transmittance function,

E () =3 {cosew-cos3aw-+cos3aw-cosTgw+cosOaw
3
4cosilawtcosidew-tcosidaw) . (30)
=-1_{pil5ae —tllqw illaw 4198w L. priTew
T (e'Vev g ¢ -+e Le
+g—.-15aa+8+|3¢w+g+mm+e--wu+g—100+e—154w
,:_e—:?aw+e-—l9¢.u+3—zllau+e—ll‘!aw+8—-ﬁ§cu)_
Equation (30) is plotted in Fig. 4 where it is seen that
K {w) has the form of a bandpass-flter characteristic.

To put the amplitude-transmittance function in the
form of Eq. (2), we multiply Eq. (30) by ¢~'** and let

|

o

f\/\/\n/\f\/\.{\f\f\mn/\/\
AALAAAAA

-5 -

Fic. +. Amplitude-transmittance function of secend esample.



July 1965

buw=2aw, which gives
C (w) — .i]g(1+8—1bu+e—iﬂbu+e—t3bu+e—l~lbu
+g“ab‘”—!—g“":‘b‘“—[—g‘ﬁb”-}-e—‘sa“

+e—195u_!_g—'!lObm_*_e—fllbu_l_e—ll'.’ﬁu (31)
A gmii3bu_L g—1sbuL p—it§bu)
Solving for the roots of Eq. (31), we find
bzl =1, = 22.3° fzg] =1, as=180.0°
|s2f =1, eaa= 45.0°, lzs] =1, @=202.3°,
[s]=1, a= 67.5°, la] =1, eo=225.0°
] =1, o= 90.0° lzul=1, @au=247.5%
ls]=1, as=112.3° lzel =1,  =270.0°
[#l=1, @a@=133.0° bmpl =1, @2=292.3°
[=l=1, e=157.5° [su]=1, @a=315.0°
Izl =1, s=337.3%

The fact that all roots have the same magnitude sug-
gests that we should look carefully for possible group-
ings of roots which will result in fewer stages for the
network. We find that the roots can be grouped in the
following fashion:

r=1 and
EZa[ =1, C£3=180°, =8

r=12 lnl=1, @= 225°
fzaf=1, = 90° lzsl =1, = 67.3%
|22l =1, @»=270°, lzsl=1, @;=1123°,

r=4 ‘ml=1, @=137.5%,
!Sgl --1, = 50, {Zgl = 1, a9=202.5°,
17l =1, ay=133°, !511i =1, ap=247.5%
fzof =1,  a=225°, {213} =1, aus=292.5°,
isul=1, au=315° lzis1=1 z=337.5°

Each group consists of 7 roots of the same amplitude
whose phase angles differ successively by 2x/r. This
means that the 16 factors can be combined to give four
factors, :

Clw) = (1-e=tw) {(14-gmi2bu) (1-g—ibw) (1-Lemste),

Thus, the required network consists of only four
stages. The length of the crystals in these stages will be
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F1c. 3. Blremngent network obtained in second example
{+-stage Lyvoe filter).

L, 2L, 4L, and 8L, where L=bc/Ay. The four zeros of
Eq. (32) are

2] =1, er=180°,

{mi=1, as=180°, -
5] =1, a3 =180°, ©3)
[z =1, o= 180°,

Using Eqgs. (13) to calculate the &, and Egs. (16) to
calculate the 8, and 8,, we obtain

BI: _ﬁ1=t Il’.ll i_'L‘) bl b1=a1+180°=0°r
By= _5n-——t".n"'ll_~.| —_-_1.5':’, pa=cst-180°= 2
83=—By=tan"H{zj I =45, bi=a3+180°=0°,

64=—B4=tan“iz,-i )"=-L-°, b4=a4+180°=00,

and the svnthesis is complete. Optical compensators are
not requlred (in theory) on any of the stages of this net-
work since all 5; are zero. The :mmtheswed network is
shown in Fig. 5 and is recognized to be a four-stage Lyot
filter.” Thus it is interesting to note that the Lyot nlter
can be obtained by use of the synthesis procedure of
Part II, while the Solc filter can be obtained via the
synthesis procedure of Part L
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Part I of this series reported a procedure for synthesizing birefringent networks having a prescribed

amplitude transmittance. The desired transmittance Clw) waswrittenasC(w) = Co+Cie10v--Cop™r2u - «

ot

Cre™me%, where the C, could be arbitrarily chosen as long as each was real. The synthesis procedure of this
paper is a generalization of the procedure of Patrt Iand allows for the realization of C{w) having complex Ci.

‘The resulting network consists of » stages between zn input and output polarizer, with each stage containing
a birefringent crystal and (achromatic) optical compensator, The form of this network is essentially the same
as the practical form of the network obtained from Part I, and hence the additiona] versatility is obtained at

no extra cost in network complexity.

IxpEX Heanings: Polarization; Crystals; Fiiters; Birefringence.

I. INTRODUCTION

ART I of this series' described a procedure for
synthesizing birefringent networks whose ampli-
tude transmittance could be specified. The purpose of
this paper is to describe a generalization of that pro-
cedure which provides stili greater flexibility in the
svnthesis of birefringent networks.
The procedure of Part I allows the realization of a
birefringent network whose amplitude transmittance
C(w) is of the form,

C(w) = CO_}_Cle—{au_;_ng—sEum_,}_ - +Cn8—'"‘“"’.

(1)
The number of terms emploved in Cw) is finite but
arbitrary. The choice of the coefficients (the C;) is also
arbitrary as long as each C, is real. The form of the net-
work obtained from the synthesis procedure of Parr T
is shown in Fig. 1. The network consists of a series of
identical cascaded birefringent crystals between an

F16. 1. Basic configuration of birefringent network (4 stages)
obtained from the synthesis procedure of Part I. F and .5 denote ~
the “fast’’ and “slow’ axes of the birefringent crystals.

* Worlk supported by the National Aeropautics and Space
.id:mmstra.t:on under Contract NAS8-20570.

tS5. E. Harns, E. O. Ammann, and T. C, Chang, J. Opt. Soc.
Am. 34, 1267 (196-&)

input and output polarizer. The network may be thought
of as composed of several stages, with each stage con-
sisting of one birefringent crystal. A network containing
# stages is required for a C(w) having #--1 terms. Once
C(es) has heen chosen, the rotation angles (the &) of the
crystals and the output polarizer can be calculated from
the synthesis procedure.

The synthesis procedure of this paper allows greater
freedom in the choice of C{w) and results in a network
whose basic form is shown in Fig. 2. The desired ampli-
tude transmittance C(w) is still written in the form of
Eg. (1), but the C, may now be complex. An n-stage
network is again required to realize a C{w} having -1
terms, but each stage now consists of an optical
compensator® and a birefringent crystal. The synthesis
procedure determines the rotation angle of each crystal,
the retardation introduced by each compensator, and
the rotation angle of the output polarizer.

The networks of Part I have been termed lossless bi-
refringent networks since there are no energy-dissipating
cornponents between the input and output polarizers.
The networks of this paper are lossless in the same sense,
since no internal polarizers are required.

The following sections contain a description of the
synthesis procedure and give an example of its applica-
tion.

II. SYNTHESIS PROCEDURE

A. General

The object of the synthesis procedure is to find the »
birefringent-crystal angles, the retardations of the n--1
optical compensators, and the output-polarizer angle
which result in the desired amplitude transmittance
C(w). For a given C(w), 22 network parameters are
to be determined. This matches the number of quantities
in C(w) which we are free to choose, for we may specify
the real and imaginary parts of the n+1 coefficients C..
The length L of the crystals (all crystals have the same
length) is determined by the periodicity of the desired
amplitude transmittance.

?H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).
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. The notation, conventions, and approaches used here
follow closely those used in Part I. Hence for brevity it
is assumed that the reader is familiar with that refer-
ence, and much of the information contained therein is
not repeated here. Because of this, an understanding of
Part I is important to the understanding of this paper.
In this paper, optical compensators play an important
role. A compensator is used with each crystal of the
network and with the output polarizer. Since compen-
sators were not required (in theory) in Part I and hence
were not discussed, we briefly describe their cperation
and analysis. Optical compensators behave essentially
the same as very short birefringent crystals. 4 com-
pensator introduces z phase difference of 5 radians
(where 0<#<27) between slow-axis (S) and fast-axs
(F) components. It is assumed that this phase difference
is independent of w, an assumption which is approxi-
mately valid for most cases of interest. If this assump-
tion is valid, light passing through the compensator
polarized in the S direction is operated upon by e,
while light polarized in the F direction is operated upon
by unity.

We assume in this paper (as in Part I) thai the bire-
fringent crystals and opiical compensaiors of the net-
work are lossless. This means that energy must be con-
served at all points within the nerwork between the
input and output polarizers. Energy conservation
places certain important restrictions on the F; and 5,
and on the C, and D.. These restrictions are derived and
listed in Appendix B.

As in Part I, it is convenient to deal with relative
angles {8,) of the stages instead of absolute angles (g.).
By relative angle, we mean the additional angle of rota-
tion measured from the preceding stage. The relative
angles are given In terms of the ¢, of Fig. 2 by

91=¢Ir
Ba=ga—dy,

8= 1,
3p=¢'p—¢ﬂ-

B. Procedure

As mentioned in Part I, a useful approach to the
synthesis problem is to consider the impulse response
of the network. Since the inverse Fourier transform of
the amplitude transmittance of a network yields its
impulse response, we cobtain, by taking the inverse
Fourier transform of Eq. (1), the impulse response of
the network of Fig. 2:

CH=Cod()+Ci8(t~0)+Cd(t—2a) -
+Cnbf{t—na). (2)
Thus the impulse response of our network consists of

a series of equally spaced impulses whose areas are given
by the C,. Since the C, are complex, the impulse response

AMMANN AND J. M.
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Fic. 2. Basic configuration of birefringent network (4 stages)
obtained from the synthesis procedure of this paper.

is also complex. The explanation of this apparent para-
dox and its significance is given in Sec. 1.

Tn the synthesis, we begin with the desired C(w) as
given by Eq. (1). This is equivalent to prescribing the
impulse reponse C(#) of the network. We next proceed
from the last component of the network (the output
polarizer} back to the first (the input polarizer), calcu-
lating the impulse trains which exist at all intermediate
points. The areas of the individual impulses of these
trains are denoted by the F.? and §.7 of Fig. 3, where
the F,’ impulses are polarized along the fast axis of the
preceding (jth) crystal and the 5.7 impulses along the
slow axis. In the course of calculating these impulse:
trains, the crystal angles, compensator delays, and.
output polarizer angle are determined.

Assume that C(w) and therefore the desired C; of
Egs. (1) and (2) have been chosen. We must next find
the signal D{w) which is polarized perpendicular to
C(a) and therefore is stopped by the output polarizer.
Since the nerwork is lossless (between the input and
output polarizers), the signal energy entering the frst
crystal must equal the sum of the energies in the C{w)
and D(w) outputs. In equation form, this gives®

Clw)C* @)+ D) D* (@)= (I,

where I is the area of the impulse which is incident
upon the first crystal. Rewriting this, we have

(3a)

D(@)D*(w) = (1) = C(&)C*(w). (3b)
INPUT i 2nd s nth GUTPUT
POLARIZER STAGE STAGE STAGE STAGE POLARIZER
4 e e F;MH A
. ! ' €,
) DH gLl sl
CD.‘.‘.FrEIZ?.-'gaTGR

Fig. 3. n-stage network. Each stage contains a birefringent
crystal and optical compensator.

% Asterisks are used in this paper to denote the complex conju-
gate of a quantity.

2(?
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FINAL ;
COMPENSATOR s (OUTPUT POLARIZER
F { TRANSMISSION AXIS)
~ Vs
\\ 7 8
< |/ p
~N i/ \' S
~
// \\
// \\
s ™ (QUTPUT POLARIZER
(A) - REJECTION AX1S)
nth STAGE
F
F
\\\ ~5
\\ /// i
~
s
// N
// \\
®) N fth STAGE
i-1 th STAGE
S
!
I~
I’ 61
Pl \  INPUT POLARIZER

~——L TRANSMISSION AX!S
Ist STAGE

~—
=

{C)

Fre. L. Angle conventions used in the synthesis procedure:
(2) final compensator (and output polarizer); (b) ith stage; (c)

input polarizer.

We are now ready to choose a value for I, The left
side of (3b) must be nonnegative for all frequencies;
thus (74%)* must be chosen greater than, or equal to, the
maximum value of C{w)C*(w). Having chosen I, we
can calculate D(w) from D(w)D*(w) using the method
given in Appendix A.

Doing this, we obtain D(w) in the form

D(w)=Dy'+Dye=oob- Dyfgstou-t . . . D fgmino,

where the D{ are in general complex. It is important
to note, however, that if D{w) is a solution of Eq. (3b),
then e*D(w) is also a solution. Hence a more general
solution for D(w) is

D(w)=e™] Dy'+ Dyl Dyfe=awt-. ...
+ D“’ g—in tm]

=Dyt Dy DogRoucfe o o b Dpgmines, (4)
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Although the method of Appendix A gives us the values
of the D', it does not determine a value for u. The quan-
tity p» must be determined from other considerations
and, as is described shortly, has a value which is fixed
by the manner in which the synthesis is formulated.
Let us now relate the inputs (the 7,» and 57} and
outputs (the C, and D,) of the final compensator. It
should be remembered that the F,” and .S,* are com-
ponents along the fast and slow axes of the preceding
(nth) stage while the C, and D; are components along
the slow and fast axes of the compensator. With the aid

of Fig. 4(a), we find
[F,-ﬂ] [exp(z'b,,)‘sinﬁp —cost, [ C. ] )
= 2
Sym exp(ib,) - cosé,, sinB,,:l esD! L
where 6, is the relative angle of the final compensator
(and hence also of the output polarizer), and bp is the
compensator delay.

We must next determine the quantities g, 8,, and &,.
To do this, we derive and solve three simultaneous
equations. The first of these equations is obtained by
noting that the first impulse to leave the nth stage must
have a real area. This is equivalent to stating that Fy
must be real. This condition arises from our convention
of Sec. IIA which states that light passing through a
compensator polarized in the § direction is operated
upon by ¢*? while light polarized in the F direction is
operated upon by unity. Since the first impulse to leave
the #th stage must have been polarized along the F
axis of each preceding stage, this impulse will have been
operated upon by unity in each compensator and will
therefore be real, From Eq. (3) we obtain for Fo~

For=exp(ib,)- (sind,) -Co—e#- (cosh,) - Dy'.

Equating the imaginary parts of the left- and right-hand
sides of this equation, we obtain the first of our three
desired equations,

0==sing,[ ITm(Cy) cosb,+Re(Co) sind,]
—c0s8,[ Im(Dy") cosu--Re(Dy’) sinu], (6a)

where Im and Re denote the imaginary and real parts
of the quantity in question. The remaining two equa-
tions result because the first and last impulses leaving
the nth stage must have been polarized along its fast-
and slow axes, respectively. This means that

Fpr=8p"=0,
which, with (5), gives
exp[i(b,—n)]- tand,=D,’/C., (6b)
exp[—ib,—)] anlp=Co/Df.  (60)

Taking the complex conjugate of both sides of Eq. (6¢),
we obtain

exp[i(by—n)]- tand, = — (Co*/Dy'*).

and



1749 E. 0. AMMANN AND

Combining this equation with Eq. (6b), we obtain
Cﬂ*cn+D0!*Dn’=01 (73-)

the relation which must be true if Egs. (6b) and (6c)
are to be satisfied simultaneously. Noting that
D =¢"D,, we can rewrite (7a) as

Co*CrtDq*Dp=0. (ib)

But Eq. (7b) is automatically satisfied from conserva-
tion of energy since it is identical to Eq. (B9) of Ap-
pendix B.

Since the C, and D, are complex, we can rewrite
(6b) in the form ;

J. M. YARBOROUGH Vol. 36

and

(11}

Having determined «jp, &y, and g, we can substitute
these vaiues into {3) to obtain F;" and 5,7, the outputs
along the fast and slow axes of the nth stage. We must
next find the rotation angles and compensator delays
of the » stages of the network.

To do this, we write expressions relating the input
and output of each stage. With the help of Figs. (b)
and 4(c}, we obtain

p=bp—ag.

First Stage

. i Fyt ~-sinf;
expli(b,—w)]-tand,= | D/Culesplics),  (8) el e aw
: p . Sqt exp(— ib1) - cosf
where in (8} we have expressed (D,’/C.) as a magnitude
and phase angle. It is apparent from (8) that the rota-  Second Stage
tion angle 4, of the polarizer and compensator should be
chosen to be . Fﬂ cosd, 0
tand,= | D.'/C4]. ) o _| -0 —siné; o (12b)
. . 512 - El\'p("‘- lbg) 'Siﬂeg 0 S1[ i
By further manipulations of Eqs, (6a), (6b), and (6c), LS 0 exp(—it)-costs)
we obfain ) i )
tand,= —Im(Cy)/Re(Cy) (10) Third Stage
Eg cosdy 0 0 0 3
F 13 0 C0553 - SiIlBs 0 F 02\
F3| |, o 0 0 —sinf; | |F2 T
50| = | exp(—ibs)-sinds 0 0 o ||sal (12¢)
S 0 exp(—ibs)-sinfy  exp(—ibs)- cosy 0 Ry g'-’J
S¢) 1 0 0 0 exp{— #b4) - cosf;
and in general;
jth Stage
(Féy ¢ cosé; 0 0 0 0 0 1. N
Fy 0 cosd, 0 0 0 0 Fyml
Fr 0 0 cosfy 0 0- 0 Fym
i i i i B B BT
Fyy 0 0 0 — sind; 0 0 HEEEE
?,_z’ g 0 8 0 —sind, 0 Fr o
- 0 0 t] 0 —sing F,_J=
Se | = | exo(—ity)-sing, 0 0 0 0 0 om0 |- (120)
Sof exp{—ib,) -ans, 0 v 0 0 0 et
S¢ 0 exp{—1b;) -sind; + - 0 0 0 S
S 0 0 '6. .- etp(—-ié,-)‘cosé, 0 0 E 5,'--2;"1
Y 0 0 0 . 0 exp(—ib,) -cosd, 0 I Sy
L S L 0 0 0 0 exp(—i) rcosd,)

Putting j=» in (12d), we have the input and output
relations for the nth stage. We know the output (the
F and §.") and wish to find 8,, 8., and the input. As
discussed in detail in Part I, an input exists which
produces our given output provided that

exp(ibn) - tandn=—Fn_1"/Sa=| F,;*/Sn"]

Xexplia) (13a)
and
Foni‘Fn_in_I_SIn*Snn: . (L‘ib)-

221

Note that . includes the effect of the minus sign
which precedes Fo_;%/S.™

We can satisfv Eq. {132) by properly choosing b
and 8., while (13b) is automatically satisfied by con-
servation of energy. Knowing 4, and 4,, we can then
calculate the input to the nth stage from (12d). This,
of course, is also the cutput from the n—1 stage; hence
we can repeat the procedure just described to determine
ba-1 and 8,,. In this fashion, we can work our way
back through the entire netwark until all rotation angles
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and compensator delays have been determined. The
general equations for the jth stage are

€xp (ib,) - tand;= —F;_,J/S;/= [F Py SJJ!

Xexp(ia,), (1da)
and
Fol Fii45,75,/=0, (14b)
which gives
b=a; {13a)
and
tand, = | F;_,%/5,(. (15b)

As seen from Appendix B, Eq. (14b) is alwavs auto-
matically satisfied by conservation of energy.

Note that if «;=0, a compensator is not required {in
theory) for that particular stage. Furthermore it is
possible to eliminate the compensator from a stage
which has a,=w. This is because when ==, an alter-
nate solution 1o Eq. (I4a) is

b,=10, (15¢)
a.n_c\i

tanf,=—\F,,7/57|. (13d)

Hence whenever ¢,=w, Egs. (13¢) and (13d), rather than
(13a) and (15b), should be used to determine &; and 4,.

We now have sufficient information to synthesize a
birefringent network. The procedure to be followed is
summarized below.

C. Summary of Synthesis Procedure

(1) Choose the desired amplitude transmittance
C{w) and write it in the form of Eq. (1). The C, may be
complex.

(2) The required length L for all crystals is given
by L=ac/An, where ¢ is the velocity of light in a vac-
uum and Ay is the difference between the extraordinary
and ordinary indices of refraction of the crystal. The
quantity ¢ is determined by comparing Cw) as written
in step (1) to C{w) as given by Eq. (1).

(3) Choose a (real) value for I¢’. The choice is
arbitrary as long as ({,*)* is greater than or equal to the
maximum magnitude oi C{w)C*(w).

() Calculate D(w)D*(w) from Eq. (3b). Use the
method of Appendix A tosolve for D (w) from D{w)D*(w).
This gives the D, of Eq. (£), but does not determine u.
Several different D(w) result, and each of these, when
used with C(w)} results in an acceptable network. The
D/ of these D(w) are, in general, complex. The remaining
steps should be cartied out. for each D{w).

(3) Calculate the rotation angle 6, of the output
polarizer and final compensator from Eq. (9), the phase
delay &, of the final compensator from Eq. (10), and g
from Eq. (11).

(6) Calculate the F." and $;” from Eq. (3).

(7) Using Eq. {15b), calculate the rotation angle 4,
of the last stage. The compensator delay &, for that
stage should be computed from (13a). Using Eqgs. (C1)
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and (C2), calculate the input to the last stage (which
is the output from the preceding stage).

(8) Repeat the procedure of step (7) on each suc-
ceeding stage until the rotation angle and compensator
delay of each stage have been determined. If o, == for a
particular stage, Egs. {15¢} and (13d) rather than (13a)
and (15b) should be used to calculate &; and 8;.

III. DISCUSSION

We now consider the implications of being able to
choose C, which are complex. In Part I, we were limited
to amplitude transmittances having all C; real. This
meant that we were limited to C{w)’s whose real parts
were even and whose imaginary parts were odd. These
restrictions have now been removed; the real and
imaginary portions of C{w) can now be asvrumetrical.

An objection might be raised that since the C, are
complex, our network has an impulse response, given
by Eq. (2), which is complex; but it is well known that
the impulse response of a physical network must be real,
This dilemma arises because our theory requires the
use of achromatic optical compensators in the network.
The theory assumes that these compensators introduce
a delay which is independent of w. Such a delay is not
realizable in practice. Compensators can approximate
this behavior over a limited frequency range however.
Hence the response of the synthesized network closely
approximates C{w) over the frequency range for which
the compensators may be considered achromatic.
Outside of this irequency range, the transmittance
departs from C(w). Since birefringent networks are
ordinarily designed for use over a limited frequency
range, this is an acceptable situation.

Thus we see that C(w) accurately describes the net-
work’s transmittance over only o limited spectral
range. But when we take the inverse Fourier transform
of (1) to obtain the impulse response given by (2), we
are (incorrectly) assuming that Eq. (1) is valid for all
possible values of w. Hence it is not surprising that the
result is 2 complex impulse response for the network.
Even though (2) does not accurately give the network
impulse tesponse, the time-domain approach is very
useful for visualizing and understanding the synthesis
procedure.

Part IT of this series* described a second synthesis
procedure which achieved the same goal as the pro-
cedure of Part I, but via a different form of birefringent
network, Moreover, the procedure of Part IT can be
used when complex C, are present in C(w). The network
which results, however, contains internal polarizers and
hence is not a “lossless” network. For that reason, the
network of this paper is preferable to that of Part II for
most applications.

The network resulting from the svnthesis procedure

of this paper contains an optical compensator next to

iE. O. Ammann and I. C. Chang, J. Opt. Sec. Am. 35, 835
(19653).

2L
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the output polarizer. In practice, it is often possible to
remove this optical compensator, Suppose for example
that we have synthesized a network which has a desired
C(w). If we now remove the final compensator from that
network, the new transmittance is exp(id,) - C (w). Thus
the new transmirtance differs from the desired transmit-
tance by only a constant phase factor. Often the intro-
duction of this phase factor is of no consequence, and
hence the final compensator can be removed. Further-
more, we note from Eq. (10} that if Cy is chosen to be
real, #;=0 and the need for the final compensator is
automatically eliminated.

Finally, we note that (as seen in Figs. I and 2} the
network of this paper contains a greater number of
components than the network of Part I. It should be
emphasized, however, that Figs. 1 and 2 show the net-
works predicted by theory. In practice, the network of
Part I requires the use of an optical compensator with
each crystal of the network to compensate for slightly
incorrect crystal lengths. Thus the practical forms of
the networks of this paper and of Part T are identical;
the additional flexibility is obtained at ne expense in
actual network complexity. In this paper, sach optical
compensator serves the dual functions of (2) introducing
the delay required by theory, and (b) compensating
for incorrect crystal length.

IV, EXAMPLE

A sample calculation is performed to illusirate the
synthesis procedure of Sec. II. Suppose we wish to
approximate the real transfer function G{w) shown in
Fig. 5. Since G(w) is neither even nor odd, complex
coefficients are required in the approximating exponen-
tial series. For this example we use a seven-term complex
Fourier series.

J. M. YARBOROUGH

ol
EN 1N Gle)} =y

F1G. 3. Idesl and approximating ampltude transmittances of
example. Ideal transmittance 1s shown by dotted line and ap-
proximating transmittance by solid line.

The Fourler-series approximation to the ideal transfer
G(w) is given by
K(wy= (/7)) (1/9—i2/9)erIoe— gi2au
+ (_L_{_ z‘z)ez'aw_i_ﬂ—"/4+ (_L_ iz)g—mu_g—dau
+(4/9+12/9)e ], (16)
which is plotted in Fig. 5. Following the method of
Part 1, we convert this noncausal approximating func-
tion to & causal function by multiplying by e %,
which gives
Clw)=e%K ()= (1 /2 (4/9—~12/9) —e 1o
b (4 i2) e et (2 /])e 1300 L (4 — 2} How
—g9e (L/94i2/9)e o], (17)
Multiplication by e¢™*%« is equivalent to introducing a
pure time delay in the time domain, and thus the im-
pulse response and transfer function are essentially
unchanged. Since the series contains seven terms, the
svathesized network contains six stages.

We now calculate D(w). From Eq. (3b) we have

| D{w) 2= D(@)D*(w) = (I~ C(w)C*(w) = (I§)*— 044257 — (0.111394i0.13695)e**— (0.11139—10.14695)™e¢
— (0.09990-i0.12775)¢uw — (0.08990— 1012775 )¢ o9 — (—0.03061— i0.03232)¢¥ew
— (—0.03961--70.03232)¢ 90— 0.03589¢4% — 0.035580¢ 469 — (— 0,00913--0.00456) 5%

— {—0.00913— {0.00456) e~ 88— (0.00152—40.00203}e*3%«— (0.00152--40.00203 )e~ 5%,

(18)

The area I¢® of the input impulse must now be chosen in order to obtain | D(w)}{® It may have any real value as
long as {([M* is larger than the maximum value of C{e)C*(w). The maximum of C(w)C*(w} has been calculated
to be 1.035. Thus let us choose Jo"= 1.050, which gives (I®)*=1.1023. Equation (18) then becomes, after making

the substitution x==¢ o,

[ D{w)|*= — (0.00152410.00203)x*— (—0.00913— i0.00436)x°—0.05589x — (—0.05961 +0.05232) 5
— (0.09990— #0.12773)a*— (0.11139—i0.14605) x+0.65993 — (0.11139-4-70.14605) s~
— (0.09990-+:0.12775)x~2— (—0.05961 — i0.03232)x~*—0.0558Gz

— (—0.009134-i0.004356)x—3~ (0.00152~-/0.00203)x75,

(19)

which is in the form of Eq. (AZ2). Following the procedure of Appendix‘ A, we find the roots of (19) to be

%1=0.06608—10.275383,
£2= —0.09690—;0.27-£36.
x;=—0.67656—i0.06373,
%= 0.17633+40.17387,
15=0.57518-40.17898,
xs=0.59387-+11.30936,

123

(1/21)*=0.82394— 13.43353,
(1/ )%= — 1.14455—13.24064,
(1/23)* =~ 1.46526—i0.13704,
(1/2)%=2.87516+12.83537,
(1/%5)*=1.58510+i0.19323,
(1/5)*=0.28729--40.63342.
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There are 128 (2**) possible sets of D; which can be obtained from these roots. However, sixty-four of these sets
are simply negatives of the other sixty-four. We consider only the set that is formed by constructing the polynomial

(x—21) (x—xo) (w—122) (x—x4) (x— 5} (o —224).

Performing‘the indicated multiplication, we obtain

254 (—0.63801— i1.04187)x54 (0.02399— i0.29300) x*+ (0.06333+i0.44610)2°

~+ (—0.23903—10.05436)x*+ (0.04871 — i0.00793)x+ (— 0.00721+:0.00961).

(20)

As stated in Eqgs. (A9), & set of D)’ is proportional to the coefficlents of this polynomial. Evaluating |g| using

(Al0), we find that

lq] =0.45943,

and so
Dy =—0.00331-{0.00441,

D'=0.02238—140.00364,
Dy’ = —0.10982—10.02493,

Dy'=0.03011}40.20496. Dy'=--0.29312—10.48203,
Dy=0.01194—10.13461, Dy'=0.13943.

From Egs. (9), (10), and (11) we may now calculate 6, b5, and g. The results are

f,=83°45", b,=0.46365 rad, p=—3.35589 rad.

Using Eqs. (A9), we find that

Do=e* Dy’ =—0.00352+ 10,
Dh=e Dy =0.01634-140.01572,
Dy=¢gDy' = -=0.04393—70.10282,

Dy=eDy = —0.14590440.14706, Ds=e**D; =0.20976—i0.523
Dy=¢'Dy=0.13485—10.07122,

72,
Dg=e#Dg'=0.27566-1-10.367335

2

and hence D{w) is corapletely known. Equation (5} is now used to calculate the F., and S.%, giving

[Fof 0.05065++0.00000
FoN —0.00187—0.04675
Fb| | 0.27526440.37134
F# | 0.238174+:i0.09512}’
Ff 0437914+40.00776 |
Fg —0.112934-:0.01201;

As a check, we should note that #¢% must be real and
that Fe® and So® must be zero. As a further check, we
can verify that Eq. (14b) is satisiied.

We are now able to calculate 8; and g, the relative
angle of the last stage and the optical compensator
delay. Using (13b), we find

Gs=13° 18’
and from (13a),
bg=3.24997 rad.

_ The input impulses ko the sixth stage are now calcu-
lated from Eqs. (C3) and (C4). Equations (15b) and
(152) are then applied again, vielding

f5=36" 15
and
bs=6.11133 rad.

By alternately applying Egs. (C3) and (C4) 2and Egs.
(15a) and (15h), we obtain the remaining §; and ;. The

516} [ 0.00637-:0.01069
Saf ~0.01604—40.06272
S8 | —0.12067-10.15836
SHlT | 0.16353—70.07079 |
St 0.19863—10.5235¢
[.Sg5 0.27731+i0.36975

summarized results of the synthesis are

£

6 f6°15) (&) [2.10838
By 13° 48 ba 2.96994
851 |36°45 bs 0.74123
8yl = 43° 00* , 54 =10.74123 radians.
85| |36°45 bs 2.96994
Bq 13°48 | e 3.24997
Bp] (83°45) &) [0.46365]

The Jones calculus® can be used to verify that these
angles and compensator delays give the desired transfer
function of Eq. (17).
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" APPENDIX A

We describe in this appendix a methad for calculating
D(w) from: | D{w@)|?. The method is similar to that given
in Appendix A of Part I, but differs in its details. The
differences are necessary because (a) we now begin
with 2 C(w) containing complex C,, and (b) complex
values of D, can now be tolerated in D{w).

We begin with the positive semidefinite polynomial

| D(w)|*=D{w)D* (w)= ({")*~C@)C* (w),
=A nginm_i__d w—-lgi(ﬂ_” du_[_ . '+A 16'.'“"!-440

+A_ l*a-taa_}._ P +A_ m_l*g—i(n—l)au
+‘4 n*g—fnau_

Letting x=e~% and reversing the order of the terms,
Eq. {Al) becomes

[ D@ P=d b sr A e A A

At e d A e (A2)
Assume that % is a root of Eq. (A2). Then
An*eyr At e ATt A eb A
Tt Vp A =00 (A3)

Tf we now take the complex conjugate of Eq. (A3), we
obtain
Aa(e®) 1 d (o)™ - -

+ A4 g*+,41*(x1*)—l+ e

A * o)L M) =0. (A
Equation (A4) can be rewritten as
A/t A (/)04 -
+ A (1 e A o 41/ )= R
A d () AR () =0, (AS)

But we now see that (A3) and (A5) have identical
coefficients, with x; being the variable in Eq. (A3) and
(1/%) the variable in (A3). Thus if »; is a oot of (A2),
then (1/%,*) is also a root. One of these two roots is
assaciated with D(¥) and the other with D*(x). Hence
we associate half of the roots of Eq. (A2) with D(x)
and half with D*(x). D{(x) [and hence D(w)] can then
be constructed (to within a multiplicative phase factor)
from a knowledge of its roots.

To summarize, begin with [D{w)|* written in the’
form of Eq. (Al). The A ;are in general complex. Form
the equation

A d i Ao Aok A
4 d Ot Adan=0. (A6)

Solve for the 2x roots of this equation. These roots
always exist in pairs of the form

X1y 1/ x!.*:
X2y 1 / :“62*,
xs, 1/ ?3*, (A.T)
%, 1/xe*
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Construct all possible equations using one root from
each row of (A7). One possible grouping, for example, is

(w—22) (w—1w) (5 —1/2%) - - - (= 1/%a")

= prddp ol e o dart b disFde. (A8)

Each different grouping of roots results in a different
Dfw).

The D, are proportional to the d;, where g, the con-
stant of proportionality, is in general complex. Writing
g in the form. g= |g|e*, we obtain

Dy= iqi g'idg= Gi“Do’,
Dy=|g|ed1=¢*Dy,
D.=|q| oird, =gwD, = | q| e, (A9
where

D{=|qld.

The necessity of allowing g to be complex can be seen
by noting that if D(w) is a solution of Eq. {3b), then
e D{w) is also a solution.

The quantity |¢| is calculated from

[qg)*[dodg™+didi™+ - - - Fdardn™+1]= o

In order to calculate the phase angle g, however, addi-
tional information must be provided. The necessary
information is obtained from the restriction that Fo"
must be real, 2 condition which results from our
formulation of the synthesis procedure. With this re-
striction, u is uniquely determined (see Sec. IIb) and
D(w) can be obtained.

Thus the method of this appendix allows us to find
D(w) to within a multiplicative phase factor ¢®. We
obtain values for the Dy, where

D{w)=e[Dy/+Dy'eewtDylem200 - - -
_,E_Dﬂ_l’e—{(n—l) na_i_Dn’g--mmj’
== Dyt Dhgm 100 Dag™ 380
__i_Dn_Le—-t(‘z—l)au_ll_Dngmmnu-

(A10)

(A1L)

APPENDIX B

In this appendix, the restrictions placed upon the
F,and S; (and upon the C; and D,} because of conserva-
tion of energy are derived. Consider the ith stage of
the network of Fig. 2. Since the network is lossless, the
energy in the fast-axis output plus the energy in the
slow-axis output of the ith stage must equal the energy
incident upon the first stage. Stated mathematically,
this gives

FiHe)F™ (w)}+57(w)S™(w)= (I

1f we write out Eq. (B1) and equate the coefficients of

corresponding terms, we obtain the equations

Fo*Fo+F*Fi+ - -+ F ¥ F 575
+S'.‘{*Sl{+ . "Jn_Ss#Si;: (100)21

(B1)

(B2)
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Fo it By Foit e o - Fi ™ F 5178
+52555' 4+ + - F5145:=0,

Fo* it Fy ¥Ry e o - F o % Fy " +51755°
F 5o ¥ S it o - 15015, 7=0, (Bi)

(B3)

F o{*F 15 ;{*S V=0, (BS )

Clw) and D{«) must also satisfy conservation of
energy, giving the following restrictions on the C; and D;.

Co*Co+Ci*Crt- - - - +Co*Co+-D* D+ D™D - - -

+Dn*Dn= (IDO 2: (Bé)

Co*c 1+C1*C2+“ .. +Cﬂ—1*cn+Do*Dl+Dl*D2+‘ bl
+Dni*Da=0, (BT)

Co*CrCrCot - - -+ Cn*Cot+ D Dot DDyt - - -
] +Dno™D,=0, (B8)
Co*CatDi*Dyn=0. (BY)

APPENDIX C

This appendix gives a systematic and rapid method
of calculating the input to a stage, once the output is
known. This is simply a {ormalized procedure of solving
for the F~* and S of (12d) once the F/ and S/ are

1754

known. The expressions are similar to those of Appendix
C of Part I but differ somewhat due to the complex
quantities involved.
We begin by defining F;_y? and 57 in polar form:
Fi = |Fi_lexp(ifiaf) (C1)
=87 | exp (is;). (C2)

Using these definitions, we find the expressions for
the Ft and 57 in matrix form

L ah ( Fé Sy
FyHt exp(—~1is7) Fy Sdlr 57
TUFREISY 2 [-F,_f']'
R LF, i S (C3)
2 Sof—l 3 - Foi Sljw
Nt exp(ib;)-exp(isy) | Fy»  Sof|[Fit
US| 2 [ S ]
Wt LFry? Si (CH)

As before, the calculated values F;/! and S
should always be zero.

020
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Birefringent Filter for Millimeter Waves

BERNARD M. SCHIFFMAN, MEMBER, kL, }‘:.Nl) LEOQ YOUNG, riirLow, 1Ly

Abstract=—A seale model (=20 GILY of a Sule-type bicelringent
« wase fller for millimetee wavelengihy s deserbed, *The [ter comsdsts of
e caseaded identical balf-wave plates, or crystals, each composed of an
: ardiflein] anisotropic dicleetric medium with its reference avis Glted
' some prescribed angle to the plane of the input polariztion. The desipn
- and nnalysis of an individual plaie, using Collin’s second-order theory of
- the birefnngence of artilicial anisotropic diclectrics, and the analysis of
. multiclement filters (hlters composed of mam ;;I.xlé.\), aitded by Evany’
matrix method, are discussed. The experimental filter was tested in the
smange of 18 to 33 GHy, and its measured performanee was lound (o
. compare well with the theoretical performance over a major portion of
" the range of frequencies used in the wsis.

A synthesis procedure for optimum {cquai-ripple stophand) response
- multielement filters is given, together with tables of plate angles for such
. Blters, In this procedure, the Dolph approvimation and the Harris syn-
- thesis arc combined.

. L. IntrovucTioN
4. General

) HE SCOPE of this research included the design and
Ttesting of a scale model of a plate of artificial bire-
fringent medium for the milimeter-wave region, the
construction and testing of an experimental filter composed
of several plates, and the investigation of methods of syn-
thcs:zmg optimum configurations of the plates of a filter,
*with a view toward providing convenient tables of filter de-
s:gns (plate angles).

- Optical filter techniques that were originally developed
mexplmt the birefringence property of certain naturally oc-
curring transparent crystals (such as quartz and calcite) can

be adapted for milhmeter or shorter wavelengths, This idea
was first proposed by one of the authors.t!

Birefringent filters were first invented in 1933 by Lyot,
aFrench astronomer. These first filters required crystals or
plales of unequal length and lossy polarizers between each
pair of adjucent plates. Later, Solc,M—1! in Czechoslovakia,

-lm'Lnted the form of filter in which all plates are equal
Icngth and only two polarizers, one at each terminal, are
r:quued The birefringent filter has recently been further de-
“weloped at Stanford.#1.19 The Sole- -type filter is the subject
Jof this article, with emphisis on the design of filters with
“equal rippies in the stopbund.®
¥ Optical bireliingent filters have very natiow passhands, (11
owing to the large number of optical wavelengths in the
path through the birefringent material. The presentation of
“an exact design theory, plus numerical tabics, should there-
fore be of some stgmificance. The experimental confirmation

Manuscript received Qctober 26, 1967; revised FLbl‘ll"Il'} 5, 1968,
-This work was sponsored by the NASA Electromies Research Center,
Gmbridge, Mass., under Coniract NAS 12-136,

The authors are with the Stanford Rusearch Institute, Menlo Park,
Czlu' 94025
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of theonies schiing to the ‘fl_r.'si;'n of birclruypent filters wt
nnllmweter wavelengths was casnied out al centimeter wave-
lengths, and 1t was thus demonstrated that birefringent filters
can also be constiucted and operated down to miciowave
ftequencies. Tlere they are equivadent to dircctional (non-
reflecting) filters, und should be suitable for use in higher-
mode-fiee beam waveguides, particularly at millimeter wave-
lengths.

Other fifter design techniquesP B common to both

“optical and microwave technology are not discussed herein.

B. The Birefringent Filter

The birefringent filter is a four-port, intrinsically reflection-
less passive device. Its mode of operation 1s similar to that
of a directional filter in microwave technology and is differ-
ent from conventional acflection-type  filters. The four
“ports™ are simply the two orthogonal polarizations of a
plane wave at the input and output ends of a birefringent
filter. The filter response depends on: 1) the length of a
plate, 2) its bircfringence (chiferential phase shift per unit
length for the two polanizations, which is a function of fre-
quency), 3) the angles between the plate axes and the input
polarization, and 4) the choice of output port (angle of out-
put polarizer),

A transmission line cquivalent circuit of the birefringent
filter is shown in the Appendix.

C. The Birefringent Plate (Filter Component Element)

1) General Properties Requured for Frlter Work: The term
birefringence means double refraction as applied to an un-
polarized beam of light striking the surface of an anisotropic
plate, as shown. for example, in Fig. 1. However, the condi-
tion under which no beamsplitting occurs, as shown in Fig,
2, is precisely that required for birefringent filters. In this
report, the reference asis will be a direction normal to the
optic axis rather than the optic axis itself. Here the optic
axis, also called the fast axis (of polarization), in con-
formance with the characteristics of the laminated diclectric
sandwich type of wmitifieial birelvingent medium used in the
filters desenibed herein, is notmal to a lamination.

) Fhe Half-Wace Plate; Cascades of Half-Waee Plates:
Fig. I shows u birefringent plate that we will assume is
impedance-matched to free space. We further assume that
lincarly polarized waves normal and parailel to the plate
reference anis suffer a diflerential phase change of 180
degrees at fy. the design center in,qm.nw.

Note that in Fig. 2 the output wave is at an angle 8 to
the plate axis. Thus. a rotation of the anis of a half-wave
plate by an angle g rom the plane of polarization of the
incoming wave causes the plane of polarization of that
wave to be rotated by an angle 28. The horizontal and verti-
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into two hincarly polarized rays.

')

EAST AXIS
{CPTIC AXLS)

=4 ’< WAVE
7

NORMAL,
Epy {OUT)
E
L f SLOW AXIS
WAVE (REFERENCE AXIS)
NORMAL
{IN)

Fig. 2. Rotation ol the plane of polarization of a linearly polarized

wave by a half-wave plate,

cal components of the output wave are

Iy = Iy cos 28 and Ky = Eyy sin 28, (D

‘When 8=45 degrees, it is seen that the half-wave plate can
become a one-element filter, because all power at frequency
foemerges as a horizontally polerized wave (Ev=0, Ez=1).

Consider now, a cascade of two half-wave plates. Let 3, be
the angle of polarization at the output. It can then be shown
that

Br — B1 = 1/28, ()

is the general solution for the necessary plate angles of a
two-plate filter.

D. Frequency Response of a One-Plate Filter

Consider now the complete frequency response of a
single-plate filter with unit input. Instead of a frequency
variable f, we will use the birefringence parameter ~, which
is one-half the differential phase shift of the plate. The fre-
quency response of the single-element filter is given by the
well-known formulas

Ly =cosy aud Ky = jsiny. 83!
Equation (3) is based on an assuniption that at y==/2, the
fast axis advances the phasc by 90 degrees whereas the
slow axis retards the phase by the sume amount—all re-
ferred to some output reference phase witich these equations

state is zero.! The plate angle is 3=45 degrees.

! Physicaily. the rate of change of phase with frequency s propor-
tionaito ume delay and must be positive. There 1s no similar restriction
on phase, and the nitial value of phase 15 like a constant of integration
that may be assigned an arbitrary value, conveniently zero.
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£ dvifrnad Bucfringent Medin

The construction of o bireftingent ller for millimeter |
witves tequites an artificial birefringent erystal or medium, -
Our choice was the air-diclectnie sandwich, which has been
analyzed by Collin."™ Collin™s second-order thewy of bires .
lTingence in an air-dielectric sandwich material enibles usto
predict how the birelimpence-versus-fiequency  function
deviates from hnearity and helps us 1o choose suitable dimen- -
stons for the filter stiucture.

1[. DESIGN OF AN ARTITICIAL BIREFRINGENT PLATE
A. The Anisotropic Meditm

Rough plate dimensions were caleuiated, based in general -
on the equipment o be used in testing the filter and in par-
ticular on the cross section and extent of the rudiant beam |
that could be generated. On that bass, it was decided to
make cach plate apertire ten inches square. so that it would *
encompass the test beam, wnd to make the length of the filter
not much greater than its width to minimize the effects of -
any beam divergence. An upper limit of about three inches
was thus placed on the thickness of a single plate in, suy, a
four-clement Glter.

Fig. 3 shows four possible response shapes o u four-plate ”
filter. The lowest pussband, at frequency fy. was chosen as
the muin passbund (the lower right shetch in Fig. 3),in
order to heep the overall lengih of the filier reasonably short.
The width of the passband to the haif-power points was
computed from an approximate formula derived from one
given by Solc®® (also approximate) for fiiters with equal plate
angles .1

o/ fo = L2/ NE. @

Here, & is the number of clements or plates and & is an ®
integer representing the order of the pussbund. In this case,
we use k=1. According to {4} fur N=4 and k=1, we can
expect passbands of the order of 30 percent of the center
frequency. Each plate would thus have to be matched over
a wide band by tapering or stepping the edges of the dielec- *
tric laminations. These were made of Rexolite 1422 (relative”
diclectric constunt xy=2.53), which has good machinability -
and dimensional stability, as well as low loss.

B. Design of A Half-Wave Plute -

The plan for plate construction, excluding framework, is
shown m Fig. 4. Huie, 7 is the masimum thickness of the
diclectiic material (Reaohte) and S 15 the spacing of the
sheets of this niaterial. In the tapeied regions, whicl oceupy
two-thirds of the plate length (tinckness), the sheet thick
ness ¢ varies linearly from 0 to 7 aver more than & wave-
fength for both polanzations, yielding wide-band impedance
nittching. The normalized design parameters for the com-
posite material are the ratios 73 for the inner region, £'/8
(varying from 0 to £/5) in the two tapered regions, and S/
where A 1s the wavelength in free spuce. The reference axis
is paraile] to thz thin edge of a sheet of diclectrie, v

The most eflicient use of the dicleetric lanmnations is ob-
tained when the ratio ¢/§ is approximately 0.5. The bu'e-;g
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Big. 3, Fundamental response characteristics of
equal-length birefringent filters

Fig. 4. Sketch of the internal construction of an impedance-maiched
artifictal birefringent plate,

fringence for the static case is then near maximum for a
given material. When frequency effects are considered, as in
Colhn's theory,™! the optimum ratio is 2 function of fre-
quency and generally is less than 0.5. Excitation of grating
lobes will be prevented if S is less than Mg, where M\ is the
wavelength in the material of the dielectric sheets.? With a
relative dielectric constant of x,=2.53 and 4 free-space wave-
leagth of 0.39 inch (at fo=20 GHz). we find that S/A,
should be no greater than 0.628. A sheet thickness (#=0.125
inch) was chosen for the plate, and the value /S was chosen
as 0.4, which provided near-optimum efficiency, according
to calculations based on Collin’s theory. Combined, these
values yield S/7=0.53, which is less than the 0.628 caicu-
lated above for the atlowable muximum with respect to the
generation of graung lobes.

The dimensions of cach tapered famination are given
Fig. 5. These dimensions were based on interpolated data
with respeet to the tapered regions, and the complete plate
was designed for j3=20 GHz A direct 1ecaleulution ol the
center frequency, rather than an interpolation from previ-
ously computed data, yielded f,=20.35 GHz as the half-

* This limit is for the extreme case, +/5—1. )
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Pig. 5. Sheteh of o plate lamination, showing dimensions,
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Fig. 6. Front view of a hati-~wave plate assembly,

wave plate center frequency. A skeich of the front view of
the plate is shown in Fig. 6.

C. Test Results on the Half-Wace Plate

Two horn-reflector antennus were lined up in parallel
(without the half-wave plate) so that the’ maximum signal

. (which was made the reference level) was received. The test

frequency used was 19.9 GHz. The half-wave plate was then
inserted midway between the transmitting and receiving
antennas, and at various positions, the level of the received
signal was noted, and compared with the reference level.
The results are plotted as attenuasion (UB) versus orientition
of plate (degteesy m Fig, 7. Two eaperimental curves of this
characteristic, plus a theoretical curve based on (1) are
given n Fig. 7.

In addition to testing the plate near the caleulated value
of fu at various angles, tests were made to determine the ac-
teal ceater frequency. These yielded a center frequency

fo=20.65 GHz, with an estimated measurement accuracy of

+0.15 GHz. {(Later measurements on a filter composed of

« five identical plates gave fo=20.4 GHz.)
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Fig. 7. Theoretical and experimental dircct-wave transmmssion of a
lincarly polarized beam through a half-wave plate for varying
plate angles.

In making the described measurements, it was necessary
to {ully absorb or divert (that is, reflect out of the system)
the cutput wave orthogonal to the desired wave. Since the
undesired comiponcnt was horizontally polarized, plane
gratings made of parallel thin wircs spaced one-cighth inch
apart were placed on cach side of the test plate. The wires
were horizontal, and the grating planes were at 45 degrees
to the propagation path. The undesired component was thus
reflected out of the sysiem, while the desired component was
transmiitted freely through the two gratings. Also, thin
absorbent cards were placed inside each horn so that the
desired component was transmitted freely and the undesired
component was absorbed. These precautions were necessary
to provide proper termination of all four possible ports of
the network.

In this first test on a single birefringent element, there
appeared to be little or no refiections from the plate; the
insertion loss was found to be very low, the measured center
frequency was quite close to the design value, and the
transmission-versus-plate-angle characteristic was generally
close to theoretical,

111, DESIGN AnD TEsST OF A FIve-ELEMENT FILTER
A. Design

The formulas used here for the plate dnﬂles of the folded
type of filter are

B: =8, (%odd), B: = ~ B, (ieven), {3)
and
B = 90 degrees (6)
where
B = 45/ degrees, 7

Four additional plates identical to the first test plate were
constructed so that a filter with up to five plates could be
tested. The computed response of a five-plate filter is shown
in Fig. 8.

The dashed line in Fig. 8 is the complementary output
(absorbed component) of the five-clement filter and is
Tabeled “direct wave,” since its E field lies in the same plane
as the input wave, It would appuar that the stopband rip-
ples, other than those closest to the passbands, are missing,
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Fig. 8. Computed relative power of the direet and orthogonal oulputs
of a five-clement equal-angle filter with the filler-clement structuse
of Fy. 7.

40 -
g - -
I COMPUTED
g RESPOMSE 1
5
2R
]

E b
- ‘......l
| N5
Bivz 9 degrans
o ! ] L
o [) ) 3 EL} 25 30 a3 “
FREQUENCY — GHz
Fig. 9. Mueasured and compuled attenuation response of the orthog-

onal (bandpass) outpue of a tive-element equal-angle filter.

however, this is only because their amplitude is impercep-
tible on the seale used 1n Fig. 8. These minor ripples are
shown in some of the following figures. (There are actuaily
two ripples in the lowest Stopband—four in all the others
of a five-element equal-angle filter.)

B. Test

The five-clement folded-type filter was tested as a band-
pass filter over the range of 8-35 GHz. The test results to-
gether with the calculuted response (filter attenuation versus
frequency) are shown w Fig. 9. (The method used in cal-
culating the response of birefringent filters is outlined in the
next section.) Here, measurement accuracy depended on
precision attenuators. Photographs of the assembled filter
and the test set-up are shown in Figs. 10 and 11, respectively.
The experimental points plotted in Fig. 9 were obtained by
two methods. In the frequency range above 22 GHz, the
measurements were made at discrete frequencies; at lower
frequencies, the [requency was swept electronically. The
experimiental points in the tegion below 22 GHz also in-
cluded some pomt-by-point measutements as o lucther
check. The reference levels were measured when the test
horns were (polarized) parallel and the filier was absent
from the path of transmission. The receive horn was then
rotated 90 degrees, causing the received signal without the
filter in position to be attenuated by about 40 dB or more.
The filter was subsequently inserted-n the path of trans-
mission and the signal level wag again measured.

A plot of the. filter Fesponse for the bandstop mode is
shown in Fig. |2 “overfthe range 16-33 Gllz For reference
Ppurposes, thmd&“ﬂlatﬁ theoretical responses of both modes

-
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Fig. 10. Photograph of the experimental five-element filter.
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Fig. 11.  Photograph of the instrumentation used for measuring the
attenuation versus frequency response of the filter of Fig. 10.

are plotted on the same scale in Fig. [3; however, here the
abscissa is the. birefringence parameter v, so that there is no
crowding of the response shape in the upper part of the
spectrum such as occurs when frequency is used as the
independent variable (Figs. 8. 9 and 12). The filter response
shown in Fig. 12 was made with both antennas aligned paral-
lel, and they remained so throughout the test; no rotation
of a horn was required.

The test results (Figs. 9 and 12) tend to confirm the
validity of Collin’s second-order theory of the birelringence
of artificial anisotropic diclectries.!l and Solc’s theory with
respect to equal-length birefringent filters.™ Solc had, of
course, constructed filters at optical frequencies. while the
work at Stanford Rescarch Institute was done at frequencies
many orders of magnitude lower.

The deviation of the measured points from the computed
line in the upper stopband (Fig. 9) may have been caused
by trapped resonant modes of the undesired (direct-wave)
response, in turn due to imperfect horns and the quasi-
optic nature of the'experiment.
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Computed attenuation response of the five-element equal-
angle filter with 5 as the independent variable,

IV. ANALYSIS AND SYNTHESIS

A. Analysis of Filters with Equal-Length Plates

Evans® has described a method of calculating the re-
sponse of birefringent filters composed of equal-length ele-
ments using a matrix muitiplication technique attributed to
Jones. 16l

A complex output wave vector Eocr 1s found by pre-
multiplying the input wave vector E;x by a matrix [M]
representing the birefringent filter

Eovr = L”IEL\'- (8)

The wave vectors are two-clement column vectors and M is

a 23X 2 square matrix. Thus
T (I;L')
N = ] .
['41'

- Ex
four = ([L.}.

The X-Y and V-H axcs arc independent, with the X axis at
an angle g, to the ¥ axis. Expunding (15), we obtain

E, = Mk + M .Ey )
and

Ly = Moy + My, (10)
23|
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For a vertically polarized input wave of unit amplitude
(£ =1, £y =0) the output wive components are seen Lo be
kY

' j‘.‘,\' = .” 1 I'..i' = .ll’:]. t_l |)
The matrix for a plate is given by
e )
1] = ( ) (12)
() B .

where, as before, 2y is the difTferential phase shift of the two
orthogonal waves on the principal axes ol the plate. The
matrix for a rotation by an angle g is

sl = (5 7o),

sin 3 cos 3
The [S] matrix rotates the wave vector and plate (as a sys-
tem) so that the plate axis is aligned with the vertical axis,
and then rotates them back again to the original angle, so
that the vertical and horizontal complex components of the
output vector are obtained. This is done for a single plate

through a combination of premultiplication and post-
multiplication by the [S] matrix as follows.

Eour = [S@)][P][S(—8)]E:x.

For several plates we obtain a chain matrix, which—after a
simple substitution—can be put in the following form.

Eour = [S(=p)][2][S(= o) [[P)IS(=px-0) ][] - - -
-[S(=p) [[P][S(—= ) | Eix.

Here the p; are the plate difference angles. Equation (15) is
easily programmed, and it has been used to compute filter
responses. Since the independent variable in the [P] matrix
is v, the frequency response of the filter was obtained by
substituting frequency values corresponding to values of ¥
used in the filter response calculations, that had been cal-
culated by Collin’s theory!"! for the specific plate structure
of the filter.

cos g

(13)

(14)

(13)

B. Synthesis of Optimum Response Filters

1) General: Harris et al.'"! described a general procedure?
for the synthesis of lossless birefringent networks.

The first step is to find a Fourier series representation of
the desired response. Dolph's"” method of obtaining a
Fourier series with equal-amplitude ripples is employed
here as the first step in the synthesis procedure, then the
Harris method!” is used to obtain birefringent filters with
cqual-amplitude stopband ripples. It has been found con-
venient to construct a Fourier cosine series with passband
at zero, leading to a fan-type filter.

2) Finding the Fourier Series: Dolph'st'" design method
is to take the coefficients of a Chebyshev polynomial term
by term and make them the coellicients of a polynomial in
the variable (cos v)* with the same equal-ripple behavior as
the Chebyshev polynomial; however, the new function is

* This shall be known throughout the report®as the Harris pro-
cedure or method.
* Part of the Chebyshev function is discarded in this process.
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periodic in y and of course, unlike a Chebyshev polynomial,
it is always finite. The power series is then rewritten in the
form of a Fourier series, as required for the Harris synthesis
procedure. A scaling procedure must also be used. This is
done before the substitution of the variable, described
above, is made. Its purpose is to transform the equal-ripple
region of the Chebyshey polynomial from peak values of
+ 1 to +e where e is the peak amplitude of the wave in the
stopband, relutive to the mput wave, and to simultancously
fix the width of the passband at the e level. The two results
are interdependent.

We will not go into the details of the Dolph method since
this has been covered very adequately in the literature. The
cosine series is next converted to an exponential series as
illustrated for the case N=35.

.’l a - - l.‘l -1 1 .
Muly) = (—)) Uy (“—’—) e A (-—,-') el
.'ll ] 3 .
(oo
(.-i a) a
S el Ui )
2

Equation (16) is in a form suitable for use with the remainder
of the Harris procedure, which is given in outline form in
the following scction.

3) Nerwork Synthesis (Finding the Plate Angles): The
next step is to find the orthogonal output. (We assume, at
this point, that the coefficients of Mu(y) have been com-
puted for a particular value of e.) By conservation of energy

(17)

This equation states that the total output power normalized
to the input power is unity at all frequencies in a lossless,
nonreflective, birefringent filter. Equation (17) is then solved
for 1 Mnl 2

(16)

|t | Ml =1,

| a2 =1= | Mul2 (18)
M, is in the form of an exponential series. How to find that
series from | My, |? is explained by Harris,™l using a pro-
cedure described by Pegis that includes complex root-finding
methods. (During this process. one-half of a set of 2N roots
are chosen for use in ensuing operations, and the remaining
roots are discarded. The correct roots to choose are those
with absolute magnitude less than or equal to one.)

After the exponential series M., has been found, a matrix
multiplication method is used to sequentially find the plate
difference angles p,. This series of steps starts with finding
the output polarizer difference angle pp=48,—g8y, and then
works backwards from the last plate difference angle, py, to
the first, p1. thereby obtaining the p, of every pair of adjacent
elements of a fan-type filter. Then. by changing the signs
of alternate p, of the fan-type filter. we obtain the design of
a folded-type filter, and finally, the plate angles 8;. As ex-

plained carlier, this implies a change of the output plane of -

e
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palarization From the diteet (o the aithoponal wave, bul
this change is automatically sceomplished by the sign re-
versal of all the alteinate p,, including py-.

{) An Eyual-Ripple Dosign (¥ = 5): The response shape of
an optimum design is shown in Fig. 14 for a lolded-type
filter with =5, The abscissa is the variable . Sinee the
response is symmetiical with respeet to v =90 degrees, only
the Tower stopband and hall of the first pussband are shown.
The cdpe of the stopband is y,"=43.4 degiees, and the
ripple level is e=0.02. The exact plate angles obtained from

- the synthesis by compuler ure

B =8¢ = L0220 degroes
B = B¢ = — 10.1365 degrees
B = 109221 degrees

By = 90.0 degrees.

The input for the computer synthesis was v,=46.6 degrees
for the fan-type filter, corresponding with y,/=90—46.6
=43.4 degrees, the edge of the siopband of the folded-type
filter response of Fig. 14.

3) Fornulas for Equal-Ripple Filters with Any Value of N:
In order to compute the plate angles for any value of & and
various valies of v, the following iterutive formulas were
developed. These formulas give the Chebyshev coefficients,
the coefficients of the two Fourier exponential series My
and |M21['-‘, and the coefficients of the polynomial (A8) of
.the Pegis procedure, as described in Harris. [

a) Chebyshev Coefficients: The coefficient of y* of the
Nth-order Chebyshev polynomial of the first kind Ty(y) is
given the notation fyxy for AV both even and odd. An iterative
formula for the fye 1s then

fork=1to N

(19)

byr = 2o — bv—eay
with the following witial conditions:

tvo=(—1)¥"7, for N even,

fyvo =0, for N odd,
f.u = l,
lyoag = 0, for k> (J\T - 2).

b) Coefficients of the Fourier Exponential Series Mi.:
First compute e from the Chebyshev coefficients® |

¥
el = z\t.VkUl—L,

for k odd. (20)
hel
We then have for the coefficients of the cosine series,
L
Ay = ;
N=L N (2-{)

Ly vt (2312
L S
ne o J=2

5 An alternate procedure, replacing {20), would be to choose ¢ in-
stread of ', and then compute

Ax—p-nly—a—2 ..v_:.> .

1 1 .
= cosh [T co~h~! —-:I, and vy = vos™! .
- €
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Fig. 14, Computed relauve pc;wer output of a folded type of equal-
npple five-clement filter,

The Ay_: values are to be computed for even values of k,
over the range A=0to §¥— 1. Note that if A=0 in this equa-
tion, the summation term is understood to be zero. The
coefficients of the exponential series M ((16) in general
form) are then obtained from Ay_ values as follows

(V-1
0-—_.--——-.-.

Gf = Cn—-J = "%'-A‘V—‘lh i= 0t

These are analogous to the coeflicients of Clw) in Harris’
egs. (2) and (200 and are given in the same order. Here,
unlike its function in the previous cosine series, the sub-
script j does not directly indicate the power of the exponen-
tial variable.

¢) Coefficients of the Exponential Serfes | M| 2

v
Do=1—2.C¢ (23)
L)
and
=K
Dy = — ¥ C\Cisx, fork =1 to .

7=0

Here, again. the Dy coeflicients are analogous to those of
D(w) in Harris’ eqs. (8) and (21), and they are given in the
same otder.

d) Coefficients By of eq. (A8) m Harrs® Method: First,
construct the followtng set of numbers.

Rp=R i+ Rjseey, j=0toN, k=jto N, 24

excluding those R,; in which (j+4) is an odd number, with
the initial conditions
R, =1

P =2

for all J
for k £ 0.
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The cocflicients of the Pegis polynomial (coefficients of y* in
cq. (A8) in Harris ef a1 are then computed for k=0t
A

2 (=1 ey 5D,

=0

BL = t:-)-':')
with the summation over j to be made only for cven values
of jE(N—FK).

The remainder of the synthesis procedure is as given in

" Marris ¢f al.B1 1t requires complex root-finding procedures,
the reconstruction of the polynomial Ay (rom half of the
root fictors of I Mﬂlﬁ. and matrin multiplications for deter-
mining plate angles. As mentioned in_§c%ion 1V- B-3} of

5t
iy

224

tins paper, the proper roots of | M ]® to use in the synthesis -
procedure are those with absolite magnuude less than or
Squal to one. ’ .
¢} Disewssion: OF further interest are the computer-
determined distributions of the one real zero and the
{(N—1)72 pars of conjugate zeros of the Pegis eqs. (A8) and
(ALOY i Hartis,7? of the-fun-type Alter, Here, the variables
are Y and X, where Y= X4X"1 The zeros of eq. (A8) are
found to lie on an ellipse. the mujor anis of which hes on the
real ans of the Y-phine. The roots are equispaced on the
chlipse in the sense that they are projections (Loward the real
axis) of N equispaced points on the circumseribing circle,: .
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with conjugate rools in both the right and left half-plancs,
and the one real root at the vertes ol the ellipse Y=2. The
'scmimujor diumetdr of the cllipse is =24, where 0<h< 2.
The peint Y= =2 appears Lo be the opposite focus of the cl-
lipse. Furthermore, the center of ihe ellipse is at Y=—h.
The locus of the hull~cycle in v, 0<y<#/2 (sce the lower
left sketch of Fig, 3, which shows a full cycle of the o1thogo-
nal response of the fan-type filter) seentingly is transformed
in the variable ¥ lo —2< V<2 on the real anis. The equa-
tion for such a displaced cllipse in the (Y3, Ys) planc is
¥a?

(Y1 + Iyt )
P —— —_— ‘-)"
e+ir s (0

where Y= Y4-jY,. This distribution of zeros is to be com-
pared with the zeros of | M| ? inthe variable y/y,

[ dal? = 1 — &7y (1)
i

Here, the zeros can be shown to lie on an ellipse centered on
the origin, with 2V zeros (2 of which are real) that are equi-
spaced on the ellipse in the same sense as stated above. The
locus O<y<=/2 is transformed to 0<y/y<1/m on the
real axis of y/y,. The exact location of the zcros, dcrwcd by
amethod illustrated by Wcmberg,l"’l are

(), = oo () b (5
R ” k—cos ~ cosh vy, — jsin m sinh v, @)

fork=0,1,2 ---,2N — 1,

It should be possible to find the coefficients of M by
formula, rather than by general (polynomial) foot-finding
procedurcs, as was done here for the tabulated optimum-
response filter designs. The two zero distributions are linked
by eq.(A8)M whose zeroes were found to lie on a pear-shaped
curve. The vertex of the curve is at X=1 and there is one
real zero at X=1, and (~¥—1)/2 pairs of conjugate complex
zros (absolute magnitude less than one) arrayed around the
origin, on the rounded portion of the curve, which is almost
circular in shape. The locus of the half-cycle in v, 0<y <=/2,
is here the umt circle starting at X= 1(y=0) and ending on
X=—1. As explained in Harris,[] these zero locations are
obtained from those of eq. (A8) by the solution of a qua-
dratic equation.

Y. DESIGN TaBLES FOR OrTIMUM RESPONSE FILTERS

The design tables in this section give the plate angles 8.’
of the folded-type flter for all odd values of N from N¥=5 to
19, and for ¥=25 (sce Figs, 3 and 14). In each case, five
separate designs are given for various values of the stopbund
ripple parameter e. Tables I-1X give the value of ¢ in terms
of attenuation L,, defincd by ,

L, = 20 loge et dB. {29)

. . 54
The output wave is orthogonal to the input wave Tor these

designs. Heading each column are nominal values of 'L,

from 10 to 40 dB. The exact attenuation values, from which

_ folded-type filter but shifted by =/

389

the tables were campulted, are within 0.1 dB of the nominal
vabues for most ol the cases listed, the grewtest deviation
from the nominal value being 0.22 dB, and these exact
values are given direetly below the last given value of g for
cach case, Since the Tolded-type fiiter is symmetrical about
a central plune, only the first half of the 8 values, including
i=(N-+1)/2, is given in the tables. The angle v, [from
which £, (eancl) was c.ompuu.di v also given for each

" design.

The approximate values of attenuation (nominal values)
were found by interpolation m published tables of the
squarcd Chebyshey function™ Iisted aguinst values of ¥
and y;=t A more direet approuch would have been Lo solve
the equation in footnote 3 for eanct values of 3y for given
values of e Several of the designs, including AM=23, were
analyzed by the muatrix multiplication technique of {15}, and
the responses at the ripple peaks were found to be within
few hundredibs of a dB of the exacl value of attenuation.
The B/ values (i=1 to N) were computed in sequential
order from By’ to 8 and were found to be symmetrical to
better than 0.001 degree for the N=25 designs, and to bet-
ter than 0.0001 duegree for the designs with lower values of
N, with increasing symmetry as & decreases. Since the tubles
give 8 values that are rounded off to the fourth decimal
place (in degrees), all listed values except for =25 retain
the full accuracy of the computations; for ¥=25 there is
some (but not complete) loss of accuracy in the last decimal
place. In any case, the precision of the tables generally ex-
ceeds the state-of-the-art of setting devices to precise angles.

A previously unsuspected feature of equal-ripple designs
that is-brought out by the tubles is the fuct that many of the
designs (those with the smaller L, values) have 87 values that
do not alternate in sign. They do, however, alternate in posi-
tion about seme average (nonzero) value of 8 and are there-
fore of the folded-type design. The corresponding fan-type
filters have monotonically increasing 8 values, and both types,
of course, are symuneirical, or antisymmetrical, about a cen-
tral plane.

A formuls for computing the plate angles of the fan-type
filter from those of the folded-type design is given below.

/= 131’
Ba=p 4+ B — B8)
183 = ﬁz - (‘82’ - 531)

.34 =83+ (8 - B4) ’ (30)

B = i E (13:1—1’ - .61')

By = By + By — 3)

where the prime indicates the folded-type filter. The output
polarizer angle 8, will be found te equal zero, and the flter
response for the fan-lype filter will be identical to thut of the
2in 7.

The value of ¥’ for a 3-dB loss in the passband may be
computed from the following formula.

255
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Fig. 15, Equivalent circuit for a birelringent filter,

0.115
Yan = sin~! [(Si“ ') cosh {T (Le + 3)} :i (31)

The primed values of v denote the folded-type filter, and the
values of v, and L, (attenuution) are given in the design
tables.

Equation (31) is accurate for npple levels of 10 dB or
greater and may therefore be used with all the design tables
in this report,

YI. CoNCLUSION

Extrapolation of the results of research on the microwave
scale model (reported herein) to millimeter wavelengths
should not be difficult. The necessarily smaller size and
greater fragility of the resulting structure would then de-
mand different methods of manufacture from the standard
machining techniques used for the scale model. )

The optimum-response birefringent-filter design tables,
their derivation, and the numenical tables, represent an im-
portant advance in the state-of-the-art. The analytical tech-
niques and the numerical results should prove useful at opti-
cal as well as millimeter wavelengths. Topics relating to arti-
ficial anisotropic dielectrics that are worthy of investigation
include: 1) improved methods of construction aimed at
making them light, compact, and inexpensive, and 2) study
of the effects of reflections from interfaces between plates
and between a plate and free space, and means of dealing
with such effects.

APPENDIX
TrANSMISSION LiNg EQUIVALENT CIRCUIT

An equivalent circuit for a birefringent filter is shown in
Fig. 15.14 It could be constructed in waveguide, for instance,
using cascaded forward directional couplers. To make the
correspondence exact, the coupling of the directional cou-
plers should ideally be independent of frequency (corre-
sponding to the difference angles between adjucent optical
crystals, which are independent of frequency).

The differencé n line length between each upper and
lower connecting line 1s equivaient to the diffierence in path

length between the two polarized components in cach optis
catl erystal. The amplitude coupling coeflicient is equivaleat .
to either the sine or to the cosine ol the difference angle bee
tween adjicent optical crystals.
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Achromatic Wave Plates for the Visible Spectrum*

C. M. McInTyrE axp S. E. Hiruis
Steniord Unizersity, Stanford, California 943503
(Received 19 June 1968)

We report the experimental demonstration of an optical quarter-wave plate having a retardation of
90°=:1° in the region from 4000 to 8000 i. The device is based on the synthesis procedure of Harris, Am-
mann, and Chang and consists of six sapphire wave plates with appropriately odented principal axes. The
device does not suffer frown thermal or angulzr problems as de loager, narrow-band birefringent networks.
Results comparing a 10-plate unit with the above 6-plate unit are given.

TnpEx Hespmves: Wave plate; Birefringence; Sapphire; Crvstals; Filters

PTICAL networks having prescribed transmit-
tance-vs-frequency characteristics can be syn-
thesized by using recently reported procedures.'* The
procedure for the synthesis of networks consisting
of cascaded, equal-length, birefringent crystals between
an input and cutput polarizer,' is alse applicable to the
design of certaln networks which do not contain
polarizers. In particular, wave plates which are nearlv
achromatic over a large portion of the spectrum may
be synthesized.

In this paper we present theoretical considerations
and experimental verification of the design of such
achromatic wave plates. A quarter-wave plate consist-
ing of six sapphire wave plates which has a retardation
of 90°2=1° in the region from 4000 to 8000 A is de-
scribed. We include a systematic method for the svn-
thesis of wave plates of any desired retardation as a
function of optical frequency. The degree of approxi-
mation of the synthesized wave plate to the desired
transier function is determined by the number of plates
emploved in its construction.

Achromatic combinations of birefringent plates have

* Work was supported wholly by the U. S. Army Research
Office, the TF. 8. Air Force Office of Scientific Research, and the
Office of Naval Research under the Joint Services Electronics
Program under Contract Nonr-225(83).

S, E. Harris, E. O. Ammann, and I. C. Chang, J. Opt. Soc.
Am, 54, 1267 (1964). __

:8?"') O. Ammana and I. C. Chang, J. Opt. Scc. Am. 35, 835
(1963).

+E. 0. Ammann, ], Opt. Sec. Am, 36, 943 (1966).

‘E. O. Ammaang, J. Opt. Soc. Am. 56, 952 (1966).

SE. O. Ammann, J, Opt. Soc. Am. 56, 1081 {1966).

¢E. O, Ammann and J. M. Yarborough, J. Opt. Sec. Am. 37,
349 (1967).

been discussed previously by several authors. Combina-
tions of plates having different dispersions of bire-
fringence are considered by West and Makas,” who also
cite references to earlier related work, Destrizu and
Prouteau.’? and Pancharatnam®! describe achromatic
combinations of two and three birefringent plates,
respectively, where the plates are of the same material
but difierent thickness. These procedures are however
far less accurate than those reported here. As an
example, Destriau and Prouteau give results for an
achromatic quarter-wave plate with a retardation which
varies from 83° at A=6100 A to 95° at A=3890 A to
84 at \=4360 A. Achromatic retardation may also be

F1c. 1. Basic configurauon of achromatic wave plate,

7 C.D. West and A. 5. Makas, J. Opt. Soc. Am, 39, 791 (1949),

$ 3. G. Destrizu and J. Prouteau, J. Phys. Rudium 10, 53
(1949).

9§, Pancharatnam, Proe, Indian Acad. Sd. A41, 130 (1955).

105, Pancharatnam, Proc. Indian Acad, Sci. A41, 137 (1953},
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T'1e. 2. Basic configuration of optical network including polarizers.

obtained by means of a Fresnel thomb!! which makes
use of the phase difference between orthogonal polariza-
tions upon total internal reflection. A disadvantage of
the Fresnel thomb is that the optical beam is displaced
laterally during passage through the device.

The physical configuration of our achromatic wave
plate is shown in Fig. 1. Four crystals are shown here,
but any number may be used. In the fizure, a set of
reference axes, the x. v axes, are shown as solid lines for
each crystal. The broken lines indicate the principal
axes of the crystals. The angles to which the principal
axes of the crystals are rotated are the variables of the
syvnthesis procedure.

ANATYTICAL CONSIDERATIONS
A. Review of Synthesis Procedure

The examination of the impulse response of optical
networks composed of birefringent crystals is the basis
for the development of a synthesis procedure for these
networks.! The crystals are assumed to be dispersion
iree and to have their end faces flat. paraliel. and normal
to the incident light. Under these conditions, the net-
work shown in Fig. 2, consisting of V equallength
crystals between an input and output polarizer, has an
impulse response given by

¥
K= Cad(t—ms),
Ee ]
r=L{An)c,

Cm:f('?"‘!r""'-” vt wﬂ-‘r’"p)s

where L is the crystal length, An is the difference of
index of refraction between the orthogonal principal
axes of each crystal, ¢, is the angle to which- the slow
axis of the ith crystal is rotated, ¢, is the angle to which
the transmission axis of the final polarizer is rotated,
and ¢ is the velocity of light.

In Eq. (1), the time origin has been chosen such that
the first impulse appears at the output at (=0, This

1 See, for example, M. Born and E. Wolf, Principles of QOptics
{Pergamon Press, Inc.,, New York, 1964}, p. 3l

n
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choice is arbitrary; 2 more convenient choice is

()= \Ze Cord(l— mr), (2)

me—V]2
where the impulse response is centered around I=0.
The frequency-domain transfer funetion for this net-
work is the Fourier transform of Eq. (2)
X2

Z Cme—amu T,

m— 72

H(f)= (3)
Here H(f) is 2 periodic function of frequency with a
period r determined by the crystal length and bire-
fringence. The desired arbitrary transfer function must
first be made periodic by extending it outside of the
frequency range of interest. The transfer function is
then expanded in the form of Eq. {3} and the synthesis
procedure! is used to determine the crystal angles to
vield the coefficients Ci.'? If 2 is the number of crystals
used, then the exponential series approximation to the
desired function may have z-+1 terms.

B. Achromatic Wave Plates

In applying the synthesis procedure of Harris,
Ammann, and Chang,' the transfer function H(f) is
obtained between an input and an output polarizer. In
general, the transmission axes of these polarizers are
not parallel, and the angle between them is «,. This
angle is determined by the synthesis procedure and is
dependent on the vaiue of H(f) at f=0 (see Appendix
B). Though achromatic wave plates do not have either
an input or an output polarizer, they may be svnthe-
sized by using the procedure of Ref. 1, by correctly
choosing the desired transfer function. and then simply
leaving the polarizers out of the finished network. To
understand this, it is convenient to look at the two-
dimensional descriptions of an optical network without
polarizers, using the conventional Jones calculus.™

In order to utilize earlier results,! we define an y—v
coordinate system where the x axis is paralle]l to the
transmission axis of the input polarizer and a n—v
coordinate system where the u axis is parallel to the
transmission axis of the output polarizer. We define
H(f) as the transfer function relating incident light
which is linearly polarized along the = axis to output
light which is linearly polarized along the « axis. We
also define G(f) as the transfer function relating inci-
dent light which is linearly polarized along the x axis to
output light which is linearly polarized along the v axis.
By conservation of energy, these transfer functions must
satisfy the relation

H(NE*(f)+G(NHG (=1 &

Appendix A shows that the Jones matrix for the
network of crystals without polarizers can be writren in
# Experimental results for networks of this type are reported by
J. M. Yarborough and .E. 0. Ammann, J. Opt. Sec. Am. 38, 776

(1968).
B R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
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thefactored form

COSyp
M=

ing,

T ) o

when expressed in the x~y coordinate system. The first
matrix represents a rotation through the angle ¢, and
is independent of frequency. The second factor depends
only on the desired transfer function ().

To synthesize an achromatic wave plate of retarda-
tior. 8, we take

Ha(fy=e#", HS[FSfo, (®)

where 8 is independent of frequency. From Eq. (1) we
have G(f)=0, and thus

CosSw, —singp,ed* 0
s | Jpgren @
sittezp 0 egan

COS¢p
The second factor is identical to the Jones matrix for a
conventional wave plate except that here 8 is indepen-
dent of frequency over the interval f to fa. The first
factor in Eq. (7) represents an achromatic rotation of
the principal axes of the wave plate.

Note that, unlike the conventional wave plate, the
achromatic wave plate includes a rotation through the
angle v, For many applications of wave plates, for
instance the conversion of linearly to circularly polarized
light or vice versa, this rotation is of no consequence.
However, Appendix B shows that by placing a restric-
tion on H (f}, namely H(0)=1, then ¢, will equal 0 and
there will be no rotation. In general, this restriction
will require more crystals in the network in order to
achieve a desired degree of approximation. In the special
case of an achromatic half-wave plate, the network may
have principal axes at no cost, in the desired degree of
approximation.

coS¢,

C. Approximation Problem

The coeficients, Cn, in the network transfer function
of Eq. (3) are chosen to give the best approximation to
the desired transfer function of Eq. (6). These coeffi-
cients must be real since they are the magnitudes of
the delta functions in the impulse response of the net-
work. Because of this, the real part of H(f) must be
even and can therefore be expressed as a cosine series

Ni2
Re[H(/)]= % Bn cosmawr. (8)
-}
Comparing this with Re [Hq(f}], we see that the choice
Bo=cos8/2, Bn=10 for m>1 is exact; therefore,
Co= By==cosf/2. (9
The Im [H(f)] must be an odd function and can be

represented as 2 sine series

yis
Im[H ()= 21 K sitmor, {10)
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We now choose the K,.’s to give the best rms approxi-

mation to Im [Hs(f)]. To do this, we could incorporate

Im {H4(f)] into a periodic function and compute the

usual Fourier-series coefficients. However, specifying a

particular function outside the interval f1< f< f» which

would give the best approximation within the region of .
interest is difftcult and unnecessary. The optimum

approximation is obtained by minimizing the rms error

only over the region of interest. With Im [H+(f)]

=3ind/2, we have

d /2 g N
— | [ [sin—-— 2 Kn sinmwr:]’df} =0. (11)
kS 2 me=t 1SN

This leads to .Y equations in V" unknowns for the K,.'s

Nia
—de+ Y KuBo=0. {12)
el
where
5 g
A= / sin—sinerd f
Iat 2
and

~de

B.= j sinanewr sinfwrd f.
f

The solutions to Eq. (12) give the coefficlents KA.
which minimize the rms error over the range /1< < fa.
For a wave plate of retardation 6, the coefficients in the
exponential series {3) are

Co= cosf/2
Con=—3Kn m>0 (13)
* Ca=3K. m<O,
The system of Eq. (12) could include another
equation
a [ i 8 Nm 2 1
— [ [sin——— > Kn sinmwr] dii=0 (1%
6.— l, y2 2 el I -

to optimize the period of H(f}. This is a transcendental
equation and does not lend itself to normal solution
techniques. Numerical results show that the optimum
period Hes in a very broad minimum. Intuitively, we
expect that the optimum period would correspond to a
crystal length such that each -crystal would have a
retardation § at the center of the band. Because of the
rms criterion, this is not precisely the case but is very
neatly so, and this choice of crystal length is very close
to optimum.

EXPERIMENT
A. Example

An achromatic quarter-wave plate covering the,
region from 4000 to 3000 A was chosen as an important
example of the procedure. To synthesize this particular
network, we chose r so that the individual crystals
have a retardation of =/2 (not =/2%=2nr) at the
center of the band. This interval of interest extends
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TasLe I. Coefficients in the expansion of Z(f) for a 6- and
10-element achromatic quarter-wave plate.

Quarter-wave plate

6 Crystal 10 Cryst:l
Co —0.052707 —0 011329
Ci 0.000000 0000000
C: —0.4053756 —0.077003
C; 0.707107 0.000000
Ca 0.405376 —0.419377
Cs 0.000000 0.707107
Cs 0.052707 0.419377
Cy 0.000000
Cy 0.077093
Cs 0.000000
Cro 0.011329

from fi=3.73X 104 hertz to fo=7.53X10™ hertz: there-
fore 2xfor=n/2, where f,=>5.623X10% hertz corre-
sponds approximately to the center of the band; thus
=044+ X 107" sec. Equations (12) and (13) were used
to calculate the coefficients of the exponential series
that approximates the desived transfer function over
the region f; to f». These coefficients are given in Table T
for two networks, one containing six elements and the
other containing ten elements.

The procedure of Ref. 1, was then used to calculate
the crystal angles. These angles are tabulated in Table
II for both the six- and ten-element networks,

Finally, the resulting networks were analyzed using
computer program which includes dispersion, The
results of this analysis show that for the six-crystal
network, §=90°11° from 4000 to 8000 A ; and for the
ten-crystal network 8=90°215" from 4000 to 8000 3.
(These results are indicated-by the solid curve in Fig. 3.)

B. Preparation of Crystals

The material used for both the six- and ten-element
wave plates was sapphire. This was chosen from a
consideration of the periodicity requirements. From
r=L(Anr)/c, we obtain L(An)=1.333X10"5 cm, Crv-
stals 1 min thick were chosen for experimental con-
venience, yielding Az=133X10~% One method of
obtaining this small Az is to cut the crystals so that
light propagates in a direction which makes an angle

TaBLE IT. Cryswal angles for 2 6- and 10-element
achromatic quarter-wave plate.

Quarter-wave plate

6 Crystal 10 Crystal

ot 400 1296

@1 73°36 93°10°
o3 - 13936 98°56"
B —29°1%’ 25°43
o5 28°42° 19°57°
s 29°%' —-25°02"
o7 —19°167
a8 33°57"
@3 +8°11¢
o —2°53¢

ORIGINAL® PAGE 18
OF POOR QUALITY
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8 with the optic axis. For sapphire, a 8 of approximately
7° gives (An)=1.333 X104,

Crystals 1 mm thick and 8 mm square were ground
and polished. The retardation was measured with a
Sénarmont compensator, using a He-Ne laser (6328 A)
and a conventional quarter-wave plate for that line.
The grinding and measuring process was continued
until all crystals were within 1/100th wave of the
desired retardation,

The individual crystals were then held as shown in
Fig. 3. This gimbal-type mounting provides 2 rotation
adjustment around three orthogonal axes for aligning
the crystals. These were mounted in an index-matching
oil bath. The overall length of the device is 457 mm. The
size was for experimental convenience only and has been
reduced to 51 mm in recent work.

C. Measurements

The measurements on the achromatic quarter-wave
plate emploved a xenon arc iamp in conjunction with a
Leiss prism monochromator having 50-A resolution to
scan the visible spectrum. If linearly polarized light is
incident at 43° to the principal axes of a quarter-wave
plate, then this light is circularly polarized after passage
through the plate. For the achromatic quarter-wave
plate, this property should hold approximately true
from 4000 to 8000 A. To confirm this, the wave plate
was placed between two polarizers, with the input
polarizer at 43° to the principal axes of the plate. At
each wavelength, the output polarizer was rotated
through 360° and the ratio of mavimum to minimum
transmittance was recorded. This ratio may vary from
one for circularly polarized light to infinity for linearly
polarized light. A plot of this ratio vs wavelength for
our 10-element achromatic quarter-wave plate is shown
in Fig. 1. The computed ratio is indicated by a solid
line. The broken line indicates the equivalent ratio for
a single crystal which is a quarter-wave plate at 6000 A.
In this figure, the measured transmittance ratio is 1.13
or less, througheut the range of interest.

Fre. 3. Individual crystal holder.
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Fi6. 4. Eccentricity {a/b) vs wavelength for 10-element quarter-
wave plate, - - — single-crystal A/4 plate at 6000 A, theory.
-« gxperiment, 10-crystal A, 4 plate.

From the transmittance data, the retardatiou of the
networks can be inferred. The results of this calculation
are shown in Fig. 5. Again, the broken line corresponds
to a single crystal which is a quarter-wave plate at
6000 A. The retardation of this single-crystal wave
plate varies from 60° at 8000 A to 130° at 4000 A. or
70° over the portion of the spectrum where the retarda-
tion of the achromatic quarter-wave plate is approxi-
mately constant. The solid line indicates the computed
retardation, which is 90°+ 15’ from 4000 to 8000 A. The
experimental points shown agree with the theory within
the expected experimental error. The computation lead-
ing to the solid curves takes dispersion into account,

Hno
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(%]

il

PHASE (DEGREES)
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4000 5000 6000, 7000
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8000

Fi5. 5. Retardatien vs wavelength for 10-element quarter-wave
plate. ——— unglecrystal A/4 plate at 6000 A, — theory. ---
expenment, 10-crystal A/¢ plate.
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[F16. 6. Rate of change of retardation-with erystal length vs
wavelength for 6-element quarter-wave plate.

and we believe that the small discrepancies berween
theory and experiment result from experimental errors.

DISCUSSION

Because of the Hart transfer function of the achromartic
wave plate, changes of the variables that affect the
period of the transfer function [evplicitly, / and (An):
and implicitlv. temperature ] will not significantly affect
the retardation except near the ends of the interval
1 f< fo. Small changes of these parameters simply
result in small shifts of the interval over which the
retardation is constant: regions away from the edges_of
the interval are unatected.

For example. consider the variation of retardation
with respect to crvstal length. For a zingle crystal,
we have

8= 2z fl{An)/c
d8/dl=2x f(An)/c=15.7(rad/cm)
at
Ffo=35.625X10% Hz,

For the achromatic wave plate, we have
o8 9 l1'm[H (N1
n— i ———

al ol Re[H(N]

This expression has been evaluated numerically for the
6-crystal network (see Fig. 6) for all wavelengths
throughout the region from 4000 to 8000 A. With the
exception of 200 A at each edge of the band. we find

Jd8 rad .
- —<0.5— 200 A<AZTR00 A,
al cm
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1380 C. M. McINTYRE
The sensitivity of the retardation to crystal length is
therefore better by a factar of 30:1 as compared to the
sensitivity of a single-crystal wave plate.

The methods presented here are applicable to the
synthesis of achromatic wave, plates of any desired
retardation over any portion of the spectrum. The
number of crystals necessary is determined by the
required degree of approximation ard the interval over
which the network is desired to be achromatic,
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APPENDIX A

If the x, y coordinate system is chosen with the x axis
parallel to the transmission axis of the input polarizer,
then the Jones matrix for the network of Fiz. 2 is

M= 3(0) PS(0n)S (@l V5 en)
o) VS Hona) Sl N5 P
=S5{e)P4P, (al)

where V is the Jones matrix for a birefringent plate
with its fast axis parallel to the x axis, P is the Jones
matrix for a polarizer with its transmission axis paralle]
to the v axis, S{¢) is the unitary matrix for rotation
through an angle ¢, and the matrix 4 with elements
@,.;is defined by the above relation. Then the frequency-
domain relationship between the input and outpur lght
vectors is

Daﬂ j‘{:,gn;'o (A,Q)

In order to express the matrix representing an identical
network, but without polarizers, in terms of H(f) and
G{f} as previously defined, it is necessary to determine
the elements g, ; in terms of these transfer functions.
By definition of the transfer function H(f) we have

D
o 20

where cose,=H(0). From Eqgs. {(Al) and {A2), we

obtain
Doz CoSap
-]
oy sing
and therefore ay=H{f).
By definition of the transfer function G(J), i the

output polarizer in the network of Fig. 2 is rotated 90°
clockwise, we have

L-eomd (2

If this 90° rotation of the output polarizer is included,

COS¢,

. i
i,
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then from Egs. (A1) and (A2) we obtain

Dy —sing
!: =}= enl} i:[ ’}
Dy, COSw,

and gu=—G(f). With the polarizers in their original
positions and if all of the crystals are rotated 90°, the
Jones matrix of the network becomes

Jf;s,y’:S(‘P #)PS_I(S"ﬁ)s(?n)iws-[(‘?n}&g(?ﬂ—l)
N5 (ner) - SV S ) P,

where A™* is the complex conjugate of &, Then we have
D = cos
[ ° ]z ax( f)D‘,[ ) ¢j
Doy sine
in terms of the elements of the matrix 4, we find
Doy COS e,
[ ’ =822Dl{ ¢
Dg SI‘B{:?
and ax=H*(f). In a similar manner, it can be shown

that 2= G*(f). Then the Jones matrix for the identical
network, but without polarizers, is

» —si b H G*
H=5(0,) A=[cos<p sine ][ (N ( f)_l.
sing, cose, L—G(Y H*(HJ
APPENDIX B

The requirement that an achromatic wave plate have
principal axes {i.e., axes such that light which is polar-
ized along them at the crystal input, remains linearly
polarized in the same direction at the crvstai output)
is equivalent to the requirement that the fones matrix
for the network have linear eigenvectors. For an
achromatic wave plate, G(/)2x0 over the frequency
interval of interest and the Jones matrix may be
written in the form

[H{f} COse, =—I*(f) sinw,,]
CLE(f) sine,  H*(f) cose,

where H(f) and ¢, are defined in the text, The require-
ment that this matrix have linear eigenvectors leads to
the condition

Re[H(f)] sing,=0.

For the special case of an achromatic half-wave plate,
H{f)m=e" is purely imaginary and thus this case will
antomatically have principal axes. Achromatic wave
plates with any other retardation will have principal
axes only i ¢,=0.

Referring back to the network of Fig. 2 with a transfer
function H(f), we notice in the Jong-wavelength limit,
when f— 0, that the phase difference between the fast
and slow axes gees to 0. In this limit, the network
transfer function is determined by only the input
polarizer, ie., #(0)=cose, Therefore, if we require
that H{0)=1, the input and output polarizers must be
parallel and the wave plate will have twe principal azes.

W E. Q. Ammann, private communication.
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Improvement of Birefringent Filters.

2:Achromatic Waveplates

Alan M. Title

By use of Jones’ matrix techniques, nine-element achromatic waveplates are developed. These combina-
tion plates are achromatic to within 1° throughout the visible (3,500~10,000 A). In addition, a two-section
general retarder rotator 15 demonstrated. The retardation of the combination is twice the complement of
the angle between the halves, while the rotation is equal to the angle between the halves. For a 90° retarda-
tion, the dual five-element combination 15 also achromatic to within 1° throughout the visible.

introduction

The ability to readily produce good scatter-free
waveplates from polyvinyl alcohol makes it useful to
investigate properties of multielement achromatic
combination waveplates.] A number of authors have
previously investigated properties of achromatic
combinations of simple waveplates. In particular,
Pancharatnam? developed a procedure for three-ele-
ment combination waveplates. Further, Harris and
MeIntyre® have developed a scheme for achromatic
combinations of n waveplates. The Harris scheme,
however, does not always produce a pure waveplate,
but rather a retarder plus a rotator.

In this paper, combinations of three and nine ale-
ments that can yield achromatic waveplates and
four- and ten-element combinations that can yield
achromatic rotator waveplate combinations will be
discussed. Jones’ matrices will be used to develop
the conditions for achromaticivy.

Pancharatnam assumes that for three-element
combinations, the first and third waveplates must be
equal and parallel, and the center plate must be a
half wave at the center frequency. With matrix
techniques it will be demonstrated that these as-
sumptions are consequences of achromatic retarda-
tion and stability of the axis of retardation.

More importantly, the matrix form shows that the
three-element half waveplate is extendable to supera-
chromatic nine-element waveplates. Also, the ma-
trix form makes clear that it is possible to conseruct
four- and ten-element achromatic rotator waveplates.

The author is with Lockheed Solar Observatory, Lockheed Palo
Alto Research Laboratory, Department 52-14, Palo Alto, Califor-
nia 94304.

Received 25 February 1974.
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The four- and ten-element combinations are espe-
cially interesting because of their use as variable re-
tardation plates. It will be shown that if the combi-
nations are made in two halves, that is, a pair of two-
element plates or a pair of five-element plates, all re-
tardations can then be achieved by rotating the
halves with respect to each other. The retardation is
just twice the complement of the angle between the
plates.

Mathematical Preliminaries

In order to simplify mathematical operations, it is
useful to state some mathematical relations. Fol-
lowing the notation of Jones,* a retardation plate of
retardation 2y at angle § with respact to the x axis is
represented by the matrix product

M{y, 8) = R(-8)G{7)R(8). (1)
The product of Eq. (1) can be rewritten in the form
My, 8) = cosy! ~ ¢ siny ER(28}, )
where
cosg - sing
& = (sin9 cose)' \ @
10
[ = (0 1)' “
1 4]
£=(o-1) %)
_ fexp {+y) O
Gl = (0 oo (_i?). (6)
The matrix £ behaves like a mirror, thus:
ER(p) = R(-3)E. {7)
and
E* = | (8)

It has been shown by Jones that any combination
of retardation plates is equal to a retardation and a
rotation. Thatis
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Tty 00 = Rl)M G, Q).

e=l

(%)
or

:I'il'.w(-,,,ei) = cos7R(w) +~ i SIMFER(ZA — w), (10)

where ~; are an arbitrary set of retardations and #;
are an arbitrary set of angular positions, w is the
amount of rotation, Q is the position angle of the re-
tardation axis, and ¥ is the retardation of the combi-
nation. Since the +; are functions of frequency, ¥, w,
and @ will in general vary with frequency. It will be
our aim in this paper to demonstrate waveplate com-
binations for which ¥ varies more slowly with fre-
quency than it does for a smgle waveplate, while ©,
the tilt of the retardation axis, remains nearly fixed.

For the purpose of this paper, we will assume that
the birefringence of an individual retarder is con-
stant, so that the variation in retardance of a single
plate can be written

e} = yML < &)

where 90 is the half retardation at the design (center)
frequency »° and

(11)

(12)
(13}

Av = v — VY,

€ = Ap/vd.

Epsilon will be referred to as the relative frequency
difference. The supersecript zero will denote retarda-
tion at the design frequency.

Three-Element Combinations

It is easy to show that there are no achromatic
waveplates with only two elements. The general
three-element combination M3 can be written as

M3 = Mlyg, 8500 (3, 82} (51, 81)
= C0Sy; COSy, coSy/
~{cosy; siny, siny R{2(8; - 9]
+ cosy, siny; sinyy R[2(8; - 3;)]
~ cosyy sinys siny, R[2(8, — 8,)[
+ iF {~siny, siny, siny, R{2(6; — 3, - &)
< sinys COSy, cosy,R(264)
4 Sy, COSy; CoSyyR(28,)
+ SNy cosy, cosy, R{28)}. (14)

Although Eq. (14) looks formidable, it really has a
quite tractable form. The requirement that the
combination be a pure waveplate means from Eq.
(10) that

Real (W34,) = Real (M3y) = 0. {15)

With no loss of generality, §; can be set equal to
zero, since choosing #; only locates the combination
in space. Then, from Egs. (14) and {15)

(tan}" l/tan]/s) sin2 92
2 (tany,/tany,} sin28,.

sz(sz - 93) =

The result of Eq. (16) has the form of the sine ad-
dition relation. which implies !
\
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(18}

cos{28;) = tany,/tany,,

and ~
¢05(28,) =

(17

—(tany/tany,). (18)

Both 8, and #; are fixed in space and are thus inde-
pendent of frequency. In order that the relation of
Eq. (16) hold, either the ratio of the tangents given
by Eq. (17) and (18) must be constant and equal to
plus or minus one or the relation of Eq. (16) must be
independent of Eq. (17) or {18). If

Y1 = Vi, (19)

cos {283) has magnitude unity and the sine of 263 is
zero. Hence, the relation of Eq. (16) holds. If

1=

20)

similarly the sine of 2. will be zero and the relation
of Eq. (18) will ailso hold. But Eg. (20) represents a
redundant solution in that the first and second plates
are parallel and could be replaced by a single plate.

For the purposes of this paper, it will be assumed
that all plates are of the same material. Only the
positive solution of Eq. (19) will be used. The rela-
tion of Eq. (17) then implies

9[ - 3"}-

=¥a.

(21)

Thus, 1t has been shown that the parallelism and
equality of the input and output plates is a conse-
quence of the requirement that the combination be a
waveplate and be made of materials with the same
sign index difference.

Then, with Eqs. {20) and (21), the matrix Eq. (14)
becomes

M3 = (cos2y, cosy, — 302y, S1ny, c0S2A)R(0)
= ;E{-sin’y; siny, R(~2A) = cos®y | siny, R(24)

= 512y cos3,.R(0)[ (22)

where A = f.
From Eq. (22) it is possible to calculate the condi-
tions under which the combination is achromatic.
For a simple waveplate, the first derivative of gamma
with respect to epsilon is non zero. At the least. fora
waveplate combination to be achromatic, it is re-

quired that
G€ e .

From Eags. (22) and (10),

cos; = €082y, COS3y — $1n23, SIMy. cos2A.  (23)
s0 that
3y | .
—_ — " 8 . fu — N
7 Lu = Sm}_._sm..” c0s;4(3, cos2a 23 ¢)
— cos2yy siny, (234 cos2a = ;4] (24)
= 0.
Equation (24) has three groups of solutions:
(1) (1Y cos2a = 24,0 (25)
(2) cos2:® simy,® = O (26}
2y (1) cos2a = —{3,1/2: "}, 27)
(2) sin2y,? cosy.’ = O: {28)
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(3) (29)

(30)

(1) 2}’;0 7/2 .
(2) ’r’zﬂ a/s.

All of the solutions, (1), (2), and (3) yield wave-
plates that are independent, to first order, of the rel-
ative difference. However, the location of the retar-
dation axis @ may vary to first order. The condition
that the retardation axis be stationary to first order is

Y

e o= O 31)
From the imaginary part of Eq. {10},
tan2Q = Imag (13,)/Imag (M3,,). (32)
S0
LU cosi2n [ "
il _ cos’2a ‘ o,
o€ Im 2M3 4, 72 COSy, S1n2A __-113.11{

X [—sin2y; siny, (23, 0824 + y,)

= OS2y CO8yy (v CcOS28 = 271)1] (33)

Only solution (2) and the condition
v® = /2 (34)

cause the first derivative of Q to be zero for all values
of achromatic retardation. There are, however, iso-
lated solutions for specific values of +© that also
yield a zero value of Eq. (33). Thus, it is seen that
the requirement that the middle element be a half
waveplate is necessary so that the retardation axis be
stationary and the solution be general.

With solution (2) and Eq. {34), the second deriva-

tives of v and Q can be calculated hy Taylor’s formu-
ia to second order.

- 17 1 )
y=7 -3 \;‘3;1;—3}{(2?{‘)2 - =20, (35)
and
o0 . (sinday fcos2y0 2 )
@ =9 (55 )(sin2:70 (@ — 2x/2F]¢ (363

From Egs. (35) and (36). it can be seen that for all
retardations other than a half wave, a three-element
plate can be made with the desired retardation at two
frequencies. For a half waveplate, the second-order
term in the retardation is identically zero.

Achromatic Range of Three-Element Wavepiaias

For waveplates other than half wave, it is clear
from Eq. (35) that for frequencies near the design
frequency, the retardation decreases quadratically
with the relative frequency difference. Hence, if the
retardation at the design frequency is chosen to be
greater than the desired retardation, the desired re-
tardation will be attained at two frequencies; one
above and one below the design frequency. With Eq.
(35) it is simple to calculate the range in the relative
frequency ¢, so that the retardation is within a toler-
ance of £3. By recalling that v is half the rerarda-
tion of the combination. at the design frequency the
retardation should be 7% + 8/2, while at ¢3 the retar-
dation should be % — 3/2. So,

24

~

5

¢ = {Btanz? =« a/2W[(2y P — (/22172 (37
where v1% and A are obtained from
cos(Ft = p/2) = (@/2)(sin24,% /27", (38)
and
cos2a = —{w/201/(2+M]. (39)

Equation (38) is derived by evaluating Eq. (23) at the
design frequency and by substituting for cosine 2A
with Eq. {39).

Plotted in Figs. 1 and 2 are the differences in retar-
dation and tilt, respectively, from their values at the
design frequency for several values of 2 %0 as a fune-
tion of epsilon, the relative frequency difference.
The values for the figures were calculated with the
programn WPLATE, which can calculate properties of
up to one hundred waveplate combinations. Pro-
gram WPLATE uses the Jones matrix equations to
exactly calculate the properties of combination wave-
plates. However, for retardation tolerances of 2° or
less, the Taylor series solutions are adequate.

For retardation of other than a half wave. from Eq.
(38) the outer waveplates will have a retardation less
than a half wave. For example, for a quarter wave-
plate 2X;® = 115.3°. Because of the availability of

REYARDASION DIFFERENCE (%)

Fig. 1. Retardauion difference vs relative frequency ditference ¢

for 180°, 90°, and 60° three-element combinations. For 180° re-

tardacion 2+ = 180°, 2va = 180°, A = 60°; for 30° retardanion 21

= 115.5°, 2va = 180°, A = 70.6°; for 60° retardation 2v; = 101.75°,
240 = 180°, A = 76.096°.
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Fig. 2. ‘Tilt difference vs relative frequence difference ¢ for the

above three-element combinations.

quarter and half wave material, the use of four-ele-
ment designs discussed below should be considered,
since any retardation can be achieved with only quar-
ter and a half wave material.

For half waveplates, the coefficient of the quadrat-
ic term in Eq. (35) vanishes, because 27,% is a half
wave at the design frequency. Evaluation of the
third derivative combination shows that the variation
in retardation is cubie. For nonhalf wave combina-
tions. range adjustment was accomplished by adjust-
ing the center frequency retardation. For the half
wave case there is no advantage to this. However,
another possibility exists: A can be varied to allow a
first-order term that can cancel the third-order term
in the vicinity of the tolerance range frequency.

It is quite straightforward to calculate the effect of
adjusting A. By expanding Eq. (23) in terms of epsi-
lon,
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cosy = sin(n/2)elA cosz(rrf:z)e - sin¥(7/2)e], {40},
where

A = (1 + 2 cos3a). (41)

By expanding the sines and cosines to third order,
cosy = (#/2)efd - (1 = (1/8)All(s/2)el}.  (42)

In general, A4 will be small compared to 1. This can
be seen by evaluating A in terms of small changes in
plate angles. For a half waveplate the unadjusted
delta is 7/3. Soif

A = (s/3) - 8. (43)
where & is the small variation,
A = 2435. {43)
For dequal to 1°,
A = 0.081. (44)

With the assumption that § is small, Eq. (41) be-
comes

cosy = (w/efd - ((z/2)e}. {45)

The retardation is «/2 when

RETARDATION OIFFERENCE

frmmeenmme et n————

)
L
W

Fig. 3. Retardartion difference vs relatve frequency difference ¢

for three-clement combination half waveplates for severai adjust-

ments of the central plate. The dashed curves indicate negative

values of the relative retardation differences. All three waveplates

have 180° retardation. The angle from the central plate is 60°
minus .
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10 4

14

TILT DIFFERENCE (*)

1674

Fig. 4 Tilt difference vs relative frequency difference e for three-
element combination half waves for several adjustments of the
central plate.

|
1

= AMY2 /5
(@/z)(2/36) 2 46)
= = 11858172,

The local extremal value of the retardation occurs
when

lin =

|
H

@/a (1/+v3)a"?]

[ = =
= 41
= = 063457 1
and the extremal values are
) = _95/2q-3/153/2
COSy,, = = 2°/°3 6" 48)
==2.482 63""'.
Now. if the retardation tolerance is 3,
3/2 = cos™(2/3/IN2VT5)8/]. {49)
or
5 = 0.35(3/2)*/% {50)

The tolerance 3 will be exceeded when

€> 6, + B2, (51)

Hence, the range in which the retardation is within
some tolerance 8 can he rewritten as

€s = 1.04(g/2)t3, (52)

Shown in Figs. 8 and 4 are the retardation and tilt
differences from the values at the design {requence vs
epsilon for several values of 6. In Fig. 5 is shown the
tolerance 8 vs the change in angle of the central plate
5. In Fig. 6 is the tolerance vs range in frequency dif-
ference ¢p.

In order to get an idea of the improvement in
range obtained by adjusting 8, note that if 4 is zero,
the first derivative equals zero. Then a glance at Eq.
(40) shows that

€z = (2/m)(p/2)73
€ = 0.637(s/2)1/3. (53)
Thus, by optimizing & for a given tolerance, the
range for that tolerance increased by 57%.
The price paid for nonzero values of 4, as seen in

Fig. 3, is that for small values of ¢ the retardation dif-
ference is greater than for zero 4.

Nine-Element Piate

Since the half waveplate of three elements has a
cubic retardation variation and is made of three half
waveplates that have a linear retardation variation,

W=
14
ae)
1ot =
1972 .: ~ 3 v i 3 ;. '
5¢)
Fig. 5. Tolerance 8 vs adjustment zngle 4 for three-element com-

bination half waveplates.

*
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Fig. 6. Tolerance § vs the range of the relative frequency differ-
ence ¢z for (a) three-element and (b) nine-element combination
half wavepiates.

M90 = éos’s,l + i sinyy E[R(0) - cos?y, R(120) +
cos®y,R(0) + cosh,R(0)]. (58)

For both systems the retardation variation will be
ninth-order in epsilon:
cosy = sin’ (7/2)e.

So, for a tolerance 8, the range in epsilon is
€5 = (2/7) sin”t [sin (B/2)]1.

As with the three-element plate, the range for a
given tolerance can be increased by varying 8. A
computer evaluation shows that either all the angles
between plates can be changed by & or the angle of
the central group alone can be adjusted. There is a
slight advantage in range to adjusting all the plates.
However, if the nine-element system is made of three
three-element subsystems, there is a significant prac-
tical advantage to adjusting just the central group.

The value of 5 for a given tolerance §§ is the same
for nine-element systems as for three-element half
waveplates (see Fig. 5). However, the value ¢ for a
given § is greatly increased. To show the increase
more clearly, 8 vs ¢ for a nine-element system is
shown in Fig. 6(b), while the curve for a three-ele-
ment system is in Fig. 6(a). In the calculation for
Fig. 6(b), the angle of the center three-element group

was varied.

{59)

(60)

there is reason to suspect that a combination of three
three-element plates may be superachromatic. The
matrix for the three-element half waveplate is

M3 = cosdy, 1 + ismyE[-R(-24 = cos’y, R(QY], (54)

where vo® = #/2 and A = =/3, which has an appear-
ance similar to that of a simple waveplate, except for
the third-order dependence of the real {retardation)
term and an additional second-order term in the

imaginary (tilt) term. .
There are two possibilities for the nine-element

plate. The center three-element group may be rotat-
ed in the same direction as the central element of the

three-element group, or in the opposite direction.
The two nine-element matrices are
M98 = MIR[{(—=/3)M3R(x/3) M3, {55)

and
W90 = M3R(=/3WMIR[-(7/3)]M3. (56)

With appropriate rotations the matrices can be put

in the form
M9S = cos®y,l = i siny, E[R(0) — cos’y, R(120)(1
- cosby,) + cosPy, R(~120)], (57)

and
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RETARDATION DIFFERENCE

Fig. 7. Retardation difference vs relative frequency difference ¢
for nine-element combination half waveplates for severat adjust-
ments of the central group of three elements.
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TILT DIFFERENCE {*}

157 -

1wt

Fig. 8. Tilt difference vs relative frequency difference for the S
and O configurations of the central group of three-elements.

From Fig. 6(b), ¢ = 0.48 for a tolerance of 1°. If
the design wavelength is A 5200 &, the range in wave-
length for 1° tolerance band extends from 3514 A to
10,000 A. For a 2° tolerance the band is from 3510 A
to 10,947 &.

The difference in retardation vs ¢ for several values
of & is shown in Fig. 7.

Although the retardation variation for M9S5S and
MO0 are the same, the variation in tilf is not
Shown in Fig. 8 are plots of difference in tilt vs « for
the S and O cases, for 6 = 0. Both the S and the 0
eases have less tilt variation than the three-element
half waveplate, as can be seen by comparison with
Fig. 4.

Four-Element Waveplate Rotators

The three-element half waveplate has a very sym-
metric structure.

M3 = M2 0MEL, /DN (E2.0). (81)
If this structure is split in half and two halves ro-

tated with respect to each other, the resulting matrix
has the form

Mé = R{—a)M(7/2. 00 M (/4. w/3)Rla)
X M{z/d.7/3)M(2/2,0).  (82)
This equation can be put in the form

249

M4 = sine R(90 — ) — sin® (#/2)¢ cosa B(-c)
= {i/2} sinre cosa E{-Rle -~ 2(z/3)]
+ sin®(z/2) R(a)}. (63)
From the real part of Eq. (63), the retardation and
rotation can be obtained, since by Eq. (10),

sinw cosy = Real (34,,),

cosw cosy = Real (M4,,). {64)
After some algebra,
7 = cos Hsin®a + costa sin(n/2)c] (63)
So that when
sin® (7/2)e << sin'a, {66)

cosy = cos(90 — a){l - ;—[sins (7;/2)e/ta.n'"’a]}, {67)

tanw = tan (90 — e)}{i = [sin® (z/2)e/sin’x]}. (68)

Equation {67) indicates the particularly pleasant
result that all retardations can be achieved by merely
rotating a pair of combination plates with respect to
each other. The resulting retardation is simply twice
the complement of the angle between the plates. Ac-
companied by the retardatior, as shown by Eq. (68},
is a rotation by the complement of the separation

or

ay 3 ELEMENT

by 4 ELEMENT

{s0")
a

- 10 ELEMENT
b -
£
=
-
H
-
° f
z 1
30
=
-
a
=
2
-1
-4

10

-3 L N n ' 1
- 1 2 -3 &

Figure 9. Retardation difference versus relative frequency differ-
ence for 3(a), 4f(b), and 10{c). element comnation quarter
waveplates.
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Figure 10. Rotation difference (a), and tilt difference for positive
(b), and negative (¢), values of e versus relative frequency differ-
ence, ¢.

angle. The behavior of the retardation axis ean be
obtained from the imaginary part of Bq. (63). Thus

tan[28 — (90 — )] = ran[(27/3) = «al

x [1 - v"3'sm2(n'/’2)e/sin2(g§ + a)] (69)

Note that in Eqg. (69) to second order the location of
the retardation axis is independent of «, while from
Egs. (67) and (68), it is clear that the magnitude of
the retardation and the rotation variations are unaf-
fected by the sign of a. The retardation differences
vs € for three- and four-element quarter waveplates
are shown in Fig. 9{a) and {b). Shown in Fig. 10(a},
(b), and (c) are the differences in rotation and tilt
with positive and negative values of o, respectively,
vs ¢ for the four-element quarter wave retarder.

Equation (62) was written down with only a short
plausibility argument. However, it is possible to
show, with arguments similar to those for three-ele-
ment combinations, that there are no other combina-
tions of four half and quarter waveplates that are
achromatic in both retardation and tilt.

Ten-Element Systems

Since the three-element half waveplate was direct-
lv extended to.a superachromatic nine-element plate,
it is reasonable to expect that by splitting the nine-

236

element half waveplate in a manner similar to th
three-element combination, a superachromatic wave
plate rotator may be constructed. In fact, such :
ten-element combination is quite successful. A ma
trix representation of a ten-element plate is

M10 = R{_a) M3M(r/2, 7 /3)M(r/4, 2r/3)R ()
X M(a/4, 3 /DM /2, @/M3. (70

The mathematical verification of properties of the
ten-element plate will not be carried out here, but the
resulis will be stated. The retardation is

cosy = cos{80 — e}l + [sin!3(7/2)¢/2 tan’e ]},
and the rotation is
tanw =~ tan (90 — a){l + [sin® (n/2)e/sin’a]}. (72

Shown in Fig, 9(c) is the retardation variation of :
ten-element quarter waveplate vs. e. As can be see
from Fig. 9(c), the ten-element guarter waveplat
gives eg = 0.59 for 8 = 1°, If the center wavelength i
5500 A, the waveplate is within a degree from 3400
to 13,500 A. ’ .

Equation (70) represents a split of M9S, the cen
tral three-element group rotated in the same direc
tion as the central plate; g split of A/ 90, the centra
group rotated opposite to ceniral plate, also gives ris
to an achromatic rotator retarder. However, the pos
itive and negative rotation of the two halves ha
slightly different effects on tilt.

(711

Experimental

A number of sets of three-element half waveplate:
have been constructed of Polaroid Retarder plasti
waveplate with the procedure described in Ref 1
They are quite achromatiec and appear to agree gen
erally with theoretical predictions. Nine-elemen
combinations have been constructed from thret
groups of three-element plates. While it is clear tha
they are more achromatic than the three-elemen
combinations, precise measurements have not ve
been made. There is some difficulty because sucl
plates, made of the standard plastic plates, are withi
a degree in retardation from 3510 A to 10,000 A. Ar
rangements have been made to use an accurate polar
imeter in order to measure the nine-element plates
This work will be reported on as soon as completed.

The transmission of three group combinations i
typically 99% throughout the visihle.

Combinations of four- and ten-element group
have also been constructed. These also generally be
have as predicted. But again, they are impossible t
measure accurately without a more accurate polari
meter.

Discussion

The prime goal in this series of papers is to im
prove Lyot filters. A kev aim is to achieve tunabilic
over a wide spectral range. Tunability requires (1
achromatic half waveplates; (2) achromatic quarte
waveplates; and (3) broad-band polarizers.

APPLIED OPTICS [/ Vol. 14, No. 1 / January 1875 QSD



With nine-element half waves and ten-element
uarter waves, it is possible to achieve achromaticity
o within a degree from 3500 & to 11,000 A. The
nly remaining problem is polarizing materials that
an operate over the entire visible spectrum. The
roblem of polarizers will be discussed in some of the
ollowing papers in this series.

The matrix method described shove is very useful
or searching out achromatic plate combinations.
“he form of the achromatic three-element matrix
ras the suggestive clue for the superachromatic nine-
lement combination. The three-element matrix
plit in half formed the basis for the four- and ten-
lement achromatic waveplate rotator combinations.

Evaluation of three-element systems also shows
hat achromatic rotators cannot be formed. How-
ver, systems that are achromatic rotators with re-
pect to a single fixed axis can be formed. Koester®

has described such single-axis 90° achromatic rota-
tors. The Koester-type devices do not work as rota-
tors for Lyot wide-field elements, since they only ro-
tate one axis of polarization achromatically.

I would like to thank H. E. Ramsey for the con-
struction of the three-, four-, nine-, and ten-element
plates and for tests on Lyot filter elements.

This work was supported by Lockheed indepen-
dent research funds.
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Improvement of Birefringent Filters.

Wide Field Elements

Alan M. Title

3: Effect of Errors on

The properties of nontunable and tunable Lyot wide field elements are examined when the components of
the elements deviate from their proper values. Special emphasis is put on determining what variations
cause light to be fransmitted at the transmission mimma, The analysis shows that the nine- and ten-ele-
ment plastic waveplates deseribed in Paper 2 of this series can be used to make a Lyot {ilter that is tunable

from 3500 A to 10,000 A.

Infroduction

This is the third in a series of papers dealing with
the improvement of birefringent filters. The princi-
pal purpose of this paper is to critically examine the
kffects of deviations from perfection of tunable and
montunable wide field elements. The methoed of the
analysis is to expand the error effect terms in powers
pof the sine while retaining the analytic form of the
lvavelength-dependent terms. The value of such an
analysis is that it clearly distinguishes between those
lasses of imperfections that cause asymmetric frans-
mission functions and those that cause additional
ransmission at the transmission minima. A pure
bower series analysis such as carried out by Jefferies
hnd Giovanellil does not distinguish so clearly be-
rween the asymmetry and transmission minima ef-
Fects. In general, asymmetry errors introduce less
light outside the primary maximum than do irans-
Inission-minima errors.

The prime goal of this paper is to provide the de-
ign tradeoffs for widefield Lyot elements that use
hchromatic waveplates such as those discussed in
Daper 22 of this series. For multielement achromatic
waveplates the properties that vary are the retarda-
Hon, the rotation, and the lecation of the fast axis.
T'he analysis that follows will allow deviations in re-
bardation and in the fast axis location. Rotation is
neglected because half waveplates have none; for
quarter waveplates rotation is unimportant. In this
bnd all successive papers in the series the word tilt
vill be used to describe deviation of the fast axis

b

rom its nominal position.
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In the first section below, a standard wide field ele-
ment whose halves may not have exactly the same re-
tardation and whose central half-waveplate may not
have exactly 180° retardation or be exactly aligned at
equal angles to the two halves of the element will be
discussed. This configuration is examined for three
basic reasons. First, the two halves of a wide field el-
ement are seldom exactly the same in real elements.
Second, the central half-waveplate will in general de-
viate from 180° as a function of wavelength, Third.
when multiple plate achromatic half-waveplates are
used, the retardation axis of the combination plate
€an vary.

The following section concerns tunable elements.
It is current practice to tune Lyot elements by rotat-
ing a polarizer with respect to a quarter-waveplate at
the end of the element. The quarter-waveplate’s re-
tardation axis is at 45° {o the element’s axis. The
tuning properties will be examined as a function of
deviation from quarter-wave tetardation and exact
angular location with respect to the element. Again
the rationale for the investigation is the under-
standing of the error effects so that achromatic plates
can be used most effactively.

There are other methods for tuning elements that
involve additional waveplates. In one the enirance
linear polarizer is replaced by a circular polarizer.
Then each element can be tuned individuaily. In the
single quarter-waveplate method rotating the exit
polarizer forces all succeeding elements to be rotated.
A second method of tuning is accomplished by rota-
tion of a half-waveplate between the exit polarizer
and the quarter-waveplate. With this technique
only the half-waveplate need be rotated.

Wide Fieid Element

With the notation of Jones,? the matrix for a wide
field element with the variances noted above is
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M = R(45)G(e)R{45)RC5)GHIR(5)RUS)G{BR{—45), (1)
where -

cosd —sind )

R(e) = (sine coss) , @)
_{explsiy) 0O

Gl) _( 0 exp("iy))’ @)

@ = 25And, /A, (4)

8 = 27Andy/ A, (5)

y = (7/2) + ¢, (6)

d , and d g are the thickness of the two halves of the
element, A is the wavelength, An the index difference
of the crystal, ¢ the half deviation from half-wave re-
tardation, and & the deviation from correct location
of the axis. In this analysis it will be assumed that
the birefringence is wavelength-independent. The
matrix mathematics simplifies somewhat if the ex-
pression for a retardation plate at angle 8 is written
in the form

RE8)G(YIR() = cosyl + i sinyER(28), (N

where
== (5.9):
Note that
EZ = 1, {9)
and

ER(8) = RB)E. (10}
Rewriting Eq. (1) using the form of Eq. (7), the ma-
trix for the element is

M = [cosgl = {sinegER{90)][cosy1l + i 51nER(25)]
% {cosgl + i sinBER(-90)]. {11)
Let 3 = o + £, and 5 = 2 + £, then the total retarda-
tion of the element is # and the difference in retarda-
tion of the two halves is &
When used between parallel perfect polarizers, the
transmission amplitude of the element is just My,
Direct evaluation of Eq. (11) shows

My = cosy cosE + siny sin2d siné

+ i siny cos25 cosy, (12)

It_ is also reasonable to operate a wide field element
with crossed polarizers, in which case the transmis-
sion amplitude is

My, = —siny cos26 siny + i cos sin26 swmy
. : (13)
+ cosy sin&l.

Since the main region of concern is when the retarda-
tion of the central element is nearly a half-wave, it is
reasonable to expand in terms of e. Then
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T, = MyMy’

= cos’y cos’e cos®26 ~ sin’e cos’t

+ cos’e sin sin’26 — 7 sin2e sin2é sin26  {14)
and
T, = MpMy*
= sin’n cos’e cos®25 + sin’e sin’z
+ cos’e cos’¢ sin®25 — 3 sinZe sin25 sin2&.  (15)

Before a further expansion is made, we must deter-
mine which terms are small. If waveplates whose bi-
refringent axes and tilts are not wavelength-depen-
dent are used, the terms in é can be made small. For
the polarizers used in normal Lyot filters, the crossed
transmission is between 1073 and 10~4. For the re-
mainder of this paper, tolerable errors will be on the
order of the cross polarizer leakage. In order to
make the terms in 6 that small, 0.344 min of arc < é <
3.44 min of arc. This limit is placed by the linear
terms. In fact, at least ¢ and probably £ will be small,
and 5 can be at least ten times the minimum value.
The effect of & will be negligible if 5 is less than 2 min
of arc.
If we neglect the effect of 4,

T, = T'ecos’n + sin’e(l — sing), (18)
T, = T*sin%p + sin’e sin’e, {17)

where
T!' = (1 - sin'e). (18

If £ is close to a multiple of 7/2, there will be a clear
advantage to Eq. (16) if £ is nearly an odd multiple or
Eq. (17) if £ is an even multiple. For quartz elements
it is quite straight forward to make { nearly zero,
since the ratio of the index difference to the index is
5.8 X 10~3 at 6000 A. Hence if the two quartz ele-
ments are equal to within 1.72 waves (1 u) the bire-
fringence difference will be Yoo wave. That is, £ =
1.8°. Hence, for well-matched (<1 p difference)
quartz elements it is much wiser to use crossed polar-
izers on the wide field element.

For calcite the ratio of the index difference to the
mean index is 0.109 at 6000 A. To get Yo wave bire-
fringence difference requires that the individual
thicknesses be the same to within %, wave. This is
not impossible, since the two element halves can be
crossed and polished for a black center fringe in
white light. But even if the calcite element halves
are only the same to a wave, the errors introduced by
the half-waveplate are down by a factor of 9 with
crossed polarizers. Another possibility is to make &
nearly an odd or even multiple of =/2 at the wave-
length of the filter and then to choose the appropri-
ate polarizer configuration.

T'o demonstrate the symmetry between 5 and ¢ of
the error situation, suppose that ¢ and not 5 can be
neglected. Then from Egs. (14) and (15)

T, = T!cos?n — sin’t sm®28, (19)
and
T, = T'sin’p + sin®26(1 — 5in°%), (20)

where
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T! = (1 — cos*2s). (21)

So by the same arguments used above, the crossed
polarizer mode is again the most insensitive to tilt er-
rors when the thickness error is minimal.

When the element is used in the crossed polarizer
mode [Eq. (15)], the dominant error term will be sin%
sin2¢ if

5 << e < &, (22)
Tt is desired that

sin’e sin®s = 107,
If £ is a Yo wave or less,
sinfe = 107,
€ = 1.8°. 23)

This implies that an element could be tuned thermal-
ly (én is a function of_temperature} over a range of
£34 A near 6000 A.

In Paper 2 it was shown that a nine-element half-
waveplate could be made achromatic to within a de-
gree from 3500 A to 10,000 A. However, the tilt axis
varied by as much as several degrees at the ends of
the range. It is therefore necessary to have mechani-
cal adjusument for tilt when achromatic multielement
half-waveplates are used. If mechanical adjusters
are not used, there is no advantage to greater than
three-element waveplates. .

Tunable Elements

In the standard tuning configuration, a quarter-
waveplate is placed behind the wide field element
and a polarizer rotated for tuning. If the matrix for
the ordinary wide field element is denoted by M, the
tuned element is

Q = PR(ORENG{ p)R{IM, (24)
where
10
P = (0 0), (25)
and
p = @/4) + g, (25)

where 6 is the angle of the polarizer, g is half the re-
tardation error and [ is the tilt error of the quarter-
waveplate. In Eq. (24) R(—6) is omitted and when
thi"is is done, @1 is the proper transmission ampli-
tuae.

In order to understand the basic operation of the
quarter-waveplate, suppose for the moment ¢ and !
are zero and the tuned element is fed by linearly po-
larized light. Then it can be shown that the trans-
mission amplitude is

Q = (1 + /¥ 2[cose cos2 sinlé ~ 6)
~ sing cos{t — 8) + 1 cose cos2é cosln + 8}, (27)

The transmission is

T = Qn Qu#;
or
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T — costly — 6) cos?e cos?26 + cos’e sin’2s sw’{g + 6)

+ sin’¢ cos?{s + @) — 121511125 smn26 sin2le + a). (28)
Comparison of Eq. (28} with Eqs. (14) and (15) shows
that varying 6 tunes the element and that as # goes
from zero to = the dominant error producer changes
from & to . The error term in ¢ dominates when (¢ +
8) is an even multiple of /2. By making § < 2 the
dominant error will come from e, so that if ¢ < 1.8°
the error will always be below 10~%. If achromatic
waveplates are used, the angular variation of the tilt
must be adjusted out if the tilt errors are not to dom-
inate.

If § is made small, as the exit polarizer is rotated
the transmission at a minima caused by the inaccura-
cy in the half-waveplate will modulate between zero
and sinZe. The minima will oceur at

{t + §) = nla/2), nodd, {29)

or
g = nla/2} = &. (30)

By measuring the angle modulo (x/2) at which the
minima and/or maxima occur, the thickuess differ-
ence error £ can be easily measured to better than Yoo
wave. This measurement can be used in a produe-
tion technigue for precisely matching element halves.

The ability to make accurate element halves is use-
ful if the elements are temperature-tuned or the filter
works at a fixed wavelength. For tunable widefield
elements, exactly matched halves is of marginal utili-
ty, since the thickness error only changes the angle at
which the maximum half-waveplate error occurs.

In order to understand the errors introduced when
g and [ are nonzero, it is convenient to write

Q__}_(cosesino) [cos (1-‘-;: 4] )
=73 o 0 W\ o0 1-i

i-;
- sinq( o : o E E)T 27 sinl{sing

_ —sini cosl)] (cosn -i sinn)

) cosq)( cosl sin/ + [ sy —cosy /° G1)

Here the error terms of the wide field element have
been neglected because they are already second-
order.

The transmission amplitude is

V2@, = (1 = i)[eosq cosly — 8) — i sing cosly ~ 8)]
= 9; sni{sing + cosg)[cosy sinlg — I}
— isingcos(e — D].  (32)
The transmission is the complex square of @1;. Un-

fortunately, the complex algebra for the transmission
is rather messy. To clarify the algebra, note that

Fo0y = 4 + Dla - i) = ible ~ i), (33)
So .
2Q|[Qu§ = 2(53 + 22) = 'f?'s'(ﬂ'2 e dz) = 2£Zb(c - d)
- 2belc + d), (34)

where
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= cosq cos{y — 9), (35)

a
I

e = —sug cos{n + 4), (36}

& = 2 sinl{sing + cosg), (3n)

¢ = cosq sin(§ — 1), {33)
and

d = siny cos(s - ). {39}

The transmission can be put in the form

T =24+ + ble - da + B/2Mc + )]
+ belc + 4). (40}

From Eqgs. (35) through (40) the effect of a pure error
in retardation (no tilt)-is

T=a + ¢

It

cos’q cos®ly — 8) + sin’q cosily + 8). (41)

Writing the cosine of ¢ in terms of the sine of ¢ and
exprassing

W+ 8 =>@0m-3+ 20, (42)
expression (41) becomes

T = cos’(y ~ 6+ sin’q[~cos*2(y — 8) sin?20
+ sin?fy — 9) sin28 — %sinz(n — 0) sindd], (43)
or
T = T!'cos’ly — &)
+ sin’q{sin’29 — -%smz(n - 8) sindg], (44)
where
Tt = (1 ~ 2 sin’g sin®24). {45)

Result (44) demonstrates that transmission asymme-
try can be introcuced by an imperfect quarter-wave-
plate. The term in sine 2(5-8) is zero when cosine
{y-0} is zero. Therefore, the term does not add trans-
mission at the minima, but rather transmission
asymmetry. The term in sine?2f does introduce ad-
ditional transmission at the minima.

If the retardation error is zero but a tilt of the
quarter-waveplate exists

T=d + ble—dla+ B2 + . ©8

After some algebra and expansion in terms of (3 — 8)
to second order,

T = T! cos’{y — 8} — sl sin2{n — 4)
— sitl{2 cos26 = sin2g sin2n — )], (47)
where
T = {1 - ¢ sin’f sin’s). (48)

Note that tilt of the quarter-waveplate causes a first-
order error. Fortunately, the error causes an asym-
metry of the transmission profile and does not create
additional transmission at the minima. The second-
order terms in the tilt cause both asymmetry and
transmission at the minima. The ferm in sine2{(n —
8} only introduces asymmetry, while the term in co-
sine2f causes transmission at minima. The quarter-

waveplate should therefore be adjusted at least as
well as the half-waveplate, or about 2 min of arc.

When both nonzero tilt and retardation are consid-
ered, additicnal second-order terms occur froem the
expressions bafc — d) and be(c + d). The addition-
al tilt and retardation terms are to second order

— 2 cos{y — @) sin! sing — sl singf2 cosi20 sin
x 20y — 8) — sindg] (29)

Here again both asymmetry and transmission at min-
ima occur. The error term in sine2 {y — #) causes
pure asymmetry, and the cosine2 {y — §) term allows
additional transmission at minima, Finally then, the
transmission effects of the quarter-wave errors are

T = T!cosly — & —%—smﬂ sin2{y ~ 4}
x sin’f2 cos28 + sin20 sin2{n — 5)}

- sin*gfsin®2e — %sm49 sin2(n —~ 8}

—sinl sing(2 cos’28 sin2(y — 8) — sindé], (50
where
T = (1 — 2 sing sin®28 — 4 sin% sin’e
— 2 sinf sing sindd). (51)

Using a single quarter-waveplate to tune requires
that the exit polarizer rotate with respect to the ele-
ment. But since the exit polarizer for one element is
the entrance polarizer for the following element, the
entire following element must rotate in order to
maintain an angle of 45° between the entrance polar-
izer and the fast axis of that element. In order to ob-
viate rotating entire elements, a quarter-waveplate is
often attached at 45° to the entrance polarizer on the
side toward the first section of an element. In this
case circularly polarized light enters the element, so
the properties of the element are independent of ori-
entation of the entrance polarizer. The exit polariz-
er still allows tuning because the linear polarizer
faces the last portion of the second quarter-wave-
plate.

An analysis of the errors that can be introduced by
a quarter-waveplate on the entrance polarizer pro-
ceeds in the same manner as for the quarter plate on
the element. The same order of errors is introduced
by the second quarter-waveplate. The analysis will
not be carried out here. Instead an alternate method
to tune elements independently is suggested. In-
stead of rotating the final polarizer, it is equivalent
(except for a plate factor) to rotate a half-waveplate
between the quarter-waveplate and the exit polarizer.
The half-waveplate need only rotate by half the angle
at which the polarizer must rotate. In mairix nota-
tion,

PR{8) = —PR[—{9/2)]G(s/2}Rr(5/2). {52}

The left-hand side of Eq. (52) represents a rotated
polarizer and the right-hand side represents a half-
waveplate at an angle 6/2 in front of a fixed polarizer.
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he —i in Bq. (52) removes the arbitrary plate factor.
Use of the half-waveplate does not introduce any
iditional first-order errors. Another advantage of
e half-waveplate occurs if prism polarizers are
ed, because rotating the half-waveplate eliminates
e necessity of rotating the mass of the prism and
mplifies the problem of eliminating the rejected
ht {rom the prism.

scussion

The analysis of a single wide field element shows
at the nine- and ten-element achromatic half- and
1arter-waveplates described in paper 2, it is possible

construct a tunable filter over the range 3500-
,000 A if appropriate correction of tilt is accom-
ished. When tuning is accomplished by rotation of
If-waveplates, all the normally nonrotating ele-
ents could be coupled to a single shaft, which could
> used to adjust the angles of all the fixed wavep-
tes. The rotation variation of the quarter-waves
id the axis location of the tuning half-wave ele-
ents can be corrected for by the programming sys-
m used for tuning the filter.

Besides mechanical tuning of filter elements, elec-
trical tuning by electrooptical crystals is also possi-
ble. If a wide field element that has a nine-element
achromatic half-waveplate is tuned by a pair of elec-
trooptical crystals, complete tuning throughout the
visible would be possible without any mechanical ad-
justments. This would occur because the entrance
and exit polarizers could be placed in a configuration
that minimizes the effect of rotation of the retarda-
tion axis of the half-waveplate. Good electrooptical
crystals are now available. Their use in Lyot filters
will be discussed in a subseqguent article in this series.

This work was supporied by Lockheed Missiles
and Space Corporation independent research funds.

The author is deeply indebted to H. E. Ramsey for
construction of a large family of wide field elements
with known errors. These provided experimental
verification of the calculations presented here.
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mprovement in birefringent filters. 4: The alternate

sartial polarizer filter

Alan M. Title

A design for a birefringent filter is proposed in which alternate polarizers are partial polarizers

Calculated

performance characteristics of alternate partial polanizer filters (APP) are compared with those of Lyot and
contrast element Lyot filters. These calculations show that the APP design has significant advantages
both transmission and profile shape. Using pulse techniques, partial polarizer systems are shown to be a
natural evolution from the standard Lyot and conirast element Lyot systems. The APP {ilter using achro-
matic waveplates discussed in earlier papers of thus series has been used to construct a universal alternate
partial polarizer filter. This filter has a measured full widzth at half-maximum (FWHM) of 0.09 A ar 5300
A& and a transmission in polarized light of 38%. It is tunable from 4500 A t0 8500 A. The measured charac-
teristics of the filter agree well with theoreticat predictions.

ntroduction

~ In previous papers of this series,' components of
sirefringent filters have been discussed. Here a new
esign is suggested that utilizes partial polarizers. The
gharacteristics of birefringent filters with intermediate
sartial polarizers have not had much attention. al-
hough the cases of filters with perfect or no interme-
iate polarizers have been studied extensively.*1¢ The
tandard birefringent filter. the Lyot-Ohman, has
erfect intermediate polarizers. The Sélc filter, which
as seen significant but much less use, has no interme-
iate polarizers. In this paper the properties of several
ilter configurations with imperfect intermediate po-
arizers shall be investigated. If will be shown that such
ilters have significant advantages m transmission and
rofile shape to both the standard Lyot and the contrast
lement Lyvot filters. These theoretical advantages are
emonstrated by the measured properties of an actual
lter that uses partial polarizers.
It has been analytically shown by Giovanelli and
efferies,!t and verified using a computer technique by
Beckers and Dunn.!? that interior imperfect polarizers
1o not have deleterious effects on Lyot filter perfor-
mance if the ratio of polarized to unpolarized light is
preater than (LON? ~ 1):1, where N is the number of
intermediate polarizers. The physical reason for this
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effect has been explained by the author.l3 Forthe Lyot
case, it was shown that the partial polarizers between
the longest and next longest element are helpful while
all other partial polarizers have a deleterious effect.

The Lyot and contrast element Lyot filters are dis-
cussed from the point of view of their pulse response.
This is done to provide a basis of comparison with the
partial polarizer systems. Partial polarizer filters are
then shown to be a natural evolution from the previous
designs. Finally. the measured performance of an al-
ternate partial polarizer filter is shown to agree with
theoretical prediction.

Lyot Sysiems

A Lyot filter is formed by two or more modules. each
of which consists of an entrance polarizer. a birefringent
crystal, and an exit polarizer. When a pulse of light is
incident on the first polarizer, pulses are propagated
down the fast and slow axis of the crystal with ampli-
tudes

Af = A cosé,
A, = Ay sind.

where 4,, Ay, and A, are the amplitudes of the incident.
fast axis. and slow axis pulses. and theta is the angle the
entrance polarizer makes with the fast axis of the crys-
tal. Exiting from the final polarizer are two pulses with
amplitudes

Aop = Aj cosd cos?,

Aoy = A, sinf sind’,
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Fig. 1. Pulse diagram of two Lyot modules with length ratios of 1:

1/2.

where theta prime is the angle the exit polarizer makes
with the fast axis of the crystal. Both outgoing pulses
have the same polarization state. In order that the two
pulses have equal amplitudes, theta and theta prime
must be equal in magnitude, to 45°. The time differ-
ence between the fast and slow pulses is

£ = pdfe, (1)

where u is the difference of the indices of refraction of
the crystal, d'is the crystal length, and ¢ is the speed of
light.

Lyot modules have equal output pulses, and hence
they have parallel or perpendicular polarizers, and the
crystal Fast axis is at £45 deg to polarizer axis.

For convenience, the origin of time is usually rede-
fined so that one pulse is delayed by half of the time
difference while the other is advanced by the same
amount. The pulse response and frequency response
are Fourier transform pairs, so the transmission am-
plitude of a Lyot module that gives rise to a pair of
pulses separated by the time given in Eq. (1) is

A{v) = cos(2xndp). (2)

The simplest Lyot filter consists of two modules. If
the crystals are not of equal length, for every input pulse
to the first module four pulses emerge from the second.
The situation is shown in Fig. 1 for the case in which the
crystal lengths are 1:1/2. The 1:1/2 length ratio has the
effect of making the output pulses equally spaced in
time.

The number of modules in a Lyot filter can be in-
creased indefinitely and equal pulse spacing main-
tained, if the length ratios of adjoining elements are
1:1/2, that is, equal pulse spacing occurs when the
crystal lengths are in the ratio 1:1/2:1/4: .. . :1/2¥-1

The output pulse structure for a single input pulse
into an NV element filter is

P(&) = Ry (VT (-::) &)
where
Rp(ty= 1t} = %
= ojef > % @
and )
L=% Ek%f” 2d, 63
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= (udp)/(c2¥1), (6

where d, is the length of the longest crystal, that is, the
pulse response can be considered as the product of an
infinite series of pulses with a time separation equal tc
the time delay of the shortest crystal times a functior
that is unity for times less than twice the time delay o!
the longest crystal and zero at all other times. The
pulse response is written in the form given by Eq. (3,
because the Fourier transform of Eq. (3) is just a con:
volution of the sinc function and a dirac comb. The
amplitude frequency response, the Fourier transforn
of the pulse response, is

Alw) = sinc(LoyT (i) It
N

From Eq. {7) the Lyot filter has a series of transmis
sion maximum, each of which is separated in frequency
by UN. [The separation of successive transmissior
maxima is called the free spectral range (FSR).] Nea:
each transmission maximum, the fransmission intensit;
has the form of sinc squared.

Because of the substantial secondary maxima of sin
squared, it is desirable to modify the standard Lyo
profile. In terms of the pulse response, this require:
introduction of a tapering or apodizing function. Thu
adjustment of the pulse amplitudes can be done in twt
ways: by adjusting the angles of the entrance and exi
polarizers with respect to the crystals which adjusts th
relative amplitude of the fast and slow pulses and/or b;
adjusting the crystal lengths such that pulse overlaj
OCCUTS.

Normally, the technique used to reduce the trans
mission side lobes of Lyot filters is to add anothe
module with a crystal whose length is equal to the sec
ond longest crystal in the filter.1+15 Figure 2shows th
pulse response tree of a series of modules with lengtl
ratios 1:1/2:1/2:1/4:1/8.

From the figure there are only five pulses emergin;
from the contrast element instead of the eight tha
would normally occur from the third module of a norma

IRPUT PEIRSE

outPIT L LY
* T *
* * * * outpy
k L4 1114,
/ /\ 1 IHH :
f
Fig. 2. Pulse diagram for a contrase element Lyot module. Not

that the second and third Liyot modules have equal lengths, and th
pulse overlap occurs at the output of L3.
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Fig. 3. Transmission vs wavelength {solid) and contribution function

{dotted) from a transmission peak for a pure Lyot filter. The graph
is plotted to half of the FSR.
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Fig.+. Transmission (solid) and contribution function (dotted) vs
wavelength for a contrast element Lyot.
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Lyot filter. Because pulses that arrive at the same time
are indistinguishable. the effect of more than one pulse
arriving at a given time is to create pulses whose am-
plitudes are the sum of pulses that arrive at that time.
Here the time overlapping pulses have the same am-
plitude: thus center three pulses from contrast element
have twice the amplitude of the outer two.

After the contrast element each successive module
doubles the number of output pulses and preserves the
amplitude distribution. As can be seen from Fig. 2. the
contrast element tapers the pulse response.

The analytic form of the contrast element pulse re-
sponse is

¢
P(t} = [Ry (£} + Re (T (;) (®)

where
Ly @
and
24y, o
The amplitude frequency response is then

Aly) = [sinc(L ) + sineL )T (‘—) (11)

A

The transmission vs wavelength for Lyot and a contrast

a2

element Lyot are shown in Figs. 3 and 4. The dotted.
curve in the figures is the contribution function, the
ratio of the light outside the wavelength to the fotal light
in half of the free spectral range {FSR), that is,

FSR/2 SRS
e = j; TN j; R A (2

The main design points of a Lyot system are (1) the
+45° angle the fast axis of the crystals make with re-
spect to the parallel entrance and exit polarizers, which
is to obtain equal amplitude pulses from a single mod-
ule. and (2) the 1:1/2 length ratios of adjoining crystals,
which is to obtain equally spaced equal amplitude
pulses.

Alternate Partial Polarizer Systems

The basic Lyot module produces two output pulses
for each input pulse. Hence, the first logical extension
is to examine properties of filters built from modules
that have three or four output pulses for each input
pulse. Such modules must have at least two crystals
with an intermediate element and/or a relative orien-
tation of the two crystals. Here only the case of a par-
tial polarizer intermediate element shall be discussed.
The designs that have either an intermediate perfect
polarizer or no polarizer have already been handled by
the general techniques in the literature.

A single partial polarizer module consists of an en-
trance polarizer, a crystal, a partial polarizer, a crystal,
and an exit polarizer. All the polarizers are parallel.
while the crystals have their fast axis at plus and minus
45° from the polarizer axis, that is, the crystals’ fast axis
are orthogonal. The reason for the orthogonality of the
crystals will be made clear below. The configuration
is showr in Fig. 5. Because a sequence of modules
would form a filter with aiternate partial polarizers, the
basic partial polarizer module shall be called an alter-
nate partial polarizer (APP) module.

Unless the two crystals of the APP have equal
lengths, there will be four ourput pulses for every input
pulse. The relative amplitude of the pulses is easy o
estimate because the pulse response of the partial po-
larizer is just the pulse response of a perfect polarizer
plus a neutral densicy filter. The perfect polarizer gives
rise to four equal intensity pulses, since it makes the
configuration just a pair of Lyot modules. The relative
orientation of the crystals has no effect for Lyot mod-
ules. The neutral density filter, however, allows the
orthogonal crystals to subtract birefringence which has

POLARIZER

AaRTIAL POLARIZER CRYSTAL 21172

LCRYSTALLAL

POLARLIER

Fig.5. Optical schemauc of an alternate parual polarizer module.

November 1976 / Vol. 15, No. 11/ APPLIED OPTICS 2873



INPUT POLARIZER
—
/J\ /Jﬁu’tu t
] | ’ [ QUTPUT 12 1112)
.i..
/]{urummnmsm

4| | oweuru-iz

] I | | oureur are maouee

Fig. 6. Pulse diagram of an APP module llustrating the perfect
polarizer and neutral density concept.
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Pulse dxagram for an APP module followed by two Lyot
modules with length ratios of 1:1/2:1/4:1/8.

Fig. 7

the result that the system behaves like a single Lyot
module whose length is equal to the difference of the
two crystal lengths. Relative to the perfect polarizer
pulses, the neutral density pulses are decreased in am-
plitude proportional to the neutral density factor. In
the case where the two crystals have 1:1/2 length ratios,
the neutral density pulses coincide in time with the
inner Lyot pulses. The situation is illustrated in Fig.
6.

The argument above can be carried out quantita-

tively. The Jones matrix for a partial polarizer is
px O
P =
P (0 p}), (13)
where
T, = Px'z»
T, = py% {14)

T, and T, are the transmissions of the partial polarizer
in the high and low transmission directions. The ma-
trix can be rewtitten as

PP = (o = py) [(B) + p/lox — 2.) D). {13)
The terms in brackets are the matrices for perfect po-
larizer and a neutral density filter. The transmission
amplitude then can be written as
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A(r) = [PM{cr,45)PPM (o, ~45) P11, (16}
or using Eq. (15),
A@) = (px = pu {PM (0, 45)PM ez, ~40)P
+ ePM(ey,45)M(arz,—45) P}y, an

where
e=p/{px — pu), (18)
¥ (r,2£43) = cosad + 1 sinaER(%90),
o = 2xpd,p,
= (§2,).

R is the rotation matrix. and I the unit matrix, so
that

Ale) = (o — py ) cose cosas + € coslay — aad], (19)

which is the expected result. Expanding the cosine
product term, Eq. (19) becomes .

A(W) = (pe = py)costay + era) + (L + 2¢) cosay ~ an)].  (20)

Equation (20) demonstrates that the response of the
single partial polarizer module is also identical to the
sum of the responses of a Lyot module of length d; plus
ds and one of d, minus ds and that the amplitude of the
inner pulses are greater by a factor of (1 + 2¢) than the
outer pulses. From Eq. (20) equal pulse spacing occurs
when the crvstal length ratios are 1:1/2. The relative
pulse amplitude time sequenceis 1,1 + 2¢, 1 + 2¢, 1.

Since the pulse output of the APP is tapered. a ta-
pered pulse sequence quite similar o that of a contrast
element Lyot can be achieved by using Lyot modules
in conjunction with an APP module. The pulse re-
sponse of a filter consisting of an APP module and two
Lyot modules in which the crystal length ratios are 1:
1/2:1/4:1/8 is shown in Fig. 7. For the figure. the partial
polarizer factor epsilon is %. A comparison of Figs. 7
and 2 shows that the pulse response, and hence the
arnplitude response, of a Lyot filter plus an APP module
are very similar to a contrast element Lyot filter. The
transmission vs length near a transmission peak of an
APP plus Lyot is shown in Fig. 8, which should be
compared fo the transmission of the contrast Lyvot
shown in Fig. 4

Note that an APP plus Lyot can be made from a pure

gl T ,\f-«mm
" il ?ilj'LJhrIi\i\ﬁ ffl J‘ il N\N\ P

TeAVEEENGTH

Fig.8 Transmission {solid) and contribution function (dotted) vs
wavelength for APP-Lyot system,
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Fig. 9. Pulse diagram for a pair of APP modules with Lyot filter
length ratios.
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Fig. 10. Pulse diagram for a pair of APP modules with length ratios
B:1/2:1/3:1/6.

Lyot by removing the perfect polarizer from between
the longest and next longest crystal and replacing it by
a partial polarizer and rotating the first two crystals so
that their fast axis are orthegonal. It is tempting io
imagine that the pulse response of the Lyot could be
tapered even more advantageously by replacing the
polarizers between the other crystals with a partial
polarizer. The pulse sequence for the case of a pair of
APP modules with length ratios of 1:1/2:1/4:1/8 is shown
in Fig. 9.

The relative amplitudes of the time sequence of six-
teen pulses are 1, (1 4+ 2e9), (1 + 2e9), 1, (1 + 2¢), (1 +
2e1) {1 + 2eq), (1 + 251} (1 + 2e9), (1 + 2€1},. . ., where ¢
is the partial polarizer factor of the first module, and ¢
is the factor of the second. Unless e is zero, the pulse
amplitude sequence amplitude oscillates in magnitude,
which gives rise to objectionable secondary maxima in
the filter's transmission,

A monotonic taper can be easily restored, however,
by increasing the lengths of the erystals in the second
module relative to the first. Figure 10 illustrates the
case where the crystal lengths have been adjusted so
that output pulses from the second APP modules due
to successive input pulses just overlap.

In the situation illustrated by Fig. 10, there are three
net output pulses from the second APP module of the
filter for every input pulse instead of four. Thus, the
interpulse space is 4/3 the interpulse space of the Lyot
case. Since in each module the crystal lengths are 1:1/2,
the ratio of the lengths of crystals that adjoin a perfect
polarizer must be 1:2/3. Therefore, the ratios of the

W

erystal lengths are 1:1/2:1/3:1/6. The relative pulse
amplitude sequence is 1, {1 + 2e¢g), (1 + 2e0), (2 + 259),
(L + 26) {1+ 2e2), {1 + 2¢1) (1 4 262}, 2,(1 + 2¢y), .

In order that the pulse amplitude sequence does not
oscillate, it is required that ¢o = . Epsilon one-half
causes the overlapped pulse to have an amplitude that
is the mean of the pulses immediately preceding and
following the overlapped pulse. An APP filter can be
made of an arbitrary number of APP modules when
crystals on either side of a perfect polarizer are in the
ratio of 1:2/3, and all parial polarizers after the first
have epsilon equal to one-half. As more modules are
added, the taper of the pulse sequence becomes
smoother. The transmission amplitude of the APP

is
_ g N2 N2 wudyp o sepd v ]2 0
Alp) = (3) k{;II [cos ( 3&—2) + 2 cos (3&-1 ) ,  (21)
and the crystal lengths are

doddr = (%)/312—2_—1-

and N

devens = ( ) /342, (22)

where dogq and deven are the lengths of the odd and even
numbered crystals. The transmission near a peak of
a four-module (eight-crystal) APP filfer is shown in Fig.
11,

The desire for equally spaced pulses has caused all

a
c R
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6 -t
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19 3‘ 4 @ 5.3 5.8
WAVELENGTH
Fig. 11. Transmission (solid) and contribution funcuon (dotted)
for a four module APP filter. Halfof the FSR occurs at § wavelength
unis.
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CRYSTAL 3 L%

POLARIZER ..i
O

Fig. 12. Opucal schematic of doubie partial polarizer module.
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Fig. 13. Transmission (sclid} and centribution function {dotted)
for a DPP plus two APP module filters. The half FSR occurs at 6
wavelength units.

pravious analysis to be limited to birefringent networks
in which all erystals are multiples of a constant length;
however. as seen above, equally spaced pulses ¢can be
achieved without common multiple length crystals.

Three Crystal Moduies

Having obtained a useful configuration with a single
partial polarizer, it is worthwhile to investigate how
many partial polarizers ¢an be in a single module.
Using pulse sequence diagrams. it appears that only the
system of three crystals and two partial polarizers pro-
vide useful pulse tapers. The three crystal system

consists of entrance polarizer, crystal, partial polax:lzer
erystal, partial polarizer, crystal, and exit polanzer All
polarlzers are parallel while the fast axis of the outer
crystals is at 45° and the inner at minus 45°. The

confi guration is shown in Fig. 12, The module shall be-

called a double partial polarizer (DPP).
The transmission amplitude for the module is from
the Jones matrix caleculus:

.'{(U} = [(,0; - P_v)(px’ - P_\’)
[PM {00 A5YPPM(po,—45)PPM(03,45)P]1y,  (23)

where
o = rudie (2.0)
Writing the partial polarizer matrices as the sum of

perfect polarizer and neutral density filter and ex-
panding, Eq. (23) becomes

Al = c[PM (45 PM( 0o, —43)PM (ex3,45)P
+ ePM(er,45)M{ s, ~45)PM {a3,45) P
+ PM (e1,45) PM{ g, —45) M {0, 45) P

+ e PM (a1, 45) M {2, —45) Mg, 15)P) 1y,
(25)

where
c=(pe — Py)(P:' _Py’),
£= .ay/py = Pz
¢ =p, o, —p:’.
The expression in brackets represents just a sum of
different numbers of Lyot modules. Hence, by in-

spection, Eq. (25) is
Aly) = clcosa; cosag cosag + € cos{ay — ea) cosag

+ ¢ cosay coSlan — as) + e’ cosloy — ae + ag)f.  (26)
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Expanding Eq. (26) into a series of sums of cosines,
sines,

e
Alr) = :{cos(al + as + ag) + (E+ 2¢) coslay + oz = as)

+ (1 + 2¢6) coslag = o3 = an)
+ [L+ 2(e + &) + dee’] cos{ay — an + a3}, (27

In order to create eight equally spaced pulses, the ratios
of dq:da:el3 must be some permutation of (1,2,4). Ife>
¢ in order for the pulse response to taper, the ratios of
dq:ds:ds must be 1/2:1:1/4, the relative pulse amplitude
sequenceis 1. {1 4+ 2¢), (14 2¢), 1 + 2(e + €) + dee’, . ...

Using a similar analysis one can show that a network
of four erystals and three partial polarizers does not
result in a tapered pulse response.

Regardiess of the amount of pulse overlap allowed,
a monotonie taper cannot be achieved with more than
one DPP module. However, the taper can be carried
on by indefinitely adding APP modules with epsilon
one-half. The transmission near a peak vs wavelength
for DPP module followed by several APP modules is
shown in Fig. 13..

Pulse Interleavmg

In the sections above, pulse amplitude shaping and
pulse overlapping have been investigated. Another
useful operation on the pul: - structure is pulse inter-
leaving. Using pulse interleaving, it is possible to
double the number of pulses and half the pulse spacing
and hence double the FSR without using shorter crys-
tals. Th:s s a ignificant advantage because very thin
crystals arg bo E.‘Iﬁcult 1o manufacture and extremely
Considér a stnng of pulses separated by ¢1/2,

FILEER SuTaut

PNETRLEAN NG LLTPET

I/W\l |

Segment ot a pulse diagram illustrating end and taper etfects
introduced by pulse interleaving.

Fig. 14.
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WAVELENGTH
Fig. 15. Transmission (solid) and contriburion function (dotred)
vs wavelengrh for a seven element Lyot filter in which the last element
is three times normal lengrh. The length ratios are 1:1/2:1/4:1/8:
1/16:1/32:3/64
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's wavelength for three module APP plus two Lyot modules. the last

f which is three times normal length. The length ratios are 1:1/2:
1/3:1/6:1/9:1/18:1/32:3/64.
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Fig. 17. Measured filter transmission in the neighborhood of \3324.
The FWHM is 0.11 A, The spectrograph instrumental profile is 0.02
A wide. so that the measurement agrees with the theoretical
; FWHM.

if the next crystal has a time difference of ¢;/2V(1 + 2p),
interior pulses will be separated by ¢;/2V*!, and only
the pulses at the ends of the string will be missing. The
effect of interleaving is shown in Fig. 14. Unfortu-
natelv, pulse interleaving also affects the taper. so that
for apodized systems there is some disadvantage. A
pure Lyvot filter transmission profile in which the sev-
enth module introduces interleaving is shown in Fig. 15.
An APP filter with two Lyvot modules, the second of
which introduces interleaving is shown in Fig. 16.
Figure 15 should be compared with Fig. 3 which is the
corresponding filter without interleaving. Similarly,
Fig. 16 should be compared with Fig. 4.

Experimental

A four module, eight crystal. APP filter has been built
using Polaroid HN-38 for the perfect polarizers and two
laminated sheets of HN-535 for the partial polarizers.
The largest crystal of the filter is 79.312 mm long. At
\D324, the filter has a full width at half-maximum of
0.09 A. The transmission vs wavelength at A\5324 is
shown in Fig. 17.

The measured maximum transmission is 0.38 of the
incident polarized light at A6328 (He-Ne laser). The

theoretical maximum transmission of the filter is 0.43
of the incident polarized light when the losses due to the
transmission factors of the perfect and partial polarizers
are taken into account. When the Fresnel reflection
loss of the index matching fluid-calcite interface is
added, the theoretical transmission becomes 0.41.
Thus, the filter has 93% of its theoretical transmission.
The use of four partial polarizers raises the maximum
transmission by a factor of (0.94/0.86)* = 1.43, compared
to a Lyot.

The APP filter constructed is designed as an opera-
tional filter for use on a solar telescope. In addition to
the partial polarizers, it contains achromatic-half wave
and quarterwave plates made of polyvinyl alcohol. The
filter can be tuned to any wavelength from 4500 & to
8500 A on command from a teletype console. The filter
can be stabilized to 0.01 A by referencing the \6328
Helium-Neon laser line. The filter is tuned by stepping
motors that are commanded by a PDP11/10 minicom-

corner.

Fig. 19.

Photograph of complete LAPPU filter.
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Fig. 21.

puter. The filter is shown without its case in Fig. 18.
The completed filter with stepping motor drivers is
shown in Fig. 19. Figure 20 shows an exploded view of
a typical partial polarizer module.

Discussion

From measurements above, a filter using the alter-
nate partial polarizer design operates substantially as
predicted. The partial polarizers yield an increase in
maximum transmission, and the nonstandard crystal
length ratios result in an apodized transmission profile.
For a filter with the same number of crystals, the APP
is clearly superior in transmission to the Lvot. How-
ever, the pulse overiap of the APP diminishes the fi-
nesse, the ratio of FSR to FWHM, of the APP compared
to the Lyot. This diminition, however, is not sufficient
to remove the transmission advantage. The maximum
theoretical transmission vs finesse for the APP, Lyot,
and contrast element Lyot is shown in Fig. 21. The
data for the figure were obtained by using 0.86 and 0.94
as the transmission factors of perfect and partial po-
larizers. The plot shows there is a transmission ad-
vantage to the APP design that increases with finesse.
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Fig. 20. Explode view of an APP
module that is both wide field and
tunable.
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Fig. 22. Number of crystals vs finesse for APP. Lvot. and contrast

element Lyot filters.

The reason for the behavior illustrated by Fig. 21 is that
the contrast element filter adds a polarizer to achieve
apodization. whereas the APP uses higher transmission
polarizers to achieve apodization.

If one measures apodization quality by the ratio of the
light outside the first zero of the transmission profile to
the total light transmitted to the FSR, again the APP
is superior to the contrast element Lyot. The ratio for
the APP is 0.0095, while for the contrast element Lyvot
it is 0.035. A pure Lyot has. for comparison. a ratio of
0.085.

From the standpoint of both transmission and profile
shape, the APP is clearly a superior design to a Lyot
system. However, the design does have some practical
disadvantages. More crystals are required in the APP
for a required finesse. The number of crystals vs finesse
for the APP, Lvot. and contrast Lyot is shown in Fig. 22.
Also, slightly more calcite is required for the APP than
the contrast Lvot. But since extra calcite is required
only in elements after this third, there is not a signifi-
cant disadvantage. By far the most serious drawback
of the APP is the problem of compensating any residual
birefringence of the partial polarizers. A detailed
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inalysis of the effect of birefringence on partial polar-
zers modules will be discussed in a later paper. How-
ver, anyone attempiing to build an APP should be
ware that Polaroid polarizing material is birefringent,
ind birefringence at the location of the partial polarizer
urprisingly quickly destroys the apodization taper.

The concept of pulse response and its great utility was
ntroduced to me by Larry Mertz. I gratefully ac-
tmowledge his patience and understanding. All the
ptical elements of the LAPPU were made by Harry
lamsey. The mechanical structure was designed and
onstructed by Ralph Reeves, the electronics and logic
oy Russell Lindgren. The computer design and pro-
rramning was done by Stephen Schoolman. I grate-
ully acknowledge the skill, patience, and tenacity used
n solving the construction problems of the filter.

The theoretical analysis of birefringent systems has
reen supported by Lockheed Independent Research
unds. The filter was constructed under NASA con-
ract NASS-20783. The aid and cooperation of Goetz

Qertel and John Mangus of NASA are gratefully ac-
knowledged.
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