
FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

(NASA-CR-152288) FEASIBIIITY SIUDYFOR A N79-26M
 .
HUMERICAL AERODYNAMIC SI-,MULATION F ACILITY

VOLUME 2: HARDWARE I

SPECIICATIONS/DESCRIPTIONS Final Report. Unclas

,(Control Data Corp., St. Paul, Minn.) 474 p G3/09 28382

Volume II - Hardware Specifications/Descriptions

Contributions by: F. M. Green
D. R. Resnick

MAY 1979

Distribution of this report is provided 'in the, interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced
4290 Fernwood Street

Design Laboratory
4k9

St. Paul, Minnesota 55112 ' P'd'

for L

AMES RESEARCH CENTER "

NATIONAL-AERONAUTICS AND SPACE ADMINISTRATION

FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

Volume II - Hardware Specifications/Descriptions

Contributions by: F. M. Green
D. R. Resnick

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 55112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

Page

DIVISION 1 FMP FUNCTIONAL COMPUTER SPECIFICATION

(Detailed division table of contents begins on page

ii of the division.)

DIVISION 2 FMP INSTRUCTION SPECIFICATION

(Detailed division table of contents beings on page

ii of the division.)

DIVISION 3 STANDARD PRODUCT SYSTEM COMPONENTS

CYBER 170/Model 175-100 Computer System 3-1

7030 CYBER Extended Core Storage. 3-10

255X Network Processing Unit. 3-12

10315 Data Channel Converter. 3-18

3270/8271 Transfer Switch Subsystem 3-19

405 Card Reader 3-20

3447 Card Reader Controller 3-21

415 Card Punch. 3-23

3446 Card Punch Controller................. 3-24

580 Traih Printer 3-26

677 Magnetic Tape Transport 3-29

679 Magnetic Tape Transport 3-30

7021-3X Magnetic Tape Controller. 3-32

885 Fixed Module Drive. .*.".......................3-34

7155 Fixed Module Drive Controiler.. 3-36

..............
Mass Storage Subsystem; . . . 3-38

819 Disk Storage Unit*...*........................3-41

7639 Mass Storage Controller. 3-42

CYBER 18/Model 20 3-44

1882 MOS Main Memory Storage. 3-48

1811-2 Operator Console..... ... 3-49

1843-1 Dual-Channel Communication Line Adapter. 3-50

1828-1 Card Reader/Line Printer Controller. 3-52

1829-60 Card Reader............ 3-53

1827-60 Line Printer. 3-54

1833-1 Storage Module Drive Interface 3-56

1833-3 Storage Module Control Unit. 3-57

1867-20/21 Storage Module Drive 3-58

1860-1/2/3/4 Magnetic Tape Subsystems 3-59

DIVISION 4 LOOSELY COUPLED NETWORK SPECIFICATION/DESCRIPTION

APPENDIX A - PERFORMANCE OF TRUNK ALLOCATION CONTENTION

ELIMINATION (TRACE) METHOD............ . ..4-A-1

APPENDIX B - LCN CHANNEL PROTOCOL.......... .. 4-B-I

B1.0 INTRODUCTION. 4-B-i

B2.0 MESSAGE FRAME STRUCTURE...... 4-B-2

B2.1 General..............4-B-2

B2.1.1 Command Message Frame Structure....... 4-B-2

B2.1.2 Response Message Frame Structure...... 4-B-5

B2.2 Frame Elements. 4-B-5

B2.2.1 Frame Synchronization (P, F). 4-B-5

B2.2.2 Destination Address Field (T)........ 4-B-7

i

TABLE OF CONTENTS

Page

B2.2.3 Function Field (FUN) 4-B-7
B2.2.3.1 Command Function 4-B-7
B2.2.3.2 Response Function. 4-B-8
B2.2.4 Access Code Field (Al,A2). 4-B-8
B2.2.5 Resync Parameter Field (RP)........ 4-B-8
B2.2.6 Source Address Field (S)......... 4-B-9
B2.2.7 Length Field (L1,L2). 4-B-9
B2.2.8 Header Frame Check Sequence Field

(FCI,FC2) 4-B-9
B2.2.9 Information Field (I) .4-B-10
B2.2.10 ..Information Frame Check Sequence Field

(FC3,FC4). 4-B-11
B2.2.11 Parameter Fields CPi,P2,P3)...... ... 4-B-11
B2.3 Additional Conventions 4-B-11
B2.3.1 Intermessage Time Fill 4-B-11
B2.3.2 Abort. 4-B-11
B2.3.3 Invalid Message............... 4-B-12
B2.3.4 Order of Bit Transmission......... 4-B-12
B2.3.5 Compatibility. 4-B-12
B3.0 DESIGN GUIDELINES.............. 4-B-12

APPENDIX C - PROPOSED LCN UNIFIED SECOND LEVEL PROTOCOL 4-C-I

ii

DIVISION 1

FMP FUNCTIONAL COMPUTER

SPECIFICATION

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

-- - DATE Mar. 1979

Corporationi S P E C I F I C A T I O N PAGE i

REV.

---------------- RADL----------------------------

(R)

CDC FLOW MODEL PROCESSOR

Functional Computer

Specification

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE ii

REV.

1.0

2.0

3.0

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

3.2.10

3.3

3.3.1

3.3.2

3.3.2.1

3.3.2.2

3.3.3

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

3.4.1.5

3.4.1.6

3.4.1.7

3.4.1.7.1

3.4.1.7.2

3.4.1.7.3

3.4.1.8

3.4.1.9

3.4.1.10

3.4.1.11

3.4.1.12

3.4.2

3.4.2.1

3.4.2.1.1

3.4.2.1.2

3.4.2.2

3.4.2.3

------------------- R A D L

TABLE OF CONTENTS

Page

1
SCOPE....................

APPLICABLE DOCUMENTS.............2

REQUIREMENTS......... 3

General Functional Description......... 3

Scalar Unit 12

Scalar Unit Error Checking........... 15

Associative Unit. 16

Instruction Issue/Decode............ 16

Register File 18

Branch/Instruction Stack............ 18

Main Load/Store 19

19
Intermediate Load/Store

Scalar Floating Point 20

Trace Register. 28

Exchange Operation and Interrupts ... 29

Streaming Control Unit. 35

Instruction Entry to Streaming Control. . 37

Dependency and Interlock Flags. 38

Interlock Flags 38

Dependency Flags................ 39

Execution Queues. 40

Vector Processor. 42

Vector Ensemble (VE).............. 45

Read Bus Select Elements............ 47

Write Bus Select Elements 49

Front-End Add Elements. 49

Multiply Elements 51

Back-end Adder Elements 51

Divide Table Element............. 52

Error Checking. 56

SECDED. 56

Parity. 56

Result Checking 57

32/64-Bit Arithmetic............. 58

Asynchronous Control............. 60

Control Signals 60

Microcode Terms 60

Interface Timing................ 60

Vector Streaming Unit 61

Read Ports of VSU. 64

Port Memory Addressing............ 64

Port Data Management. 67

FIFO Function 68

Pipeline Selection........... 71

http:3.4.1.12
http:3.4.1.11
http:3.4.1.10

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE iii

REV.

3.4.2.3.1

3.4.2.3.2

3.4.2.4

3.4.2.4.1

3.4.2.4.2

3.5

3.5.1

3.5.1.1

3.5.1.1.1

3.5.1.1.2

3.5.1.2

3.5.1.3

3.5.1.4

3.5.1.5

3.5.1.6

3.5.1.7

3.5.1.7.1

3.5.1.7.2

3.5.1.7.3

3.5.1.7.4

3.5.1.8

3.5.2

3.6

3.6.1

3.6.1.1

3.6.1.2

3.6.2

3.7

3.7.1

3.7.2

3.8

3.8.1

3.8.2

3.8.3

3.9

3.9.1

3.9.1.1

3.9.1.2

3.9.2

3.9.2.1

3.9.2.2

3.10

3.11

3.11.1

3.11.1.1

3.11.1.2

3.11.2

----------------- RADL ----------------------------

TABLE OF CONTENTS

Page

Normal Operation of Selection Networks. . . . 73

Error Recovery and Maintenance. 74

Write Ports of VSU............... 74

Addressing. 74

Data Management 75

Map Units 76

Main Map Unit 76

READ 1 and READ 2 78

Address Management. 78

Data Management 78

READ 3 Port 78

COMPRESS Element. 79

MASK/MERGE Element............... 81

ASSEMBLY Element. 81

WRITE Port. .*.*.*.*.*.......................82

Operational Descriptions. 82

Gather. 82

Scatter 83

Compress 83

Mask/Merge.. 84

Operations with the Intermediate Map Unit . 84

Intermediate Map Unit 85

Memory Interchange. 87

Ports 89

Read Ports. 89

Write Ports 90

Priority and Memory Control 90

Main Memory 92

Memory Module 93

Memory Configuration.............. 95

Intermediate Memory 97

Organization and Access 97

High Speed Ports. 97

Low Speed Ports 99

Input/Output. 99

I/O Unit. 99

The PDC 101

I/O Ports 102

Swap Unit 104

Scalar Interface. 106

Backing Store Interface 106

Backing Store 107

Maintenance Control Unit (MCU). 108

MCU/CPU Interface 108

Channels from CPU to MCU............ 109

Channels from MCU to CPU. 113

MCU/Microcode Memory Interface......... 125

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T IO N 	 PAGE iv

REV.

------------------- RADL ----------------------------

TABLE OF CONTENTS

Page

3.11.2.1 	 Microcode Units and Addresses 125

3.11.2.2 	 Microcode Error Checking. 125

3.11.2.3 	 MCU Interface Channel Bits 126

3.11.3 Microcode Memory Channel Programming.. ... 126

3.11-3.1 Typical Microcode Interface Function Codes. 126

3.11.3.2 	 Microcode Switches. 128

3.11.3.3 	 Stream Microcode Status 131

3.11.3.4 	 Interface Sequences........ 132

3.11.3.5 	 Writing or Sweeping Scalar Microcode

Memories. 135

3.11.3.5.1 	 Scalar Microcode Memory Write Operations. . 135

3.11.3.5.2 	 Scalar Microcode Memory Sweep Operations. . 136

3.11.4 	 Monitoring System Activity by the MCU . . . 137

3.11.4.1 	 Monitoring with Counters. 137

3.11.4.1.1 	 MCU Count Gates and CPU Lines 142

3.11.4.1.2 	 Carry Lines 143

3.11.4.1.3 	 Stop Lines. 143

3.11.4.1.4 	 Counter Setup 143

3.11.4.2 	 Display Registers 144

3.11.4.3 	 Logic Fault Monitoring............. 148

3.11.5 	 SECDED (Single Error Correction Double Error

Detection).. 148

3.11.6 	 Absolute Bounds Address 151

3.12 	 Timing Information. 151

3.12.1 	 Scalar Unit Timing._..
.	 151

3.12.1.1 	 Use of Scalar Timing Tables 152

3.12.1.2 	 Basic Instruction Timing. 159

3.12.2 	 Vector Processor Timing 167

3.12.3 	 Map Unit Timing 172

3.12.4 	 Swap Unit Timing................ 173

4.0 	 QUALITY ASSURANCE PROVISIONS. 174

5.0 	 PREPARATION FOR DELIVERY. 174

6.0 	 NOTES 174

6.1 	 Intercom.................... 174

6.2 	 System Startup........ 174

APPENDIX A - Unique Syndrome Words for Single Bit

Failures. 175

APPENDIX B - Asynchronous Data Movement Control For the

Flow Model Processor. 179

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE v

REV.

------------------ R A D L----------------------------

TABLE OF CONTENTS

Page

APPENDIX D - FMP Functional and Timing Characteristics . 186

D1.0 Introduction.................. . 186

D2.0 Instruction Issue 187

D2.1 Issue Timing Parameters 188

D3.0 Main Memory. 189
.. .

D3.1 Main Memory Access......190

D3.2 Main Memory Access Timing Parameters. ... 191

D4.0 Streaming Control 191

D4.1 Interlock Flags 193

D4.2 Keys and the Data Flag Branch Registers . . 194

D4.3 Streaming Control Unit Timing Parameters. . 194

D5.0 Vector Operations 194

D5.1 Vector Read Pert. 195

D5.2 FIFO Buffer 196

D5.3 Pipelines 196

D5.4 Vector Write Port 197

D5.5 Vector Operation Timing Parameters....... 197

D6.0 Map Units 198

D6.1 Main Map Unit 198

D6.2 Intermediate Map Unit 200

D6.3 Combined Map Unit Operations.......... 201

D6.4 Map Unit Timing Parameters. 201

D7.0 Intermediate Memory 201

D7.1 Organization and Access 202

D7.2 High Speed Ports. 202

D7.3 Low Speed Ports 202

D8.0 Input/Output. 203

D8.1 I/O Channels. 203

D8.2 Swap Unit 205

D8.3 Scalar Unit Access-to Intermediate Memory 205

APPENDIX E - Checking Functions During Pipeline

Processing. 207

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation iV S P E C I F I C A T I O N PAGE 1

REV.

-------------------------- R A D L---------------------------

1.0 SCOPE

The CDC Flow Model Processor (FMP) Functional Specification is

intended to provide information of the following types to either

the user or maintenance personnel.

* 	 Information that may be obtained about computer/program
operation via the Maintenance Control Unit (MCU).

* 	 Changes in mode or operation internal to the FMP that
may be made via the MCU or program that are not
specified in the FMP Instruction Specification.

* 	 Information concerning computer operation that is of
value in debugging software/hardware or in program

optimization.

This specification is not intended to provide information as to

how a unit performs its specified tasks such as would normally

be found in a Theory of Operation.

ICONTROL DATA E N G I N E E R I N G NO. 10354637
i-DATE Mar. 1979
, Corporation S P E C I F I C A T I O N PAGE 2

REV.

------------------ R A D L---------------------------

2.0 APPLICABLE DOCUMENTS.

10354636 CDC Flow Model Processor Instruction Specification

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

----------------	 DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 3

REV.

------------------ RADL ---------------------------

3.0 REQUIREMENTS

3.1 General Functional Description

The Flow Model Processor (FMP) is an extremely high speed

computational system designed to provide solutions to very large

systems of differential equations with particular emphasis on

solutions of problems relating to aerodynamic flow. The

processing system is based, in part, on the Control Data

STAR-100 architecture, with both Main Memory and Scalar Unit

design being taken from the STAR-100 family (for descriptions of

these units see section 3.2 and 3.7).

The resulting basic Structure is augmented by the addition of

several very high performance memories and computational

elements:

1) 	A Backing Store Unit that can hold from 32 million to 128

million 64-bit words. The memory is nominally 128 million

words. The memory has full SECDED protection and is

designed with future expandability in mind. See section

3.10.

2) 	An Intermediate Memory Unit that can hold 32 million 64-bit

words. This is a higher performance memory than the Backing

Store (and lower performance than Main Memory). This memory

has full SECDED and also has the capability for future

expansion. See section 3.8.

3) 	A Swap Unit that moves data between the Backing Store and

Intermediate Memory. This unit also contains an access port

to Intermediate memory for use by the Scalar Unit for scalar

access to the Intermediate Memory. See section 3.9.

4) 	Two Map Units that can, singly or working together, reorder

(map) and move data in Intermediate Memory, Main Memory, or

between the two memories. See section 3.5.

5) 	A very high performance set of Vector Units (pipelines) that

perform the major computational work of the FMP. See

section 3.4.

6) 	A Vector Streaming Unit that controls and manages memory

addressing and data control for the vector pipelines. See

section 3.4.

7) 	A Streaming Control Unit that provides control and buffering

of instructions to be executed by the Map and Vector Units.

See section 3.3.

(continued)

-- - -
!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 4

REV.

- -------------------- R A D L

3.1 (-Cont.)

A block diagram of this resulting architecture is shown in

figure 3.1-1. For future expandability in the event that

technology proceeds faster than expected, lines are provided for

two additional address bits on all address paths to the

memories. These bits will allow expansion of each memory to

four times its stated maximum size, if and when technology

permits it: Main Memory to 32 million words; Intermediate Memory

to 128 million words; Backing Store to 512 million words.

Data and programs are entered into the FMP via the Input/Output

ports attached to the Intermediate Memory. Normally the data

and programs will be moved to the Backing Store by the Swap Unit

as the data is entered into the Intermediate Memory. Once the

various fragments of a job are aggregated in the Backing Store,

and the FMP is idle, the job is "rolled" into the Intermediate

Memory via the Swap Unit. A portion of the job--possibly the

whole job if it will fit Main Memory--is then moved into Main

Memory. Certain portions of the computations, all of the

bookkeeping and all of the FMP's overall control are

accomplished in the Scalar Processor . It is this processor that

interprets the instruction stream, acts on those instructions

which it can, and distributes the remaining instructions to the

appropriate attached units (Vector, Main Map, Intermediate Map).

Commands to the Swap and I/O Units are put in command buffers in

the Intermediate memory. The Swap and I/O Units interpret their

respective buffers upon receipt of a signal from the Scalar

Processor.

The FMP is designed to operate at a minor clock cycle rate of 16

nanoseconds, with all data transfers, and all pipeline segments

capable of clocking a new data quantity (32, 64, 128, 512, or

1024 bits wide) every minor cycle. The maximum rate of

arithmetic results produced in the 4 vector pipelines then

becomes 3(operational peak rate)*2 (32-bit results per

pipleline)*4(pipelines) *2(results per clock period) = 48

results per minor cycle of 16 nanoseconds=3.0 billion

floating-point operations per second.

The Scalar, Map, Swap, and Vector Units are capable of operating

simultaneously so that a majority of bookkeeping and data

mapping (reorganization functions) can be overlapped with the

computation. This enables the effective rate of problem

solution to approach 60% of the peak rate, or 1.8 billion

operations per second, which exceeds the original objectives

established for Navier-Stokes solutions for flow field

simulations.

(continued)

I
1
1

0
0

101
101

"

SWAP

N IOIS

ICAlH

OP/Orfl

MeMOR
XIIII.X&ArI =-l

ama arS
&Vcl-t-&

Ii-.IZ

"' '° R% -b,- - - ---.....-- o

4 JI IA.gll

&P I.".N

0 0z

Fgur 3.4 Bi CC F Cfgai I IOIHI
N D)S

Fiur3.N- Basi CDCS) ConfiAgurIation NP

ICONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 6
REV.

-- ------------------- RADL----------------------------

3.1 (Cont.)

Unlike the STAR-t00, the FMP is designed for monoprogramming of

computational jobs, thus there is no virtual memory mechanism.

All user jobs are given the use of the entire eight million

words of Main Memory minus the first 65K words which are

reserved for the FMP monitor. This monitor area cannot be

accessed by the job mode programs. A series of several monitor

mode instructions permits the management and allocation of the

Intermediate Memory and Backing Store, as well as control

communications with the I/O processors attached to the FMP.

These I/O processors, called PDCs (Programmable Device

Controllers), are capable of intelligent control of the I/O

trunks (up to four attached to each PDC) and intelligent

communications with the monitor, as well as providing

200-megabit data transfer rates between the Intermediate Memory

and the trunks, and 50-megabit transfer rate on the actual coax

trunks themselves. (200-Mbit/sec rate is for four PDCs

performing I/O. The I/O system is designed to allow up to 14

PDCs all moving data simultaneously.

The instruction set for scalar operations is a compatible subset

of the STAR-100 family which supports most STAR software, with

the addition of a few operations made necessary by the unique

I/O and Backing Store configuration provided on the FMP. The Map

Units provide execution capability for the STAR-100 "Iverson"

operators of vector MASK,MERGE,COMPRESS and SCATTER/GATHER while

the Vector Unit, in cooperation with the Map Unit, performs the

"Iverson" SELECT, SEARCH, and SEARCH INDEXED LIST operations.

The Vector Unit, in conjunction with the Vector Streaming Unit,

performs the add, subtract, multiply, divide operations commonly

found on most processors, in addition to a series of linked and

macro operations providing combinations of additions and

multiplications every minor cycle. The set of linked operations

chosen were based on the characteristics of flow-model

simulations that have been analyzed by Control Data Corporation.

In addition to the simple combinations of add/subtract and

multiply, the functions SUM,PRODUCT,SUM OF PRODUCTS, and PRODUCT

OF SUMS are included for matrix computations. The Vector Unit,

with the Vector Streaming Unit, can also form bit strings

(called control vectors) that can be used by the Map Units.

To ensure the reliability and maintainability of the FMP, a

number of error checking and recovery facilities are built in,

as well as a group of maintenance functions which can be invoked

b~y a designated computer attached to one or more of the

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 7
REV.

------------------ RADL ---------------------------

3.1 (Cont.)

I/O trunks. Single Error Correction, Double Error Detection

(SECDED) is carried through all data trunks up to the functional

unit actually using the data. Checking for errors is done at

several points in the data path (for example at the Memory, at

the Vector Streaming Unit, and at the Vector Unit) so that

faults can be quickly isolated, while the error correction is

applied at the point where the data is used, for example the

input stream of the Vector Unit.

The physical layout with dimensions of the FMP is shown in,

figures 3.1-2 and 3.1-3. The configuration of LSI panels within

the two basic types of cabinets is shown in figures 3.1-4 and

3.1-5.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 8

REV.

--------------- RADL----------------------------

I 9"-3"

MAINDD GDFMEMORY

7'-0"

F]] L

PROCESSING
UNITS] E

] L9

LMAINTENANCE

ACCESS E

L-j

,7 -I F7-F--- r-7-
I 1

NOTES:
* COLUMN OF FOUR MEMORY CHASSIS

t COLUMN OF FOUR LSI CHASSIS

Figure 3.1-2 CDC FMP Floor Layout (Processor

and Main Memory)

-CONTROL DATA E N G I N E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N 	 PAGE 9

REV.

R A D L

GROUP
0

MEMORY

GROUP
2

MEMORY

10'-10" CONTROL PORTS PORTS

GROUP
1

MEMORY

L

INTERMEDIATE
MEMORY

16'-9"

GROUP
3

MEMORY

2

CABINET 0
N 0BACKING STORE

MEMORY

7'-6""

CABINET 1

Figure 3.1-3 CDC FMP Floor Layout (Intermediate

Memory and Backing Store)

CONTROL DATA E N G I N E E R I N G NO. 10354637

-------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 10

REV.

------------- RA D L ---------------------------

31 in.

76 in.

20 in.

Figure 3.1-4 Cabinet for 8 LSI Panels

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 11
REV.

R A D L

22.65 in.

42 in.

76 in.

Figure 3.1-5 Cabinet for 16 LSI Panels

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 12
REV.

....... .R A D L .

3.2 Scalar Unit

The Scalar Unit is physically contained in a cabinet attached to

the Vector Processor cabinet. Main Memory is attached to the

Scalar Unit cabinet in order to reduce transfer delays and to

gain performance.

The Scalar Unit has synchronous internal logic with a clock

period of 16 nanoseconds and is implemented using LSI circuits.

A block diagram of the functional components of the Scalar Unit

is shown in Figure 3.2-1.

The CDC FMP instruction control is contained in the Scalar Unit.

The Instruction Issue Unit receives and decodes all

instructions from Main Memory. A semiconductor instruction

stack provides buffering for eight swords of instructions (512

bits per sword). The stack can contain up to 128 32-bit

instructions or 64 64-bit instructions or a mixture.

The instruction stack can contain up to 6 discontiguous swords

with two sword lookahead. The Read Next Sword (RNS) portion of

RNS/Branch provides the control for loading the instruction

stack. The Branch portion performs branch condition testing and

executes the branch instructions.

Instruction Issue is pipelined and is capable of issuing

instructions at the rate of one instruction every 16

nanoseconds. The Instruction Issue Unit decodes all

instructions and directs decoded stream instructions to the

appropriate unit for execution. Thus, with independent vector

and scalar instruction controls operating on a single

instruction stream, the Scalar Unit can execute scalar

instructions in parallel with stream instructions.

If an instruction is referenced which is not presently in the

stack, Instruction Issue is halted and a memory request is made

for the word containing the required instruction. The sword

thence brought from memory must replace one of the

swords already in the stack. The sword that is "thrown away" or

overlaid by the incoming sword is the least recently used (LRU)

sword. Thus if swords numbered consecutively 0 through 7 have

been executed without any intervening branches, sword 8

I
I
I

I
I

1

n 1
0lo=g

0 101

I0

.

r rAI

I

I

I

1 0 1031

i-sa.a

leIlol

pYA'A

RD6 010 (I)

______ LT r

~
w

-s

C)
IO

Figure~~~~~ 3.- SclrUntBokiiga

[CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F OC A T 1 0 N PAGE 14
REV.

------------------ R A D L---------------------------

3.2 (Cont-.)

(required by the next consecutive instruction) would be brought

from memory and overlaid in the stack in the position originally

held by sword number 0 which, in this case, is the LRU sword.

Main Load/Store provides special handling of the Main Memory

Load and Store instructions. The unit acts as a pipeline and is

capable of accepting a new request rate of one load every minor

cycle or one store every two minor cycles, provided a memory

busy or register file write-bus busy does not occur. A circular

buffer containing six registers provides buffering for up to six

load requests, or three store requests, or a mixture of loads

and stores.

Main Load/Store is capable of loading a randomly accessed word

of data from Main Memory into the Register File 15 cycles after

reading the base address and item count of the data from the

Register File. This time assumes a memory busy or register file

write-busy bus does not occur. A memory busy would add up to 3

cycles to the load time.

The Intermediate Load/Store provides special handling of scalar

requests to Intermediate Memory just as the Main Load/Store does

for requests to Main Memory. The Intermediate Load/Store has

the same features as Main Load/Store - pipelined execution using

a circular buffer. Because Intermediate Memory has a slower

access time than Main Memory, the load time for a load request

will take about 23 clock cycles instead of 15 as in the Main

Load/Store. A memory busy could add up to 24 clock cycles to

the load time.

Scalar Floating Point contains completely independent functional

elements to attain high scalar performance. The following are

the times in clock cycles to produce a 32-bit or 64-bit result

in each functional element. These times correspond to the

shortstop times. Shortstop is the process by which a result

from any arithmetic element may be returned directly to either

input of any arithmetic element. This occurs in parallel with

the storing of the result in the Register File. Shortstop

eliminates the time necessary to store the result in the

(continued)

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I O N PAGE 15

REV.

------------------ R A D L---------------------------

3.2 (Cont.)

Register File and then retrieve it for use in the next

arithmetic operation.

Add/Subtract Pipe 5 cycles Multiply Pipe 5 Shift/Logical

Pipe 4 Single Cycle Pipe 1 Divide/SQRT/Convert Element 24

The pipe elements are segmented and capable of accepting new

operands every clock cycle. The Divide/SQRT/Convert element

must complete each operation before a new one can begin. All

elements are capable of being shortstopped. The Scalar Unit

contains a semiconductor Register File which provides 256 64-bit

registers for use in instruction and operand addressing,

indexing, field lengths, and as source and destination registers

for scalar instruction operands and results. The Register File

is capable of two reads and one write every clock cycle.

3.2.1 Scalar Unit Error Checking

The basic design of the FMP Scalar Unit is based on the design

of the STAR-100A and STAR-1OOB Scalar Units. In these designs

(already being implemented) there exists a moderate amount of

error checking on buses:

a. SECDED - All data buses in and out of the Scalar Unit

carry seven bits of single error correction, double

error detection code bits for each 32 bits of data. The

data buses are the Load/Store data bus, the Instruction

Read data bus, the Register File exchange path, and the

Register File data bus to the Streaming Control Unit.

See section 3.11.5 for additional information on

SECDED.

b. Parity - All microcode memories in Instruction Issue

and Scalar Floating Point contain parity bit checking.

The microcode carries a parity bit from the time it is

assembled on a front-end processor, until it is read

during execution in a given unit. A parity fault

causes an immediate stoppage of the CPU, and an error

flag to be sent to the Maintenance Control Unit (MCU).

The instruction stack contains parity information in

like manner.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

- [DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 16

REV.

------------------- RADL-

3.2.1 (Cont.)

c. 	Illogical function - Communication between the various

functional elements of the Scalar Unit is performed by

sequences of microcode generated function codes, which

are decoded at the receiving end by microcode.

Sufficient entropy has been included in the function

code scheme to permit some detection of internal

control signal failures.

3.2.2 Associative Unit

N/A

3.2.3 Instruction Issue/Decode

All 	instructions are read from memory by the Scalar Unit and

decoded for subsequent issue. This is accomplished in

Instruction Issue. After an instruction is decoded it is issued

to the unit responsible for further action: the Streaming

Control Unit or the Scalar Unit itself. The Scalar Unit

proceeds with execution of instructions issued to it. The

Streaming Control Unit receives instructions to be executed by

the Vector or Map Units; after checking keys and setting

appropriate flags, the Streaming Control Unit places these

instructions in their respective queues. Responsibilities for

all instructions are shown in table 3.2-2.

These units are essentially independent of one another and each

can execute instructions in parallel. The remainder of section

3.2 provides additional information on Scalar Unit operation.

Section 3.3 describes the Vector Unit and section 3.9 covers the

Swap Unit.

(continued)

I

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 17

REV.

---------------- RADL ----------------------------

TABLE 3.2-2 INSTRUCTION RESPONSIBILITY

First Digit of Instruction Code

10 123 4567 8 9AB CDEF

I013355 S 333 Il1l1S I1I1I1

1i1 3 S SS S S I I I I
 S S S 	 I I I

i211I S SSSS I IIS I III

11I S I S S S S S I I I S
i	 I I I I
I

Scn 711 I S S I S S S I I I S I I I I
ii

I

tiot
on 61S I S S S I I I I S I I I I

i

Aii SIS IIIS III
1ISIS

Cde £55I I S S S S S I I I S I I I I

Cod 8S I I S I S I S I I I I I I I I F!S IIS 3S3SS I I I S I I I I

I Il i

AIS I S S S S S S I I I I I I I I

I
i

ExecutedI S S IhIn theI I I I Processo ta
ntr 7Bii S S S S Scala I I I I CI t

i

i

EIS I S S S S S S I V I S S I I I

DII I S S S S S S I V I SIS I I I

S - Executed within the Scalar Processor (Note that

Data Flag information will be passed to the Data

Flag Register for appropriate instructions).

V - Executed in the Vector Processor (Vector

Streaming Unit and Vector Unit).

M - Executed in the Map Unit.

I - Illegal instruction.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 18

REV.

------------------- R A D L---------------------------

a.2.4 Register File

The Register File of the FMP contains 256 64-bit words. This

Register File is capable of accomplishing two read operations

and one write operation every minor cycle. In addition, the

Register File can be exchanged at the rate of two registers in

and two out every minor cycle. A complete swap of the Register

File is accomplished in 128 minor cycles plus set-up time.

The FMP has 16 Result Address Registers (RAR) used to conflict

check each instruction ready for issue against register file

addresses that are to be written by a previously issued scalar

instruction. If a conflict exists, the action taken depends on

whether the needed result can be shortstopped or not (see

sections 3.2 and 3.2.8 for additional information on shortstop).

If shortstop is possible, the instruction is issued at the

appropriate time and instruction issue continues. If shortstop

is not possible (e.g., the result of a previous load from memory

instruction is needed), issue stops.

The RARs are set sequentially from the result register

designators of issued scalar instructions. They are cleared

when the result is written into the Register File.

3.2.5 Branch/Instruction Stack

The Branch instruction execution times may be found in section

3.12 of this Specification.

The instruction stack implemented in the FMP accommodates up to

8 swords (512 bits per sword), 6 of which may be discontiguous.

To sustain the instruction rate a two-sword "lookahead" will be

done by reading the two swords following the one being executed.

Issue will not be blocked if the swords following are not in the

stack.

An address is maintained for each of the eight swords so that

out-of-stack branches may be taken without voiding the entire

stack. For instance, it would be possible to call a subroutine

of up to 3 swords (48 instructions/32 bits each) several times

from a three sword instruction stream and never branch out-of

stack after the first branch which loads the subroutine into the

stack.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
--- DATE Mar. 1979
1 Corporation S P E C I F I C A T I 0 N PAGE 19

REV.

----------------- R A D L---------------------------

3.2.5 (Cont.)

Refer to paragraph A2.0 of Engr. Spec 10354636 for information

about restrictions on self-modifying programs.

3.2.6 Main Load/Store

Main Load/Store executes the 12, 13, 32, 5E, 5F, 7E, and 7F

instructions-. There are six address registers in Main

Load/Store which enable requests to be stacked and executed in

the proper order. The 12, 5E, and 7E instructions each require

one register and can be executed (in the absence of memory

conflicts) at the rate of one load per minor cycle. The 5F and

7F instructions each require two address registers and can be

executed at one store per two minor cycles. The 13 and 32

instructions each require two address registers which are then

busy for 17 minor cycles.

Main Load/Store is thus capable of streaming load/ store

instructions (other than the 13 and 32) at one minor cycle per

load and two minor cycles per store assuming no Memory or

Register File conflicts. For example, a stream of N loads will

execute in N + 14 minor cycles from the issue of the first load

until the operand from the last load available in the Register

File. A stream of N stores will execute in 2N + INminor cycles

17 --- from

issue of the first store until issue of the last store.

3.2.7 Intermediate Load/Store

Intermediate Load/Store executes the 24, 25, 26, and 27

instructions. There are six address registers which allow

requests to Intermediate Memory to be stacked just as are

requests to Main Memory. The timing of instructions going to

Intermediate Load/ Store is the same as for Main Load/Store--a

load instruction takes one cycle to issue and a store

instruction takes two cycles to issue. Because the Intermediate

Memory has lower performance than Main Memory, Intermediate

Load/Store is unable to maintain a streaming data rate. In

order to increase the effective data rate to Intermediate

Memory, the Swap Unit (which is the interface to Intermediate

Memory for the Scalar Unit) has two buffers of 32 64-bit words.

If the data is in a buffer the data can be sent taken

immediately from the buffers instead of making an intermediate

memory transfer request.

CONTROL DATA E N G I N E E R I N G NO. 10354637
------------- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 20

REV.

-- --------------------- RADL----------------------------

3.2.8 Scal-ar Floating Point

The FMP has an arithmetic unit dedicated to scalar (non-vector)

operations. This Scalar Floating Point is divided into five

separate functional elements: one each for add/subtract,

multiply and logical, a single cycle element for the

add/subtract address and transmit type instructions, and one

combining divide, square root and convert.

All elements of the scalar arithmetic unit are separately and

independently controlled to allow concurrent operation. However,

only one operand pair is issued to the arithmetic unit each

minor cycle so this becomes the limiting factor determining the

result rate from concurrent operations.

There are four effectively segmented pipeline elements which

accept a new pair of operands every minor cycle. They each

produce a 64 or 32-bit result every minor cycle. The

divide/square root/ convert element is not segmented and thus

accepts operands only at completion of the previous operation,

every 28 minor cycles per 64-bit operand. Using 32-bit operands

would approximately double the result rate of the divide/square

root/convert instructions.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation i S P E C I F I C A T I 0 N PAGE 21

REV.

------------------ RADL ---------------------------

3.2.8 (Cont.)

Interface Between Scalar Floating Point and Scalar Control

Input Trunks

There are three input trunks to Scalar Floating Point. The

characteristics of these trunks are outlined in the following

description. All input operands are treated as 64 or 32-bit

floating-point quantities, except as noted. If an indefinite or

machine zero floating-point operand is received, its coefficient

will be set to all zeros.

A Input Trunk

This trunk is 64 bits wide. It receives 64 data bits from

register location R in the following format:

64-Bit Mode

0 15 16 63

Information 	i exponent coefficient

32-Bit Mode

0 7 8 15 16 39 40 63

Information 	I expo-lexpo-icoefficientl zeros

I nent Inent I i i

(copy

of 00-07)

All bits transferred on this trunk should be held on the trunk

for a period of one cycle measured at the input to Scalar

Floating Point.

B Input Trunk

The B trunk receives-data from register location S and is

identical to the A trunk.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation P E C I F I C A T I 0 N PAGE 22
REV.

------------------- R A D L

3.2.8 (Cont-.-)

Control Trunk

The control trunk carries the signals which control Scalar

Floating Point. It is made up of the following signals:

Control Address

The control address bits are the bits that select the

proper set of internal control signals for the

a
floating-point instruction being executed. There is

unique code for each instruction as listed in Table 3.2-3.

Using the input data to Scalar Floating Point as a

reference, these control bits must arrive at the

floating-point logic 1.5 cycles ahead of the data and be

valid for one cycle.

Mode Controls

The mode controls are Mode 64 In, Mode 64 Out, G-bits and

Divide. The Mode 64 and G-bit lines must lead the input

data by 1.0 minor cycles and the Divide signal must lead by

1.5 minor cycles. These should remain up for one cycle.

Issue Controls

These controls are S-Shortstop, R-Shortstop, S-Clockgate,

R-Clockgate, S-Shortstop Enable, R-Shortstop Enable, and

Go. These controls all must be valid one cycle ahead of

the data. The Shortstop Enable signals enable the setting

or clearing of the Shortstop control flip-flops. The

Shortstop signals set flags that cause data to be clocked

into the floating-point input registers when these flags

are a one. The Go signal tells the arithmetic unit to

begin processing the operands that are in the input

registers.

(continued)

I

ICONTROLDATA ENGINEERING NO. 1O354637

- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 23

REV.

----------------------- RADL -----------------------------

3.2.8 (Cont.)

TABLE 3.2-3 INSTRUCTION CODES

INSTR M64 M64 CONTROL G-BITS DIV. CYCLE BUSY A B

IN OUT ADDRESS TIME TIME TRUNK TRUNK OUTPUT CONTROL

10 1 1 01 1 20 17 0 R DT.,DB,DFLG39
11 1 1 02 1 53 50 0 R DT,DB
20 1 1 10 0 0 R S
21 1 1 11 0 0 R S
2A 1 1 18 0 3 0 I R
2B 1 1 19 0 3 0 I R
2C 1 1 1A 0 3 0 R S
2D 1 1 13 0 3 0 R S
2E 1 1 IC 0 3 0 R S
2F 1 1 ID G2,G3 0 1 0 0 T
30 1 1 1E 0 3 0 R S
31 1 1 1F 0 1 0 R +1
34 1 1 20 0 3 0 R S
35 1 1 21 0 1 0 R -1
36 1 1 22 0 1 0 CIAR +20
38 1 1 23 0 1 0 R T
3C 0 0 24 0 5 0 R S
3D 1 1 25 0 5 0 R S
3E 1 1 26 0 1 0 R I
3F 1 1 27 0 1 0 R I
40 0 0 28 0 5 0 R S DFLG42,43,46

41 0 0 29 0 5 0 R S DFLG42,43,46
42 0 0 2A 0 5 0 R S DFLG42,43,46
44 0 0 2B 0 5 0 R S DFLG42,43,46
45 0 0 2C 0 5 0 R S DFLG42,43,46
46 0 0 2D 0 5 0 R S DFLG42,43,46
48 0 0 2E 0 5 0 R S DFLG42,43,46
49 0 0 2F 0 5 0 R S DFLG42,43,46
4B 0 0 30 0 5 0 R 'S DFLG42,43,46
4C 0 0 31 1 30 25 R S DFLG41,42,43,46
4D 0 0 32 0 1 0 I 0
4E 0 0 33 0 1 0 R I
4F 0 0 34 1 30 25 R S DFLG41,42,43,46
50 0 0 35 0 5 0 0 R DFLG46

(continued)

!CONTROL DATA i E N G I N E E R I N G NO. 10354637
- -------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 24

REV.

-------------------- R A D L---------------------------

3.2.8 (.Cont-.)

TABLE 3.2-3 INSTRUCTION CODES (Cont.) INSTR M64 M64 CONTROL

IN OUT ADDRESS TIME TIME TRUNK TRUNK OUTPUT CONTROL

51 0 0 36 0 5 0 0 R DFLG46
52 0 0 37 0 5 0 0 R DFLG46
53 0 0 38 1 30 26 0 R DFLG43,45,46
54 0 0 39 0 5 0 S R DFLG42,43,46
55 0 0 3A 0 5 0 S R DFLG42,46
58 0 0 3B 0 1 0 R 0
59 0 0 3C 0 5 0 0 R DFLG42,43,46
5A 0 0 3D 0 3 0 0 R
5B 0 0 3E 0 3 0 R S
5C 0 0 3F 0 5 0 0 R DFLG43,46
5D 0 1 40 0 5 0 0 R DFLG43,46
60 1 1 41 0 5 0 R S DFLG42,43,46
61 1 1 42 0 5 0 R S DFLG42,43,46
62 1 1 43 0 5 0 R S DFLG42,43,46
63 1 1 44 0 1 0 R S
64 1 1 45 0 5 0 R S DFLG42,43,46
65 1 1 46 0 5 0 R S DFLG42,43,46
66 1 1 47 0 5 0 R S DFLG42,43,46
67 1 1 48 11 0 R S
68 1 1 49 0 5 0 R S DFLG42,43,46
69 1 1 4A 0 5 0 R S DFLG42,43,46
6B 1 1 4B 0 5 0 R S DFLG42,43,46
6C 1 1 4C 1 54 49 R S DFLG41,42,43,56
6D(1)1
6D(2)1
6E 1

1
1
1

4D
4E
4F

0
0
0

4
3
3

0
0
0

R
T
R

S
0
S

6F 1 1 50 1 54 49 R S DFLG41,42,43,46
70 1 1 51 0 5 0 0 R DFLG46
71 1 1 52 0 5 0 0 R DFLG46
72 1 1 53 0 5 0 0 R DFLG46
73 1 1 54 1 54 50 0 R DFLG43,45,46
74 1 1 55 0 5 0 S R DFLG42,43,46
75 1 1 56 0 5 0 S R DFLG42,46
76 1 1 57 0 5 0 0 R DFLG42,43,46
77 1 0 58 0 5 0 0 R DFLG42,43,46
78 1 0 59 0 1 0 R 0
79 1 1 5A 0 5 0 0 R DFLG42,43,46

7A 1 1 5B 0 3 0 R 0
7B 1 1 5C 0 3 0 R S
7C 1 1 5D 0 3 0 R 0

Note: The 6D instruction requires three references to the

Register File; this takes two minor cycles. The "(1)" is the

first and the "(2)" is the second.

(continued)

--
CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation P E C I F I C A T I O N PAGE 25

REV.

-------------------- RADL---------------------------

3.2.8 	 (Cont.)

TABLE 3.2-3 INSTRUCTION CODES (Cont.)

INSTR 	M64 M64 CONTROL G-BITS DIV. CYCLE BUSY A B

IN OUT ADDRESS TIME TIME TRUNK TRUNK OUTPUT CONTR(

BO,G1=O 1 1 60 G1,2,3,4 0 3 0 A X
BO,GI=I 1 1 70 G1,2,3,4 0 5 0 A X DFLG46
BI,G1=O 1 1 61 GT,2,3,4 0 3 0 A X
B1,G1=1 1 1 71 GI,2,3,4 0 5 0 A X DFLG46

B2,G1=O 1 1 62 GI,2,3,4 0 3 0 A X

B2,G1=1 1 1 72 G1,2,3,4 0 5 0 A X DFLG46

B3,G1=0 1 1 63 G1,2,3,4 0 3 0 A X

B3,G1=1 1 1 73 G1,2,3,4 0 5 0 A X DFLG46

B4,G1=O 1 1 64 GI,2,3,4 0 3 0 A X

B4,G1=1 1 1 74 G1,2,3,4 0 5 0 A X DFLG46

B5,G1=0 1 1 65 G1,2,3,4 0 3 0 A X

B5,G1=1 1 1 75 G1,2,3,4 0 5 0 A X DFLG46

BE 1 1 76 0 1 0 0 I
BF 1 1 77 0 1 0 I R
CD 0 0 78 0 1 0 0 I
CE 0 0 79 0 0 I -R

(continued)

--

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporation 1 S P E C I F I C A T IO N PAGE 26
REV.

------------------ R A D L---------------------------

3.2.-8 (Cont.)

Output Trunk

This trunk is 64 bits wide. It transmits output data to the

Register File. The data formats for 32-bit and 64-bit mode are

as shown below. Data will remain on this trunk for one cycle.

0 15 16 63

64-Bit Mode I exponent i coefficient

0 7 8 31 32 39 40 63

32-Bit Mode Iexpo-lcoefficientlexpo-IcoefficientI

nent I Inent I i

\ /

copy of 00-31

Output Control Trunk

The output control trunk transmits control or fault bits

associated with results generated by Scalar Floating Point.

These signals come up with data and are held up for one cycle.

The following signals are transmitted on the output control

trunk:

Signal Meaning of a "1 " on Signal Line

Branch Cond. Met The operands meet the compare condition. This

line is zero when a compare is not being

done.

Exit Cond. Met The operands do not meet the compare condition.

This line is zero when a compare is not

being done.

Divide Timing Divide operands will follow

Pulse this timing pulse by 14 cycles.

Divide Busy The divide element cannot accept new operands during

the time this signal is a "1".

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation 1 P E C I F I C A T IO N PAGE 27

REV.

------------------ R A D L ---------------------------

3.2.8 (Cont.)

Signal Meaning of a "1" on Signal Line

Data Flags 39, 41, See specification 10354636 for 42, 43, 45, 46

these definitions.

Instruction Conflicts

Due to the various instruction cycle times, conflicts may arise

at the output of Floating Point and within the unit. Floating

Point operations must not be initiated on cycles which will

cause conflicts. The following procedure can be used to

determine these conflict cycles:

C = the cycle at which operation A is A initiated.

L = the number of cycles operation A spends in A Floating

Point.

C = the cycle time at which operation B is B initiated.

L= the number of cycles operation B spends in B Floating

Point.

If operation B is initiated after operation A then

C A C + L - L to avoid a conflict.

B A A B

In addition it must be remembered that no divide instruction may

be initiated if the busy time has not expired from a previous

divide.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

1 Corporation S P E C I F I C A T I 0 N PAGE 28
REV.

------------------ R A D L---------------------------

3.2.9 Trace Register

Register file address zero is used as the trace register. The

trace register contains the address from which the most recent

branch was taken. Register zero can be referenced by executing

a 7D instruction. See the instruction specification for the

mode of the 7D instruction which will move register zero to Main

Memory. The maintenance station can read register zero by

storing the Register File and reading absolute zero from memory.

After a job to monitor exchange, the job's address zero in

memory contains the address of the last branch taken prior to

the exchange operation. After a monitor to job exchange,

monitor's address zero (absolute zero) contains the address of

the last branch taken prior to the exchange operation.

CONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 29

REV.

------------------ RADL---------------------------

3.2.10 Exchange Operation and Interrupts

The purpose of the exchange is to change the prime role of the

CPU. In job mode, job tasks are performed; in monitor mode, the

system decisions are made.

Some instructions in progress may be interrupted prior to their

completion. The invisible flags stored in the invisible package

are used to restart the interrupted instruction exactly where

its output left off.

There is a package of data called the "invisible package" that

contains the state of a job whenever the job is suspended from

execution. If the job makes a supervisor call, or if the job

suffers a fatal error (illegal instruction for example), or if

an I/O Unit requires attention, the job state is placed in the

invisible package and monitor mode enabled. Instructions in

progress are allowed to complete.

The invisible package is always stored starting at bit address

104000. This is as indicated in the Exit Force instruction

16
write up in the Instruction Specification.

The monitor must set up the invisible package for each job.

There is NO invisible package for the monitor program itself.

If a job is to be re-entered, the monitor should not alter the

job's invisible package.

Figure 3.2-2 shows the format of the invisible package.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637
--
1 Corporation

-
S P E C I F I C A T I O N

DATE Mar. 1979
PAGE 30
REV.

--- - R A D L

PROGRAM ADDRESS 00
Iq I Ct I MAIN MEMORY BREAKPOINT // 01

02

03

04

05

06

07

2 08
09

CURRENT INSTRUCTION OA

3] OC

OD

0E
OF

DATA FLAG BRANCH REGISTER 0 1

INTERMEDIATE MEMORY BREAKPOINT 1
DATA FLAG BRANCH REGISTER 1 12

1.DATA FLAG BRANCH

13

REGISTER 2 214

DATA FLAG BRANCH REGISTER 3 16
17

REFERENCE ADRS: INTERMEDIATE MEMORY 18
FIELD LENGTH: INTERMEDIATE MEMORY 19

REFERENCE ADRS: BACKING STORE 1A
FIELD LENGTH: BACKING STORE 1B

ic

1D
1 E

1F

MUST BE SET TO ZERO -i~~j AEI

-
 AS YET UNASSIGNED ~JI* UOQtAtLry

Figure 3.2-2 Invisible Package Format

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 31
REV.

RADL---------------------------

3.2.10 (Cont.)

The 	following notes apply to Figure 3.2-2.

1 Usage bits for breakpoint registers.

2 Bit 14 Monitoring counters enable. For further information

see Section 3.11 in this specification.

3 Job Interval Timer.

Exchange from the Monitor to a Job

This is always accomplished with an Exit Force instruction. The

monitor program must set up the invisible package for the, job

prior to exchanging to that job via the Exit Force instruction.

The Exit Force operation is as follows:

1. 	The CPU's invisible registers and flags are loaded from the

invisible package located starting at the bit address

104000

16

2. 	The Register File for monitor is stored into absolute memory

locations 0 through 3FCO (bit addresses). The Register

16

File for the job is loaded from the job's memory locations

100000-103FCO (bit addresses). Any job mode references to

16

this area of a job's memory causes the executing instruction

to be treated as an illegal instruction.

3. 	The CPU mode is changed from monitor mode to job mode.

4. 	The contents of P (program address register) are then read

up and an appropriate start sequence is executed.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

- DATE Mar. 1979

Corporation 1 P E C I F I C A T I O N PAGE 32

REV.

------------------ R A D L---------------------------

3.2.10 (Cont.)

Exchange from Job to the Monitor

The Exit Force instruction and the channel interrupt are the two

normal ways of getting from a job in the job mode to the monitor

program in monitor mode. Attempting to execute a monitor-type

instruction in job mode or an attempt to execute an undefined

op-code comprise the third way into the monitor. Except for the

starting point in the monitor program, the operations performed

in getting to the monitor are identical for the three.

The 	operation is as follows:

1. 	The current invisible registers and flags are stored into

the invisible package in memory locations 104000
1047C0 	 (bit addresses). 16

16

2. 	The Register File for the job is stored in memory locations

100000-103FCO (bit addresses) and memory locations 0

16

through 3FCO (bit addresses) are read and put into the

16

Register File.

3. 	The CPU mode is changed from job mode to monitor mode. Any

external interrupts which occur after this point are honored

only if the CPU executes an Idle instruction. If the CPU

does not execute an Idle instruction, the interrupts are

saved until the CPU mode reverts to job mode, or until the

monitor program clears those interrupts with a OE (Translate

External Interrupt) instruction.

4. 	The monitor program is executed starting at the absolute

address contained in the right-most 48 bits of the monitor's

register 3, 5, 6, or 7.

Refer to Table 3.2-4 for methods of getting from job to

monitor mode.

--

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637

DATE Mar. .1979

I Corporation 1 S P E C I F I C A T IO N PAGE 33

REV.

------------------ RADL---------------------------

3.2.10 (Cont.)

If an attempt is made by the monitor program to perform an

undefined op-code, an automatic branch is made to the absolute

address contained in the monitor's register 4. This hardware

trap is to aid in the debugging of the monitor software and to

trap some hardware failures. This trap is not to be utilized by

the monitor software as a "normal" branch.

TABLE 3.2-4. JOB TO MONITOR METHODS

!Method of Getting !Monitor Register, the

!to the Monitor !Contents of which is

i lUsed to Set P

i --

11. 	 Undefined instruction,! Register 3

Monitor type

instruction in Job

Mode, or a reference

to the Register File

as memory (bit

address 0000-3FFF).

16 1

12. 	 -Undefined OP Code in 1 Register 4

Monitor or reference

to the Register File

as memory (bit

address 0000-3FFF).

16 1

13. 	 Exit Force. Register 5

14. 	 Channel Interrupt. Register 6

(continued)

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 34

REV.

------------------ R A D L---------------------------

3.2.1-0 (Cont.)

The bits in the external interrupt register are assigned as

shown in the following table:

3.2-5. EXTERNAL INTERRUPT REGISTER BIT ASSIGNMENTS

External Interrupt Line iAssignment

0 !1/0 channel 0

1 1
2 2
3 3

4 4
5 5
6 6
7 7

8 8
9 9

10 10

11 11

12 i 12

13 O/0channel 13

14 ISwap Unit

15 NMonitor Interval Timer

ICONTROL DATA E N G I N E E R I N G NO. 10354637
-DATE Mar. 1979
ICorporation S P E C I F I C A T IO N PAGE 35

REV.

------------------ RADL---------------------------

3.3 Streaming Control Unit

The Streaming Control Unit serves as the main control element

for the streaming units - Vector Streaming Unit/Vector Ensemble,

Main and Intermediate Map Units. See Figure 3.3-1. Streaming

control has two main functions:

1) 	Providing instruction buffering between scalar instruction

issue and the executing units. Without this buffering the

Scalar Unit could not overlap scalar instructions with

streaming instructions sufficiently.

2) 	Providing the streaming units with a means of coordinating

their operations, e.g., the Vector Streaming Unit checking

to see whether or not the Map Unit has completed moving data

that the Vector Streaming Unit needs for a data source. The

means of this coordination is a set of flags called the

dependency and interlock key flags that act as semaphores

between streaming instructions.

I

I 1 010 1

rO
Is

L

4e

M

IAIti)I ------ In

Jssut

_ ____

I',
_ _

To S I4CA
:IIT

I

*Losrt MAIN MA HTJ

1 0 Mi

OIs

I MI I

0

1

H

Figure 3.3-1. Streaming Control Unit

!CONTROL DATA E N G I N E E R I N G NO. 10354637

------ DATE Mar. 1979

Corporation S P E C I F I C A T T O N PAGE 37

REV.

------------------ R A D L---------------------------

3.3.1 Instruction Entry to Streaming Control

When the Scalar Unit issues a streaming instruction, the

instruction and its associated data are sent to a set of

registers in the Streaming Control Unit. The information sent

includes the following:

1) 	The instruction itself. This determines what instruction

queue the instruction will enter. Various subfields within

the instruction determine how the read and write key

registers are checked.

2) 	Memory address pointers that come from the Register File.

The pointers will be used by the executing instruction to

control the read and write ports used by the instruction.

3) 	A read key. This field can be applied to check either the

dependency flags or the interlock flags. How, and what is

checked is determined by the instruction.

4) 	A write key. This field, like the read key, can check

either the dependency or interlock flags under instruction

control.

If a flag conflict exists, as determined by the instructions,

the whole register set is locked, the instruction is prevented

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
- ------ DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 38

REV.

------------------ RADL-------------- ------------

3.3.1 (Cont.)

from entering the proper instruction queue, and a signal is sent

back to instruction issue control to prevent issue of further

streaming instructions. Note that this has no effect on

subsequent scalar instructions; they will continue to issue

until another streaming instruction is to be issued. If the

conflict has not cleared by that time, issue is halted until the

conflict has cleared.

It should be understood that even if scalar instruction issue

stops, any streaming instructions previously issued continue to

execute.

3.3.2 Dependency and Interlock Flags

The key flags are used by competing resource units to coordinate

their activity. The dependency flags are used by the Vector

Processor and the Main Map Unit to check for data conflicts in

Main Memory. The interlock flags are used by the Intermediate

Map Unit, the Swap Unit, and the I/O Units to check for data

conflicts in Intermediate Memory. Because the 9D instruction is

used to control both the Main and Intermediate Map Units, a

subfield must be decoded to see if a map instruction read or

write key field refers to the dependency flags or to the

interlock flags or both. The Swap and I/O Units are passed key

numbers in control messages which are left in Intermediate

Memory.

There are 32 dependency flags and 16 interlock flags. The ratio

of these numbers reflects the expected relative activity for

Main and Intermediate Memories. Flag 0 in both flag sets is

held clear and this functions as a null key.

3.3.2.1 Interlock Flags

The interlock flag register consists of 15 flags which may be

test and set. The flags are tested separately by the read and

write keys if required by a map instruction. The flags are also

used by the Swap Unit and I/O Unit through a different path.

When a key is to be applied, the 4-bit key is decoded to

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 39
REV.

------------------ R A D L---------------------------

3.3.2.1 (Cont.)

one of 15 flags (zero is a null). If the flag is clear, the

flag is then set and approval is sent back to the requesting

element. If the flag is set, the request is refused and nothing

further happens. The read and write keys should not contain the

same flag number unless both keys are zero (no flag check).

For a map instruction the keys are both sent to the Map Unit

along with the instruction. When the Map Unit has finished

wrting data for an instruction, the write key is sent back to

the interlock flag register (assuming of course, that

Intermediate Memory was being written) to clear the flag. In a

like manner, the read key is returned.

3.3.2.2 Dependency Flags

The dependency flag register consists of 31 flags which may be

test and set. However, the register is more complex in use than

the interlock flags.

Each flag 'in the dependency flag register shall consist of three

bits as follows:

Bit 1 - a read reference to this flag by the Vector Streaming
Unit;

Bit 	2 - a read reference to this flag by the Main Map Unit;

Bit 3 - a write reference to this flag by either the Main Map

Unit or the Vector Streaming Unit.

The read key sets either bit 1 or bit 2 depending on the

instruction. Just as in an interlock flag reference, a key of

zero means no check or set of the flag register is made (the key

is applied to a null flag).

The following rules apply to the use of the dependency flags by

map and vector instructions.

a) 	A read key of an instruction will, hold up the insruction

from entering the execution queue if either the write bit of

the requested flag is set, or the read bit of the rquested

flag for the same functional unit is set; e.g., a vector

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
i -DATE Mar. 1979
I Corporation 1 P E C I F I C A T I O N PAGE 40

REV.

------------------- RADL---------------------------

3..3.-2.2 (Cont.)

instruction read key checks the vector read bit for the

requested flag.

b) 	A write key of an instruction will hold up the instruction

from entering the execution queue if either the write bit of

the requested flag is set, or the read bit of the requested

flag for the opposite functional unit is set; e.g., a vector

instruction write key checks the map read bit for the

requested flag.

c) 	When the instruction is ready to enter the execution queue,

the proper read bit of the corresponding flag will be set,

and a write bit will be set according to the key in the

write dependency key field.

d) 	The Vector Streaming Unit will signal the Streaming Control

Unit to clear the vector read bit when the read ports have

finished reading the data for the instruction. The same

will be done for the vector write bit when the write ports

have written the last data for the instruction into Main

Memory.

e) 	The Map Unit will signal the Streaming Control Unit to clear

both the map read bit and the map write bit when the last

data for the instruction has been written into Main Memory

since map instructions have no input (read) length. (More

detailed design may reveal that the read bit may be cleared

a few cycles earlier than the write bit in anticipation of a

completed write.)

3.3.3 Execution Queues

There are three separate instruction queues.

1) 	Vector Processor Queue.

This queue holds both the 9E and 9F instructions and

associated data.

2) 	Main Map Queue.

This queue holds the part of the 9D instruction to do with

the Main Map Unit.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 41
REV.

------------------ RADL ---------------------------

3.3.3 (Cont.)

3) Intermediate Map Queue.

This queue holds the intermediate map part of a 9D

instruction.

When a streaming instruction has cleared the flag tests, it is

sent to the proper queue or queues. Each queue is a FIFO buffer

of 16 words. When a functional unit is ready to take another

instruction, it takes the front entry in the queue, and any

instructions behind in the queue move up one position.

The 9E and 9F instructions are put into the queue in that order

because the 9E instructions deal with reading operands and the

9F instructions deal with writing operands. Because of

anynchronous control, the read ports are released by an

insruction and are ready to set up for another instruction

before the write ports are finished with an instruction.

Map instructions are of three types depending on where

executed:

a) Main Map only,

b) Intermediate Map only,

c) Both Main and Intermediate Map required.

Type a) instructions are sent to the main map queue; type b)

similarly, are sent to the intermediate map queue. An

instruction of type c) is broken into two segments and each

segment is put into its respective queue with an identifying

flag attached. When an instruction reaches the front of a map

queue with a flag set, the instruction is not sent to be

executed immediately, but instead, is held up until the other

map queue has an instruction with a corresponding flag in the

front of its queue. Both queue entries are then sent to their

respective map units.

CONTROL DATA I E N G I N E E R I N G NO. 10354637

----- i DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 42
REV.

------------------- RADL

3.4 Vector Processor

The Vector Processor consists of two functional units - the

Vector Ensemble and the Vector Streaming Unit. The Vector

Ensemble performs floating-point arithmetic on vector and array

data that resides in Main Memory. The Vector Streaming Unit

does the addressing of memory and the management of the

resulting data streams for the Vector Ensemble.

The units of the Vector Processor operate together but each has

its own control section and each is given control separately.

The input section (memory read) of the Vector Streaming Unit is

controlled by the 9E instruction. The Vector Ensemble and the

output section (memory write) of the Vector Streaming Unit are

controlled by the 9F instruction.

The Vector Ensemble consists of five identical Vector Units

(pipelines). Four of the pipelines operate on data under program

control leaving the fifth pipeline as a spare. The Maintenance

Control Unit (MCU) designates which unit is to be the spare. If

all five pipelines are operational the MCU can rotate the spare

pipeline by selecting a different spare between jobs. The spare

unit can be driven in parallel with another functioning unit,

thus allowing the outputs of the two units to be compared and

checked, or the spare can be supplied data by, and results

returned to, the MCU. This last option allows a pipeline to be

fixed off-line, while the FMP is still running jobs, unnoticed

by users and without reduction in throughput. Each vector

pipeline has several internal data cmparators that enable a

pipeline to check itself (See 3.4.1.7.3). If an error is

discovered by an on-line pipeline, the job in process at the

time is abandoned and the MCU is notified of the error. The MCU

then reconfigures the Vector Ensemble to make the pipeline with

the error the spare unit, and passes control back to the FMP

Operating System.

The vector pipelines operate in lockstep; that is, each unit is

in the same internal state, performing the same operations, as

any other unit though each is operating on separate data. Each

pipeline is designed so that it accepts two sets of data on

each

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T IO N PAGE-43
REV.

------------------ RADL---------------------------

3.4 (Cont.)

machine clock cycle. Thus, the four Vector Units operating

together yield a result rate of eight result operands per clock

cycle (64-bit mode).

The Vector Processor has four access ports into Main Memory and

two result ports. Each pipeline can perform up to three

floating-point operations on data passing through; thus the four

pipelines operating together and in conjunction with the Vector

Streaming Unit can give a true result rate of 24 floating-point

results to memory each clock cycle (64-bit mode).

The Vector Processor runs under its own local control. That is,

Instruction Issue in the Scalar Unit passes sufficient

information to the Vector Processor via the Streaming Control

Unit so that it can proceed independently. No active control is

required from Instruction Issue. When the Vector Processor is

given a process to perform, it checks for resources required

and, if available, sets up and performs the required operations.

If the resources are not available, the setup information is

held in a one-word.queue until the resources become available.

This queue is separate from the Vector Streaming Queue that

resides in the Streaming Control Unit. When the Streaming

Control Unit finds the queue full, it suspends issuing to the

Vector Processor until the queue is emptied.

The Vector Processor queue is, in fact, two queues - one each

for the Vector Ensemble and Vector Streaming Unit. The queues

are further broken down according to the separate resources of

each unit. Thus, if an individual resource is available, it

immediately tries to perform the desired function.

Holding its own setup information locally, a resource has two

additional requirements in order to perform a function: valid

data at its input and a place that will accept the processed

output. This then is the control system for the Vector

Processor - when valid data is presented at the input to a

function resource, if the resource has been set up to perform an

operation it sends an "accept" to the sending resource, and

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

Corporation I S P E C I F I C A T I O N PAGE 44
REV.

------------------- R A D L---------------------------

3.4 (Cont.)

some number of cycles later produces valid output data. If the

receiving resource is able to take the data it does so. If,

however, proper setup of the receiving resource has not as yet

been fully accomplished, acceptance of the data is not forced.

If a given resource does not receive an "accept" from the

receiving resource, it stops sending "accepts" to the resource

supplying its input. Valid data is indicated by a "valid" signal

on a single line (called the valid line) that accompanies the

data. The "accept" signal is also a single line (called the

accept line).

Thus, a complete operation consists of setting up a complete

"valid" chain - from things that can source "valids" (Main

Memory ports) to things that can sink "valids" (also Main Memory

ports). If a complete "valid" chain is established for a given

operation, that operation will proceed to completion.

As an example of the above consider a vector operation being

performed using two source streams (say A and B) and one result

stream. If the next operation to be performed (the operation

specified by the next operation setup queue) requires all four

input streams and both result streams, the C and D streams of

the second instruction will set up immediately and will fetch

data to an internal buffer set within the Vector Streaming Unit.

Because the Vector Ensemble is not looking for data from the C

and D streams for the current operation, no C or D stream data

will be sent to the pipelines. When the A and B streams are

finished requesting data for the current instruction, they start

immediately requesting data for the new A and B streams. Notice

that these requests take place before the last data from memory

has passed into the pipelines to be processed. If the new

requests to memory can be acknowledged with no delay, this

instruction may have no startup time due to memory access.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 45
REV.

------------------ R A D L ---------------------------

3.4 (Cont.)

When the last of the data for the old instruction has passed

into the Vector Units, pipeline control looks to see if the new

instruction to be performed conflicts with the old instruction.

If a conflict exists, the new data is prevented from entering

the pipelines until the data is processed sufficiently to remove

the conflict. When the data for the new instruction starts

moving through the pipelines, the control attempts to set up the

write ports in the Vector Streaming Unit. One of the output

ports will set up immediately because it was unused by the old

instruction. The other port setup has to wait until the last of

the data for the old instruction has been passed to memory

before setting up for the new instruction. This may cause a

delay of one or two cycles before the setup is completed and

result data from the new instruction is on its way to memory.

3.4.1 Vector Ensemble (VE)

Figure 3.4-1 provides a simplified block diagram of a single

Vector Unit in the ensemble. Each unit is completely

independent of another, with no interconnections between them

for data or control. All incoming and outgoing control passes

between each unit and the Vector Streaming Unit. Each Vector

Unit contains two full multiplier and adder elements and two

half-adder elements, each of which is capable of operating on

pairs of 64-bit input operands or quartets of 32-bit operands

every half clock cycle. Each arithmetic element (add, multiply)

is a segmented pipeline, seven segments per element. Each

segment requires one half clock cycle of pipeline time. Thus

two operands proceeding through all three segments for a

combination add and multiply ((A+B)*C) would require about ten

minor cycles to pass from the select network to the result

buses, Arithmetic Write 1 (AWl) and Arithmetic Write 2 (AW2). A

simple, normalized ADD operation utilizes the front-end add

elements, bypasses the multiply elements and completes the

addition and post-normalization in the back-end add elements.

The total segments for a simple, normalized ADD is seven or for

a simple MULTIPLY operation it is also seven segments of

pipeline time. This pipeline length contributes to vector

startup time as described in section 3.12.2.

I 01101

SRI]

1 0 1-
I Alo

CID

OneVe toaUni3.4-
Figur
sl~lI -ozl tti

1 8111. ____________________

4.410

H wH

C3,r

Figure~~~
etrUi 3.-an

CONTROL DATA 1

Corporation 1

E N G I N E E R I N G

S P E C I F I C A T I O N

NO. 10354637
DATE Mar. 1979
PAGE 47
REV.

------------------ R A D L

3.4.1.1 Read Bus Select Elements

There are four input data buses for each Vector Unit, SRI

through SR4. As shown in figure 3.4-2, each input bus is

capable of supplying operands to any or all four of the

functional streams (Trunk A, Trunk B, Trunk C, Trunk D) which

feed the various arithmetic elements. As can be seen from figure

3.4-1 then, any combination of input buses can be fed to any of

the arithmetic elements, permitting such combinations to occur

as (A*A)+(B*B) by supplying A operands via SR1 and selecting it

through MUXIA and MUXIB to both sides of the multiply element.

Likewise the B operands could be supplied via SR2 and selected

through MUX2A and MUX2B to both sides of the second multiply

element. The results of the two multiplies would then be

combined in back-end adder 1, to form the sum of the two

products.

The read bus select elements Trunk A, B, C, and D are

individually controlled by the A, B, C, and D fields of the 9F

(Vector Arithmetic) instruction which is interpreted by

Instruction Issue and transmitted to the Vector Ensemble by the

Streaming Control Unit.

The extend blocks in the trunk networks perform two functions.

First, the block duplicates the sign bit(s) of the input

exponent(s). This is done to facilitate exponent underflow/

overflow detection and also to preserve a proper exponent in

case some intermediate calculation causes an underflow or

overflow, but a subsequent calculation gives a result in a legal

range. Second, the block serves to detect endcase operands.

Endcases are overflow/indefinite and underflow/ machine zero.

When an endcase operand is detected, a signal is sent along with

the operand to direct further processing of the operand.

The expand blocks provide the ability to perform mixed mode

calculation within the Vector Ensemble. A calculation is

considered mixed if one operand is in 32-bit mode and the other

operand is in 64-bit mode. When performing mixed mode

calculations the mantissa of the 32-bit operand is extended from

24 to 48 bits by appending 24 bits of zero to the lower part of

the mantissa.

3

I 1

1 - 1

XAA' ot

1 0

I

C

4 C

14 4=

Figre .- 2:rnkNtorso Vco Esmle"-

Figre .4-2. Trunk Networks of Vector Ensemblea

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

1 Corporation S P E C I F I C A T I O N PAGE 49
REV.

------------------ R A D L---------------------------

3.4.1.2 Write Bus Select Elements

On any given half-clock cycle the back-end add elements together

can produce two 64-bit or four 32-bit results, each of which are

placed on their respective arithmetic write buses (AWl and AW2).

The results appearing on these two buses are defined by the

suboperation codes for the 9F (Vector Arithmetic) instruction.

If either the V field (for AWl) or the W field (for AW2) are

non-zero, the respective results are sent to the Vector

Streaming Unit to be stored in memory. A field value of zero

inhibits storing any data for the corresponding result stream.

(See section 3.2.1.160 of the instruction spec.)

3.4.1.3 Front-End Add Elements

Two identical arithmetic elements form the front-end functional

processors of each Vector Unit. Figure 3.4-3 shows a block

diagram for one front-end adder. These elements are composed of

a prenormalize network which aligns operands of unlike

exponents, plus a full two's complement adder producing one

64-bit or two 32-bit results every half-cycle. There is no

post-normalization shift network present in these elements. The

output results from such an element is the equivalent of the FMP

ADD or SUBTRACT UPPER or LOWER, with no normalize shifts being

done on the result data.

The primary function of these adders in primitive operations

(di-adic arithmetic such as A*B) is to perform the

pre-normalization of input operands (particularly for the

divisor in divide operations) and to provide for complementing

of one or more operands for functions such as C-A*B).

Each front-end add element has its own independent microcode

control so that diagnostics can be loaded via the microcode

trunk to perform failure isolation to the lowest replaceable

component level (LSI chip).

In addition to the pre-normalization of the divisor in divide

operations, these elements perform the necessary complementation

of negative source operands prior to performing the table

look-up that initiates the reciprocal approximations.

I I) 1 I0

I 1 0 101

IC 01 01

I I A I

A-8

411

I 0 0

CID~~~ 1lrl. " O Z

O~~~~aRANO~~~~~~0sar SCCTOCP)O Vapsn ~A*
54I eRO irs nscr~n 5rwc4 cc~ccCss 4=
se-SirMOOS.

FiguT~yre 3PPNO'.4W-3.r O ne Fr n - nfdeto e t r U i

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 51
REV.

------------------ RADL ---------------------------

3.4.1.4 Multiply Elements

Each Vector Unit contains two identical multiply elements each

with its own independent control logic. The multiply element

inputs two 64-bit or four 32-bit operands and produces one

64-bit or two 32-bit results every half-clock cycle. This

multiply operation is performed in seven segments, each of which

requires a half-cycle. In the first segment, four-bit groups of

the multiplier are used to encode 8-bit groups of the

multiplicand into a series of partial sums and carries. For the

remaining segment times, these partial sums and carries are

merged through a series of partial adders yielding a 96-bit wide

product of partial sums and carries which are finally added

together in the back-end adder. This addition operation

produces a 96-bit wide coefficient result which can either be

normalized, truncated, rounded, or left in upper or lower form

(for double-precision arithemtic).

Inputs to the multiplier are controlled by the subfunction

operations specified in the 9F (Vector Arithmetic) Instruction,

and can come from the read bus select networks, the front-end

adders, the divide table element (for divide operations), or

from one of the arithmetic result buses emerging from the

back-end adders depending on which operations, such as PRODUCT,

are desired. If one or both of the multiply elements is not

specified in the suboperation, then identical inputs are

selected for both elements and checking is enabled.

3.4.1.5 Back-end Adder Elements

Each Vector Unit contains two identical back-end adder units,

each with its own independent control logic. The back-end adder

consists of a rank of deskew logic for synchronizing the various

partial sums and carries from the multiply elements , and a full

three-input adder capable of combining the multiply output

results with the output of the complement network or the other

multiplier element. This function provides facilities for

functions such as (A*B)+C or (A*B)+(C*D).

Each back-end adder performs a 96-bit (in 64-bit operand mode)

or two 48-bit (in 32-bit operand mode) coefficient addition

every half-cycle. The first two segments perform the first

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 52
REV.

------------------ R A D L---------------------------

3.4.1.5 (Cont.)

addition of a pair of operands. The second two segments contain

the second addition of the resulting input pair of operands plus

the final group carry/generate tree, and the final segments

contain the rounding/truncation logic and post-normalization

network. Post-normalization is controlled by the type of

operation specified in the 9F instruction.

Inputs to back-end adders are controlled by the subfunction code

in the 9F (Vector Arithmetic) instruction. The outputs are

placed on the arithemtic write buses AWl and AW2 by the back-end

adders.

3.4.1.6 Divide Table Element

The following description is done for a 64-bit divide operation.

A 32-bit divide proceeds in an identical manner except that

different bits are taken from the operand coefficient and only

the first pass through the Vector Unit is required to obtain a

proper result.

The divide operation utilizes most of the arithmetic elements in

the Vector Unit. To achieve a divide rate of one result per

half-cycle (for 24-bit coefficient accuracy), the reciprocal

divide approximation is utilized. In this mode, the divisor is

pre-normalized and its absolute value yielded by a front-end

adder. This resulting divisor is then sampled by taking 11 bits

of the coefficient from the left-most (or most significant) end,

not including the sign (which will always be zero since the

absolute value of the divisor is used), and not including the

most significant bit (which will always be one since a

normalized divisor is used), yielding bits 18-28 of the 64-bit

operand. These eleven bits are used to address a read-only

memory (ROM), or look-up table, called the divide table element.

A 39-bit word (plus one parity bit) is read from the ROM at that

address. The word is partitioned into two fields, S (14 bits)

and T (25 bits). The field is used as input to the other

front-end adder (for complementation if the divisor was

originally negative), and the S field is used as input to a

multiplier to form the product of S times the remaining bits of

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 53
REV.

------------------ R A D L

3.4.1.6 (Cont.)

the coefficient (the 35 bits not used in the table look-up). The

multiplied result is subtracted from T in the back-end adder and

that result is then fed into the other multiplier along with the

dividend to form a 64-bit result of which at least 23 bits of

the coefficient are accurate. The pair of results out of the

back-end adders can be stored in memory, thence retrieved for a

second pass divide operation to perform the necessary

corrections to produce a full 64-bit result, accurate to 47

places.

Figure 3.4-4 shows the interconnection for the first pass divide

operation which yields a result correct to 23 or more bits.

Figure 3.4-5 shows the interconnection scheme for the second

pass divide operation which is used to produce 64-bit

floating-point quotient results. The input operands required

for this second pass are: the first pass quotient (which is by

itself adequate for 32-bit arithmetic), the original divisor,

and the intermediate product.

The divide table element is referenced once each half-cycle

during the first pass divide operation. This means that when in

32-bit mode, the divide rate is the same as for 64-bit mode

during the first pass, one result per half-cycle. Usually

however, the need for 48-bit accuracy in the coefficient portion

of the 64-bit result will require the second pass which then

creates an effective 64-bit divide rate of one result every two

half-cycles per Vector Unit.

DIVDEND

DI/OR

SR,

SR3

A

7£/

10 101

ct.

A~~~~6 r~tB ---- ------

WIC

rk6o

I 00

CAA

I 0 0

Arn11DeS StoneD CAOX ser.
OUa"CArt SIGM BIMr.

4.4A£1ftWR,1/s/a1r S ARC',QOM/m
sFgcA34- UFis

veCrO.
Ps f 2)

I
I

*tW1t

tr)

Figure 3.4-4~ First Pass for 32-Bit Divide

4UOT6EAT $Z ~ 6 -_______

SRH H

1 0 A0

DIVISO L1 I t

110TIENTESERZE
aNG 0 1 1-1

1_ 0 01

I $' Z:I)E SECEEJ 0, C7" ~eWQII HM;10 Z'0

___I_______m

S~rSI t1 0C

14"Es

Figure 3.4-5 Second Pass for 64-Bit Divide

ICONTROL DATA I E N G I N E E R I N G NO. 10354637
--- IDATE Mar. 1979
Corporation, S P E C I F I C A T IO N PAGE 56

REV.

------------------ R A D L---------------------------

3.4.1.7 Error Checking

3.4.1.7.1 SECDED

Each of the trunks entering and leaving a Vector Unit and

connecting to the Vector Streaming Unit contain a SECDED (single

error correction, double error detection) networks. The read

buses (SR1-SR4) contain SECDED detection and correction

circuits, while the write buses (AW1-AW2) contains SECDED code

generation networks.

SECDED is carried on a 32-bit basis, seven bits for each 32 bits

of data. Thus all input and output trunks possess 78 actual

bits of transmitted data.

See section 3.11.5 for additional information on SECDED.

3.4.1.7.2 Parity

The divide table element consists of a loadable random access

memory (RAM) that behaves as a read only memory (ROM) during

normal Vector Unit operation. Each 39 bits of divide table data

have a single parity bit associated with them. Upon each table

read, the parity is checked. If an error occurs, the Vector

Unit is immediately halted and the Maintenance Control Unit

(MCU) is alerted by an error flag. In addition, the Scalar Unit

is sent a stop signal.

Upon command of the MCU the Vector Unit can transmit the failing

memory location in the divide table, the operand location in the

input vectors for the failing case, and the P counters of all

the control microcodes for the Vector Unit, to assist in

maintenance actions.

Each of the microcode memories in the pipeline control networks

contains a parity bit for each word addressed. In the event

that a parity error occurs, the microcode sequence is frozen and

the P counter transmitted to the MCU on command. A flag

indicating which microcode is failing is sent to the MCU. The

Scalar Unit is also sent a stop signal.

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE-Mar. 1979

Corporation S P E C I F I C A T 1 0 PAGE 57
REV.

----------------------R A D L.----------------------------

3.4.1.7.3 Result Checking

Each Vector Unit is supplied with four coincidence checking

networks, capable of comparing the results produced by the

identical pairs of arithmetic elements. CHECK A compares the

outputs of the front-end adders, CHECK B compares the outputs of

the multipliers, CHECK C compares the results of the back-end

adders, and CHECK D compares the outputs of the complement

networks. Checking is enabled under the following

circumstances.

1. 	When the same input trunks are selected into the pair

of operand ports A&C and B&D, and the identical

functions are selected for the pair of elements

(front-end adders, multipliers, back-end adders, or

complement networks).

2. 	When a given element pair is idled during an operation.

For example, the suboperation code 04 would invoke the

operation A*D and B*C thus idling the complement

networks. In this case an operand is taken from the

divide table and is enabled into both complement

networks automatically by the Vector Unit. The output,

athough meaningless to the programmer, would be checked

by the checking network.

3. 	When one of a pair of elements is idled by a particular

suboperation code. For example the suboperation code

08 would cause the operation A*C+D, thus one multiplier

would be idle. In this case the Vector Unit would

automatically enable the same pair of inputs to both

multiply elements. The checker would then be enabled.

It can be seen that the programmer can explicitly control

checking in some cases by setting the appropriate fields in a 9F

add instruction to select identical operands to identical

elements. See appendix E for details of when checking is

enabled'.

In the event that an enabled checker discovers a mismatch in the

output data, the Vector Unit is halted, a stop signal is sent to

the Scalar Unit, and the MCU is alerted.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354637

S- - -DATE Mar. 1979

, Corporation i S P E C I F I C A T I 0 N PAGE 58

REV.

------------------------- R A D L--------------------------

3_.4.1-.-8- 3-2/4-Bit Arithmetic

Each Vector Unit is capable of processing two 32-bit or one

64-bit results each half-cycle in each of its arithmetic element

segments, except for the divide table which produces one 32-bit

result per half-cycle.

Each arithmetic element except for the divide table can also

process a combination of one 64-bit and one 32-bit operand each

half-cycle as input to an operation. For example, a front-end

add element could be accepting a 64-bit input operand on its A

trunk and a 32-bit operand on its B trunk. In this mixed mode a

64-bit result would be produced.

Each of the input trunks from the Vector Streaming Unit provides

a flag indicating what mode that particular trunk is operating

in, either 64 or 32-bit. The Vector Unit then automatically

configures its arithmetic elements to accept that form of data

on that trunk.

The 9F instruction provides the size mode for the output

trunks.

(continued)

- - - - - - - - - - - - - - - -------- ------------

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
---------------- DATE-Mar. 1979
Corporation 1 S P E C I F I C A T I O N PAGE 59

REV.

----------------- R A D L---------------------------

3.4.1.8 (Cont.)

Floating-point numbers in the CDC FMP are two lengths, 32 bits

and 64 bits as shown in the figure below. The 32-bit format has

an 8-bit exponent and a 24-bit coefficient. The 64-bit format

has a 16-bit exponent and a 48-bit coefficient. The left-most

bit of each exponent and coefficient is the sign bit. A

detailed description of floating arithmetic is presented in the

instruction specification.

32-BIT FORMAT

0 7 8 31 32 39 40 63

(8) i (24) 1 (8) 1 (24)

\v / \ - / \ - / \ /v
V V V V

UPPER UPPER LOWER LOWER

EXPONENT COEFFICIENT EXPONENT COEFFICIENT

64-BIT FORMAT

0 15 16 63

(16) (48)

V V
EXPONENT COEFFICIENT

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
- --------------- DATE Mar. 1979
Corporation 1 P E C I F I C A T I O N PAGE 60

REV.

------------------ R A D L---------------------------

3.4.1.9 Asynchronous Control

As all other units, the Vector Unit controls the movement of

operands through its various elements by valid/accept signals.

Therefore, as soon as data valid signals appear at the ports

selected by a particular 9E/9F operations, the Vector Unit will

begin to move the data through its networks provided no resource

conflicts exist. The results will be placed on the output buses

with a valid Signal, and no more data will be placed there until

an accept is received from the trunk destination. That is the

purpose of the fields in the 9F which designate output ports on

which to expect accepts during an arithmetic operation.

Likewise, the Vector Unit returns an accept for every operand it

takes from an input port, thus allowing the port supplying

operands to move a fresh operand into place on the trunk. In

the case of mixed mode operations where the rate of supply can

exceed the rate that the Vector Unit can process., the accept

flag consists of two bits indicating whether the lower or upper

32-bit operand has been accepted on the particular 64-bit trunk.

See Appendix B for a more detailed discussion of asynchronous

data movement control.

3.4.1.10 Control Signals

(To be defined later)

3.4.1.11 Microcode Terms

(To be defined later)

3.4.1.12 Interface Timing

(To be defined later)

http:3.4.1.12
http:3.4.1.11
http:3.4.1.10

!CONTROL DATA E N G I N E E R I N G, NO. 10354637
DATE Mar. 1979

1 Corporation S P E C I F I C A T I 0 N PAGE 61
REV.

------------------ RADL ---------------------------

3.4.2 Vector Streaming Unit

The purpose of the Vector Streaming Unit is to control and

manage the data streams for the Vector Ensemble. Figure 3.4-6

is an overall block diagram of the Vector Streaming Unit (VSU).

The responsibilities of the VSU include the following:

* 	Providing addressing to Main Memory for the 6 data streams (4

read streams and 2 write streams). This includes

incrementing the addresses properly as the vector operation

proceeds, as well as determination that a particular data

stream has supplied all the required data for a particular

vector operation.

* 	Performing physical alignment of the resulting streams of

data. This alignment is required in two places--on input

data, the proper elements of the input streams must be

matched no matter what the source address of the data; on

output data, the results from the Vector Ensemble must be

returned to the proper addresses in Main Memory.

* 	Performing temporal alignment of the input data streams.

Because of memory access delays, as well as some other

factors, corresponding data words may not be available from

memory simultaneously. Also for a large set of possible

vector operations the individual input data streams are not

required at the same time, but instead must be offset from

one another by precise amounts. For example, in the

operation R=(A*B)+C, A and B are used simultaneously but C

must be available to meet the A*B product at the proper

time.

* 	Pipeline switching. In the event that an active pipeline

fails, the spare pipeline must be brought into play by

sending streaming data to the spare and taking its results in

place of those from the failing pipeline.

(continued)

'Mr I..I I nl1ot

A'*A4r rtm UNt

'O~tt

APOR~fli0

do ro
t c

CC,

S~v,,ra

Ii

I I'

00

a-ia
aA

IctIt

Itk

1~r~M I

VA'~A~ 5
044-

)

H

0(

~"H

Figure4A' 3 . - e t r S r a i g U i

CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 63
REV.

----------------- R A D L---------------------------

3.4.2 (Cont.)

* 	 Bit vector generation. The programmer may want to generate a

bit vector where each bit in the bit vector represents the

result of some comparison with a data word in a data stream.

For example, bit R(I)=A(I).GT.(0.0001). The bit vector can be

used then by both the Vector Streaming Unit (see below) and

the Map Unit.

* 	Bit vector interpretation. The programmer may want to use a

bit vector whose purpose is to inhibit certain vector results

from being stored. As shown in the figure below, say that

one row of an array holds initial conditions for some problem

but the rest of the array is to be updated by some vector

process. If a vector of bits of the form

100...00100...00100... is used to control whether or not a

particular result is to be stored in memory (here a "t1I"means

do not store), the updating of the result array can be done

with one vector instruction rather than several shorter

vectors which have greater total setup overhead.

Memory I 	 -- Initial

Store -------------------- conditions

order 	 not to be

v altered

The VSU is controlled in the same manner as the other streaming

units. That is, the control scheme involves distributing

control functions among the various elements to be controlled.

Each element is given enough information to allow it to run

asynchronously from the other elements. In this way the maximum

number of events may happen in parallel without the need for a

very complex central control unit. See appendix B for a more

detailed discussion of asynchronous data movement control.

!CONTROL DATA ' E N G I N E E R I N G NO. 10354637
------------- i DATE Mar. 1979

I Corporation ! S P E C I F I C A T I O N PAGE 64
REV.

------------------- RADL---------------------------

3.4.2.1 Read Ports of VSU

Figure 3.4-7 shows a block diagram for one of four nearly

identical read ports within the VSU. Each read port controls a

separate data stream from Main Memory to the Vector Ensemble.

The read ports receive the following setup information to

control the data streams:

1 	 The address of a vector stream to be fetched.

2 	 The number of data words to fetch in the stream (the input

length).

3 	 The number of words-of data that the output stream will

require (the output length). This output length will, of

course, be the same for all read ports.

4 	 The word size (mode) of the resulting data stream.

5 	 Exception information.

3.4.2.1.1 Port Memory Addressing

When 	the read port receives the memory address of the requested

data, the port enters the address into a counter/register and

immediately starts making memory requests. Each clock cycle

thereafter the address is incremented and the memory request

control makes another request to memory for more data. As the

memory address is being incremented, both the input and output

lengths are decremented. The amount subtracted on each cycle

from each length counter depends on the operand mode (8 for

64-bit mode and 16 for 32-bit mode).

If the output length counter becomes equal to or less than zero,

then further requests to memory for this data stream are stopped

and the request control loads an address and starts requests for

the next vector. If the input length count becomes equal to or

less than zero before the output length reaches zero, what

happens next depends on exception condition data. There are

basically two ways to continue: either repeat the vector data

stream from the beginning or fill the remaining vector elements

with a constant.

(continued)

I 1 0101
I 1I0IZI

I -S 1 ZI

I 1 0 I 0 I

I I__- I

H mcI~

I lH.Itl

-I

F r .O R d rI

A..

I w ati z
I 0 0

-01

IH 0

Figure~~~~.: oto 3.-.S OeRa

!CONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 66
REV.

----------- R A D L ---------------------------

3.4.2.1.1 .Cont-.)

In the first case the memory address counter is reset to its

original address and memory requests are continued. This

reloading of the address counter is repeated as many times as

required until the output length is satisfied. This feature is

useful for a case like the following (shown in FORTRAN):

DIMENSION VEC(50),ARRAY(50,50)

DO 1 J = 1,50

DO 1 I = 1,50

ARRAY(I,J) = ARRAY(I,J)+VEC(I)

1 CONTINUE

Using the automatic repeat feature, the above loop can be

executed in one long vector stream instead of several (50)

shorter ones.

In the second case, providing a constant to provide fill of the

remaining elements, the read port provides three options as to

the constant: either a floating-paint zero, a floating-point

one, or floating-point indefinite. This last option is the

normal mode because there is seldom a need to add a shorter

vector to a longer one.

In the above discussion no mention was made of streaming data

actually being received by the port because, for a short, normal

vector, the ad'dressing logic can have completed requests to

memory for one stream and started on another vector without

having "seen" data from the first vector. Information that is

required by the port data logic is entered into a first in,

first out (FIFO) queue to await data from memory. This is an

asynchronous process because the amount of time from a read

request to memory until the data arrives is not fixed.

Other than satisfying a length count, two conditions, both of a
similar nature, can interrupt the read port from making memory

requests:

1. The addressing control keeps a count of the number of

requests for memory data that are outstanding (have not been

acknowledged) if the count reaches a predefined limit (about

8 requests), memory access requests are held up.

2. The addressing control can be notified by the data FIFO

buffer control (see 3.4.2.2) that the buffer is in danger of

overflowing. In this case also, memory access requests are

halted until the condition is cleared.

ICONTROL DATA E N G I N E E R I N G NO. 10354637
I ------------- DATE Mar. 1979
1 Corporation 1 P E C I F I C A T IO N PAGE 67

REV.

------------------ RADL ---------------------------

3.4.2.1.2 Port Data Management

The data arriving at the port from Main Memory is in "RAW" form.

That is, the 512 bits at the port are ordered exactly as they

were fetched from memory. 64-bit word 0 of the arriving data

was taken from a module 0 (modulo 8); likewise word 1 from

memory came from a module 1, etc. Because vectors have no

restriction on starting address, it is very unlikely that two

different data streams will matchup if both are used "RAW".

The read port performs the required physical alignment of the

data. During the time of the first fetch of data from Main

Memory, the port computes a shift count that will be required to

align the data stream so that the first element of the vector

will be sent to pipeline 0. As streaming data arrives, it is

shifted the required amount and sent on its way. Notice that

this means some data fetched by the first request may be thrown

away because it was "in front of" the first element of the

required vector.

Because vector lengths are uncontrolled, it is unlikely that the

last vector element of a particular vector will go into the last

pipeline. Thus, extra data will have been obtained on the last

fetch of a vector. This data is sent along with the other data

with a flag attached to the last valid word going to a

particular pipeline. This flag has two purposes. First, on

ordinary instructions, the flag notifies individual pipelines to

start setup for the next instruction. Second, on recursive

instructions (SUM for example), the flag serves to notify the

pipelines to start the termination sequence. The flag joins the

data in entering the FIFO buffer.

CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 68

REV.

------------------- RADL ---------------------------

3.4.2.2 FIFO Function

The FIFO buffer in each input data stream serves to align the

input stream operands with respect to time. There are two

phases to the problem - facilitating alignment with respect to

Main Memory and facilitating alignment with respect to vector

pipelines.

A data stream arriving at the vector pipeline at the same time

as a required companion stream may seem an obvious requirement.

There are, however, some difficulties that mitigate against this

happening.

1. 	The asynchronous nature of the control structure for the

Vector Processor means that there is no specific

relationship between the vector ports when they make

requests to memory for vector streams.

2. 	Other memory access requests may conflict with a memory

request from a vector port, thus causing memory busy delays

in receiving data. It may even happen that the vector ports

conflict between themselves by making simultaneous (or

nearly simultaneous) requests to the same set of memory

modules. This problem is made worse because one of its side

effects is to reduce the effective memory bandwidth.

What is needed, then, is a buffer that allows data to reside

close to the Vector Units, holding the data until all the

required streams are available to be sent to the pipelines while

allowing delayed streams to "keep their place in line" by

continuing to make requests. The data accumulates in the

buffers until the vector pipelines start using the data. At

that point, the read ports are filling the buffer at the same

rate that it is being emptied, keeping the number of words in

the 	buffer constant until the end of the vector is reached.

While the data at the end of the vector is being taken by the

pipelines, the data ports can be starting the next vector. This

may result in data from more than one vector coexisting in the

buffer. The termination flag attached by the read port to the

last element in the vector serves to separate the vectors.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 69
REV.

------------------ RADL ---------------------------

3.4.2.2 (Cont.)

Figure 3.4-8 presents a block diagram of one FIFO buffer.

Functionally, it is a random access memory of about 16 words by

512 bits (plus SECDED bits). Two separate addresses are kept for

the buffer, a read address, controlled by accepts from the

vector pipelines, and a write address, controlld by valids from

the read port. When the FMP is initially started, the address

pointers are set equal to each other (e.g., each is set to

zero). A comparator continuously compares the two addresses and

produces a signal, called "empty", if the addresses are equal.

If the write address is one less than the read address, the

comparator provides a signal called "full". As data is written

into the buffer, the address pointer is incremented; if the last

highest address of the buffer is incremented, the address is

reset to zero and counting continued (end-around). When the

buffer has data (the comparator says "not empty"), a valid

signal is sent to the pipelines. As long as the comparator says

"not full" the FIFO will respond with an accept to every valid

received from the read port. If the comparator says "full"

accepts to the read port stop until the FIFO again becomes "not

full".

I
I

I
I
1

I -C I
C)101
0 10z

0 101

0 0

N.PISI O IC

I t-l Z

.RO /P/

Figure O
11~

lA
S //ISAc ~ Z

zAN
PMA R AIN

TY~~lIA~~rW H4D tCMX4%r"ffr

44

I H) Z3C

Figre 3.4-8 SIS OneWLU FIFO Buffe ofT

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

1 Corporation S P E C I F I C A T I 0 N PAGE 71
REV.

------------------ R A D L ---------------------------

3.4.2.3 Pipeline Selection

Each of the four FIFO buffers in the VSU is connected to the

Vector Ensemble by a pipeline switch which performs two primary

functions:

1. 	Multiplex data together, taking the eight 64-bit operands or

sixteen 32-bit operands and sending the data to the four

functioning pipelines at a double clock rate (each operand

is valid for a half-clock cycle).

2. 	Provide the ability to replace a failing pipeline with a

spare pipeline.

Figure 3.4-9 gives a block diagram of the interconnection of one

FIFO buffer in the Vector Streaming Unit and the Vector Units.

As can be seen from the figure, there are actually connections

to five physically distinct Vector Units comprising the Vector

Ensemble; these connections are labeled DATA 0 through DATA 4.

Only one of the input trunks is shown here, labeled WORD 0

through WORD 7, corresponding to the source trunk VR1 of the

VSU. Also shown is a special data trunk labeled MCU data, which

can be selected into any or all of the five physical Vector

Units. The selection of maintenance data in and maintenance data

out is under the control of the Maintenance Control Unit (MCU).

The figure represents only one of four identical pipeline

switches, one for each of the four buses from Main Memory to the

Vector Ensemble. In a similar manner (also not shown in the

figure), two pipeline switches serve to select four of the five

Vector Units (isolate one) to connect to the two write ports to

Main Memory.

The write pipeline switches perform generally the inverse

operations of the switches in the read paths:

1. 	Demultiplex data from the pipelines back to the write data

port.

2. 	Provide the write portion of the logic which enables use of

a spare pipeline.

(continued)

1' 0 1
0 1

,I
I I

-S I

I 1 0 I 0 1
P/PA PAR SPR14

o 4M .40*.1 0
I4TM#W~~5

ISA 1A
0 4

t11
I

1 " I
I w I

CtI

t-I
I

I

IOZ

A.(

isDAM
ir

Z

'R0/Pt/O

di/4~t/ "RI
ts~j ,CAAt/Dt lOB H

C" O

Fi u e- P p l ne S l cAio/ solatni/Son 4/r/ CiS -lrriCCna-

W-RDDL 4JA
L-LS/?aRM/MMtt SmrA n m

D> 0

,Z~ ICON/SOCE, RW /P

Figure 3./Cd Pipeline Selection/Isolation

;CONTROL DATA

E N G I N E E R I N G NO. 1f0354637
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 73
REV.

------------------ R A D L ---------------------------

3.4.2.3 (Cont.).

The write switches take results from the four active pipelines

plus results from the spare pipeline and "spread" the two sets

of results per clock cycle into eight 64-bit data sets plus

maintenance information for the MCU.

In order to generate the eight results from four pipelines, the

first four results from the first half-cycle are held in a

register within the switch until the second half-cycle when four

more results arrive; the data is then sent to the write port.

3.4.2.3.1 Normal Operation of Selection Networks

Upon deadstart of the FMP, the Maintenance Control Unit (MCU)

sets up the input data selection networks and output data

selection networks for four pipelines. Normally the pipelines

would be configured with Vector 0 through Vector 3 on-line to

the input and output data trunks. In addition, the data trunk

of the adjacent Vector Unit would be enabled to the extra Vector

Unit (in this case Vector 4). The output of Vector 4 would not

be selected into WRITE 1 (VW1), but could be sampled by the

Maintenance Control Unit. Thus during execution of vector

arithmetic instructions, Vector 4 (in this example) would be

performing identical operations on data identical to that

submitted to Vector 3. Thus the internal arithmetic elements

and checking circuitry of the excess unit are continuously

exercised.

In the event that the excess unit discovers an error in its own

operation (checker failure, parity error or SECDED double

error), the Vector Unit will be halted but no stop flag will be

sent to any other units. The Maintenance Control Unit (MCU)

will be alerted, however. Under control of the MCU, special

data trunks can be connected to the input and output of the

excess unit and fault isolation diagnostics executed with

selected data being forced into the trunks of the failing unit.

This technique permits the on-line maintenance of a failing

Vector Unit.

!CONTROL DATA E N G I N E E R I N G NO. 10354637

------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 74

REV.

------------------- R A D L ---------------------------

3.4.2.3.2 Error Recovery and Maintenance

In the event that an error is detected in one of the on-line

Vector Units, the entire FMP is halted and the job in progress

is aborted. Before another job is started the MCU will switch

the data bus selects so that the excess unit is introduced into

the system, and the failing unit removed. For example, if

Vector 2 were to fail and thus be switched off-line, the input

selects would be changed so that WORD 2 and WORD 6 would now go

to Vector 3, WORD 3 and WORD 7 would now go to the previously

off-line Vector 4. At the same time the output selects would be

changed in similar manner, as well as maintenance communications

enabled with Vector 2 through the data buses.

This scheme permits the use of any Vector Unit as the excess

unit, depending on the MCU controls set up, thus all pipelines

can be continuously exercised in an on-line manner thoughout the

operating day. In such instances, the Maintenance Control Unit

could rotate the assignments between jobs.

3.4.2.4 Write Ports of VSU

Two write ports are provided in the VSU each taking one result

stream from the corresponding write pipeline switch.

3.4.2.4.1 Addressing

The setup information received from the Streaming Control Unit

includes three principle elements:

1. The base address for the result.

2. The number of operands to be stored.

3. The result mode (32-bit or 64-bit operands).

When results are available from the vector pipelines (the port

can be set up before the vector data has entered the vector

pipelines under some circumstances) the port sends an address

along with the data to be stored. As each request is sent to

Main Memory the storage address is incremented and the output

length count is decremented by an amount determined by the mode

(16 for 32-bit mode, 8 for 64-bit mode). When the length count

gets to, or below zero, the output port is ready to start setup

for the next instruction.

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i -DATE Mar. 1979
1 Corporation 1 P E C I F I C A T I O N PAGE 75

REV.

------------------ R A D L ---------------------------

3.4.2.4.2 Data Management

Data to be written into memory is accepted by the memory port

512 bits at a time, with word 0 (64 bits) always going to module

0 (modulo 8). However, since vector starting addresses have no

restrictions, the data arriving from the pipelines will quite

likely require alignment. This requires that the VSU write port

shift the data so as to put the first result in the proper

position in the output stream. Notice that the result of this

is that not all 512 bits from the data bus are written into

memory on the first store for a vector operation. This implies

that some of the data from the pipelines is held in the write

port from cycle to cycle because the pipelines produce 512 bits

of result per cycle but the first store does not take all 512

bits. On the last store, in a like manner, the 512-bit bus may

not be full.

The mechanism for telling the Memory Interchange if a particular

result is to be stored or not is called the write enable. If no

write enable accompanies a result, then the result is not stored

into memory. This is done on a 32-bit basis, i.e., each 32-bit

half-word has a write enable associated with it. The

requirement for this can be seen from the discussion above about

the first and last storage request on a vector operation. Once

this ability is available, it is not very difficult to give the

programmer the ability to control the write enables to inhibit

storing unwanted results in memory. Read port 2 is given the

ability to fetch a vector of bits from memory and to send them

to the write ports where they are used to inhibit or enable the

storing of particular results into Main Memory.

The vector pipelines also have the ability to generate control

vectors. The write ports can take this bit data and accumulate

it 8 or 16 bits at a time, depending on the mode, and store it

in memory. Bits are accumulated into 512-bit swords before

being stored. All generated bit vectors are aligned onto a

32-bit boundary and the last 32-bits of the bit vector are zero

filled as required to round it up to the nearest 32-bit

boundary.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation
__-

S P E C I F I C A T I O N PAGE 76
REV.

------------------- RADL ---------------------------

3.5 Map Units

The Map Units 	(Main Map and Intermediate Map) are used to

reorder (Map) data from one form to another, for example to

transpose an array. The Map Units can each operate with its

respective memory or, operating together, can map data from

Intermediate Memory to Main Memory or vice-versa.

The map units 	can each perform the following:

Function 	 Purpose

Gather 	 Take noncontiguous data and "put it together" so

that it can be used as a contiguous vector.

Scatter 	 Take contiguous data and "scatter" it back in

memory in a noncontiguous form (inverse of

Gather).

Compress 	 Pass over selected elements of an input vector,

forcing unwanted elements from the result vector.

Mask 	 Combine two vectors - the result vector element is

the top element of one of the input vectors; the

vector element not chosen is thrown away. The

vector element chosen is under the control of

a bit vector.

Merge 	 Combine two vectors - take the result vector

element from the top element of one of the input

vectors. The vector element not chosen is kept

(corresponds to shuffling cards).

See the description of the 9D instruction in instruction

specification 10354636 for more detailed explanations.

The Map Units operating together can perform the Gather and

Compress operations with source data in Intermediate Memory and

the result data being stored in Main Memory. The units

operating together can perform the Scatter operation with the

source data in Main Memory and the result data being stored in

Intermediate Memory.

3.5.1 Main Map Unit

Functionally, the Map Unit is very simple; as shown in figure

3.5-1, it consists of 3 read ports to fetch operands, functional

units to perform the required operations and a write port to

store the results into Main Memory. Connections to the

Intermediate Map Unit can take the place of some of the read

ports or the write ports when the two units work together.

I I IloIII 010 1

I IsVIzt-I

oIwII
III I UI
1101 HI

Io Ir

00

DAAW

AOC~~~~~tSS~-

Figur

C~flROL

Main Ma

/cern PAS

gLA~
C

.'
_________£NASES

SDX~oes

npx=

00;1

fl

Hnit

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 78
REV.

-------------------- RADL---------------------------

3.5.1.1 READ 1 and READ 2

The READ 1 and READ 2 data ports are identical internally and so

will be described together. The read ports each have internal

control so as to enable them to function asynchronously as much

as possible.

3.5.1.1.1 Address Management

Each port is set up with information that includes the base

address of the stream to be fetched and information about how

and when to change the address. Each port has its own control

so that when it receives sufficient setup information it

immediately starts making memory requests.

3.5.1.1.2 Data Management

As data arrives from Main Memory it must be shifted so that the

first word of the requested data appears left-most in the data

stream. This alignment is required by all the using elements.

3.5.1.2 READ 3 Port

The READ 3 port is much like the READ 1 and READ 2 ports except

that it supplies index lists and bit vectors instead of normal

data. Index lists are used to generate memory addresses for

some options of the Gather and Scatter instructions; bit vectors

are used to control the operations of Compress, Mask, and

Merge.

The additional functionality for READ 3 includes data management

of the index list (whether the list is from memory or specified

in a "stride" suboperation) and bit vectors (from memory). Extra

control is required in data management to shift the incoming

data properly because index list data is used two words at a

time and control vector data is used 8 bits at a time. Thus,

both modes require data to be held in the port and parcelled out

for several cycles before requesting another sword of data.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporationi S P E C I F I C A T I O N PAGE 79
REV.

------------------ RADL ---------------------------

3.5.1.3 COMPRESS Element

In a Compress operation, data is passed from source to result

with some of the data "compressed out". The data kept or

deleted is specified by a control vector (a vector of bits)

where each bit in the control vector is associated with a

corresponding word in the input stream. Compress control is

told in its setup whether the operand size is 32 or 64 bits. See

figure 3.5-2 for a detailed block diagram of the COMPRESS

Element.

The complexity of Compress is such that the 8 input operands are

broken in two groups of 4 and the groups then undergo compress

separately. After the data is compressed it must be accumulated

into 512-bit groups and the groups sent to be written into

memory. The data to be accumulated is in 3 parts:

1. - A partial result from the last clock cycle (group of 480

bits or less) to be combined with Compress result of

current clock cycle,

2. - The Compress results from the upper 4 operands, and

3. - The Compress results from the lower 4 operands.

The partial result must be left-adjusted and the upper result

placed to the right of the partial result. The lower result

must then be placed to the right of the previusly combined

results. This is accomplished by two shift registers which are

controlled by a count of the number of valid operands in each

separate part. The count is the number of enable bits in the

bit vector.

After the data groups are combined, the count of total number of

valid operands is determined. If a total of more than 512 bits

is valid, the left-most 512 bits of the result is sent to be

written into memory and any remainder data is recycled back to

meet the Compress results of the next cycle.

I 1 1

001 01

scI CT

1 H
.1.11r 0 Mrl

I H 1-4

V~~~t~ IrsOCmI-

AC ygEA

1 0 C

EROM ACCS 44

X~trMPMU SO ASSMO0

w 0OU

I. c4.Ar flrA 4~SAR.CS l~r a~r I 1 Z=

Figure 3.5-2 Compres Elmntorai apUi

!CONTROL DATA I E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation i S P E C I F I C A T I 0 N PAGE 81

REV.

------------------ RADL ---------------------------

3.5.1.4 MASK/MERGE Element

The Mask operation is very simple: For the ith result select

either Ai) or B(i); this is a set of simple OR gates. The

result of the operation is sent to be stored into memory.

The Merge operation is another logically complex one. Each bit

in the control vector chooses a result element from either the A

or B stream inputs. However, unlike the Mask operation, the

unused operand is not discarded but kept for possible selection

on the next cycle. The difficulty comes not when one result is

selected in a given clock cycle but when 8 results are selected

in a clock cycle. Each stream is processed separately to

combine them into a final result.

Each stream is put into a set of controllable shift registers.

What is done is to insert a fill operand (null) for each place

that the bit vector indicates that the other stream will have an

operand inserted. One operand stream will use the Ills" of the

bit vector to insert nulls; the other stream will insert nulls

using "Os". As an example, assume two streams AM) through AM4

and likewise, B1) through B(4) along with four bits of control

vector C = 1011. Assume that the A operands insert on zeros and

the B operands insert on ones. Then this will result in:

A = A), Null, A(2), A(3)

B = Null, B(1), Null, Null

The modified streams are then sent on to the mask logic which

selects from the input operands according to the control

vector.

3.5.1.5 ASSEMBLY Element

The ASSEMBLY element is a word controlled shift register that is

principally used to hold partial results from the Gather

operation until 512 bits of result are accumulated to be sent to

the write port. If the Gather operation specifies long records,

greater than 512 bits, the ASSEMBLY element simply passes the

data through.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-- i DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 82

REV.

------------------- R A D L ---------------------------

3.5.1.6 WRITE Port

The Main Map Unit WRITE port controls the storing of data to

Main Memory. Data accepted by the WRITE port is all 512 bits

wide plus appended SECDED.

Address management by the WRITE port is done in either of two

modes. The first mode is the normal sequential write mode which

is identical to the Vector Streaming Unit write ports (see

3.4.5). As each 512-bit group is taken by the port, the current

store address is updated and sent, along with the data, to Main

Memory. The second mode is used only for the Scatter operation.

In this mode, the index for the address of the data to be stored

is sent from the READ 3 port. The index is added to the base

address before being sent to memory.

The 	data managment of the WRITE port is the same as the write

ports in the other units - the left-most word of the 512-bit

sword must be "right-adjusted" to put the data in the proper

position to be stored into memory. Write enable flags are

included with the data to show which of the 32-bit half-words

hold valid data to be stored in memory. There can be invalid

data on the first and last store request of an operation as well

as invalid data on Scatter operations for shorter record lengths

(for a single-word-record Scatter there might be only 32 bits

valid in a 512-bit sword).

3.5.1.7 Operational Descriptions

3.5.1.7.1 Gather

A Gather operation proceeds as follows:

1) 	READ 3 will supply the indexes to READ 1 and READ 2. If the

instruction specifies an index list in memory, READ 3

fetches the index data. If the instruction specifies a

stride operation, then READ 3 modifies the specified strides

so that the READ 1 and READ 2 ports can fetch alternate

records. The indexes are then sent, two at a time, one each

to READ 1 and READ 2.

2) 	READ 1 and READ 2 access memory, READ 1 first and then

alternately. This is controlled by whose data is accepted

into the ASSEMBLY element.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 83
REV.

------------------ R A D L

3.5.1.7.1 (Cont.)

3) 	Records are assembled into 512-bit swords in the ASSEMBLY

element. Data from READ 2 has passed through the COMPRESS

element which is simply part of the data path.

4) 	Assembled swords are written into memory by the WRITE port.

3.5.1.7.2 Scatter

1) 	READ 3 will supply indexes to the WRITE port. If the

instruction specifies an index list in memory, READ 3

fetches the index data. If the instruction specifies a

stride operation, READ 3 computes the required indexes which

are 	sent one at a time to the WRITE port.

2) 	READ 1 fetches the data, some of which may be held in the

read port depending on the record size.

3) 	Data is sent to the ASSEMBLY element which performs no

operation on the data but may hold it temporarily, depending

on the record size.

4) 	512-bit swords are sent to the WRITE port to be written into

memory.

3.5.1.7.3 Compress

1) 	READ 3 fetches the control vector and sends it, 8 bits at a

time, to the COMPRESS element.

2) 	READ 1 fetches data and sends it 8 operands at a time to the

COMPRESS element.

3) 	The COMPRESS element sends the result data to the WRITE port

through the ASSEMBLY element which is simply part of the

data path.

4) 	The WRITE port sends the result data to memory.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
- ------ DATE Mar. 1979
Corporation 1 S P E C I F I C A T I O N PAGE 84

REV.

------------------ R A D L---------------------------

3.5.1.7.4 Mask/Merge

1) 	READ 3 gets the control vector from memory and sends it, 8

bits at a time, to the MASK/MERGE element.

2) 	READ 1 fetches the first operand stream.

3) 	READ 2 fetches the second operand stream.

4) 	Both streams are operated on in the MASK/MERGE element under

control of the control vector.

5) 	The resultant data stream is sent to memory by the WRITE

port.

3.5.1.8 Operations with the Intermediate Map Unit

When operating with the Intermediate Map Unit, the required

functions for a particular operation are shared between the two

units.

If the index list for Gather and Scatter is a memory list, the

list can be supplied from either Main Memory or Intermediate

Memory.

On a Gather operation, the Intermediate Map Unit gets the data

under control of the supplied index list and sends the data to

the ASSEMBLY element of the Main Map Unit. The ASSEMBLY element

operates identically as before as it assembles 512-bit swords to

be stored.

On a Scatter operation to Intermediate Memory, READ 1 gets the

data and sends it to the Intermediate Map Unit.

On a Compress operation, the data comes from the Intermediate

Map Unit which sends it to the COMPRESS element to be operated

upon. Of course, READ 1 and READ 2 are idle.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 85
REV.

------------------ R A D L ---------------------------

3.5.2 Intermediate Map Unit

The Intermediate Map Unit peforms the same functions for

Intermediate Memory as the Main Map Unit performs for Main

Memory. It is shown in block diagram form in figure 3.5-3. The

functions of the individual elements of the Intermediate Map

Unit are nearly identical to the corresponding functions of the

Main Map Unit. Consequently, only the differences are discussed

here.

The Intermediate Memory (discussed in Section 3.8) is a lower

performance memory. It connects to the outside world through

four 256-bit ports. The Intermediate Map Unit uses three of

these ports.

The Intermediate Map Unit processes all its data on buses that

are 256 bits wide unlike the Main Map Units 512-bit buses. Thus,

the Intermediate Map Unit performs Compress, Mask, and Merge on

four words at a time. When performing internal Gathers and

Scatters (Intermediate Memory to Intermediate Memory, likewise,

a maximum of 256-bit records are moved during one clock cycle.

On Mask and Merge operations, four data streams are required:

1) A stream input,

2) B stream input,

3) control vector input,

4) result stream.

Because the unit has only three ports to Intermediate Map Unit,

one of the ports must be shared between streams. Thus, the

control vector stream and the B stream share port RW2. The loss

in performance is relatively small because the control vector is

a bit vector that is used only 4 bits every cycle, while 256

bits at a time are fetched. Thus, a new piece of control vector

must be fetched once very 64 times (about 2%).

On a Gather operation in the Intermediate Map Unit, only one

read stream is fetched from memory unlike the Main Map Unit

where READ 1 and READ 2 alternate input records.

(continued)

1 0 -

.4 1 101 01
XID&

RWZI BOIHI

READ
roS

DAMA NW' 1.11RrsI z

C5'

-. CNr Za$D;D AISMRAOSYW~r

to ~ Ww
ONO) 0

READr
CON 'O VECOR StS 3N

Figure 3.-.InemTAt apUi

CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 87
REV.

------------------ RADL---------------------------

3.5.2 (Cont.)

For combined map unit operations, since data is being fetched

from one memory and being stored in another, either the read or

write data ports of a unit are not being used. The Intermediate

Map Unit therefore, gets double use from a port by making what

is normally either a read or a write port double purpose. This

essentially doubles the rate for data transfers between

Intermediate Memory and Main Memory of 256 bits (4 words or 8

half-words) every three clock cycles.

Thus, on a Gather or Compress operation from Intermediate to

Main Memory, RW1 (normally a read port) and RW3 (normally a

write port) both read data, 256 bits each, to be sent to the

Main Map Unit and then to Main Memory. On a SCATTER, both RW1

and RW3 accept data to be written into Intermediate Memory. This

feature doubles the bandwidth for intermemory transfers.

Intermediate Memory carries 8 bits of SECDED per 64 bits of data

while Main Memory carries 7 bits of SECDED per 32 bits of data.

When data is transferred between Map Units the SECDED

information is transformed from one mode to the other.

3.6 Memory Interchange

The Memory Interchange (see figure 3.6-1) serves as the main

memory access and control element. It coordinates all the

memory read and write requests in such a manner as to assure the

maximum throughput for Main Memory.

Memory Interchange gets requests for data from the following:

Read Requests Number Write Requests Number

Vector Streaming (4) Vector Streaming (2)

Main Map (3) Main Map (1)

Scalar (1) Scalar (1)

Each request is treated separately and is interfaced to a logic

element called a port.

1 0 I 01

4RIPOORZPlU I I I

L~d J4
O~A0

I t010
1 I

1
t 3

0R/VRR'VR O/V~ DRVERO/tS DRVER R/VP O/PE IC tWE RIE/V A 94 MR,/SE I)
0 ~ ~ Djf 0 MI/ 40

P
C .

ctd

.gI llHI.I

1 0

51AI2~~A OD S1'RY -

AR 135z s TRs W r/

A44/ IAP H&S ID

CARRI 5Z-f ZN~

D;0L 0

Figure 3.6-1. FM!' Memory Interchange

CONTROL DATA E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

lCorporation S P E C I F I C A T IO N PAGE 89
REV.

------------------ R A D L

3.6.1 Ports

3.6.1.1 Read Ports

Each read port carries 512 data bits plus 112 bits of SECDED

information and connects to a single requestor. The read port

performs the following functions:

1. 	Management of addresses and queuing of requests -- Because
of the physical distances involved and the throughput
requirements, a normal handshake protocol between the
requestor and the port will not work well. The port thus
has a queue that receives memory requests; it then makes a
request of the memory priority logic and, when the priority
logic grants access, sends back to the requestor an
acknowledgement called "alert". The requestor keeps a count
of the number of requests outstanding and this can avoid
overflowing the address request queue.

2. 	 Management of data -- Data, as requested from memory, is

1024 bits wide (+ SECDED) while all the data buses are 512

bits wide. When data is taken by the port it enters a queue

and the requesting address is examined to see if the request

is for the first or second half of the data. If the request

is for the second half of the 1024 bits, the first half of

the 	data is discarded.

If the port is in streaming mode (the vector read ports and the

map unit ports when notified by the Map Unit) it attempts to

stay ahead of requests. The port sends a flag to priority

indicating that it is in streaming mode so that the priority

unit will reserve memory access slots in advance for that port.

If data then comes from memory faster than the requestor can

take it, the data is accumulated in a data queue. If the queue

becomes full the port drops the streaming request and will not

resume the request until the queue is about half empty.

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation SP E C I F I C A T I O N 	 PAGE 90

REV.

------------------- R A D L ---------------------------

3.6.1.2 Write Ports

The write ports operate much like the read ports except that

data is sent along with the memory address and request. As the

data is accumulated the successive addresses are compared, or

the port is notified of streaming mode, and this information is

used to build up sets of 1024 bits that, together, will be

written into Main Memory. Data write enables are kept with the

data. The write enables, one with each 32 bits, declare the

accompanying data valid. The write enables are sent, along with

the 	data, to the memory.

3.6.2 Priority and Memory Control

Main Memory consists of four independent 1024-bit accesses. The

Memory Interchange is accessed by 12 ports of 512 bits. (all

data also carries SECDED). Because the requests are asynchronous

with respect to one another and to independent addresses, the

interchange control needs an extensive control network to

maximize access to memory. The priority and control rules

currently envisioned are as follows:

1. 	Memory access will be granted through 8 slots. Each slot

can be granted access to memory every other cycle. (This is

only a very limited restriction because the ports make two

512-bit swords into one 1024-bit access.)

2. 	A port, granted streaming access to memory, is assigned a

slot and the slot is guaranteed to the port for the length

of the streaming access.

3. 	Streaming requests have higher priority than non-streaming

memory access requests.

4. 	Write requests have higher priority than read requests,

primarily for two reasons. First, this will cause less

conflict internally in the FMP functional units (data will

get stored, will not backup). Second, there are considerably

fewer writes than reads, which should allow the priority

logic to be simpler.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 91
REV.

------------------ RADL---------------------------

3.6.2 (Cont.)

Each bank of Main Memory is busy for three cycles when it is

requested to read or write data. The control element keeps a

register of 32 bits with one bit in the register for each

seperately addressable bank in memory. Each bit is set by an

access request that has been granted and is cleared

automatically three cycles later. The bit register is

referenced by the control unit as part of the access sequence to

prevent access of already busy memory banks.

Along with the busy register is a reserved register with the

same attributes as the busy register. This register is used by

streaming requests to prevent non-streaming (random) requests

from interfering with streaming operation. The bits of the

reserved register are set two cycles ahead of setting the

corresponding bit in the busy register. The reserved bit is

checked along with busy bit when a non-streaming reference is

made.

An access sequence for memory runs as follows:

1. 	A request arrives at a port. The request (ignoring data)

consists of a memory address and a notification of streaming

mode or not.

2. 	The request is sent to a first level priority network which

can decide priority on up to four priority requests. The

request address is broken down into 3 parts:

a. 	The access requested,

b. 	The bank number in the access,

c. 	The address in the bank.

The 	access numbers are compared against the other ports in

the 	group. Any requests (possibly all four) that do not

conflict are sent to the next level of control. Any

conficts are resolved by applying the priority rules among

the 	group. Any requests denied access are held until the

next clock cycle.

3. 	The second level priority network checks each of the

surviving first level requests against the busy register and

also against the reserved register for non-streaming

requests. Any requests still surviving are applied against

the priority rules. The survivors are then gated to memory.

The control element gates write data to memory for a write

operation and puts the port number in a queue that is used

by the read receivers to gate data to the proper port for a

read operation.

CONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

Corporation SP E C I F I C A T IO N PAGE 92
REV.

------------------------- R A D L ---------------------------

3.7 Main Memory

Main Memory is a single-level, random-access memory using

bipolar, 4K-bit integrated circuits. The memory words are 78

bits which provide for a 64-bit data word and 7 bits of single

error correction double error detection (SECDED) for each 32-bit

half-word. The semiconductor memory access time is 48

nanoseconds, where access time is defined as the time from the

address reaching memory until data is clocked out of the memory.

This memory is directly addressable in either monitor mode or

job mode.

The basic Main Memory size is eight million words. The memory

is designed so that it may be expanded in size at some future

date.

Each two million words of Main Memory has its own separate

1024-bit interface called an access. Each access contains 16

memory modules each having 128K 78-bit words (64 data bits plus

14 SECDED bits). Each 128K module is arranged in eight phased

banks. In streaming mode, a reference will be made

simultaneously to the same address in each of the 16 memory

modules to obtain a superword (sword) of 1024 data bits. Memory

busy conflict rules take into account the 16 physically

independent modules and the eight-bank phasing within each

module to treat the bank address in each of the 16 modules as a

separate entity. Thus, it could be said that each two million

words of Main Memory contains 128 phased modules.

The eight-bank phasing plus the physical distribution of the

memory modules allows memory references to be made at a maximum

rate of one every minor cycle for each two million word's of

memory. Thus, the Main Memory has very high data transfer

bandwidths:

one access = 1024 bits/minor cycle

two accesses = 2048 bits/minor cycle

four accesses = 4096 bits/minor cycle

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 93
REV.

------------------ R A D L---------------------------

3.7.1 Memory Module

The memory module is packed in a freon-cooled .5 cubic ft.

volume with 8 banks, each bank containing 16K x 78 bits. There

are three board types used in the module: input control,,

storage, and output. Figure 3.7-1 shows the module organization

which lends itself to massive use of distributed loading and

emitter-ANDing and also results in "zero-skew" constru~tion

which equalizes signal paths through all memory chips to

maintain identical timing throughout the module.

185 coax lines connect each memory module to the Memory

Interchange. All signals on the lines except the read data are

sent from the interchange to the module. Below is a list of

these lines:

Clock (2) - One for each input board to synchronize the

memory module to the interchange.

Absolute Address (14) - Twelve address bits for the

selection of the 4K memory chips and two address bits for

the selection of the four ranks of memory chips.

Bank Address (6) - Three for each input board which are

decoded for the selection of the eight banks within a

module.

Module Request (2) - One for each input board which are

decoded for selection of a unique memory module.

Write Control (2) - One write enable for each 39-bit

half-word.

Write Data (78) - 78 data bits to memory, 64 for data, 14

for SECDED.

Sync (1) - This signal provides a point of time reference

for maintenance purposes.

Master Clear (2) - One for each input board.

Read Data (78) - 78 Read data bits from the read data

registers on the output board back to the interchange.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 94

REV.

------------ RAD L----------------------------

BANK CONTROL AND TIMING

A INPUT BANK 246 W. DATA 0-39 ADD. A

B INPUT BANK I,3,5,7 W. DATA 40-79 ADD- B

C STORAGE BANK 0 BIT 0-39 C

-TORAGE BANK I /BIT 0-3
D STORAGE BANK I BIT 0-39 D

E STORAGE BANK 2 BIT 0-39 E

F STORAGE BANK 3 BIT 0-39 F

_ STORAGE BANK 6 BIT 0-39 G

K STORAGE BANK 4 BIT 0-39 K

L STORAGE BANK 5 BIT 0-39 H

K STORAGE BANK 7 BIT 0-39 K

L STORAGE BANK 0 BIT 40-79 L

M STORAGE BANK I BIT 40-79 M

N STORAGE BANK 2 BIT 40-79 N'

P STORAGE BANK 3 BIT 40-79 P

Q STORAGE BANK 4 BIT 40-79 0

BANK 5 gSTORAGEBIT 40-79 R

STORAGE BANK 6 BIT07

T STORAGE BAK BIT 40-79T

UOTUT TFIVMINATORS, READ DATA REGISTERS

Figure 3.7-1 Memory Module

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE 'Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 95
REV.

------------------ RADL---------------------------

3.7.2 Memory Configuration

Memory modules are located within a section as shown in figure

3.7-2. There are eight modules per memory section and these

sections are positioned as shown in figure 3.1-2. Each section

contains one million words (64 data bits and 14 SECDED bits);

thus, the eight million word memory is housed in eight

sections.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 96
REV.

--------- ------ --. .

20 in.

42 in.

in

Figure 3.7-2 FMP Memory Section

!CONTROL DATA E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporation 1 S P E C I F I C A T ION PAGE 97
REV.

------------------ RADL---------------------------

3.8 Intermediate Memory

The Intermediate Memory consists of 33,554,432 64-bit words of

random access memory. It is accessed through four high speed

ports and up to eight low speed ports. The memory is shown in

block diagram form in figure 3.8-I.

3.8.1 Organization and Access

The Intermediate Memory is organized as four memory groups with

each group having four memory banks and each bank having eight

memory modules. Each module has 262,144 72-bit words (64 data

bits plus eight SECDED bits). The four memory banks in each

group are driven in parallel; that is, the same address request

is sent to each bank in the group at the same time. Thus, data

is available at the output of the memory group 288 bits wide

(256 data plus 32 SECDED).

When a memory group is accessed, the memory control interprets

the lower three bits of the starting address to determine an

initial module number. That module set (four modules in

parallel) will be accessed, and every 48 nanoseconds thereafter

the next successive module set will be accessed through the

remainder of the 32-word block. Thus, a request to a group will

get a variable amount of data. If the three bits of the request

address are 000, then eight 288-bit data transfers will result.

If the lower bits of a request address are 101, then three

288-bit transfers will result (module groups 5, 6, 7). The

cycle time of a memory group is 384 nanoseconds (24 FMP clock

cycles).

Because of the anomaly caused by the modules of a group not

starting simultaneously, throughput to memory is maximized by

starting requests at module set 0 (lower address bits 000) as

much as possible, and by making as much use as possible of the

32 words thus transferred. The port controls of the Map, I/O,

and Swap Units have this built into them.

3.8.2 High Speed Ports

Each of the four high speed ports can move data at a rate of 288

bits every 48 nanoseconds. Each port has a small buffer to hold

up to 32 words in case the requested memory group is busy or the

port is denied access because of priority.

V INN

I l t I

-V".

II

Rfl'~

N/ga

PMSAi P'S

I
I
I

10O 0
i" IV

11)

mxm~p

Mv=4MIHIA

qRiUl

4J. 5 cN

4.S' /

' ~P.8-1 ~

~y~n~oI

AI
SB.~

igr

s~an4.~t~sc
In /S

OWA 045syr
eredrto~S/ONN

S~D
Memory

W nSr
M OQV A

I = a
MtO :r:

Ho
~ 44WI11

I

H)

0

CONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 99

REV.

------------------ RADL---------------------------

3.8.3 Low Speed Ports

The low speed ports are made into two sets of four ports. Each

set appears to the memory control as a high speed port. Thus to

memory control, the memory is accessed by six high speed ports.

Each low speed port can move data into and out of the port at a

rate of 17 bits (16 data plus one parity) every 96 nanoseconds.

Each low speed port also has a 32-word, 64-bit buffer. If a

write operation to Intermediate Memory does not terminate on a

64-bit boundary the rest of the 64-bit word is zero filled when

the data is written. For this reason the I/O Unit and Swap Unit

perform a read-modify-write for a write operation which does not

terminate on a 64-bit boundary, thereby avoiding the zero fill.

3.9 Input/Output

FMP I/O consists of all the functional elements of the processor

that are normally considered external to a user's running job.

These elements are:

1) 	the I/O Unit which consists of a variable number of

input/output processors (PDCs) connecting the FMP to the

total system via the loosely coupled network (LCN). All

I/O data move from/to the LCN to/from the Intermediate

Memory (described in section 3.8);

2) 	the Swap Unit which connects the Backing Store to

Intermediate Memory. The 128 million-word Backing Store

(see section 3.10) is used by the system and by the user

job to perform local high speed I/O. All user job READ

and WRITE statements refer to the Backing Store where all

output (print) files are retained until a job is

finished; they are then passed to their final

destination.

3.9.1 I/O Unit

The I/O Unit moves 32K-word data blocks as well as system

messages to and from Intermediate Memory. Each I/O channel

consists of a PDC processor as well as hardware to connect it to

Intermediate Memory. Each connection to Intermediate Memory

(called a port) is capable of being shared with another ?DC

processor. There may be from 1 to 7 ports and thus from 1 to 14

I/O channels. The I/O Unit is shown in figure 3.9-1.

I
I

I

I

I 10
I-
I

I0

I ot

uss

110

0

i I

t t

A C~sASMSSROr11,t. UNN4fWN

B, '

FiI.9 r I/O U i

I

P= m ADH

0

rrl

C

5. ~ ~5C'Lre~ ~ ~YreSA/ ~
A~~~~~n~C

F gr 3.O- 1/OA Unit

t O ' -S0WwMWsy

CDW0

CONTROL DATA E N G I N E E R I N G NO. 10354637

------ DATE Mar. 1979
Corporation S P E C I F I C A TI O N PAGE 101

REV.

------------------ R A D L ---------------------------

3.9.1.1 The PDC

Each PDC (described fully in appendix C) consists of 4 parts.

1) 	The frontend provides connection of the PDC to the

serial trunk network. The frontend may attach from 1

to 4 trunks. On reads the frontend verifies that a

message or data block on the trunks is destined for

this PDC, or it ignores the data. When the frontend

reads data from the trunk, it converts the data to

16-bit words and stores the data into the PDC buffer.

On write sequences, the frontend serializes the data

and puts it on the proper serial trunk.

2) 	A data buffer with 16-bit data width is a repository

for data on its way through the PDC, either front to

back or vice-versa. The buffer also holds code for

execution by the PDC processor. The buffer size may be

from 8K to 32K words or more, depending on

requirements.

3) 	The backend consists of logic to connect to the FMP

port. It performs handshaking and control to move data

between the I/O port and the data buffer.

4) 	The processor is a 16-bit, bit-sliced, bipolar,

microcoded computer made specifically for its

communication function.

The processor is in control of both the frontend and

backend and is notified by them upon completion of any

function, and also of any exception conditions. The

software executed by the processor is normally

"downloaded" from the Maintenance Control Unit when the

system is autoloaded. Because the processor is

intelligent, it cannot only manage data on its way

through the PDC, but can transfer the data under

software control, changing character sets or file

formats, for example.

All PDCs are the same throughout the LCN system. The only thing

that differentiates each is its "backend" which matches the

particular device to which the PDC is tied. Each PDC may, of

course, run different software.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

Corporation 1 S P E C I F I C A T IO N PAGE 102
REV.

------------------ R A D L---------------------------

3.9.1.1 (Cont.)

When an FMP I/O PDC is running it waits for a request to perform

a function that arrives from either end. Upon receipt of an

ALERT code from the backend (ALERT is sent by the Scaler Unit to

a particular I/O PDC) the PDC processor functions the backend to

read a message block from Intermediate Memory. The processor

scans the message, determines the required function, and

performs it. At the termination of the function a completion

message is left in Intermediate Memory and a signal flag sent to

the Scalar Unit, notifying it of the message.

When a PDC receives a data block from the trunk system, it puts

the data into a preassigned area of Intermediate Memory.

All data sent on the trunk system carries a cyclic redundancy

check code.

Data messages sent on the trunks generally consist of 2 parts, a

header and the data. Each -part has a separate redundancy check

so that a data error is separate from a function (header) error.

On a header error, no reply is sent to a received message

because it could be the destination file of the header that is

in error. If the header redundancy check is okay but the data

check is bad, then a reply is sent to the originating PDC

telling of the data error. The sending PDC will then retransmit

the data block (if the PDC software so indicates).

3.9.1.2 I/O Ports

The FMP will accommodate, optionally, from 1 to 7 I/O ports.

Each port can support one or two PDCs. The principle function

of the port is to manage data going to/from Intermediate Memory

and the attached PDCs. See figure 3.9-2 for block diagram of

the I/O port. Intermediate Memory can transmit 16 bits (plus

parity) of data every 96 ns to the port. The PDC can give or

take 16 bits (plus parity) every 320 ns. The port provides a

FIFO buffer for each attached PDC; the buffer will accumulate,

on a write to Intermediate Memory, 32 64-bit words and then the

port control element will automatically request Intermediate

Memory to accept the data. While the data is being transferred

to Intermediate Memory, the PDC can keep transferring data to

the buffer. On a read from Intermediate Memory the process is

reversed, the port requesting 32 64-bit words of data,

notifying

(continued)

No'
10rota

I I-A*b'

0
I
0 1

1o 0

.rf~ - - - - -

_ _ _ _ _ _ II

C..Ir~olI C.)
Z1.- P I o- -

"oro
"Ara$~ 17-4 S

W~~~ 01.1:- C)

UA'OC~~t.M/NtC wWMCCfBiS

F~Ctiure . 9-2 Port 1Cof41/0 Unitr..1-4

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T IO N PAGE 104
REV.

------------------ R A D L ---------------------------

3.9.1.2 (Cont.)

the PDC of the data availability, and automatically making

requests to Intermediate Memory to stay ahead of the reading

PDC. The port is sent an initial Intermediate Memory address by

the PDC before any data transfers are started. The port

increments the address automatically as each memory request is

made. the port also contains priority logic to decide a memory

access sequence if the two PDCs make memory requests at the same

time.

A small difficulty arises because the PDCs are 16-bit machines

while Intermediate Memory is based on 64-bit words and only

writes whole 64-bit words, even though a PDC does not have to

send an integer number of 16-bit words. For the case where the

last 64-bit data word is not filled by the PDC, Intermediate

Memory will zero fill the remainder of the written word. In

order to prevent this from happening, if the port is in a write

sequence and receives a termination signal from a PDC without a

complete 64-bit word in the FIFO buffer, the port will

automatically fetch the odd word, combine it with the partial

word in the buffer, and then write the last data to Intermediate

Memory.

3.9.2 Swap Unit

The Swap Unit has two main functions: to move data between

Intermediate Memory and the Backing Store; to provide an

interface for the Scalar Unit to have access to Intermediate

Memory.

The Swap Unit shown in figure 3.9-3 is connected to high speed

port 3 and to low speed port 7 of Intermediate Memory. The high

speed port is used to transfer backing store data and also

scalar unit data. The low speed port is used by backing store

control to receive command messages from the Scalar Unit that

have been left in Intermediate Memory (and then to return status

replies).

The high speed port can provide/take data at the rate of 256

bits plus SECDED every 48 ns. The Backing Store, as presently

envisioned, will move data at the rate of 512 bits every 256 ns

-- equivalent to a rate of 256 bits every 128 ns. Thus Backing

Store uses 3/8 of the port bandwidth. The rest of the bandwidth

is available to the Scalar Unit.

C.S

r4'fl041

wn/r ravrtyAO4'$S1

wr r AA~J 44I

64

14u

36I

I
I

0 11H
0t4 11 0 1

1 1 '
1e 0~

I-It '
1a~0 1BOIH 1

61I' C) 0

1I1 C)
0,G$PC

$861

nt)

Figure~ ~~ ~wpUnt1

i

~

poe .

C)6

-

C
0'

C

H.--

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
- - DATE Mar. 1979
Corporation 1 S P E C I F I C A T IO N PAGE

REV.
106

- ------------------- R A D L- ----------------------

3.9.2.1 Scalar Interface

The connections to Intermediate Memory are 256 bits wide but the

Scalar Unit does 32-bit and 64-bit reads and writes. In order

to reduce conflicts, the scalar interface has two small buffers,

32 64-bit words each, for read and write. On a read the port

will get a 32 word block that contains the requested data word,

holding it the read buffer. On subsequent read requests, if the

requested word is in the buffer, the interface will return the

word from the buffer without making an Intermediate Memory

request.

On a write, the write buffer will attempt to build several store

requests from the Scalar Unit into a 32-word group (with some

holes likely) before making a memory request. Any request that

does not fit in the present 32-word buffer (because it is

outside the address range of the 32-word group) will cause the

buffer to be written to Intermediate Memory and a new buffer

data set started. Any write address that also exists in the

read buffer will void the read buffer.

3.9.2.2 Backing Store Interface

Data is moved to/from the Backing Store in blocks of 32,768

64-bit words, the same size as data blocks in the rest of the

system.

The swap control connection to Intermediate Memory is identical

to that of an I/0 port. To the FMP, the Swap Unit appears to be

an I/O port. Thus the command sequence to move data to and from

the Backing Store are requests to a disk for data - cylinder and

sector selects become addresses in the Backing Store. The

difference, of course, is that the data moves on a separate high

speed link to/from Intermediate Memory.

The Backing Store is a block organized memory. As such, it

would suffer an access time to the first data in the block which

would appear to the system as a 33% reduction in throughput.

In order to avoid this access time, the Backing Store maintains

a counter that points to the current address within a block that

can be fetched immediately with no time lost. When the Swap

Unit is given a command to move a block it requests the current

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 107
REV. -

----------	 R A D L ---------------------------

3.9.2.2 (Cont.)

count and uses that count to modify the address to be requested

first in Intermediate Memory. Data transfer thus may start

anywhere in the data block. When the end of the block,is

reached, swap control resets the intermediate memory address to

the first address in the block and continues to transfer data.

When the original transfer address is reached, the block

transfer is complete.

A buffer is provided in the data path between the two memories

which serves two purposes:

1) 	As a speed matching device between the two memories,

the buffer will access Intermediate Memory in 32-word

groups of 64-bit (plus SECDED) words at a rate of 4

words per 48 ns.

2) 	To allow the scalar unit interface higher priority for

intermediate memory accesses, the buffer can hold up to

4 32-word groups. If the scalar requests should hold

out bac~king store requests for a time such that the

buffer is in danger of overflowing (Backing Store ->

Intermediate Memory) or of becoming empty (Intermediate

Memory -> Backing Store), the access priority is

switched giving buffer access request priority.

3.10 Backing Store

The Backing Store is 128 million 64-bit words of memory built

from charge coupled devices (CCDs) which contain either 65K

bits/chip (available today) or 256K bits/chip (samples expected

late 1979). Using the 65K device each board in the memory system

will hold 1 bit. There will be 576 memory boards (512 data + 64

SECDED). Because of SECDED a whole board can fail and be covered

by SECDED. For a system using 256K chips, there will be a total

of 144 boards, each with 4 bits. Complete board coverage can

still be obtained by placing each bit in a separate syndrome

group. Thus a complete board failure will cause 4 separate

single-bit failures, each corrected.

Data is moved in the Backing Store 512 data bits at a time or 8

64-bit words. Within each CCD chip is a set of data loops 4096

bits wide. The effect of moving 8 words at a time is to make

each loop appear externally as 32,768 bits long. This then sets

the block size for the machine.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
- ------- DATE Mar. 1979

I Corporation S P E C I F I C A T I O N PAGE 108.
REV.

------------------- R A D L

3,11 Maintenance Control Unit (MCU)

The MCU is an autonomous Maintenance Control Unit connected to

the computer via a CDC FMP I/0 channel which has access to

special internal interfaces. These interfaces allow it to

regulate information flow and control and to monitor performance

of the computer. The MCU consists of a control unit, line

printer,. card reader, and a disc drive in a stand-alone

configuration; through its connection to the I/O channel it

provides for system dead-start and system performance

monitoring. Diagnostics and preventive maintenance are run and

controlled by the MCU.

There are two operating modes for the MCU.

1. The first mode of oper-ation is running diagnostic routines

on the FMP. The MCU loads diagnostics, ranging from a

simple command test to a very sophisticated diagnostic

catalog routine, controls and monitors the operations of

the diagnostics, and displays the results of the tests via

the display unit or line printer.

2. The second mode of operation is system operation. The MCU

loads the Operating System software into the FMP and

controls and monitors its operation. In this on-line mode

of operation, the MCU concerns itself with autoloading the

central processor and first level stations, running

on-line diagnostics, monitoring CPU faults, and restarting

the central processor after hang-ups. The MCU can also be

used to monitor system or job performance.

3.11.1 MCU/CPU Interface

The MCU connects to the FMP via the loosely coupled network

trunk system. The maintenance interface, contained in the I/O

Unit, has 16 buffers called MCU/CPU channels - ATB being

outgoing buffers and BTA being access channels. Tables 3.11-1

through 3.11-8 show the channels from the CPU to the MCU (ATB)

and Tables 3.11-9 through 3.11-16 show the channels from the MCU

to the CPU (BTA). Each table shows the channel bit number, and

function of each bit for a channel.

---------------- ---------- -------------------

------------- ---------------------------------

!CONTROL DATA 1 E N G I N E E R I N G NO.- 10354637

-- .DATE Mar. 1979

Corporationg S P E C I F I C A T I O N PAGE 109

REV.

------------------ R A D L---------------------------

3.11.1.1 Channels from CPU to MCU

TABLE 3.11-1 CHANNEL ATBI

!Bit No. 	 Function

I--

0 Bit 0 Current Instruction Address

1 1 Register

2 2

3 1 3

4 4

5 5

6 6

17 1 7

I 	 8 1 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

TABLE 3.11-2 CHANNEL ATB2

jBit No. 1 Function
-----------------~-----------------------

0 1 Bit16 Current Instruction Address
1 1 17 Register
2 18

1 3 1 19
I 4 1 20

5 1 21
6 1 22

I 7 i 23
8 24

i 9 25
A 26
B 1 27
C 28
D 29
E 1 30
F 1 31

Ccontinued)

!CONTROL DATA i E N G I N E E R I N G NO. 10354637
---------------- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I 0 N PAGE 110

REV.

------------------- R A D L

3.11.1.1 (-Cont-.)

TABLE 3.11-3 CHANNEL ATB3

!Bit No. 1 Function

i-----------i---

1 0 i Bit32 Current Instruction Address

1 1 i 33 Register

1 2 i 34

1 3 i 35

14 i 36

1 5 37

1 6 1 38

1 7 39

8 40

9 41

A 42

I B 43

i C 444

1 D 45

1 E i 46

I F 47

TABLE 3.11-4 CHANNEL ATB4

~--------------
!Bit No. I Function

I------------------------------- ---

0 Bit 0
1 1 Display Register - Displays the
2 2 register selected by bits C-F of!

1 3 3 channel BTA1 in the MCU.
124 4 24
15 5

16 6

17 i 7

19 i 9

A 10

B 11

C 12

D 13

E 14

I F 15

(continued)

-- ------------------------------------

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 P E C I F I C A T I O N PAGE 111
REV.

------------------ R A D L---------------------------

3.11.1.1 (Cont.)

TABLE 3.11-5 CHANNEL ATB5

I I

IBit No. 1

0 !Bit 16
1 i 17
2 1 18

I 3 1 19
4 1 20
5 1 21
6 1 22
7 1 23

i 8 24
9 1 25
A 1 26
B i 27
C 28
D 1 29
E 30
F 31

Function

Display Register - Displays the
register selected by bits C-F of

Channel BTA1 in the MCU.

TABLE 3.11-6 CHANNEL ATB6

I I

:Bit No. I Function

I---
0 !Bit 32

I1 33
2 1 34

I 3 1 35
I 4 i 36
I 5 1 37
36 .38
1 7 1 39

8 40
9 41
A 42
B 43
C 44
D 45
E 46
F 1 47

Display Register

(continued)

----- --- --------------------------------------

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 112

REV.

------------- R A D L ----------------------------

3.11 1.1 (Cont.)

TABLE 3.11-7 CHANNEL ATB7

I I

I I

!Bit No. I 	 Function

0 Bit 48 Display Register

1 49

2 50

I 3 51

1 4 52

5 	 53

I 	6 54

7 i 55

8 56

1 9 57

1 A 58

1 B 59

I C 60

D 61

E 62

I F 63

TABLE 3.11-8 CHANNEL ATB8

!Bit No. 	 Function

0* Memory SECDED Fault or Instruction

Stack Parity

1* Microcode Parity Fault

2 Not Used

3* Absolute Sword Bounds Hit

4* Event Stop

5* Single SECDED Error

6 CPU Clock - Used for gating data back!

to the CPU. The MCU cannot read

this line.

1 	7 Monitor Mode

8 Temperature - Dew Point Alarm

9 Not Used

A Section Power Fail

B 60 Hz Input Power Fail, M.G.1

, C 60 Hz Input Power Fail, M.G.2

I D Not Used

I E CPU Idle-

IF CPU Stopped

I * These lines indicate why the CPU has stopped.

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
i DATE Mar. 1979
1 Corporation I S P E C I F I C A T I O N PAGE 113

REV.

----------------- R A D L---------------------------

3.11.1.2 Channels from MCU to CPU

TABLE 3.11-9 CHANNEL BTA1

!Bit No. 1, Function

--- I

0 1 	MAC Master Clear - Master Clear to Memory!
Interchange, and Main Memory only.

This includes the I/O channels. This

signal must be set a minimum of 3

microseconds.

1 	 Stop - CPU will stop before next

instruction issue.

2 * 	 Step - Execute one instruction. Store
the register file and the invisible

package 	(job mode only); then stop.

Faults must be cleared before the

computer can be stepped.

3 * 	 Run - Start CPU from manual stop or fault!

stop. Faults must be cleared before

computer can be started.

4 * 	 Store Register File - The Register File
is 	stored starting at address

0000 in monitor mode and address 4000

16 161

in job mode.

5 * Load Register File - The Register File is!
loaded starting at address 0000 in

16
monitor mode and address 4000 in job

16

mode.

1* 	 Computer must be stopped before executing these
commands.

(continued)

[CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

I-- - DATE Mar. 1979

I Corporation ; S P E C I F I C A T I 0 N PAGE 114

REV.

------------------ R A D L---------------------------

3.11.1.2 (Cont.)

TABLE 3.11-9 CHANNEL BTAI (Cont.)

Bit 	 Function

I--

6 	 CPU Master Clear - Master Clear to Scalarl

Unit, Stream, and Floating Point only.

Memory Interchange, I/O Channels, and

Main Memory are not included. This

signal must be set a minimum of 3

microseconds.

7 1 Clear Fault Conditions - This signal

clears the following conditions and

allows the computer to be restarted with

a run signal (bit 3):

a. 	SECDED Double Error Condition

b. 	MIC Memory Parity Fault

a. 	Sword Bounds Hit

d. 	The Bounds Hit Address is released.

e. 	Reference to Illegal Address in

Stream Microcode.

f. 	Instructional Stack Parity Error

8 1 Clear SECDED Single Error, SECDED Fault
Address and Syndrome Bits.

9 I 	MCU Sync.- This signal is used in the
CPU to gate the CPU data back to the MCU.
When reading the display registers, the

MCU 	Sync. signal must be set after the

read signal is set.

A I 	Select SECDED Error Mode Two.

B 	 Read - Transfer selected register and

CIAR into the Display Registers.

C -
D I 	Display Register Selection

E I 	 See Section 3.11.4.2
FI

(continued)

---------------------- ---------------------------

--

ICONTROL DATA E N I N E E R I N G NO. 10354637

----- DATE Mar. 1979

I Corporation S P E C I F I C A T I O N PAGE 115

REV.

------------------ RADL ---------------------------

3.11.1.2 (Cont.)

TABLE 3.11-10 CHANNEL BTA2

IBit I 	 Function

0 * 	 Latch Memory Size Code
1 * Static 	 Interrupt Gate - When this signal ist

a "1", time interrupts and external I
interrupts will only be processed
between instructions.

2 -I Memory Size Degrade Code

3 *11 000 = 2 Meg Memory

i 001 = 2 Meg Memory,

p Force Section 1 --> Section 0

I O1.0 = 2 Meg Memory,
I Force Section 2--> Section 0

4 *I 1 	 011 = 2 Meg Memory,
Force Section 3--> Section 0

100 = 4 Meg Memory

101 = 4 Meg Memory, Force

I Upper 4 Meg --> Lower 4 Meg
I 110 = 8 Meg Memory

5 -H I Select Mainframe Clock Freq.
000 = Nominal

6 *1 001 = Increase clock freq. (1)
7 *1 010 = Decrease clock freq. (1)

011 = Select variable freq.

(adjustment on oscillator

1 pak)

100 = Increase clock freq. (2)
101 = Increase clock freq. (3) i
110 = Decrease clock freq. (2) i
111 = Decrease clock freq. (3) i

NOTE: If clock frequency codes 4-7 1

are used, then code 3 is not

available. Either codes 0-3 or 0-2

and 4-7 are available.

8
 Delay Trailing Edge - Delay the

trailing edge of all of the clocks

on the panel which is specified by

bits 11-15 of Channel BTA2. If bit

8 and bit 9 are set, only the odd

or even clock, on a panel are moved

depending on bit A.

* Computer must be stopped before executing these

commands.

(continued)

--

--

-- --------------------------

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- -------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 116

REV.

------------------ RADL----------------- ---------

3.11.1.2 (Cont.)

TABLE 3.11-10 CHANNEL BTA2 (Cont.)

!Bit 1 	 Function

9 * i i 	 Delay Leading Edge - Delay the
leading edge of all of the clocks
on the panel which is specified by
bits B-F of Channel BTA2. If bits 8
and 9 are set, only the odd or even
clocks on a panel are moved
depending on bit A.

A * V "0" - Move even clocks(see
!Static description for bit 8 or 9).

1"1" - Move odd clocks.

•*	Computer must be stopped before executing these

commands.

-----------------------~-------------------------

Bit i Function

4 I
B (2) IPanel Designator for Clock Margins - Bit

3 1B is the left-most bit of the designator.!

I C (2) IThe designators are defined below.

2 iDesignator Panel(s)
I D (2) 1 16 1 C

1 00
E (2) 01

0 02
F (2) 03

04
05
06 (to be supplied later)
07
08
09
OA
OB
0C
OD
OEOF

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-DATE Mar. 1979

I Corporation S P E C I F I C A T I O'N PAGE 117
REV.

------------------ R A D L ---------------------------

3.11.1.2 (Cont.)

TABLE 3.11-10 CHANNEL BTA2 (Cont.)

Bit i Function

-------------. ,

10

11

12

13

14

15

16 (to be supplied later)

17

18

19

1A

1B

IC
ID

1E

1F

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 118

REV.

------------------- RADL---------------------------

3.11.1.2 	 (Cont.)

TABLE 3.11-11 CHANNEL BTA3

Bit No. 	 Function

0 	 Not Used.

1 	 Send an external flag on the channel

specified by the Channel Select Code in

bits 4-8. (*1)(*2)

2 	 Set Channel Disable on the channel

specified by the Channel Select Code in

bits 4-8.(*1)(*3)

Clear Channel Disable on the channel
3 1
specified by the Channel Select Code
in bits 	4-8.(*1)(*3)

4 1 	Channel Select Code. A code of
1 0 thru D selects a channel

5 > 16 16
6 1 (0 thru 13) and F selects the
7 1 10 10 16

/ 	 Swap Unit for the operation specified inl
bits 1, 2 and 3.(*1) Bit 7 of BTA3 is
bit 3 of the Channel Select Code.

8 Select All Channels (0 thru 13) and
10 10

the Swap Unit for the operation

specified in bits 1, 2 and 3.(*1)

9 1 	Stop on SECDED Single Error Detection.

A 	 Disable Stop on SECDED Double Error

Detection.

B 	 Block External Interrupt

1 	Disable Error Correction on all Read

Buses.

C

D 	 Swap Register File Read on Exchange.

E 	 Not Used

F 	 Not Used.

(continued)

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation P E C I F I C A T I O N PAGE 119
REV.

------------------ RADL---------------------------

3.11.1.2 (Cont.)

(*1) The Channel Select Code bits 4-8 must be set before

any commands are sent, and it must remain set until

after the command has dropped.

(*2) The External Flag is transmitted to the device on

the I/O channel corresponding to the code in bits

4-8. External Flag instructs the device to

autoload.

(*3) The Channel Disables are transmitted to the I/O

Unit. If the disable line for a channel is set, no

intermediate memory references will be allowed from

that channel. Data transfers can proceed in and out

of the channel buffer in an end-around type of

operation.

TABLE 3.11-12 CHANNEL BTA4

Bit i Function

I--

0 Checkword bit 01

2 1
3 >
4 1
51
6

1
1
1
1
1

21
31--
4,
5!
61

Used for toggling 1/0!
Checkword bits 0-6

7 1 Block Write Enable on SECDED Error

8 [Not Used

9 [Not Used

A 1 Force Register File Store at bit address!

1 20000 on Initial Exchange

16

B Force Instruction Stack Parity

Enable I/O Simulator
C

D Initiate I/O Simulator on Channel Flag

E Not Used
F Not Used

(continued)

--

---------- -------------------------------

ICONTROL DATA E N G I N E E R I N G NO. 10354637
-DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 120
REV.

------------------- R A D L ---------------------------

3.11.1.2 	 (Cont.-)

TABLE 3.11-13 CHANNEL BTA5

Bit - Function

1 Not Used

-- Bounds Limit Load Code

I 0 = ul1 = Load Bits (35-42) Upper Bounds

7 1 2 = Load Bits 51-58) Bounds
ad Bits (43-50) UpperUpper Bounds

4= Null

= Load Bits (51-58) Lower Bounds

= Load Bits (35-42) Lower Bounds

7 = Load Bits (43-50j Lower Bounds

Bounds Address Bits

8 Due to the operational characteristics

of the maintenance 	interface, only one

bit of the code can be changed at one

B time. Address bits must be Ioaded in

C such a manner as to leave the Load Code

D bits undisturbed. Address bits are

E transferred on the Leading Edge of a

F code change, the address gits must be

set up be ore a code change occurs.

Address bits are Loaded as follows

starting and ending with a Null CoAe:

Code = 	 Null

Code = 1 	Set up Bits (35-42) Upper

Bounds

Code = 3 	Set up Bits (43-50) Upper

Bounds

Code = 2 	Set up Bits (51-48) Upper

Bounds

Code = 6 	Set up Bits (35-42) Lower

Bounds

Code = 7 	Set up Bits (43-50) Lower

Bounds

Code = 5 	Set up Bits (51-58) Lower

Bounds

Code = 4 Null

Bounds limits are absolute, physical

half-word 	addresses. Bits (35-36) and

(55-58) must be zero.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 121
REV.

----------------- R A D L---------------------------

3.11.1.2 (Cont.)

TABLE 3.11-14 CHANNEL BTA6

Bit 	 Function

I---

0 Check bounds on memory 1 If bits 0 and
reads

I or bits 2
1 Check bounds on memory i and 3 are zero,

writes
no bounds hits

2 1 Check bounds on CPU I can occur.
references

3 	 1 Check bounds on channel!
I references i

4 Stop CPU on bounds hit

15 	 Enable bounds check - The bounds

addresses and conditions must be set up

before the enable is set.

6 Count A - Monitoring Counter A is

enabled while this line is a "1" and
held clear when this line is a "0". The!
proper counter specification and bits i
8-E of channel BTA6 must not change

1 while this line is up.

7 1 Count B - Monitoring Counter B is
enabled while this line is a "I" and
held clear when this line is a "0". The!
proper counter specification and bits i

I 8-E of channel BTA6 must not change
1 while this line is up.

8
 Clear counter (see code 6 in Section

3.11.4.2).

9
 Stop CPU on Counter A Incrementl

A 	 1 Stop CPU on Counter B Increment!

See

Section

3.11.4.1.31

(continued)

http:3.11.4.1.31

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 122
REV.

----- -------------- RADL

3.11.1.2 (Cont.)

TABLE 3.11-14 CHANNEL BTA6 (Cont.)

I I
I I

Bit I Function

I--

B 	 Enable Carry into Al

C Enable Carry into A2

---See Section

D Enable Carry into B1 1 3.11.4.1.2

E 	 Enable Carry into B2

F 	 I'0" - Load Counter A Event Selects and

Gates (Channel BTA Bits 0-F).

1"1" - Load Counter B Event Selects and

Gates (Channel BTA Bits 0-F).

This bit should be set to the proper

counter before the count specification

is set into Channel BTA7.

(continued)

ICONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
, Corporation S P E C I F I C A T IO N PAGE

REV.
123

----------------- R A D L---------------------------

3.11.1.2 	 (Cont.)

TABLE 3.11-15 CHANNEL BTA7

Bit I Function

0

I

2 Event Select for Counter Al and B1

-See Section 3.11.4.1 for codes

3

4

5

6
:-Event Select for Counter A2 and B2

7 See Section 3.11.4.1 for codes

8

9

A Not Used

B Selected Job Gate I

C Monitor Mode Gate I MCU Event
Counter Gates!

D Job Mode Gate --See Section
I 3.11.4.1.1

E Data Flag 56 Gate 1

F Data 	Flag 57 Gate I

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporationi S P E C I F I C A T I O N PAGE 124
REV.

------------------ RA DL-------------------------

3.11.1.2 	 (-Cont.)

TABLE 3.11-16 CHANNEL BTA8

Bit 	 Function

I---

0

1

2

3 8-bit function select code. Bit 0

is the left-most bit of the code.

4 See event code 12 in Section

16

5 	 3.11.4.1.

6

7

8

9

A

B 	 8-bit function mask. Bit 8 is the

left-most bit of the mask. See
C event code 12 in Section 3.11.4.11

16

D

E

F

http:3.11.4.11

!CONTROL DATA E N G I N E E R I N G NO. 10354637

------ DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 125

REV.

------------------ RADL----------------- ---------

3.11.2 MCU/Microcode Memory Interface

Upon power up of the FMP all microcode memory contents are

undefined since that memory is built of RAM circuits with

volatile storage. Each of the FMP microcodes can be loaded by

an MCU function which is sent over the FMP I/O channels from one

of the PDCs acting for the MCU. A special trunk address

identifies the special I/O channel which does not transfer data

to the Intermediate Memory but instead provides control

information for the FMP, and retrieves status information from

the FMP from one or more of the internal maintenance channels

contained within the FMP. One of the maintenance functions is

the loading of microcode to each of the microcode memories. Each

block of microcode received by the MCU interface is checked for

data errors (using the CRC code in the trunk message) and sent

to its respective microcode memory system. Each block is

preceded by a unique 16-bit address which identifies the

particular microcode destination.

3.11.2.1 Microcode Units and Addresses

(to be supplied later)

3.11.2.2 Microcode Error Checking

Under control of the MCU interface control signals, a microcode

memory can be loaded with data from the trunk. The data carries

its own parity bits (one per word) which are generated by the

assembler at the time the microcode is created. This block can

be read out of each microcode memory sequentially by the MCU

interface so that the memory can be checked. Each word read is

parity checked and if an error occurs the location of the

failing word is unloaded by the MCU interface via the P counter

of that microcode.

During normal startup procedures, each microcode memory is

loaded in turn with its unique microcode and the entire contents

are swept out on an MCUcontrolled, sequential read operation to

verify the integrity of that memory.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 126

-- REV.

------------------- RAD L

3.11.2.2 (Cont.)

During operation of the FMP, each microcode access is parity

checked. If a parity error occurs in any microcode, the MCU is

signalled via the network trunk and the FMP CPU is stopped as

soon as possible. The location of the error P counter and the

address of the failing microcode unit are then provided to the

MCU interface for transmission to the MCU processor on the

trunk.

3.11.2.3 MCU Interface Channel Bits

(to be supplied later)

3.11.3 Microcode Memory Channel Programming

The following subsections define microcode interface function

codes, switches, sequences, status, etc. as they exist on the

STAR-10OA. A very similar set will be defined later for the

FMP.

3.11.3.1 Typical Microcode Interface Function Codes

For all channel functions the address that.accompanies the

function and the null function are ignored. The 3-bit function

codes shown in Table 3.11-17 control the microcode memory.

CONTROL DATA I E N G I N E E R I N G NO. 10354637
- - DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 127

REV.

----------- R A D L----------------------------

TABLE 3.11-17 TYPICAL FUNCTION CODES (MIC. MEM.)

I Bit 0 1 Bit 1 1 Bit 2 1 	 Function
-------------------------7---------------------
0 1 0 0 1 Null - Automatically sent!

by the MCU interface as
the second half of any i

S other function.

0 0 1 Read Memory - Read a
block of microcode memoryl

from the current

microcode "P" address.

0 1 0 	 Write Memory - Write a

block of microcode memoryl

from the current

microcode "P"1 address.

0 1 	 Not normally used but

will perform the same as

a EOP.

11 0 0 	 Data - Automatically senti
with the data during a
write microcode memory
operation.

1 0 1 	 Read Status - Read the
current microcode status.;
See Section 3.11.3.3 for i
explanation.

1 1 0 1 	Write Switches - The
: switches provide control
of microcode execution.
See Section 3.11.3.2.

11 1 1 	 EOP - End of Operation

clears the interface of

all previous functions

and also clears the

counter that controls the!

data fan-in and fan-out

to/from the channel.

--

--

CONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 128
REV.

------------------- R A D L ---------------------------

3.11.3.2 Microcode Switches

Microcode switches are 1-bit control terms used to control the

microcode memory. Each switch is one bit of the Write Switch

Control Word. The 110 function code (write switch) causes the

a
microcode memory to store the Write Switch Control Word in

register. The MCU interface receives this data from the I/O

trunk and sends it to the microcode control. The following is a

definition of each switch function and a description of its

use.

1. Switch Function Definitions

TABLE 3.11-18 MICROCODE SWITCH FUNCTIONS

1 Bit 	 Function

0 1 Go Microcode - Strobing this bit will
cause microcode to start execution at the
current microcode "P" address.

1 1 Kill - Setting this bit will stop any
microcode instructions executing at the
time the bit is set. The instruction will
come to a normal halt with "P" pointing tol
the next word to be executed. Execution
can be resumed by setting bit 0.

2 	 Sense Switch - Any microcode program can

sense the condition of this switch for

program control (used mainly by

diagnostics).

3 	 P to 0 - Strobing this bit will force the

"P" register to zero. Kill should be set

either previously or in the same word so

as to come to a normal halt.

4 	 Clear Checkpoint - Strobing this bit will
clear the check point flip-flop.

1Drop Control-Setting this bit disables

control of the CPU and the I.C.s from

microcode. This will prevent undefined CPUI

operation due to a microcode memory test.

5

(continued)

--

--

!CONTROL DATA E N G I N.E E R I N G NO. 1,0354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 129

REV.

------------------ R A D L ---------------------------

3.11.3.2 (Cont.)

TABLE 3.11-18 MICROCODE SWITCH FUNCTIONS (Cont.)

Bit I 	 Function

I I I,
I I,

6 I 	Change Status Word 2 Definition - Bits 8-Fl
of Status Word 2 become bits 0-7 of an IC
register. See Section 3.11.3.3.

7 1 Enable control of the register logical
I pipe from microcode.

8 1 Function for Scalar Microcode not yet
defined.

9 1 Sweep Scalar Microcode

A 	 Write Scalar Microcode - Must be set to

Write.

Scalar Microcode, disables microcode write!

enables.

B 	 1 = Enables Scalar Microcode to sweep PMOO

B = Enables Scalar Microcode to sweep PMOOl

C-F 	 Functions for Scalar Microcode not yet

defined.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 130
REV.

------------------- RADL ---------------------------

3.11.3-2 (Cont.)

2. 	Use of Switch Functions

1. 	Switch Functions 0, 3 and 4 are one-shot functions.

This is accomplished by having the required bit set

in the even 16-bit word of a transfer and clear in

the odd 16-bit word. If the bit is set into both

halves of a 32-bit transfer, for instance, the

function will be performed in that transfer but will

possibly be ignored if sent in the next transfer.

2. 	Switch Functions 0 and 3 are delayed by one cycle so

that other functions sent in the same data word have

time to propagate; i.e., "kill" and "P to 0" together

are legal as are "sense switch" and "go microcode".

Other combinations are also legal.

3. 	Switch Functions 1, 2, 5, 6, 7, 9, A, and B are

latching functions that are caught and held until

another function is sent. Note, however, that a

single function consists of two or more data

transfers -- each transfer clearing and loading over

previous data transfers so that a switch that is

meant to be valid both during and, after the function

must be sent in both halves of a 32-bit data transfer

and any latching function that is supposed to remain

valid through another "send switches" function must

be sent again with that function, again present in

both halves of the 32-bit data word.

--

--- -----------------

-- ---------

--

--

--

CONTROL DATA E N G I N E E R I N G NO. 10354637
------ DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 131
REV.

------------------ RA DL--------------------------

3.11.3.3 Stream Microcode Status

The input of status to the MCU can be of any number of words;

but all words after the first word will be word 2 of the

status.

The input of status does not have any effect on microcode or

microcode controls.

Upon the receipt of a 101 (read status) channel function code,

the MCU interface will load the channel with the following

status words.

TABLE 3.11-19 MICROCODE STATUS

Bits i
!(Word 1) 1 Meaning

0 	 Checkpoint - Software uses this bit

to indicate to the MCU that the

microcode has reached some predefined!

status found an error or reach some

predefined address for debugging, for!

example.

1-4 1 	 Flags - The current state of flags 0,,

1, 2, 3.

5-F 	 1 P - The current state of the P
I (microcode address) register.*

Bits i
!(Word 2) 1 Meaning

----------- I

0 1 	 Run - This bit will be used to
indicate the microcode is executing.

1-4 I J1 - The current state of the least
1 significant 4 bits of the J1

register.

5-F 	 J2 - The current state of the J2

register. (See bit 6 of the switch

function control word).

I

1*The contents of P do not indicate the address at

which microcode has stopped until the second minor!

cycle after the RUN bit has gone to zero. Thus it!

is necessary to read the status word twice, once

to determine that microcode is not running, and

once to read P.

--

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

1 Corporation S P E C I F I C A T I O N 	 PAGE 132

REV.

----------------------- RADL .--------------------

3.11.3.4 Interface Sequences

After selection of the MCU interface the following are examples

of possible control sequences. -

TABLE 3.11-20 INTERFACE SEQUENCES

Step Code Sequence (Stream Units Write Microcode)

I---

A 111 	 EOP - To clear the interface. Initiate (bit

0) should not be sent.with any EOP function.

B 010 	 Write Mode - The address with this function is

ignored; the write will proceed from the

current P address.

C 100 	 Data - Data sent to microcode must (except on

the last transfer) be sent in integer

multiples of microcode words. One microcode

word is 14 16-bit transfers. Data will be lost:

and/or rearranged if this is not observed.

D 111 	 EOP

E 	 Repeat from Step B as many times as necessary

to complete transfer of the block of data.

Step Code I Sequence (Stream Units Read 	Microcode)
I---

A 111 	 EOP

B 001 	 Read Mode - The address is ignored.

C 	 Input the data. The same caution as in Write

Microcode Step C applies. Data starts from

the current microcode P address.

D 111 	 EOP

E 	 Repeat from Step B as many times as necessary.!

I--

!Note: If the last operation performed in a sequence is an EOP,I

!the next sequence does not have to start with another EOP.

-------	 c---

(continued)

------ --

---- -------- ---

--

--

ICONTROL DATA E N G I N E E R I N G 	 NO. 10354637
DATE Mar. 1979I -------------

I Corporation 1 P E C I F I C A T I O N PAGE 133
REV.

-------------------- RADL ---------------------------

3.11.3.4 (Cont.)

After selection of the MCU interface the following are examples

of possible control sequences.

TABLE 3.11-20 INTERFACE SEQUENCES (Cont.)

Step I Code Sequence (Stream and Scalar Write

I Switches)

A i111 EOP

B 110 Set Switch Mode - -The address is ignored.

C 100 Data - Although one 32-bit transfer is the

normal data length, there is no restriction on:

data length if the extra data length can be
useful - repeated starts for instance.

D 111 EOP

Step Code 1 Sequence (Stream Read Status)

A 111 EOP

B 101 Set Status Mode - The address is ignored.

C Input Data - All data after the first word is
status word 2.

D 111 EOP

,Note: If the last operation performed in a sequence is an EOP,1
!the next sequence does not have to start with another EOP.

(continued)

---------------- ---

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 134
REV.

-------------------- RADL---------------------------

3.11.3.4 (Cont.)

TABLE 3.11-20 INTERFACE SEQUENCES (Cont.)

Step I Code ISequence (Stream and Scalar Write
Switches)

I--

Step Code 1 Sequence (Write Scalar Microcode)

A 1 111 EOP - To clear the interface

B 010 !'Write Mode - Bits 0-8 of the second 16 bits of!
the address, selects daughter boards 0-8,
respectively. The first 16 bits of the address!

are ignored. The write will proceed from the

current P address.

C 100 Data - Bits 0-3 are Write Enables and bits
I 4-15 are Data. The microcode address is
incremented by one for each 16 bit quantity

sent by the MCU.

D Repeat step C until the selected Auxiliary

Board has been loaded (normally 1024 16-bit

words).

E 111 1 EOP

F I Repeat from step B to load other Auxiliary
i Boards.

I--

INote: If the last operation performed in a sequence is an EOP,

!the next sequence does not have to start with another EOP.

i

CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

I Corporation S P E C I F I C A T I O N PAGE 135
REV.

------------------ RADL--------------------------

3.11.3.5 Writing or Sweeping Scalar Microcode Memories

The scalar microcode consists of 5 memories; PMOO, PM01, HM00,

DM00 and GMOO. Although each operates independently during CPU
instruction execution, they are all addressed simultaneQusly

during writing or sweeping operations.

3.11.3.5.1 Scalar Microcode Memory Write Operations

For write operations, the write enables at each auxiliary board

control which auxiliary board and which address within an

auxiliary board is to be written. Since 12 bits of data are

written at a time, the write enables are also responsible for

choosing which 12-bit portion of a microcode address is to be

written.

Under the control of the write enables and auxiliary board

select, one auxiliary board is written at a time. The address

registers on the auxiliary boards will first be set to 00 and

16

then cycled thru FF and then back to 00 while writing

16 16

one-fourth (or twelve bits) of an auxiliary board. The write

enable will then change to address the next twelve bits of the

particular auxiliary board and the address register will again

cycle through all addresses. This operation will occur four

times on each of the 9 auxiliary boards.

It is possible, by bringing up all 9 auxiliary board selects and

all write enable bits, to write all bits of all auxiliary boards

in one write of 100 words (except PMOO/PMO1). Each 12-bit

16

segment of the 48-bit word will be duplicated. This would be

done only as a maintenance aid for pattern generation

during either write or sweep operations.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 136
REV.

------------------ RADL---------------------------

3.11.3.5.2 Scalar Microcode .Memory Sweep Operations

Sweeping of the scalar microcode memory is an operation to be

done to detect a parity error on any of the 9 microcode

auxiliary boards. The operation simply consists of referencing

all 9 auxiliary boards simultaneously with the same address

register. Since there is one parity bit per auxiliary board

per microcode memory, any parity error or errors will be

isolated to the failing auxiliary board or boards.

The control signals necessary to perform the sweep operation are

Sweep (switch function bit A), Enable PMOO/PM01 (switch function

bit B) and Clear Fault. Sweep should be enabled during the

entire sweep operation. Enable PMOO/PM01 selects PMOO or PM01

microcode memories and Clear Fault will clear any parity errors

caused by the sweep operation. If Clear Fault is sent while

sweep is still set, not only will the parity fault condition be

cleared but sweeping will continue. However, since the sweep

address, upon a parity fault, is 3, 4, or 5 addresses ahead of

the actual parity fault address, sweeping immediately after a

parity fault will "skip" 3, 4, or 5 addresses respectively. For

example, if the parity fault address is 22 on PMOO then

addresses 23, 24, and 25 will be skipped.

The register used to reference all of the auxiliary boards

during the sweep operation is cleared before and after the sweep

operation. Thus, sweeping starts with address zero and, because

of the time delay in detecting parity errors, will end beyond

that address which caused the parity error. For example, if the

parity error occurred on HMOO at address 125 then the address

displayed at the MCU will be 130 and is therefore 5 ahead.

The following list specifies how far ahead of the parity fault

address the sweep address will be.

GMOO 5 ahead

DMO0 4 ahead

HMOO 5 ahead

PMOO 3 ahead

PMO1 3 ahead

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 137
REV.

------------------ RADL ---------------------------

3.11.4 Monitoring System Activity by the MCU

The MCU monitors the output of two display registers as its main

medium of monitoring system activity. One display register

contains the output of the Current Instruction Address Register

(CIAR). The other display register contains the output of the

register selected by the MCU. A 4-bit code sent from the MCU

selects which register the display register will present. In

addition to monitoring the display register, the MCU can also

monitor the microcode memory status and other CPU status.

3.11.4.1 Monitoring with Counters

For monitoring purposes, the CPU has four 16-bit counters. Each

of these counters can be connected to an event line selected by

a command from the MCU. See figures 3.11-1 and 3.11-2. A list

of events which can be counted and their corresponding select

codes is given in Table 3.11-21. For purposes of discussion, one

pair of 16-bit counters is referred to as Counters Al and A2.

The other pair is labeled B1 and B2. Counter A and Counter B are

completely independent and cannot be tied together; however,

they do share the same input event lines and gate lines. The

counters can be read by selecting them for input into the MCU

display register. They can also be combined in various ways to

form one or two 32-bit counters. This reconfiguration is

accomplished via the carry lines from the MCU. The counters are

enabled by a number of hardware and software gates selected with

a mask from the MCU. The MCU has the option of stopping the CPU

count condition. This option is exercised by use of the stop

lines.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 138

REV.

-------------------------- RA D L-----------------------------

INPUT

EVENTS Al/9I

St-A COUNTER

TO CUillINPUT

EVENTS A2/82
 COUNTER A
FROM

CPU
INVISIBLE PEG

CIA ENABLES BIT

JOB MODE I
A STOPMONITOR MODE -A LINES CPU

DATA FLAG SIT I

DATA FLAG SIT 57 A SATE3

DATA FLGBITIT

SELECT STOP CPU ON CYR A INCAI
tVENr L ENABLE CARRY INTO AZ"

SELECT AZ- ENABLE CARRY INTO Al

3ELECTED JOB GATE COUNT A

JOB WOE GATE- DATA FLAGS? GATE

MONITOR MODE GATE- LDATAFtAOs& GATE

V

FROM MCU

3Z-5 COUNTER
F BITS TO LICU

OvaCOUNTER 8

C*

BASTO8LINES

T GA ES

EVENT A t STOP CPU ON CTA S INCR

ENABLE CARRY Ff7082
rSEEC I

EVTT"ENT IENABLE CARRY INTO 61

SELEC *2[COUNT
SEECE JO iAE DATA PLAQ 57 GATE

MONITOR dOOE GATE] DATA FLAG 56 GATE

FROf CogiU

Figure 3.11-1 Block Diagram of Counter Logic Lines

ICONTROL DATA

E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

I Corporation• S P E C I F I C A T I 0 N PAGE 139
REV.

----------------- -------------- R A D L -----------------

CPU INPUTS

EVENTS

INVISISLE PACKAGE COUNTER ENABLE SIT

INPUT EVENTS INPUTS EVENTS K
JOIB MODE COUNTER A2/Ba COUNTER At/8,

MONITOR MODE

DATA FLAG BIT Ss

DATA FLAG BIT 57

SELECITONEVENT

NETWORK AISELECT ,N

EVENT F SELECITION EVENT
COUNTSELECT
L- ThORK At LINEAt

EVENTFELCTEa -_JOB COUNT

LINEGATE

SPECIFY JOB -

COUNT MOD AND
FOR - GATE

COUNTER

A

T S
;A E MODEA

GATE

MCU
INPUTS

DATAFLAG S'E, ND"O

GATE

•GATE

"ASK
COUNTEVENT

A

ENABLE CARRY

IATO AND

INTO At

INTO AZ

STOP CPU ON

COUNTER A
INCREMEN T

AND AND I-BIT COUNTER
A2

A IS-BIT COUNTER
At

CARRY "

TO MCU

Figure 3.11-2 Block Diagram of.Counter A

ICONTROL DATA E N G I N E E R I N G NO. 10354637
i,- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 140
REV.

--------------------- RADL---------------------------

3.11.4.1 (Cont.)

TABLE 3.11-21 COUNTER EVENTS

1 *Codes

16 EVENTS

!Counter !Counter!

AI/Bi 1A2/B2 1

--------------------------------------	 I01 	 1,Number of branches out of ihstruction stack. I

I--

01 .INumber of branches in instruction stack.

-------- -- I

04 1 	 INumber of times microcode field MON = 1 is
!selected.,

I---

04 Number of shortstop path usages.

I---

05 i 	 !Not Used

I--	 ---

05 	 INot Used.

I---	 ---

09 i 	 INumber of normal channel intermediate memory

irequests.

I I
I--

09 	 INumber of normal channel intermediate memory

!requests accepted.

I--
OA 	 INumber pf CPU memory requests.

I--
OA INumber of CPU memory requests accepted.

S.--
OB 	 !Total number of memory requests.

I--
OB !Total number of memory requests accepted.

I--- ---------------------------------------

11 1 	 [Number of minor cycles from selected

!instruction issue to next, non-selected issue.

IThe counter will begin counting when an

!instruction whose function code meets the

[conditions described in code 12 below, is

[loaded into IRO. It will stop counting when

!the first following instruction which does NOTI

Imeet the conditions is loaded into IRO.

I--
I -*These are 	5-bit codes, expressed in hexadecimal.

(continued)

--

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354637
------- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 141
REV.

------------------- RADL---------------------------

3.11.4.1 (Cont.)

TABLE 3.11-21 COUNTER EVENTS (Cont.)

*Codes

16 EVENTS

I----------------------

!Counter !Counter!
jAI/BI 1A2/B2

I---

12 	 !Number of times a particular function code or

!a particular category of function codes is

!executed. The count condition is determined by!

!an 8-bit select code and an 8-bit mask sent tol

!the CPU on MCU channel BTA8. If the select

!code bits and the corresponding instruction

!function code bits are equal wherever there isl

"1I1 in the mask, the counter will be

lincremented. If the mask contains all zeros,

!all instructions will be counted.

I--

12 !Time - 1 MHz.

I--

13 	 i Time between selecting microcode monitor

Si!field, MON=2 and selecting MON=3.

I---

1 13 Number of cycles where data is not available
lat the output of a functional unit once data
!has been requested for all input streams. This!
!time does not include the time required for i
linitial setup (preceding the input of the last!

loperands to a functional unit). This count

!thus permits the programmer to analyze the

!amount of time required for startup memory

laccesses, pipeline/functional unit length, andl

!memory conflicts for a specific instruction.

!*These are 5-bit codes, expressed in hexadecimal.

i--

Other events 	will be added, but at the present time codes have

not been assigned. Possible additions are:

* Number of 	scalar requests to Intermediate Memory
* Number of 	blocks loaded into Backing Store
* Number of 	blocks read from Backing Store
* Number of 	map unit references to Intermediate Memory

* Time Swap 	Unit and Map Units are idle

!CONTROL DATA

E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation
- - --

S P E C I F I C A T I 0 N PAGE 142
REV.

------------------- RADL

3.11.4.1.1 MCU Count Gates and CPU Lines

The counters are incremented when the selected event occurs, the

count line is up, and one or more of the following gate-line

conditions is satisfied:

1. 	The Event Counter Enable bit is set in the invisible package

of the job currently being executed and the Selected Job

Gate from the MCU is set. This allows counts to be made

during selected jobs only.

2. 	The CPU is in job mode and the Job Mode Gate from the MCU is

set.

3. 	The CPU is in monitor mode and the Monitor Mode Gate from

the MCU is set.

4. 	Data flag bit 56 (or 57) is set in the Data Flag Register of

the CPU and the data flag 56 (or 57) gate from the MCU is

set and the CPU is in monitor mode.

5. 	Data flag bit 56 (or 57) is set in the Data Flag Register of

the CPU and the data flag 56 (or 57) gate from the MCU is

set and the Event Counter Enable bit is set in the invisible

package of the job currently being executed.

There is one set of gate-line enable logic for Counters Al and

A2 and one set for Counters B1 and B2; therefore, Counter A may

be enabled by different gates than Counter B.

In summary the CPU lines are:

1. 	Data flag bit 56.

2. 	Data flag bit 57.

3. 	Monitor mode.

4. 	Job mode.

5. 	Job enable of monitoring counters from invisible package.

There is a corresponding MCU gate for each of the above.

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
- DATE Mar. 1979
Corporation i S P E C I F I C A T I 0 N PAGE 143

REV.

------------------ R A D L ---------------------------

3.11.4.1.2 Carry Lines

There is one enable carry line associated with each 16-bit

counter. Enable carry line Al enables the carry into Counter Al

from Counter A2. Enable carry line A2 enables the carry into

Counter A2 from Al. There are equivalent lines for the B

Counter. A zero on carry lines Al and A2 allows the Counters to

operate as two 16-bit counters. Only half of the total number of

events are available at the selection network for one Counter Al

or A2; therefore, if a 32-bit count is desired, either counter

may have the lower bits of count. For example, if an event is

enabled to Counter Al and a 32-bit count is desired, then enable

carry line Al must equal 1"0"1 and enable carry line A2 must be a

"1". In this example, Counter Al will have the least significant

bits and Counter A2 will have the most significant.

3.11.4.1.3 Stop Lines

There is one stop line associated with each counter pair, one

for the A Counters and one for the B Counters. When the stop

line is a "1", an event incrementing either 16-bit counter will

stop the computer. Mode line "Event Stop" is returned to the MCU

(bit 4, channel ATB8) to show why the CPU has stopped. The MCU,

after sending a "Clear Fault Signal", may restart the CPU.

3.11.4.1.4 Counter Setup

Typically, the four counters would be set up by the MCU as

follows:

1. 	Set the following bits as required:

a. 	Stop CPU on A Increment (bit 9, channel BTA6)

b. 	Stop CPU on B Increment (bit A, channel BTA6)

c. 	Enable carry into Al (bit B, channel BTA6)

d. 	Enable carry into A2 (bit C, channel BTA6)

e. 	Enable carry into B1 (bit D, channel BTA6)

f. 	Enable carry into B2 (bit E, channel BTA6)

2. 	With bit F, channel BTA6, a zero, set event and mask

selection for Counter A into channel BTA7.

3. 	Set bit F, channel BTA6 to a "1".

4. 	Set event and mask selection for Counter B into channel

BTA7.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 1-0354637

DATE Mar. 1979

Corporation P E C I F I C A T I O N PAGE 144

REV.

------------------ R A D L---------------------------

3.11.4.1.4 (Cont.-)

5. 	If Al/B1 event code 12 for function counting has been

selected, set channel BTA8 to the desired function and

mask.

6. 	Set count line A or B (bit 6 or 7, channel BTA6) as

desired.

The counters will now be counting events and will continue to

count until their respective count lines are dropped.

3.11.4.2 Display Registers

There are two 64-bit display registers that can be monitored by

the MCU. One display register is used for the Current

Instruction Address Register (CIAR) and the other is used for a

register that has been selected by the MCU. The register is

selected by a 4-bit code transmitted on bits C-F of channel

BTA1. Any unlisted bits (such as bits 0-16 for code 3) are

undefined.

The MCU must send a read signal to enable the CIAR and the

selected register into the display registers. The read signal

has been defined as bit B on channel BTA1 and its leading edge

simultaneously transfers both registers into the display

registers. The register select code must be set up by the MCU

before the read signal is transmitted to the CPU.

The CIAR is received on channels ATBI - ATB3 of the MCU and may

read while the CPU is running. The selected register is

received on channels ATB4 - ATB7 of the MCU. See Section

3.11.1.1 for bit assignments. The selected register on channels

ATB4 - ATB7 may only be read when the CPU is stopped.

The select codes and corresponding registers are listed in the

following table (many registers have not had codes assigned and

are therefore not yet shown; as design proceeds the table will

be expanded.

(Continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

Corporation 1 , S P E C I F I C A T I O N PAGE 145
REV.

------------------- RADL---------------------------

3.11.4.2 (Continued)

TABLE 3.11-22 DISPLAY REGISTER SELECT CODES

ICode I Register(s) Bits 1

161

--	 i

0 1 Current Instruction Register 0-63 1

1 1 Data Flag Register 3-15 1

19-311

I 35-471

31-581
2 1 Invisible Package Address 0-22 1

1 (Absolute Sword Address) i
3 1 External Interrupt Register 15-301

Monitor Interval Timer 	 1 15 1

Channel 	0 ,16 1

1 1 17 i
1 1 17 iI 	 17

2 18
3 19
4 120 i
5 21 1
6 122 1
7 123 1

8 24 1
i -9 1 25

10 26
11 127 1
12 ,28 i
13 129 1

1 Swap Unit 130 1
IChannel Read Active -Write Active 132-611
Channel 0 1 32-331

1 34-35
ii2 	 136-371

3. 1 38-391
1 4 1 40-411
1 5 1 42-431

6 44-451
i7 146-471

8 1 48-491

9 1 50-511

10 52-531
11 	 154-551

12 1 56-571

13 58-59

1 Swap Unit 1 60-611

(continued)

--

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354637

--------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 146

REV.

--------------------- RADL ---------------------------

3.11.4.2 (Cont.)

TABLE 3.11-22 DISPLAY REGISTER SELECT CODES (Cont.)

!Code 1 i i
161 Register(s) Bits I

------- i

4 1 SECDED Fault Read Bus Code 0-3 1
1 Instruction Stack Parity Fault 4
1 MIC Memory 0 Parity Fault i5
I MIC Memory 1 Parity Fault 16
I Scalar MIC Parity Fault 17
I Double Secded Error. Syndrome Bits must be 8
checked to determine if address and Bus Code are!
valid. i
Syndrome Bits 9-15 1
Parity Fault on Auxiliary Board 0 16
Parity Fault on Auxiliary Board 1 17
Parity Fault on Auxiliary Board 2 18 i
Parity Fault on Auxiliary Board 3 19
Parity Fault on Auxiliary Board 4 20
Parity Fault on Auxiliary Board 5 21 i
Parity Fault on Auxiliary Board 6 22 i
Parity Fault on Auxiliary Board 7 23 1
Parity Fault on Auxiliary Board 8 24 1
PM01 Enabled for Parity Checking 25 i
Scalar Microcode Address -Bit 0 26 i
Scalar Microcode Address -Bit 1 27 i
Scalar Microcode Address -Bit 2 28 1
Scalar Microcode Address -Bit 3 29 i
Scalar Microcode Address -Bit 4 30 i
Scalar Microcode Address -Bit 5 31
Scalar Microcode Address -Bit 6 i 32 1
Scalar Microcode Address -Bit 7 33

NOTE: 	 All Fault/Error conditions are cleared

by the "Clear Fault" signal from the

MCU except the SECDED Error and the

Syndrome bits. These are cleared/

released by the "Clear Single Error"

signal from the MCU.

(continued)

-- - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - -

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- -------------- DATE Mar. 1979
Corporation, S P E C I F I C A T 1 O N PAGE 147

REV.

------------------- RADL---------------------------

3.11.4.2 (Cont.)

TABLE 3.11-22 DISPLAY REGISTER SELECT CODES (Cant.)

iCode i
161 Register(s) Bits 1

i --	 ------

4 (continued)

SECDED Fault Address 34-631

(Absolute physical bit address, significant

to the half-word level)

I 	The address of the first SECDED error is
'retained in this register.

The SECDED Fault Address is released by the

Clear Single Error Condition Signal from the

MCU.

5 1 Bounds Hit Address 0-31 1

(Absolute physical bit address, right

justified)

The address of the first bounds hit is

retained in this register. The bounds hit

address is released by the Clear Fault

Condition Signal from the MCU. The bounds

checking is performed on half-word boundaries i

only.

6 	 1 Counter Al 0-151
I Counter A2 16-311

I 	 Counter B1 32-471
Counter B2 48-631

If 	bit 8 of channel BTA6 in the MCU is a "0",

both counters will be cleared after the read

signal is received and after both counters are

transferred into the display register. If

I 	bit 8 is a 1111, the counters will not be
I 	 cleared.

1 To ensure proper initialization of the counters,1

1 	the count lines must be made zero prior to the 1

1 	new count selection.

!CONTROL DATA E N G I N E E R I N G NO. 10354637

Corporation
-

S P E C I F I C A T I O N
DATE Mar.
PAGE 148
REV.

1979

------------------ R A D L ---------------------------

3.11.4.3 Logic Fault Monitoring

There are several types of logic faults detected in the computer

such as memory SECDED, MIC memory parity, pipeline compare, and

I/O parity. When a logic fault is detected, the computer stops

between instructions. The types of fault may be sensed on

channel ATB8. (See Section 3.11.1).

After sensing the logic fault, the MCU must-clear the fault via

bit 7 of channel BTA1. The MCU must determine the appropriate

response to the fault and has the option of restarting the CPU

by setting bit 3 of channel BTA1.

3.11.5 SECDED (Single Error Correction Double Error Detection)

Single error correction/double error detection (SECDED) is

carried on all data.buses within the FMP. SECDED is generated

on all information as it enters the FMP and is regenerated

whenever the form of the data is modified (as an arithmetic

result). SECDED is checked and any errors corrected before the

data is put into or used by a possibly failure-prone element

(such as memory) or an element that will modify the data (such

as the Vector Unit). SECDED check networks are placed at

intervals in the data path which permit immediate identification

of a failing memory or functional element in most cases.

SECDED is carried in two forms in the FMP. The first form is 7

SECDED bits with each 32 data bits. Data in this form is kept

and supplied by all the units associated with the Main Memory,

including Main Memory itself. This is because the least

addressable element in Main Memory is a half-word of 32 bits and

the bandwidth requirements prohibit frequent changes of SECDED.

See Table 1 of appendix A for 32-bit SECDED syndromes.

The second form is 8 SECDED bits with 64 data bits. Data in

this form is used by the Backing Store, the Intermediate Memory

and their associated units--the Intermediate Map Unit and the

Swap Unit. See table 2 of appendix A for 64-bit SECDED

syndromes. Where there is an interface between the two

different SECDED forms, SECDED check/regenerate logic translates

the SECDED syndromes after checking and possibly fixing the

associated data.

(continued)

[CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

1 Corporation 1 S P E C I F I C A TI 0 N PAGE 149
REV.

------------------------- R A D L----------------------------

3.11.5 (Cont.)

The processor keeps information on SECDED errors as they occur

in the machine. Separate registers record errors found by

SECDED checking logic for the two different SECDED forms. The

data kept includes the faulty syndrome as well as the location

of its occurrence and type of error, i.e., a single (corrected)

bit error or a multiple (uncorrected) bit error. When an error

occurs, the Maintenance Control Unit (MCU) records the error on

its local disk (the system error log) and clears the error

registers. If other, similar SECDED errors occur that would

record their error information in the same set of registers they

are lost. (However, since the processing system is expected to

have a very low failure rate, loss of errors should be

negligible.)

When the processor finds a single-bit error the SECDED logic

corrects the failing bit and the processor continues as before

with no loss in throughput. (The error is, of course,

recorded.) When a double-bit (or worse) error occurs, what

happens depends on whether or not the machine was in job (user)

mode or not. If the FMP was in monitor mode the error is

recorded by the MCU which will then restart the FMP. Any jobs

within the FMP at the time will or will not be lost depending

upon the ability of the operating system to do a "warm" start.

If the FMP was in job mode, the processor forces the machine

back into the monitor (monitor mode) which will abort the job

but continue to run.

There is one place in the FMP that does not carry SECDED--the

I/O Unit. Each PDC carries data parity internally and also on

the connections between the PDCs and Intermediate Memory. This

causes very little loss because the PDC is an intelligent device

that can request or supply data again when a data error is

detected.

The SECDED error information is logged by the Maintenance

Control Unit (MCU). The information logged is syndrome word,

single error, double error, Read bus code, and CPU word address

bits 37-58.

(continued)

ICONTROL DATA E N G I N E E R I N G NO. 10354637

-------------.. DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 150

REV.

------------------ R A D L---------------------------

3.11.5 (Cont.)

SECDED ERROR INFORMATION

1. 	SYNDROME BITS - These seven bits generated by the error

correcting code . The 39 unique syndrome words for single

bit errors are listed in appendix A. Of these 39 (odd bit)

syndrome words, only the 32 data bit codes will toggle a bit

when error correction is enabled. Other odd bit codes

latched in SECDED that differ from the 39 unique syndrome

words will be flagged by the MCU as a multiple odd bit

error. Double error syndrome words have an even number of

bits.

2. 	SINGLE ERROR - Bit 5 of channel ATB8 (see section 3.11.1)

will set if there is a single error not preceded by a double

error.

3. 	DOUBLE ERROR - This MCU display register will set

unconditionally on a double error.

4. 	SECDED FAULT BUS CODE - These MCU display registers define

the read bus on which the SECDED error occurred.

To Be Defined Later

5. 	HALF-WORD ADDRESS (Bits 57,58) - These address bits decode

the four 32-bit groups within a quarter sword.

6. 	CPU WORD ADDRESS (Bits 37-56) - These address bits indicate

the following:

To Be Supplied Later

7. LATCHED ADDRESS BITS (37-58) - In SECDED these address bits
are always the physical CPU Word Address Bits.

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
I - -DATE. Mar. 1979

1 Corporation i S P E C I F I C A T I 0 N PAGE 151
REV.

----------------- RADL---------------------------

3.11.6 Absolute Bounds Address

The absolute bounds address mechanism provides the facility to

notify the MCU of a memory reference (read or write) inside a

specified block of memory. The block of memory is specified by

an upper bounds address and a lower bounds address. Note that

the addresses are absolute physical addresses transmitted from

the MCU. The bounds addresses are defined as not included in the

block of memory.

The checker can selectively test various classes of requests for

in-bounds conditions. Any combination of classes may be

selected.

If the FMP has been stopped by a bounds hit, the hit must be

cleared by the clear fault signal from the MCU before the FMP

can be restarted. The FMP can be restarted to execute the next

instruction in sequence.

The occurrence of a bounds hit (i.e., a selected memory

reference inside bounds) is signaled to the MCU. To identify a

second bounds hit, the MCU must clear the first bounds hit

signal via the clear fault signal.

When a bounds hit is made, the address of the causing request is

saved in the bounds hit register until a Master Clear or Fault

Clear occurs.

The bounds limits and the bounds hit address refer to physical

addresses, which are independent of all Memory Degradation

modes. (The bounds test is applied to the address after any

Degradation mode manipulation has been applied).

3.12 Timing Information

The FMP is in preliminary design phase so only the most

preliminary timing estimates are available. All estimates are

given in CPU minor clock cycles. The period of this clock cycle

is expected to be 16 nanoseconds.

3.12.1 Scalar Unit Timing

The table in Section 3.12.1.2 is designed to provide scalar

timing data for instruction sequences in the FMP. All timing

data is expressed in minor cycles.

Multi-operand instructions are typically expressed as overhead +

(number of cycles per operand) (number of operands).

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N 	 PAGE 152

REV.

------------------- R A D L---------------------------

'3.12.1.1 Use of Scalar Timing Tables

The ISSUE portion of the table gives the minimum number of minor

cycles between the issue of the specific instruction listed in

the left column and the issue of the next instruction in a

program sequence. Various operand or memory conflicts (as

discussed later) can cause additional delay beyond This minimum

time.

The Issue portion of the tables is sub-divided when appropriate

into three categories as defined below:

NB -- No Branch

ISB -- In Stack Branch

OSB --	 Out of Stack Branch to first quartersword. This

time must be increased by 1, 2, or 3 if the Branc h
address is in the 2nd, 3rd, or 4th quarter-sword,
respectively.

The non-branch instructions use the entry under NB or No Bran ch.

Example 1 illustrates a simple, no conflict, Branch sequence.

Example 1

Instr. R S T Comments

A) 60 - - - Register designators which

are not pertinent to the

example are represented by

a -.

B) 25 - - - Branch condition not met.

Instr. R S T Comments

-C) 65 - -

D) 25 - - - Branch condition met,

branch out of stack to

instruction E in 3rd

quarter-sword.

Sequence Timing

Instr. A issues at minor cycle 0

Instr. B issues at minor cycle 1

Instr. C issues at minor cycle 12

Instr. D issues at minor cycle 13

Instr. E issues at minor cycle 42

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 153

REV.

------------------ RADL

3.12.1.1 (Cont.)

The RESULT AVAILABLE portion of the table contains information

necessary to time instruction sequences with operand

dependencies. The first column, SS or shortstop, contains

entries for those instructions which use the Scalar Floating

Point. These are the instructions which may use the shortstop

feature to provide an input operand. This entry is the number

of minor cycles after issue that the result operand will be

available at the shortstop for use with a following

instruction.

If instruction A issues at minor cycle X, any following

instruction, B, needing the result of A must issue no later than

minor cycle X+SS to utilize the shortstop. A floating-point

instruction needing the result of A, can be issued before X+SS

and wait at the input of Floating Point for the shortstopped

result of A. This allows other non-floating-point instructions

to issue. The resulting time of an instruction that issues and

waits for shortstop will be as if it had issued at the ideal

time to match shortstop. A subsequent instruction requiring

access to Floating Point will not issue any earlier than {X+SS}

+ 1.

If instruction B issues later than cycle X+SS, thus missing the

shortstop, instruction B must wait until at least X+RF. At this

time the desired operand will be available from the Register

File. Example 2 illustrates operations using shortstop.

Example 2

Instr. R S T Comments

A) 60 - - 12

B) 60 - - -

C) 60 - - -

D) 60 - - -

E) 60 - - -
F) 60 12 - 14

G) 60 14 14

-H) 7F - -

I) 60 - - 15

J) 60 14 - 16

K) 60 16 15 -

L) 60 - -

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
------------- iDATE Mar. 1979
Corporation i S P E C I F I C A T I 0 N PAGE 154

REV.

------------------ R A D 	L---------------------------

3.12.1.1 (Cont.)

Sequence Timing

Instr. A issues at 0
Instr. B issues at 1
Instr. C issues at 2
Instr. D issues at 3
Instr. E issues at 4
Instr. F issues at 5 -- Thus exactly matching shortstop

Instr. G issues at 6 	 Issues but must wait at the input

of Floating Point for the

result of instruction

F to be available

Instr. H issues at 7

Instr. I issues at 11 -- Cannot issue until instruction G
catches shortstop and proceeds.

Thus 3 minor cycles not used

Instr. J issues at 13 --	 Missed result of instruction F at
shortstop thus waiting until
operand is available from

Register File

Instr. K issues at 14 --	 Issues and waits at input to
Floating Point

Instr. L issues at 19 --	 Instruction K is treated as if
issued at 18 and the L at 19

The last column under RESULT AVAILABLE (MEM) contains entries

for those scalar instructions (13, 32, 5F, 7F) which store a

result into Main Memory. The time listed is the minimum time

until the operand is in memory and available for use. The time

may also be increased by 4 minor cycles if the desired memory

bank is busy.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 155

REV.

------------------ RADL

3.12.1.1 (Cont.)

The UNIT BUSY portion of the table concerns instructions issued

to either Divide/Convert (D/C) or Main Load/Store L/S).

Divide/Convert executes the 10, 11, 4C, 4F, 53, 6C, 6F and 73

instructions. This unit is the only portion of Scalar Floating

Point which is not completely pipelined; thus the appropriate

unit busy time listed in the table must elapse before a third

instruction can be issued to Divide/Convert. Floating point

instructions other than these eight may be issued to Floating

Point while Divide/Convert is busy. A second instruction from

the set of eight can be issued, but will be held in front of

Scalar Floating Point and issuing of non-floating-point

instructions will continue.

Main Load/Store executes the 12, 13, 32, 5E, 5F, 7E, and 7F

instructions. There are six address registers in Load/Store

which enable requests to be stacked and executed in the proper

order. The 12, 5E, and 7E instructions each require one register

and can be executed (in the absence of memory conflicts) at the

rate of one load per minor cycle. The 5F and 7F instructions

each require two address registers and can be executed at one

store per two minor cycles. The 13 and 32 instructions each

require two address registers and can be executed at one per 14

and 15 minor cycles, respectively.

Main Load/Store is then capable of streaming Load/Store

instructions (other than the 13 and 32) at one minor cycle per

load and two minor cycles per store assuming no Memory or

Register File conflicts. For example, a stream of N loads will

execute in N + 14 minor cycles from the issue of the first load

until the operand from the last load is available in the

Register File. A stream of N stores will execute n 2N + INminor

13 cycles from issue of the first store until issue of the last

store.

Example 3

Instr. R S T Comments

-
A) 60 -
-
B) 7E -
-C) 13 - -

D) 13 - - -

E) 6o - -

-F) 7E -
-G) 7E - -

H) 7E - - -

I) 13 -

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
_- - DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 156
REV.

-------------------RADL

3.12.1.1 (Cont,)

Sequence Timing

Instr. A issues at 0

Instr. B issues at 1

Instr. C issues at 2

Instr. D issues at 4

Instr. E issues at 6

Instr. F issues at 7

Instr. G issues at 8

Instr. H issues at 19 Instr. H must wait for

address register

to become free

from Instr. C.

Instr. I issues at 35 Instr. I must wait for

address register.

There are three additional Operand Dependencies which must be

considered.

1. 	Source operand conflict -- an instruction requiring the

result of a previous instruction as an input operand waits

until the operand becomes available.

2. 	Output operand conflict -- an instruction output to the same

Register File location as a previously issued, but slower

instruction, waits until the previous instruction stores its

result in the Register File.

3. 	Register File Write conflict -- an instruction cannot issue

if its result arrives at the Register File at the same minor

cycle as the result of a previously issued but slower

instruction.

Table 3.12-1 pertains to instructions having greater than 1

minor cycle issue time.

The first column lists the appropriate instructions. The second

column indicates the minor cycle of issue that a specific

operand is required. The third column indicates the

availability of shortstop for that specific operand.

(continued)

----------------------------- -----------

- --- ------ --------------------------------

CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 157
REV.

------------------ RA DL

3.1.2.1.1 (Cont.)

TABLE -3.12-1. ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE

ISSUE INSTRUCTION AND IF THEY CAN. CATCH SHORTSTOP OF A PREVIOUS

INSTRUCTION

------- ~---
IINSTRUCTION I DESCRIPTION 1SHORTSTOP
I-- --------------------------------------

13 1st R&S No

2nd T No

21 Ist R&R+I Yes

2nd Si Yes
I --25&27 Is1 & 	 No
lt R&S

2nd ,T 	 No

2F 1st S 	 No2nd T No
3rd I T No

31&35 1st IS&T 	 No

2nd R
 No

3rd IR N

32 1st S No
2nd ,T 	 No

'36 ist 1S&T 	 No

2nd R 	 No

No3rd R
5F Ist R&SR No

2nd T 	 No

ist

2nd

7F . . t
2nd
BO-B5.XOOX-X

BO-BS.XOIX-X

B0-B5.X11X-X

R&S

T

R

TIstj B&Y

~
2ndl X&A
3rdj Z

4th, X&A&C

lstj B&Y

2ndl X&A
3rd, Z

Sst B&Y
2nd X&A

Ist B&Y
2nd, X&A

Yes (R+S)

No

No

No
No

No

No
NoI

No

No

I 	Yes (X+A)
Yes

No

Yes

No

IYes

B6 Ist 1 R i No

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 158

3.12-1.1 (Cont-.)

Example 4

Instr. R S T

A) 60 - - 12
B) 36 10 - 12

C) 60 - - 35
D) BO 40 35 -

E) 60 - - -

Sequence Timing

Instr. A issues at 0

Instr. B issues at 8

Instr. C issues at 32

Instr. D issues at 36

Instr. E issues at 48

REV.

-R A D L----------------------------

Comments

Specifies an out-of-stack

branch to Instruction C in

the 2nd quarter-sword

Specifies an in-stack branch

to Instruction E

B must wait for Result from A

to be stored into the Register

File

Result from-Instruction C

available from Shortstop at

time 37 allows issue at 36

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 159

REV.

-------------------- R A D L

3.12.1.2 Basic Instruction Timing

TABLE 3.12-2 SCALAR INSTRUCTION TIMES

Issue 1 Result Avail. !Unit Busy 1

-- i

!Instructions! NB I ISB I OSB 1 S.S. 1 R.F. I MEM I L/S I D/C

I--p I I 	 I I

II I I I I II
i I I I I i I

00 Waits for external or real-time interrupt!

04 1201

I

06 1 4

08 120 1 	 i

09 Job to Monitor

1 3491 -- 1 	 - - 1

1I iIII II
I I I

Monitor to Job
13241 -- I i 1

OA 120 1

OE 	 1201 34

10 1 1.. 22 25 	 1 18 1

11 1 . 531 561 	 1491

12 1 	 15 11

13 2 1 .. 1 	 . 23 114* 1 1

20 1I 4 7 1-

* MUST ADD 5 MC FOR REGISTER RELEASE

(continued)

--- ---------

----------- -- ------------- -- ----------------------- ---------

!CONTROL 	DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979

I Corporation I S P E C I F I C A T IO N PAGE 160
REV.

------------------------- RADL --

3.12.1.2 	 (Cont.)

TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

i Issue 1 Result Avail. !Unit Busy

!Instructions! NB 1 ISB 1 OSB 1 S.S. 1 R.F. I MEM I L/S I D/CI

I I

21 	 2 51 8 1 --

I4I... * -- I * 	 I
-a24 	 11-I-

25 2 * *

26 1 *

i27 2

2BII 3 6

2 C 1 .63 3.. 6 -

2DI . 3 6 -

2E 	 I1.. .. 3 6 -i

--- - - -- - - I ---- -- --	 -- -- -- -- - --- I-- - I I-

2F 17 1 8 1 23 1 -- i7 -- 1i

30 1 21-- 3 6 -- i *

31 17 8 23 -- 7 - - i

•Time 	is yet to be established.

(continued)

--

--

--

!CONTROL DATA 1 E N G I N E E R I N G NO.. 10354637

DATE Mar. 1979

Corporation, S P E C I F I C A T I O N PAGE 161

REV.

-------------------- R A D L

3.12.1.2 (Cont.)

TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

' Issue 1 Result Avail. !Unit Busy 1

---- -- ----I1

!Instructions 1 NB 1 ISB 1 OSB 1 S.S. 1 R.F. I MEM I L/S I D/CI

I 	 I I
G-bits 2&3 1

32.OOX-X 1 2 1 -- -- - i 1 (24 1 15*)IO 1 1

-. (24 1 15*)11 0 132.01X-X 1 1 9 1 24 .

a i i i i i i i i

32.1X-X 20 1 21 1 36 1 ..	 (24 1 15*)11 1 1

33.XXXXXOXX

33.XXXXX1XX

34 ... 3 6 -- 1

35 171 8 1231 -- 7

36,R=T,S=O 1 51 -- 1 -- 51 -

36,R=T,S O 1 1 91 24 --1

36,RgT 1 81 23 1 - 5 -- i

37 1 32i-- ii

38I 4 --i

39 30 	 ...

3A 20 -

3B 126 1 - -

3C 5 1'. 8 -

3D I . .i 5 I8

*MUST ADD 5 MC FOR REGISTER RELEASE

(continued)

-- --

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 162

REV.

------------------- R A D L---------------------------

3.12.1.2 (Cont.)

TABLE 	3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

i Issue I Result Avail. !Unit Busy 1

!Instructionsl NB 1 ISB 1 OSB 1 S.S. 1 R.F. I MEM I L/S I D/Ci

3E 	 I .. . I 4 -

3E 	 4

3F 	 4 r-

40 1 .. . 5 1 8 -- 1

41 I . 5 8 - I

42 I 5 ' 8

44 1 . . 5 1 8 -- i

45 I I 5 8 -

46 I 	 5 8 -

48 1 5 1 8 -- i

49 1 5 8 --

BI 	 5 8

4C 1 .. . 30 1 33 -- 1 26

4D 1 I 4 -

4E I1. 4 -

4F I . 30 33 -- 26

50 1i 51 8 -

51 1i 51 8 -- I

52 11 -I .. 5 8 -

53 1 .	 29 32 I--

(continued)

26

--

-- -----

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 163

REV.

------------------ RADL

3.12.1.2 	 (Cont.)

TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

i Issue I Result Avail. !Unit Busy I

!Instructionsl NB I ISB OSB S.S. I R.F. 1 MEM I L/S I D/C1
I--

54 	 I 1 5 8 --.

55 1 - 1 51 8 -
58I I 4 -

i 	 59 I1 .. i 5S 8

5AI .i 3 1 6

5B 1 I i 3 6 -

5C 11 1 1 5 6 -

5D I . 5 8 -

5EI . 15 - 1"

5F 2	 10 2*

60 I -- -- 1 5 81 -- 1

61I .. . 5 8 -

62 I .. . 5 1 8 -

7I 1
- II 4 1I --- 1 I 1SE663I 1 -... 1- 15 1 I --

SF 2 1--------I------- -- - --- 1012*1-------1

64 1 5 8 -

65I 	 i 5 8

i6 6 I .. 5 8 -

*MUST ADD 5 MG FOR REGISTER RELEASE

(continued)

--

--

ICONTROL DATA E N G I N E E R I N G 	 NO. 10354637

--	 DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N 	 PAGE 164
REV.

------------------- RA DL

3.12.1.2 	 (Cont.)

TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

Issue I Result Avail. !Unit Busy

!Instructions! NB I ISB I OSB S.S. 1 R.F. 1 MEM I L/S I D/C

68 I . 5 8 -

69II 	 ... 5 8 -

6B 1 .. . 51 8 -

6C 1 5 4 1 5 7 -- i 5 0

6D 12 4 1 7 -

6EI 	 . 3 6

6F 1 I 54 	 I57 - 50
6B I 	11 - -- 51 i i

70I 	 . 5 8 - i

71 	 I 5 8 - 1 i i

72 	 I 5 8 -

73 1 1 . 1 53 56 -- 1 149 1

74 I ... i 5 8 -i

75 	 I i 5 8 -- i

... 5 i8 	 -- 1i
I7 6 1

I Iconinued)

77 I i 5 8 -- i

S78 i 1 I 4 - i

79 I ... i 5 i 8 -

F7A i1 -- 15 3 5 -- 1 5 1

70-------------- -- - ----

---- ----

CONTROL DATA E N G I N E E R I N G NO. 10354637
----------- DATE Mar. 1979

Corporation SP E C I F I C A T 1 0 N PAGE 165
----- ---- ---- REV.

---- --- --- --- R A D L ----- -----	 ---- ----- ---

3.12.1.2 (Cont.)

TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

i Issue I Result Avail. !Unit Busy

Instructions! NB 1 ISB 1 OSB 1S.S. 1 R.F. 1 MEM 1 L/S 1 D/Cj

7 B 1 .. 3 16 -

7 C 1 .. 3 16 -

7E 1 . .. 15 1 -- I**

7F 2 ...--- 10 2*

B0.X00 X-X 1 8 1 9 1 24 1 - 1 8 1 -- i i

B0.X01 X-X 1 3 .. 1 ..- 5 15+8* --

B0.XI0 X-X 11 12 1 27

BO.X11 X-X 12 6 1 9 -

B1.X00 X-X 1 8 1 9 1 24 1 --	 8 -

*
1B1.X01 X-X 13 5 !5+8* -

B1.X00 X-X 11 1 12 1 27

B1.X11 X-X 1 2 .. 1 ..- 6 1 9 -

B2.X00 X-X 1 8 1 9 1 24 1 --	 8 -

*
1B2.X01 X-X 1 3 5 15+8* --

B2.XI0 X-X 11 1 12 1 27

B2.X11 X-X 1 2 .. 1 ..- 6 9 -

* MUST ADD 5 MC FOR REGISTER RELEASE.

**Output to be stored in Register C is available at 5 cycles and Y
at 8 cycles. Y may be used from the Shortstop at time 5. C can
not be shortstopped.

(continued)

----------- ---------

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 166

REV.

------------------ R A D L ---------------------------

3.12.1.2 (Cont.),

TABLE 	3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

i Issue 1 Result Avail. !Unit Busy 1
--- 1----------I
!Instructions! NB 1 ISB OSB S.S. 1 R.F. I MEM I L/S I D/Ci

B3.XOO X-X 81 9 124 -- 81--

B3.XO1 X-X 1 3 -- -- 1 5 1 5+8** --

B3.XI0 X-X 1111 12 1 27

1B3.X11 X-X 1 2 .. 1 ..- 6 1 9 --

B4.XO0 X-X 1 8 1 9 1 24 1 -- i 8 -- i

B4.X01 X-X 1 3 .. 1 ..- 5 15+8** -- 1

B4.XI0 X-X 1111 12 1 27 ...i-- ii -

B4.X11 X-X 2 6 9 -- i

B5.XO0 X-X 1 8 1 9 1 24 1 -- i 8 -- 1

BS.X01 X-X 1 3 .. 1 ..- 5 15+8** -- 1

B5.X1O X-X 1 11 1 12 1 27 1 -- --

B5.X11X-X1 2 1 -- 6 1 9 -

--34.X11XXI 21----------9

B6 B 7 1 81 23 .--. 8 1 - i

BEaI 1 44

BF1 .. . I 4

CD I I 4

CE1 .. . I 4

**Output to be stored in Register C is available at 5 cycles and Y

at 8 cycles. Y may be used from the Shortstop at time 5. C can

not be shortstopped.

(continued)

--

CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 167

REV.

----------------- RADL ---------------------------

3.12.1.2 (Cont.)

- TABLE 3.12-2 SCALAR INSTRUCTION TIMES (Cont.)

Instruction I 	 Execution Time
I---

7D 1130 + 12 x (ceiling((N+K)/12))

Where: N = Number of elements in the longer of

R or T

R = Number of elements in the input (R)

field

T = Number of elements in the output (T)

field

K = 	6 if R > T,
8 if R = T, or
16 if R < T

3.12.2 Vector Processor Timing

All vector processing times are stated in terms of overhead (the

time required to start up a vector operation) and vector

throughput in results per clock cycle. Total time for a vector

operation is then stated as O+N/R where 0 is the overhead, R is

the rate of results per minor cycle, and N=M times the ceiling

of L/M; L is the vector length and M is 8 for 64-bit operands or

16 for 32-bit operands. Ceiling is the APL operator which

returns the maximum integer value of the argument.

Vector overhead is variable depending on a number of conditions.

Its component parts are:

1. 	Issue time---Instruction Issue requires a certain

number of cycles to translate and issue the vector

instructions. Issue time includes the time to access

required data from the Register File.

2. 	Transmission of data and control information from the

Scalar Unit to the Streaming Control Unit.

3. 	Checking the dependency flags and waiting for any flag

conflicts to clear.

(continued)

--
!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 168

---------------	 REV.

S-------------------RADL

3.12.2 ContJ)

4. 	Transit time through the vector streaming queue.

5. 	Transmission of setup data to the Vector Streaming

Unit.

6. 	Vector Streaming Unit setup----The time required to

form addresses and initiate the memory requests within

the Vector Streaming Unit.

7. 	Transmission of memory request.

8. 	Memory access time.

9. 	Data transmission to Vector Streaming Unit.

10. Data transmission through Vector Streaming Unit.

11. Data transmission to Vector Unit.

12. Time through vector pipelines.

13. Transmission to Vector Streaming Unit.

14. Data path through Vector Streaming Unit.

15. Transmission to memory.

When two vector operations appear in sequential instructions in

Instruction Issue, the time in the Streaming Control Unit, time

in the Vector Streaming Unit, and various transmission times can

be hidden, or overlapped, thus reducing the apparent overhead

time. It is possible, in very many cases, for the vector

overhead time to be reduced into the range of four to six clock

cycles.

As design of the FMP proceeds, the timing of instructions

becomes ever more complex. Instruction timing cannot be

presented in a simple table with a set of rules for its use. The

machine is simply too complicated. What will be done instead is

to show best case times or equations for the different

instructions or classes of instructions. Also listed will be

things that will prevent an instruction from obtaining its

maximum rate or minimum execution time.

Before the timing of instructions is attempted a short

discussion of vector set time will be given.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 169
REV.

------------------ R ADL ---------------------------

3.12.2 (Cont.)

ALL machines have setup time. For example, on a scalar machine

running FORTRAN, the following code to perform an addition is

typical:

1) Fetch A

2) Fetch B

3) Add C=A+B

4) Normalize C (not required for some machines)

5) Store C

Here 4 of the 5 instructions are overhead (setup) time.

On a vector operation the setup time is taken to be: memory

access time and depth (in terms of time) of the pipelines. This

is true of all vector machines; however, with proper hardware

design it might be possible to start another vector immediately

behind another. The effect of this is to reduce the effective

startup time -- immediately after the last operand of the first

vector has been stored to memory, the first operand of the

second vector is being stored. The FMP will be able to perform

in this mode of operation, and will, in some vector operations,

perform with zero effective startup time.

It is, of course, possible that some code sequences cannot use

this design feature. If a map operation is issued, counting on

data from an immediately previous vector instruction, the full

pipeline depth Vill be seen by the waiting map instruction. The

problem can be at least partially relieved by coding so that the

immediate dependency is removed by placing other instructions

between the vector and map instructions.

Appendix D provides a more detailed explanation of the

complexities involved in determination of execution times.

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
-- i DATE Mar. 1979
Corporation 1

S P E C I F I C A T I 0 N PAGE 170

REV.

------------------------- R A D L

3.12.2 (Cont.)

Table 3.12-3 gives Vector Processor startup times.

TABLE 3.12-3 VECTOR STARTUP TIMES

Nominal/

Minimum

Number of

Component Function Clock Cycles Notes

Issue time for 9E/9F instruction 4 (1)(2)

Time in Streaming Control Unit 3 (1)(3)

Time setting up read ports in Vector 3 (1)

Streaming Unit

Memory interchange time 3 (1)(4)

Memory access time 3 (1)

Data transmission time 3 (1)(5)

Time through Vector Streaming Unit to 3 (1)(6)

Vector Ensemble

Time waiting for previous vector to 0 (1)(7)

unwind

Time through Vector Ensemble 9 (1)(8)

Time through Vector Streaming Unit on 3 (1)

way to memory

Memory interchange time 3 (1)(4)

Notes:

(1) Time may be hidden under previous vector instructions.

(2) Time may be extended waiting for:

a) results to be available in the register file from load

instructions and arithmetic computations;

b) a previous streaming instruction to enter the streaming

instruction queues because of a flag conflict.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 171
REV.

--------.R -- A D L ...

While b) holds up execution of the vector instruction, the

time 	spent waiting is not counted against the startup time

for the current instruction but rather-against the

instruction that caused the wait.

(3) 	Time may be extended waiting for:

a) read or write flags to clear that are in conflict with

the keys of the current instruction;

b) instructions in the vector streaming queue to be issued

to the Vector Processor.

While b) holds up the vector instruction from issuing, it

is not counted in the startup time.

(4) 	Time may be extended by the priority element holding the

request or by the requested bank being busy. Normally

only the extended time will be seen as startup time (time

over 3 cycles).

(5) 	Transmission time includes time for:

a) address request to Memory Interchange,

b) data from Memory Interchange to read port,

c) data from write port to Memory Interchange.

(6) 	Data may reside in the read FIFO buffers for some time but

this is not counted against startup time.

(7) 	This is time spent waiting for data paths in the Vector

Ensemble to clear - 0, 3, or 6 clock cycles. This time is

not counted against startup time.

(8) 	Time from the first element entering a vector pipeline

until the first element exits the pipeline. This time

varies depending on the operation sequence being

performed.

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- - DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 172

REV.

------------------ R A D L---------------------------

3.12.3- Map-Uni-t Timing

The Map Unit functions of MERGE, MASK, COMPRESS, SCATTER, and

GATHER operations are incorporated physically within the Map

Units. Table 3.12-4 gives timing information for these Map Unit

functions.

TABLE 3.12-4 MAP UNIT TIMES

Nominal/

Minimum

Component Function Times (cycles) Notes
Main Inter.

Map Map

Issue time for 9D instruction 2 2 (1) (2)

Time in Streaming Control Unit 3 3 (1) (3)

Time setting up read ports 3 3 (I)
in Map Unit

Memory interchange time 3 2 (1) (4)

Memory access time 3 15 (1)

Data transmission time 3 3 (1)

Time through Map Unit 5 5 (5)

Memory interchange time 3 3 (4)

.Notes:

(1) Time may-be hidden under previous map instructions.

(2) Time may be extended waiting for:

a) results to be available in the register file from load

instructions or arithmetic computations;

b) a previous streaming instruction to enter the streaming

instruction queues because of a flag conflict.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 173REV.

- ----------- RADL .. .

While b) holds up execution of map instructions, the time

spent waiting is not counted against the startup time for

the current instruction but rather against the instruction

that caused the wait.

(3) 	Time may be extended waiting for:

a) read or write flags to clear that are in conflict with

the keys of the current instruction;

b) instructions in the map queues to be issued to the Map

Units.

(4) 	Time may be extended by the priority element holding the

request or by the requested bank

being busy.

(5) 	Time from a datum entering Map Unit until it leaves. Time

may be extended by instruction and mode. For example, a

compress using a very sparse control vector will give data

a long time through the Map Unit.

3.12.4 Swap Unit Timing

Swap Unit startup consists of the issue cycle = 1, transmission

to the Swap Unit = 1, and Swap Unit setup = 5 cycles. Once

begun, the swap operation moves data at the rate of 512 data

bits every 256 nanoseconds.

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 174

---- REV.

------------------------ HRADL-............................

4.0 QUALITY ASSURANCE PROVISIONS - Not Applicable

5.0 PREPARATION FOR DELIVERY - Not Applicable

6.0 NOTES

6.1 Intercom

CDC 	FMP has an intercom system, utilized primarily for

maintenance purposes, which can be enabled by simply plugging

the required number of headsets into the desired intercom jacks.

Jacks are located in each section and in the MCU. Up to four

headsets may be on-line at any time.

6.2 System Startup

The 	Startup sequence for the system is as follows:

1) 	Bring up system power.

2) 	Autoload MCU.

3) 	Master clear the system from the CPU to:

a) initialize the CPU - clear all control flip-flops, data

flags, interrupts, and error flip-flops;

b) set monitor mode in the CPU (Job Mode FF cleared in step

A).

4) 	Load microcode into all FMP microcode memories from the

MCU.

5) 	The MCU sends an external flag to the I/O stations required

on-line. The stations, on receiving this flag, will

autoload and enter an idle loop waiting for a channel flag

from the CPU. An alternative approach is to manually

autoload each of the stations desired on-line.

6) 	The MCU loads the operating system kernel into Intermediate

Memory, forces the Map Units to transfer the kernel to Main

Memory, and then interrupts the CPU. The CPU recognizes the

interrupt and executes a partial exchange to start execution

in monitor mode. This exchange is the same as a normal job

to monitor exchange except the contents of the Register File

are 	not stored. Program execution starts at the address

contained in monitor's register six just as it does after a

normal I/O interrupt.

CONTROL DATA

Corporation

E N G I N E E R I N G

S P E C I F I C A T I 0 N

NO. 10354637
DATE Mar. 1979
PAGE 175REV.

--- RE--RADL..

APPENDIX A

UNIQUE SYNDROME WORDS FOR SINGLE BIT FAILURES

Bit Data Syndrome Word

0 80000000 70

1 40000000 68

2 20000000 58

3 10000000 64

4 08000000 54

5 04000000 7C

6 02000000 7A

7 01000000 76

8 00800000 1C

9 00400000 1A
10 00200000 16
11 00100000 19
12 00080000 15
13 00040000 IF
14 00020000 5E
15 00010000 5D
16 00008000 07
17 00004000 46
18 00002000 45
19 00001000 26
20 00000800 25
21 00000400 67
22 00000200 57
23 00000100 37
24 00000080 61
25 00000040 51
26 00000020 31
27 00000010 49
28 00000008 29
29 00000004 79
30 00000002 75
31 00000001 6D
32 Check Bit 0 40
33 Check Bit 1 20
34 Check Bit 2 10
35 Check Bit 3 08
36 Check Bit 4 04
37 Check Bit 5 02
38 Check Bit 6 01

(continued)

---------------.

CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- i DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 176

REV.

------------------ R A D L --------------------------

APPENDIX A-(Cont.)

The syndrome word is latched if the bit shown in the data

pattern in the above table is in error. For example, if and

only if, bit 0 failed on any data pattern, then the syndrome

word would be 70.

The SECDED error latching hardware has two basic modes of

operation - Mode I and Mode 2.

Selection between the two modes is accomplished through the

MCU/CPU Maintenance Line called SELECT SECDED ERROR LOG MODE

TWO.

For both modes in the event of simultaneous SECDED errors, the

information to be latched is dependent on the relative priority

of the data buses or half-words which contain the errors. All

information will be correct for the error selected. It is

possible in both modes to encounter a single and double error

simultaneously and latch the single error. The double error flag

will set unconditionally. Therefore, if the double error

flag is set, the syndrome bits must be checked to determine if

single or double error was latched. In the event the single

error flag is set, and no double error, the error will be a

single error.

Mode 1

The first error to occur after a master clear or error clear

will have its error information latched. The information will

be correct in all cases, regardless of subsequent errors. If a
double error follows a single without an error clear, the double
error information will be lost.

Mode 2

Operation in Mode 2 is the same as in Mode 1 except for the

following enhancement: An attempt will be made to latch the

error information for the first double error encountered whether

or not a single error has previously been latched.

As in Mode 1, the double error flag will set unconditionally

when a double error is encountered. However, other aspects of

Mode 2 operation are less certain. The conditions which may

result are listed below:

Case 1

In the event of simultaneous errors, Mode 2 is the same as Mode

(continued)

--
CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

i DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 177

REV.

--------------- RADL

APPENDIX A (Cont.)

1. If the double error flag is set, the syndrome bits must be

checked to determine if a single or double error was latched.

Case 2

If the SECDED checker encounters a single or several single

errors, and is absent of the double error flag, then the error

information will be that of the first single error. All

information is correct as in Mode 1.

Case 3

If the SECDED checker encounters a double followed by other

double or single errors then the error information will be that

of the first double error. All information is correct as in

Mode 1. However, the MCU cannot be distinguished from Case 1

with the doubled error latched, so the syndrome bits must be

checked.

Case 4

If the SECDED checker encounters a single error and N minor

cycles later (N<8) a double error is encountered: Address bits

37 thru 54 for either the single or double error may be latched;

bits 55 and 56 are indeterminate; and the remaining error

information would be that of the double error.

Case 5

If the SECDED checker encounters a single error and N minor

cycles later (N>8) a double error is encountered, the double

error information will be correct. However, the MCU cannot

distinguish this case from Case 4.

Case 6

If -the SECDED checker encounters a double error and one or more

minor cycles later a single or double error is encountered, this

is simply Case 3. The first double error information will be

latched.

Mode 2A Double Error Log

This mode is electronically identical to Mode 2. The difference

is strictly operational. Specifically, after a master clear or

error clear, the MCU deliberately creates a single error using

(continued)

CONTROL DATA I E N G I N E E R I N G NO. 10354637
--- -	 DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 178
REV.

------------------ R A D L ----------------------------

A-PPENDIX A (Cont.)

the maintenance function to toggle a check bit. This error is

not cleared, and effectively blocks detection of all subsequent

single errors. Consequently, when the MCU detects the double

error flag, it knows that this is Case 5 and the error log

information is correct for that double error.

BLOCK WRITE ENABLES

The MCU has the capability to enable block write enable if a

SECDED error occurs. There are two options which can be

selected depending on SECDED error mode.

1. 	With Mode 1, the write enables will be blocked when SECDED

receives its first single or double error.

2. 	With Mode 2, the write enable will be blocked when SECDED

receives its first double error.

COMPLEMENT I/O CHECKWORD BITS

This maintenance feature enables the MCU to toggle the Write I/O

checkword bits before write into memory. Toggling the 128

combinations on each half-word of the six Read Data Buses allows

checkout of the SECDED checker.

GENERAL USAGE

Mode 1 is a good SECDED latch design for a memory with low error

rate. All error log information is correct. However, it will

not latch the double error if it follows a single error within

the cycle time of the MCU.

Mode 2 is a better SECDED latch design for a memory with a high

error rate. All single errors latched are correct, and all

double errors following a single error by greater than eight

minor cycles (80 ns) are correct. A double error occurring

before a single error is also latched correctly.

Mode 2A is a double error logging system for use if single

errors are to be ignored. This mode will miss the double error

only if there is a simultaneous single error with higher

latching priority. If this condition would occur, a diagnostic

requesting only one bus will get around the bus priority. If

the diagnostic fails and still latches a single error, then the

double error is in a lower priority half-word.

CONTROL DATA 1 E N G I WE E R I N G NO. 10354637
DATE Mar. 1979

Corporation

S P E C I F I C A T I 0 N PAGE 179
REV.

------------------------ RADL ----------------------------

APPENDIX B

ASYNCHRONOUS DATA MOVEMENT CONTROL FOR THE FLOW MODEL PROCESSOR

The movement of data to, from and within a vector processing

element can be described by a Data Flow Model. This means that

if a function is enabled, has data to process and a place to put

the processed result, the data will be accepted and processed

without specific external direction. The memory units (Main

Memory and Intermediate Memory) act as an infinite source and
sink of operands (tokens). The Map Units and the Vector

Processor are the major processing elements, the Vector

Processor performing as one element (node) and each Map Unit

having several elements.

The idea is to provide each independent element enough control

information so that a process can control itself and then, after

completion of the process, can try to do something else. Because

the individual elements are independent it is possible to have

more than one process going on at the same time.

A process is defined as a chain of elements connected to each

other is some serial fashion between a data source and a data

sink (memory). Setting up a process involves three principle

pieces of control information; the first is what function is to

be performed by a processing element, the second is the source

of data, and the third is its destination. Of course not all

processing elements require all three pieces of control

information: some elements will perform only one function, and

others may be "hardwired" to another element thus obviating the

need for connection information. But there will be no element,

visible externally, that will not get at least one of the three

pieces of control information.

There is, however, in the data movement control a major

difference from a normal Data Flow Model. In such a model a

processing element's (node's) output connection (link) must be

empty before it will accept and process data. This is not

acceptable in a pipelined computer because it implies that every

other segment of the pipeline will be empty; i.e., only one-half

the hardware is in use at any one time. In order to get greater

use of the hardware a register is put after each element. The

presence of this register means that a processing element can

take input data even if the next element in line cannot accept

data on this cycle because the segment has a place to put the

result. If, however, the register is full and the next element

cannot accept data, then processing must stop. Of course it is

possible to look at the registers as an added set of actors so

that the more classic model of data flow still holds.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
------------- iDATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 180

-----...------- REV.

-----------------.- R A D L ----------------------------

APPENDIX B (Cont.)

There are two control lines necessary between process nodes to

facilitate data movement. The first provides notification to a

successor node that a piece of data is available for it; this is

called the "valid" line - a notification to the successor node

that valid data is available. The successor node replies to the

calling node with the second control line - the "accept" line,

meaning that the node has accepted the data.

The introduction of the register solves a problem of hardware

usage but still leaves one rather nonobvious problem. In a high

speed computer the delay time of the signal paths is greater

than the delay time going through the logical elements - and

gates, latches, etc. This means that for processing elements

which are physically separated, it is impossible for a

processing element to tell the previous processing element that

it has taken the data in time for the previous element to put

new data on the links between the elements (in the same cycle).

This can be fixed by placing multiple registers on the output of

the first processing element to act as a data buffer between the

distant processing elements. The buffer must be a FIFO (first

in, first out) stack that is controlled by both processing

elements. The number of words in the buffer depend on the

electrical distance between the processing elements on each end

of the buffer and on the reply time.

The FIFO is placed close to the sending element. As long as the

FIFO is not full the FIFO will accept input valids (send accepts

back to the sending element). The FIFO is full when all ranks

of registers are full (holding data) except one. When the FIFO

has any data (the FIFO is not empty) it sends a valid to the

next element in line. Since the next element is some distance

away it may be several cycles-before the receiving element

returns an accept. Because the input side of the FIFO keeps

accepting data the FIFO will get filled to some depth before

data starts moving at the FIFO output. After the first accept

from the receiving element data will flow at the rate of one

item per cycle into and out of the FIFO. Thus a certain

percentage of the FIFO registers will remain full as long as

both sending and receiving elements maintain the flow.

A process can then be redefined as a valid/accept chain from a

source (possibly multiple sources) to a sink. This then is how

the various vector processing elements are made to work

together. The Scalar Unit, acting as the instruction issue

unit, gives control information to the various elements

necessary to perform some process. The elements use the control

information to interconnect themselves and to control the

movement of data without any further high-level intervention.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
.............-- DATE Mar. 1979

1 Corporation

S P E C I F I C A T I 0 N PAGE 181
REV.

-------------------------RA DL ---------------------------

APPENDIX C

PDC HARDWARE DESCRIPTION

The Programmable Device Controller (PDC) is the principal

element of a generalized I/O system that uses high-speed serial

channels as interconnecting data paths between multiple

processors and peripheral equipments. The generalized system,

referred to as the Loosely Coupled Network (LCN), has been under

development by Control Data for several years. The control of

the serial channel can be distributed to all resident PDCs

rather than being centralized in one network control processor.

Figure C-i shows a block diagram of a PDC as configured for use

in a generalized network trunk system. The PDC consists of five

functional parts, four of which are common in the LCN

environment and one of which is unique to the device or channel

being interfaced. The trunk interface is a set of hardware and

microcode that matches the PDC to a high-speed (50 megabits per

second) serial trunk. The trunk interface is in turn comprised

of two sets of logic, a trunk control unit interface (TCI) and

from one through four trunk control units (TCUs). The number of

TCUs that would be required depends on the number of different

trunk lines present. The buffer memory is used for temporary

data storage, allowing various devices with differing data rates

to use the trunk. The processor controls the PDC resources and

manages data flow. The device interface is a unique set of

hardware that matches the device or processor channel to the PDC

internal bus. The PDC design is such that common parts can be

used with a multitude of unique processors or peripheral

equipments. This commonality minimizes unique part types,

reduces new unit design time, and most importantly assures a

controlled serial trunk system structure.

PDC INTERNAL BUS

The PDC internal bus is used for inter-element communications.

The bus consists of 16 data bits, two parity bits, 16 address

bits, and several control bits. Bus usage is allocated equally

among three elements: the trunk interface, the processor, and

the device interface. Each element has a time slice

approximately 106 nanoseconds wide which occurs once every 320

nanoseconds. Time slice allocation allows all three elements to

access the bus, and therefore the memory, at a guaranteed 50

Mbps rate (16 data bits every 320 nanoseconds).

(continued)

--CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T 1 0 N ?AGE 182
REV.

--------- ------ -

SERIAL
TRUNK

PDC

_DATA[-SE

I SET

- TCTCU

I/

,

I

T, I/BU

PDC1
PROC

------~TCUI _jDATA .Ir ~~~----------P...

- DATA--- TCU
'L -----J L . .

SET I_

. V
"1/"i

.

, / !" PDCPRC L!.

RS2m-__2 IN __Y= N

SANTN C-
DEVICE PARALLEL INTERFACE DEVICE

CHANNEL" ERFA I
I I

Figure C-I. PDC BLOCK DIAGRAM

!CONTROL DATA E N G I N E E R I N G NO. 10354637

- DATE Mar. 1979
I Corporation S P E C I F I C A T I 0 N PAGE 183

REV.

R A D L

APPENDIX C (Cont.)

PDC MEMORY

The PDC memory isolates the synchronous serial trunk and

asynchronous connected devices, while buffering- data rate

differences between them. The size of the memory depends upon

the attached device and the particular applications. Address

lines allow a maximum configuration of 63,488 words with a word

length of 16 bits. The memory cycle time is 106 nanoseconds.

PDC PROCESSOR

The PDC processor consists of hardware and controlware for the

functions which manage the PDC resources and execute system

functions. The processor normally performs the following

tasks:

* 	Managing PDC resources such as allocation of buffer memory

and reservation of the PDC for a particular message source.

* 	Handling message flow which includes generating message

headers, monitoring data transfers, and .interpreting received

messages.

* 	Initiating error recovery procedures on serial channel

transmission errors as well as device errors.

* 	Executing various system functions which may include queuing

processes, executing I/O processes through the serial channel

and device interfaces, handling device drivers, translating

message formats if required, and generating autoload messages

if required.

The PDC processor is a 16-bit miniprocessor constructed of 4-bit

microprocessor chips with a microcode instruction

implementation. The microcode memory runs at a cycle time of

160 nanoseconds. The number of microcode references per

processor instruction varies depending upon the instruction

being executed; however, the average is approximately six to

eight microcode references. This gives an average processor

instruction time of 960 to 1280 nanoseconds.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation i S P E C I F I C A T I 0 N PAGE 184
REV.

~------------RADL----------------------------

APPENDIX C (Cont.)

DEVICE INTERFACE

The device interface electrically adapts a device channel to a

PDC. Other key functions that may be performed by the device

interface include:

* 	Transfer of data and commands between an attached device and

the PDC.

* 	Assembly/Disassembly to handle different word sizes.

" 	Device control for passive devices like disk and tape.

The device interface is that set of logic which is unique to a

PDC, depending on the device being interfaced. Currently

scheculed device interfaces include CY170, CY205, IBM 370, DEC

11, 844/FMD, CY18, and 819. Other device interfaces are

currently being analyzed and will be developed as appropriate.

With the exception of the DEC 11, all the device interfaces

include a single channel connection between the PDC and the

device. The DEC 11 PDC will contain a single channel interface

as standard, with options to connect up to four DEC 11's via a

single PDC.

TRUNK INTERFACE

The trunk interface performs the following functions when the

PDC is used in an LCN system:

* 	Interface the data set.

* 	Add/Delete the serial trunk protocol envelope which includes

cyclic redundancy code (CRC) generation and detection.

* 	Interpret message functions and react accordingly.

* 	Generate response messages to ensure closure for all valid

incoming messages (some form of response will always be

generated even if the PDC processor or attached device is

unavailable).

* 	Access the trunk if the PDC needs to send a message.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation 1 S P E C I F I C A T IO N PAGE 185

REV.

------------ RADL ----------------------------

APPENDIX C (Cont.)

The, trunk interface can operate in two modes: message mode and

streaming mode. Message mode is the normal mode of operation in

which all transactions consist of a command and response message

pair. At the end of the message pair, control of the serial

trunk is relinquished to allow other PDCs on the trunk to use

the trunk. Streaming mode is used in special cases where a high

rate is required. In streaming mode, the trunk is held between

message/response pairs, allowing the next message to be sent as

soon as it is ready.

Access for the trunk usage is resolved by a rotating priority

mechanism. This method guarantees trunk access to all units on

the trunk during peak loading of message mode traffic.

The standard trunk interface is comprised of a Trunk Control

Unit Interface (TCI) and a Trunk Control Unit (TCU). Additional

TCUs can be field installed to permit access to up to four

different trunks.

SERIAL TRUNK HARDWARE

A 50 megabit data set and coaxial transmission media are used

for the serial trunk. The data set uses a phase modulated

carrier system to transmit data in a synchronous burst mode.

High quality coax cable and type-F connectors are used to

eliminate possible ground and EMI/RFI problems.

The performance objectives for the data set and tranmsimssion

media are:

* 	50-Mbit/s transmission rate.

* 	Trunk length maximum of 1000 feet with 16 attachments.

* 	More than 16 attachments are possible with restricted trunk

lengths.

* 	Longer trunk lengths (greater than 1000 feet) are pbssible

with fewer attachments and/or higher quality cable.

A 16-bit cyclic redundancy code (CRC) is inleuded in every

message frame transmitted across the serial trunk. The CRC is

an -extremely powerful error detection mechanism in that

single-bit and multiple-bit errors anywhere in the message frame

are detected.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
--- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 186

REV.

............ RADL-

APPENDIX D

FMP FUNCTIONAL AND TIMING CHARACTERISTICS

D1.0 Introduction

The CDC FMP consists of twelve functional elements, when viewed

at the top level of block definition. These are:

- Scalar Unit

- Streaming Control Unit

- Vector Streaming Unit

- Vector Unit

- Memory Interchange

- Main Memory

- Main Map Unit

- Intermediate Map Unit

- Intermediate Memory

- I/O Unit

- Swap Unit

- Backing Store

Each of these has a unique set of timing characteristics

for its internal functions and for its interface to other

elements. For a given operation or instruction, several of

the elements may be involved, serially, and/or in parallel.

For this reason, the timing characteristics which follow are

presented by unit, or element, and timing for a given operation

can be determined based on which elements are involved.

It should be noted, however, that not all twelve functional

elements appear as individual sections.

- Vector Streaming Unit and Vector Unit are combined and

described as Vector Operations.

- Memory Interchange is included with the discussion of

Main Memory Access.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 187

REV.

R A-------------A.. .

D1.0 (Cont.)

Main Map Unit and Intermediate Map Unit are presented

together since, for some operations, they can operate as

one unit.

- Swap Unit and Backing Store are one form of I/O and are
therefore included under the discussion of Input/Output.

This results in the following categories of timing

characteristics being presented.

* Instruction Issue (Scalar Unit)

* Main Memory

* Streaming Control

* Vector Operations

* Map Units

* Intermediate Memory

* Input/Output

D2.0 Instruction Issue

Instructions are issued by the Scalar Unit when they meet

the proper requirements for issue:

1. 	Instructions are present to be issued.

2. 	Issue is not prohibited by some previous instruction.

For example, issue is prohibited during branch

sequences and is also prohibited for the duration of a

SWAP (7D) instruction.

3. 	The registers referenced in the Register File by an

instruction to be issued are not reserved, thereby

conflicting with this instruction. Under certain

conditions, this conflict is avoided for some scalar

instructions that can make use of the results of the

scalar floating point directly (see 3.2.6).

4. 	For vector streaming instructions (vector and map),

no dependency or interlock key conflict exists from a

previous streaming instruction.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

-- - DATE Mar. 1979

Corporation S,PE C I F I C A T I O N PAGE 188

REV.

-------------R A D L------------------------

D2.0 (,Qont.)

5. 	For vector streaming instructions, the instruction

buffer for that instruction is not full.

6. 	For scalar instructions which return -results to the

Register File, the write data will not cause a conflict

with some previously scheduled write in use of the

single 'writeport; e.g., if the instruction to be

issued intends to return a result to the Register File

in four cycles and an instruction that issued two

cycles prior will return a result six cycles from when

it was issued, then the issue of the current

instruction must be held up for one cycle.

7. 	For main memory load/store instructions and for

intermediate memory load/store instructions, the

respective instruction buffer is not full.

Issue as used here means that the issue control portion of the

Scalar Unit has passed control of an issued instruction to some

other functional element-. This does not mean that the

instruction is lost, for a copy is kept in the instruction

buffer for some time, or that the operation commanded by the

instruction is completed. Issue means only that the resources

required by the instruction are available and that the

instruction is now free to run to completion.

The number of cycles it takes to issue an instruction, if of

course issue is not blocked for some reason, depends on the

number of cycles it will take to get required data from the

Register File. The Register File can perform two separate reads

every clock cycle. Most instructions, since they require only

one or two source operands, will therefore issue in one cycle.

Those instructions that require more that two reads from the

Register File will take more than one cycle to issue. Thus a

scalar store instruction which requires three reads from the

Register File (a base address, an index, and the store data)

requires two cycles to issue under ordinary circumstances.

D2.1 Issue Timing Parameters

The 	expected timing parameters for issue- are:

* 	15 cycles from request for an instruction from memory

to receipt at the instruction stack (as the result of a

branch, for example). Since the machine performs

instruction look ahead most fetch time is hidden.

(continued)

ICONTROL DATA 1 E N G I N E E R I N G 'NO. 10354637
-- DATE Mar. 1979
Corporation 1 P E C i F I C A T IO N PAGE 189

REV.

------------ RADL---------------------------

D2.1 (Cont.)

* 	 10 cycles for a branch not taken or for a branch in

stack.

Five cycles from the time an instruction is requested

from the instruction stack until it is ready to be

issued. Again this time is normally hidden because

there is an issue pipeline that enables the machine to

issue every clock cycle unless held up for some reason.

It is while an instruction is in the issue pipe that the

various things that can hold up issue of a particular

instruction are checked.

The timing of the various instructions may be found in section

3.12.

D3.0 Main Memory

The FMP memory is physically 64 memory modules, with each module

containing eight memory banks of 16,384 64-bit words plus SECDED

(a total of 8,388,608 words, 131,072 in each module). Thus one

request sent to each module will get 64 64-bit words, or a total

of 4,096 data bits. In order to reduce the total number of

wires, memory is otganized into four accesses of 16 modules,

each access having a total of 1,024 bits. Each access is

independent so that memory can support up to four separate

memory requests simultaneously.

Each request to a memory access, whether for a read or a write,

will make a bank busy in all 16 modules for three clock cycles.

Memory is addressed first across the modules and secondly down

the banks. Thus, address 0 is on module 0, bank 0; address 1 is

module 1, bank 0; address 64 is module 0, bank 1; etc. This

means that a 1,024-bit fetch from memory will get 16 consecutive

64-bit words (or 32 consecutive 32-bit words). Any memory request

is for 1,024 bits, -whether for read or write.

Each bank within a module is independent of the other banks of

the module except that the address and data lines are shared.

Thus an access can receive a new request each clock cycle as

long as the request is to a bank that is not busy (the requested

bank has not had a request in the previous two cycles).

Functionally, then, the eight million word Main Memory is four

1,024-bit accesses, each having eight banks.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637
-- - DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 190

REV.

------------ RADL--------------------------

D3.1 Main Memory Access

Since the Vector Unit uses 512 bits per clock cycle

per input stream, on the average a stream will make a memory

request every other cycle. Simplified memory access control is

facilitated because of the knowledge that a vector stream will

make a memory access request every other cycle and that the

address will be for the next sequential 1,024-bit access.

Because it is expected that vector performance will be the

limiting factor on overall machine performance, one of the

principle jobs of the Memory Interchange is to optimize vector

streaming memory access requests. The interchange does this in

two 	ways.

1. 	If there are two or more requests that conflict for

memory on a particular cycle, the internal priority

control will grant access first to a streaming request.

2. If an access is in streaming mode, the priority

control will prevent access to the banks that the

streaming access will require next if that conflicting

access will slow or stop the streaming access; i.e.,

banks are reserved prior to use.

As an example of the.above consider:

(a) 	 A vector read request at some clock cycle n for bank 0

of modules 0 through 15.

(b) 	 A map READ1 request on the same cycle for one 64-bit

word in bank 0 of modules 0 through 15.

(c) 	 A scalar load/store request at time n+2 for one 64-bit

word from bank 0 of modules 16 through 31.

Requests (b) and (c) will both be held up by the streaming

request (a). Request (b) will be granted at time n+3 and request

(c) will be granted at n+5. Note that both request (b) and the

second request from request (a) will be granted at n+4 because

the requests will be to nonconflicting banks. Note also that if

the load/store request had come at n+1 the request would have

been 	granted because bank 0 of modules 32 through 47 would then

be busy from n+2 through n+4 thus being completed so that the

streaming request could be granted at n+4 to make the banks busy

from n+5 through n+7.

!CONTROL DATA E N G I N E E R I N G NO. 10354637
--------------- DTE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 191
REV.

RADL ----------------------------

D3.2 Main Memory Access Timing Parameters

The expected access timing parameters are thus a three cycle

bank busy with the busy timing starting one cycle after the

grant of access and data being available on the last cycle of

the bank busy when reading data. Note that access to- a given

bank can be granted during the last cycle of a three -cycle bank

busy provided no conflict exists beyond that bank busy.

D4.0 Streaming Control

The principle function of the Streaming Control Unit is to

receive all streaming instructions (map or vector) issued by the

Scalar Unit and route appropriate setup data to the unit or

units which will execute them in such a manner as to avoid

conflicts of data in memory and/or to prevent data and

instructions from getting out of order. This-is accomplished by

read keys and write keys which are fields of the streaming

instructions, a dependency flag register associated with Main

Memory, and an interlock flag register associated with

Intermediate Memory.

Each flag in the dependency flag register consists of three

bits as follows:

Bit 1 - a read reference with this key by the Vector Streaming

Unit;

Bit 2 - a read reference with this key by the Main Map Unit;

Bit 3 - a write reference with this key by either the Main Map

Unit or the Vector Streaming Unit.

The interlock flag register is a single bit per flag, and any

read or write reference to Intermediate Memory with a given key

will set that respective bit.

For vector operations read and write keys are both applied

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637

-- - DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N 	 PAGE 192

REV.

- --------- RAD L---------------------------

D4.0 (Cont.)

against the dependency flag register since Main Memory is always

source.and destination for these operations. Map operations,

however, can have either Main Memory or Intermediate Memory as

source and/or destination, and can therefore have read or write

keys applied against the dependency flag register or the

interlock flag register as follows:

If 	the source (read) is the Intermediate Memory, the read

key will be applied against the interlock flag register.

If the destination (write) is the Intermediate Memory, the

write key will be applied against the interlock flag

register. If both the source and destination are

Intermediate Memory, two interlock flags may be active

during that operation. Keys that do not apply to the

Intermediate Memory will be applied against the dependency

flag register (main memory read or main memory write).

For any operation a key of zero means no flag, i.e., no

dependencies exist, no checks are made., and no flags are set

for that operation. Note that it is possible, however, to have

a read key or write key zero and the other non-zero.

When a streaming (map or vector) instruction is decoded by

issue, the requisite data is sent to a set of registers in the

front of the Streaming Control Unit. The'keys are checked, as

required by the instruction. If there is a key conflict the

instruction will be held in the registers and a flag will be

sent back to prevent issue of additional streaming instructions.

A read key of an instruction will hold up the

instruction from entering the execution queue if either

the write bit of the requested flag is set, or the read

bit of the requested flag for the same functional unit

is set; e.g., a vector instruction read key checks the

vector read bit for the requested flag.

* 	A write key of an instruction will hold up the

instruction from entering the execution queue if either

the write bit of the requested flag is set, or the read

bit of the requested flag for the opposite functional

unit is set; e.g., a vector instruction write key checks

the map read bit for the requested flag.

* 	When the instruction is ready to enter the execution

queue, the proper read bit of the corresponding flag

will be set, and the write bit will be set according to

the key in the write key field.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 193
REV.

--------- -----	 RREV

------------ --- --- -- R A D L ----- ----- ---- ----- ---

D4.0 (Cont.)

* The Vector Streaming'Unit will signal the Streaming

Control Unit to clear the vector read bit when the read

ports have finished reading the data for the,

instruction. The same will be done for the vector write

bit when the write ports have written the last data for

the instruction into Main Memory.

* 	The Map Unit will signal the Streaming Control Unit to

clear both the map read bit and the map write bit when

the last data for the instruction has been written into

Main Memory since map instructions have no input (read)

length. (More detailed design may reveal that the read

bit may be cleared a few cycles earlier than the write

bit in anticipation of a completed write.)

Note that this does not prevent the issue unit from continuing

issue unless the next instruction to be issued is another

streaming instruction.

The flags corresponding to the read and/or write keys are

checked to see if the flags are clear, the flags become clear,

or 	the flags are not checked (key code=O). When this is true

the instructions wll enter the proper instruction queue(s) and

set the proper flag(s) as required. If the instruction is a map

function the control bits of the instruction are checked to see

if 	the instruction is to run in the Main Map Unit, the

Intermediate Map Unit, or both. If the instruction is to run in

one unit only, it is sent to the respective queue. If the

instruction is to use both units, the proper parts of the

instruction are put into each map queue and a tag is appended to

the queue entry. As the instructions are about to exit the

queues, they are checked for a tag. If a tag is found in one

queue, that queue stops and waits for the same tag in the other

queue. When both tags are available, the data in both queues are

sent to their respective map units.

When the last data for a streaming instruction is on its way to

memory such that no possible out-of-order sequence can occur,

the key number is sent back to the Streaming Control Unit to

clear the flag associated with that instruction.

D4.1 Interlock Flags

Three functional units, the Intermediate Map, I/O, and Swap

Units, are aware of the interlock flags. Only the Intermediate

Map Unit receives its key information through the Streaming

(continued)

--
CONTROL DATA E N G I N E E R I -N G NO. 10354637

DATE Mar. 1979

S P E C I F I C A T I 0 N PAGE 194
Corporation 1

REV.

----------------RA DL

D4.1 (Cont.)

Control Unit. Both Swap and I/O receive the key information as

part of control messages that are left in Intermediate Memory.

The Scalar Unit will write a message, e.g. to the Swap Unit, in

Intermediate Memory and then send an alert to the Swap Unit.

The Swap Unit will decode the message and attempt to execute the

required commands. If the command requires the movement of data

(most messages will), the Swap Unit will send to the Streaming

Control Unit an inquiry as to the state of the flag

corresponding to the particular key specified as part of the

control message. Until the Streaming Control Unit replies 'flag

clear' the Swap Unit (or whatever) can not proceed. If (when)

the flag is clear, the Streaming Control Unit will set the flag

as an interlock on Intermediate Memory. At the completion of

the command(s) the unit involved will send the key back to the

Streaming Control Unit again with a command to clear the

required flag.

D4.2 Keys and the Data Flag Branch Registers

Scalar load and store instructions, both to Main Memory and to

Intermediate Memory, do not have dependency and interlock keys.

To enable a running program to check the progress of a sequence

so as to ascertain whether a required result is available in

memory, the dependency flags and the interlock flags are

available in the Data Flag Branch (DFB) Register. This

information can be used by the programmer in two ways: either

the programmer can explicitly test for a particular flag, or the

DFB Register can be conditioned so as to cause a program

interrupt when a particular flag (or flags) goes clear. See the

functional and instruction specifications for use of the DFB

Register.

D4.3 Streaming Control Unit Timing Parameters

If no key confict exists for an instruction and the appropriate

instruction queue is clear, three cycles elapse from the input

to the Streaming Control Unit until the instruction exits to be

executed.

D5.0 Vector Operations

A major problem in pipelined vector computers, particularly

when running short vectors, is that which is known as 'vector

startup' time. This is the time from issue of a vector

(continued)

CONTROL DATA E N G I N E E R I N G

Corporation S P E C I F I C A T I 0 N

NO. 10354637
DATE Mar. 19,79
PAGE 195
REV.

----------- R- R

D5.0. (Cont.)

in the FMP this
instruction until the first data is available;

is when the first result is returned to memory. The effect of

this startup time is to reduce the efficiency of the machine

when executing short vectors. (It might take, for example, 20

cycles to get one vector result and 120 cycles to get 200

results). The problem has been attacked, in the FMP, by

spreading out the control functions among several elements.

Each separate element is then free to process its own piece of

the problem. This means that instruction execution is much more

parallel than previously done. So much so, that for very short

vectors each functional element can be working on a different

vector.

D5.1 Vector Read Port

The first functional element in performing a vector operation

is a vector read port. The read port receives the memory

address and also the number of elements to be read by this

vector stream (input length) and the number of elements to be

written by this instruction (output length). There is no

requirement that the two lengths must-match. If the input

length is shorter than the output length there are parameters

in the instruction being executed which specify how to

continue. If the output length is shorter than the input

length, when the output length is satisfied any unsatisfied

requests for data from memory are abandoned. Note that when the

output length count in the read port goes to zero the port

starts another instruction even though the data from the read

stream just completed has not yet reached the vector pipelines

for execution. The pipelines may not even know that data is

coming.

Another function of the read port is physical operand

alignment. A vector may start on any 32-bit memory boundary

(64-bit boundary for a 64-bit data stream). Because memory

requests are always for 1,024 bits on fixed bank boundaries,

the data may need to be shifted so as to get corresponding

operands from different streams together. This means that it

is likely that some of the data on the first fetch is not part

of the data specified by the instruction. This 'extra' data is

lost when the data is aligned. In order to simplify control,

the first operand in each stream is always sent to pipe 1.

As data is available at the output of the read port it is passed

to a FIFO (first in, first out) buffer and a flag is generated

which tells the FIFO element that fact. The FIFO will accept

(continued)

I

ICONTROL DATA E N G I N E E R I N G NO. 10354637

-DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 196
REV.

------------- RAD L ---------------------------

D5.1 (Cont.)

data until it becomes full.

When the input length count goes to zero, the read port

attaches a flag to the last data as it leaves the read port.

This flag is used only in the case of recursive instructions

(Sum, Dot Product for example) where the instruction length is

defined by an input length count instead of an output length

count.

D5.2 FIFO Buffer

The second functional element in the vector data path is the

FIFO buffer which facilitates temporal alignment of streams

while maintaining data streaming. The vector pipelines require

data to be available at specific times with respect to other

data. A data stream arriving from Main Memory may not be timed

properly with respect to another data stream. Causes for this,

in Main Memory, are bank busy conflicts and priority conflicts

(a request for memory is delayed to allow another request to

proceed first). The FIFO thus provides a place to put data that

has arrived ahead of other data, but not stop streaming the

earlier data while waiting. (If a data stream must stop making

memory requests because there is no place to put the resulting

data, the streaming slot in the Memory Interchange is lost.

Several clock cycles are then lost in starting the data stream

again).

Another similar use for the FIFO buffer is required by the

vector pipelines. If the operation (A+B)*(C+D), for example, is

performed, all four input streams are required at the same time.

But if the operation is A*(B+C*D) instead, then the stream

carrying the B data must be delayed with respect to the C and D

streams. In a like manner, the A stream will wait until (B+C*D)

is available before sending its operands to the pipelines.

D5.3 Pipelines

The next element in the vector data path is the pipeline

switch which is not visible to the programmer; the principle

data function is that at this point the eight 64-bit words of a

data stream are multiplexed into four pipelines (Vector Units).

It is also encountered again at the output of the Vector Units

where the principle function is to de-multiplex four pipelines

to eight words of a data stream. Time through the pipeline

switch is included in the pipeline timing below.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354637
-- -------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 197

REV.

----------- RADL---------------------------

D5.3 (Cont.)

From a timing standpoint the Vector Unit is a variable delay

line. The amount of delay depends on the function being

performed. (Delay, as defined here, is the amount of time from

the entry of the first operand of the first data stream until

the first result is available at the pipeline output.)

D5.4 Vector Write Port

The final element in the vector operation path is the vector

write port. It functions in a manner very similar to the read

ports. The major difference is that the shift functions for

operand alignment work in reverse: the pipe 1 result is shifted

to place the result in the proper place in the 512-bit result

stream; all other pipeline results are then shifted by a like

amount.

D5.5 Vector Operation Timing Parameters

* 	Two cycles read port setup time (This time can be hidden

between instructions if another instruction is awaiting

execution).

* 	Eight cycles from read port request to Main Memory until

the data is received (assuming no bank busy conflicts in

memory).

* 	Two cycles through the read port to the FIFO.

* 	If the FIFO is empty and the pipeline is willing to take

data, the transit time of the FIFO is one clock cycle.

* 	The current expectation for pipeline timing for the

non-recursive instructions is as follows:

Cycle

Delay Operation

9 	 Add, Multiply, Multiply-Add

12 	 Add-Multiply or Add-Multiply-Add

15 	 Other operations such as

Multiply-Add-Multiply

18 	 Second Divide Pass (64-,bit result)

(continued)

!CONTROL DATA I E N G IfN E E R I N G NO. 10354637
-- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 198
REV.

------------ RADL ---------------------------

D5.5 (Cont.)

Cycle

Delay Operation

20 	 First (or only) Divide Pass

The timing for recursive operations (Sum, Dot Product,

etc..) is very complex; a timing algorithm and general

timing information will be supplied later.

* 	 Two cycles through the write port.

* 	 Three cycles from exit of the write port until the data

is being stored in memory (if no bank busy, etc).

D6.0 Map Units

The two map units - the Intermediate Map Unit (IMU) and the Main

Map Unit (MMU) - can each function separately or they can work

together. Both map units have the following functions when

working independently:

GATHER

SCATTER

COMPRESS

MASK

MERGE

These functions are performed memory to memory, each unit using

its own memory. See section 3.5 for a description of each

function.

The map units working together can perform the following

functions:

GATHER - Intermediate to Main Memory

COMPRESS - Intermediate to Main Memory

SCATTER - Main to Intermediate Memory

The functions performed are the same as the functions performed

by the units working independently.

D6.1 Main Map Unit

The timing of the Main Map Unit is fairly complex. Two primary

difficulties are encountered when attempting to determine map

unit timing:

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
- --------------- DATE Mar. 1979
Corporation i S P E C I F I C A T I 0 N PAGE 199

REV.

------------ RADL---------------------------

D6.1 (Cont.)

1) 	The Map Unit has second priority on memory requests;

thus requests can be held up for variable amounts of

time.

2) 	The Map Unit is seldom able to 'stream' its memory

requests. In other words, it may not know ,ahead of

time when or where the next memory request will be made

- memory is 'catch as catch can', i.e., requests are

relatively random in time and/or address.

The first difficulty is extremely variable. If the Vector Unit

is waiting for completion of a map function (through the

dependency flags), the Main Map Unit will have Main Memory

virtually all to itself. If however, the Vector Unit is

running, from 3/8 to 3/4 of the memory bandwidth will be tied up

by the Vector Unit. If it turns out, in general, that the map

to memory access is a bottle neck the Map Unit may be given

access'priority over the Vector Unit; at the present stage of

design analysis, this is considered not to be required.

The second difficulty has several facets.

* In a GATHER or SCATTER operation, the starting address

for any record loaded (GATHER) or stored (SCATTER) is,

of course, not fixed on the memory access boundaries (at

least 1K bits/fetch on 1K boundaries). This means that

some of the data, on at least a good portion of memory

requests, will not be used. The effective bandwidth of

the function is thus reduced. As a worst case example

of this, take a GATHER operation in 32-bit mode with the

starting address of a 2-word record being on the last 32

bits of a 1024-bit memory bank. This means that 2K bits

must be fetched (taking from three to eight cycles at

the memory access) to give 64 resultant data bits.

* 	In the COMPRESS operation the output rate is controlled

by the density of permissive bits in the control vector.

* 	In the MERGE operation the rate of movement of the

input streams is dependent on the control vector.

All the above cases mean that for some streams, although it may

be known where to put or get the next data, the time may not be

known.

The MASK operation is an anomaly to the above difficulties.

All three data streams (two inputs, one output) can move at

streaming rate. But all is not roses; if the Vector Unit is

using all its streams (six), then the Map Unit comes up one

(continued)

!CONTROL DATA E N G. I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 200

....-	 REV.

------------- RA DL---------------------------

D6.1 (Cont.)

short because memory allows only eight simultaneous accesses to

memory. In this case, the MASK operation will run about half

streaming rate because no map streaming will be possible.

In 	order to get around some of the hardships on the GATHER

operation (the most used map function) the Map Unit will attempt

to get two records at a time. In the case of long records,

where the input has a chance to stream, this is very little

advantage. For short-records (say < four words) the use of two

read steams-will help a great deal - as much as 100 percent

improvement in throughput.

The MERGE is a very complex operation from a logician's point of

view, so much so that an eight-way parallel merge is about all

that is practically possible. This means that only 8 operands

are processed during any one cycle. The operand size does not

make any difference to this operation, with respect to the data

rate. This is different from ,other instructions or operations

which move twice as many 32-bit data words/cycle as 64-bit data

words. This restriction is also true of the COMPRESS operation.

D6.2 Intermediate Map Unit

The Intermediate Map Unit can perform the same operations as

the Main Map Unit but at reduced performance since it is

operating with a lower performance memory.

The IMU is connected to Intermediate Memory by three 256-bit

(plus SECDED)ports. Each port, if utilized fully, is capable

of 	moving a 256-bit quantity every three clock cycles (48 ns).

The nominal throughput of an intermediate memory to memory

operation is thus one-sixth of the Main Map Unit performing

main memory to memory operations.

There are, however, variables that will affect this rate:

* 	Intermediate Memory will have less contention for memory

bandwidth.

* 	The present Intermediate Memory design is 'slightly'

block oriented (while the memory appears to have

,perfectly random access to the programmer, requests for

less than 32 64-bit words may be slowed down from the

full streaming rate).

* 	MASK and MERGE operations require four data streams (two

data inputs, one data output, one control vector input).

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 201
REV.

-----------------	 L----R-ADL----------------

D6.2 (Cont.)

Since the Intermediate Memory has only three ports

available to the IMU, one port must be timeshared to

provide the control vector data. This slows down the

throughput by about three to five percent for those

operations from what would otherwise be expected.

D6.3 Combined Map Unit Operations

When the two map units work together to get data from/to

Intermediate Memory to/from Main Memory, two ports of the

Intermediate Memory are tied together. This means that 512 bits

will be available every three cycles instead of 256 bits

otherwise. The two ports will work together on the same record

of a GATHER or SCATTER for long records (> 32 64-bit words).

The two ports will process alternate records for shorter record

lengths. On a COMPRESS the second port is set to a fixed address

amount (32 64-bit word) ahead of the first port and the address

of each port is incremented by twice the normal count; that is,

the ports get alternate 32-word groups.

D6.4 Map Unit Timing Parameters

Timing parameters for the map units are as follows:

* Main memory access time is the same as that for the

Vector Unit but with greater chance of conflicts.

* Intermediate memory access time is about 20 cycles

(memory itself, being dynamic MOS, will have a cycle

time of about 24 cycles).

* 	Three cycles, best case, for data to move through

either map unit operating independently.

* 	Four cycles, best case, for data to move through both

map units when operating combined.

D7.0 Intermediate Memory

The Intermediate Memory consists of 33,554,432 64-bit words of

random access memory. It is accessed through four high speed

ports and up to eight low speed ports.

ICONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 202
REV.

------------- RADL---------------------------

D7.1 Organization and Access

The Intermediate Memory is organized as four memory groups with

each group having four memory banks and each bank having eight

memory modules. Each module has 262,144 72-bit words (64 data

bits plus eight SECDED bits). The four memory banks in each

group are driven in parallel; that is, the same address request

is sent to each bank in the group at the same time. Thus, data

is available at the output of the memory group 288 bits wide

(256 data plus 32 SECDED).

When a memory group is accessed, the memory control interprets

the lower three bits of the starting address to determine an

initial module number. That module set (four modules in

parallel) will be accessed, and every 48 nanoseconds thereafter

the next successive module set will be accessed through the

remainder of the 32-word block. Thus, a request to a group will

get a variable amount of data. If the three bits of the request

address are 000, then eight 288-bit data transfers will result.

If the lower bits of a request address are 101, then three

288-bit transfers will result (module groups 5, 6, 7). The

cycle time of a memory group is 384 nanoseconds (24 FMP clock

cyles).

Because of the anomaly caused by the modules of a group not

starting simultaneously, throughput to memory is maximized by

starting requests at module set 0 (lower address bits 000) as

much as possible, and by making as much use as possible of the

32 words thus transferred. The port controls of the Map, I/O,

and Swap Units have this built into them.

D7.2 High Speed Ports

Each of the four high speed ports can move data at a rate of

288 bits every 48 nanoseconds. Each port has a small buffer to

hold up to 32 words in case the requested memory group is busy

or the port is denied access because of priority.

D7.3 Low Speed Ports

The low speed ports are made into two sets of four ports.

Each set appears to the memory control as a high speed port.

Thus to memory control, the memory is accessed by six high

speed ports. Each low speed port can move data into and out of

the port at a rate of 17 bits (16 data plus one parity) every

96 nanoseconds. Each low speed port also has a 32-word, 64-bit

buffer. If a write operation to Intermediate Memory does not

terminate on a 64-bit boundary the rest of the 64-bit word is

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354637
--	 DATE Mar. 1979

Corporation I S P E-C I F I C A T I O N PAGE 203

REV.

----------- RADL----------------------------

D7.3 (Cont.)

zero filled when the data is written. For this reason the I/O

Unit and Swap Unit perform a read-modify-write for a write

operation which does not terminate on a 64-bit boundary, thereby

avoiding the zero fill.

D8.0 Input/Output

The input/output of the FMP consists of two major subsections
the I/O Channels and the Swap Unit. They are described here
together because to the system the Swap Unit is controlled
identically with the I/O Channels; that is, to the FMP the Swap

Unit is an I/O Channel.

D8.1 I/O Channels

The 	FMP will support any number of I/O channels up to 14 with

typical numbers being about six to eight. Each channel consists

of one PDC (Programmable Device Controller) connected to the

Support Processing System and/or the Disk Storage Subsystem

through a network of serial data trunks. Each data trunk is

capable of moving up to 50 million bits per second. A control

protocol is used among all the PDCs connected to a trunk which

prevents any particular PDC from dominating the trunk (possibly

as a result of a failure) and allows all PDCs connected to the

trunk some share of the trunk's time. Each PDC may be connected

to one through four serial trunks.

Each PDC consists of four major elements:

1. 	Trunk control/interface unit - this element connects the PDC

to the serial data trunk.

2. 	Device interface - this element connects the PDC to the FMP.

3. 	Processor - The processor is the intelligence of the PDC; it

is aware of (and controls) what is going on in both

interfaces.

4. 	Memory - This memory holds both the instructions and

execution tables for the processor, and provides data

buffers for data going through the PDC; the memory size can

vary between 8K and 64K words depending on requirements.

The processor program code can be downline loaded into the

memory either through the serial trunk or through the device

interface, or it may be kept permanently in read-only memory.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 204
REV.

------------ R A D L---------------------------

D8.1 (Cont.)

The PDCs are connected in pairs to the low speed ports of

Intermediate Memory. Each PDC can move data at the rate of 16

bits every 320 nanoseconds (50 MHz bit rate). Each low speed

port can take data at the rate of 16 bits every 96 nanoseconds

(167 MHz bit rate); therefore, two PDCs connected to a low speed

port can time share the port with very little conflict. Each

PDC puts (takes) its data into (from-) a 256-word buffer. The

port control logic is aware of the amount of data in the buffer,

and when the buffer is half full, an Intermediate Memory request

is made.

The Intermediate Memory moves data at its highest data rate if

the amount of data to be read or written is 32 64-bit words (or

a multiple thereof) and the starting address is zero, modulo 32.

The port logic takes special action if the starting address is

otherwise, or if the amount of data left in the buffer is not a

full set of 64-bit words at the end of a write to Intermediate

Memory. On a first write to Intermediate Memory the port will

make a memory request when the data to be written crosses a

32-word boundary, and will make memory requests thereafter for

each 32 64-bit words accumulated in the buffer (buffer is half

full).

On the last write of a transfer the port control will look to

see if an integer number of 64-bit words are remaining in the

data buffer. If so, the data is written into Intermediate

Memory. If the data remaining is not an integer number of

64-bit words, the port will generate a read of Intermediate

Memory and combine the read and write data to fill out the data

to be written back (read-modify-write). On read operations

extra data requested by the port but not used by the PDCs are

discarded.

The I/O Channels do not receive control directly from the Scalar

Unit. Instead, control messages are placed (stored) in the

Intermediate Memory for the individual I/O Channels. The

channels do not poll Intermediate Memory but instead are given

an "alert" call by the Scalar Unit.

An initial intermediate memory address for receiving control

messages is built into each PDC and this address is used to

fetch the first message. One of the parameters stored in the

control message is the location that will contain the next

message.

The I/O Channels also leave status information in Intermediate

Memory in a similar manner.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637
S-- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 205
REV.

----------- R A D L---------------------------

D8.1 (Cont.)

The I/O Channels will have access to all of Intermediate Memory

and will move all I/O data in blocks of 32,768 64-bit words.

D8.2 Swap Unit

The Swap Unit is connected to Intermediate Memory through two

different ports; data flows through high speed port 3 and

command information through low speed port 7. This allows the

Swap Unit to be controlled, by the system, in a manner identical

to the I/O Channels.

Data in the Backing Store is organized into 32,768-word blocks

allowing the Swap Unit to appear as a disk to the FMP. This, of

course, is of great benefit to the system software (it also

means that, with proper software, the Backing Store can be an

option).

The Backing Store can move data at a rate of 512 bits plus

SECDED every 256 nanoseconds (16 clock cycles). A high speed

port can move 512 bits plus SECDED in 96 nanoseconds (256 plus

SECDED every 48 nanoseconds). The extra bandwidth is available

to the Scalar Unit for access to Intermediate Memory.

The access time of the Backing Store is about 200 nanoseconds

even though the Backing Store employs serial memory devices.

This is accomplished by starting a block transfer at the current

address within the block at the time of request, continuing to

the end of the block, and starting then at the head of the block

until the initial address reoccurs. The "access" time of a

normal serial memory is virtually eliminated.

D8.3 Scalar Unit Access to Intermediate Memory

The Scalar Unit timeshares high speed port 3 to the

Intermediate Memory with the Backing Store which uses about 40

percent of the available bandwidth, leaving ample resources for

the Scalar Unit.

When scalar unit data is to be written to Intermediate Memory, a

small buffer accumulates words into groups of 32 words (64-bit

words). If the data crosses a 32-word boundary, that data up to

the boundary is written to memory. If a 32-word group is only

partially filled at termination of a write operation, a partial

write is performed.. If the last data to be written to

Intermediate Memory does not end on a 64-bit boundary (32-bit

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354637

-- DATE Mar. 1979

Corporation 1 P E C I F I C A T I 0 N PAGE 206

REV.

--------------- R A D L ---------------------------

D8.3 (Cont.)

writes are permitted), data is fetched from Intermediate Memory

to fill the last word before the partial write is performed.

The minimum time scalar data will reside in the Swap Unit port

is about three clock cycles. Throughput will be decreased if:

1. 	the Swap Unit is using the port (hold from 48 to 384

nanoseconds);

2. 	the data is being accumulated (see above);

3. 	the port is denied access (see section D7, Intermediate

Memory).

!CONTROL DATA E N G I N E E R I N G NO. 10354637
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 207
REV.

--------------- A.. .

APPENDIX E

CHECKING FUNCTIONS DURING PIPELINE PROCESSING

The following table summarizes the checking of functional

elements during the various suboperations executed by the

vector ensemble.

The 	following notes apply:

a) 	The functions performed for each suboperation code may

be found in the FMP instruction specification found in

Division 2 of this Volume.

b) 	AR2 used, AR2 not used refer to whether the AR2 result

is to be stored in Main Memory or not.

a) 	 A, B, C, D in the column headings refer to checkers A,

B, C, and D which check the frontend adders, multiply,

backend adders, and the complement, respectively.

d) 	 The numbers in each column mean that checking is

active during the indicated suboperation as follows:

1 	Network being checked but function is not used

by this suboperation.

2 	Function is used by this suboperation..

3 	Checking is of final result.

e) 	A blank in the table means no checking is performed.

f) 	AR2 results are never used in 30-36 suboperations.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354637

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 208

REV.

------------ RADL----------------------------

APPENDIX E (Cont.)

Suboperation AR2 used AR2 not used

A B CD A B CD

00 1 1 1 2 3 1

01 1 1 1 2 3 1

02 1 2 3 2

03 1 2 3 2
04 1 2 3 1
05 3 1 3 1
06 1 1
07 2 3 1 2 3 1
08 2 2 3 2
09
OA 3 1 3 1
OB 3 1 3 1
OC 2 2 3
OD 1 3 1
OE

OF 1 1

10 2

11 2

12 3

13

14

16 1 2 3 2

17 1 23 2
18 1 2 3 2
19 1 2 3 2
IA 1 23 2
1B 1 2 3 2
1C 1 2 3 2
ID 1 2 3 2
1E 1 1 1 2 '3 1
IF 1 1 1 2 3 1
20
21
22
23
24 1 1
25 1
30 1 3 1
31 2 3 1
32 1 3 1
33 1 2 3 1
34 2 2 3 1
35 1 3 1

36 1 3 1

DIVISION 2

FMP INSTRUCTION SPECIFICATION

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE i
REV.

----------------------RADL----------------------------

[R]

CDC FLOW MODEL PROCESSOR

INSTRUCTION DESCRIPTIONS

E N G I N E E R I N G NO. 10354636
!CONTROL DATA

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE ii

REV.

------------------- RAD L----------------------------

TABLE OF CONTENTS

PAGE

1.0 SCOPE 1

2.0 APPLICABLE DOCUMENTS....... 2

3.0 PERFORMANCE REQUIREMENTS............ 3

3.1 General Description............... 3

3.1.1 Instruction Formats and Types.......... 3

3.1.1.1 Formats..................... 3

3.1.1.1.1 (N/A)...................... 3

3.1.1.1.2 (N/A)...................... 3

3.1.1.1.3 (N/A)...................... 3

3.1.1.1.4 Format 4.............. 3

3.1.1.1.5 Format 5............... 4

3.1.1.1.6 Format 6............... 4

3.1.1.7 Format 7............... 4

3.1.1.1.9 Format 9...............

3.1.1.1.10 Format A..............
 4
3.1.1.1.11 Format B..............
 5
3.1.1.1.12 Format C...............
 5
3.1.1.1.13 Format D..............
 5
3.1.1.1.14 Format E..............
 6
3.1.1.1.15 Format F..............
 6

3.1.1.1.8 (N/A)...................... 4

..... 4

3.1.1.2 Instruction Types................ 7

3.1.1.2.1 Register Instructions (RG) 7

3.1.1.2.2 Index Instructions (IN)............. 7

3.1.1.2.3 Branch Instructions (BR). 7

3.1.1.2.4 Stream Instructions (SM). 8

3.1.1.2.5 (N/A).......................8

3.1.1.2.6 (N/A)...................... 8

3.1.1.2.7 (N/A)...................... 8

3.1.1.2.8 (N/A)...... 8

3.1.1.2.9 Monitor Instructions MN).. 9

3.1.1.2.10 Non-Typical Instruction (NT). 9

3.1.2 Addressing................... 9

3.1.2.1 Memory Hierarchy Addressing. 12

3.1.2.1.1 Register File Addressing 12

(continued)

http:3.1.1.2.10
http:3.1.1.1.15
http:3.1.1.1.14
http:3.1.1.1.13
http:3.1.1.1.12
http:3.1.1.1.11
http:3.1.1.1.10

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE iii

REV.

------------------ RADL----------------------------

TABLE OF CONTENTS

PAGE

3.1.2.1.2 	 Main Memory Addressing 12

3.1.2.1.3 	 Intermediate Memory Addressing 13

3.1.2.1.4 	 Backing Store Addressing 13

3.1.2.1.5 	 Illegal Addresses. 13

3.1.2.2 	 Instruction Addressing. 14

3.1.3 	 Termination Rules. 14

3.1.3.1 	 Stream Instruction Termination 14

3.1.3.2 	 (N/A)......... 15

3.1.3.3 	 (N/A). 15

3.1.3.4 	 (N/A). 15

3.1.4 	 Definitions and Rules. 15

3.1.4.1 	 Overlap of Operand and Result Fields 15

3.1.4.2 	 Self-Modifying Programs, Undefined Instructions

and Undefined Operands 15

3.1.4.2.1 	 Self-Modifying Programs. 15

3.1.4.2.2 	 Illegal Instructions 16

3.1.4.2.3 	 Undefined Instructions. 16

3.1.4.2.4 	 (N/A) 16

3.1.4.2.5 	 No op Instructions............... 16

3.1.4.3 	 Floating-Point Format. 16

3.1.4.3.1 	 32-Bit Floating-Point Format 17

3.1.4.3.2 	 64-bit Floating-Point Format 19

3.1.4.4 	 End Cases.......... .. 20

3.1.4.5 	 Floating-Point Compare Rules......... . .. 21

3.1.4.5.1 	 One or Both Operands Indefinite. 21

3.1.4.5.2 	 Neither Operand Indefinite but One or Both

Operands Machine Zero.......... 21

3.1.4.5.3 	 Neither Operand Indefinite Nor Machine Zero. . 22

3.1.4.6 	 Upper and Lower Results. 24

3.1.4.6.1 	 Right Normalization. 24

3.1.4.6.2 	 Floating-Point Add 25

3.1.4.6.3 	 Floating-Point Subtract. 26

3.1.4.6.4 	 Results of the Floating-Point Multiply

Instruction............. 30

3.1.4.6.5 	 Results of the Floating-Point Divide Instruction 31

3.1.4.6.6 	 Normalized Upper Results 31

(continued)

3.1.4.6.7

[CONTROL DATA E N I N E E I N G NO. 10354636

DATE Mar. 1979

Corporation, S P E C I F I C A T I O N PAGE iv

REV.

---------- RADL

3.1.4.7

3.1.4.8

3.1.4.9

3.1.4.10

3.1.4.11

3.1.5

3.1.6

3.1.6.1

3.1.6.2

3.1.6.2.1

3.1.6.2.2

3.1.6.2.3

3.1.6.2.4

3.1.6.2.5

3.1.6.2.6

3.1.6.2.7

3.1.6.2.8
3.1.6.2.9

3.1.6.2.10

3.1.6.2.11

3.1.6.3

3.1.7

3.1.8

3.1.8.1

3.1.8.2

3.1.8.3

3.1.9

3.1.10

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

TABLE OF CONTENTS

PAGE

(N/A). 32

(N/A). 32

(N/A). 32

(N/A). 32

. •..... .. 32
(N/A).
Operand Size Definitions. 32

Item Count (field lengths, indices, etc.). . . . 33

Data Flag Branch Register......... . .. 34

General Description............ . ..34

Register Description 35

Free Flags........... 36

Data Flags 36

Mask Bits. 36

Product Bits 37

Data Flag Branch Enable Bit: 38

Conditional Inhibits 38

Data Flag Register Word 0 Bit Assignments . 39

Data Word 1 Bit Assignments . 44

Data FlagFlag RegisterRegister Word 2 Bit Assignments. . 46

Data Flag Register Word 3 Bit Assignments..... 48

Data Flag Usage by Instruction 50

Data Flag Branch (DFB) 55

Register File. 56

Real-Time Counters 63

Free-Running Clock 63

Monitor Interval Timer 64

Job Interval Timer 64

(N/A)....... 65

Exchange Operations and Invisible Package. . . 65

Performance Characteristics. 67

Instruction Descriptions 67

00 4 NA MN IDLE. 67

01 ILLEGAL. 68

02 ILLEGAL. 68

03 ILLEGAL. 68

(continued)

http:3.1.6.2.11
http:3.1.6.2.10
http:3.1.4.11
http:3.1.4.10

CONTROL DATA E N G I N E E R I N 0 NO. 	 1O354636

Mar. 1979
i -DATE

I Corporation S P E C I F I C A T I 0 N PAGE v

REV.

------------------ RADL ----------------------------

TABLE OF CONTENTS

PAGE

3.2.1.5 04 4 64 NT 	BREAKPOINT-MAINTENANCE...... . 68

3.2.1.6 05 ILLEGAL............ 70

3.2.1.7 06 7 NA MN 	 FAULT TEST - MAINTENANCE.. 70

3.2.1.8 07 ILLEGAL.. 	 71

3.2.1.9 08 4 NA MN 	 INPUT/OUTPUT PER R........ 72

3.2.1.10 09 4 64 BR 	 EXIT FORCE................ 72

3.2.1.11 OA 4 64 MN 	 TRANSMIT (R) TO MONITOR INTERVAL

TIMER 	 72

3.2.1.12 OB ILLEGAL. 	 72

3.2.1.13 OC ILLEGAL. 	 72

3.2.1.14 OD ILLEGAL.. 	 72

3.2.1.15 OE 4 64 MN 	TRANSLATE EXTERNAL INTERRUPT. . 73

3.2.1.16 OF ILLEGAL.......... 74

3.2.1.17 	 10 A 64 RG CONVERT BCD TO BINARY,

FIXED LENGTH.. 74

3.2.1.18 	 11 A 64 RG CONVERT BINARY TO ScD,"

...
FIXED LENGTH. 74

3.2.1.19 12 7 8 NT LOAD BYTE; (T) PER (S), CR) 	 . . 74

3.2.1.20 13 7 8 NT 	STORE BYTE; (T) PER (S), (R). . 74

3.2.1.21 14 ILLEGAL. 	 75

3.2.1.22 15 ILLEGAL. 	 75

3.2.1.23 16 ILLEGAL. 	 75

3.2.1.24 17 ILLEGAL. 	 75

3.2.1.25 18 ILLEGAL. 	 75

3.2.1.26 19 ILLEGAL. 	 75

3.2.1.27 1A ILLEGAL. 	 75

3.2.1.28 1B ILLEGAL. 	 75

3.2.1.29 1C ILLEGAL. 	 75

3.2.1.30 1D ILLEGAL. 	 75

3.2.1.31 1E ILLEGAL. 	 75

3.2.1.32 iF ILLEGAL... . *...75

3.2.1.33 20 7 64 RG 	 SHIFT CR) AND CR+1) PER S TO

(T) AND (T+1) .76'.....

3.2.1.34 21 7 64 RG 	 SHIFT (R) AND iR+li PER (S) TO

(T) AND (T+1) 76

3.2.1.35 22 ILLEGAL. 	 77

3.2.1.36 23 ILLEGAL.............. 77

3.2.1.37 	 24 7 32 NT INTERMEDIATE MEMORY LOAD; CT)

PER (S), (R)... *...... 77

3.2.1.38 25 7 32 NT INTERMEDIATE MEMORY STORE; 	(T)

PER (S), (R)...... 77

3.2.1.39 	 26 7 64 NT INTERMEDIATE MEMORY LOAD; CT)

PER (S), (R)... '.. 78

3.2.1.40 27 7 64 NT INTERMEDIATE MEMORY STORE; 	(T)

PER (S), (R). 78

3.2.1.41 28 ILLEGAL...................... 	 78

3.2.1.42 29 ILLEGAL. 	 78

(continued)

http:3.2.1.42
http:3.2.1.41
http:3.2.1.40
http:3.2.1.39
http:3.2.1.38
http:3.2.1.37
http:3.2.1.36
http:3.2.1.35
http:3.2.1.34
http:3.2.1.33
http:3.2.1.32
http:3.2.1.31
http:3.2.1.30
http:3.2.1.29
http:3.2.1.28
http:3.2.1.27
http:3.2.1.26
http:3.2.1.25
http:3.2.1.24
http:3.2.1.23
http:3.2.1.22
http:3.2.1.21
http:3.2.1.20
http:3.2.1.19
http:3.2.1.18
http:3.2.1.17
http:3.2.1.16
http:3.2.1.15
http:3.2.1.14
http:3.2.1.13
http:3.2.1.12
http:3.2.1.11
http:3.2.1.10

CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE vi

REV.

------------------- RADL--

TABLE OF CONTENTS

PAGE

3.2.1.43 2A ILLEGAL.. .	 78

3.2.1.44 2B 4 64 RG 	 ADD TO'LENGTH FIELD. . .. 78

3.2.1.45 	 2C 4 64 RG LOGICAL,EXCLUSIVE OR (R),

(S), TO (T)... 78

(R),
3.2.1.46 	 2D 4 64 RG LOGICAL AND

(S), TO (T) - . . 78

3.2.1.47 	 2E 4 64 RG LOGICAL INCLUSIVE OR CR),

(S), TO (T)...... 78

3.2.1.48 2F 9 1 BR 	 REGISTER BIT BRANCH AND ALTER . 79

3.2.1.49 30 7 64 RG 	 SHIFT (R) PER S TO (T) 80

3.2.1.50 31 7 64 BR 	 INCREASE(R) AND BRANCH

IF(R) 0 0............ 80

3.2.1.51 32 9 1 BR 	 BIT BRANCH AND ALTER........ 81

3.2.1.52 	 33 B 1 BR DATA FLAG REGISTER BIT BRANCH

AND ALTER . . . 82

3.2.1.53 34 4 64 RG 	 SHIFT(R) PER (S) TO iT) 83

3.2.1.54 35 7 64 BR 	 DECREASE (R) AND BRANCH IF

(R) <> 0. ... *...........84

3.2.1.55 	 36 7 64 BR BRANCH AND SET (R) TO NEXT

INSTRUCTION 84

3.2.1.56 37 A 64 NT 	 TRANSMIT JOB INTERVAL TIMER

TO (T)............. . 84

3.2.1.57 38 A 64 IN 	TRANSMIT (R BITS 00-15i TO (T

BITS 00-15) 85

3.2.1.58 	 39 A 64 NT TRANSMIT REAL-TIME CLOCK

TO (T)....... 85

3.2.1.59 3A A 64 NT 	 TRANSMIT (R) TO JOB INTERVAL

TIMER 85

3.2.1.60 3B 7 64 BR 	 DATA FLAG REGISTER LOAD/STORE 85

3.2.1.61 	 3C 4 32 NT HALF-WORD INDEX MULTIPLY

(R)*(S) TO (T)... 86

3.2.1.62 	 3D 4 64 NT INDEX MULTIPLY (R)*(S)

TO (T)... . . 86
....

3.2.1.63 	 3E 6 64 IN ENTER CR) WITH I C16

BITS)......... 86

3.2.1.64 	 3F 6 64 IN INCREASE (R) BY I (16

BITS) 86

3.2.1.65 40 4 32 RG 	 ADD U; (R)+(S) TO iTi 87

3.2.1.66 41 4 32 RG 	 ADD L; (R)+(S) TO (T)...... 87

3.2.1.67 42 4 32 RG 	 ADD N; (R)+(S) TO (T)...... 87

3.2.1.68 43 ILLEGAL..	 87

3.2.1.69 44 4' 32 RG 	 SUB U; (R)-(S) TO iTi 87

3.2.1.70 45 4 32 RG 	 SUB L; (R)-(S) TO (T) 87

3.2.1.71 46 4 32 RG 	 SUB N; (R)-(S) TO (T)...... 87

3.2.1.72 47 ILLEGAL.	 87

3.2.1.73 48 4 32 RG 	 MPY U;'CR)*(S) TO CT). 87

3.2.1.74 49 4 32 RG 	 MPY L; (R)*(S) TO (T)...... 87

(continued)

http:3.2.1.74
http:3.2.1.73
http:3.2.1.72
http:3.2.1.71
http:3.2.1.70
http:3.2.1.69
http:3.2.1.68
http:3.2.1.67
http:3.2.1.66
http:3.2.1.65
http:3.2.1.64
http:3.2.1.63
http:3.2.1.62
http:3.2.1.61
http:3.2.1.60
http:3.2.1.59
http:3.2.1.58
http:3.2.1.57
http:3.2.1.56
http:3.2.1.55
http:3.2.1.54
http:3.2.1.53
http:3.2.1.52
http:3.2.1.51
http:3.2.1.50
http:3.2.1.49
http:3.2.1.48
http:3.2.1.47
http:3.2.1.46
http:3.2.1.45
http:3.2.1.44
http:3.2.1.43

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

-- -------------- DATE Mar. 1979

Corporation' S P E C I F I C A T IO N PAGE vii

REV.

------------------ RADL----------------------------

TABLE OF CONTENTS

PAGE

3.2.1.75 4A ILLEGAL..	 87

3.2.1.76 4B 4 32 RG 	 MPY S; (R)*(S) TO CTi . 87

3.2.1.77 4C 4 32 RG 	DIV U; (R)/(S) TO (T)... . .. 87

3.2.1.78 	 4D 6 32 IN HALF-WORD ENTER R WITH

1(16 BITS).......87

3.2.1.79 	 4E 6 32 IN HALF-WORD INCREASE R BY

1(16 BITS)......... . .. 88

3.2.1.80 4F 4 32 RG 	 DIV S; (R)/CS) TO (T).. 88

3.2.1.81 50 A 32 RG 	TRUNCATE; (R) TO (T).... .. 88

3.2.1.82 51 A 32 RG 	FLOOR; (R) TO (T)....... .. 89

3.2.1.83 52 A 32 RG 	 CEILING; (R) TO (T).. 89

3.2.1.84 53 A 32 RG 	 SIGNIFICANT SQUARE ROOT; (R)

TO (T).............. 90

3.2.1.85 54 4 32 RG 	 ADJUST SIGNIFICANCE; CR) PER CS)

TO (T) 90

3.2.1.86 	 55 4 32 RG ADJUST EXPONENT; CR) PER CS)

TO (T). 91

3.2.1.87 56 ILLEGAL. 	 91

3.2.1.88 57 ILLEGAL....... 91

3.2.1.89 58 A 32 RG 	 TRANSMIT; CR) TO (T)........ 91

3.2.1.90 59 A 32 RG 	 ABSOLUTE; (R) TO (T). 91

3.2.1.91 5A A 32 RG 	 EXPONENT OF (R) TO (T) 92

3.2.1.92 5B 4 32 RG 	 PACK; (R), (S) TO (T) 92

3.2.1.93 	 5C A B RG EXTEND; 32-BIT (R) TO 64-BIT

(T)... . . . 92

3.2.1.94 	 5D A B RG INDEX EXTEND; 32-BIT*CR)*TO

64-BIT CT). . 93

3.2.1.95 5E 7 32 NT 	LOAD; (T) PER CS), CR).. 93

3.2.1.96 5F 7 32 NT 	STORE; (T) PER (S), (R) 93

3.2.1.97 60 4 64 RG 	ADD U; (R)+(S) TO (T) .93

3.2.1.98 61 4 64 RG 	ADD L; (R)+(S) TO (T)...... 93

3.2.1.99 62 4 64 RG 	 ADD N; (R)+(S) TO (T) 93

3.2.1.100 63 4 64 RG 	 ADD ADDRESS; (R)+(S) TO (T) . . 94

3.2.1.101 64 4 64 RG 	SUB U; (R)-(S) TO (T) 94

3.2.1.102 65 4 64 RG 	SUB L; (R)-(S) TO (T) 94

3.2.1.103 66 4 64 RG 	 SUB N; (R)-(S) TO (T) 94

3.2.1.104 67 4 64 RG 	 SUB ADDRESS; (R)-(S) TO CT) . . 94

3.2.1.105 68 4 64 RG 	 MPY U; (R)*(S) TO (T) 95

3.2.1.106 69 4 64 RG 	 MPY L; (R)*(S) TO (T) 95

3.2.1.107 6A ILLEGAL.................... 	 95

3.2.1.108 6B 4 64 RG 	 MPY 5; (R)*(S) TO CT)...... 95

3.2.1.109 6C 4 64 RG 	 DIV U; (R)/(S) TO (T)...... 95

3.2.1.110 	 6D 4 64 RG INSERT BITS; (R) TO (T)

PER (S) 96.	 . .
3.2.1.111 6E 4 64 RG 	EXTRACT BITS; CR) TO'CT)

PER (S)... . **.*.............97

3.2.1.112 6F 4 64 RG 	DIV S; (R)/(S) TO (T). 98

(continued)

http:3.2.1.99
http:3.2.1.98
http:3.2.1.97
http:3.2.1.96
http:3.2.1.95
http:3.2.1.94
http:3.2.1.93
http:3.2.1.92
http:3.2.1.91
http:3.2.1.90
http:3.2.1.89
http:3.2.1.88
http:3.2.1.87
http:3.2.1.86
http:3.2.1.85
http:3.2.1.84
http:3.2.1.83
http:3.2.1.82
http:3.2.1.81
http:3.2.1.80
http:3.2.1.79
http:3.2.1.78
http:3.2.1.77
http:3.2.1.76
http:3.2.1.75

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE viii

......-	 REV.

------------------ R AD 	L---------------------------

TABLE OF CONTENTS

PAGE

3.2.1.113 70 A 64 RG 	TRUNCATE; (R) TO (T). 98

3.2.1.114 71 A 64 RG 	 FLOOR; (R) TO (T) 99

3.2.1.115 72 A 64 RG 	 CEILING; (R) TO (T).. 99

3.2.1.116 	 73 A 64 RG SIGNIFICANT SQUARE ROOT; (R)

TO (T)........... 100

3.2.1.117 	 74 4 64 RG ADJUST SIGNIFICANCE; (R) PER (S)

TO (T).100

3.2.1.118 	 75 4 64 RG ADJUST EXPONENT; C) PEi CS)

TO (T) 101

3.2.1.119 	 76 A B RG CONTRACT; 64-BIT (R) TO

32-BIT T). 102

3.2.1.120 	 77 A B RG ROUNDED CONTRACT; 64-BIT CR)

TO 32-BIT (T)... 103

3.2.1.121 78 A 64 RG 	TRANSMIT; (R) TO (T). 103

3.2.1.122 79 A 64 RG 	ABSOLUTE; (R) TO (T)........ 103

3.2.1.123 7A A 64 RG 	EXPONENT OF (R) TO (T). 103

3.2.1.124 7-B 4 64 RG 	 PACK; (R), (S) TO (T) 103

3.2.1.125 7C A 64 RG 	LENGTH; (R) TO (T). 104

3.2.1.126 	 7D 7 64 NT SWAP; S----->T AND

R----- >S. . .104

3.2.1.127 7E 7 64 NT 	 LOAD; (T) PER iS), 105

3.2.1.128 7F 7 64 NT 	 STORE; (T) PER (S), (R) 105

3.2.1.129 80 ILLEGAL. 	 105

3.2.1.130 81 ILLEGAL. 	 105

3.2.1.131 82 ILLEGAL. 	 105

3.2.1.132 83 ILLEGAL. 	 105

3.2.1.133 84 ILLEGAL. 	 105

3.2.1.134 85 ILLEGAL. 	 105

3.2.1.135 86 ILLEGAL. 	 105

3.2.1.136 87 ILLEGAL. 	 105

3.2.1.137 88 ILLEGAL. 	 105

3.2.1.138 89 ILLEGAL. 	 105

3.2.1.139 8A ILLEGAL. 	 105

3.2.1.140 8B ILLEGAL. 	 105

3.2.1.141 8C ILLEGAL. 	 105

3.2.1.142 8D ILLEGAL. 	 105

3.2.1.143 8E ILLEGAL. 	 106

3.2.1.144 8F ILLEGAL. 	 106

3.2.1.145 90 ILLEGAL. 	 106

3.2.1.146 91 ILLEGAL. 	 106

3.2.1.147 92 ILLEGAL. 	 106

3.2.1.148 93 ILLEGAL. 	 106

3.2.1.149 94 ILLEGAL. 	 106

3.2.1.150 95 ILLEGAL. 	 106

3.2.1.151 96 ILLEGAL. 	 106

3.2.1.152 97 ILLEGAL. 	 106

3.2.1.153 98 ILLEGAL. 	 106

(continued)

[CONTROL DATA E N G I N E E R I N G NO. 10354636

-DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE ix
REV.

------------------ RADL

TABLE OF CONTENTS

PAGE

3.2.1.154 99 ILLEGAL 106

3.2.1.155 9A ILLEGAL. 106

3.2.1.156 9B ILLEGAL.................... 106

3.2.1.157 9C ILLEGAL.. 106

3.2.1.158 9D D E SM MEMORY MAP...... 107

3.2.1.159 9E E E SM VECTOR READ PORT SETUP....... 118

3.2.1.160 9F F E SM VECTOR ARITHMETIC 120

3.2.1.161 AO ILLEGAL. 127

3.2.1.162 Al ILLEGAL. 127

3.2.1.163 A2 ILLEGAL. 127

3.2.1.164 A3 ILLEGAL. 127

3.2.1.165 A4 ILLEGAL. 127

3.2.1.166 A5 ILLEGAL. 127

3.2.1.167 A6 ILLEGAL. 127
3.2.1.168 A7 ILLEGAL. 127

3.2.1.169 A8 ILLEGAL. 127

3.2.1.170 A9 ILLEGAL.......... 127

3.2.1.171 AA ILLEGAL................... 127

3.2.1.172 AB ILLEGAL. 127

3.2.1.173 AC ILLEGAL. 127

3.2.1.174 AD ILLEGAL. 127

3.2.1.175 AE ILLEGAL.................... 127

3.2.1.176 AF ILLEGAL. ..
3.2.1.177 BO C E BR
3.2.1.178 B1 C E BR
3.2.1.179 B2 C E BR
3.2.1.180 B3 C E BR
3.2.1.181 B4 C E BR
3.2.1.182 B5 C E BR

127
COMPARE EQUAL.128
COMPARE, NOT EQUAL
COMPARE, GREATER THAN OR EQUAL
COMPARE, LESS THAN

.
128
128
128

COMPARE, LESS THAN OR EQUAL. .

COMPARE, GREATER THAN.......
. 128

128
3.2.1.183 B6 5 NA BR BRANCH TO IMMEDIATE ADDRESS;

(R) + 1(48) BITS) 135

3.2.1.184 B7 ILLEGAL...................... 135

3.2.1.185 B8 ILLEGAL. 135

3.2.1.186 B9 ILLEGAL. 135

3.2.1.187 BA ILLEGAL. 135

3.2.1.188 BB ILLEGAL. 135

3.2.1.189 BC ILLEGAL. 135

3.2.1.190 BD ILLEGAL. 135

3.2.1.191 BE 5 64 IN ENTER (R) WITH I(48 BITS). ... 136

3.2.1.192 BF 5 64 IN INCREASE (R) BY I(48 BITS) 136
3.2.1.193 CO ILLEGAL. 136

3.2.1.194 Cl ILLEGAL. 136

3.2.1.195 C2 ILLEGAL................... 136

3.2.1.196 C3 ILLEGAL. 136

3.2.1.197 C4 ILLEGAL.................... 136

3.2.1.198 C5 ILLEGAL. 136

3.2.1.199 C6 ILLEGAL. 136

-(continued)

NO. 10354636
!CONTROL DATA E N G I N E E R I N G

DATE Mar. 1979

S P E C I F I C A T I 0 N PAGE x
Corporation

REV.

------------------- RADL----------------------------

TABLE OF CONTENTS

PAGE

3.2.1.200 C7 ILLEGAL. 	 136

3.2.1.201 C8 ILLEGAL. 	 136

3.2.1.202 C9 ILLEGAL.	 136

3.2.1.203 CA ILLEGAL. 	 136

3.2.1.204 CB ILLEGAL. 	 136

3.2.1.205 	 CC ILLEGAL. 137

WITH
3.2.1.206 CD 5 32 	 IN HALF-WORD ENTER CR)

1(24 BITS).	 137

3.2.1.207 	 CE 5 32 IN HALF-WORD INCREASE CR) BY

1(24 BITS).............. 137

3.2.1.208 CF ILLEGAL. 	 137

3.2.1.209 DO ILLEGAL. 	 137

3.2.1.210 Dl ILLEGAL................... 	 137

3.2.1.211 D2 ILLEGAL................... 	 137

3.2.1.212 D3 ILLEGAL................... 	 137

3.2.1.213 D4 ILLEGAL................... 	 137

3.2.1.214 D5 ILLEGAL................... 	 137

3.2.1.215 D6 ILLEGAL................... 	 137

3.2.1.216 D7 ILLEGAL................... 	 137

3.2.1.217 D8 ILLEGAL. 	 137

3.2.1.218 D9 ILLEGAL. 	 137

3.2.1.219 DA ILLEGAL. 138

3.2.1.220 DB ILLEGAL... 	 138

3.2.1.221 DC ILLEGAL. 	 138

3.2.1.222 DD ILLEGAL. 	 138

3.2.1.223 DE ILLEGAL. 	 138

3.2.1.224 DF ILLEGAL. 	 138

3.2.1.225 EO ILLEGAL. 	 138

3.2.1.226 El ILLEGAL. 	 138

3.2.1.227 E2 ILLEGAL. 	 138

3.2.1.228 E3 ILLEGAL. 	 138

3.2.1.229 E4 ILLEGAL. 	 138

3.2.1.230 E5 ILLEGAL. 	 138

3.2.1.231 E6 ILLEGAL. 	 138

3.2.1.232 E7 ILLEGAL. 	 138

3.2.1.233 E8 ILLEGAL. 	 138

3.2.1.234 E9 ILLEGAL. 	 138

3.2.1.235 EA ILLEGAL. 	 139

3.2.1.236 EB ILLEGAL. 	 139

3.2.1.237 EC ILLEGAL. 	 139

3.2.1.238 ED ILLEGAL. 	 139

3.2.1.239 EE ILLEGAL. 	 139

3.2.1.240 EF ILLEGAL. 	 139

3.2.1.241 FO ILLEGAL. 	 139

3.2.1.242 Fl ILLEGAL. 	 139

3.2.1.243 F2 ILLEGAL. 	 139

3.2.1.244 F3 ILLEGAL. 	 139

(continued)

-- --

NO. 10354636
!CONTROL DATA E N G I N E E R I N G

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE xi

REV.

------------------ RADL

TABLE OF CONTENTS

PAGE

3.2.1.245 F4 ILLEGAL. 139

3.2.1.246 F5 ILLEGAL. 139

3.2.1.247 F6 ILLEGAL. 139

3.2.1.248 F7 ILLEGAL. 139

3.2.1.249 F8 ILLEGAL. 139

3.2.1.250 F9 ILLEGAL. 139

3.2.1.251 FA ILLEGAL. 139

3.2.1.252 FB ILLEGAL. 139

3.2.1.253 FC ILLEGAL. 140

3.2.1.254 FD ILLEGAL................... 140

3.2.1.255 FE ILLEGAL................... 1.40

3.2.1.256 FF ILLEGAL. 140

3.2.2 Instruction Execution Times. 140

4.0 TEST REQUIREMENTS (not applicable) 141

5.0 PREPARATION FOR DELIVERY (not applicable). . 142

6.0 NOTES. 143

6.1 ASCII/EBCDIC Reference Charts. 143

APPENDIX A................... 148

A1.0 SCOPE. **.................148

A2.0 SELF-MODIFYING PR6GR*AMS: 148

A3.0 INSTRUCTION STACK. 149

A4.0 (N/A). 149

A5.0 VECTOR FORMATS. 149

A6.0 DATA FLAG BRANCH 150

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- - DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 1

REV.

------------------ RADL---------------------------

1.0 SCOPE

This specification for the CDC FLOW MODEL PROCESSOR

(FMP) is to be used in conjunction with the

CDC STAR-100 Computer Specifications. It

is assumed that the reader is familiar with the

concepts and terminology described in those

documents.

This is NOT a reference manual for user's groups.

This document is written expressly for logic

designers and diagnostic programmers.

2.0

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
~-DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 2

REV.

-- --------------------- RADL-----------------------------

APPLICABLE DOCUMENTS

10354637 	 CDC FLOW MODEL PROCESSOR Functional

Computer Specification

CONTROL DATA I E N G I N E E R I N G NO. 10354636

--- DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 3

REV.

------------------ RADL---------------------------

3.0 	 PERFORMANCE REQUIREMENTS

3.1 	 General Description

3.1.1 	 Instruction Formats and Types

3.1.1.1 	 Instruction Formats - all fields are 8 bits unless

otherwise specified.

3.1.1.1.1 	 (N/A)

3.1.1.1.2 	 (N/A)

3.1.1.1.3 	 (N/A)

3.1.1.1.4 	 Format 4

F I R Si T

IFunctionlSource ISource!Desti

1 1 2 !nation

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
------------- DATE Mar. 1979
Corporation 1 S P E C I F I C A T 1 0 PAGE 4

REV.

----------- RA DL---------------------------

3.1.1.1.5 Format 5

F I R
IFunctioniDesti- 148

!nation

3.1.1.1.6 Format 6

F i R

IFunctionl Desti- 1 116

nation

3.1.1.1.7 Format 7

F I R S T

Function I * ** **

**Described where used

3.1.1.1.8 (N/A)

3.1.1.1.9 Format 9

F I G S T

IFunction 1 Sub- ** *.

!Function!

I

3.1.1.1.10 Format A

F 1 R i I T
IFunction lRegisterl 1 Register
I II

I II

I I

http:3.1.1.1.10

-CONTROL DATA I E N G I N E E R I N G 	 NO. 1O354636

-	 DATE Mar. 1979

I Corporation I S P E C I F I C A T I 0 N 	 PAGE 5
REV.

------------------ RADL ---------------------------

3.1.1.1.11 Format B

Fields N and I are defined in the instruction descriptions where

the format is used.

F 1 G iI T

IFunction I Sub- IN I 1 I Base

!Functionl2 1 6 1 Address

3.1.1.1.12 Format C

0 4567

F [HI X i A iY B I Z I C
lFunctionl*I I RegisterlRegisterlIndex Base IRegisterlRegisterl

1 1 1 !Addressl i

• Unused area must be cleared to zeros.

• Described where used

3.1.1.1.13 Format D

All fields are defined in the instruction descriptions where the

format is used.

0 001 1 11 11 2222 233

0 7801 56 89 3457 90 1

+-----+------- ------------------ +------------------------

I I I I I I LI l lI

I i I I I i I I I i

F i S I K [XI Al Z IBI Y I CIDIEI
i I I I i I I i i iI I I I I I tI I l

---	 +

3 34 4 4 55 6

2 90 78 56 3

T U V I W

http:3.1.1.1.13
http:3.1.1.1.12
http:3.1.1.1.11

- ----- -----------------------------------

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 6
....- REV.

------------------- RA DL---------------------------

3.1.1.1.14 Format E'

All fields are defined in the instruction descriptions where the

format is used.

0 0011 111 122 222 222 3

0 7801 567 901 345 789 1

+------+-------- ------------------------- -+---------------------
I I I i I I I I I I I I I

i i i I i i i i I i I i i i I

F i K , LA, EIMIBI GINICI HIPIDI JI
I II I I I I I I I I I I I I

I I I I I I [I I a a
----------------------------- ----------------- +

3 34 44 55 6

2 90 78 56 3

+-----------------+--------------+--------------
III

T I U i V i W

+-----------+--- -----------------

3.1.1.1.15 Format F

All fields are defined in the instruction descriptions where the

format is used.

0 00 1 1 1 1 1 2 2 2 2 3

0 78 01 5 7 8 3 5 7 9 1

-- -+------------- ------------------------
i i I I I I I I iII I I I I I I I

F IEI G[Z I H 1 S I A; BI CI DI
I I I I I a i

II I I I II I I I

33333 344444 44 55 6

23456 901234 78 56 3

+----------------------------- ---------------- +-------------
I i I I I t I I I III

I I I I I I I I II

,TILINIXI Q IUIMIPIYI R V I W i
a i i i i I aI i I I I
I I I I I I I I -
+-----------+------------------+------ ,+

http:3.1.1.1.15
http:3.1.1.1.14

!CONTROL DATA E N G I N E E R I N G NO. 10354636
- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 7
REV.

------------------ RADL ---------------------------

3.1.1.2 Instruction Types

3.1.1.2.1 Register Instructions (RG)

In the register instructions, all operand sources

and all result destinations are registers. R, S,

and T each designate one of 256 registers.

A register may be used to hold one or both source

operands as well as the result. Special case: if

register 00 is designated as a source or result

register, see Section 3.1.7.

Unless stated differently in the instruction

description, in all register-to-register operations

the contents of the source registers are unchanged

and the destination register is cleared before the

result is transferred into it.

3.1.1.2.2 Index Instructions (IN)

The index instructions are used primarily to perform

numerical calculations on field lengths or addresses.

The term, replace, means replace only the specified

bits. The phrase, replace the right-most 48 bits

implies that the left-most 16 bits are not altered.

3.1.1.2.3 Branch Instructions (BR)

Branch conditions may be determined by examining

single bits, a 48-bit index, 32-bit floating-point

operands, or 64-bit floating-point operands. A

special branch is provided to enter and leave the

monitor program. All item counts in branch

instructions are in half-words.

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354636

...-. DATE Mar. 1979

I Corporation 1 S P E C I F I C A T I 0 N PAGE 8

REV.

------------------- RADL----------------------------

3.1.1.2.4 Stream Instructions (SM)

Stream instructions operate on ordered sets of data,

executing in one or more of the streaming units:

Main Map, Intermediate Map, Vector Streaming, and

Vector Units. In general, the stream instructions

perform one of two functions: mapping (reordering)

data in memory or arithmetic operations on ordered

sets of data (vectors). For both functions, data is

taken from a memory and results are returned to a

memory.

Mapping operations are executed in the Main Map Unit

(for mapping Main Memory), in the Intermediate

Memory, or in both Map Units operating together (for

some mapping functions which can be done from/to Main

Memory to/from Intermediate Memory).

The Vector Units and Vector Streaming Unit always

operate together for execution of the arithmetic

operations. The Vector Streaming Unit serves as

the control element to supply operand streams

from Main Memory to the vector pipelines and to

return result streams to Main Memory.

Stream instructions are 64 bits in length, broken

into fields, the number and size of which depend

on the actual instruction. The fields are defined

in each stream instruction description for that

particular instruction. In general, however, they

include a function code, F, a suboperation code, S,

and register designators for specifying source of

setup information from the Register File; these

designators are T, U, V, and W, some of which may

not be used for a particular instruction. See the

individual stream instruction description's for more

detailed information on these and other fields.

3.1.1.2.5 (N/A)

3.1.1.2.6 (N/A)

3.1.1.2.7 (N/A)

3.1.1.2.8 (N/A)

-- -
E N G I N E E R I N G. NO. 10354636
!CONTROL DATA

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 9

REV.

--------------------------- R A D L ---------------------------

3.1.1.2.9 Monitor Instructions (MN)

Monitor instructions perform as described only when

in monitor mode. When not in monitor mode, the

monitor instructions perform as an illegal

instruction would (see Section 3.1.4.2.2).

3.1.1.2.10 Non-Typical Instruction (NT)

The format and operation of these instructions are

completely described under the individual instruction

descriptions.

3.1.2 Addressing

Groups of bits in an address should be thought of as

addressing various units of storage as illustrated

in the chart below.

16---------- > 54 55 56 57 58 59 60 61 62 63
- --------- \\ -------------------------------

Bit position \ \ i i i i i i i
in a register,---------- \ \-------
or an in
struction I
word Address of iI

1<---- Sword----- >1 i
I

I

!<--Address of Word------- >1 1

!<--Address of Half-Word----- >1

1<------- Address of Byte---------->1

1<------- Address of Bit--------------------- >1

Within a word, bits, bytes, and half-words are always

numbered from left to right. The lowest addressed

bit, byte, or half-word is always the left-most bit,

byte, or half-word in the word.

(continued)

http:3.1.1.2.10

--

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 10

....-
 REV.

------------------ R A D L---------------------------

3.1.2 (Cont.)

All addresses are 48-bit quantities and contain

enough information to reference a specific bit.

Depending on the usage of an address, a certain

number of the right-most bits in the address are

ignored. For example, if a byte is being read, the

right-most three bits of the address being used to

reference it are ignored. Depending on the

instruction, operands are counted on a bit, byte,

half-word, or word basis.

1<----- half-word 0------------ ><----- half-word 1-------- >1
ii i

III I I I I I
I i I I I I I i

!byte 01 byte 11 byte 2 !byte 3 Ibyte 41byte 51byte 61byte 71

bit 0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

The above figure illustrates the relative location of

each bit, byte, and half-word within a 64-bit word.

If it is necessary to add an address and an index,

the index is shifted left end off until it is

properly aligned with the address. Binary zeros are

attached to the right end of the quantity being

shifted.

The result of the addition always addresses a

quantity having the same unit as the index. For

instance, if a byte count is added to any address,

the result references a byte. This means that the

right-most three bits of the address will be ignored.

The following chart summarizes the process of adding

an index to an address and shows which bits are

ignored in the resulting address.

(continued)

-------- ------- - ------------------

NO. 10354636
!CONTROL DATA E N G I N E E R I N G

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 11
REV.

------------------ RADL ---------------------------

3.1.2 (Cont.)

16 57 58 59 60 61 62 63

Base Address--------------->i

/
16 22 631

!A. words I ** !words i 01 0 0 1 0 0 0
I i itII

SII

16 21 631 1

Index - 1B. half- 1 ** !half-words i 0 0 i 0 0 0 1
/ words- ------------- ---------------- i

16 19 631

1C. bytes !**Ibytes 0 0 0

16 631

1D. bits "bits

16 57 58 59 60 61 62 63

/--------------------------

I I I I I I
I I I I I I

II III
II II

!A. words I<---Bits used->!<--- * -------- >1
I I

I II

Result- I

ant lB. half- <---Bits used---->!<-* ->1

address-I words

es

1C. bytes 1<---Bits used---------- >I<- * ->1

1D. bits 1<------- Bits used ------------ >1

* These bits in the resultant address are ignored.

•* These bits. in the index are shifted off and do not enter the
address calculation.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 12
REV.

------------------- RADL -

3.1.2.1 Memory Hierarchy Addressing

There are four levels of memory accessible to the

programmer: Register File, Main Memory, Intermediate

Memory, and Backing Store. These memories can be

addressed by instructions in different ways,

dependent on the memory level.

The actual amount of physical memory present is

determined by the specific machine configuration.

Memory not actually in existence causes an operand

abort to occur at the time of reference.

3.1.2.1.1 Register File Addressing

Register File addresses are generally contained

within the instruction itself; such direct addresses

are called register designators, each designator

being assigned a name such as R, S, or T. A register

designator in an instruction is an 8-bit field and

therefore can address any one of 256 registers

(64-bit or 32-bit).

The only exception to a register file address being

contained within the instruction is the SWAP (7D)

instruction. In this case, one register designator

is contained in the right-most eight bits (bits 56

to 63) of a register.

3.1.2.1.2 Main Memory Addressing

Main memory addresses are contained in 64-bit

registers in the Register File. Thus an instruction

can reference memory indirectly by giving the

appropriate register file address, which points to

the register containing the desired memory address.

An address field of 27 bits is established permitting

access to 134,217,728 64-bit words of Main Memory.

Since all addresses are bit addresses, the

right-most 33 bits (bits 31-63) of the register are

used.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
--- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I 0 N PAGE 13

REV.

----------------- R A D L----------------------------

3.1.2.1.3 Intermediate Memory Addressing

Intermediate Memory is addressed in the same manner

as Main Memory with the addresses contained in, and

supplied from, 64-bit registers in the Register File.

A larger address field of 29 bits allows access to

536,870,912 64-bit words of Intermediate Memory.

All addresses are bit addresses, thus the right-most

35 bits (bits 29 to 63) of the register are used.

3.1.2.1.4 Backing Store Addressing

The Backing Store is essentially like an I/O device

and transfers data to/from Intermediate Memory in

blocks of 32,768 words (see Functional Specification

10354637 for -more detailed information). While it

is accessible under program control, it is not

addressed specifically by instruction. Instead,

addresses are stored in some location in

Intermediate Memory and the backing store control

(Swap Unit) is notified of the location.

The address provided is a block address (32,768

words) and the field is 16 bits allowing access to

65,536 blocks, or 2,147,483,648 64-bit words. Since

all addresses are bit-addresses, the right-most 37

bits (bits 27 to 63) are used.

3.1.2.1.5 Illegal Addresses

Main memory bit addresses 0 through 400000 are

16

reserved for the operating system. Any reference to

this address range by a job mode program results in a

job mode illegal abort of the program in execution.

Main memory bit addresses 0 through 4000 are

16

reserved for the storage of the monitor's register

file. Any reference to this area by a monitor mode

memory access will cause a monitor mode illegal

abort.

When addressing non-existent areas of memory, the

FMP will generate an operand abort.

-------------------------- ------------------------

--- -------------------------

--- ------------------------

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 14
REV.

------------------- RADL--------------------------

3.1.2.2 Instruction Addressing

Instructions are addressed on full-word and half-word

boundaries. The instruction address counter will,

therefore, be incremented by a half-word after

executing a 32-bit instruction and by a full word

after executing a 64-bit instruction. This allows

instructions to be packed contiguously in storage.

The following chart illustrates the various ways

instructions may be packed within 64-bit words.

bit position

0 31 32 63

1 32-bit inst. 64-bit inst. upper

64-bit inst. lower 64-bit inst. upper

I64-bit inst. lower 32-bit inst.

64-bit instruction

I 32-bit inst. 32-bit inst.

Note that a branch is possible to any of the

instructions. The lower 5 bits in any branch address

will always be interpreted as zeros.

3.1.3 Termination Rules

For instructions which terminate upon exhausting the

length of a data field, data string, or vector: if

that item is exhausted prior to the first operand

fetch, the instruction becomes a No op; no data is

fetched and no data flags are altered.

3.1.3.1 Stream Instruction Termination

Most stream instructions terminate when the result

vector is exhausted. Source vectors which are

exhausted before the result vector is exhausted are

extended or repeated, as required, designated by

setup data in the instruction. Those vector

operations designated as recursive (Sum, Dot Product,

etc.) terminate on the input length because only one

result is returned from each pipeline, regardless of

input length.

[CONTROL DATA E N G I N E E R I N G NO. 10354636

--- DATE Mar. 1979
Corporation S P E C I F I C A TI O N PAGE 15

REV.

------------------ RADL

3.1.3.2 	 (N/A)

3.1.3.3 	 (N/A)

3.1.3.4 	 (N/A)

3.1.4 	 Definitions and Rules

3.1.4.1 	 Overlap of Operand and Result Fields

If the result field overlaps a source field such that

elements of the result are stored in the source field

before elements in this portion of the source field

are read, undefined results may occur. That is, the

source elements may be the original elements or they

may be the newly-stored elements. The instruction's

results may become undefined. Note that some specific

instructions prohibit any overlap of source and

destination fields. This restriction is included in

the appropriate instruction descriptions.

3.1.4.2 	 Self-Modifying Programs, Undefined Instructions and

Undefined Operands

3.1.4.2.1 	 Self-Modifying Programs [A2.03

As a general rule, self-modifying programs are not

allowed. See Appendix A2.0 for further details.

m-- -- -- - --

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979

I Corporation S P E C I F I C A T IO N PAGE 16
REV.

------------------- RADL---------------------------

3i1.4.2.2 Illegal Instructions

An instruction with an unused function code is

termed an illegal instruction and causes the

following:

A. 	If in monitor mode, an automatic branch to the

address specified by the contents of absolute

register 4 is executed.

B. 	If in job mode, an exchange to monitor mode is

performed with execution beginning at the address

specified by the contents of absolute register 3.

3.1.4.2.3 Undefined Instructions

The instructions with a defined F code but which

either have undefined bits set or specify an

undefined operation cause undefined results.

3.1.4.2.4 (N/A)

3.1.4.2.5 No op Instructions

The instructions that are defined as No op (no

operation) instructions do not fetch data and do not

alter data flags.

3.1.4.3 Floating-Point Format

--

E N G I N E E R I N G NO. 10354636
!CONTROL DATA 1
-- DATE Mar. 1979

I Corporation 1 S P E C I F I C A T I 0 N PAGE 17
REV.

----------- R A D L ---------------------------

3.1.4.3.1 32-Bit Floating-Point Format

-- bit 0, exponent sign bit

V
I

II

-------------------- * exponent binary point
1 7

-- bit 8, coefficient sign bit

V

--- 1* coef.

1binaryi 9 31
point

18-bit signed 24-bit signed

I exponent coefficient

0 7 8 31
bit

V

32-bit floating-point number

There are two 32-bit half-words in every 64-bit word.

A 32-bit floating-point number occupies a half-word.

A zero is a positive sign bit and a one is a negative

sign bit for both the exponent and the coefficient.

Both the exponent and the coefficient are expressed

as two's complement signed integers. Numbers are of

x
the form (c)2 where c is the 24-bit signed

coefficient, x is the 8-bit signed exponent, and the

base is 2.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

Corporation I S P E C I F I C A T IO N

DATE Mar.
PAGE 18

1979

....- REV.

------------------ RADL ---------------------------

3.1-.4.3.1 C ont.) -

The range of useful coefficients is from 800000 to

16

7FFFFF

16

23

This represents numbers of the range -(2) through

23

+(2 -1).

The range of useful exponents is from 90 to 6F
16 16

which is from minus 112 to plus 111 . The
10 10

values of 70 through 8F all fall into a special

16 16

end case range as defined by the following table.

X is any hexadecimal digit.

Element Representation

Machine Zero 8XXXXXXX

16

Indefinite 7XXXXXXX

16

Eramples of 32-bit floating-point format represented

in base 16.

+1 00 000001
+I normalized EA 400000
-1 00 FFFFFF
-1 normalized E9 800000
+256 00 000100

10

A floating-point number is normalized if the

coefficient sign bit is different from the next bit

to the right. This condition implies that the

coefficient has been shifted to the left as far as

possible. Note that an all zero coefficient requires

special attention for normalized operations.

i

CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 1-9

REV.

------------------- RADL-------------------------

3.1.4.3.2 64-bit Floating-Point Format

--- bit 0, exponent sign bit

V

* exponent binary point

1 151

-- bit 16, coefficient sign bit

V
I--

I--- 1* coef.

- I

17 63 1 binary
--- -- - - - - - --- ----- -*-- -coef.--- - point

16-bit signed i 48-bit signed

exponent i coefficient

0 15 16 63

bit _/

V

64-bit floating-point number

A 64-bit floating-point number is contained in a

64-bit word.

A zero is a positive sign bit and a one is a.negative

sign bit for both the exponent and the coefficient.

Both the exponent and the coefficient are expressed

as two's complement signed integers. Numbers are of

x
the form (c)*2 where c is the 48-bit signed

coefficient, x is the 16-bit signed exponent, and the

base is 2.

The range of useful coefficients is from 8000 0000
0000 to 7FFF FFFF FFFF . This represents numbers

16 16
47 47

of the range -(2) through +(2 -1).

(continued)

ICONTROL DATA E N G I N E E R I N G NO,. 10354636

-- DATE Mar. 1979

iCorporation S P E C I F I C A T I O N PAGE 20

....- REV.

------------------ RADL---------------------------

3.1.4.3.2 (Cont.)

The range of useful exponents is from 9000 to

16

6FFF which is from minus 28,672 to plus 28,671

16 10 10

The values of 7000 through 8FFF all fall into a

16 16

special end case range as defined by the following

table. X is any hexadecimal digit.

Element Representation

Machine Zero 8XXXXXXXXXXXXXXX

16

Indefinite 7XXXXXXXXXXXXXXX

16

Examples of 64-bit floating-point format represented

in base 16.

+1 0000 0000 0000 0001
+1 normalized FFD2 4000 0000 0000

-1 0000 FFFF FFFF FFFF

-1 normalized FFD1 8000 0000 0000

+256 0000 0000 0000 0100

10

A floating-point number is normalized if the

coefficient sign bit is different from the next bit

to the right. This condition implies that the

coefficient has been shifted to the left as far as

possible. Note that an all zero coefficient requires

special attention for normalized operations.

3.1.4.4 End Cases

If indefinite is used as an operand in a floating
point instruction, both the upper and the lower

results are indefinite.

For the cases listed below, 0 represents machine zero

and N represents an operand which is neither machine

zero nor indefinite.

0 + 0 0 0* 0 =0 0/ 0=Indefinite
0+Nz +N 0*N 0 0/N 0
N + 0 = N N * 0 = 0 N / 0 Indefinite

!CONTROL DATA E N G I N E E R I N G NO. 10354636

;-DATE Mar. 1979

1 Corporation S P E C I F I C A T I 0 N PAGE 21
REV.

------------------- RADL---------------------------

3.1.4.5 	 Floating-Point Compare Rules

Several of the instructions compare two floating
point operands for:

a. equality 	 (r) = (s)
b. non-equality 	 (r) <> (s)

c. greater 	than or equal to (r) > (s)

d. less than 	 (r) < (s)

For these examples, the first operand is represented

by (r) and the second operand by (s).

3.1.4.5.1 	 One or Both Operands Indefinite

If one operand is indefinite, no compare condition is

met since indefinite is not: greater than, less

than, equal to, nor not equal to any other operand.

If both operands are indefinite, the (r) = (s) and

the (r) > (s) conditions are met since indefinite is

defined equal to indefinite.

3.1.4.5.2 	 Neither Operand Indefinite but One or Both Operands

Machine Zero

Any non-indefinite, non-machine zero operand with a

positive, non-zero, coefficient is strictly greater

than machine zero.

Any non-indefinite, non-machine zero operand with a

negative coefficient is strictly less than machine

zero.

Machine zero is equal only to itself and any number

having a finite exponent and an all zero coefficient.

u---- - - - -

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 22
REV.

------------------ RADL---------------------------

3.1.4.5.3 Neither Operand Indefinite Nor Machine Zero

If the signs of the coefficients of the two operands

are 	unlike, the operands are unequal and the operand

with the positive coefficient is the larger of the

two.

If the signs of the two coefficients are alike, a

floating-point subtract upper is performed, r - s.

Condition met criteria are analyzed as follows:

a. 	If the upper 48 bits of the result
coefficient are all zeros (r) = (s)

b. 	If the upper 48 bits of the result

coefficient are not all zeros (r) <> (s)

c. 	If the result coefficient is positive

(r) > (s)

d. 	 If the result coefficient is negative

Cr) 	< (s)

The 	above criteria (a and b) for equality and

non-equality do not guarantee for r = s, that s r

when the following is true:

a. 	The operands have unequal exponents.

b. 	 "1" bits exist in any of the right-most bit

positions of the coefficient which will be

shifted off the right during alignment of the

smaller exponent. For example:

0 	 16 63

r = 100041

3 = 10000 	 ixi

Exponent difference = 4

If X = 0 then r = s implies s = r

If X <> 0 then if r = s, s <> r

or if s = r, r <> s

(continued)

--
E N G I N E E R I N G NO. 10354636
!CONTROL DATA I

DATE Mar. 1979

Corporation g P E C I F I C A T I O N PAGE 23

REV.

------------------ RADL---------------------------

3.1.4.5.3 (Cont.)

The order of events of the floating-point subtract

upper is first to complement the subtrahend, then

align the coefficient associated with the smaller

exponent and finally to perform a floating-point add

operation. The following is an example of r = s but

s <> r.

Operand 	r = 0100 0000 0000 1001

S = 0104 0000 0000 0100

Complement
Align r

s 01.04
0104

FFFF
0000

FFFF
0000

FFO0
0100 1

Add aligned
r and
complemented s

0104 0000 0000 0000 1

Since the upper 48 bits of the result coefficient are

all zeros, the pair of operands are considered equal.

However, if the operands are interchanged, the

following happens:

Operand r = 0104 0000 0000 0100

s = 0100 0000 0000 1001

Complement
Align s

s 0100
0104

FFFF
FFFF

FFFF
FFFF

EFFF
FEFF F

Add r and
complemented,
aligned s

0104
0104
0104

0000
FFFF
FFFF

0000
FFFF
FFFF

0100
FEFF
FFFF

F
F

Since the upper 48 bits of the result coefficient are

not ali zeros, the pair of operands are considered

unequal.

!CONTROL DATA E N G I N E E R I N G

Corporation S P E C I F I C A T I O N

NO. 10354636
DATE Mar. 1979
PAGE 24
REV.

------------------ RADL

3.1.4.6 Upper and Lower Results

The floating-point add, subtract and multiply

instructions generate a result coefficient twice the

length of the source operands' coefficients. The

left and right halves of this result are called the

upper result (U) and the lower result (L),

respectively.

The sign bit of the lower result's coefficient is not

affected in a lower operation and remains at zero in

two's complement arithmetic. The other bits of the

lower coefficient receive no special treatment.

Remember that a lower result is not meaningful alone,

but it must be used in conjunction with its

associated upper result.

Sections 3.1.4.6.1 - 3.1.4.6.4 are written for 64-bit

operands. For 32-bit operands, substitute 47 for 95,

46 for 94, 23 for 47, and 22 for 46 where the latter

numbers appear.

3.1.4.6.1 Right Normalization

When the result coefficient overflows its register,

a right shift of one place is necessary. In this

case, the entire 95-bit result is shifted right one

place with sign extension and one is added to the

exponent. This operation is known as

right-normalization and it is done, when necessary,

even if normalization is not explicitly specified by

the instruction. This may cause exponent overflow;

if so, the result is set to indefinite and data flag

bit 42 may be set.

CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 25
REV.

------------------ RADL ---------------------------

3.1.4.6.2 Floating-Point Add

Regardless of their signs, both operands'

coefficients are extended to 94 bits in length, not

including sign, by adding 47 zeros to the right of

their binary points.

The exponents of the two operands are compared and

the 94-bit coefficient of the operand having the

smaller exponent is effectively shifted right one bit

and its exponent increased by one, successively,

until the two exponents are equal. The sign of the

shifted coefficient is extended from the left to the

right during the shift. Negative coefficients

approach a minus one and positive coefficients

approach zero as they are shifted.

The add is a 94-bit operation, not including sign.

Right normalization takes place, if necessary. The

coefficient for the U result is the left-most 47 bits

and 	the coefficient for the L result is the

right-most 47 bits of the 94-bit result.

The 	exponent for the U result is equal to the larger

of the two operand exponents. Right-normalization

will increase this value by one, if it occurred.

The exponent for the L result is 47 less than the

10

U result's exponent for all cases except three:

a. 	Right-normalization causes the U exponent to

overflow; the U result is set to indefinite; the

L exponent will be 6FD1 (59 in the 32-bit

16 16

case).

b. 	If the U result's exponent minus 47 causes

10

exponent underflow, machine zero is stored as

the 	L result.

C. 	If either or both operands were indefinite, the U

and L results are indefinite.

[CONTROL DATA I E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979

Corporation, S P E C I F I C A T IO N PAGE 26
REV.

------------------- RA DL

3.1.4.6.3 Floating-Point Subtract

The floating-point subtract operation is performed by

complementing the coefficient of the subtrahend and

performing a floating-point addition operation. The

complementation is a 48-bit, two's complement

operation and is performed before the operands are

extended to 94 bits.

The hardware used for Floating Add or Subtract

operations has an extra (or extended) coefficient

sign bit. This means that the complementation

of an 8000 coefficient is handled without the

right shift of one and increase of the exponent

by one as used elsewhere. This will cause a

result (although not mathematically incorrect)

which may differ from the result obtained when a

right shift of one with increase of one is used, when

the following conditions are met:

1. 	The operand of the pair having the large

exponent (OR either of the two operands if their

exponents are equal) must have a coefficient of

8000 --

2. 	This operation must require this same operand to

be complemented due to

a. 	being the subtrahend in a subtract operation

OR

b. 	sign control in either a subtract or an add

operation --

3. 	The "other" operand must have a negative

coefficient.

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
--- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I 0 N PAGE 27

REV.

------------------ R A DL ----------------------------

Example I A - B

A
B

60
64

F FF 00 0
800000

CDC FMP
Instruction
Specification

Extra Sign Bit

V

Complement B B 1-64 (1) 8 0 0 0 0 0 1 64 8 0 0 0 0 0

- ->64 (0) 8 0 0 0 00 1 65 4 0 0 0 0 0

Align operand 1-60 (1) F F F 0 0 0 I 60 F F F 0 0 0
with smaller i
exponent ->64 (1) F F F F 0 0 165 F F F F 8 0

Add A plus A 64 (1) F F F F 0 0 1 65 F F F F 8 0
complement
of B +B 64 (0) 8 0 0 0 0 0 1 65 4 0 0 0 0 0

64 0 --------------
64 (0) 7 F F F 0 0 1 65 3 F F F 8 0

64 7FFFO0 165 3FFF

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 28

....-
 REV.

------------------ RA DL---------------------------

3.1.4.6.3 (Cont.)

Example II A - B

A 50 FFF00 0

B 6F 800000

Instruction

CDC FMP Specification

Extra Sign Bit

V
Complement B B -6F (1) 8 0 0 0 00 1 6F 8 0 0 0 0 0

i

->6F (0) 8 0 0 0 0 0 1 70 4 0 0 0 0 0

Align operand 1-50 (1) F F F 0 0 0 1 50 F F F 0 0 0

with smaller i

exponent ->6F (1) F F F F FF 1 70 F F F F F F

Add A plus A 6F (1) F F F F FF 1 70 F F F F F F
complement
of B +B 6F (0) 8 0 0 0 0 0 1 70 4 0 0 0 0 0

--------------- I ------

6F (0) 7 F F F F F 170 3 F F F F F

If this operation is a Subtract Upper, the specified

result is indefinite (with the appropriate data

flags) while the CDC FMP result did not overflow. If

this operation were a Subtract Normalized, note the

following:

Instruction

CDC FMP 1 Specification

Result of 6F (0) 7 F F F F F 1 70 3 F F F F F

Subtract

Upper

Normalize the 6F 7 F F F FF 6F 7 F F F F E

Upper Result

shifting zeros

in from the right

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 29

REV.

------------------ RADL---------------------------

3.1..4.6.3 (Cont.)

Note that the subtract operation is not always

commutative. In other words it is not always true

that (A-B) = -(B-A). This characteristic will be

observed if the following is true of A and B:

a. The exponents of A and B are not equal.

b. "1" bits exist in any of the right most bit
positions of the coefficient which will be shifted
off the right during alignment of the smaller exponent.

Example of (A-B) <> -(B-A):

A = 0104 6FCB 807E 89F2

B = 0100 6FAC 3F5D A5FA <--

These two 1 bits will be shifted off during

exponent alignment.

Complement B:

-B = 0100 9053 COA2 5A06

Align B:

-B = 0104 F905 3COA 25A0 6

A-B:

A = 0104 6FCB 807E 89F2

-B = 0104 F905 3COA 25A0 6

0104 68D0 BC88 AF92 6

A-B = 0104 68D0 BC88 AF92

Align B:
B = 0104 06FA / C3F5 DA5F A

Complement A:

-A = 0104 9034 7F81 760E

-(B-A):
B = 0104 06FA C3F5 DA5F A

-A = 0104 9034 7F81 760E
0104 972F 4377 506D A

-(B-A)= 0104 68D0 BC88 AF93

This differs from A-B in the last bit

position.

ICONTROL DATA E N G I N E E R I N G NO. 10354636
--- --- ---. DATE Mar. 1979
ICorporation S P E C I F I C A T I O N PAGE 30
....- REV.

------------------ RADL---------------------------

3.1.4.6.4 Results of the Floating-Point Multiply Instruction

When two floating-point numbers are multiplied, the

lower result retains the 47 least significant product

bits generated. The sign bit of the lower result is

always set to zero and the exponent of the lower

result is the sum of the two source operands'

exponents with the exceptions listed below:

The upper result retains the 47 product bits

immediately to the left of the bits retained by the

lower product. The sign of the upper product's

coefficient follows the normal rules of algebra. The

exponent of the upper result is the sum of the two

source operands' exponents plus 47 with the

following exceptions:

a. 	The sum of the source operands' exponents (plus
47 , if upper result) exceed 6FFF for which

10 16

case the result exponent is set to indefinite.

b. 	The sum of the source operands' exponents (plus

47 	 , if upper result) is less than 9000 for

10 16
which case the result exponent is set to
machine zero.

c. 	Either or both operands are indefinite for which

case the result exponent is set to indefinite.

d. 	 Neither operand is indefinite but either or both

operands are machine zero, for which case the

result exponent is set to machine zero.

If either operand has a coefficient of 8000 0000 0000

and an exponent of X, the operand will be treated as

though its coefficient were COOO 0000 0000 and its

exponent were X+1.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- ;DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 31
REV.

-----------------------HR A D L----------------------------

3.1.4.6.5 Results of the Floating-Point Divide Instruction

The quotient from the divide operation is the result

of dividing the prenormalized, integer coefficient of

the divisor into the integer coefficient of the

dividend generating a 47-bit quotient (23-bit

quotient for 32-bit divide). If either operand has a

coefficient of 8000 0000 0000, the operand will be

handled as though its coefficient were CO0 0000 0000

and its exponent increased by one. When the divide

hardware normalizes the divisor coefficient, the

number of places shifted left is added to the

exponent of the quotient as defined below.

The exponent of the result will be given by the

following equation:

Exponent of Quotient = (Exponent of Dividend)
- (Exponent of Divisor)
- (46 - NC)

10

where NC is the number of places shifted left

to prenormalize the divisor. For the 32-bit

divide operation 22 is subtracted rather than

10

46

10

The right-most bit of the quotient is neither rounded

nor adjusted. The remainder is not retained. The

sign of the quotient's coefficient follows the normal

rules of algebra.

3.1.4.6.6 Normalized Upper Results

The normalized add and subtract instructions generate

an intermediate result identical to the final result

of the Add U and the Subtract U instructions.

Normalization of the intermediate, 48-bit result then

takes place as follows:

The 48-bit coefficient is shifted left one bit

and its exponent is decreased by one, successively,

until the sign bit and the bit immediately to the

right of the sign bit are different. During this

shift, zeros are attached to the right end of the

48-bit coefficient. If reducing the exponent by one

causes exponent underflow, the result of the

normalization operation is defined as machine zero.

CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

CorporationS P E C I F I C A T IO N PAGE 32
REV.

------------------- RADL

3.1.4.6.7 (N/A)

3.1.4.7 (N/A)

3.1.4.8 (N/A)

3.1.4.9 (N/A)

3.1.4.10 (N/A)

3.1.4.11 Operand Size Definitions

The following definitions are implied throughout the

specification.

Word - A 64-bit quantity, the address of

the left-most bit always being a

multiple of 64.

Half-word - A 32-bit quantity, the address of

the left-most bit always being a

multiple of 32.

Byte - An 8-bit quantity, the address of

the left-most bit always being a

multiple of 8.

Digit - A 4-bit binary coded decimal number
or sign. One digit per byte in zoned
format and two digits per byte in
packed BCD format.

Sword - 512 bits (or 8 64-bit words).

http:3.1.4.11
http:3.1.4.10

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354636
- - DATE Mar. 1979
iCorporation S P E C I F I C A T I 0 N PAGE 33

REV.

------------------ RADL---------------------------

3.1.5 Item Count (field lengths, indices, etc.)

All field lengths, indices, shift counts, etc., are

item counts which specify a number of bits, digits,

bytes, half-words, or words.

Where an item count other than an index is

contained in a 48-bit field, there shall be at least

32 consecutive and identical sign bits. Sign bits

must always be extended to the left to fill the

16-bit or 48-bit field containing it.

The item count unit is specified by the instruction

title line code-C-l e arrow).

Example

V

3.2.1,67 42 4 32 RG ADD N; (R)+(S) TO (T)

The 32 indicates that field lengths and indices are

expressed in 32-bit half-words. Any deviation from

this method of specifying the units for the various

item counts would be indicated in the instruction

description or in the description of the instruction

type. The instruction type refers to RG (register),

SM (stream), etc.

An index may be either positive or negative in sign.

The maximum magnitude of an index is a function of

its usage. The index is shifted to the left end-off

zero/three/five/six places before the addition to the

base address when the unit for the index is

bits/bytes/half-words/words. Digits are not used as a

unit for indices.

A field length must be positive in sign and have a

16

magnitude of less than 2 ; the use of a negative

field length causes that length to become strictly

undefined.

[CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 34
---- REV.

-------- -------- RADL---------------------------

3.1.6 Data Flag Branch Register [A7.0]

3.1.6.1 General Description

The data flag register is designed to give the

programmer an automatic branch to a special

routine for certain operands, results, conditions,

etc., without his having to pay the time penalty of

explicitly checking these conditions in his program.

If a condition which has been previously selected to

cause an automatic branch occurs during an

instruction, the instruction is completed, the

address of the next instruction which would have been

executed is stored into the address portion of

register 01 and a branch is made to the address

contained in register 02. The state of the data flags

in the invisible package is defined only if the

program was interrupted between instructions.

--

E N G I N E E R I N G NO. 10354636
!CONTROL DATA
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 35
REV.

----------------- RADL

3.1.6.2 Register Description

The data flag register consists of four segments, or

words, each 64 bits in length. The format is shown

below.

PRODUCT MASK DATA FREE
BIT BIT FLAG FLAG
FIELD

I
FIELD

I
FIELD FIELD

I
i II

16 bits [16 bits
I

1 16 bits
iI

16 bits

Word 0
I---------------------------------

1

1
---------- ----------

0 11 33 44 ' 6
0 56 12 78 3

16 bits 116 bits 116 bits 16 bits

Word1 i

0 I 33 44 6

0 5 12 78 3

I--------------------------------- ---------- ---------- ----------

16 bits 16 bits 16 bits 16 bits

Word 2 1
SI I0 11 33 44 6

SI I

0 56 12 78 3

Ii II

---------------- ---------- ---------- I

16 bits [16 bits 1 16 bits 16 bits 1

Word 31 1 1

0 II 33 44 6
0 56 12 78 3

Paragraphs 3.1.6.2.1 through 3.1.6.2.4 describe the

four fields in general terms, while 3.1.6.2.7
through 3.1.6.2.10 define the bit assignments for

words 0 through 3, respectively.

http:3.1.6.2.10

CONTROL DATA E N G I N E E R I N G NO. 10354636
------------- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 36

REV.

------------------ RADL---------------------------

3.1.6.2.1 Free Flags

Free flags (bits 48-6 3) may be set, cleared and

tested but will not cause an automatic data flag

branch. They are not associated with unique mask

bits or product bits, as are the data flags. Bits

51 and 52 of all four words have a special

significance which is defined below in 3.1.6.2.5;

similarly, section 3.1.6.2.6 defines a special

significance for bits 53 and 54 of words 2 and 3.

3.1.6.2.2 Data Flags

Each data flag (bits 32-47) has associated with it a

unique mask bit and product bit which are defined

below. Data flags in word 0 indicate conditions

that have occurred, usually some error detected in

execution of an instruction. Once set, these flags

are cleared only by execution of a Data Flag Bit

Branch and Alter (33) instruction, or a Data Flag

Register Load/Store (3B) instruction.

The data flags in words 1 through 3 are different in

that they represent, dynamically, the state of the

dependency flags and interlock flags; word 1 is

assigned to the interlock flags, and words 2 and 3

are assigned to the dependency flags. These 48 bits

(32-47 of words 1, 2, and 3) may not be set or

cleared directly by instruction as is the case with

data flags of word 0; rather, each becomes set when

an instruction specifying its respective key becomes

active, and becomes cleared when that instruction

terminates.

3.1.6.2.3 Mask Bits

A mask bit is associated with each of the data flags.

The mask bits (16-31) of each word are related only

to the data flags in the same word as that of the

mask bit. They have the function of selecting the

conditions for which the programmer wishes an

automatic data flag branch to occur. Mask bits are

set and cleared only by execution of a Data Flag Bit

Branch and Alter (33) instruction, or a Data Flag

Register Load/Store C3B) instruction.

(continued)

!CONTROL DATA E N G I N E E R I N G
I -------------
I Corporation S P E C I F I C A T IO N

NO. 10354636
DATE Mar. 1979
PAGE 37
REV.

------------------ R ADL

3.1.6.2.3 (Cont.)

It is important to note that the associated mask bit

need not be set in order to set a data flag bit.

The mask function is solely one of enabling a

particular data flag bit to set its associated

product bit.

The order in which the mask bit and its associated

data flag bit are set is immaterial, as the result

is the same; that is, their associated product bit

is set. However, one restriction exists for the

mask bits for the interlock and'dependency keys

(words 1, 2, and 3).. The mask bit, which enables the

setting of a product bit, must be set at the time

its respective data flag bit clears or the automatic

data flag branch will not occur. This is due to the

fact that the product bit for these flags is set on

the trailing edge of the data flag, i.e., when the

data flag clears.

3.1.6.2.4 Product Bits

Like the mask bits, a product bit is associated with

each of the data flags. Also, the product bits

(00-1-5) of each word are related only to the data

flag bits of the same word as that of the product

bit. A data flag branch is performed when one (or

more) product bit(s) is (are) set and the data flag

branch enable bit is set (see 3.1.6.2.5 below).

Each product bit of word 0 is the dynamic logical

product of its associated data flag bit and mask bit.

These product bits may not be set or cleared by

instruction directly; rather, the mask bit and/or

the data flag bit causing the product bit to be set

must be cleared.

Product bits in words 1, 2, and 3 are not a dynamic

logical product as are those of word 0. These

product bits, instead, are set on the trailing edge

(when the bit becomes cleared) of their respective

data flag bits, provided the associated mask bit is

set. Product bits in these three words, i.e., those

related to the interlock and dependency keys, MUST

be cleared by execution of a Data Flag Bit Branch

and Alter instruction, or a Data Flag Register

Load/Store instruction.

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
--- DATE Mar. 1979
Corporation 3 S P E C I F I C A T I 0 N- PAGE 38

REV.

------------------- RADL ---------------------------

3.1.-6.2.5 Data Flag- Branch Enable Bit

The data flag branch enable bit, bit 52 of word 0,

must be set for an automatic data flag branch (DFB)

to occur. This bit is cleared automatically by the

hardware when a DFB takes place. It must be reset

with a Data Flag Register Bit Branch and Alter

instruction or a Data Flag Register Load/Store

instruction to re-enable the DFB. If bit 52 of word

0 is set the DFB takes place as described in 3.1.6.1

above if bit 51 of word 0 is also set. The order in

which these two bits become set is immaterial; the

result is an automatic DFB.

Bit 51 of word 0 is the dynamic inclusive OR of all
product bits of word 0 and the individual products
of bits 51 and 52 of words 1 through 3. It cannot
be set or cleared directly by instruction, rather,
the conditions causing it to be set must be cleared.

Bit 51 in each of words 1 through 3 is the dynamic

inclusive OR of the product bits (00-15) of its

respective word. In a similar manner,, bit 52 in

each of words 1 through 3 is a mask for bit 51 of

its respective word. It is then the product of bit

51 and 52 of words 1 through 3 which is included in

the dynamic inclusive OR for the automatic data flag

branch. For words 1 through 3, bit 51 cannot be set

or cleared directly by instruction, rather, the

conditions causing it to be set must be cleared,

while bit 52, on the other hand, must be set and

cleared by instruction.

3.1.6.2.6 Conditional Inhibits

Bits 53 and 54 of words 2 and 3 provide the

capability of selectively inhibiting the data flags

of the same word from reflecting read keys in use,

write keys in use, neither read keys nor write keys

in use, or both read keys and write keys in use.

Bit 53, when set, inhibits read dependencies from

being reflected in the state of the data flags, and

bit 54, when set, does the same for write

dependencies. These bits are set and cleared only

by execution of a Data Flag Branch Register Bit

Branch and Alter instruction, or a Data,Flag

Register Load/Store instruction.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E-C I F I C A T I 0 N PAGE 39
REV.

------------------ RADL

3.1.6.2.7 Data Flag Register Word 0 Bit Assignments

----------- Product Field Bit

-------- Mask Field Bit

---- Data Flag Bit or Free Flag Bit

S I-I

v v v I Definitions -- Word 0
I--

00-16-32 I Undefined.
01-17-33 1 Undefined.

1 02-18-34 1 Undefined.

1 03-19-35 1 	Soft Interrupt. Monitor software
can set this data flag bit of a
job's invisible package. If, after
exchanging back to job mode, this
data flag bit and this mask bit are
set, a normal data flag branch
occurs following completion of the
current instruction.

1 04-20-36 	 Job Interval Timer.

I 	05-21-37 1 Not Applicable.
06-22-38 I Not Applicable.

1 07-23-39 1 The binary result exceeds the range I
47

of + (2 -1).

i 08-24-40 Bit 40 is the inclusive OR of bits
I 37, 38, and 39.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 40
REV.

------------------ RAL---------------	 ----------

3.1.6.2.7 	 (Cont.)

----------- Product Field Bit

------- Mask Field Bit

---. Data Flag Bit or Free Flag Bit

i I--

v v v I Definitions -- Word 0 (continued)

--- I

I 09-25-41 I 	Floating-point divide fault: The
divisor has an all zero coefficient,!
or the divisor as read from the
Register File or from Main Memory
is machine zero. If the divisor
and/or the dividend is indefinite,
no divide fault exists. If a
divisor causes a divide fault, the 1
quotient is set to indefinite. The I
exponent overflow and result
machine zero data faults are not
set by a divide whose divisor
caused a divide fault.

10-26-42 I Exponent overflow: The exponent of I
I the result is larger than 6FFF i

16
I (6F for 32-bit arithmetic).

16

Results are not checked for exponent!

overflow until after the exponent

I adjustment 	for normalization or
I significance has taken place. In
1 the adjust exponent instructions,
1 if a left shift exceeds the number
I of places required for
normalization, this data flag is

set. Exponent overflow causes the

result to be set to indefinite;

therefore, the indefinite flag will 1

always be set on an exponent

overflow. This exponent oveflow

d-ata flag is not set if either

source operand from Main Memory or

the Register File is indefinite, or

by a divide instruction whose

divisor causes a divide fault.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 41
REV.

----------------- RADL---------------------------

3.1.6.2.7 (Cont.)

---------- Product Field Bit

-------- Mask Field Bit

I..- Data Flag Bit or Free Flag Bit

I i--

v v v 1 	Definitions -- Word 0 (continued)

I---

11-27-43 1 Result machine zero: The exponent
of the result returned to Main
Memory or to the Register File is
less than 9000 (90 for 32-bit

16 16

arithmetic). Result machine zero
may be caused by exponent underflow,I

or by one or more of the input

operands being machine zero. The

result machine zero data flag bit

is not set 	by a divide whose
divisor causes a divide fault.

12-28-44 1 	Bit 44 is the inclusive OR of bits

41, 42, and 43.

1 13-29-45 	I A negative source operand was
encountered in a square root

instruction. The square root of

the absolute value of the operand

is formed, and the two's complement

of this square root is stored as

the result.

14-30-46 1 An indefinite result was placed
into Main Memory or into the
Register File ...or... either or
both operands of a floating-point
compare were indefinite. An
indefinite result may be caused by
one or both operands of a

floating-point arithmetic operation

being indefinite, or by the

occurence of either a divide fault

or an exponent overflow.

(continued)

1

------------- -------------------------------------

--

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation S P E C I F I C A TI O N PAGE 42

REV.

- -- - R A D L . . .

3.1.6.2.7 (Cont.)

---------- Product Field Bit
------- Mask Field Bit
---- Data Flag Bit or Free Flag Bit

:- ~- - - - - - - - - - - -----------

v v vi Definitions -- Word 0 (continued)

1 	15-31-47 1 Breakpoint: See section 3.2.1.5.

48 1 Undefined.

49 Undefined.

50 Undefined.

51 1 	This bit is the dynamic inclusive OR!

of the product field bits of word 0 1

and the individual products of bits I

1 	51 and 52 of words 1 through 3; it I

is set if any one or more of these

conditions becomes set. Bit 51

cannot be cleared directly; the

condition(s) causing it to be set

must be cleared to accomplish this.

52 	 This bit is the data flag branch

enable; if it is a one and bit 51 of!

word 0 becomes a one (or vice versa)!

a data flag branch occurs at the end!

of the current instruction. See

1 3.1.6.3 for additional information.

Bit 52 of word 0 is automatically

cleared by the execution of a data

flag branch.

53 1 Not Applicable.
54 ! Not Applicable.
55 1 Not Applicable.

continued)

----------------------------------- --------------------------------------

--

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 43

REV.

------------------ RADL-------------- -------------

3.1.6.2.7 	 (Cont.)

---------- Product Field Bit

Mask Field Bit

Data Flag Bit or Free Flag Bit

-	 I-I
.
v v v I Definitions -- Word 0 (continued)

56 	 A CPU gate associated with the

Maintenance Control Unit monitoring

counters (See Functional Computer

Specification 10354637).

i 571 	 A CPU gate associated with the
Maintenance Control Unit monitoring
counters (See Functional Computer
Specification 10354637).

58 	 This bit set indicates that some

other data flag bit has been set

during execution of a scalar

register instruction.

59 	 This bit set indicates that the

breakpoint data flag (bit 47) was

set by a breakpoint compare in

Intermediate 	Memory (see section

1 3.2.1.5).
60 Undefined.
61 Undefined.
62 Undefined.
63 I Undefined.

-- - - - - - - - - -- - - - - - - - --------------

ICONTROL DATA E N G I N E E R I N G NO. 10354636

--- -- --- -- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 44
REV.

------------------ RADL---------------------------

3.1.6.2.8 Data Flag Register Word 1 Bit Assignments

----------- Product Field Bit
-------- Mask Field Bit

---- Data Flag Bit or Free Flag Bit
i ----

v v v IDefinitions -- Word 1
------------ ------------------------------------- I

1 00-16-32 1 Undefined.

1 01-17-33 1 Interlock Flag 1.

1 02-18-34 1 Interlock Flag 2.

1 03-19-35 1 Interlock Flag 3.

04-20-36 Interlock Flag 4.

1 05-21-37 1 Interlock Flag 5.

1 06-22-38 1 Interlock Flag 6.

1 07-23-39 1 Interlock Flag 7.

1 08-24-40 1 Interlock Flag 8.

1 09-25-41 1 Interlock Flag 9.

10-26-42 Interlock Flag 10.

1 11-27-43 1 Interlock Flag 11.

12-28-44 1 Interlock Flag 12.

1 13-29-45 1 Interlock Flag 13.

1 14-30-46 1 Interlock Flag 14.

1 15-31-47 1 Interlock Flag 15.

(continued)

--

CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 45
REV.

- ------------------ -RADL------------------------

3.1.6.2.8 (Cont.)

----------- Product Field Bit
- Mask Field Bit

I 	 . Data Flag Bit or Free Flag Bit
l -- -- - - -- - - - -- - - -- - -

v 	 v v I Definitions -- Word 1 (continued)
I--

48 1 Undefined.
49 1 Undefined.
50 Undefined.

51 	 I This bit is the dynamic inclusive
OR of the product field bits of this!

word 	(word 1); it is set if any one

or 	more of bits 00 through 15 of

this 	word are set. This bit cannot

be cleared directly; bits 00 through,!

1 15 of this word must be cleared
to 	accomplish this.

52 	 This bit is a mask for bit 51 of

this word; it is the product of this!

bit and bit 51 which is included in

the dynamic inclusive OR of bit 51, I
word 0. This bit must be set and
cleared by instruction.

55 Undefined.
56 1 Undefined.
57 1 Undefined.
58 Undefined.
59 Undefined.
60 1 Undefined.
61 	 Undefined.

62 	 Undefined.

63 	1 Undefined.

----------------------------------- --------------------------------------

--

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporationl S P E C I F I C A T I 0 N PAGE 46
REV.

------------------ RADL---------------------------

3.1.6.2.9 Data Flag Register Word 2 Bit Assignments

----------- Product Field Bit

-------- Mask Field Bit

---- Data Flag Bit or Free Flag Bit

I ;-------------------------------------

v v v Definitions -- Word 2

1 00-16-32 1 Undefined.

1 01-17-33 1 Dependency Flag 1.

1 02-18-34 1 Dependency Flag 2.

1 03-19-35 1 Dependency Flag 3.

04-20-36 1 Dependency Flag 4.

1 05-21-37 1 Dependency Flag 5.

1 06-22-38 1 Dependency Flag 6.

1 07-23-39 1 Dependency Flag 7.

1 08-24-40 1 Dependency Flag 8.

09-25-41 1 Dependency Flag 9.

10-26-42 Dependency Flag 10.

1 11-27-43 1 Dependency Flag 11.

1 12-28-44 Dependency Flag 12.

13-29-45 1 Dependency Flag 13.

1 14-30-46 1 Dependency Flag 14.

1 15-31-47 1 Dependency Flag 15.

(continued)

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- - DATE Mar.. 1979
Corporation I S P E C I F I C A T I 0 N PAGE 47

REV.

----------------- RA DL---------------------------

3.1.6.2.9 (Cont.)

..

I

v v v

Product Field Bit

Mask Field Bit

Data Flag Bit or Free Flag Bit

1 Definitions -- Word 2 (continued)

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

1 Undefined.
1 Undefined.
1 Undefined.

This bit is the dynamic inclusive OR!

of the product field bits of this

word (word 2); it is set if any one

or more of bits 00 through 15 of

this word are set. This bit cannot 1

be cleared directly; bits 00 through!

1.5 of this word must be cleared to 1
accomplish this. .

This bit is a mask for bit 51 of

this word; it is the product of this!

bit and bit 51 which is included in

the dynamic inclusive OR of bit 51,

word 0. This bit must be set and

cleared by instruction.

Inhibit dependency flags 1 through

15 for respective read key.

Inhibit dependency flags 1 through

15 for respective write key.

Undefined.

Undefined.

Undefined.

Undefined.

Undefined.

Undefined.

Undefined.

Undefined.

Undefined.

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 48

REV.

------------------- RADL-

3-.1.6.2.10 Data Flag -Register Word 3 Bit Assignments

---------- Product Field Bit

------- Mask Field Bit

---- Data Flag Bit or Free Flag Bit

I~I ~ ---

v v v I Definitions -- Word 3

I

00-16-32 Dependency Flag 16.

1 01-17-33 1 Dependency Flag 17.

1 02-18-34 1 Dependency Flag 18.

1 03-19-35 I Dependency Flag 19.

04-20-36 I Dependency Flag 20.

1 05-21-37 1 Dependency Flag 21.

1 06-22-3,8 I Dependency Flag 22.

1 07-23-39 I Dependency Flag 23.

1 08-24-40 1 Dependency Flag 24.

1 09-25-41 1 Dependency Flag 25.

10-26-42 Depend,ency Flag 26.

1 11-27-43 1 Dependency Flag 27.

1 12-28-44 1 Dependency Flag 28.

1 13-29-45 1 Dependency Flag 29.

1 14-30-46 1 Dependency Flag 30.

I 15-31-47 1 Dependency Flag 31.

(continued)

http:3-.1.6.2.10

--

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- -- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I O N PAGE 49

REV.

-------------------- RADL

3.1.6.2.10 (Cont.)

----------- Product Field Bit

-------- Mask Field Bit

---- Data Flag Bit or Free Flag Bit

v v v I Definitions -- Word 3 (continued)

48 Undefined.

49 Undefined.

50 Undefined.

51 	 This bit is the dynamic inclusive OR!

of the product field bits of this

word (word 3); it is set if any one

or more of bits 00 through 15 of

this word are set. This bit cannot

be cleared directly; bits 00 throughl

15 of this word must be cleared to

accomplish this.

52 	 This bit is a mask for bit 51 of

this word; it is the product of this!

bit and bit 51 which is included in

the dynamic inclusive OR of bit 51,

word 0. This bit must be set and

cleared by instruction.

53 	 Inhibit dependency flags 16 through

31 for respective read key.

54 	 Inhibit dependency flags 16 through

31 for respective write key.

55 Undefined.

56 Undefined.

57 Undefined.

58 Undefined.

59 Undefined.

60 Undefined.

61 Undefined.

62 Undefined.

63 Undefined.

i

http:3.1.6.2.10

iCONTROL DATA E N G I N E E R I N G NO. 10354636
------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 50

--- REV.

------------------ RADL---------------------------

3.1-..6-..2-.11 Data Flag Usage- by Instruction

The following tables list all instructions by

operation code in the first column. The other

columns are headed with data flag bit numbers for

word 0 of the data flag branch register. An X in

one of these columns indicates that flag may be set

during execution of that instruction. Some

instructions affect no data flags while some may

affect several.

Note that these are word 0 data flags; words 1, 2,

and 3 contain data flags affected only by interlock

and dependency keys.

(continued)

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N 	 PAGE 51

REV.

----------------- R ADL-------- ------------------

3.1.6.2.11 (Cont.)

OP 	 OP

CODE WORD 0 CODE WORD 0

i DATA FLAG BITS i DATA FLAG BITS

V 39 41 42 43 45 46 47 58 v 39 41 42 43 45 46 47 58

00 1 1 1 1 1 1 1 1 -1120 1 1 1 1 1 1 1
1011 1 111111 1121 1 1 1 1 1

1I I02 I1 I 122 1
1031 1 231 I

iI---------- -------------- -- l----------- ---II ------------------------- -----

104 1 1 1 1 1 1 IX 1 1124 1 1 1 1 1 1 1 1
1051 1 1 1 1 1 1 1 1125 1 1 1 1 1 1 1 1
106 1 1 1 1 1 1 1 1 11261 1 1 1 1 1 1 1 1
1071

I
I 1

I
271

I
1
III

1 1 1 1 1271
I

108 1 1 1 1 1 1 1 1 1128 1 1 1 1 1 1 1
109 1 1 1 1 1 1 1 1 1129 1 1 1
IOAI 1 1 1 1 1 1 112A1 1 I I

1OB 1 1111 1 1 112BI 1 1 1 I

1OC , 1 1 1 1 1 1 12C I 1 1 1 1 1 1 1

OEI 1 I I I 2E I I I I I I I I I
II	 I I I
1OF!1 1 1 1 1 1 1 112F1 1 1 1

1101X 1 1 1 1 1 1 13 0oi1 1 1

11 1 1 1 1 1 1 1 13 11 1 1 1 1 1 1 1

12] 1 1 1 1 1 1 132 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 13 3 1 1 1 1 1 1 1 1

1 	 I

15 1 1 1 1 1 1 1 11351 1 1 1 1 1 1
I I I III I

-16ll 1I - - 1I 1- " 1I 1I - - I1 -- 1I 1136 1I 1I 1I I1 1 I 1I I -	 I - - I

17 1 1 1 11 1 137 1 11 1 1 	1 1

3EI	 IEI
1111 11 	 11311 1 1 118 1 11 11 11 11 1 1 1 113F 1 1 1 1 1 1 1 1 1 1

1121 1 .1 1 1 1 1 1 113F1 1 1 1 1 1 	 1 1
19i i 	 39i

--------------------------------------- ~I-----------------------------------ilk ! 1 1 1 1 1 1 1 3A I

I1B I 1 1 1 1 1 1 13B I
1141 1 1 1 1nu1e1)1 1 1 (1341t
l~CI 3ci i i i i i 	i i
1DIX 1 1 1 1 1 1 113D I1 1 1 1

(contin

http:3.1.6.2.11

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354636

I----- DATE Mar. 1979

I Corporation S P E C I F I C A T 1 0 PAGE 52

.....-	 REV.

------------------ R ADL---------------------------

3.1.2.6.11 (Cont.)

OP 	 OP

CODE WORD 0 CODE WORD 0

i DATA FLAG BITS DATA FLAG BITS

V 39 41 42 43 45 46 47 58 v 39 41 42 43 45 46 47 58

1401 	 1Xx X IX I IX 11601 1 IX IX 1 X IX I

1411 I X IX I IX I IX 11611 1 IX lX I IX 1 IX 1
421 1 IX IX I IX 1 IX 11621 1 IX IX 1 IX I IX I
431 ;63 1 1 1 1 1 1

I I -------------------------

I- ----------------------- I

1441 1 IX IXI X IX 11641 1 XXIX IXI jXI

14511 IXIXI lX IX 116511 IX IX IX IXI

461 IX IX I lX I IX 11661 1 IX IX 1 IX I IX 1

47 1 1 1 1 1 1 167 1 1 1 1 1

I I I

i i-------------------------------------IH i-----------------------------------i

1481 I lx Ix 1 Ix 1 1X 11681 1 IX IX 1 IX 1 IX I

1491 1 IX IX 1 IX I IX 11691 1 IX IX I jX 1 IX I

14AI 11111 1 1 116A1 I I 1 1 1 1

14BI 1 IX IX I IX 1 IX 116B1 I IX IX 1 IX I IX 1

I I 	 I I

i i-------------------------------------IH i-----------------------------------i

14CI IX 	 IX IX 1x I1 IX 116CI IX IX IX 1 IX 1 IX I
II II III 	 I
"4DI 1 1 1 1 I 1 1 116D1 1 1 1 1 1 1 1

I4E 1 1 1 1 1 116E1 1 1 1 1

I4FI IX IX IX I IX I IX 116F! IX IX IX IIX I IX I

I I I I I I I II I I I I I I I

i i---- ---------------------------------- i ---------------------------I I I I - - I -- - 1 --- I -- II I I I I , I I I ---

I ------ -------------------- I I-------------------------= -- "---------

1501 1 1 1 IX I IX 11701 1 1 1 1 jX I IXI

151 1 1 1 1 IXI 1 X1711 I I I I IXI IXI

1521 1 1 1 1 x 1 1 x IXI
Ix 11721 IX

1531 1 IX IX IX I IX11731 1 1 1 XIX IX I IX 1

I I 	 I I I

1541 IX IX IIX IIX 11741 IX IX IIX IX 1

1551 IX I I IX I IX 11751 1 X I X IX 1

i i-------------------------------------I i---------------------------------1561 	 H
1 1 1 	1 1 1 1 11761 1 IX IXI i XI

1571 1 	1 1 1 1 1 1 1177 I IX IX I IX1 IX 1

I III 	 I

15I 1 	1 1 1 1 1 1 11781 1 1 11 1

IX IXI X 11791 IX IX IXI
1591 1 	I lX I I 1 I I IXI I

i i-------------------------------------I i-----------------------------
I5AI 1 1 1 1 1 1 H117A 1 I

ISBF 1 1 1 1 1 1 I I1 1 I 1
 I

I I I I

5c I Ix IX IX(7C ti

1:5D1 IXI IX I X I7D1 1'

15E l 'I	 I

I---
IS I 1 I 	 I I
5F 	 1 1 1 1 7 I1I
SF11 11 1 1 1 1 1 7F1

(continued)

http:3.1.2.6.11

--

NO. 10354636
!CONTROL DATA 1 E N G I N E E R I N G

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 53

REV.

--------------------------- RADL

3.1.6.2.11 (Cont.)

OP OP

CODE WORD 0 CODE WORD 0

i DATA FLAG BITS i DATA FLAG BITS

V 39 41 42 43 45 46 47 58 v 39 41 42 43 45 46 47 58

180 1 1 1 1 1 1 1 ! A0 ! 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 ! A l l 1 1 1 1 1 1 1

182 1 1 1 1 1 1 11A2 1 1 1 1
183 1 1 1 1 1 1 1 I 1IA3 1 1 1 1 i

I I - - I ' - I -- I - I I I - I - I I I I I I I -- -

1841 1. 1 1 I I IA4l I I I

1851 1 1 1 1 1IA5I '

1861 1 1 1 I 1 11A61 I I

1871I I
1
I r - - -

1
I

1 1A71
- I I I

1
- - = - I

I
- l

I I II I . . I

1881 1 1 i I 11A811
1 1 1A9

18AI
18B 1

1
1 1 1

1
1

1
I

'AAI
1 ABI 1 1

.
1

- - -
I --------- I---------- -------- l-----------I I I-- I I - lI I l

18CI 1 11ACI :
18D 1 1 I AD I I i

I8EI
,8F1

1 1 IIAEI
,AFI

I
1

1
I

I
II

I -------- ,-------------------,----,------II--,--,--,--,--,--,I

1901 1 1 1 1 1 1 HBO -1B- I XXi I aXI
91IBl I I I XI
1911 1 1 1 1 1 1 1 181 1 1 1 1 IX 1 IX 1

192[1 1 1 11B2 1 1 1 IX 1 IX 1
1931 1 1 11B31 I IX 1 1X I

I I I I I I I II I
-

I- I I I -I I I. ..-

1941 1 IB41 I I I 1 IX I IX 1
1951 - 1 1 1 1 1B51 1 1 1 1 IX I IX i
196 1 1 1 1 1 I I 1 11B6 1 1 1 I 1 1
197 1 I 1 1 1 1 1 1 11B7 1 1 1 1 1 1 1 1

i---------- -------- -------- ---- ---II --- ,---,---,---,---,--- --

i
198 1 1 1 1 1 1 B8 1 1 1 1
199 1 I I 1 1 1 1 1 191 1 1 1 1 1 1 1

9A I I BAI
19I 1 I 11I1 1

19C I1 I I I I 1 1 iIBC I 1 1 1 1 1I I IIII I

19DI 1 1 1 1 1 1 1 IIBDI 1 1 1 1 1 1
19E 1 I I I 1 1 1 !IBE ! I I
19F1 IX IX IX I IX I i11BFI 1 1 1 1 I I

(continued)

http:3.1.6.2.11

ICONTROL DATA E N G I N E E R I N G NO. 10354636
-- ------ DATE Mar. 1979
I Corporation S P E C I F I C A T I 0 N PAGE 54

REV.

------------------ RADL---------------------------

3.1.6.2.11 (Cont.)

OP OP

CODE WORD 0 CODE WORD 0

' DATA FLAG BITS . DATA FLAG BITS

V 39 41 42 43 45 46 47 58 v 39 41 42 43 45 46 47 58

C01 1 1 1 1 1 IIEOI 1 1 1 1 1
1c1 1 1 1 1 1 1 1 1 !IE l 1 1 1 1 1 1
021 1 E21
1C31 1 11E31 1 1 1 1
I I I I I I I -t I I I I I I I

IC41 1 1 1 1 1 1 11E41 I 1 1 1
i

1051 1 1 1 1 1 1 1 11E51 1 1 1 1 1 1 1

1C61 1 1 1 1 1 1 1 11E6 1 1 1 1 1 1 1

1C71 1 1 1 1 	 II V7'
 I

1C8 1 1 1 1 1 1 1 1 'IE8I 1 1 1 1 1 1 1

1091 1 I 1 1 1 I 1'E9 1 I I 1 1 1 1

!CA ! 1 1 1 1 1 1 1 1IEAI 1 1 1 1 1 1 1

ICBI 1 1 11EBI 1 1 1 1 1 1 1 1

ICC!1 1 1 ''EC' 1 1 1 1 1 1

[CD 1 I I 1 1 1 1 1 !!ED! I I I I 1
I

1CE I 1 1 1 1 1 1 1 IIEEI 1 1 1 1 1 1 1

I I 1 	 I
e1 	 1 IFI 1 1 11

FI 	 I I I I I

I I---------------- --------- I-------------I I---II I I 1 1 I I I I I I I I

IDC I 1 I 1 1 1 1 FI 1 1 1 1 1 1 1

D I 1 I 1 I IF I 1 1
ID0 1 I 1 I 1 1 1 FO1 1 1 It

1D2 1 : I 1 21 1 1 1 1 1 1
I

D5 	 I I I IF5

D 1 1 1 1 1 1 1 1IF61 1 1 1 1 1 1

D 1 --1- 1 - I 1-1--1 -1- 	 - -
6 ID 1 1 	 1 1 I 1 1 6I

D81 F

i

ID9?!1 1 1F19~l

DA II I 	 IFA I I

1DB1 1 	 1 1 1 1FBI
II 	 i I I I I

IDYi l i 	 1 i 1 1 l1 l11F9 I : I

DE I I IIIFE 	 I I I I I I I I

III 	 II

1DF 1 	 FF,

http:3.1.6.2.11

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 55

REV.

----------------- RADL---------------------------

3.1.6.3 Data Flag Branch (DFB) [A6.0]

If a bit in the mask field is set and its associated

masked data flag bit is set, the associated bit in

the product field becomes a one. Bit 51 in the free

flag field also becomes a one since it is the dynamic

inclusive OR of bits 4 through 15 of the product

field.

If bit 51 is a one from above and if bit 52 is also

set (this is the DFB enable bit), an automatic DFB

occurs. The DFB takes place sometime following the

termination of the instruction which caused the DFB

condition to exist. The execution of the DFB sets

the bit address of the next instruction into the

right-most 48 bits of register 01 and a branch is

made to the bit address contained in the right-most

48 bits of register 02. The DFB enable bit in the

flag mask register (bit 52) is automatically cleared

at this time. The left-most 16 bits of register 01

are cleared to zero by a DFB.

Programmer Note:

DFBs are disabled when bit 52 is cleared. But if

bit 52 is reset before eliminating all the DFB

conditions, another DFB will occur which will change

the return address in register 01 and the machine may

wind up in a "tight loop" if proper caution is not

taken. Sampling bit 51 for a zero before setting bit

52 will prevent this situation for all cases except

those involving the job interval timer. When using

the job interval timer, it should be remembered that

the setting of bit 36 in the DFR occurs

asynchronously with respect to instruction execution

once the job interval timer is loaded. Thus the time

may set bit 36 after the check of bit 51 and before

the branch to the contents of register 01. One method

of handling this situation is to examine the contents

of register 01 upon entering the routine for handling

data flag branches. If register 01 indicates that the

branch occurred outside the DFB routine, then

register 01 could be copied to a temporary location.

If register 01 indicated that the branch had occurred

within the DFB routine, then register 01 would not be

copied to the temporary location. At the conclusion

of the DFB routine, a branch would always be taken to

the contents of the temporary location.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 56
REV.

--- --------------- RADL

3.1.6.3 (Cont.)

A simpler method is to combine the setting of bit 52

and the branch to the contents of register 01 into a

single 33 instruction (33603401).

3.1.7 Register File

For register operations, the 8-bit instruction

designators directly address the 256 registers of

10

the Register File. During program execution (monitor

or job), these registers reside in the Register File.

When an exchange operation occurs, the registers are

stored into 256 memory locations beginning at bit

10

address zero if in monitor mode and bit address

4000 if in job mode. The registers may not be

16

referenced as memory by their associated monitor or

job program.

Figure 1 shows a map of the Register File and the

relationship between the register, its memory

address for monitor mode and its 8-bit designator.

The number on-the right represents the bit address

and the number on the left is the value of the 8-bit

designator for the 64-bit register case. The number

inside the register represents the value of the 8-bit

designator for the 32-bit operand case. Note that any

reference to 32-bit register one is undefined.

(continued)

CoNTRoL DATA E N G I N E R I N NO. 10354636

--- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 57

REV.

----------------- RADL---------------------------

3.1.7 (Cont.)

8-bit Designator 	 Monitor Mode

Bit Address

Bit

0 31 32 63

0 0 IIIIIIIIIIIO...0000

------------------ -- --------------- 16

1 2 I 3 10...0040
------------------------- --------- 16

2 4 i 5 0...0080

---------------------------------	 16

\ 	 /

7F1 FE16 i FF16 10.. .1FCO
i--16

801 0..1 .2000 16
1

/

FF1------------------------------
161 10.. .3FCO

16

Figure 1. Register File

Register File Restrictions

A. 	Register Zero (Job or Monitor Mode)

1. 	During an exchange operation the contents

of the trace register and the appropriate

memory location for register zero are

exchanged (swapped).

Monitor to Job:

Before i After i

!Exchange! Exchangel
--------------------------------------- ---------I

!Absolute Address Zero I A C
i-- -------- ---------
ITrace Register 	 C i A

(continued)

-- -----------

------------------------------- --------------

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979

Corporation P E C I F I C A T I O N PAGE 58
REV.

------------------ RADL---------------------------

3.1.7 (Con't.)

Job 	to Monitor:

!Before I After I
lExchangel Exchange!

II

!Absolute Address Zero 1 A A

i--	 -------- ---------

ITrace Register 	 C i A

During a 7D (Swap) instruction involving register

zero as part of the register field, note a

required peculiarity. Although the current
contents of the trace register are sent to

the appropriate memory location for register

zero, the current contents of the trace register

are not altered.

!Contents IContents

!Before 7D !After 7D

IMemory location for

Iregister zero 	 A i B
i---	 ---------------------

!Trace register 	 B B

2. 	Register zero when referenced by a designator

will provide machine zero as an operand

except when used as a source register for

a base address or other description for a

stream instruction, in which case register

zero will appear to contain 64-zero bits. The

use of a zero address may cause the

instruction to be treated as an illegal

instruction. If register zero is specified

as the destination register, the instruction

typically performs normally with data flags

being set, if warranted, but no data is

stored. Some instructions become undefined if

register zero is specified as a destination

register.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 59
REV.

----------------- RADL---------------------------

3.1.7 (Cont.)

The following tables are intended to define what

operand is obtained when register zero is

specified for a source operand. To simplify

this chart, specifying of register zero as a

destination register has been ignored. A blank

in the chart indicates where it is either not

possible to specify register zero or it may only

be specified as a destination register. The

designators R, S, T, U, V, W, G, X, A, Y, B, Z,

and C are used for convenience although they do

not apply to all instructions. Utilization of

the following symbols is made.

Result When Register Zero is Referenced

Symbol for an Operand

M Machine zero is provided.

8000 0000 0000 0000 64-bit mode

16

8000 0000 32-bit mode

16

A All zero is provided.

Z All zero in the used portion.

In this instance the left-most bit

is not used thus machine zero and

all zeros are indistinguishable.

N Instruction performs as a No op.

C No control vector is used.

0 A mask of all ones is provided.

(continued)

!CONTROL DATA E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 60

REV.

--~--- ------------ RADL-------------------------

3.1-7 (-Cont.)

Instruction 	 Instruction

Op Designator 	 Op Designator

Code R S T Code R S T

04 Z 	 24 1 Z 1 Z

25 1 Z 1 Z 1 M

26 IZ I ZI I

27 1 Z 1 Z 1 M

09 i zZ Z i iiii

OA Z i

ii1 1 2B 1 M 1 Z i

2D M M

OE Z Z 2E M M

2F Z Z

10 1 M 1 30 1 M i
11 Z 1 31 1 Z 1 Z Z
12 Z 1 Z 132 i ZzZ
13 1

1041
Z
Z

1 Z 1
1

Z 1 33 1iZ
1c241iZnueZ)

34 1 M 1 Z i
135 1 Z 1 Z 1 Z
36 i Zz Z

1 1 37 ii

138 1 M

13A 1 Z

13B 1 Z

3C Z Z

13D 1 Z 1 Z i

13F 1 Z ii

--------------------------- -------------------------

CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 61

REV.

------------------ RADL ---------------------------

3.1.7 (Cont.)

Instruction Instruction

Op Designators Op Designators

Code R S T Code R S T

140 1 M 1 M 1 160 1 M I M I,

'41 M M 1 1 1611 M M

142 1 M 1 	M 1 1 162 1 M 1 M 1

1 163 1 M 1 Z I

1 " I--I 	 I - - II

;44 1 M 1 	M 1 1 164 1 M M

145 1 M M 1 1 165 1 M I M I

146 1 M 1 M 1 1 166 1 M 1 M i

1 167 1 M 1 Z I
II 	 ; I I

148 1 M I M 1 1 168 1 M 1 M 1

149 1 M I M 1 1 169 1 M M i

14B M 1 M 1 1 16B M 1 M i

I -- -- -- . . . I.. I I

14C mM 1 m 1 1 16C 1 M I M I
14D 1 1 1 16D 1 M I Z i
14E I Z 1 1 16E I M 1 Z i
14F1 M 1 M I I 16F1 M I M 1

I -- - II 	 I- -- I

1501 MI 1 1701 M I
151 1 M 1 171 1 M I
152 1 M 1 i1 172 1 M I
153 1 M I 	 1 173 1 M I

154 1 M 1 	Z 1 1 174 1 M I Z i

155 1 MI 	x 1 175 1 M 1 Z

i I 	 i" 1 176 1 M I
S177 1 Mi

158 M 1 1 178 1 M 1
159 M 1 1 179 1 M I
15A M I 	 I 17A I M I i
15B1 Z 	 Z 1 1 17B1 Z 1 Z i

l-----------------------------I I---------------------------

15C M I 	 1 17C I M I

15D M i 17D I A I * A
15E 1 Z I Z 1 1 17E I Z I Z i
15F Z I Z I I I7FI ZI Z ; M

*See Section 3.1.7.A.1 above

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
--- -- DATE Mar. 1979
Corporation P E C I F I C A T I O N PAGE 62

----- REV.

------------------ R A D L---------------------------

3.1.7 (Cont.)

Instruction Instruction
Op Designators Op - Designators
Code T U V W Code G X A Y B Z C

I---------------------- -------------------------------------

I I I I II I I I I I

IBOI II IZ IM I IZ Z
I I I II I IZ IM IZ z

I
I

I I
IIB2I
I II I

I I

IIS3

I I I
IZ
IZ

I
IM
IN

Z
Z

I
IZ
IZ

I
I
IZ

I
I
I

I I I I I B4 IZ IM I IZ IZ

I-----------I
B II IZ I IZ IZ IZ9 I A IA A IA II I I I
9E IA A IA II I I I
9F I A IA II I I I

I D I A I !A !A I I I I
19I A I !A !A I I I

----------------------- I------------------------------------

I I I I I(continued)

[CONTROL DATA 1 E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T IO N 	 PAGE 63

REV.

------------------ RADL---------------------------

3.1.7 (Cont.)

B. 	64-bit registers one and two (32-bit registers 2

through 5)

If data flag branches are being used, 64-bit

registers one and two must be reserved

exclusively for that use. Register one is the

data flag branch exit address and register

two holds the- data flag branch entry address.

C. 	Monitor's 64-bit registers 0-F (32-bit registers

16

0-1F)

16

Registers zero, one and two have the restrictions

listed in A and B above. Registers 3 through 7

are used for the. illegal instruction, exit force,

and external interrupt entry points.

D. 	32-bit register one (right-most half of 64-bit

register 0)

Any 	reference to 32-bit register one is undefined.

3.1.8 Real-Time Counters

3.1.8.1 Free-Running Clock

This clock consists of a free-running 47-bit counter

and a positive sign bit for a total of 48 bits. It

can be stored into register T using a Transmit Real-

Time Clock to T (39) instruction. This counter

increments at a one MHz rate.

1979
NO. 10354636
!CONTROL DATA I E N G I N E E R I N G

--- DATE Mar.
Corporation S P E C I F I C A T I 0 N PAGE 64

......- REV.

--- -------------------- R A D L

3.1.8.2 Monitor Interval Timer

The monitor interval timer is a 24-bit timer that

decrements at a one MHz rate.

This timer can be loaded from register R using the

Transmit (R) to Monitor Interval Timer (OA)

instruction, when the computer is in monitor mode.

The timer can be activated by loading it with

anything but all zeros. Once it is activated,

it will decrement until it reaches zero or is

deactivated. When the timer is decremented to zero,

it will cause an external interrupt 16 which must be

processed like any other external interrupt.

The 	timer is deactivated by the following methods:

1. 	Master clear

2. 	Loading with all zeros

3. 	Decremented to all zeros (when it is decremented

to all zeros and caused an external interrupt,

it will be inactive until loaded with some value

other than zero).

3.1.8.3 Job Interval Timer

The job interval timer is a 24-bit counter

decrementing at a one MHz rate.

This clock can be loaded (in job mode) only from

register R using a 3A (Transmit (R) to Job Interval

Timer) instruction. Once loaded, the timer continues

to decrement until either an exchange to monitor

mode occurs, the timer decrements to zero, or the

timer is loaded with a value of zero. If an exchange

to monitor mode occurs, the decrementing of the job,

interval timer is stopped and the current contents

of the timer are stored in the invisible package.

When the execution of that job is resumed, the job

interval timer is loaded from the invisible package

and resumes decrementing.

(continued)

1 E N G I N E E R I N G NO. 10354636
!CONTROL DATA

- DATE Mar. 1979

I Corporation 1 S P E C I F I C A T I 0 N 	 PAGE 65
REV.

------------------ RADL

3.1.8.3 (Cont.)

When the timer decrements to zero, bit 36 of the

data flag branchregister will be set. Thus, if

the corresponding mask bit is set, a data flag

branch would then occur during the next RNI.

The timer may be deactivated by loading it with a

value of zero. This does not cause bit 36 of the

data flag branch register to be set. Master clear

will also deactivate the job interval timer.

The timer is deactivated by the following methods:

1. Master clear

2. Loading with a value of zero

3. Decrementing to zero

The contents of the job interval timer may be

sampled by use of the 37 instruction (Transmit

Job Interval Timer to T). This does not

deactivate the counter.

3.1.9 (N/A)

3.1.10 Exchange Operations and Invisible Package

The purpose of the exchange is to change the prime

role of the CPU from monitor mode to job mode or

from job mode to monitor mode.

The exchange operation from monitor to a job is

always accomplished with an Exit Force instruction.

This causes the contents of the invisible package to

be loaded into the appropriate registers; the mode 	to

be changed from monitor to job enabling interrupts;

and execution to begin as specified by the invisible

package. Note that this may be the restarting of a

previously interrupted program.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- --- i DATE Mar. 1979

I Corporation I S P E C I F I C A T I 0 N PAGE 66
REV.

------------------ RADL.---------------------------

3.1.1-0 (-Cont.)

The Exit Force instruction and the channel interrupt

are the two normal ways of getting from a job in job

mode to the monitor program in monitor mode.

Attempting to execute a monitor-type instruction in

job mode or by attempting to execute an undefined

op-code comprise the third way into the monitor.

Except for the starting point in the monitor program,

the operation performed in getting to the monitor are

identical for the three. Sufficient information to

restart this job is stored into the invisible package

and the mode is changed from job to monitor. The

monitor program is executed starting at the absolute

address contained in the right-most 48 bits of the

monitor's register 3, 5, or 6.

Monitor register, the

Method of getting contents of which is

to the Monitor used to set P

1. Attempt to perform an Register 3

illegal instruction or a

monitor-type instruction

in job mode

2. Attempt to perform an Register 4

illegal instruction in

monitor mode

3. Exit force Register 5

4. External interrupt Register 6

The monitor must set up the invisible package for

each job. There is no invisible package for the

monitor program itself.

To start a job initially, the monitor must clear

the entire invisible package area except for the

program address areas.

For a more detailed description of the exchange

operation and the invisible package, see the

applicable computer specification as listed in

Section 2.0.

ICONTROL DATA 1 E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979
I

ICorporationl S P E C I F I C A T I O N 	 PAGE 67

REV.

------------------ RADL ---------------------------

3.2 Performance Characteristics

3.2.1 Instruction Descriptions

The instruction titles (3.2.1.1 - 3.2.1.256) are

written in the following format:

3.2.1.XXX AA B CC DD NAME OF INSTRUCTION [AX]

where AA = the function code (00-FF)
16

B = the format types, 1-F

CC = the number of bits in the operand

1 single bit

8 bytes

32 half-words

64 words

E either 32 or 64-bit

B both 32 and 64-bit

NA operand size not applicable

DD = the instruction type

Blank Undefined

BR Branch

IN Index

MN Monitor

NT Non-Typical

RG Register

SM Stream

[AX] = 	 The section in the Appendix which gives
further information.

In the instruction descriptions which follow, all

data flags referred to are in word 0 of the data flag

branch register.

3.2.1.1 00 4 NA MN IDLE

When in monitor mode, enable the external interrupts

and idle until an external interrupt occurs. The R,

S, and T designators are undefined and must be set to

zero.

[CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 68

REV.

------------------ RADL---------------------------

3.2.1.-2 01 ILLEGAL

3.2.1.3 02 ILLEGAL

3.2.1.4 03 ILLEGAL

3.2.1.5 04 4 64 NT BREAKPOINT-MAINTENANCE

The 	breakpoint instruction transfers (R) to the

main memory breakpoint register and (5) to the

intermediate memory breakpoint register. The

breakpoint registers are used as maintenance and

program debugging aids. If R or S is zero, the

respective breakpoint register is not altered. The

T field is not used.

Register R and S Format

Usage I
I Bits i Breakpoint Address i

0 15 16 	 63

Breakpoint Compares

1. 	Main memory addresses are compared with the main

memory breakpoint register and intermediate

memory addresses are compared with the

intermediate memory breakpoint register, both

according to the respective usage bits.

2. 	Since the monitor program does not have an

invisible package, the breakpoint registers must

be set up each time the monitor program is

entered. The breakpoint registers are

automatically cleared to zero during the exchange

to the monitor.

3. 	Program address compares are made on half-word

boundaries, and all other compares are made on

sword boundaries; thus bits 59-63 are not used

for program address compares, and bits 55-63 are

not used for all other compares.

(continued)

ICONTROL DATA E N G I N E E R I N G NO. 10354636
- DATE Mar. 1979

I Corporation S P E C I F I C A T IO N PAGE 69
REV.

------------------ RADL ---------------------------

3.2.1.5 (Cont.)

The two breakpoint address registers are compared

with all addresses delivered to their respective

memory. If the breakpoint address matches one of

these addresses and the proper usage bit is set, bit

47 of the data flag branch register is set indicating

a breakpoint. In addition, if bit 47 is set as the

result of a match in Intermediate Memory, bit 59 is

also set. Any combination of usage bits is

permissible; therefore the breakpoint address can be

checked against any or all of the addresses listed

below. The breakpoint registers are part of the

invisible package of a job.

Main Memory Breakpoint

Bits 3-15 of the register designated by R provide

the usage bits for main memory breakpoint address

compares; bits 0-2 are undefined and must be set to

zero. For each of the following bits set, the

indicated address being supplied to Main Memory is

compared to the breakpoint address.

Bit 3 - VRI read operand address

Bit 4 - VR2 read operand address

Bit 5 - VR3 read operand address

Bit 6 - VR4 read operand address

Bit 7 - VR1 write operand address

Bit 8 - VR2 write operand address

Bit 9 - MR1 read operand address

Bit 10 - MR2 read operand address

Bit 11 - MR3 read operand address

Bit 12 - MW1 write operand address

Bit 13 - RD scalar read operand address

Bit 14 - WT scalar write operand address

Bit 15 - half-word program address (P) just after

execution of the instruction at that

address.

Intermediate Memory Breakpoint

Bits 4-15 of the register designated by S provide

the usage bits for intermediate memory breakpoint

address compares; bits 0-3 are undefined and must be

set to zero. For each of the following bits set,

the indicated address being supplied to Intermediate

Memory is compared to the breakpoint address.

(continued)

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 70

REV.

------------------- RADL---------------------------

3,2.,1.5 (Cont.)

Bit 4 - RW1 read operand address

Bit 5 - RW2 read operand address

Bit 6 - RW3 read operand address

Bit 7 - RW4 read operand address

Bit 8 - RW1 write operand address

Bit 9 - RW2 write operand address

Bit 10 - RW3 write operand address

Bit 11 - RW4 write operand address

Bit 12 - Low speed ports 0-3 read operand address

Bit 13 - Low speed ports 4-7 read operand address

Bit 14 - Low speed ports 0-3 write operand address

Bit 15 - Low speed ports 4-7 write operand address

Data flags: bits 47 and 59

3.2.1.6 05 ILLEGAL

3.2.1.7 06 7 NA MN FAULT TEST - MAINTENANCE

This instruction is used to complement checkword

bits on the scalar write buses to Main Memory and to

Intermediate Memory in order that the read SECDED

circuitry may be checked. It can also be used to

disable the error correction circuitry on all read

buses. This allows data to be passed through the

SECDED hardware without any correction taking place.

This instruction is always enabled during monitor

mode. In job mode it becomes a No op unless bit 13

of word 8 in the job's invisible package is set.

The modes are set up by executing this instruction

with a "1" in the appropriate R or S designator

bits and are cleared by executing the instruction
with a "0" in the same bit locations. No
interrupts or I/O requests to Intermediate Memory

can be allowed during these fault tests.

The R and S designator bits are defined below; the

T designator is unused and must be set to zero.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
--- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 71

REV.

S ------------------ RADL

3.2.1.7 (Cont.)

R DESIGNATOR BIT

8 	 Disable error correction on all

read buses.

9-15 	 Checkword bits to be

complemented on scalar write to

Main Memory.

S DESIGNATOR BIT

16-23 	 Checkword bits to be

complemented on scalar write to

Intermediate Memory.

Programmer Note: These bits must be set to zero

before any monitor to job exchange operation. If

these bits are not set to zero via the 06

instruction, the connection network could produce

invalid data on the read and invalid data could be

written into memory.

A description of each of these faults can be found

in specification 10354637, CDC FMP Functional

Computer Specification.

SECDED FAULTS

The test is initiated by executing an 06 instruction

with bits 9 through 23 selected (R and S designators

to complement the respective checkword bits of

half-words 0, 1, 2, and 3 on the scalar -write bus to

Main Memory, and/or full words on the scalar write

bus to Intermediate Memory. By appropriate selectio

of data bits and complementation of checkword bits n

when writing in memory, it is possible to generate

SECDED faults on all read buses. This should allow

complete checking of the read SECDED hardware and

also the fault recording hardware for type and

address of the fault.

The forced complementing of the checkword bits is

discontinued by executing the 06 instruction with

bits 9 through 	15 (R designator) and/or bits 16-23

(S designator) 	set to zero.

3.2.1.8 07 ILLEGAL

I

ICONTROL DATA E N G I N E E R I N G NO. 10354636
-- - DATE Mar. 1979
Corporation 1 S P E C I F I C A T I 0 N PAGE 72

REV.

------------------- RADL---------------------------

3-.2.1.9 	 08 4 NA MN INPUT/OUTPUT PER R

When in monitor mode: Activate the channel flag

designated by the R designator and exit to the next

sequential instruction. If the R designator

specifies a non-existent channel, the operation

of this instruction is undefined.

The S and T 	designators are undefined and must be

set to zero.

3.2.1.10 	 09 4 64 BR EXIT FORCE

From a job to the monitor: Exchange to the monitor

program. A hardware branch is then taken to the

address defined by the right-most 48 bits of the

monitor's register 5.

From the monitor to a job: Exchange to the job

whose invisible package is located starting at the

absolute bit address 104000

16

The R, S, and T designators are undefined and must be

set to zero.

The exchange operation and invisible package are

explained in section 3.1.10; also, additional

information is provided in the computer

specification listed in Section 2.0.

3.2.1.11 	 OA 4 64 MN TRANSMIT (R) TO MONITOR INTERVAL

TIMER

When in monitor mode, transmit bits 40 through 63 of

64-bit register R to the monitor interval timer

(see Section 3.1.8). The left-most 40 bits of

register R are ignored. The S and T designators are

undefined and must be set to zero.

3.2.1.12 	 OB ILLEGAL

3.2.1.13 	 OC ILLEGAL

3.2.1.14 	 OD ILLEGAL

http:3.2.1.14
http:3.2.1.13
http:3.2.1.12
http:3.2.1.11
http:3.2.1.10

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation P E C I F I C A T I 0 N PAGE 73

REV.

----------------- RADL---------------------------

3.2.1.15 OE 4 64 MN TRANSLATE EXTERNAL INTERRUPT

Each bit in the external interrupt register (EIR) is

associated with an external I/O channel, the Swap

Unit, or the monitor interval timer.

External Interrupt Register Bit Assignment

0 I/O Channel 0

1 1
2 2

3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10

11 11

12 12

13 I/O Channel 13

14 Swap Unit

15 Monitor Interval

Timer

Translate the lowest numbered bit set in the EIR

into its associated four-bit code and transmit this

code to the right-most four bits of register T. The

left-most 60 bits of register T are cleared to zero.

Examine the ETR and if only one bit is set, the

branch condition is met. The branch, if taken, is

to (S) + (R) where (S) is an index in half-words and

(R) is the base address.

The exit, be it a branch or not, clears the bit (and

only that bit) in the EIR corresponding to the

channel designator which was transmitted to

register T.

If the T and S designators are equal, the

interrupting channel designator will also be the

branch index.

Bit zero of the EIR will never be set as it is

reserved for maintenance purposes.

If no bit in the EIR is set, this instruction sets

T to all zeros and no branch is taken.

http:3.2.1.15

ICONTROL DATA I E N G I N E E R I N G NO. 10354636
------ -----. i DATE Mar. 1979

I Corporation I S P E C I F I C A T I 0 N PAGE 74
.....- REV.

-------------------------- RADL -

3.2,1.16- OF ILLEGAL

3.2.1.17 10 A 64 RG CONVERT BCD TO BINARY, FIXED LENGTH

Convert the packed BCD number in register R to a

signed (two's complement) binary number and place

the result into the right-most 48 bits of register

T. 	The conversion is undefined for binary results

47 47

greater than 2 -1 or less than negative (2 -1);

thus the largest decimal number that may be converted

is +140,737,488,355,327. The ASCII/EBCDIC sign code

for-the BCD number is in bits 60-63 of register R.

Data flag bit 	39 will be set for numbers outside

this range;

If the input number is not a valid BCD number, the

results are undefined. Bits 0-15 of register T will

be cleared to zero.

Data flag: bit 39

3.2.1.18 11 A 64 RG CONVERT BINARY TO BCD, FIXED LENGTH

Convert the right-most 48 bits (two's complement

binary number) of register R to a packed BCD number

and place the result in register T. The result is

a number having 15 digits (4 bits per digit plus the

sign in th lower bits - bits 60-63). The binary

47

range is + (2 -1). During job mode, the sign bits

generated are conditioned by the ASCII/EBCDIC bit

in the job's invisible package. During monitor mode,

only ASCII codes will be generated.

3.2.1.19 12 7 8 NT LOAD BYTE; (T) PER (S), (R)

3.2.1.20 13 7 8 NT STORE BYTE; (T) PER (S), (R)

Load/store a byte from/into the address specified by

(R) + (S), where (R) is the base address and (S) is

an item count of bytes, into/from bits 56 through 63

of register T. The remaining bits of T are cleared

on a load and ignored on a store.

http:3.2.1.20
http:3.2.1.19
http:3.2.1.18
http:3.2.1.17
http:3.2,1.16

!CONTROL DATA E N G I N E E R I N G

Corporation S P E C I F I C A T IO

----- ------------------- RADL

N

NO. 10354636
DATE Mar. 1979
PAGE 75
REV.

3.2.1.21 14 ILLEGAL

3.2.1.22 15 ILLEGAL

3.2.1.23 16 ILLEGAL

3.2.1.24 17 ILLEGAL

3.2.1.25 18 ILLEGAL

3.2.1.26 19 ILLEGAL

3.2.1.27 1A ILLEGAL

3.2.1.28 lB ILLEGAL

3.2.1.29 IC ILLEGAL

3.2.1.30 iD ILLEGAL

3.2.1.31 1E ILLEGAL

3.2.1.32 IF ILLEGAL

E N G I N E E R I N G NO. 10354636
[CONTROL DATA

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 76

REV.

------------------- R A D L

3.2.1.33 	 20 7 64 RG SHIFT (R) AND (R+I) PER S TO (T) AND

(T+l)

This instruction shifts the 128-bit operand formed by

catenating the contents of register R and register

R+I (bit 0 of register R+I follows bit 63 of register

R) and stores the results into the register
designated by T and the next sequential register
(T+l). The S designator specifies the type and
amount of shift. If the S designator is in the
range from 0 through 7F (0 through 127), the

16 10
128-bit operand is shifted left end-around the
specified number of places. If the S designator is
in the range from FF through 81 (-1 through -127),

16 10
the 128-bit operand is shifted right with sign
extension. For this case, bit zero of the operand
from register R is considered to be the sign bit of
the shifted operand. The number of right shifts is
equal to the two's complement of the S designator.
If for example, S is equal to FE , the operand

16

shifts right two places. If the S designator is

greater that 7F or less than 81 , the results

16 16

of this instruction are undefined. The R designator

must specify an even register number. If the R

designator is equal to zero, register zero will

provide machine zero. This instruction does not

test for machine zero or indefinite or set any data

flags.

3.2.1.34 	 21 7 64 RG SHIFT (R) AND (R+1) PER (S) TO (T)

AND (T+)

This instruction shifts the 128-bit operand formed by

catenating the contents of register R and register

R+1 (bit 0 of register R+I follows bit 63 of register

R) and stores the results into the register

designated by T and the next sequential register

(T+). The contents of the register designated by S

determine the type and amount of shift. If the

(continued)

http:3.2.1.34
http:3.2.1.33

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 77
REV.

----------------------- R A D L------------------------------

3.2.1.34 (Cont.)

right-most byte of register S is in the range from 0

through 7F (O through 127), the 128-bit

16 10

operand is shifted left end-around the specified

number of places. If the right-most byte of

register S is in the range from FF through 81

16 16

(-I through -127), the 128-bit operand is shifted

10

right with sign extension. For this case, bit zero

of the operand from register R is considered to be

the sign bit of the shifted operand. The number of

right shifts is equal to the two's complement of the

right-most byte of register S. If the right-most

byte of register S is greater than 7F or less

16

than 81 , the results of this instruction are

16

undefined. The left-most seven bytes of register S

are ignored.

The R designator must specify an even register

number. If the R designator is equal to zero,

register zero will provide machine zero. This

instruction does not cause a test for machine zero or

indefinite or set any data flags.

3.2.1.35 22 ILLEGAL

3.2.1.36 23 ILLEGAL

3.2.1.37 24 7 32 NT 	 INTERMEDIATE MEMORY LOAD; (T) PER (S),

(R)

3.2.1.38 	 25 7 32 NT INTERMEDIATE MEMORY STORE; (T) PER

(S), (R)

Load/store 32-bit register T from/into the

Intermediate Memory address specified by (R) + (S),

where (R) is the base address and (S) is an item

count of half-words. Note that R and S are 64-bit

registers and that the item count is shifted left

five places before the addition. Overflow from

this addition is ignored, if it occurs.

http:3.2.1.38
http:3.2.1.37
http:3.2.1.36
http:3.2.1.35
http:3.2.1.34

E N G I N E E R I N G NO. 10354636
[CONTROL DATA

DATE Mar. 1979
SPECIFICATION

Corporation S P E C I F I C A T 1 0 N PAGE 78

REV.

-------- ------------------- R A D L ---------------------------

3-2-.1.39 26 T 6-4 NT 	 INTERMEDIATE MEMORY LOAD; (T) PER (S),

(R)

3.2.1.40 	 27 7 64 NT INTERMEDIATE MEMORY STORE; (T) PER

(S), (R)

Load/store 64-bit register T from/into the

Intermediate Memory address specified by (R) + (S),

where (R) is the base address and (S) is an item

count is shifted
count of words. Note that 	the item

left six places before the 	addition. Overflow from

this addition is ignored, if it occurs.

3.2.1.41 28 ILLEGAL

3.2.1.42 29 ILLEGAL

3.2.1.43 2A ILLEGAL

3.2.1.44 2B 4 64 RG 	ADD TO LENGTH FIELD

Add bits 00 through 15 of register R to bits 48

through 63 of S and store the result in bits 00

through 15 of register T. Bits 16 through 63 of

register R are transferred to bits 16 through 63 of

register T.

3.2.1.45 2C 4 64 RG 	 LOGICAL EXCLUSIVE OR (R),(S), TO (T)

3.2.1.46 2D 4 64 RG 	LOGICAL AND (R),(S), TO (T)

3.2.1.47 2E 4 64 RG 	LOGICAL INCLUSIVE OR (R),(S), TO (T)

These instructions perform the indicated logical

functions listed below. The function occurs bit by

bit on the 64-bit operands contained in the registers

designated by R and S. The result in each case is

stored in the register designated by T.

EXCLUSIVE OR AND INCLUSIVE OR

R S R,S RS R,S

O* 0 0 0 0
0 1 1 0 1
1 0 1 	 0 1
1 1 0 	 1 1

If the R or S designators equal zero, register zero

will contain machine zero.

http:3.2.1.47
http:3.2.1.46
http:3.2.1.45
http:3.2.1.44
http:3.2.1.43
http:3.2.1.42
http:3.2.1.41
http:3.2.1.40
http:3-2-.1.39

CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporationi S P E C I F I C A T I 0 N PAGE 79

REV.

------------------ RADL---------------------------

3.2.1.48 2F 9 1 BR REGISTER BIT BRANCH AND ALTER

This instruction examines bit 63 of register T. As

specified by the G designator a branch is made to

the address contained in the right-most 48 bits of

register S. The branch is made according to G bits

0 and 1 as follows:

GO GI

0 0 do not branch.

0 1 branch unconditionally.

1 0 branch if the object bit was a one.

1 1 branch if the object bit was a zero.

After the branch decision has been made and

regardless of what that decision was, the object bit

is altered according to G bits 2 and 3 as follows:

G2 G3

0 0 do not alter the object bit.

0 1 toggle the object bit to the other

state-.

1 0 set the object bit to a one.

1 1 clear the object bit to a zero.

http:3.2.1.48

ICONTROL DATA E N G I N E E R I N G NO. 10354636
I ------------- I DATE Mar. 1979
I Corporation I S P E C I F I C A T I 0 N PAGE 80

REV.

------------------ RADL ---------------------------

3.2.l-.149 30 7 64 RG SHIFT (R) PER S TO (T)

This instruction shifts the 64-bit operand from the

register designated by R and stores the result into

the register designated by T. The S designator

specifies the type and amount of the shift. If the

S designator is in the range from 0 through 3F (0

16
through 63), the operand from register R is shifted

10

left end-around the specified number of places and

then stored in register T. If the S designator is

in the range from FF through C1 (-1 through

16 16

-63), the operand from register T is shifted

10

right with sign extension and then stored into

register T. For this case, bit zero of the operand

from register R is considered to be the sign bit of

the shifted operand. The number of right shifts is
equal to the two's complement of the S designator.
If for example, S is equal to FE , the operand

16
from register R shifts right two places. If the
S designator is greater than 3F or less than

16
C1 , the results of this instruction are undefined.

16

If the R designator is equal to zero, register zero

will provide machine zero. This instruction does not

test for machine zero or indefinite or set any data

flags.

3.2.1.50 31 7 64 BR INCREASE(R) AND BRANCH IF(R) <> 0

Increment the contents of the right-most 48 bits of

register R by one. The upper 16 bits of register R

are not altered and arithmetic overflow is ignored.

If the result from above is 48 zeros, go to the next

sequential instruction. If the 48-bit result from

above is non-zero, branch to (S) + (T) where (S) is

an item count of half-words and (T) is the base

address. The resulting address for the branch is

undefined if the R designator is equal to either the

S designator or the T designator.

http:3.2.1.50

CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 8,1

REV.

------------------ RADL---------------------------

3.2.1.51 32 9 1 BR BIT BRANCH AND ALTER

Register S contains the address of the object bit.

This instruction reads up the word containing the

object bit and examines the bit. The branch is then

made according to G bits 0 and 1:

GO G1

0 0 do not branch.

0 i branch unconditionally.

1 0 branch if the object bit was a one.

1 1 branch if the object bit was a zero.

After the branch decision has been made and

regardless of what that decision was, the object bit

is altered according to G bits 2 and 3 as follows:

G2 G3

0 0 do not alter the object bit.

0 1 toggle the object bit to the other

state.
1 0 set the object bit to a one.
1 1 clear the object bit to a zero.

NOTE: 	If GO and G2 and G3 = O, do not reference the

object bit at all.

If (GO = 1) and (G2 and G3 = 0) read, but do

not write the object bit.

G bit 5 = 0 	 Register T contains the branch

address.

G bit 5 = 1I Branch address is formed by

1- adding the T designator, used as

G bit 6 = 01 a half-word item count, to the

program address register.

G bit 	5 = 1 Branch address is formed by
;- subtracting the T designator,

G bit 6 = 11 	 used as a half-word item count,

from the program address

register.

http:3.2.1.51

- w-- -- - - - -

!CONTROL DATA E N G I N E E R I N G NO. 10354636
Corporat---onCorporation SDATES P E C I F I C A T 1 0 N Mar. 1979PAGE 82

REV.

------------------- RADL

3.2.1-.52 33 B 1 BR DATA FLAG REGISTER fIT BRANCH AND ALTER

I is a six-bit designator specifying an object bit in
word N of the data flag register. The object bit in
the data flag register is examined and the decision
to branch is made according to G bits 0 and 1.

GO G1

0 0 do not branch.

0 1 branch unconditionally.

1 0 branch if the object bit was a one.

1 1 branch if the object bit was a zero.

After the branch decision has been made and

regardless of what that decision was, the object bit

is altered according to G bits 2 and 3 as follows:

G2 G3

0 0 do not alter the object bit.

0 1 toggle the object bit to the other

state.

1 0 set the object bit to a one.

1 1 clear the object bit to a zero.

Programmer Note: It is meaningless to try to alter

bits in the product field (bits 0-15) of word 0 since

the word 0 product field is strictly a function of

the appropriate data flag and flag mask bits. For

words 1 through 3, on the other hand, data flags

(bits 32-47) cannot be altered since they are

strictly a function of the state of interlock key

and dependency key usage. Conversely, the product

bits of words 1 through 3 must be cleared by

instruction and can be cleared only (cannot be set).

Since the 33 instruction begins execution without

waiting until the machine has completed all

operations, the data flag bits may set on any minor

cycle during execution of the 33 instruction.

Therefore, the object bit is sampled 2 minor cycles

after the 33 instruction is loaded into IRO. This

sampled object bit, rather than the actual object

bit, is used to control the decision to branch, and

the altering of the actual object bit in the data

flag register. Consequently, any data flag bits

that set after the object bit is sampled will not

(continued)

http:3.2.1-.52

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

Corporation 1 S P E C I F I C A T I 0 N
DATE Mar.
PAGE 83
REV.

1979

----------------- RA DL---------------------------

3.2.1.52 (Cont.)

affect the decision to branch. Also, if the sampled

object bit is a zero, any data flag bits that set

afterwards will not be cleared nor toggled to a zero.

G bit 5 = 0 	 Register T contains the branch

address.

G bit 5 =1 Branch address is formed by
I- adding the T designator, used as

G bit 6 = 01 a half-word item count, to the
program address register.

G bit 5 =1 	 Branch address is formed by

1- subtracting the T designator,

G bit 6 = 11 used as a half-word item count,
from the program address
register.

3.2.1.53 34 4 64 RG SHIFT(R) PER (S) TO (T)

This instruction shifts the 64-bit operand from the

register designated by R and stores the result into
the register designated by T. The register
designated by S specifies the type and amount of the
shift. If the right-most byte of register S is in
the range from 0 through 3F (0 through 63), the

16 10

shift is left, end-around the specified number of

places. If the right-most byte of register S is in

the range from FF through C1 (-1 through -63

16 16 10

the shift is right with sign extension. For this

case, bit zero of the operand from register R is

considered to be the sign bit of the shifted operand.

The number of right shifts is equal to the two's

complement of the right-most byte of register S. If

the right-most byte of register S is greater than

3F or less than C1 , the results of this

16 16

instruction are undefined. The left-most seven bytes

of register S are ignored.

If the R designator is equal to zero, register zero

will provide machine zero. This instruction does not

cause a test for machine zero or indefinite or set

any data flags.

http:3.2.1.53
http:3.2.1.52

ICONTROL DATA E N G I N E E R I N G NO. 10354636
------------- i DATE Mar. 1979

Corporationi S P E C I F I C A T IO N PAGE 84
REV.

--------------------------- R A D L

54- 7 (R) AND BRANCH IF (R) <>
12i1 .- 35 &k BR DECREASE 0

Decrement the contents of the right-most 48 bits of

register R by one. The upper 16 bits of register R

are not altered and arithmetic overflow is ignored.

If the result from above is 48 zeros, go to the next

sequential instruction. If the 48-bit result from

above is non-zero, branch to (S) + (T) where (S) is

an item count of half-words and (T) is the base

address. The resulting address for the branch is

undefined if the R designator is equal to either

the S designator or the T designator.

3.2.1.55 36 7 64 BR BRANCH AND SET (R) TO NEXT INSTRUCTION

After storing the address of the next sequential

instruction into register R, branch to (S) + (T)

where (S) is an item count of half-words and (T) is

the base address. Bits 0 through 15 of register R are

forced to zeros. Bits 59 through 63 of register R are

undefined. If the R designator is equal to the S

designator the results of this instruction are

undefined.

NOTE: If S=O, and R=T, this instruction sets

register R to the half-word address of the next

instruction and the program continues at the next

instruction. This is a way to sample the program

address register (P).

3.2.1.56 37 A 64 NT TRANSMIT JOB INTERVAL TIMER TO (T)

Transmit the contents of the job interval timer into

bits 40-63 of register T. Bits 0-39 are cleared to

zero. The R and S designators are undefined and must

be set to zero. This instruction does not deactivate

the timer.

When executed in monitor mode, the operation of this

instruction is undefined.

http:3.2.1.56
http:3.2.1.55

CONTROL DATA E N G I N E E R I N G NO. 10354636
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 85
REV.

------------------ RADL

3.2.1.57 	 38 A 64 IN TRANSMIT (R BITS 00-15) TO (T BITS

00-15)

Replace the left-most 16 bits of register T with the

left-most 16 bits of register R.

3.2.1.58 39 A 64 NT 	 TRANSMIT REAL-TIME CLOCK TO (T)

Transmit the contents of the real-time clock to bits

16 through 63 of register T. Bits 00 through 15 are

cleared. R and S must be zero.

3.2.1.59 3A A 64 NT 	 TRANSMIT (R) TO JOB INTERVAL TIMER

When executed in job mode, this instruction transmits

bits 40 through 63 of 64-bit register R to the job

interval timer. S and T must be zero. (See Sections

3.1.6.3 and 3.1.8.3).

When executed in monitor mode, this instruction

performs as a No op.

3.2.1.60 3B 7 64 BR 	 DATA FLAG REGISTER LOAD/STORE

Transfer the contents of register R to one word of

the data flag register and 	the original contents of

that word to register T. The left-most two bits of

the S designator specify the word (0-3) of the data

flag register. The R and T designators may be the

same and this will swap data flag packages. See the

Programmer Note in 3.2.1.52 regarding bits which

cannot be altered.

NOTE: An immediate data flag branch results at the

termination of this instruction if the new

contents of the data flag register meet the

appropriate conditions.

http:3.2.1.52
http:3.2.1.60
http:3.2.1.59
http:3.2.1.58
http:3.2.1.57

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation S F E C I F I C A T IO N PAGE 86

REV.

RADL.
---------------------L R -------

3.2..-6-1 3C 4 32 NT HALF-WORD INDEX MULTIPLY (R)*(S) TO

(T)

The right-most 24 bits of registers R and S contain

signed, two's complement integers. Their product is

formed and stored into the right-most 24 bits of

register T. The left-most 8 bits of register T are

cleared to zeros.

If the product or either operand exceeds the value,

23

+(2 -1) the result is undefined.

3.2.1.62 3D 4 64 NT INDEX MULTIPLY (R)*(S) TO (T)

The right-most 48 bits of registers R and S contain

signed, two's complement integers. Their product is

formed and stored into the right-most 48 bits of

register T. The left-most 16 bits of register T are

cleared to zeros.

If the product or either operand exceed's the value,

47

+(2 -1) the result is undefined.

3.2.1.63 3E 6 64 IN ENTER (R) WITH I (16 BITS)

Clear register R and transfer the right-most 16 bits

of this instruction to the right-most 48 bits of

register R (the sign of the 16-bit immediate operand

is extended through bit 16).

3.2.1.64 3F 6 64 IN INCREASE (R) BY I (16 BITS)

Replace the right-most 48 bits of register R by the

sum of those bits and the right-most 16 bits of this

instruction (the sign of the 16-bit immediate operand

is extended through bit 16 for the addition).

Arithmetic overflow is ignored.

http:3.2.1.64
http:3.2.1.63
http:3.2.1.62

CONTROL DATA E N G I N E E R I N G NO. 10354636
--- - DATE Mar. 1979
Corporation P E C I F I C A T I O N PAGE 87

REV.

------------------ RA DL---------------------------

3.2.1.65 40 4 32 RG ADD U; (R)+(S) TO (T)
3..2.1.66 41 4 32 RG ADD L; (R)+(S) TO (T)
3.2.1.67 42 4 32 RG ADD N; (R)+(S) TO (T)
3.2.1.68 43 ILLEGAL

3.2.1.6'9 44 4 32 RG SUB U; (R)-(S) TO (T)

3.2.1.70 45 4 32 RG SUB L; (R)-(S) TO (T)

3.2.1.71 46 4 .32 RG SUB N; (R)-(S) TO (T)

3.2.1.72 47 ILLEGAL

3.2.1.73 48 4 32 RG MPY U; (R)*(S) TO (T)

3.2.1.74 49 4 32 RG MPY L; (R)*(S) TO (T)

3.2.1.75 4A ILLEGAL

3.2.1.76 4B 4 32 RG MPY S; (R)*(S) TO (T)

3.2.1.77 4C 4 32 RG DIV U; (R)/(S) TO (T)

These instructions perform the indicated floating
point arithmetic operation on the 32-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in the

register designated by T.

U,signifies that the upper result of the operation is

returned; L signifies the lower result; S signifies

the significant result; and N signifies the

normalized upper result.

Data flags: bits 41, 42, 43, 46, and 58

3.2.1.78 4D 6 32 IN HALF-WORD ENTER R WITH 1(16 BITS)

Clear register R and transfer the right-most 16 bits

of this instruction to the right-most 24 bits of

register R (the sign of the 16-bit immediate operand

is extended through bit 8).

http:3.2.1.78
http:3.2.1.77
http:3.2.1.76
http:3.2.1.75
http:3.2.1.74
http:3.2.1.73
http:3.2.1.72
http:3.2.1.71
http:3.2.1.70
http:3.2.1.68
http:3.2.1.67
http:3.2.1.65

ICONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
I Corporation S P E C I F I C A T I 0 N PAGE 88

REV.

------------------- RADL---------------------------

3.2.1-.79. 4E 6 32- I-N -HALF-WORD INCREASE R BY I-16 BITS)

Replace the right-most 24 bits of register R by the

sum of those bits and the right-most 16 bits of this

instruction (the sign of the 16-bit immediate operand

is extended through bit 8 for the addition).

Arithmetic overflow is ignored.

3.2.1.80 4F 4 32 RG DIV S; (R)/(S) TO (T)

This instruction performs a divide significant

operation on the 32-bit floating-point operands

contained in the registers designated by R and S.

The result is stored in the register designated by T.

Data flags: bits 41, 42, 43, 46, and 58

3.2.1.81 50 A 32 RG TRUNCATE; (R) TO (T)

Transmit to destination register T the nearest

integer whose magnitude is less than or equal to the

32-bit floating-point operand in origin register R.

This integer is represented as an unnormalized 32-bit

floating-point number having a positive exponent.

If the exponent of the source operand is positive

(greater than or equal to zero), the operand is

transmitted directly to the destination register.

If the exponent of the source operand is negative,

the magnitude of the coefficient is shifted right end

off, and the exponent is increased by one for each

bit position shifted until the exponent becomes zero.

Zeros are extended on the left during the shift. If

the coefficient of the source operand is positive,

the shifted coefficient with zero exponent is entered

into the destination register. If the coefficient of

the source operand is negative, the two's complement

of the shifted coefficient with zero exponent is

entered into the destination register.

If machine zero is used as an operand, 32 zeros are

returned as a result.

Data flags: bits 46 and 58

http:3.2.1.81
http:3.2.1.80
http:3.2.1-.79

!CONTROL DATA 1 E N G I N E E R I N G NO. 1035-4636
DATE Mar. 1979

Corporation 1 S P E C I F I C A T I 0 N PAGE 89
REV.

------------------ RADL ---------------------------

3.2.1.82 51 A 32 RG FLOOR; (R) TO (T)

Transmit to destination register T the nearest

integer less than or equal to the 32-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 32-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register. If the

exponent of the source operand is negative, the

coefficient is shifted right end off and the exponent

is increased by one for each bit position shifted

until the exponent becomes zero. Sign bits are

extended on the left during the shift. The shifted

coefficient with zero exponent is entered into the

destination register.

If machine zero is used as an operand, 32 zeros are

returned as a result.

Data flags: bits 46 and 58

3.2.1.83 52 A 32 RG CEILING; (R) TO (T)

Transmit to destination register T the nearest

integer greater than or equal to the 32-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 32-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register. If the

exponent of the source operand is negative, the two's

complement of the coefficient is shifted right end

off and the exponent is increased by one for each bit

position shifted until the exponent becomes zero.

Sign bits are extended on the left during the shift.

The two's complement of the shifted coefficient with

zero exponent is entered into the destination

register.

If machine zero is used as an operand, 32 zeros are

returned as a result.

Data flags: bits 46 and 58

http:3.2.1.83
http:3.2.1.82

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
--- DATE Mar. 1979
Corporation I S P E C I F I C A T I 0 N PAGE 90

REV.

------------------ RADL---------------------------

1.2.1,84 53- A 32 RG SIGNIFICANT SQUKRE ROOT; (R) TO (T)

Transmit to 32-bit register T the square root of a

32-bit floating-point operand in register R.

Data flags: bits 43, 45, 46, and 58

3.2.1.85 54 4 32 RG ADJUST SIGNIFICANCE; (R) PER (S) TO

(T)

Adjust the significance of the floating-point operand

in register R and transmit it to result register T.

A signed, two's complement, integer is contained in

the right-most 24 bits of register S. The absolute

value of this integer is a shift count.

If the shift count is positive, shift the operand's

coefficient left the number of places specified by

the shift count or by the number of shifts needed to

normalize the coefficient, whichever is smaller. In

either case, the exponent of the operand is reduced

by one- for each place actually shifted. An all zero

coefficient will be shifted left the number of places

specified.

If the shift count is negative, shift the operand's

coefficient right the number of places specified by

the shift count and increase the exponent of the

operand by one for each place shifted. If register R

is indefinite, register T will be indefinite and data
flag bit 46 is set. If register R is machine zero,
register T will be machine zero and data flag bit 43
will be set.

This instruction is undefined if the absolute value

of the shift count is greater than 23 . Note that

10
the addition of the shift count can cause either

exponent overflow or exponent underflow.

Data flags: bits 42, 43, 46, and 58

http:3.2.1.85

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 91
REV.

------------------ RADL---------------------------

3.2.1.86 55 4 32 RG ADJUST EXPONENT; (R) PER (S) TO (T)

Transmit the adjusted operand from register R to

result register T. The exponent of the result is set

equal to the exponent of the operand in register S.

The coefficient of the result is formed by shifting

the coefficient of the operand from register R.

The shift count used is the difference between the

exponents in registers R and S. If the exponent in

register R is greater/less than the exponent in

register S, the shift is to the left/right,

respectively. For zero coefficients in register R,

the exponent from register S is copied to register

T with an all-zero coefficient.

If a left shift exceeds the number of places required

for normalization, the result is set to indefinite,

and data flag bit 42 is set. If either or both

operands are indefinite or machine zero, the result

is set to indefinite. In this case, data flag bit 46

is set and data flag bit 42 is not set.

Data flags: bits 42, 46, and 58

3.2.1.87 56 ILLEGAL

3.2.1.88 57 ILLEGAL

3.2.1.89 58 A 32 RG TRANSMIT; (R) TO (T)

Transmit the operand in 32-bit register R to 32-bit

register T.

3.2.1.90 59 A 32 RG ABSOLUTE; (R) TO (T)

Transmit the absolute value of the 32-bit floating

point operand in register R to register T.

Data flags: bits 42, 43, 46, and 58

http:3.2.1.90
http:3.2.1.89
http:3.2.1.88
http:3.2.1.87
http:3.2.1.86

[CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 92
REV.

------------------- R A D L---------------------------

3 2.1.9 5k A 32 RG EXPONENT OF CR) TO (T)

Transmit the exponent from the left-most 8 bit

positions of the origin register R to the right-most

8 bit positions of destination register T. The sign

of the exponent is extended through bit 8 of

destination register T, the left-most 8 bits of the

destination register are cleared to zeros.

3.2.1.92 5B 4 32 RG PACK; (R), (S) TO (T)

Transmit a 32-bit floating-point number to the

destination register T. The exponent of the number

is obtained from the right-most 8 bit positions of

register R and the coefficient is obtained from the

right-most 24 bit positions of register S.

3.2.1.93 5C A B RG EXTEND; 32-BIT (R) TO 64-BIT (T)

Extend the floating-point number from 32-bit register

R into a 64-bit floating-point number and transmit

the result to 64-bit register T. The value of the

resulting 16-bit exponent is 24 less than that of

the origin operand's exponent. The coefficient is

obtained by transmitting the right-most 24 bits of

the origin register into bits 16 through 39 of the

destination register. The right-most 24 bits of the

destination register are cleared to zero.

If R is indefinite, T will be indefinite and data

flag bit 46 will be set. If R is machine zero, T

will be machine zero and data flag bit 43 will be set

Data flags: bits 43, 46, and 58

http:3.2.1.93
http:3.2.1.92

[CONTROL DATA I E N G I N E E R I N G NO. 10354636
- I DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N 	 PAGE 93

REV.

-----------------------R A D L------------------------------

3.2.1.94 5D A B RG INDEX EXTEND; 32-BIT (R) TO 64-BIT (T)

Extend the floating-point number from 32-bit register

R into a 64-bit floating-point number and transmit

the result to 64-bit register T. The value of the

resulting 16-bit exponent is the same as the origin

operand's exponent. The coefficient is obtained by

transmitting the right-most 24 bits of the origin

register into bits 40 through 63 of the destination

register. Bits 16 through 39 of the destination

register are set to the sign of the origin

coefficient.

If register R is indefinite, register T will be

indefinite and data flag bit 46 will be set. If

register R is machine zero, register T will be

machine zero and data flag bit 43 will be set.

Data flags: bits 43, 46, and 58

3.2.1.95 5E 7 32 NT LOAD; (T) PER (S), (R)
3.2.1.96 5F 7 32 NT STORE; (T) PER (S), (R)

Load/store 32-bit register T from/into the address

specified by (R) + (S) where (R) is the base address

and (S) is an item count of half-words. Note that S

and R are 64-bit registers and that the item count

is shifted left five places before the addition.

Overflow from this addition is, ignored, if it occurs.

3.2.1.97 60 4 64 RG ADD U; (R)+(S) TO (T)
3.2.1.98 61 4 64 RG ADD L; (R)+(S) TO (T)

3.2.1.99 62 4 64 RG ADD N; (R)+(S) TO (T)

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in 	the

register designated by T.

U signifies that the upper result of the operation is

returned; L signifies the lower result; and N

signifies the normalized upper result.

Data flags: bits 42, 43, 46, and 58

http:3.2.1.99
http:3.2.1.98
http:3.2.1.97
http:3.2.1.96
http:3.2.1.95
http:3.2.1.94

CONTROL DATA E N G I N E E R I N G NO. 10354636

!ORDATE Mar. 1979

S P E C I F I C A T I 0 N PAGE 94
Corporation

REV.

------------------- RADL

3-.2.11-00 -63- 4 64 RG -DD -ADDRESS-; (R)+ MY TO (T)
/

This instruction adds bits 16 through 63 of register

R to bits 16 through 63 of register S and stores the

result in bits 16 through 63 of register T. Bits 16

through 63 are treated as 48-bit, positive, unsigned

integers. Arithmetic overflow is ignored. Bits 0

through 15 of register R are transferred without

modification to bits 0 through 15 of register T.

3.2.1.101 64 4 64 RG SUB U; (R)-(S) TO (T)
3.2.1.102 65 4 64 RG SUB L; (R)-(S) TO (T)

3.2.1.103 66 4 64 RG SUB N; (R)-(S) TO (T)

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated

by R and S. The result in each case is stored in the

register designated by T.

U signifies that the upper result of the operation is

returned; L signifies the lower result; and N

signifies the normalized upper result.

Data flags: bits 42, 43, 46, and 58

3.2.1.104 67 4 64 RG SUB ADDRESS; (R)-(S) TO (T)

This instruction subtracts bits 16 through 63 of

register S from bits 16 through 63 of register R and

stores the result in bits 16 through 63 of register

T. Bits 16 through 63 are treated as 48-bit, positive

unsigned integers. Arithmetic overflow is ignored.

Bits 0 through 15 of register R are transferred

without modification to bits 0 through 15 of

register T.

CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 95

REV.

--------------------------- RADL

3.2.1.105
3.2.1.106
3.2.1.107
3.2.1.108
3.2.1.109

68
69
6A
6B
6C

4 64 RG
4 64 RG
ILLEGAL
4 64 RG
4 64 RG

MPY U;
MPY L;

MPY S;
DIV U;

(R)*(S) TO (T)
(R)*(S) TO (T)

(R)*(S) TO (T)
(R)/(S) TO (T)

These instructions perform the indicated floating
point arithmetic operation on the 64-bit floating
point operands contained in the registers designated
by R and S. The result in each case is stored in the
register designated by T.

U signifies that the upper result of the operation is
returned; L signifies the lower result; S signifies
the significant result.

Data flags: bits 41, 42, 43, 46, and 58

-- -----------

--

--

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE
REV.

96

--------------------------- RADL

3.2-.1.1-10 6D -4 64 RG INSERT BITS; (R) TO (T) PER (S)

This instruction inserts the right-most bits of the

register designated by R into the register

designated by T.

i m
Reg R 1<---------

1 bits

INSERT v

1 1 m i i

Reg T <* *1<-------->
I I bits

* These bits are unaltered

,bit n

I ~ I

Reg S O--- I m 0----------------------- 0 n

0 9 10 15 16 57 58 63

Bits 10 through 15 of register S contain the number

(m) of right-most bits to be inserted. The right-most

6 bits of register S specify the the bit number (n)

in register T where the leftmost bit of the inserted

data will be placed. Bits 0 through 9 and 16 through

57 of register S are undefined and must be set to

zero.

If the R designator is equal to zero, then register

zero will provide machine zero. If m plus n is

greater than 64 , or if m is equal to zero, the

10

results of this instruction are undefined.

--

--

--

--

[CONTROL DATA

E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 97
REV.

------------------ R A D L---------------------------

3.2.1.111 6E 4 64 RG EXTRACT BITS;- (R) TO (T) PER (S)

This instruction extracts bits from register R and

stores them into the right-most portion of register

T. Register T is cleared before receiving the

extracted bits.

Reg R 	 i<-------->
I I bits i

v EXTRACT
bit n

v

S m
Reg T 10------------------------------------ 0 1<------- >1

1i bits

m n
Reg S 0---0 00------------------------0

0 9 10 15 	16 57 58 63,

Bits 10 through 15 of register S contain the number

(m) of bits to be extracted from register R. The

right-most 6 bits of register S specify the left-most

bit number of the extracted bits. Bits 0 through 9

and 16 through 57 of register S are undefined and

must be set to zero.

If the R designator is equal to zero, register zero

will provide machine zero. If m plus n is greater

than 64 , or if m is equal to zero, the results of

TO

this instruction are undefined.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 98
REV.

------------------- RADL ---------------------------

3.2.1.112 6F 4 64 RG DIV S; (R)/(S) TO (T)

This instruction performs a Divide Significant

operation on the 64-bit floating-point operands

contained in the registers designated by R and S.

The result is stored in the register designated by T.

Data flags: bits 41, 42, 43, 46, and 58

3.2.1.113 70 A 64 RG TRUNCATE; (R) TO (T)

Transmit to destination register T the nearest

integer whose magnitude is less than or equal to the

magnitude of the 64-bit floating-point operand in

origin register R. The integer is represented as an

unnormalized 64-bit floating-point number having a

positive exponent.

If the exponent of the source operand is positive

(greater than or equal to zero), the operand is

transmitted directly to the destination register.

If the exponent of the source operand is negative,

the magnitude of the coefficient is shifted right

end off and the exponent is increased by one for each

bit position shifted until the exponent becomes zero.

Zeros are extended on the left during the shift. If

the coefficient of the source operand is positive,

the shifted coefficient with zero exponent is entered

into the destination register. If the coefficient of

the source operand is negative, the two's complement

of the shifted coefficient with zero exponent is

entered into the destination register.

If a machine zero is used as an operand, 64 zeros are

returned as a result.

Data flags: bits 46 and 58

!CONTROL DATA E N G I N E E R I N G NO. 10354636
I DATE Mar. 1979
I Corporation S P E C I F I C A T I 0 N PAGE 99

REV.

-------------------- R A D L -

3.2.1.114 71 A 64 RG FLOOR; (R) TO (T)

Transmit to destination register T the nearest

integer less than or equal to the 64-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 64-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register. If the

exponent of the source operand is negative, the

coefficient is shifted right end off and the exponent

is increased by one for each bit position shifted

until the exponent becomes zero. Sign bits are

extended on the left during the shift. The shifted

coefficient with zero exponent is entered into the

destination register.

If a machine zero is used as an operand, 64 zeros are

returned as a result.

Data flags: bits 46 and 58

3.2.1.115 72 A 64 RG. CEILING; (R) TO (T)

Transmit to destination register T the nearest

integer greater than or equal to the 64-bit floating
point operand in origin register R. This integer is

represented as an unnormalized 64-bit floating-point

number having a positive exponent.

If the source operand's exponent is positive (greater

than or equal to zero), the operand is transmitted

directly to the destination register. If the

exponent of the source operand is negative, the two's

complement of the coefficient is shifted right end

off and the exponent is increased by one for each bit

position shifted until the exponent becomes zero.

Sign bits are extended on the left during the shift.

The two's complement of the shifted coefficient with

zero exponent is entered into the destination

register.

If machine zero is used as an operand, 64 zeros are

returned as a result.

Data flags: bits 46 and 58

CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 100

REV.

--- ---------------- RADL

3-.2.1.11-6 7-3 A 64 RG SIGNIFICANT SQUARE ROOT; (R) TO (T)

Transmit to register T the square root of the 64-bit

floating-point operand in register R.

Data flags: bits 43, 45, 46, and 58

3.2.1.117 74 4 64 RG ADJUST SIGNIFICANCE; (R) PER (S) TO (T)

Adjust the significance of the floating-point operand

in register R and transmit it to result register T.

A signed, two's complement integer is contained in

the right-most 48 bits of register S. The absolute

value of this integer is a shift count. The left
most 16 bits of register S are ignored.

If the shift count is positive, shift the operand's

coefficient left the number of places specified by

the shift count or by the number of shifts needed to

normalize the coefficient, whichever is smaller. In

either case, the exponent of the operand is reduced

by one for each place actually shifted. An all zero

coefficient will be shifted left the number of places

specified.

If the shift count is negative, shift the operand's

coefficient right the number of places specified by

the shift count and increase the exponent of the

operand by one for each place shifted.

This instruction is undefined if the absolute value

of the shift count is greater than 47 . Note that

10

the addition of shift count can cause either exponent

overflow or exponent underflow.

If register R is indefinite, register T will be

indefinite and data flag bit 46 will be set. If

register R.is machine zero, register T will be

machine zero and data flag bit 43 will be set.

Data flags: bits 42, 43, 46, and 58

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 101
REV.

------------------ RADL---------------------------

3.2.1.118 75 4 64 RG ADJUST EXPONENT; (R) PER (S) TO (T)

Transmit the adjusted operand from register R to

result register T. The exponent of the result is set

equal to the exponent of the operand in register S.

The result is formed by shifting the coefficient of

the operand from register R.

The shift count used is the difference between the

exponents is register R and S. If the exponent in

register R is greater/less than the exponent in

register S, the shift is to the left/right,

respectively. For zero coefficients in register R,

the exponent from register S is copied to register T

with an all-zero coefficient.

If a left shift exceeds the number of places

required for normalization, the result is set to

indefinite and data flag 42 is set. If either or

both operands are indefinite or machine zero, the

result is set to indefinite. In this case, data flag

bit 46 is set and data flag bit 42 is not set.

Data flags: bits 42, 46, and 58

ICONTROL DATA I E N G I N E E R I N G NO. 10354636

- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 102

REV.

------------------- RADL ---------------------------

3.2.1.11-9 76 A B RG CONTRACT; 64-BIT (R) TO 32-BIT (T)

Contract the 64-bit floating-point number from

register R into a 32-bit floating-point number and

transmit the result to 32-bit register T.

Input Exponent Result

7FFF Result Indefinite

Indefinite Data Flag 46

7000

6FFF Result Indefinite

Data Flag 42, 46

0058

0057 Result exponent 24 larger

10

than input exponent

Copy left-most 24 bits of

input coefficient

FF78

FF77 Result machine zero

Data Flag 43

8000

The 24-bit result coefficient is copied from the

left-most 24 bits of the 48-bit source coefficient

(bits 16 through 39). This has the effect of

contracting all negative source coefficients, whose

absolute values (neglecting the exponent) were less

24
than or equal to 2 , to a minus one.

Data flags: bits 42, 43, 46, and 58

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 103
REV.

------------------ RADL---------------------------

3.2.1.120 77 A B RG ROUNDED CONTRACT; 64-BIT (R) TO 32-BIT

(T)

Perform a rounded contract operation on the 64-bit

floating-point number in register R and transmit the

32-bit floating-point result to 32-bit register T.

A positive one is added to the origin operand in bit

position 40. If overflow occurs the exponent is

increased by one and the coefficient is shifted right

one place. The left-most 24 bits of this 48-bit sum

are- then transmitted to the 24-bit coefficient

portion of register T. Each non-endcase result

8-bit exponent is 24 (25 if overflow occurred)

10 10

greater than the corresponding source exponent.

Data flags: bits 42, 43, 46, and 58

3.2.1.121 78 A 64 RG TRANSMIT; (R) TO (T)

Transmit the 64-bit operand in register R to

register T.

3.2.1.122 79 A 64 RG ABSOLUTE; (R) TO (T)

Transmit the absolute value of the 64-bit floating
point operand in register R to register I.

Data flags: bits 42, 43, 46, and 58

3.2.1.123 7A A 64 RG EXPONENT OF (R) TO (T)

Transmit the exponent from the left-most 16 bit

positions of origin register R to the right-most

16 bit positions of destination register T. The sign

of the exponent is extended through bit 16 of

destination register T. The left-most 16 bits of the

destination register are cleared to zeros.

3.2.1.124 7B 4 64 RG PACK; (R), (S) TO (T)

Transmit a 64-bit floating-point number to

destination register T. The exponent of the number

is obtained from the right-most 16 bit positions of

register R, and the coefficient is obtained from the

right-most 48 bit positions of register S.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 104
REV.

------------------- RADL

3.2.1.125 7C A 64 RG LENGTH; (R) TO (T)

Transmit the left-most 16 bit positions of origin

register R to the right-most 16 bit positions of

destination register T. The left-most 48 bits of the

destination register are cleared to zeros.

3.2.1.126 7D 7 64 NT SWAP; S----- >T AND R----->S

Move to destination field T, a portion of the

Register File beginning at the 64-bit register

specified by the right-most eight bits of register S.

Transmit source field R to the Register File

beginning at the 64-bit register specified by the

right-most eight bits of register S.

The left-most 16 bits of register R and T specify

the field length in words for the source and

destination fields, respectively. The field lengths

of the source and destination fields may be different

but each must be even. A zero field length indicates

no transfer for that field. Any transfer of words

into or out of the Register File that becomes

exhausted of registers (i.e., beyond the bounds of

the Register File), causes the instruction to become

undefined.

The right-most 48 bits of registers R and T specify

the base address of the source and destination

fields, respectively. These addresses must specify

an even 64-bit word in Main Memory. Bits 57

-.... ugh 63 of register R and T are undefined and must

be set to zero. Overlap of the source and destination

fields is allowed only if the base addresses for both

fields are equal.

Registers R, S, or T, may be in the range of the

registers being swapped.

The starting register in the file specified by the

right-most eight bits of register S must be an even

register or this instruction will be treated as an

undefined instruction. For additional material see

Section 3.1.7 on the Register File.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation P E C I F I C A T I 0 N PAGE 105

REV.

--------------------- RADL ----------------------------

3.2.1.127 7E 7 64 NT LOAD; (T) PER (S), (R)
3.2.1.128 7F 7 64 NT STORE; (T) PER (S), (R)

Load/store 64-bit register T from/into the address

specified by CR) + (S) where (R) is the base address

and (S) is an item count of words.

3.2.1.129 80 ILLEGAL

3.2.1.130 81 ILLEGAL

3.2.1.131 82 ILLEGAL

3.2.1.132 83 ILLEGAL

3.2.1.133 84 ILLEGAL

3.2.1.134 85 ILLEGAL

3.2.1.135 86 ILLEGAL

3.2.1.136 87 ILLEGAL

3.2.1.137 88 ILLEGAL

3.2.1.138 89 ILLEGAL

3.2.1.139 8A ILLEGAL

3,.2.1.140 83 ILLEGAL

3.2.1.141 8C ILLEGAL

3.2.1.142 8D ILLEGAL

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- -- DATE Mar. 1979

S P E C I F I C A T I 0 N PAGE 106
Corporation

REV.

-------------------- R A D L

3.2.1.143 8E

3.2.1.144 8F

3.2.1.145 90

3.2.1.146 91

3.2.1.147 92

3.2.1.148 93

3.2.1.149 94

3.2.1.150 95

3.2.1.151 96

3.2.1.152 97

3.2.1.153 98

3.2.1.154 99

3.2.1.155 9A

3.2.1.156 9B

3.2.1.157 9C

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ICONTROL DATA E N G I N E E R I N G NO. T0354636
- DATE Mar. 1979

I Corporation S P E C I F I C A T I O N PAGE 107
REV.

------------------ RAD ---------------------------

3.2.1.158 9D D E SM MEMORY MAP

This instruction controls memory to memory data

transfers with reordering capability; the transfers

can be intramemory for either the Main Memory or the

Intermediate Memory, or they can be intermemory

transfers for certain cases from Main Memory to

Intermediate Memory or vice versa. The operations

provided by this instruction permit remapping of data

in either memory while other vector operations are in

process in the Vector Unit. In addition, mapping

operations can be executing in both Main.Memory and

Intermediate Memory concurrently if no resources are

common to both. Setup information is provided to

three main memory read ports, READ1, READ2, and READ3

and to one main memory write port, WRITE1, and/or to

three intermediate memory read/write ports, RW1, RW2,

and RW3. Referring to instruction format D, the

fields are defined as follows:

Field Function and Meaning

F Function Code - 8 bits (9D) - Memory Map

K Read Key - 5 bits

Z Write Key - 5 bits

S Suboperation - 3 bits - these codes identify

the suboperation to be performed; refer to

Suboperation Descriptions, below.

Code Meaning

0 No Operation
1 Gather
2 Scatter
3 Illegal
4 Illegal

5 Compress

6 Mask

7 Merge

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 108
REV.

------------------- RADL---------------------------

3.2.1.158 	 (Cont.)

Field

B

C,D,E

Function and Meaning

Source/Destination - 2 bits - specifies Main

Memory and/or Intermediate Memory as

source and/or destination for operand

streams according to the following codes.

Code Meaning

0 Main Memory for both source and
destination.

1 Main Memory as source and
Intermediate Memory as
destination -- scatter
suboperation only (S=2), results
are undefined for S-codes
1,5,6,7.

2 Intermediate Memory as source and
Main Memory as destination -
gather and compress suboperations
only (S=1,5), results are undefined
for S-codes 2,6,7.

3 Intermediate Memory as both source
and destination.

Operand Size - 1 bit - specifies size of

operands for memory to memory data

transfer.

Code Meaning

0 64-bit 	operands.

1 32-bit 	operands.

Suboperation Modifiers - 2, 1, and 1 bits,

respectively - these modifiers have

different meaning dependent on the

suboperation, and are defined below with

each suboperation description.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 109
REV.

------------------ RADL ---------------------------

3.2.1.158 (Cont.)

Field 	 Function and Meaning

T,U, 	 Register Designators - 8 bits - each 8-bit

V,W 	 field holds a register file designator; the

word specified by T, U, V, or W will be

sent to the appropriate read and write

ports in the two map units for each of the

T, U, V, or W designators which is

non-zero. If a designator is zero, the

respective read or write bus control in

either map unit is not used by the

instructon.

G'enerally, the information in the word

specified by T, U, V, or W consists of a

length (number of operands) and a memory

address for the respective data stream.

X,Y 	 Null Fields - 1 and 3 bits, respectively
not used, must be zero.

Suboperation Descriptions

Gather -- S field = 1

The gather suboperation uses a list of memory

locations to gather data into another list. The

list of memory locations can be either explicit or

implicit. If explicit, an index list is read from

memory and each index is added to a base address

to fetch the operand list. An implicit list is

specified by declaring a stride in the instruction

(see C field description below). The base address

for the index list, if explicit, and the operand

list are contained in bits 16-63 of the registers

designated by V and T, respectively.

The base address of the destination field is

contained in bits 16-63 of the register designated

by W, and the total number of records to be

transferred is the field length contained in bits

00-15 of the register designated by W. If a

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-- - DATE Mar. 1979

Corporation 1 S P E C I F I C A T I O N PAGE 110

REV.

------------------- RADL-

3.2.1.158 (Cont.)

Suboperation Descriptions

Gather (continued)

2-dimension Gather is specified, the stride in the

Y-direction (STRIDEY) is contained in bits 16-63

of the register designated by V. If a 3-dimension

Gather is specified, the stride in the Z-direction

STRIDEZ) is contained in bits 16-63 of the

register designated by U; STRIDEY is provided as

for the 2-dimension stride and, in addition, bits

00-15 of the register designated by V contain

YCOUNT, the number of times STRIDEY is applied

before STRIDEZ is applied.

Length of records is specified by the length field

(bits 00-15) of the register designated by T; e.g.,

a field length of one transfers one word for each

address in the list, or stride, while a field

length of 100 transfers 100 successive words for

each address in the list, or stride, starting at

that address. Note that a field length of zero

results in no data being transferred.

For the gather suboperation, the C, D, and E

fields are defined as follows:

C - Stride Specification - 2 bits

0 An index list (no stride) is used from the

same memory as the source operands.

1 An index list (no stride) is used from
Intermediate Memory if the source is Main
Memory for operands, and vice versa.

2 2-dimension stride.

3 3-dimension stride.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636

- --------------- DATE Mar. 1979
Corporation I S P E C I F I C A T I 0 N PAGE 111

REV.

------------------ R A D L ---------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Gather (continued)

D - STRIDEY Indirect - 1 bit

If 	C=O or C=1, D is ignored and the register

designated by V contains a memory address; if

C=2 or C=3, D is as follows:

0 	Register designated by V contains STRIDEY.

1 	Register designated by V contains a memory

address, the content of which is STRIDEY.

E - STRIDEZ Indirect - 1 bit

If 	the C field is not equal to 3, E is ignored;

for C equal to 3, E is as follows:

0 	 Register designated by U contains STRIDEZ.

1 	 Register designated by U contains a memory

address, the content of which is STRIDEZ.

Scatter -- S field = 2

The scatter suboperation uses a list of memory

locations to scatter a list of input data back into

memory - the inverse of Gather. The destination

list of memory locations can be either explicit or

implicit. If explicit, an index list is read from

memory and each index is added to the destination

(write) base address to provide addresses for the

write operand list. An implicit list is specified

by 	declaring a stride in the instruction (see C

field description below). The base address for

the source operand list and the index list are

contained in bits 16-63 of the register designated

by 	T and V, respectively.

The base address of the destination list is

contained in bits 16-63 of the register designated

by 	W, and the total number of records to be

transferred is the field length contained in bits

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979

Corporation S P E C I F I C A T I ON PAGE 112

REV.

------------------- R A D L

3.2.1.158 (Cont.)

Suboperation Descriptions

Scatter (continued)

00-15 of the register designated by W. If a

2-dimension Scatter is specified, the stride in

the Y-direction (STRIDEY) is contained in bits

16-63 of the register designated by V. If a

3-dimension Scatter is specified, the stride in

the Z-direction (STRIDEZ) is contained in bits

16-63 of the register designated by U; STRIDEY is

provided as for the 2-dimension stride and, in

addition, bits 00-15 of the register designated by

V contain YCOUNT, the number of times STRIDEY is

applied before STRIDEZ is applied.

Length of records is specified by the length field

(bits 00-15) of the register designated by T; e.g.,

a field length of one transfers one word for each

address in the list, or stride, while a field

length of 100 transfers 100 successive words for

each address in the list, or stride, starting at

that address. Note that a field length of zero

results in no data being transferred.

For the scatter suboperation, the C, D, and E

fields are defined as follows:

C - Stride Specification - 2 bits

0 	An index list (no stride) is used from the

same memory as the source operands.

1 	An index.list (no stride) is used from

Intermediate Memory if the source is Main

Memory for operands, and vice versa.

2 	2-dimension stride.

3 	3-dimension stride.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C AT I O N PAGE 113
REV.

------------------ RADL ---------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Scatter (continued)

D - STRIDEY Indirect - 1 bit

If 	C=0 or C=1, D is ignored and the register

designated by V contains a memory address; if

C2 	or C=3, D is as follows:

0 	Register designated by V contains STRIDEY.

1 	Register designated by V contains a memory

address, the content of which is STRIDEY.

E - STRIDEZ Indirect - 1 bit

If 	the C field is not equal to 3, E is ignored;

for C equal to 3, E is as follows:

0 	Register designated by U contains STRIDEZ.

1 	Register designated by U contains a memory

address, the content of which is STRIDEZ.

Compress -- S field = 5

The compress suboperation deletes operands from a

source operand stream according to a control

vector (bit string), writing result data to a

destination operand stream.

The register designated by T contains the source

operand base address in bits 16-63. Bits 00-15

and 16-63 of the register designated by V contain

the vector length and control vector base address,

respectively. The register designated by W

contains the write vector length and destination

base address in bits 00-15 and 16-63, respectively.

For the compress suboperation, the C, D, and E

fields are defined as follows:

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- - - DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 114
---- REV.

------------------ R A D L---------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Compress (continued)

C - Control Vector Operation - 2 bits

0 	Operands corresponding to each zero bit in

the control vector are deleted from the

result stream.

1 	Operands corresponding to each one bit in

the control vector are deleted from the

result stream.

2 	Illegal.

3 	Illegal.

D - Repeat Control Vector - 1 bit

0 	Control vector extension: if the control

vector length becomes exhausted before

satisfying the write vector length, the

control vector (bit string) is extended with

permissive elements ('s for C=O, O's for

C=1) until the write vector length is

satisfied.

1 	Control vector repeat: if the control

vector length becomes exhausted before

satisfying the write vector length, the

control vector (bit string) is repeated from

the beginning until the write vector length

is satisfied.

E - Control Vector Source - 1 bit - If the B field
does not equal 2, this field is ignored; if
the B field does equal 2 (Intermediate
Memory to Main Memory), this field specifies

the source of the control vector (bit

string) as follows:

0 	Control vector source is Intermediate Memory.

1 	Control vector source is Main Memory.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
- DATE Mar. 1979

I Corporation S P E C I F I C A T I 0 N PAGE 115
REV.

----------------------- R A D L----------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Mask/Merge (continued)

Mask/Merge -- S field = 6 or 7, respectively

Suboperations Mask and Merge both combine two

source operand streams according to a control

vector (bit string), into one destination (write)

operand stream. In a Mask (S=6) the operands of

the stream not being selected are skipped (the ith

element of A or the ith element of B to the

result). In a--Merge (S=7) no operands are skipped,

so that the "top" operand of each stream is always
available to be taken (the mth element of A or the

nth element of B to the result). Merge thus

corresponds to shuffling cards and Mask corresponds

to repeatedly selecting one of two from a pair of

cards. Note, however, that the E field allows a

combined mask/merge suboperation (one source stream

is skipped, the other is not).

The base addresses for the A and B streams are

contained in bits 16-63 of the registers

designated by T and U, respectively. The control

vector length and base address are contained in

bits 00-15 and 16-63, respectively, of the

register designated by V. The register designated

by W contains the write vector length and

destination base address in bits 00-15 and 16-63,

respectively.

For the mask/merge suboperations the C, D, and E

fields are defined as follows:

!CONTROL DATA E N G I N E E R I N G NO. 10354636
------ ------- DATE Mar. 1979
Corporation S P E C I F I C A TI 0 N PAGE 116

....- REV.

------------------ RADL ---------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Mask/Merge (continued)

C - Control Vector Operation - 2 bits

o The A operand is sent to the write stream

for each "one" bit -inthe control vector;

the B operand is sent for each "zero" bit in

the control vector.

1 	The A operand is sent to the write stream

for each "zero" bit in the control vector;

the B operand is sent for each "one" bit in

the control vector.

2 	Illegal.

3 	Illegal.

D - Repeat Control Vector - 1 bit

0 	Control vector extension: if the control

vector length becomes exhausted before

satisfying the write vector length, the

control vector (bit string) is extended with

permissive elements ('s for C=O, O's for

C=1) until the write vector length is

satisfied.

1 	Control vector repeat: if the control

vector length becomes exhausted before

satisfying the write vector length, the

control vector (bit string) is repeated from

the beginning until the write vector length

is 	satisfied.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 117

REV.

------------------ RADL ---------------------------

3.2.1.158 (Cont.)

Suboperation Descriptions

Mask/Merge (continued)

E - Decompress - 1 bit

This bit is ignored for a mask suboperation

(S=6); for the merge suboperation (S=7) the

t field has the following meaning:

O 	Merge B operands: the B stream operand is

not skipped if an operand is taken from the

A steam.

1 	Decompress: one operand from the B stream

is skipped for each operand taken from the A

stream.

This bit does not effect the A stream which

is never skipped on a merge suboperation; it

thus allows a combination mask/merge

suboperation.

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
.

Corporation 1
,

S P E C I F I C A T I 0 N
DATE
PAGE
REV.

Mar.
118

1979

------------------ R A D L---------------------------

3.2.1.159 9E E E SM VECTOR READ PORT SETUP

This instruction provides setup for vector read

stream control between the Vector Unit and Main

Memory. A total of four read control elements may

receive setup information through execution of this

instruction; the control elements are four memory

read buses, VR1, VR2, VR3, and VR4.

Referring to instruction format E, the fields and

their codes are defined below.

Field Function and Meaning

F Function Code - 8 bits (9E) - Vector Read

Port Setup

K Read Key - 5 bits

A,B, Operand Size - 1 bit - for input trunks A,

C,D B, C, and D, respectively.

Code Meaning

0 64-bit oerands.

1 32-bit operands.

(continued)

E,G, Extend/-Repeat Vector - 2 bits - for vector

H,J trunks A, B, C, and D, respectively. This

field specifies the operand for fill when

a source vector ends before operation

completes:

Code Meaning

0 Extend indefinite.

1 Extend floating-point zero.

2 Extend floating-point one.

3 Repeat input vector.

When an input vector is repeated (code 3),

the input port restarts the vector from

the beginnihg after the number of input

operands specified by the field length

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979

I Corporation SP E C I F I C A T I 0 N PAGE 119
REV.

------------------ R A D L

3.2.1.159 	 (Cont.)

Field

M

T,U,

V,W

L,N,P

X

Function and Meaning

have been transferred. A length of one

with repeat means that the single operand

is held for the full execution time of the

instruction. A length of zero with repeat

is a special case that causes an operand

to be replicated eight times before

proceeding to the next operand.

VR2 Setup - 1 bit - specifies type of setup

for read port VR2; read ports VR1, VR3,

and VR4 can be set up only for streaming

mode, but VR2 can be set up for streaming

operands or 	for control vector addressing

and/or fetch.

Code Meaning

0 Set up 	VR2 in streaming mode.

1 Set up 	VR2 in control vector mode.

Register File Designator - 8 bits - codes to

designate one of 256 registers to supply

setup information such as address and

field length; T, U, V, and W apply to read

ports VR1, VR2, VR3, and VR4, respectively,

in the Vector Streaming Unit; these ports

supply source streams SR1, SR2, SR3, and

SR4, respectively, to the Vector Units. If

field T, U, V, or W is zero, the respective

port is not used by the instruction.

Null Fields 	- 1 bit - not used, must be zero.

Null Field - 3 bits - not used, must be zero.

!CONTROL DATA E N G I N E E R I N G NO. 10354636

...... - DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 120

.......- REV.

---- --------------- RADL

3.2.1.160 9F F. E SM VECTOR ARITHMETIC

This instruction specifies the arithmetic operations,

selects input data trunks, and provides setup

streams) for the Vector Unit. Memory ports

supplying source operand streams from memory to the

input data trunks must be set up with the 9E

instruction prior to execution of this instruction.

Referring to instruction format F, the fields are

defined as follows:

Field Function and Meaning

F Function Code - 8 bits (9F) - Vector

Arithmetic

Z Write Key - 5 bits

S Suboperation - 6 bits - This code identifies

the suboperation to be performed; refer to

Suboperation Descriptions, below.

A,B, Source - 2 bits - specifies source for

C,D A, B, C, and D input streams,

respectively, as follows:

Code Source

0 SRI from Vector Streaming Unit.

1 SR2 from Vector Streaming Unit.

2 SR3 from Vector Streaming Unit.

3 SR4 from Vector Streaming Unit.

G,H B and D Operand Sign Control - 2 bits
select sign and magnitude of the B and D

operand streams, respectively, according

to the following codes; A and C operand

streams cannot be modified.

Code Meaning

0 Operands unchanged.

1 Complement operands.

2 Positive magnitude of operands.

3 Negative magnitude of operands.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 121
REV.

------------------ RADL---------------------------

3.2.1.160 (Cont.)

Field

L,M

N,P

Q,R

Function and Meaning

Operand Size - 1 bit - for result streams

AWl and AW2, respectively.

Code Meaning

0 64-bit operands.

1 32-bit operands.

Round Result - 1 bit - round specification

for result streams AWl and AW2,

respectively; results are rounded or not

rounded according to the following code:

Code Meaning

0 Do not round result.

1 Round result.

Control Vector - 4 bits -these fields apply

to ouputs AWl and AW2, respectively, to

specify generation of a control vector or

use of a dontrol vector during the write

to Main Memory.

Code Meaning

0-7 No control vector.

8 Use normal control vector.

9 Generate control vector with test

A Generate control vector with test <.

B Generate control vector with test <.

C Use inverted control vector.

D Generate control vector with test i.

E Generate control vector with test >.

F Generate control vector with tst >.

(continued)

!CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 122

REV.

------------------- RADL---------------------------

3.2.1.160 (Cont.)

Field Function and Meaning

VR2 in the Vector Streaming Unit is the

only source of a control vector and must

be set up with a 9E instruction prior to

specifying use of a control vector in this

instruction.

X,Y Test Stream - 1 bit - this code specifies

which-result stream, AWl or AW2, is to be

tested for generation of a control vector

on write ports VW1 and VW2, respectively,

in the-Vector Streaming Unit.

X and Y apply only for the Q and R fields,

respectively, equal to 9 through B and D

through F.

Code Meaning

0 Test AWl.

1 Test AW2.

V,W Register File Designator - 8 bits - codes 00

through FF (hex) designate one of 256

registers to supply setup information such

as address and field length; V and W apply

to write ports VW1 and VW2, respectively,

in the Vector Streaming Unit for writing

result streams AWl and AW2, respectively,

to Main Memory. If field V or W is zero,

the respective write control in the Vector

Streaming Unit is not used.

E,T,U Null Fields - 1 bit each - not used, must be

zero.

(continued)

:CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
- DATE Mar. 1979
Corporation 1 S P E C I F I C A T I 0 N PAGE 123.

RE.

------------------ RADL ---------------------------

3.2.1.160 (Cont.)

Suboperation Descriptions

The 6-bit suboperation code, S, defines the

arithmetic operatione to be performed by the Vector

Unit producing results on two buses,. AWl and AW2.

The codes and their meanings are defined below.

Suboperations 02-14, 21, 23, 25, and 30-36 are

performed with normalized arithmetic.

Code Result on AWl Bus Result on AW2 Bus

00 A C

01 B D

02 A+D B+C

03 A+D B*C

04 A*D B*C'

05 (A+B)*D A+B

06 (A+B)*(C*D) C*D

07 (A+B)*(C+D) A+B

08 A*C+D B

09 (A+B)+D A+B

OA (A+B)+(C+D) C+D

0B (A+B)+C*D C*D

0C (A+B)*C+D (A+B)*C

OD (A*B)+(C*D) C*D

OE A*(B+C*D) B+(C*D)

OF (A+B)*D (A+B)*C

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
------------- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 124

....- REV.

--------------------------- R A D L----------------------------

3.2.1.160 (Cont.)

Suboperation Descriptions

Code

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

IF

Result on AWl Bus

(A*C)+D

(A*B)+D

(A*B)+D

A*(Bt(C+D))

A*B*C+D

Code not used

A+D Upper Sum

A+D Lower Sum

A+D Upper Sum

A+D Upper Sum

A+D Lower Sum

A*D Upper Product

A*D Lower Product

A*D Upper Product

Code not used

Expand 32-bit B

to 64. bits

(continued)

Result on AW2 Bus

(A*C')+B

C*D

C+D

B+(C+D)

B*C

B+C Upper Sum

B+C Lower Sum

B+C Lower Sum

B*C Upper Product

B*C Lower Product

B*C Upper Product

B*C Lower Product

B*C Lower Product

Expand 32-bit D
to 64 bits

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 125

REV.

---- -------------- RADL-------------------------

3.2.1.160 (Cont.)

Suboperation Descriptions

Code Result on AWl Bus Result on AW2 Bus

20 A/C Divide Upper None

32-bit mode

21 A/C Divide Normalize None

32-bit mode

22 A/C Divide Upper 64-bit I

mode (23-bit accuracy)

23 A/C Divide Normalize None

64-bit mode (23-bit

accuracy)

24 A*B*D Divide Upper None

64-bit mode (47-bit

accuracy)

See note 1

25 A*B*D Divide Normalize None

64-bit mode (47-bit

accuracy)

See note 1

26 Code not used

I

II I

2F Code not used

Note 1 -- A must be the AWl result and B must be the

AW2 result of suboperation 22; D is the divisor

of the suboperation 22. B*D is 2's complemented

before multiplying by A.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 126
REV.

------------------- R A D L---------------------------

3.2.1.160 	 (Cont.)

Suboperation Descriptions

Code Result on AWl Bus Result on AW2 Bus

30 Sum One None
(A +A +...+A)
01 n

31 Sum Two None
(A +B)+(A +B)+...+(A +B)
00 11 nfn

32 Sum of Products None
(A *B)+(A *B)+...+(A *B)
00 11 nfn

33 Product None
(A *A *...*A)
01 n

34 Product of Sums None

(A +B)*(A +B)*.*(A +B)

00 11 n n

35 Maximum 	 Count (note 2)

36 Minimum 	 Count (note 2)

37 Code 	not used

I I

3F Code not used

Note 2 -- Count is the element number of the operand
that corresponds to the maximum or the minimum.

Data flags: bits 41, 42, 43, and 46.

CONTROL DATA
-- -
Corporation

E N G I N E E R I N G

S P E C I F I C A T I 0 N

NO. 10354636
DATE Mar.. 1979
PAGE 127
REV.

S--------------------RADL ---------------------------

3.2.1.161 AO

3.2.1.162 Al

3.2.1.163 A2

3.2.1.164 A3

3.2.1.165 A4

3.2.1.166 A5

3.2.1.167 A6

3.2.1.168 A7

3.2.1.169 A8

3.2.1.170 A9

3.2.1.171 AA

3.2.1.172 AB

3.2.1.173 AC

3.2.1.174 AD

3.2.1.175 AE

3.2.1.176 AF

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

NO. 10354636
!CONTROL DATA 1 E N G I'N E E R I N G

DATE Mar. 1979

Corporationi S P E C I F I C A T I O N PAGE 128

REV.

3.2.1.177 BO C E BR
3.2.1.178 BI C E BR
3.2.1.179 B2 C E BR
3.2.1.180 B3 C E BR
3.2.1.181 B4 C E BR
3.2.1.182 B5 C E BR

RADL -

COMPARE, EQUAL

COMPARE, NOT EQUAL

COMPARE, GREATER THAN OR EQUAL

COMPARE, LESS THAN

COMPARE, LESS THAN OR EQUAL

COMPARE, GREATER THAN

These instructions perform integer or floating-point
compares to establish criteria on which to branch or
set conditions dependent on G-bit specifications.

B0
B1

C
C

E
E

BR
BR

COMPARE INTEGER, BRANCH IF (A) + (X) EQ (Z)
COMPARE INTEGER, BRANCH IF (A) + (X) NE (Z)

B1 C E BR COMPARE INTEGER, BRANCH IF (A) + (X) GE (Z)
B1
B1

C
C

E
E

BR
BR

COMPARE INTEGER, BRANCH IF (A) + (X) LT (Z)
COMPARE INTEGER, BRANCH IF (A) + (X) LE (Z)

B1 C E BR COMPARE INTEGER, BRANCH IF (A) + (X) GT (Z)

If bit 0 of the G designator is cleared/set,
registers A, X, C, and Z are 64/32 bits, respectively.
Registers B and Y are always 64 bits.

G bits 1 and 2 must be set to zero.

!CONTROL DATA I E N G I N E E R I N G NO. 10354636
- I DATE Mar. 1979

Corporation I S P E C I F I C A T I 0 N PAGE 129
REV.

----------------- R A D L----------------------------

These instructions are executed in the following 5

steps:

1. 	Form the sum of the 48-bit (24-bit if G bit 0

1) integers from the right-most portion of

registers A and X, ignoring overflows. If

designators A and/or X equal zero, machine zero

will be supplied.

2. 	 Read register Z. If the Z designator is equal to

zero compare against 48 zeros (24 zeros if G bit

0 = 1) may be made.

3. 	Store the following in register C:

* The sum from 	step 1 is stored into the

right-most 48 bits (24 bits if G bit 0 = 1) of

register C.

* The left-most 16 bits (8 bits if G bit 0 = 1)

of register A are copied into the left-most

portion of register C.

4. 	Compare the sum formed in step 1 with register Z
as follows:

* 	G bit 3 = 0 Integers compared are the 48-bit
(24 bits if G bit 0 = 1) result
of step 1 and the right-most 48
bits (24 bits if G bit 0 = 1)
read from register Z in step 2.

(continued)

--------------------------------------- --------

E N G I N E E R 	I N G NO. 10354636
!CONTROL DATA

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 130

3.2.1.182 (Cont.)

* 	G bit 3

REV.

RADL

1 	Integers compared are the 64 bits

that are stored into register C

in step 3 and 64 bits read from

register Z in step 2.

This compare is defined only for

the BO and B1 instructions (EQ

and NE).

When both G bit 0 and G bit 3 are

1 the instructions are undefined.

* 	G bit 4 = 0 Integers compared are interpreted

as signed two's complement

numbers.

* 	G bit 4 = 1 Integers compared are interpreted

as unsigned numbers.

The following table indicates the ordering of numbers

from largest to smallest as controlled by G bit 4.

i 0 i 1
---I

!Largest

v

ISmallest

FF FF

7F -------- FE FF -------- FE

O -------- 180 -------- 01

7F 	 F-------FE--------

00 01

00 -------- 00 180 -------- 00

IFF -------- FF l7F ------- FF

1 80 ------- 01 1 00 -------- 01
1 80 -------- 00 00 -------- 00

C(continued)

i

E 'NG I N E E R 	I N G NO. 10354636
!CONTROL DATA

--	 DATE Mar. 1979

Corporation S P E C I F I C A T I O N 	 PAGE 131

REV.

--------------------------- RADL

3.2.1.182 (Cont.)

5. 	If the specified compare condition is met the

instruction performs as follows:

* 	G bit 5 = 0 Branch to the address formed by
adding the half-word item count
from register Y left-shifted 5
places to the base address from
register B.

* G bit 5 1 	Branch to the address formed by

adding (G bit 6 = 0) or

subtracting (G bit 6 = 1) the

half-word item counts from the B

and Y designators (16 bits),

left-shifted 5 places, to the

program address of this

instruction.

If the specified compare condition is not met, the

instructions will continue execution at the next

sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined.

9, G bit 0 = 1 and G bit 3 = 1.

* G bit 3 = 1 for B2, B3, B4, and B5.

* G bit 5 = 0 and G bit 6 = 1.

The CDC FMP has expanded capabilities for the BO

through B5 instructions implemented by means of G

bit 0 through 3 combinations.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636

........ - DATE Mar. 1979

Corporation SP E C I F I C A T IO N PAGE 132

REV.

------------------ RADL---------------------------

3.2.1.182 (Cont.)

BO C E NT COMPARE INTEGER, SET CONDITION IF (A) + X) EQ (Z)

B1 C E NT COMPARE INTEGER, SET CONDITION IF (A) + CX) NE (Z)

B2 C E NT COMPARE INTEGER, SET CONDITION IF (-) + (X) GE (Z)

B3 C E NT COMPARE INTEGER, SET CONDITION IF (A) + X) LT CZ)

B4 C E NT COMPARE INTEGER, SET CONDITION IF (A) + (X) LE (Z)

B5 C E NT COMPARE INTEGER, SET CONDITION IF (A) + CX) GT (Z)

If bit 0 of the G designator is cleared/set,

registers A, X, Y, C, and Z are 64/32 bits

respectively. Register B is not used and must be

set to zero.

G bit 1 = 0 and G bit 2 = 1

These instructions are executed in 5 steps of which

the first four (compare) steps are identical to the
first four steps described for BO through B5
instructions with G bits 1 and 2 equal to zero
(compare branch).

If the specified compare condition is met, the

instruction performs as follows:

Store into register Y and 64-bit quantity

(32-bit if G bit 0 1
1) 000---001 and

continue execution at the next sequential

instruction.

If the specified compare condition is not met, the

instruction performs as follows:

Store into register Y and 64-bit quantity

(32-bit if G bit 0 = 1) 000---000 and

continue execution at the next sequential

instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

* G bit 0 = 1 and G bit 3 = 1.

* G bit 3 = 1 for B2, B3, B4, and B5.

* G bit 5 = 1, G bit 6 = 1 or G bit 7 = 1.

* The C designator is equal to the Z designator.

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 133

REV.

------------------ RADL---------------------------

3.2.1.182 (Cont.)

BO C E BR COMPARE F.P., BRANCH IF (A) EQ X)

B1 C E BR COMPARE F.P., BRANCH IF (A) NE X)

B2 C E BR COMPARE F.P., BRANCH IF (A) GE X)

B3 C E BR COMPARE F.P., BRANCH IF (A) LT CX)

B4 C E BR COMPARE F.P., BRANCH IF (A) LE CX)

B5 C E BR COMPARE F.P., BRANCH IF (A) GT X)

If bit 0 of the G designator is cleared/set,

registers A and X are 64/32 bits, respectively.

Registers B and Y are always 64 bits. Registers C

and Z are not used and must be set to zero.

G bit 1 = 1 and 	G bit 2 = 0

These instructions compare the two floating-point

operands from registers A and X according to the

floating-point compare rules in Section 3.1.4.5.

If the specified compare condition is met, the

instructions perform as follows:

* G bit 5 = 0 	Branch to the address formed by

adding the half-word item count from

register Y, left-shifted 5 places,

to the base address from register B.

* 	G bit 5 = 1 Branch to the address formed by

adding (G bit 6 = 0) or subtracting

(G bit 6 = 1) the half-word item

counts from the B and Y designators

16 bits), left-shifted 5 places, to

the program address of this

instruction.

If the specified compare condition is not met, the

instructions will continue execution at the next

sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

* G bit 3 = 1, G bit 4 = 1 or G bit 7 = 1.

* Designator Z 	and/or C not equal to zero.

* G bit 5 = 0 and G bit 6 = 1.

Data flags: bits 46 and 58

(continued)

E N G I N E E R I N G NO. 10354636
ICONTROL DATA

'- DATE Mar. 1979

P E C I F I C A T IO N PAGE 134
I Corporation
REV.

------------------- RA DL

3.2.1.182 (Cont.)

B0 C E NT COMPARE F.P, SET CONDITION IF (A) EQ CX)

B1 C E NT COMPARE F.P, SET CONDITION IF (A) NE (X)

B2 C E NT COMPARE F.P, SET CONDITION IF (A) GE (X)

B3 C E NT COMPARE F.P, SET CONDITION IF (A) LT (X)

B4 C E NT COMPARE F.P, SET CONDITION IF (A) LE (X)

B5 C E NT COMPARE F.P, SET CONDITION IF (A) GT CX)

IT bit 0 of the G designator is cleared/set,

registers A, X, and Y are 64/32 bits, respectively.

Registers B, C, and Z are not used and must be set to

zero.

G bit 1 = 1 and G bit 2 = 1

These instructions compare the two floating-point

operands from registers A and X according to the

floating-point compare rules in Section 3.1.4.5.

If the specified compare condition is met the

instruction performs as follows:

Store into register Y and 64-bit quantity

(32-bit if G bit 0 = 1) 000---000 and continue

execution at the next sequential instruction.

If the specified compare condition is not met, the

instruction performs as follows:

Store into register Y the 64-bit quantity

(32-bit if G bit 0 = 1) 000---001 and continue

execution at the next sequential instruction.

If any of the following conditions occur, the

operation of these instructions is undefined:

* Any one of G bits 3 through 7 is set.

* Designators B, Z and/or C are not equal to zero.

Data flags: bits 46 and 58

!CONTROL DATA E'N G I N E E R I N G NO. 10354636
-- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 135

REV.

------------------- RADL ------------------------

3.2.1.183 B6 5 NA BR BRANCH TO IMMEDIATE ADDRESS;

(R) + 1(48) BITS)

The right-most 48 bits of register R contain an item

count of half-words. The right-most 48 bits of the

instruction word contain an immediate operand which

is used as a base address. An unconditional branch

is taken to the branch address formed by adding the

item count to the base address (the item count is

shifted left 5 places before the addition and

overflow, if any, is ignored).

A direct branch is taken to the base address from the

instruction word if the R designator is zero or if

the right-most 43 bits of register R are zeros.

3.2.1.184 B7 ILLEGAL

3.2.1.185 B8 ILLEGAL

3.2.1.186 B9 ILLEGAL

3.2.1.187 BA ILLEGAL

3.2.1.188 BB ILLEGAL

3.2.1.189 BC ILLEGAL

3.2.1.190 BD ILLEGAL

CONTROL DATA 1 E N G I N E E R I N G NO. 10354636
-- -------------- DATE Mar. 1979
Corporation S P E C I F I C A T I O N PAGE 136

REV.

------------------- RADL---------------------------

3.2.1.191 BE 5 64 IN ENTER (R) WITH 1(48 BITS)

Clear register R and transfer the right-most 48 bits

of this instruction to the right-most 48 bits of

register R.

3.2.1.192 BF 5 64 IN INCREASE (R) BY I(48 BITS)

Replace the right-most 48 bits of register R by the

sum of those bits and the right-most 48 bits of this

instruction word. Arithmetic overflow is ignored.

3.2.1.193 CO ILLEGAL

3.2.1.194 C1 ILLEGAL

3.2.1.195 C2 ILLEGAL

3.2.1.196 C3 ILLEGAL

3.2.1.197 C4 ILLEGAL

3.2.1.198 C5 ILLEGAL

3.2.1.199 C6 ILLEGAL

3.2.1.200 C7 ILLEGAL

3.2.1.201 C8 ILLEGAL

3.2.1.202 C9 ILLEGAL

3.2.1.203 CA ILLEGAL

3.2.1.204 CB ILLEGAL

!CONTROL DATA E N G I N E E R I N G NO. 10354636
DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 137
REV.

--------------------------- RADL --L----

3.2.1.205 CC ILLEGAL

3.2.1.206 CD 5 32 IN HALF-WORD ENTER (R) WITH 1(24 BITS)

Clear register R and transfer the right-most 24 bits

of this instruction to the right-most 24 bits of

register R.

3.2.1.207 CE 5 32 IN HALF-WORD INCREASE (R) BY 1(24 BITS)

Replace the right-most 24 bits of register R by the

sum of those bits and the right-most 24 bits of this

instruction word. Arithmetic overflow is ignored.

3.2.1.208 CF ILLEGAL

3.2.1.209 DO ILLEGAL

3.2.1.210 D1 ILLEGAL

3.2.1.211 D2 ILLEGAL

3.2.1.212 D3 ILLEGAL

3.2.1.213 D4 ILLEGAL

3.2.1.214 D5 ILLEGAL

3,.2.1.215 D6 ILLEGAL

3.2.1.216 D7 ILLEGAL

3.2.1.217 D8 ILLEGAL

3.2.1.218 D9 ILLEGAL

ICONTROL DATA E N G I N E E R I N G NO. 10354636
I- DATE Mar. 1979
I CorporationS - - -REV. S P E C I F I C A T I 0 N PAGE 138

------------------- RADL---------------------------

3.2.1.219 DA ILLEGAL

3.2.1.220 DB ILLEGAL

3.2.1.221 DC ILLEGAL

3.2.1.222 DD ILLEGAL

3.2.1.223 DE ILLEGAL

3.2.1.224 DF ILLEGAL

3.2.1.225 EO ILLEGAL

3.2.1.226 El ILLEGAL

3.2.1.227 E2 ILLEGAL

3.2.1.228 E3 ILLEGAL

3.2.1.229 E4 ILLEGAL

3.2.1.230 E5 ILLEGAL

3.2.1.231 E6 ILLEGAL

3.2.1.232 E7 ILLEGAL

3.2.1.233 E8 ILLEGAL

3.2.1.234 E9 ILLEGAL

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 139
REV.

--------------------------- R A D L -

3.2.1.235 EA

3.2.1.236 EB

3.2.1.237 EC

3.2.1.238 ED

3.2.1.239 EE

3.2.1.240 EF

3.2.1.241 FO

3.2.1.242 Fl

3.2.1.243 F2

3.2.1.244 F3

3.2.1.245 F4

3.2.1.246 F5

3.2.1.247 F6

3.2.1.248 F7

3.2.1.249 F8

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

3.2.1.250 F9 ILLEGAL

3.2.1.251 FA ILLEGAL

3.2.1.252 FB ILLEGAL

!CONTROL DATA E N G I N E E R I N G NO. 10354636

---- DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 140
REV.

------------------- RADL-

3.2.1.253 FC ILLEGAL

3.2.1.254 FD ILLEGAL

3.2.1.255 FE ILLEGAL

3.2.1.256 FF ILLEGAL

3.2.2 Instruction Execution Times

Instruction execution times are to be included in the

appropriate machine description specifications. See

Section 2.0.

4.0

[CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 141

REV.

------------------ R A D L----------------------------

TEST REQUIREMENTS (not applicable)

5.0

ICONTROL DATA E N G I N E E R I N G NO. 10354636
---- - DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 142

REV.

------------------ RA D L----------------------------

PREPARATION FOR DELIVERY (not applicable)

CONTROL DATA I E N G I N E E R I N G 	 NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N 	 PAGE 143

REV.

----------------- R A D L---------------------------

6.0 NOTES

6.1 ASCII/EBCDIC Reference Charts

The following table defines the control characters used in the

ASCII Reference Chart.

INUL Null

1SOH Start of Heading (CC)

STX Start of Text (CC)

IETX End of Text (CC)

LEOT End of Transmission (CC)

IENQ Enquiry (CC)

LACK Acknowledge (CC)

!BEL Bell (audible or

attention signal)

LBS Backspace (FE)

IHT Horizontal Tabulation
(punched card skip (FE)

ILF Line Feed (FE)

IVT Vertical Tabulation (FE)

1FF Form Feed (FE)

ICR Carriage Return (FE)

ISO Shift Out

1SI Shift InS-I1

IDLE Data Link Escape (CC)

IDC1 Device Control 1
DC2 Device Control 2

IDC3 Device Control 3

IDC4 Device Control 4 (Stop)

INAK Negative Acknowledge (CC)

ISYN Synchronous Idle (CC)

lETB End of Transmission Block

(CC)

CAN Cancel

IEM End of Medium

;SUB Substitute

LESC Escape

IFS File Separator (IS)

IGS Group Separator (IS)

IRS Record Separator (IS)

!US Unit Separator (IS)

!DEL Delete

~------------------

NOTE: (CC) Communication Control
(FE) Format Effector
(IS) Information Separator

1
In the strict sense, DEL is not a control character.

!CONTROL DATA E N G I N E E R I N G NO. 10354636
-------------- DATE Mar. 1979

Corporation S P E C I F I C A T IO N PAGE 144
REV.

------- -RAD L------------

ASCII REFERENCE CHART

0 0 0 0 0 0 0 0 1 1 1 1 I

00

00

0 0 0 1

0

0 1

1

10

00

1
0

1

1
1

0

1
1

1

01
0

0

0
0

1

0
1

0

0

1
1

1

0
0

1

0
1

1

0

1

1

b b bGb 4

I
3 2 i COL.,5 6 7 8 9 10

(A)

Il

()

12

(C

13

() (
14 15
E) (F)

0 0 0 0 0 NUL DLE SP 0 @ P

0 0 0 1 I' SOH DCI I I A 0 a q

0 0 1 0 -2 STX DC2 2 B R b r

0 0 11 3 ETX DC3 # 3 C S cs,

0 I 0 0 4' EOT OC4 $ 4 0 T d f

0 1 0 1 5 ENO NAK' % 5 E U e i

0 1 1 0 6 ACK SYN a 6 F V f v

0 1 1 1 7 BEL ETB 7 G W g w

1 0 00 8 BS CAN (8 H X h x

1 0 0 1 9 HT EM 1 9 I Y i y

1 0 1 0 I0 (A) LF SUB * " Z j z

loll 11 (B) VT ESC + K k

I 1 0 0 12 (C) FF FS -< L \ 1- ,

i 1 0 1 13 (DI CR S]M] mn

1 0 14 (E)S0 RS > N A o i

'IiI1 15 (F) SI US / ? 0 - o DEL EO

!CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I O N PAGE 145
REV.

--------------------- RA DL-----------------------------

EBCDIC REFERENCE CHART

o 0

o 0
0
0

0
0

0
1

0
I

0
1

0
I 0 0

10 0 I II 11 11

o o0 I 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 I 0 1 0 I 0 1

b8 b7b 6 b5 b4 13 bb 1 , CL

RO1
0 1 2

1OW
3 4 5 6 7 8 9 O 11 12 13 14

(A) (8)(C) (0) (El
I5

(F)
0 0 0 0 0 NUL OLE sp & 1 0

0 0 0 1 I SOH DCI / a A I5T I

0 0 1 0 2 STX DC2 SYN b k s B K S 2.

0 0 1 1 3 ETX DC3 c 1 t C L T 3

0 1 0 0 4 d m u D M U 4

0101 5 HT LF e n v E N V 5

0 1 1 0 6 BS ETB t of w F 0 91 6

0 1 1 1 7 GEL ESC EOT q p x G P X 7

1 0 0 0 8 CAN h q y H Q Y 8

1001 9 EM r I R Z 9

1 0 1 0 10 (A) [I

1 0 1 1 II (B) VT $,

1 1 0 0 12 (C} FF FS DC4 < * %

1 1 0 1 13 (D) CR GS ENO NAK () -

1 1 1 0 14 (El SO RS ACK + >

115 I (F) SI US BEL SU !~?-------------_ _ EQ

!CONTROL DATA E N G I N E E R I N G NO. 10354636

---- - DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 146

REV.

-----------------------------R A D L-----------------------------

AMERICAN NATIONAL STANDARD CODE FOR INFORMATION INTERCHANGE

(ASCII) WITH PUNCHED CARD CODES AND EBCDIC TRANSLATION

S j 0 1 *I I 0 0 0] to J 2 IC 0 1011 1 1 71..o C 7

1., 00 0,IE I1 , °A [S 0s
to-17 3 1 4 I

NU1 2 A
12.9.8 11- I -2 32- 9 -0 -2 1 1 t 2 90 1o[-2.2 2 - 0)

SO .. t I 11CC A A lA M3

ti-Od[00 1 2 1.,. , 1.) . 1., . t20lS. t I -1-9-I i1i . 0210 1 1iSOIO 0 c ttI 4lt FjCI tl~ 3i! IS 4 ~ 8li0 A. 0

____ 002. ~3j ~ _ I23 03 333- C293I . 1O- - 0.2 129. ._32253I
__ __ . .31 . lo°+.} 9-3 ItCS i... 2

WT
043

I: T+A •l. .-
SOT 31OA S 0 44 11301715N .1 ,AGE

9- t0-- 4 0- 0 2 t 0 . - S2 -00 a, 0
...OT 22OC. .4 a CS. °0 21o -, . . 311 -.. E AC. E

400 954 [0 I 4

1.- ii 9I -9 1,5 6 1, 4 1 - 12 1_._o

00 . 20712

,-- -- 0140 .0 .. ,._25__..60 C .0._ ,1.. .. 16 0CCI 0_.0-__o' - .0 ... A +
0906 0..N6 -85 "I ". I, 2- . 2000 .0 20 tI. , .4 21 0- $

2 0 1, CAN. ., I G
004-0 0- 0a a. 09a 0 99301 .11-0 12 . ..I ' EL- ..3, F G I ,.. 10 .. F . l...70-2 0..,, A It,-7i 49.... .; dl) .. ! . .

-I- I0.r A 0 0 -3 9-4.2 1 -- 1 2100 2 SA1

10- 321- 3 - 0 112130 0 . 1710 10 10 12 ... -1-8- 119 -.- 4 I I OI IIa__ 1 3 20 0 . .

I 1.A
 1 u1D SI 71 ?402E 12-14Aa11002 FIT 050 119 5e 9 1 20 s i ,SO .00 A -060A1j1.I0--4-2 2G 1?0.02 52 69+ OtF St CS0 02 -0 '1-3. 0 -;30 241 3ISOC K . - S, 6?I--- S5 I. I. O - CFA0 02. CCI&3

______SOC 2.~ ~ 1(24 ~07 VT1 21 ~ 21 1 i~~ ~ 61 110 ~O 0 ~ 6 9045 1oi3 40

' IS IE~ ILL" - 22 ___

1298 20-0 4 2--- 01-04 21.6[0 0 32-9-:,a 90,14 61 0945 22303.S 30. 0-2 1 1 121 12211 22329.21 20 004
oLIU . 0[1 .6 1, OIL94 I So

/BC ICac ECDIoE

I. ,,e -n41 * VPOOR QUALIT

http:22329.21

!CONTROL DATA IE N G I N E E R I N G NO. 10354636

---- ---- --- DATE Mar. 1979

ICorporation I S P E C I F I C A T 1 0 N PAGE 147

----- ---- ---- REV.

--------------------------R ADL-------B------BN--------B----------

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE

(EBCDIC) WITH PUNCHED CARD CODES AND ASCII

TRANSLATION

IITI 1

1
0 1 1 1N 0. I. 0. 0.

1. IN'. I'l_ A I:B,ST 1T1

0 IL I 00 0 0
162-BB- D"0 ,N I Ill - 1. AN3 112 11 I 2FX

2 1.--1 0-- 0201 1 002I 2--98. 11-90 I. 0---I 010--I 0 10.11.B1 0I 2.1 1,.-.. 11 _I,- D20

12 11 1- 9 2'.I 1-0-'lI , I Ill 0-.92.0 .2-.11.1

-I 0-I 90 I209l 121.. 9I 0. 20.
"T1 il I 3SB000 1I

STO. 2 IS Al 00 A32 0A0 643 *5 L0 AA. IA32 202t2 029

011- 3.01 0 0093 3 93 I2-9. ..- 011111 - 211 I- . - 2011 -04 12-1-0-3 12. IN.3 0-3 A. I -- 2 114-A 11.3 - 11030

EY M V

0t0 .9.0 L1 1I. 0-9- 9.0l 12.0..4 11-. 1009"1-100" 2---21-A0-- 21.- 2 114 01

NtT 060 0 N0

_ _ __I,_ _ _ 1__11 _ INI~~
N, INC. 9 L DA 94 AI AC. 0 60 6. . It A D D LM Ol 54 2

LIT ILS ET 00C A I D
0 02 -- 1-- 9-6 12-119S 22l---S 02-N 00-0- -0 02-. IIS 04 S,0-96 'I-ll. 1009S 0-- 0. 211.0

1 092 0. 0IF AL BE 0I9 D Io 0. A IF -006 460 41 F, 569Ia

02.5 .11 0.10B99 11I 1.. -- - 20-4 :- -- 109S 1-1--- 200 1- - 0 00-

IT-l- 010 - 1. 0 0. 2.1 It- 1l01.'11-9- 09. 0. 12.09- 1-I 0.91 3009 1 2--

B, I - C10 1.I

CAN'5 B9 N5 IN 1too.ll I 89 AB300 AA I1 0 A,~ Do IFAL

J 02 02 00 00 0401 NA iq~ 92 04 - IA S41 l. Il D IC .I 3A 12l

12.11"_,12-9-1-20-0-39 0--.9-0-3 02-0-3o I,--0- 0.3 ."9-- 810'

1-..24
'0200IES I OOA . 30 2AA 25 *0 C C 1 D* "I CA EF I IN

oo 024C I11940 .-- AN 9-04 I'l0. 1.14I 0-l_ .4 -1 02.4..4 12.I04 1... 1100 -,tIll-9.I 121-9.1. 0-.. 20--..

2005 1-1.- 00- 12-11-0-S 14-94.5 12-4149.5. 00--- 1.10..
IF'029l 14 55 90- 20 l-- -A A-

SO I I AN A(0N

Il.9.. 0002-I0-00- -0 02l-0.- -10-0- 0000 Q-1l.- -S 121.94 .-
O 00 0240-6I1 0.-9-0- 9-..0 2-- 04-6140 0 .9--

1U IA00CR OD GB OIL . I IF I I ,10-- 2.10NI-201 I 1

II 2I-- - 1I-,.-I --- 7 9l., 2-- 11-8-A .-0-6 2--I 0-I 0-0- 0.0- 024-4. 1- . - 120.4I-01 4-91.- 0B

II 505SUB IN~ D2 0 3 F06N.OSL IIA DO E7 0 D5
1

ASCII ASCI

-ClBnooeo CID.

http:10.11.B1

!CONTROL DATA E N G I N E E R I N G NO. 10354636

-- --	 DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N 	 PAGE 148

REV.

------------------- RADL----------------------------

APPENDIX A

A1.0 SCOPE

The intent of this Appendix is to provide additional

information regarding some of the characteristics of

the CDC FMP. Further information can be found in

other appropriate specifications. (See Section

2.0, Applicable Documents).

A2.0 SELF-MODIFYING PROGRAMS

The use of self-modifying programs is not allowed.

The following rules which would have to be followed

illustrate why this must be true.

The 	following rules apply to all programs:

1. 	The twenty-four 64-bit words before (having

addresses lower than) and the thirty-two 64-bit

words after (having addresses higher than) the
current instruction word shall not be modified by

the current instruction.

2. 	The twenty-four instructions before (in terms of

order of execution) and the thirty-two

instructions after (in terms of order of'

execution) the current instruction word shall

not be modified by the current instruction.

3. 	The store into Main Memory for the 13, 5F,

and 7F instructions may not take place before

the execution of the next instruction in

sequence. Therefore, if these instructions are

used to modify code, it is difficult to

guarantee that the store has taken place before

the execution of that code. There are three

procedures to guarantee that the store has taken

place prior to execution of the intended

modified code.

a. 	The execution of any instruction which

references Main Memory with the exception

of the 12, 13, 32, 5E, 5F, 7E, and 7F

instructions. These instructions must be

executed between the store instruction which

modifies the code and the use of that

modified code.

(continued)

!CONTROL DATA E N G I N E E R I N G NO. 10354636

DATE Mar. 1979

Corporation S P E C I F I C A T I 0 N PAGE 149

REV.

------------------ RADL---------------------------

A2.0 (Cont.)

b. 	The execution of the conditional branch

feature of the 32 instruction between the

store instruction which modifies the code and

the use of that modified code.

a. 	Execution of a load instruction (12, 5E, or

7E) followed by a transmit (78) instruction

where the source register for the 78

instruction conflicts with the destination

register for the load instruction. These

instructions must be executed between the

store instruction which modifies the code and

the use of that modified code.

The instructions referenced in a., b.,. and c.

above must be executed from addresses at least

four swords before or at least three swords after

the 	modified code.

A3.0 INSTRUCTION STACK

Each machine has a different size instruction stack

thus program optimization must be approached with

different parameters. Further information is

contained in the appropriate execution timing

specification.

Number of Words in Instruction Stack

CDC STAR-lB 1 64-bit word

CDC STAR-100 32 64-bit words

CDC STAR-1OOA 128 32-bit words

CDC FMP 128 32-bit words

A4.0 (N/A)

A5.0 VECTOR FORMATS

In the CDC FMP, a vector is defined as a contiguous

set of bits, bytes, or floating-point operands. The

contiguous set of bits or bytes is called a string,

while the contiguous set of floating-point elements

is called an array.

(continued)

ICONTROL DATA E N G I N E E R I N G NO. 10354636

------ ------- DATE Mar. 1979

I Corporation P E C I F I C A T I O N 	 PAGE 1.50

REV.

-- -----	 A--------------RADL------

A5.0 (Cont.)

Operands are used in the following vector formats:

Array - a counted, variable-length, contiguous,

floating-point operand field. Vector operations

can be performed on defined fields consisting

entirely of 32-bit operands or entirely of 64-bit

operands.

Index List - a counted data array of integer

values in floating-point format.

A6.0 DATA FLAG BRANCH

The 	automatic data flag branch can occur up to 35

instructions after the instruction which caused it.

The 	point at which the branch occurs can vary between-
executions of the same program as a result of the

asynchronous I/O activity affecting the load/store

operations.

The following points pertain to the use of the data

flag register:

1. 	The contents of.the DFR as stored into the

register file by a 3B instruction will

reflect all previous activity on it. Also,

activity prior to the 3B instruction will

not affect the new contents of the DFR.

2. 	ADFB's caused by a 3B instruction or any

instruction previous to it may occur

after the next one or two instructions,

but no later.

3. 	Sampling or altering a data flag bit with

a 33 instruction may occur out of sequence

with a previous pipeline instruction up

to 35 instructions earlier.

4. If a 33 instruction alters a bit which

causes an ADFB, the branch may occur up

to two instructions later, regardless

(continued)

CONTROL DATA E N G I N E E R I N G NO. 10354636

-- DATE Mar. 1979
Corporation S P E C I F I C A T I 0 N PAGE 151

REV.

------------------ RADL ---------------------------

A6.0 (Cont.)

of the fact that all pipeline instructions

previous to it may have finished.

Again, if the ADFB is also contingent on

the completion of a pipeline instruction,

the automatic data flag branch may occur

up to 35 instructions after the

instruction which caused it.

When registers 1, 2, or 4 in the FMP register file

are altered by an instruction, and this instruction

is followed by an automatic flag branch or illegal

monitor instruction branch, the store operation may

happen out of sequence with the branch operation.

Thus, for example, if a 7E instruction loads register

4 with a certain value, and this instrucion is

followed by an illegal monitor mode instruction, the

automatic branch will be to the address specified by

either the old or new contents of register 4,

depending on the timing of the 7E and the instruction

stream.

DIVISION 3

STANDARD PRODUCT

SYSTEM COMPONENTS

CYBER 170/MODEL 175-100 COMPUTER SYSTEM

The CDC CYBER 170/Model 175-100 computer system is a

multipurpose computing system that provides real-time/time

critical network, commercial, data management, and scientific

capabilities. it can serve as an entry level processor to the

Model 175 family of computers, and is field upgradable to a

Model 175-200 or Model 175-300 system.

The Model 175-100 computing system has one large central

processor, accessible through central memory, and a group of 10

to 20 (optional) peripheral processors. Each of these

peripheral processors has a separate memory and can execute

programs independently of each other or of the central

processor. Through the exchange jump feature and central memory

communication, these peripheral processors control the central

processor. They communicate with-thelmselves through central

memory and the input/output channels.

In solving a problem, one or more peripheral processors are used

for high-speed information transfer in and out of the system,

and to provide operator control. A number of problems can be in

operation concurrently by time-sharing the central processor.

Further concurrency is obtained with the central processor by

parallel action of various functional units.

Central memory is organized into logically independent banks.

Many banks can be in operation simultaneously, thereby

minimizing execution time. The multiple operation modes of all

segments of the computer, in combination with high-speed

circuits, produce a very high overall computing speed.

3-1

HIGHLIGHTS

Central Processor Characteristics

* 	Nine arithmetic functional units-for concurrent

operations

* 	24 operating registers

- 8 operand (60-bit)

-	 8 address (18-bit)

-	 8 increment (18-bit)

* 	Instruction stack which holds up to twelve 6O-bit

instruction words with 2-word look-ahead capability

-o 	 Computation in floating-point and fixed point, single

and double precision

e0 	Central exchange jump

Peripheral Processing Subsystem Characteristics

e 	Emitter-Coupled Logic (ECL) integrated circuits

e0 10 to 20 peripheral processor configurations

available (characteristics as listed are per

processor)

* 	Semiconductor memory of 4096 12-bit words plus one

parity bit per word (odd parity)

. 12 or 24 input/output channels

all channels common to all processors

- transfer rate per channel 2 MHz (optionally 1 MHz)

in 12-bit words.

- all channelscan be active simultaneously

-	 all channels 12-bit plus parity (odd)
bidirectional

o Major cycle time of 500 nanoseconds

-0 Computation in- fixed point

* 	Time-shared access to-central memory

* 	64-instruction repertoire

* 	Status and control register monitors error conditions

(maintenance aid)

3-2

Central Memory Characteristics

* 	Semiconductor memory model options listed-with

associated capacity of 60-bit words plus eight error

correction bits per word.

Model 175-108. 13.1,072 words

Model 175-112 196,608 words

Model 175-116 262,144 words

a-	Memory organized in logically independent banks of

words with corresponding multiphasing of banks

(maximum memory size of 16 banks)

e 	Transfer rate of up to one word each 50 nanoseconds

in phased operation

CENTRAL PROCESSOR DESCRIPTION

The central processor, composed of a central processing unit,

nine separate functional units which operate in parallel, and

the central memory control, communicates only with central

memory. It is isolated from the peripheral processors and is

thus free to carry on computation unencumbered by input/output

requirements. The nine arithmetic and logical units (floating

add, normalize, long add, increment, shift, multiply, divide,

boolean, and population count) execute the arithmetic,

manipulative, and logical operations. The central memory

control directs the arithmetic operations and provides the

interface between the functional units and central memory. It

also performs instruction retrieving, address preparation,

memory protection, and data retrieving and storing. The central

memory control provides for orderly flow of data between central

memory and the requesting elements of the system.

3-3

The following are the general categories of central processor

instructions:

* branch

* central exchange jump

* fixed-point arithmetic

* floating-point arithmetic

* extended core storage communication

* increment

* logical

* monitor, stop

, pass

* shift

PERIPHERAL PROCESSING SUBSYSTEM DESCRIPTION

The peripheral processing subsystem consists of 10 identical

units that operate independently and simultaneously as

stored-program computers. Many programs can be running at one

time or a combination of processors can be involved in one

problem which may require a variety of input/output tasks as

well as use of the central memory and the central processor.

The peripheral processors act as system control computers and

input/output processors. This permits the central processor to

continue computations while the peripheral processors do the

slower input/output and supervisory operations. Each processor

has a 12-bit (plus one parity bit), random-access memory

(independent of central memory) with a cycle time of 500

nanoseconds.

3-4

The following are the general categories of peripheral processor

instructions:

* arithmetic

* central processor and central memory communications

* data transmission

* input/output

e, logical

* no operation

* replace

* shift

Exchange Jump

The exhange jump interrupts an executing central processor

program, saves a "snapshot" status of the program (registers,

and so forth), and initiates execution of another program. The

Model 175-100 provides four types of exchange jump instructions:

one exchange jump initiated by the central processor, and three

types of peripheral processor initiated exchange jumps.

One type of peripheral processor exchange jump is an

unconditional jump. The other types are similar, except that

each is dependent on a different condition of a hardware flag.

However, in each case the contents of the operating and control

registers are moved into storage, and the vacated registers are

then loaded with the exchange package information from central

memory. This permits a new program to be started by the central

processor, and it maintains the information needed to resume the

program that was executing.

3-5

Input/Output Channels

All processors communicate with external equipment and each

other using the independent, bidirectional input/output

channels. The number of channels depends on the number of

.peripheral processors in the system. All channels are 12-bit

(plus parity) and each can be connected to one or more external

devices. Only one external equipment can use a channel at one

time, but ail channels can be simultaneously active. Data is

transferred into or out of the system in 12-bit words at a

maximum rate of two words per microsecond. As many as eight

different types of external equipment, for example, magnetic

tape controllers and card reader/punch controllers, can be

connected to an input/output channel.

Display Controller/Console

The display-controller provides digital and analog input

information to control the various presentations on the display

console which consists of .a cathode-ray tube display and a

keyboard. The console keyboard performsthe functions of a

typewriter and permits manual entry of data. Some of the

operator actions at the console include:

* 	 display of all registers

-e 	dynamic display of any word or block of words in

central memory

* 	 execute single steps of a program -

Data Channel Converters

Two data channel converters, included with the system, allow

Control Data 3000 series type peripheral equipment to be

attached to the Model 175-100 input/output channels.

3-6

MODEL 175 MEMORY DESCRIPTION

The CDC CYBER 70/Model 175-100 computer offers a hierarchical

memory concept:

* Central memory

oe Extended core storage

Central memory provides a fast, random-access storage for

executing-programs and data, while the large extended core

storage is used for input/ouput buffering, containifg large data

arrays, and to support job swapping and other operating system

service functions. Although extended core storage is optional,

it is fully supported and recommended for optimum system

performance.

Central Memory

The Model 175-100 central memory is composed of banks of 60-bit

words of MOS storage with eight error correction bits per 60-bit

word. The complete cycle time for one bank is 400 nanoseconds.

The banks are phased so that successive addresses are in

different banks to permit operation of central memory at much

higher rates than the basic cycle time. The maximum transfer

rate is one 60-bit word per 50 nanoseconds..

Central memory is available in sizes ranging from 131,072 words

(8 banks) to 262,144 words (16 banks). The large number of

banks in central memory minimizes memory access conflicts;

therefore, central memory is highly effective for fetching

instructions and randomly accessing data items at very high

rates.

3-7

There are four access paths to central memory:

*o Central processor/central memory

* 	 Extended core storage/central memory

* 	One or two groups of peripheral processor/central

memory

Central memory control (part of central processor) provides

service to each of these access paths on a priority basis,

queues access requests as necessary, and resolves any access

conflicts. The control section also generates the eight error

correction bits for each 60-bit word placed in central memory.

When a word is read from central memory, manipulation of the

error correction bits allows a 60-bit word containing a

single-bit error to be corrected. Double-bit errors and most

multiple-bit errors are detected but not corrected, and their

occurrence is noted in the status and control register.

Extended Core Storage Subsystem

The optional extended core storage (ECS) subsystem is comprised

of the extended core storage, its controller, and one or more

distributive data paths which attach to input/output channels.

The extended core storage is composed of banks of 131,072 60-bit

records of core storage. Eight -60-bit words are contained in a

488-bit physical extended core storage word. Each 60-bit word

has an associated parity bit in the extended core storage word.

The complete cycle time for one bank of ECS is 3.2 microseconds

per 488-bit extended core storage word.

In multiple bankextended core storage subsystems-, banks are

phased such that consecutive 8-word records come from different

3-8

banks,. This phasing, combined with the wide (8-wort) access

span enables very fast transfers to or from ECS. After initial

access, ECS can transfer at a rate of one 60-bit word per 100

nanoseconds. This gives a maximum rate of 600 million bits per

second.

Ther'e are two access paths to extended core storage:'

*. Central memory to extended core storage

* 	Input/output channel(s) extended core storage using

the distributive data paths

3-9

7030 CYBER EXTENDED CORE STORAGE

The CDC 7030 CYBER Extended Core Storage (ECS) is a

random-access word-organizied mass storage device. ECS, through

its controller, communicates with one or more CDC CYBER 70 and

CYBER 170 series computer systems using both central memory and

input/output channels..

HIGHLIGHTS

* 	Storage-capacity from 262,144 to 2,097,152 (60-bit)

words, depending on the model

* 	Transfer rate up to 10,000,000 (60-bit) words per second

e 	Data paths between ECS and either central memory or as

many as four input/output channels or both

DESCRIPTION

ECS with its -ontroller serves as an extension to the computer

central memory, providing expanded storage and serving as a

high-speed input/output buffer. The ECS storage unit utilizes

semiconductor technology and is available in 2-, 4-, 8-, or

16-bank configurations, each bank containing 131,070 words. The

storage unit provides up to two million directly addressable

60-bit words. Eight 60-bit words are organized into a 488-bit

data word in ECS (a parity bit is attached to each 60-bit word).

The ECS controller provides the data paths between central

memory (60-bit) and the input/output channels (480-bit). The.

Distributive Data Path (DDP) consists of registers that connect

ECS to input/ou-tput channels.

3-10

MODELS

The 7030 storage system is available in the following models:

Model Feature

102 262K

104 524K

108 1048K

116 2097K

Distributive Data Path

The distributive data path provides a path for data flow between

extended core storage and the peripheral processors. It allows

fast peripheral processor access to data in extended core

storage using an input/output channel, and greatly reduces the

data traffic through the central memory. This reduces central

memory conflicts and also reduces the overhead of the operating

system. The distributive data path consists of 1-to-4 480-bit

buffer registers. Each register connects to a standard

input/output channel for maximum overlap of slata transfer. All

four registers share a single access to extended core storage.

This arrangement allows up to four peripheral processors to

transfer data simultaneously to extended core storage at the

maximum rate of the channel. A 480-bit extended core storage

word is assembled from a 40-word peripheral processor block in

about 43 mi-croseconds.

3-11

255X NETWORK PROCESSING UNIT

The CDC 255X Network Processing Unit (NPU) relieves the host

computer (CDC 6000, CYBER 70-, or CY-BER*170) of data

communication handling responsibilities, thereby freeing it for

additional application functions. The NPU is comprised of

modular hardware combined with specifically tailored software to

provide efficient handling and processing of data communications

in a network environment. This modularity affords a user the

ability to expand the system to keep pace with increasing

network communication requirements. Some of the'features of the

NPU include:

* 	Allows use of a wide range (in terms of characteristics

and vendors) of terminal devices

-0 	 Resident (in NPU) Communication Control Program available

in variations allowing intercommunication with NOS or

.NOS/BE

-e Provides significant throughput capability

-e Assumes data buffering requirements from the host

computer

HIGHLIGHTS

Communications Processor

* 	32K to 128K of 16-bit (plus 1 parity and 1 protect bit)

MOS main memory words

* Main memory cycle time of 475 nanoseconds

'e Microcode (program control) cycle time of 168 nanoseconds

* 	Eight memory addressing modes

* 	Instruction repertoire containing 14 'instruction groups

* 	Memory word and region protection

3-12

* 	Main memory parity detection

* 	15 levels of external interrupt and one internal

interrupt

* 	Interrupt data channel transfer rate of 160.,000 bytes

per second

Channel Coupler

* 	Direct memory access transfer rate of 1,600,000 woCds

per second

Multiplex Subsystem

* 	Input and output loop rates of 20,000,000 bits per second

e 	Cyclic check character generated on output loop and

verified on input loop

* 	Demand driven communication line adapters

* 	Synchronous and asynchronous transmissions handled

COMMUNICATIONS PROCESSOR DESCRIPTION

The heart of the communications processor is the central pro

cessing unit. It is an integrated circuit, fully parallel unit

which supplies the communications processor with basic stored

program control and computational capabilities. It contains the

'facilities for fetching and storing data, provides microcode

control for sequencing and executing instructions, has capa

bilities for processing arithmetic and logical data, and initi

ates and emulates the interrupts that constitute communication

between input/output devices. The communications processor has

a special set of communications-oriented instructions, enabling

it to monitor connected communication lines and take appropriate

alarm and safety action in the event of line or terminal faults.

3-13

The communications processor contains a maintenance console

panel to implement the following:

* Display of register contents

* Display of memory locations

* Location of operational switches and indicators

CHANNEL COUPLER DESCRIPTION

The channel coupler controls the direct exchange of data between

a peripheral processor unit in each of up to two host computers

with optional coupler and the communication processor memory.

Multiple couplers may share a host computer data channel or two

couplers may be connected to a communication processor, thereby

allowing multiple NPU or multiple host computer configurations

for the purpose of redundancy.

The primary function of the channel coupler is to pass data

-blocks between the main computer and the communication processor

with minimum software supervision. The coupler contains provi

sions for data protection and error detection.

MULTIPLEX SUBSYSTEM DESCRIPTION

The multiplexing subsystem uses a demand driven technique wherein

data movement between a line and the communications processor's

memory occurs at the instigation of a communication line adapter,

not limited by scanning rate used in other techniques. The

elements comprising the subsystem are described in the following

paragraphs.

Multiplex Loop

The multiplex loop is the demand driven mechanism which gathers

input data and status information from communications lines and

3-14

distributes output data and control information to the liSnes. The

loop is composed of two high-speed serial-transmission lfnks, one

for input, one for output. Data cycles through the links at a

speed of 20 million bits per second. The loop is controlled by

the communication processor via the multiplex loop interface

adapter.

Multiplex Loop Interface Adapter (MLIA)

The MLIA interfaces between the loop multiplexer and either the

communication processor or the multiplex loop controller. It

converts bit-serial loop data from the input loop to bit-parallel

for storage in the communication processor's memory, and bit

parallel data from storage to bit-serial data for placement on

the output loop. The MLIA ensures data integrity on the loops

and controls data exchange with the loop multiplexer(s).

Loop Multiplexer

The loop multiplexer manages data flow between the multiplex loop

and associated circuits. Up to eight loop multiplexers may be

connected to a single multiplex loop, allowing a maximum of 254

communications lines to be terminated per NPU.

Communication Line Adapter (CLA)

CLAs interface communication lines to the loop multiplexer and

provide in-transit single byte buffering; two classes of CLAs,

synchronous and asynchronous, are available in several speed

ranges:

* 	Asynchronous interfacing circuits operating at standard

speeds of 9600 bits per second or less

3-15

* 	 Synchronous character-oriented interfacing circuits

operating at 56,000 bits per second

* 	 Synchronous bit-oriented interfacing circuits operating at

speeds of 19,200 bits per second or less

The CLAs 	 themselves demand data input and output. The asyn

chronous CLA supports autospeed detection, therefore a user need

not dedicate a CLA for a particular line speed and/or terminal

type. When data is being received, a programmed detection

feature tests the line speed and code (ASCII, BCD, etc.),

facilitating proper handling of the data by the NPU.

MODELS

The 255X 	 Network Processing Unit is available in the

following models and options.:

Model 	 Description

2551-1 	 Memory: 'Includes 32K words of 475 nanosecond,

16"bit main MOS memory.

Throughput 	Capacity: Nominally rated at 10,000

-characters per second at the CDC CYBER channel

coupler. Actual throughput is dependent on a number

of factors. These include NPU and software, number of

circuits connected, block length, circuit activity,

circuit speed and available memory.

Multiplexer Capacity: Includes loop multiplexers fof

interfacing 16 Communications Line Adapters (up to 32

communications lines).

Maximum Connectability: Sixteen Communication Line

Adapters (CLAs) which define up to 32 communication

lines (max), depending on the types of CLAs used.

Channel Coupler.: The CDC 2558-3, 2558-4 or 10344-1

Channel Couplers provide host computer I/O channel

interface for the 2551-1 NPU. The 2551-1 can control

up to two channel couplers. At least one 2558-3,

2558-4 or 10334-1 Channel Coupler is required when

the 2551-1 is used as a front-end processor.

Upgrade: The 25803 option is field installable and

upgrades the 2551-1 NPU to a 2551--2.

3-16

Remote Loading: The 2580-4 option provides -the

hardware necessary for automatic loading and

restarting a remote NPU. This option is field

installable-, and is required when the 2551-1 is used

as a remote NPU.

2551-2 	 Features of the 2551-2 are the same as those of the

2551-1 except the following:.

Multiplexer Capacity: Includes loop multiplexer for

interfacing 32 communication line adapters ('p to 64

communication lines, depending on the type of CLA).

Maximum Connectability: 127 Communication Line

Adapters (CLAs) which define a maximum connectability

of up to 254 communication lines. Expansion is

attained by adding 2556-10 Expansion Cabinets and

2556-11 Loop Multiplexer Units.

Maximum Main Memory: 128K words (with additional

2554-16/-32 Memory Expansion Units).

Upgrade: None.

Multiplexer Expansion: The 2556-10 Expansion Cabinet

and 2556-11 Loop Multiplexer options are used for

expansion beyond the basic 32 CLA capacity of the

2551-2 NPU. Each 2556-11 Loop Multiplexer will

interface an additional 16 CLAs. A 2556-10 Expansion

Cabinet is used to house the additional loop

multiplexers. One expansion cabinet is required for

every two 2556-11 Loop Multiplexers.

3-17

10315 DATA CHANNEL CONVERTER

The CDC 10315 Data Channel Converter allows CDC 3000 series

peripheral equipment to be attached to CDC CYBER 170 series

computers. The converter enables CDC CYBER 170 computers to

perform connect, function, read, write, and status operations

on series 3000 peripherals.

DESCRIPTION

The CDC CYBER 170 computer transmits codes to the 10315

converter prior to starting any operation on external equipment.

These codes establish conditions in the converter so that the

proper 3000-type signals accompany the CDC CYBER 170 computer

input/output operations. As many as eight peripheral devices

can be connected to the output of the 10315 converter.

MODELS

Model Description

10315-1 Provides the first data channel converter.

10315-2 This model provides the second data channel

converter.

3-18

3270/8271 TRANSFER SWITCH SUBSYSTEM

The CDC 3270/8271 Transfer Switch Subsystem provides for

switching of peripheral controllers between channels of the same

computer system, or between channels of co-located computer

systems. The switching operation is controlled manually.

The 3270 Transfer Switch Controller provides cabinetry for

mounting 8271 Transfer Switches, and includes power supply

necessary to activate switching operation. The 8271 Transfer

Switch is a set of relay-operated switches controlled by an

externaly mounted alternate-action momentary contact switch.

MODELS

The 3270/8271 Transfer Switch Subsystem consists of the

following models:

Model Description

3270-A Controls up to four transfer switches

3270-B Controls up to eight transfer switches

8271-2 Manually operated transfer switch

3-19

405 -CARD READER

The CDC 405 Card Reader is an input device for use with Control

Data computer systems to provide the capability of reading data

from punched cards.

HIGHLIGHTS

a 	Reads 80-column cards at 1200 cards per minute,

51-column cards at 1600 cards per minute

* 	Dual photo-electric read station permits binary,

Hollerith, and ASCII codes

* Pneumatic card handling

0 Large (4000-card) hopper and stacker trays

DESCRIPTION

The 405 reader photo-electrically senses data punched in

standard 80Acolumn or less cards, reading in a column-by-column

fashion. The movement of punched cards is done pneumatically.

Cards are picked one at a time from the input tray and proceed

to the read station which then reads each card twice and

compares the two information blocks to assure accuracy. As

directed by the computer, the reader delivers the card to the

primary or secondary receiving tray. Cards can be removed from

the feed and receiving trays while the reader is in operation.

The trays vibrate to provide a constant force at the picker and

the stacker regardless of cand deck size,.

3-20

3447 CARD READER CONTROLLER

The CDC 3447 Card Reader Controller is a single channel device,

with a full card buffer memory, which provides an interface

between the CDC 405 Card Reader and a computer input/output

channel. It is contained within the 405 Card Reader cabinet.

HIGHLIGHTS

* Provides buffer memory for one 80-column card image

* Logic to perform most of the controlling and checking

functions that would otherwise be performed by the

computer

* 	Performs translation of binary, Hollerith, or ASCII

(64-character subset) codes

DESCRIPTION

The 3447 controller acts as an interface between the computer

and the 405 reader in the transmission of all data, external

function codes, and status codes. The controller transfers data

to the computer in 12-bit bytes. The logic of the controller

also checks the parity ofleach code and all data bytes. If an

error is detected in a code, the controller sets an error signal

and does not act on the code. If an error is detected in a

byte, an error signal is generated. The controller is capable

of translating binary, Hollerith, or a 64-character subset of

ASCII Hollerith card codes to 6-bit internal BCD codes.

The controller contains a buffer memory that holds 80 bytes (one

card image). The reader enters data into this memory at the

relatively slow rate of 50 milliseconds per card. After a

complete card has been read, the 3447 transfers the data

3-21

(byte-by-byte) at a rapid rate (maximum of 390 microseconds per

card). The 405 reader automatically reads another card after

the first card has been transferred.

The character set consists of 64 symbols including the English

alphabet in uppercase, arabic numerals, punctuation marks, and

special symbols.

MODELS

The 3447 controller is available in the following models:

Model Description

3447 Binary or Hollerith to BCD codes

3447-2 Binary, Hollerith, or ASCII (64-characters) to BCD

codes

3-22

415 CARD PUNCH

The-CDC 415 Card Punch is an output device used with the Control

Data computer systems to provide the capability of punching

data on cards.

HIGHLIGHTS

* 	Punches 80-column card at 250 cards per minute using

binary, Hollerith or ASCII card codes

o 	Input hopper capacity of 1200 cards; output hopper

capacity of 1500 cards with programmable off-set

stacking

* 	Automatic read after punch

DESCRIPTION

The card punch perforates standard 80-column cards at a rate of

250 cards per minute. Cards are punched row-by-row, using a

bank of 80 punch elements. Following the 12-row punch operation,

the card is sent to a post-punch read station. The card is read

and the number of holes actually punched is verified against the

number specified in the punch operation. If in error, the card

is identified via the selectable offset feature of the punch.

Input hopper capacity is 1200 cards and the output stacker

accommodates up to 1500 cards. Cards can be added to the hopper

or removed from the stacker while the punch is in operation.

3-23

3446 CARD PUNCH CONTROLLER

The CDC 3446 Card Punch Controller is a single channel device

to 	interconnect the CDC 415 Card Punch and a computer data

channel.

HIGHLIGHTS

* 	Provides buffer memory for-one 80-column card image

* 	Permits translating binary, Hollerith, or ASCII

(64-character subset) codes

-e 	Logic to perform controlling, checking, conversion, and

formatting functions

DESCRIPTION

The 3446 controller acts as an interface between the computer

and the 415-punch for transfer of all data, external function

I

codes, and status codes. It is capable of translating binary,

Hollerith, or a 64-character subset of ASCII Hollerith codes.

The controller contains a 12 by 80 turn-around core memory for

buffering a card image received from the data channel on a

column-by-column basis, beginning with the lower-order column.

With the card image in memory, the controller then transfers the

data to the card punch on a row-by-row basis.

The character set consists of 64 symbols including the English

alphabet in uppercase, arabic numerals, punctuation marks and

special symbols.

3-24

MODELS

The 3416 controller is available in the following models:

Model Description

3446 BCD to binary, or Hollerith codes

3446-2 BCD to binary, Ho
subset) codes

llerith or ASCII (64-character

3-25

580 TRAIN PRINTER

The CDC 580 Series Train Printers, with Programmable Format

Control (PFC), is a complete printer family. This series

features 1200, 1600, and 2000 line-per-minute operation, an

acoustically-dampened cabinet, enclosed, powered paper

stacking, extended-font print capability, and a micro

processor-based paper motion control system.

HIGHLIGHTS

* 	Micro processor-based paper motion control system

-e
 Integrated circuit electronics provide highelectrical

reliability

* 	A blower provides constant air circulation to prolong

component life

*e Paper condition is monitored to preclude possible loss

of information

* 	Pluggable modules simplify removal and replacement of

electrical components

* 	Operates at 1200, 1600, and 2000 lines per minute (model

option) with a line width of 136 columns.

e 	Program selectable six or eight lines per inch (lines

per 2.54 centimeters) spacing

.	 Built-in maintenance features

DESCRIPTION

A printer subsystem consists of a train printer and a

single-access controller, packaged together in the same cabinet.

A CDC 596 Train Cartridge is required to complete this

subsystem.

3-26

The controller may be interfaced to CDC CYBER 170, CYBER 70,

6000 or 3000 computer systems. It includes the electronics

required to interface adata channel, to control print and,

paper motion, and through use of memory, to store one line of

print and the train image currently being used. This controller

also contains a PFC memory which stores the format channel

locations\as received from the data channeL; the PFC memory.is

operated via external function control.

The character array used by the 580 printer family moves on a

horizontal plane and produces uniform, straight-line copy. The

type-array cartridge containing 48-, 63-, or 94-character type

fonts is easily changed by the operator.

The 580 uses any standard edge-punched, fan-folded paper (up to

six copies from a single impression). Forms are advanced under

a feedback control system which ensures even line spacing. High

throughput is achieved by rapid acceleration to, and

deceleration from, maximum skip speed.

Printer design provides easy access to the print-head area, and

a minimum of adjustments is required in loading forms. As an

additional operator convenience, easy-to-read status indicators

are provided on the control panel which alert the operator to

any condition requiring attention.

3-27

http:memory.is

MODELS

The 580 Train Printer is available in the following models:

Model Speed-lpm Skip-ips(cmps) Columns

580-120 1200 70 (177.8) 136

580-160 1600 70 (177.8) 136

580-200 2000 90 (228.6) 136

SPECIFICATIONS

Printing Speed 580-120 580-160 580-200

Nominal (48 characters) 1200 1pm 1600 lpm 2000 lpm

Sustained (24 characters) 1500 lpm 2250 1pm 3000 lpm

Burst (16 characters) 2400 1pm 2850 1pm 3500 lpm

.Paper Advance Speed

Single Space, 6 lpi 12.5 ms 12.5 ms 9.4 ms

Single Space, 8'lpi 12.5 ms 12.5 ms 9-.4 ms

Skip Rate, 6 lpi 70 ips 70 ips 90 ips

(177.8 cmps) (177.8 emps) (228.6 cmps)

Skip 	Rate, 8 lpi 50 ips 50 ips 70 ips

(127 cmps) (127 emps) (177.8 emps)

Forms Capacity

Internal Stacking: 	 4 to 20 inches (10.2 to 50.8

cm) wide, 4 to 14 inches

(10.2 to 35.6 cm) long

External 	Stacking: 4 to 20 inches (10.2 to 50.8

cm) wide, 4 to 22 inches

(10.2 to 55.9 cm) long

Line Width: 136 columns

Character Pitch, Horizontal: 10 characters per inch (3.9

characters per cm)

.Character Pitch, Vertical: 6 or 8 lines per inch (2-4

or 3.2 lines per cm)

Print Cartridge Capacity: 384 characters

3-28

677 MAGNETIC TAPE TRANSPORT

The CDC 6Y7 series Magnetic Tape Transports provide data storage

with very high performance and- heavy duty usage.

HIGHLIGHTS

*- Transports feature single capstan, automatic reel

hub latching, cartridge load, automatic threading, and

power operated window

* 	Seven-track industry-compatible read or write at 556 or

800 characters per inch (219 or 315 characters per cm)

using NRZI recording mode

o* Vacuum powered tape scraper and a special tape cleaner

that operate during rewind, load, and unload operations

DESCRIPTION

The 677 tape transports record seven tracks of information on

magnetic tape. Tape motion is accomplished by a single capstan;

vacuum columns act as buffers between the synchronous tape speed

and the asynchronous motion of the reel-drive servo system.

The 677 units provide high levels bf performance, reliability,

and maintainability based on the latest technology. Integrated

circuits and modular logic provide ease of maintenance without

sacrifice to reliability. Internal diagnostic data ioops and

extensive unit checking status bits are stored and available for

fast diagnosis and corrective action, if required.

MODELS

Characteristics 677-2 677-3 677-4

Tape speed ips (cmps) 100 (254) 150 (381) 200 (508)

Rewind speed in ips 60 (152.4) 50 (127) 45 (1143)

(cmps)

3-29

679 MAGNETIC TAPE TRANSPORT

The CDC 679 series Magnetic Tape Transports provide-data storage

with very high performance and heavy duty usage.

HIGHLIGHTS

* 	Transports feature single capstan, automatic reel

hub latching, cartridge load, automatic threading, and

power-operated window

* 	Nine-track recording at 800 characters per inch (315

characters per cm) NR-ZI and 1600 characters per inch

(630 characters per cm) phase-encoded and 6250

characters per inch (2461 characters per cm) group
coded recording (GCR) mode

* 	Improved throughput via automatic gain control on the

G.CR models to dynamically adjust for a wide variety of

tape qualities

* 	Vacuum powered tape scraper and a special tape cleaner

that operate during rewind, load,-and unload operations

DESCRIPTION

The 679 tape transports, recor(cks of information on

magnetic tape. Tape motion is accomplished by a single capstan;

vacuum columns act as buffers between the synchronous tape speed

and the asynchronous motion of the reel-drive servo system.

The 679 units provide high levels of performance, reliability,

and maintainability based on the latest technology. Integrated

circuits and modular logic provide ease of maintenance without

sacrifice to reliability. Internal diagnostic data-loops and

extensiveunit checking status bits are stored and available for

fast diagnosis and corrective action, if required.

3-30

Advanced recording techniques provide some models with 6250

characters per inch (2461 characters per cm) density, which

boosts system throughput, reduces the frequency of input/output

errors., and significantly improves error recovery.

Additionally, increased density decreases human handling time,

reduces physical storage -space requirements, and reduces tape

procurement costs.

MODELS

Characteristics 679-2 679-3 679-4 679-5 679-6 679-7

Recording density 800/ 800/ 800/ 1600/ 1600/ 1600/

in bits per inch 1600 1600 1600 6250 6250 6250

Recording density 315/ 315/ 315/ 630/ 630/ 630/

in bits per cm 630 630 630 2461 2461 2461

Tape speed (ips) 100 150 200 100 150 200

Tape speed (emps) 254 381 508 254 381 508

Rewind speed in

seconds 60 50 45 60 50 45

3-31

7021-3X MAGNETIC TAPE CONTROLLER

The CDC 7021-3X Magnetic Tape Controller provides an interface

between the- CDC 677 and 679 Magnetic Tape Transports and the CDC

CYBER 170, CYBER 70, or 6000 series computer system input/output

channels. Up to eight 67X transports of any model type can be

intermixed on a 7021-3X controller and will automatically be

recognized by model type and addressed accordingly.

HIGHLIGHTS

* Transports are connected to the controller in parallel,

making it possible to switch individual drives off-line

for maintenance purposes'

I* 	State of the art modular design along with the latest in

integrated circuitry, results in a subsystem that is

highly reliable and easy to maintain

* 	 Comprehensive on-line/in-line diagnostic software is

provided

-e 	 Built-in maintenance panels and internal data loop

checking capabilities are provided

DESCRIPTION

The 7021-3X reads or writes tapes on both the 677 and 679 series

of tape transports. Such a subsystem can read or write tapes

using industry-standard NRZI, phase encoded, or group coded

recording (GCR) methods of recording, depending on tape

transport selection. All subsystems can perform character-code

translation during data transfer with no degradation of the

character transfer rates specified for the various tape

transports. Various assembly/disassembly modes of operation for

data are also provided. Advanced technology in the GCR tape

systems helps boost system throughput, reduces the frequency of

3-32

errors, and significantly improves error recovery. Error

recovery includes two-track, "on-the-fly" error correction in

GCR mode and single-track "on-the-fly" error correction in phase

encoded mode, assuring a high level of subsystem performance.

MODELS

The7021-3X is available in the following models:

Model Description

7021-31 Single microprogrammed control unit,
up to eight tape transports.

one channel to

7021-32 Dual microprogrammed control units,
up to eighttape transports, two sim
transfers.

two channels
ultaneous data

to

3-33

885 FIXED MODULE DRIVE

The CDC 885 Fixed Module Drive (FMD) is an electromechanical

aceas storage un-it that records and retrieves data on two

fixed disk modules. A CDC 7155 Fixed Module Drive Controller

is required to interface between the 855 unit and a CDC CYBER

170 series computer system.

HIGHLIGHTS

* 	Two spindles are included in each unit

* 	4.2 billion bits per spindle

* 	Large block nominal transfer rate of 1.2 million 6-bit

characters per second for each spindle

-• 	Disk pack rotational speed of 3600 rpm with an average

latency time of 8.3 milliseconds, 16.7 milliseconds

maximum

4 	 Average positioning time of 25 milliseconds; 10
milliseconds minimum, 50 milliseconds maximum

* 	Up to four units (eight spindles) can be connected to

create a subystem

DESCRIPTION

The CDC 885 provides access to data organized on two fixed disk

modules. Each module has a user storage capacity of 692

million 6-bit characters and uses a sectored addressing method

of 644 characters per sector and 32 sectors per track.

The di-sk module consists of a stack of twelve 14-inch (35.6 cm)

diameter, oxide-coated disks. For each'module data is accessed

by 40 read/write heads mounted on. a carriage that is positioned

to the-required track by a voice-coil linear actuator bperating

in- a closed, loop, proportionalservo system.

3-34

MODELS

Model Description

885-11 Single Channel .Unit, Bit Serial FMD

885-12 Dual Channel Unit, .Bit Serial FMD

885-11F Single Channel Unit, Bit Serial FMD - Fixed Head

885-12F Dual Channel Unit, Bit Serial FMD - Fixed Head

885-42 Dual Channel Unit, Four-Head Parallel FMD

3-35

7155 FIXED MODULE DRIVE CONTROLLER

The CDC 7155 Fixed Module Drive Controller serves as an

interface between the CDC 385 'Fixed Module Drive (FMD) and the

CDC CYBER 70, CYBER 170, or 6000 series computer systems.

HIGHLIGHTS

4e 	 Performs multiple-overlapped seek operations

concurrently with one read or write operation to

maximize the data throughput rate of the subsystem

* 	Includes a small programmable processor with a 1K

12-bit data buffer. The programmable capability of the

subysystem enables data to be transferred at channel

speed for one sector bursts

* 	Dual controllers in a subsystem provide simultaneous

data transfers (read or write or both)

e0 Provides three types of error recovery: head

positioning, address field, and data field

-4 	 Controlware supports subsystem function set, including

maintenance function set

DESCRIPTION

The basic 7155 controller can control up to four 885 -units

(eight spindles). The hardware allows for expansion of up to

eight 885 drives (16 spindles), eight CDC 844-4X Disk Storage

Units, and four channel accesses. The subsystem uses a sectored

addressing method of 644 characters per sector and 32 sectors

per track, and supports a mix of single-density drives with -a

capacity of -692 million 6-bit characters and double-density

drives each having a capacity of,237 million characters (per

spindle). The controller includes a small, -programmable

processor which enhances the normal operation of the subsystem

and provides for more diagnostics and recovery capabilities.

3-36

MODELS

The 7155 controller is available in three models. Options may

be added to enhance the capacity of the 7155.

Model 	 Description.

7155-1 	 Connects to one standard input/output channel.

Drives up to four 885-xx FMDs (eight spindles) in a

mix or match configuration.

7155-2 	 Connects to one or two standard input/output

channels. Drives up to four 885-xx- FMDs (edght

spindles) in a mix or match configuration.

7155-4 	 Connects up to four standard input/output channels.

Drives up to four 885-xx FMDs (eight spindles) in a

mix or match configuration.

Options

10397-1 	 Adds a second channel operation to 7155-1, adds a

third channel'operation to 7155-2 (or 7155-1 Tith one

10397-1 installed) or adds a fourth channel operation

to 7155-2 with one 10397-1 (or 7155-1 with two

10397-1s installed).

10398-1 	 This interface option connects up. to eight 844-4x

DSUs. Resulting controller drives up to four 885-xx

FMDs (eight with 10399-i option) and up to eight

8444x DSUs in a mix or match configuration.

10399-1 	 This interface option connects up to four additional

885-xx FMDs. Resulting controller drives up to eight

885-xx FMDs (and eight 844-4x with 10398-1 option) in

a mix or match configuration.

3-37

MASS STORAGE SUBSYSTEM

The Control Data CYBER Mass Storage Subsystem (MSS) is designed

for use with the CDC CXIBER 170, CYBER 70 and 6000 Series

Computers. The MSS puts total automation in tape storage

operation, removes possible operator errors resulting from

manual tape-handling operations., and provides on-line storage

and a readily accessible tape cartridge library.

The tape cartridges used in the MSS can be handled in the same

way disks are handled, without demanding any changes in normal

procedures. Also, files are transferred from the MSS to disks

without involving the programmer.

The entire data resource is controlled by the MSS operating

system. Disk space is eliminated, since only tape tracks

required by staged data are assigned. Active files are not

restricted to, nor concentrated on, segregated disks. In

addition, the MSS permits field expansion by add-on modules and

assures that cartridge size is related realistically to file

size for easier, more efficient management.

MSS hardware consists of a Model 7880-1 Mass Storage Controller

(MSC), a Model 7881-1 Cartridge Storage Unit (CSU), and up to

four Model 7882-1 Mass Storage Transports (MST).per CSU,

depending on projected storage requirements.

The MSC i-s housed in two cabinets. One contains a CDC CYBER

Mass Storage Coupler (GMSC), and the other contains a Mass

3-38

Storage Adapter (MSA). The CSU and MST are housed in

complementary cabinets that bolt together.

MSC

The Model 7880-1 Mass Storage Controller, consists of

one CYBER Mass Storage-Coupler (CMSC) and one Mass

Storage Adapter (MSA). The CMSC allows two CDC CYBER

PPU Channels to interface to one MSA on a time-shared

basis and has a 4K,, 24-bit Data Buffer Memory. The MSA

connects to the CMSC and controls up to a total of

eight devices (CSUs and MSTs). The MSA is

microprogrammed to control the attached devices and

contains one data path with 9-track group coded

recording (GCR) format capability to exchange data with

the MSTs.

- CSU

The Model 7881-1 Cartridge Storage Unit consists of a

storage module with a capacity of 2,000 cartridges, a

two-axis selector module and two drawers for entering

and removing cartridges. It includes 500 Mass Storage

Cartridges. A minimum of two (2) 7882-1 Mass Storage

Transports is required with each Cartridge Storage Unit.

- MST

The Model 7882-1 Mass Storage Transport includes an

interstation drive for moving cartridges within the

transport, and an automatic tape load/unload movable

read/write head for accessing eight data stream pairs,

with 129 inches per second (328 cm per second) tape

speed and 6250 bytes per inch (2461 bytes per cm) group

coded recording (GCR) format capability. Up to four

7882-1 MSTs may be physically connected to a 7881-1

Cartridge Storage Unit.

- Mass Storage Cartridge

A Mass Storage Cartridge consists of a plastic case

containing 2.7 inch (6.9 centimeters) magnetic tape with

a usable recording length of 8.3 feet (2.5 meters).

The tape is fastened to the case at one end and to the

cartridge spool at the other end. Thus, the entire

recording length of the tape resides in the MST vacuum

columns after a load operation.

The cartridge case incorporates a removable

write-enable pin for file protection. A cartridge with

the write enable pin removed cannot be altered by CDC

CYBER MSS.

3-39

OPTIONS

- MSC 16 Device

The Model 10390-1 MSA 16 Device-Option adds a second

eight device interface to the Mass Storage Adapter.

This option provides the capability for attaching

additiQnal equipments for incteased storage capacity

and/or for redundancy.

- CSU Dual Path

The Model 10393-1 CSU Dual Path Option provides, an

alternate path to the Cartridge Storage Unit. This

device provides redundancy by allowing another Mass

Storage Adapter to access the CSU if the primary MSA

malfunctions.

3-40

819 DISK STORAGE UNIT

The CDC 819 Disk Storage Unit is an electromechanical access

storage unit that- records- and retrieves data on disk surfaces.

HIGHLIGHTS

o 	Phase-lock read recovery

., Absolute addressing

. Carriage offset

* Maintenance aids

e* Data strobe offset

* 	Data transfer rate: 38.7 megabits per second (4 heads

parallel) nominal

* 	Spindle speed: 3600 rpm

9. 	Average access time: 58.33 milliseconds

DESCRIPTION

The 819 is a peripheral mass memory device. It consists of a

cabinet containing a disk pack, drive motor, voice coil

positioning mechanism, power supply, and logic chassis.

The recording medium consists of 22 magnetic-oxide coated disks

(non-removable pack), with 40 data surfaces and one servo

surface containing head positioning information. Data is

recorded at 6000 bits per inch (2362 bits per centimeter).

MODELS

The 819 is, available in the following models:

Model Capacity Access Time Transfer Rate

819-11 2.4 billion bits 58.33 ms 38.7 M bps
-

819-21 4.8 billion bits 58.33 ms 38.7 M bps

3-41

7639 MASS STORAGE CONTROLLER

The CDC 7639 controller provides a data and control path between

the CDC 819 disk storage unit and a peripheral processing unit

of the CDC CYBER 70, Model 76, a CDC CYBER 170/Model 176 or a

CDC CYBER 200 computer system.

HIGHLIGHTS

Connects and addresses the disk storage unit

* Assembles and disassembles data transferred between

the 12-bit peripheral processor channel and 4-head

parallel disk storage unit

* 	 Deskews read data from the disk storage unit

* 	 Generates a preamble and sync byte that precedes each

data sector

Generates a 32-bit checkword for each channel

DESCRIPTION

The 7639 controller can control up to eight 819 disk storage

units. The basic capacity of an 819/7639 subsystem is 2.4

billion bits, however, it can be increased to 19.2 billion bits

with a configuration that includes two controllers and eight

disk storage units. Using dual density model 819 disk storage

units, the minimum capacity is 4.8 billion bits, which can be

increased to 38.4 billion bits with a configuration of two

controllers and eight disk units.

The data transfer rate is nominally 3.1 million 12-bit words per

second. The maximum possible burst transfer rate is 3.33

million 12-bi-t words per second.

3-42

MODELS

The 7639 controller is available in two models each-of which can

handle the single or dual density model 819 disk-drives:

Models. Description

7639--21 Interfaces one to four disk storage units and permits
multiple overlapped seek operations concurrently with
one- read or write operation.

*7639-22 Interfaces to a maximum of eight drives and provides
two simult'aneous data transfers (read and/or write)
to any two drives, while retaining the multiple-seek
feature.

3-43

CYBER 18/MODEL 20

The CDC CYBER 18/Model 20 is a -highly versatile,

general-purpase., micro-programmed, 16-bit processor that

emulates the CDC 1700 instruction set (basic set plus a new

enhanced instruction set).

Execution of systems programs stored in macro main memory is

performed under the control of a micro-level program stored in

ROM micro memory. The micro level programs also operate

input/output channels, service the computer interrupt and

program protect systems., and control the operating mode of the

processor. They provide additional facility for character and

field manipulation, indexing, and other system-oriented

processes.

Arithmetic is one's complement, signed, fixed-point, hardware

add/subtract/multiply/divide. The arithmetic .section consists

primarily of several operation registers (I, P, X, A, M, Y and

Q) that are interconnected by selectors and interface to the

arithmetic and-logical unit. The Model 20 has register files

available at the microprogram level.

The Model 20 has -ten card positions available to support A/Q,

ADT or DMA type peripherals.- The A/Q channel provides data

transfers between Central Processor Unit (CPU) registers and the

internal peripheral controllers-.

An additional input-/output interface is available' for the

optional operator comment device. The Model 20 also has an

.3-44

integral real-time clock which appears as a CDC 1700 type

peripheral to the macro program, and provides a macro level

interrupt at a programmable interval.

FEATURES

The- Model 20 features include:

e* Micro-programmable architecture

* 	Accommodates 32K through 262K byt'es macro main memory

*- High reliability and easy maintainability through

state-of-the-art technology and advanced diagnostic

capability

e-	Main memory effective read/write cycle time of 750 ns

* 	Eight addressing modes-for accessing main memory

o. Main memory word and region protection

e Main- memory parity detection

e. Priority-oriented interrupt system with 16 levels each

of micro and macro interrupts

* 	Powerful macro instruction repertoire

* 	Integral real-time clock

* 	Basic processor supporting a wide range of peripherals

*. Modular design CPU and controllers for ease of

maintenance

* 	Automatic program lbad (deadstart) facility, for

loader-type peripherals

* 	High-speed input/output data transfer for integral

peripheral controllers

* 	Input/output communications interface for teletypewriter

or RS232-C compatible display terminal

* 	Optional micro/macro breakpoint controller

* 	Self test and echo mode tests are included as an aid in

trouble-shooting the basic processor and optional

controllers. The system is also supported by

controlware diagnostics which are included in the

Operational Diagnostic System (ODS)

3-45

CONFIGURATION

The basic configuration includes processor, cabinet with

operator's panel and power supply, and input/output controller

for communication console. No main memory is included.

For operation, minimum additional requirements are 32K bytes

main memory, an input device such as a card reader, and a

comment device such as a conversational display terminal.

MACRO INSTRUCTION REPERTOIRE

The CDC CYBER 18/Model 20 incorporates the basic CDC 1700

instruction set and new enhanced instructions. The repertoire

includes one, two and three word instructions. Instruction

groups include the following:

* Transfer

. Logical

.e Stop

* Shift

S Interrupt

* Parity Generation

* Character/Field Manipulation

* Micro Code Sequence Execution

. Arithmetic

a Jump

* Decision

4
 Input/Output

* Program Protect

* Loop Control

* Memory Paging Control

3-46

PROGRAM PROTECTION

The CDC CYBER 18/Model 20 offers two modes of protection from

the damage which may be done by programs accessing.memory

outside their own region.- The traditional word level protection.

of the CDC 1700 series is featured. This allows individual

bytes to be declared protected by setting a bit in memory

associated with that byte. A second -meansof protection is also

employed using upper and lower bounds to define an unprotected

region. This has the same effect as word protection, except that

a large unprotected area can be defined more quickly.

INTERRUPT SYSTEM

The CDC CYBER 18/Model 20 firmware emulates the 16 levels of

vectored interrupt featured on the CDC 1700 series computers.

This system consists of 15 levels of external interrupt and one

internal interrupt.

Certain conditions such as an incorrect instruction, a memory

parity error, or a power failure will generate an internal

interrupt. External interrupts occur when a computer peripheral

device has finished an input/output operation or requires

attention.

The strength of the interrupt scheme is its ability to handle a

significant number of interrupts in a flexible and efficient

manner.

3-47

1882 MOS MAIN MEMORY STORAGE

The-CDC 1882 MOS Main Memory Storage unit provides read/write

MOS memory for a CDG.C-YBER 18 processor. One protect bit and

one parity bit are provided with each two bytes. Memory

read/write cycle time is750 nanoseconds. The 1882-16 adds 32K

bytes of MOS memory and' the 1,882-32 adds 65K bytes of MOS

memory. The 1882 occupies one memory position within the CDC

CYBER 18.processor unit.

3-48

1811-2 OPERATOR CONSOLE

The CDC 1811-2 Operator Console is a self-contained, single

station CRT keyboard display terminal. It provides a

1920-character (24 lines of 80 characters) display unit with

character-by-character data transmission in either half- or

full-duplex modes. The data rate is selectable from 110 to 9600

bits per second. The interface meets RS232-C, CCITT

recommendations V24 as applied to asynchronous data

communication. The character repertoire includes 128 symbols

displayed within a 9 by 7 dot matrix.

3-49

1843-1 DUAL-CHANNEL COMMUNICATION LINE ADAPTER

The CDC 1843-1 Dual-Channel Communications Line Adapter (DCCLA)

interface allows the CDC CYBER 18 computer series to control

synchronous and asynchronous communication lines. The DCCLA

allows communication flexibility to interface with other

computers, terminals and communication devices. It also

provides interface compatability over a wide range of system

protocols.

Versatility is achieved by the selectable baud rates, character

code lengths (5, 6, 7 and 8 bits) and even, odd, or no-parity

operations. Input/output operations are enhanced by the

selectable protect feature, allowing executive use of the DCCLA

and multiple interrupts. Automatic data transfer provides

pseudo-buffering capability which simplfies I/O operations.

DCCLA testing is also provided by a diagnostic loop-back

feature.

The DCCLA provides two-channel, half- or full-duplex EIA

synchronous and asynchronous, with modem control. The

communication system may be expanded by adding other 1843-1

DCCLAs.

OPERATION

The DCCLA .offers full character buffering on transmtt and

receive. After being initialized for synchronous operation by

the software, the DCCLA inserts and strips off sync -characters

during normal data transmission.

3-50

PROGRAMMABLE FEATURES

The DCCLA can be programmed for parity and synch code

characters., Parity is programmable on the basis of even, odd- or

none. When parity, is to be used, parity is inserted and

checked by the- DCCLA. Sync characters,can have up to eight

bits in any configuration. In addition, test mode, AQ/ADT I/O

mode,and Sync/Async modes are program selectable.

CONFIGURATION

The DCCLA subsystem consists of the 1843-I printed circuit card

with a 20 foot (6.1 m) modem cable. The 1843-1 operates in a

minimum system configuration of a CDC CYBER 18 Series Processor,

32K bytes of macro memory, an input device such as an 1829-60

card reader, and a comment device such as an 1811-2 operator

console.

OPTIONS

. 50-foot (15.2 m) modem cable

- terminal adapter cable which allows the DCCLA to connect
directly to a terminal.

3-51

1828-1 CARD READER/LINE PRINTER CONTROLLER

The 1828-1 provides two independent controllers for connection

of one card -reader and/or one line printer to the processor

unit; it occupies one A/Q card position within the processor

unit. Card reader controller features are data/control

interface between the processor and one card reader; it accepts

card reader input data in form of Hollerith code, binary -code,

or any other desired format; it provides facility for deadstart

operation of the processor unit; it performs Hollerith-to-ASCII

code conversion during deadstart operation; and it performs

normal data transfers under program control. The line printer

controller features are data/control interface between the

processor and one line printer; it performs data transfers

under program control; and it has data buffer facility. An

additional feature is the test mode capability of closed-loop

operation under software control for diagnostic purposes.

Cables are included as part of the card reader or line printer.

3-52

1829-60 CARD READER

The CDC 1829-60 Card Reader is a self-contained desk.top unit

-provided with interface control logic and an operator's

control/indicator panel. Functional characteristics of the unit

are 600 card-per-minute read speed, 1000 card hopper/stacker

capacity, 80-column punch card input medium, and a

photo-electric read station with light/dark read checking

facility. One 7-foot (2.1 m) interface cable is supplied. The

1829-60 operates from 120V ac, 60 or 50 Hz source power. Option

1888-1 is available for 220V ac operation.

3-53

1827-60 LINE PRINTER

The CDC 1827-60 Line Printer is a high-speed band printer with

internal control logic and 	an MOS static shift register memory

which stores one full line 	of print data. Sound dampened

cabinetry and automatic motor turn-off after 30 seconds without

printing contribute to quiet operation.

The print mechanism consists of one heavy-duty hammer per two

print columns. Sharing is accomplished by shifting the hammer

bank between positions using a servo-controlled voice coil. The

print band is easily changed.

The printing ribbon is two inches (5.1 cm) wide by 48 yards

(43.9 meters) long. Ribbon velocity is constant in either

direction regardless of spool load.

FEATURES

a 600 lines per minute

o 	64 ASCII character set

.0 	Quietized cabinet

S 	 132 columns, ten characters per inch (3.9 characters
per cm)

* 	Six or eight lines per inch (2.4 or 3.2 characters

per cm).

* 	Designed for low grade or recycled paper

4
Test print maintenance feature with fault indicator-s

-. 50 or 60 Hz option

The 1827-60 Printer subsystem consists of the printer, a 20-foot

(6.1 meter) logic cable, a 	1,5-foot- (4.6 meter) power cord, one

ribbon 	and one ASCII 64 character set band.

3-54

MAINTENANCE FEATURES

Very little maintenance isnecessary for the printer; when

required,, it is accomplished easily and rapidly., LED

indicators on the printedcircuit boards show hammer-driver

faults (such as short circuit or excessive power drive time).

Modular design permits field replacement of essential modules

for depot repair. The electronics boards swing out from the

rear of the print head structure. This provides easy

accessibility to both sides of the boards-. The printed-circuit

boards are connected by flat ribbon cables.

A test print switch in the printer permits off-line checkout of

the print mechanism and driver logic.

In addition, diagnostic software, Diagnostic Decision Logic

Tables (DDLT) and detailed maintenance procedures make up the

total CDC CYBER 18 Operational Diagnostic System (ODS) which

provides maximum efficiency in maintaining the system.

3-55

1833-1 STORAGE MODULE DRIVE INTERFACE,

The CDC 1833-1 Storage Module Drive Interface provides a single

CPU A/Q-DMA channel interface to the 1833-3 Storage Module

Control Unit. The interface handles all control and status

operations via the A/Q channel and all data transfers via the

DMA channel. The interface supports the control unit connection

of up to eight CDC 1867-xx Storage module Drives in any mix.

Connection to the 1833-3 control unit is via two 25-foot (7.6 m)

cable assemblies. The interface occupies one A/Q-DMA position

within the processor unit.

3-56

1833-3 STORAGE MODULE CONTROL UNIT

The 1833-3 is the control unit for the 1867-10 Storage-Module

Drive (SMD). It provides control for up to eight drives in any

mix of 25 million 8-bit bytes and 50 million 8-bit bytes of

formatted data capacity. The control unit handles ,all SMD data

transfers, formatting and error recovery. It provides for

either single or dual CPU connection via the 1833-1 SMD

interface. The control unit is physically housed in the base

cabinet of the first SMD in the subsystem. Input power may be

either 50 or 60 Hz, 120 or 220 vac, single-phase.

3-57

1867-20/21 STORAGE MODULE DRIVE

The CDC 1867-20 Storage Module Drive is a random-access device

using removable CDC 877 Disk Packs (or equivalent) for the

storage medium. It has a formatted data capacity of 50 million

bytes. The maximum data transfer rate is 1.2 million bytes per

second. The average access time is 30 milliseconds. The drive

includes the base cabinet, one 10-foot (3.1 m) A cable (daisy

chain) and one 20-foot (6.1 m) B cable (star). The CDC 877 Disk

Pack is not included. The 1867-20 operates from 120V ac, 60 Hz

source power, and the 1867-21 operates from 220V ac, 50 Hz

source power.

3-58

1860-1/2/3/4 MAGNETIC TAPE SUBSYSTEMS

The CDC.l860-Series Magnetic Tape Subsystems provide reliable,

low-cost, and versatile tape storage capability for the CDC-

CYBER 18 processor. Available subsystems record and read

industry standard NRZI. 7- and 9-track, 800 bpi (315t bits per

cm), 25 ips (63.5 cm per second) tapes. Error correction and

detection is -accomplished using an LRC and CRC character which

is generated and-checked by the controller. Single track error

correction on 9-track tapes is performed automatically by the

controller. Program settable clip levels permit error recovery

of marginal data. Up to four tape drives can be connected to

the controller, which occupies a single A/Q slot in the CPU

chassis.

Normal operating functions of this tape unit include read data,

write data, write file mark, backspace, erase, rewind to load

point, rewind and unload, recovery read, and controller

backspace. The controller also provides a number of self-test

modes.

HIGHLIGHTS

* 800 bpi (315 bpcm), 25 ips (63.5 omps), NRZI recording

* Controller self-test mode

e ANSI interchange compatible

.e 7- and 9-track drives, any combination

* Up to four drives per controller

* Single track error correction on 9-tr.ack

3-59

* Single capstan, vacuum column design

* Digital 	tachometers

* Programmable recovery clip levels

MODELS

Model 	 Description

1860-1 	 Seven-track NRZI tape subsystem consists of a single

1860-72 transport mounted in an 1887-4 Cabinet and

uses an 1860-200 (upper) Installation Kit. cable

connects from the transport to the 1832-4 controller,

which is housed in the CDC CYBER 18 central

processor.

1860-2 	 Seven-track NRZI tape subsystem consists of two

1860-72 transports mounted in an 1887-4 Cabinet and

uses 1860-200 (upper) and 1860-201 (lower)

Installation Kits. A cable interconnects the two

transports 	inside the cabinet, and a single cable

connects from the first transport to the 1832-4

controller.

1860-3 	 Nine-track NRZI tape subsystem consists of a single

1860-92 transport mounted in an 1887-4 Cabinet and

uses an 1860-200 (upper) Installation Kit. A cable

connects from the transport to the 1832-4 controller

which is housed in the CDC CYBER 18 central

processor.

1860-4 	 Nine-track NRZI tape subsystem consists of two

1860-92 transports mounted in an 1887-4 Cabinet and

uses 1860-200 (upper) and 1860-201 (lower)

Installation Kits. A cable interconnects the two

transports inside the cabinet, and a single cable

connects from the first transport to the 1832-4

controller..

EXPANDED SUBSYSTEM

Using the 1887-4 Cabinet, the 1860-200 (upper) Installation Kit

and the 1860-201 (lower) Installation Kit, transports may be

added to the standard subsystems to provide'any combination of

7- and/or 9-track NRZI-transports, up to the limit of four per

1832-4 controller.

3-60

DIVISION 4

LOOSELY COUPLED NETWORK

SPECIFICATION/DESCRIPTION

DIVISION 4

LOOSELY COUPLED NETWORK

SPECIFICATION/DESCRIPTION

The material dontained within this document is subject to

change without notice. This document or parts thereof should

not be considered a commitment or an offer on the part of

Control Data. Commitments will only be made through standard

,channels and with appropriate management approval. It should

be further understood the information contained herein

represents a functional intent of an implementation and not

necessarily the specific approach used in the implementation.

The reader should consider this a planning document.

4-1

LCN SYSTEM DESCRIPTION

I. INTRODUCTION

One of the ways large computer systems have been growing

in complexity is in the amount of inter-processor

communications required within a site. The trend towards

distributed functions within a system installation has

accelerated these requirements. The direct connection of

"co-equal" computers is often desired, in order to

provide redundancy or fallback capability. In many

cases, the requirement is to connect mainframes of

different manufacture, thus compounding the problem even

further. These links between processors have

traditionally been designed as the need arose and each

interface required specially developed hardware and/or

software. The development of these interprocessor links

has, therefore, been cumbersome and the solutions tend to

be inefficient, inflexible, and costly.

With this in mind, Control Data developed a system design

strategy that simplifies future system site communication

problems. The main motivations for such adesign are

those of economics, flexibility, ease of implementation,

and overall system effectiveness. Additionally, Control

Data has developed a strategy that permits gradual

implementation steps. Control Data understands that

large systems are usually vitally intertwined into the

businesses they serve, and become increasingly intolerant

of extended interruptions.

The -keynotes of an appropriate solution are: (1) to

provide as many "common" link elements (i.e., those which

provide common functions for as many types of future

links as we can envision); (2) to be consistent with the

major technological trend toward distributed system

functions; and (3) to provide a modular growth path,

i.e., one which can be introduced in steps.

II. THE APPROACH

Aside from the philosophical problems of the traditional

approach, the detail problems of implementation can be

lumped under the broad category -of connectibility -- both

physical and logical.

Physical connectibility is hampered by maximum length

requirements for the various cables; by the number, cost,

-and bulk -of the cables themselves; and by the back panel

space needed to attach them. In any composite system,

the problems are compounded greatly 'by the variety of

cable types needed. Using the data cable concepts, which

were appropriate for stand~alone systems, is a serious

handicap when attempting to link processors distributed

throughout a large site, just because of these distance

constraints.

-4-2

An even more serious problem is that of "logical

connectibility". Matching channel parameters to new

peripheral devices as they come along has become a major

consumer of software development and maintenance

resources.

Similar connectibility problems arise- in networks where

the links are provided by common carrier facilities.

However, it has become quite commonplace to provide-
simple, logical connections between systems from

different makers. In this case, both processors are

required to provide two main things; the necessary

buffering to accommodate the speed requirements of the

coimunication medium, and the need to conform to a common

link control protocol. In addition, if they are to

understand each other, a common "language" (such as

.

ASCII) must be used. Having done this, a system can

communicate with any other to the extent it is equally

capable. The key difference between this philosophical

design approach and customary ready-resume channels is

that the using system does not pretend to own the

communication line or attempt to drive- it at his

"natural" speed. Therefore, the rules of the Control

Data approach are as follows:

Rule 1. - Loose Coupling

The interprocessor communication function is a naturally

independent system function, i.e., independent of all

user processors. Therefore, its control and

implementation should be done independently of the user

systems, and should not be thought of as "owned" by any

of them.

By adhering to this design philosophy, many of the

pitfalls of the traditional tightly-coupled links are

avoided. It is not necessary to establish a master for

every possible send-receive pair, and only one link

control protocol need be designed.

Rule 2. - Bit Serial Transmission

The internode transmission should be bit-serial, with

enough bandwidth to accommodate the anticipated peak

traffic.

There are many benefits to be realized using a bit serial

approach. The main technical reason is to capitalize on

the enormous amount of research and know-how that has

been and,continues to be developed by the communications

industry for single-wire systems.

4-3

II. THE SOLUTION

Control Data's Loosely Coupled Network (LCN) program is

specifically designed to solve the problems of

interprocessor and peripheral connectibility as discussed

in previous paragraphs. LCN provides an efficient

approach to interfacing a variety of mainframes and

peripherals in a local network. Control Data's solution

to the local networking problem encompasses not only the

hardware interconnection media but also comprehensive

software and diagnostic capabilities.

The LCN system is comprised of several different hardware

components. The transmission medium in the LCN system

includes one or more coaxial cable data trunks.. These

trunks provide reliable communication between attached

devices at rates up to 50 million bits per second at 1000

feet. Communications over these trunks at longer

distances is possible by reducing the number of attached

devices. Each trunk has the capability of supporting

multiple drops thus providing for interconnection of many

devices in a common network. Programmable Device

Controllers (PDCs) are used to interface various devices

to the coaxial trunk network via a 50-Mbit Data Set.

Figure 1 illustrates the basic LCN interface technique.

LOOSELY COUPLED NETWORK

T

LCN MF ME ME ME

IgLCNBLt ,
DATA TRUNKS ._50 MB

Figure 1. Basic LCN Interface Technique

4-4

A PDC can attach to as many as four different trunks.-

The PDCs are programmable and include buffer memory thus

enabling the effective integration of many different '

devices operating at different rates. Through the LCN, a

variety of hardware devices can be linked together.

In addition to the LCN hardware interfaces, Control Data
is developing comprehensive software to support various
local network applications. Current software
developments under NOS are in the areas of
mainframe-to-mainframe communication and the sharing of
mass storage devices. Other software development is
planned for future applications as the LCN program
progresses. S

The third ingredient in the Control Data LCN offering is

in the area of maintenance and diagnostic support. Each

CYBER 170 which has an interface into the network will

include a set of diagnostics which can be executed in any

of the networks PDC's. In addition, other processors

connected to the network will contain diagnostics used to

assure the integrity of that data link. Each interface

into the network will include a set of unique diagnostics

which can be exercised in the PDC connected to the

various devices. Diagnostics may be initiated in an

on-line mode from any Control Data mainframe in the

network which is running the NOS Operating System.

Additionally, off-line diagnostics may be run through a

maintenance interface which connects to a given PDC via

an RS232 interface.

Subsequent paragraphs in this document will further

define LCN hardware, software, and diagnostic

capabilities.

IV. BENEFITS

Control Data believes that the LCN program is a very

positive addition to current CDC network offerings. The

Control Data approach encompasses a total systems concept

which is designed to solve our customers' current and

future local networking problems. LCN combines the use

of the latest high-speed transmission technology with

comprehensive software and diagnostic support to ensure

that all facets of a customer's problem are addressed.

Major benefits of the Control Data LCN program are as

follows:

4-5

* CONNECTIBILITY

LCN enables a customer to readily ,interface many

processors and peripherals in a local network

environment. A processor or peripheral connects into

the network via one or more PDC. Each PDC has the

capability of interfacing with from one to four

different trunks. Each trunk can accommodate up to

32 different drops (i.e., 32 different devices

assuming one drop per device). In a four-trunk

system, up to 128 different devices could be

interconnected. Control Data takes advantage of this

connectibility via the LCN software now under

development. This software will permit multiple

mainframes to interact with each other and with

peripherals that are part of the local network.

Additionally, because LCN is an integral part of the

CDC total systems offering, other current interfaces

such as remote mainframes, transaction terminals, and

interactive terminals can readily be included in the

total system.

* CONFIGURABILITY

LCN offers customers a great deal of latitude in the

area of site planning and overall configuration

coordination. Customers are no longer constrained by

cable lengths and co-location requirements when

configuring their systems. -The LCN will enable

customers to locate processors and peripherals at

distances greater than allowed by current channel

design.

The LCN provides a more flexible approach for

interconnecting various mainframes and peripherals.

In the past, users wishing to link several mainframes

together were required to do so via point-to-point

connections where each interfaced processor would

require an additional piece of hardware. In the case

of peripheral devices, multiple hosts were restricted

access because of port availability, cable distances,

etc. With the advent of LCN, mainframes may tie into

a trunk network via one interface box (i.e., a PDC).

With one PDC, a mainframe can converse with many

other mainframes or various peripheral devices

without devoting specific resources to each interface

requirement. This type of approach leads to a more

simplistic -configuration-where system operability,

control, and maintenance are more readily

accomplished.

4-6

* MAINTAINABILITY

The LCN hardware and diagnostic software support ere

specifically designed to provide the utmost in

product and system maintainability. The LCN hardware

was designed to meet the highest level of

reliability, availability, and maintainability. In

addition, the PDC is designed with maximum

commonality between different models in order to

minimize spares requirements. The combination of

comprehensive off-line and on-line diagnostics

further enhances the total maintainability of the.LCN.

*- RELIABILITY

Reliability, like maintainability, is a key factor in

the design of the LCN hardware and software

components. Control Data's approach is one of total

system reliability--where the combination of reliable

hardware and supporting software ensures system

processing integrity. Such factors as careful

selection of key hardware components, selection of a

very efficient protocol scheme, and comprehensive

error detection and reporting mechanism all help

maximize system reliability. Most of the components

used in the LCN sytem are field proven products

currently in use in the computer industry.

Additionally, LCN provides the capability to

configure a system with redundant hardware components

(i.e., PDCs and trunks), which alleviate single-point

failure problems.

* FLEXIBILITY

LCN provides customers with an extremely flexible

system. The LCN permits ready adaption of not only

Control Data interfaces but also other selected

vendors' equipments. The PDC was designed such that

the majority of components are common, regardless of

the device being interfaced. This design provides a

modular base that can readily be adapted to interface

various equipments as required. With this type of

approach, customers no longer have the traumatic

interface problems of the past as they integrate new

processors and peripherals into their existing

configurations. The LCN provides customers with an

excellent growth path that allows future expansion as

their requirements change.

4-7

*- SUPPORT

Control Data's LCN program provides all aspects of

support. Because of the system commitment of

hardware, software, and diagnostics, Control Data is

able to offer a total solution to a customer's local

networking requirements and is able to provide a

level of support not currently available. In

addition, the integration of the LCN program with

existing Control Data hardware and software programs

provides prospective customers with a comprehensive

approach to satisfying a wide variety of system needs.

* PERFORMANCE

The technology employed in the LCN hardware enables

reliable transmission over trunk lines at 50 million

bits per second. Maximum trunk utilization is

realized due to several key LCN features: (1) Access

to the trunk is resolved by a self-synchronizing,

rotating priority mechanism. This method guarantees

trunk access to all units on the trunk during peak

loading. See appendix A for explanation of trunk

synchronization. (2) Maximuxm utilization of various

system resources is obtained by providing a mechanism

whereby data rates of attached devices are buffered

from the transmission rates of the LCN. This is

accomplished using the buffering scheme employed in

the PDC. (3) The protocol used by LCN is designed to

provide for a minimum of overhead which in turn

permits amaximum utilization of the bandwidth

available.

*• OPERABILITY

The LCN improves system operability through the

down-line load capability. A PDC can be loaded

either through the device interface or trunk

interfaces. Therefore, the system operator can

initiate a reload should it become necessary to

change the system after automatic system

initialization.

V. THE PRODUCT

Control Data's LCN strategy encompasses a wide variety of

different device connections and various software

offerings. Figure 2 illustrates the vanious hardware

interfaces that are either under development or being

considered for development.

4-8

LCN CONFIGURATION

COG CODCGCB DEC 6D0 RMSI
600/Y7O/CY7 Y0 76001CY176 370 POP-il1 844,885,819 P

L
A

- N
FGP00 P00 P0 PO O N

E

F
U2.C
Figur IBMaeTye

PCP00 P00 P00 POG 	 T
U

E
OTERFONT MICRO MAG UNIT S

MANRMS ENDS tWAVE I TAPE IRECORD

Figure 2. LON Interface Types

The various interfaces shown above the trunk are

currently under development. The interfaces below the

trunk are currently being analyzed for future

availability. The flexibility of the LCN design will

permit future program additions with a minimum of special

effort.

Software support for the various LCN interfaces is being

done under the NOS Operating System for the 6000/CYBER

70/CYBER 170 line and under the CYBER 200 Operating

System for the CYBER 200 System.

NOS software currently being developed includes a

host-to-host link for the staging of permanent files,

input files, output files, and application-to-application

interaction. In addition, other NOS software will be

implemented as additional LCN interfaces are identified.

The CYBER 200 system includes LCN as the basic

input-output mechanism and supported with standard

software. Included in this area are support of 819

disks, a CYBER 18 Maintenance Control Unit, and

6000/CYBER 70/CYBER 170 station support

4-9

Support for non-Control Data LCN interfaces will be at

the PDC level. -The PDC models that interface non-CDC

mainframes will include the appropriate device interface

and microprogramming logic necessary to easily adapt

these equipments into the LCN configuration.

Additionally, the host-to-host software being developed

for the Control Data mainframes adheres to a high-level

protocol that can be readily adapted in non-NOS Operating

System environments. ControliData will publish sets of

specifications that define interface requirements for

non-CDC mainframes.

4-10

LCN PRODUCT DESCRIPTIONS

I. LCN HARDWARE COMPONENTS

The Programmable Device Controller (PDC) is the principal

element of a generalized I/O system that uses high-speed

serial channels as interconnecting data paths between

multiple processors and peripheral equipments. The

generalized system, referred to as the Loosely Coupled

Network (LCN), has been under development by Control Data

for several years. The control of the serial channel is

distributed to all resident PDCs rather than being

centralized in one network control processor.

Figure 3 shows a block diagram of a PDC. The PDC

consists of five functional parts, four of which are

common and one of which is unique to the device or

channel being interfaced., The trunk interface consists

of hardware and microcode that matches the PDC both

electrically and logically to a high-speed (30 megabits

per second) serial trunk. The trunk interface is in turn

comprised of two sets of logic, a trunk control unit

interface (TCI) and from one through four trunk control

units (TCUs). The number of TCUs that would be required

depends on the number of different trunk lines present.

The Data Set provides the modulation/demodulation

associated with the transmission of data over the coaxial

cable. The memory is used for temporary data storage,

allowing various devices with differing data rates to use

the trunk. The memory also retains the executable

instructions called Controlware. The processor controls

the PDC resources and manages data flow. The device

interface is a unique set of hardware that matches the

device or, processor channel to the PDC internal bus. The

PDC design is such that common parts can be used with a

multitude of unique processors or peripheral equipments.

This commonality minimizes unique part types, reduces new

unit design time, and most importantly assures a

controlled serial trunk system structure. The

maintenance interface provides a means of connecting an

external load device as well as a maintenance control

terminal.

4-11

PDC BLOCK DIAGRAM

PDC

A-IATAL1SETI '

- - II PDC

IIr---
]2DATA

SET3L ' -...
r-...

TCU
" ,'

/I
I

PROC -

BUSJ

'DATA'
- ------- TCU

. v " I .

II -- ,
--- -,
ItSETI I -

I I-

RS232 , MAINTENANCEb~dZ jINTERFACE b

DEVICE PARALLEL INTERFACE' DEVICE
-CH:ANNEL - INTERFACE

Figure 3. Block Diagram of PDC

4-12

* PDC INTERNAL BUS

The PDC internal bus is used for inter-element

communications. The bus consists of 16 data bits,

two parity bits, 16 address bits, and several control

bits. Bus usage is allocated equally among three

elements: the trunk interface, the processor, and

the device interface. Each element has a time slice

approximately 106 nanoseconds wide which occurs once

every 320 nanoseconds. Time slice allocation allows

all three elements to access the bus, and therefore

the memory, at a guaranteed 50-Mbps rate (16 data

bits every 320 nanoseconds).

* PDC MEMORY

The PDC memory isolates the synchronous serial trunk

and asynchronous connected devices, while buffering

data rate differences between them. The size of the

memory depends upon the attached device and the

particular applications. A maximum memory

configuration is 65K of 16-bit words. The cycle time

of the PDC memory is 106 nanoseconds.

* PDC PROCESSOR

The PDC contains a hardware processor and controlware

microcode which manage the PDC resources and execute

system functions. The processor under controlware

instructions normally performs the following tasks:

- Managing PDC resources such as allocation of
buffer memory and reservation of the PDC for a
particular message source.

- Handling message flow which includes generating

message headers, monitoring data transfers, and

interpreting received messages.

- Initiating error recovery procedures on serial
channel transmission errors as well as device
errors.

- Executing various system functions which may
include queuing processes, executing I/O
processes through the serial channel and device
interfaces, handling device drivers, translating
message formats if required, generating autoload
messages if required.

4-13

The PDC has a 16-bit processor constructed from 4-bit

microprocessor chips that are microcoded to yield a

processor instruction set. The microcode runs at a

cycle time of 106 nanoseconds. The number of

microcode references per .processor instruction varies

depending upon the instruction being executed;

however, the average is approximately six to eight

microcode references. This gives an average

processor instruction time of 960 to 1280 nanoseconds.

* MAINTENANCE INTERFACE

The serial RS232C Maintenance Interface provides an

alternate means of loading the PDC and controlling

off-line diagnostics. With an optional terminal and

suitable load device the maintenance personnel can

enter diagnostics directly into memory, read out

portions of memory or enter instructions for problem

isolation.

* DEVICE INTERFACE

The device interface electrically adapts a device

channel to a PDC. Other key functions that may be

performed by the device interface include:

- Transfer of data and commands between an attached

device and the PDC.

- Assembly/Disassembly to handle different word
sizes.

- Device control for passive devices like disk and

tape.

The device interface is that set of logic which is

unique to a PDC, depending on the device being

interfaced. Currently scheduled device interfaces

include CYBER 170, CYBER 200, IBM 370 MUX channel,

DEC PDP UNIBUS, 844/FMD, CYBER 18, and 819. Other

device interfaces are currently being analyzed and

will be developed as appropriate. With the exception

of the DEC 11, all the device interfaces include a

single channel connection between the PDC and the

device. The DEC 11 PDC will contain a single channel

interface as standard with options to connect up to

four DEC Ils via a single PDC.

* TRUNK INTERFACE

The trunk interface performs the following functions:

Interface the data set.

- Add/Delete the serial trunk protocol envelope

which includes Cyclic Redundancy Code (CRC)
generation and detection.

4-14

- Interpret message functions and react accordingly.
- Generate response messages to ensure closure 'for

all valid incoming messages (some form of 1

response will always be generated even if the PDC

processor or attached device is unavailable).

- Accesses the trunk if the PDC needs to send a
message.

The trunk interface can operate in two modes:

message mode and streaming mode. Message mode is the

normal mode of operation in which all transactions

consist of a command and response message pair. See

appendix B for explanation of the message formats.

At the end of the message pair, control of the serial

trunk is relinquished to allow other PDCs on thet

trunk to use the trunk. Streaming mode is used in

special cases where a high rate is required. In

streaming mode, the trunk is held between

message/response pairs, allowing the next message to

be sent as soon as it is ready.

Access for trunk usage is resolved by a rotating

priority mechanism. This method guarantees trunk

access to all units on the trunk during peak loading

of message mode traffic.

The standard trunk interface is comprised of a Trunk

Control Unit Interface (TCI) and a Trunk Control Unit

(TCU). Additional TCUs can be field installed to

permit access to up to four different trunks.

* SERIAL TRUNK HARDWARE

A 50-megabit data set and coaxial transmission medium

are used for the serial trunk. The data set uses a

phase-modulated carrier system to transmit data in a

synchronous burst mode. High quality coax cable and

type-F connectors are used to eliminate any possible

ground and EMI/RFI problems.

The performance objectives for the data set and

transmission medium are:

- 50-Mbit transmission rate.

- Up to 32 data set attachments per serial trunk.

- Trunk length maximum of 1000 feet with 16

attachments.

- Longer trunk lengths (greater than 1000 feet) are

possible with fewer attachments and/or higher

quality cable.

4-15

A 16-bit Cyclic Redundancy Code (CRC) is included in

every message frame transmitted across the serial

trunk. The CRC is an extremely powerful error

detection mechanism in that single- and multiple-bit

errors anywhere in the message frame are detected.

II. LCN SOFTWARE

Control Data is currently developing software support for

various LCN applications. The following application

areas are under development:

- Host-to-Host Communications (NOS Operating System)

- Shared RMS (NOS Operating System)

- CYBER 200 System Software

In addition to the current LCN software activity, Control

Data is investigating support for various other LCN

applications. Included in this candidate list are:

- 6250 BPI Tape System

- Mass Storage System

- Communication Front Ends

- Micro-Wave

- High Performance Peripherals

* Host-to-Host Communication

Control Data is currently developing host-to-host

software that will enable multiple mainframes (design

maximum is 32) to interface with each other via LCN.

See appendix C for proposed second-level channel

protocol. Figure 4 contains a block diagram showing

a representative configuration for a host-to-host LCN

environment. This host-to-host software will provide

the following capabilities:

- Transfer of permanent files

- Transfer of queue files (jobs and output files)

- Application-to-application interaction

- Remote host connection

4-16

HOST TO HOST CONFIGURATION

CDC CDC CDC

CY170 CY170 CY170

Figure 4. Host to Host LCN

The LCN host-to-host software is being implemented

under the NOS Operating System and under CYBER 200

operating system. The base for this software is

under NOS the Network Access Method (NAM) module

which is an integral part of Control Data's

comprehensive Network Host Products (NHP)

capability. This type of implementation approach

ensures the development of a coordinated and cohesive

networking capability that encompasses local networks

as well as communication networks.

The Control Data NHP system is very modular in nature

and provides an excellent base adapting additional

interface requirements. The host-to-host software

being developed is referred to as Remote Host

Facility (RHF) and is an independent module that will

direct user LCN requests to NAM for processing.

Control Data's NHP system uses extremely flexible and

adaptable protocols which are designed to provide

transparent interaction into the network. The

adoption of this approach also provides an excellent

base for the interfacing of other mainframes (either

Control Data or not) which do not run the NOS

Operating System.

4-17

* Shared RMS

Control Data is developing software that will enable

multiple CDC mainframes operating with NOS access to

common RMS. This software will initially support 844

and 885 disk subsystems under control of the NOS

Operating System. The 819 disk subsystem is only

supported by the CYBER 200 Operating System.

The LCN shared disk software will be done in two

phases. Figure 5 and 6 shows a configuraton diagram

for Phase I and II respectively. Phase I will

provide for sharing of RMS by up to eight NOS

mainframes. In this phase, all mainframes connect

directly to the disk subsystem and the LCN may be

used for communication, coordination and recovery

activities. Phase II implementation includes the

attachment of RMS directly on the LCN trunk.

LCN SHARED RMS

-PHASE I-SHARED RMS WITHOUT ECS (ALTERNATE LINK)

LCN TRUNK

MF MFMF

SHARED

Figure 5. Phase I Shared RMS Without ECS

4-18

LCN SHARED RMS
PHASE II - SHARED RMS WITH PDC I/0

C170 C170 C170 C170 up to 32

Mw ME ME MEF

P00 PDCP0P0

PDC P00

RMS RMS
CTL CTL

SHARED

RMS

Figure 6. Phase II - Shared RMS With PDC I/O

* CYBER 200

The CYBER 200 I/O system uses a CYBER 170 Computer

System, running under control of NOS operating

system, to interface all peripheral equipment except

mass storage. Mass storage is connected via the

Loosely Coupled Network (LCN) directly to the CYBER

200. All communication and data transfer between

CYBER 200 and the CYBER station and between the CYBER

200 and its mass storage system takes place via LCN.

The CYBER 200, CYBER Station, CYBER 18 Maintenance

Control Unit (MCU) and 7639 mass storage controller

interface to the trunk through a Programmable Device

Controller (PDC). The types of PDC interfaces used

in the CYBER 200 system are as follows:

CYBER 200 interface

CYBER 18 interface

CYBER Station interface

7639 interface

The CYBER 200 PDC reads and writes CYBER 200 memory

in response to messages directed to it from the trunk.

The CYBER 18 PDC is used to down-line load other

PDC's on the trunk and to collect maintenance data.

4-19

The CYBER :Statidn PDC interfaces the CYBER 170 System

into *the LCN in order to provide various station

functions for the CYBER 200. Some of the key station

functions include job entry, output disposition, tape

and disk file processes, and operator interaction.

The 7639 PDC contains the driver for the 7639 storage

system. It accepts Read/Write commands at the higher

CYBER 2OQ message level, queues and dequeues them,

performs address translation (block number to head,

sector and position), and functions the controller to

transfer the data to and from its buffers. It also

performs- error recovery on the transfers and sends

error logs on the channel for eventual logging on a

CYBER 18 file. Normally due to the high data

transfer rate of the 819 and the desire to maintain

uninterrupted data flow, a CYBER 200 system will be

configured with one dedicated trunk per 7639/819

combination. A typical configuration for the CYBER

200 is shown in Figure 7.

CDC CC
CYBER200CYBER1i8

MCU.

.I I ILI. i

El T ~I Iy T°

Figure 7. !Typical CYBER 200 System Configuration

4-20

II. LCN MAINTENANCE/DIAGNOSTICS

Comprehensive, maintenance software will be provided.with

standard Control Data LCN systems. Where feasible,

maintenance of PDC's is performed in conjunction with

Control Data's concurrent maintenance capability and uses

the Hardware Performance Analyzer (HPA) facility.

Concurrent Maintenance is the diagnosis, repair, and

testing of a subsystem or device while the system is

performing its normal function. Diagnostics run in

parallel with the operating system as normal user jobs

are-running.

The Hardware Performance Analyzer is a program operating

under NOS that tracks equipment usage statistics as

logged by the operating system. HPA maintains a listing

of equipment errors and calculates the error-rate value.

The error rate is compared with a pre-defined standard of

expected performance for the equipment. When equipment

performance falls below expected standards, a maintenance

alert message calls for remedial action.

PDC diagnostics can be loaded either from a local CYBER

mainframe or down-line from a CYBER attached to the LCN

Trunk.

Maintenance Software is intended to provide the following
functional level of LCN integrity:

0- Power-on and load-time confidence tests

* First-level PDC diagnostics

* On-Line system diagnostics

* Stand-alone CPU diagnostics

* On-Line Network type diagnostics

* System CPU error logging of LCN failure data

Power-On and Load-Time Confidence Tests (PDC)

These tests are initiated at the completion of a

successful power on sequence. They also may be

operator initiated or callable when desired from the

CPU. This test verifies the operations of the PDC

using a building block testing philosophy. The

verification test indicates successful completion or

error halt. The error halt readout contains codes

that allow the operator to determine if the problem

is operator correctable or requires a service call.

First Level PDC Diagnostics

PDC diagnostics consist of three segments:

- Utility tests

- Linked PDC diagnostics - First level

- Additional callable tests

4-21

On-Line System Diagnostics

These diagnostics run as a problem program concurrent

under the operating system. The diagnostic will test

all commands and functions. The tests will operate

in a most-simple to most-complex mode which allows

some degree of isolation. All subsystem failure

status and associated sense bytes are provided to the

system level. Since these diagnostics run under the

operating system, they are also able to initiate

execution of the PDC diagnostics. The hardware

supports loop back tests from the CPU level.

Stand alone CPU Diagnostics

These diagnostics are similar to the on-line

diagnostics but have the additional capability of

executing commands that the operating system will not

allow. Also, special I/O capabilities outside of

standard operating system mode would be available.

These tests can also be used to determine if the

problem is in the host operating -system or the

network.

Utility tests

The operator initiates these tests for purposes

of verifying trunk and device interface

integrity. These tests have the capability of

being selectable for one of several test patterns.

Linked PDC Diagnostics

These tests are the prime fault detection and

isolation diagnostics for troubleshooting. They

are normally run in a predesignated order but can

be individually callable and looped upon as

required. Error codes derived from these tests

will determine what further tests should be run

or which logic modules are required to be

replaced.

First-level diagnostics diagnose to a logic

module level. The diagnostics are capable of

checking all functions of the PDC not requiring

CPU action which includes the following:

Ability of the TCU and DI to handle

worst-case conditions.

Memory operation which includes Controlware

and buffer memory space.

Maintenance interface operation

4-22

Additional Callable Tests

These are callable in-depth troubleshooting tests

restricted to operation from the maintenance

panel for customer engineers' use.

These tests also have capability'of running

real-time tests to determine network degradation

and promote predictive maintenance.

Controlware In-Line Maintenance Software

The controlware provides an error record for any PDC

error recovery. These records are stored in a

subsystem file and presented to the system. The

record contains the sense information, number of

retries, and whether or not the recovery was

successful.

System In-Line Maintenance Software

System error recovery and logging for the PDC is

accomplished by the operating system.

4-23

APPENDIX A

PERFORMANCE OF TRUNK ALLOCATION

CONTENTION ELIMINATION

(TRACE) METHOD

SCOPE

For several years RADL has been experimenting with a time

shared 50 MHz serial coaxial trunk intercommunication subsystem.

Such a system,offers many advantages over older, more

conventional channel communication methods. However, the-fact

that the trunk is time-shared between a multiplicity of users

implies the possibility of contention -- the simultaneous

transmission-of two or more messages by different users

resulting in garbled reception by the intended receivers.

Techniques to prevent contention while still sharing the trunk

have recently been proposed. This report describes the methods

and assumptions used to simulate the performance of a trunk

using the Trunk Allocation Contention Elimination (TRACE)

system.

Two different simulation languages were used and simulations on

each were run to verify each other. The two simulation

languages used were GPSS and ASPOL.

TRACE METHOD

The TRACE method assigns time intervals to each user on the

trunk by means of a hardware scanner which is divided into

slots and subslots. See figure below. There must be at least

one slot for each user but more slots are permissible. Subslots

divide slots into convenient smaller time intervals. One slot

4-A-1

time must be greater than twice the total transmission line

propagation delay. Each user is assigned a unique slot number

(user number). Each user has his own scanner which is kept in

approximate synchronism with the scanners of all other users.

A complete revolution of the scanner is called a cycle. Each

user maintains a cycle counter.

2

n"

S 	3 2 SUBSLOT

4/
4 n,

N... 	 TRANSMIT SUBSLOT

RESET SUBSLOT

BASIC RULES

* 	A user may transmit a command only at the beginning of his

slot time. This eliminates contention since each slot is

long enough that all users will see the trunk go active

during the transmitter's slot so no other user will begin to

transmit.

* 	 If a user has no request to transmit at his slot time he

increments his cycle counter. If his cycle counter reaches

4-A-2

a limit value the user must transmit a resync command. In

this way the various users are kept in approximate-.

synchronization even when there is no message traffic.

e. When a user detects a transmission on the trunk he must:

a) -stop his scanner';

b) monitor transmission t-o determine who sent it and who it

is for;

c) reset his cycle count to 1;

d) if transmission is okay, set slot number sender*;

e) set subslot number to 2 (reset)**;

f) wait for end of transmission;

g) if transmission for this user, send response;

h) wait twice total line delay for any further activity;

i) if further activity go to f;

j) if not, Start scanner.

w 	A few special rules are needed for system startup and error

recovery.

*Other special rules could be implemented for fixed priority,

multiple slots, etc., if desired.

**Steps c, d, and e accomplish resync for each user.

4-A-3

APPENDIX B

LCN CHANNEL PROTOCOL

B1.9 INTRODUCTION

The purpose of defining the Loosely Coupled.Network Channel

Protocol (LCNCP) is to simplify the present PDC protocol while

retaining its key features. Less hardware and software should

be required to implement this protocol.

The LCNCP is a byte-oriented, code independent, modular data

link (trunk) control protocol. It is designed for a conference

multipoint interconnect and specifically allows multiple active

channel connections. The LCNCP protocol is not compatible with

any other serial channel protocol.

This document defines in detail the frame structure used in all

LCNCP transmissions. It describes the structure, formatting,

and significance of the various fields in the frame as well as

frame delimiters and frame check sequences.

4-B-I

B2.0 MESSAGE FRAME STRUCTURE

B2.1 General

The vehicle for all command and response information is called

.amessage. E-ach transmission on the trunk consists of only one

message frame. In all but a few special cases, communication

between two elements X and Y consists of a pair of message

transmissions: a command message transmitted from-X to Y and a

response message transmitted from Y to X. The command and

response message frame structure is shown below.

B2.1.1 Command Message Frame Structure

A valid command message is a minimum of 10 bytes in length

following the frame synchronization sequence and must conform

to the following structure:

P, F, T, FUN, Al, A2, RP, S, LI, L2, FCl, FC2, I, FC3, FC4

where:

P = preamble of all ones preceding sync frame

F = message frame synchronization byte

T = destination address field

FUN = function field

A1,A2 = access code field

RP = resync parameter

S = source address field

L1,L2 = length field

FC1,FC2 = header frame check sequence field

I = information field

FC3,FC4 =.i-nformation -frame check sequence field

4-B-2

Frames containing only link control sequences form a special

case where no I field is present.

The command message frame structure is illustrated ih figure

B-1. Each element of the frame is detailed in section B2.2.

4-B-3

2
-4

0

IT
]

m
r

co

C
-)

 (D
 '0

(
D
 t
a
O W

W

C

-)

C
3

)
1

nI

0
0

W

(a
j;

C

wr
)
-
"

w

>
I

<
1

oq

I
H

C

0

C
D

H

--
c
t
O

-
1

F
0
)

H
- ct
0'

H
-
-

c
t
C O

N
-
0

C

H

00

r

P

00
C

ct

P
.
0
0

Cr

P -
oD

cr

P
.
 C

O

ct

0
) -S

A

H
.

I
w

I

C
A

I

I
I

E

I
r

I
I

IIH

I

n
l

C

I.'
-f

~

I(
D

II
I
H

lC

I
I

I
I

C

I
(D

I

-
~
I

pq
l0

0

Z

En

I
to I(D

I

c
-

I
IH

.C
=

1~
z'

PO

a w
D

En

En

a)

0q (D

I
1
)

I
(D

1
.0

 d
-

I
C
r
-

P

I:
3

O

I
i=

in

In
 o

I
IC

D
"I

I
I

_%

IF
-T

IW

I
P
'
S
3

(D
O

I I I1P

I I I(
D

i

I

D
)

Cr

H
-

0

H
-1

(D

1
W

I
I

(D
C

)(aa

r-
C

I(

D

I
I

3 0z
i

IC
(D

'I

~

I n
P

-C
D

 I

I I I I I I I I I I

r C
D

zi

0q

cr

bv

"
-I

I .

(D H

a

I I 1 I I I I I I I I
D

r_

Is

0 (D

):
:

aL

aL
 I-s

(D

t t

1 I I I I 1 I 1I I IA

I

<

0

"
U
i

a) -1

a)

(D Cr

I I I I 1 I t

0 0

(D

to

rn

C

0 a C
D

I I I I I I I I I I InD

0

c-
t

H
.

0 "T
I

H
-I

P

(D H

a
(I

I:
sI

I

I I I 1 I . I. I,

H
.-

0 n I a I (D

I 1 I I1
. C

I

ua
'1

'
4<

0

1
cr

t
w

O

(D N
O

0)

P
.-

0

I I5

Il ID

I It I1

) (D
 '

to
I

W
-

Cr

to

H

z 0 - -

T

- D

a (D

I I

(D

I-
C

-1

I I
I

I
C

'I
 II

I
I

I
I

I
I I

IO

I

C
r_

__
__

__
_

-
-

-
-

-
--

-I
-- -

-
-

-
-

-
-

-
-
-
-
-
-
-
-
-

--
--

--
--

--
--

--
--

--
--

-
-

B2.1.2 Response Message Frame Structure

A valid response message is a minimum of 10 bytes in length

following the frame synchronization sequence and must conform

to the following structure:

P, F, T, FUN, P!, P2, P3, S, LI, L2, FCI, FC2, I, .FC3, FC4

where:

P- riot used

P2 TCU/TCI status

P3 not used

and all other elements are identical to the command frame

elements.

The response frame structure is illustrated in figure B-2.

Each element of the frame is detailed in section B2.2.

B2.2 Frame Elements

B2.2.1 Frame Synchronization (P, F)

All messages open with a frame synchronization sequence. The

sequence Starts with 16 or more one bits and ends with a

synchronization character (binary configuration 01111110). The

frame synchronization sequence serves as a position reference

for all characters in the message, and initiates transmission

error checking. At the start of a data transmission a minimum

of 16 one bits must be sent before the sync character is sent.

Two equipments that are performing a streaming operation can

send many one bits at the start of a transmission to hold the

serial channel until a message is ready to be -sent.

NOTE: 	 No bit insertion/deletion (such as IBM's SDLC protocol)

is used in the LCN protocol.

4-B-5

C)

t
0

1
1
 1

CD

a M
'

(D 1
0

a'
oZ

o'

I

-I

H
'

I
P

.I

r-
0

(D

LI
)

to
H

-
H

W

H
C

H

C
)

H
C

H

D
H

0
c
t

m

ct
G

C
)

C
tG

(I
C

t
c
t

C
t

c
t

C
t

C
t

M

I
(n

o

In
c

En

I
E

an

C
D

:H

3

I
(D

 Z
5

1
1IQ

)0C
 "

"
1

(D

I

I
I

w
 I

I
U

I

I IIC
 I

H

IA

t~

D
I

En

M
,

0a
'

IS
2

I3

E
O

I ID

W

0 's
t

0

1(
T

IC

I I
Z a'

ID

I; ID

InI, I

I I
aIA

I 1I5

ID

It

n 1t A
)

5

I I I1

t 0)

I I1

10

0tC

0E
l

I0

IP
.II

H
.I

/ W

I

t3
,

W
$C

1-

O
N

(D
'

(D
'

En

En
,

w

O
ct

(D

c)
Io

C
t

I

c

t

aC

p.
1(

D Z
3~

:3

o
C

IC
D

IT

1
I

I
I

"
I

w

I1
P

-
Ia

' (
D

 M
a

I I I I I

c
t

0 M
 ~

(D

1
.(

(D

IH

. C

1C
C(D

I

1
 0

1

Io
n,

I

m

I
lI(

D
IIP

. -
I I IC

L

IQ

I I

I
I I II

C
t I H
, a~

I I

I

I I I I I I

I

a
' c
t Da '-1

u
j

I

I I I I I I I I I

a'

c
t I' I I Ni
 I

(2

I I I
1

I II I1

I III
III

(D
'

c
t (D

"1

I I 1~

I

(0

f =S

0 C
t

P
.

0 n

1 I(

I I I I

P
. 0 I Q

0
l

(D
'

IE
n

I I I I 1 I
I

' <

01

s
C

t~
I w

(
H

F3

N

D

a) &
r

P
.

0

I~

I I I

lD

u
, Fl
H

cr

C

A

r- 0 H
 "

(D

niw

5 a H

(D

I I

I I I In

0

I
-

C
:

1
3

l
o
o

1

I
X
R

1
I

I
n
f
l
r
I

I N
)

0
1
)
N
)
I
-1

1

I
I

)
(4 I

1

I
N

)
C

i

I
I

I

I

B2.2.2 Destination Address Field (T)

The Destination Address Field (T) is an 8-bit quantity that

uniquely identifies the destination of the message. No

provision is made for a global destination address.

B2.2.3 Function Field (FUN)

The Function field (FUN) is used to convey the commands. and

responses necessary to control the data link. The..most

significant bit of the function field is reserved for link

control as follows:

01 	 7

I I

1----> = 1 For Response frame

> = 0 For Command frame

The remaining bits of the function field are available for

specified commands and responses as shown below.

B2.2.3.1 Command Function

The following command functions are used in controlling the

serial channel.

* Master Clear - master clears hardware.

* 	Downline Load - loads information field to memory
without processor control.

., Downline Dump - constructs a response field from
memory without processor control.

* Go - issues PDC 	processor go command.

* 	Status - requests hardware status from the serial

channel interface.

* Resync - resets 	resync counters.

4-B-7

The following -command functions- are used to transmit

information between higher level processes.

* 	Data - loads information field to memory with

processor control.

B2.2.3.2 	Response Function

The response functions are:

" Hardware Response - response generated by the serial
channel hardware. It contains
no I field and requires no
processors interaction.

* 	 Processor Response - response generated by the PDC

processor. It contains an I

field.

B2.2.4 Access Code Field (AI,A2)

The Access Code Field (A1,A2) contains a 16-bit quantity that

defines the set of units which will accept this command message.

The access code is a "key" which must match the "lock" on' the

receiving unit in order that the message be accepted. If the

match is not made, the frame is discarded.

NOTE: 	 The-access code field is not defined on response

messages.

B2.2.5 Resync Parameter Field (RP)

The Resync Parameter Field (RP) contains the 8-bit value to

which the 	rotating priority counters are to be reset.

NOTE: 	 The resync parameter field is not defined in response

frames.

B2.2.6 Source Addres-s Field-(S)

The Source Address Field (S) is an 8-bit quantity that

identifies the unit which sent the message.

B2.2.7 Length Field (L1,L2)

The Length Field (LI,L2) is a 16-bit quantity which defines the

number of 16-bit words in theoptional information field- which

follows the header portion of the message. If the length is

zero no information field exists in this message.

B2.2.8 Header Frame Check Sequence Field (FC1,FC2)

Each message includes a 16-bit header frame check sequence (FCS)

immediately following the L1,L2 field. FC1,FC2 always occurs

as the ninth and tenth bytes following the frame

synchronization sequence. The FCS field serves to detect

errors induced by the transmission link and to validate

transmission accuracy. The 16-bit FCS results from a

mathematical computation on the digital value of all binary

bits in the frame following the frame synchronization sequence.

The process is known as cyclic redundancy checking 	using the

16 12

CCITT Recommendation V.41 generator polynomial of X + X +

5

X + 1. The transmitter's 16-bit remainder value is

initialized to all ones before a frame is transmitted. The

16

binary value of the transmission is premultiplied by X and

then divided by the generator polynomial. Integer quotient

4-B-9

values are ignored and the transmitter sends the complement ,of

the resulting remainder value, high order bit first, as the FCS

field.

At the- receiver the initial remainder is preset to- all ones and

the same process is applied to-the serial incoming bits. In

the absence of transmission errors the final remainder is

15 0

0001110100001111 (X through X respectively).

The receiver will discard a message in error. Subsequent

retransmission of the discardedmessage is under control of

error recovery procedures, to be defined later.

B2.2.9 Information Field I)

The Information Field I) contains data which are transmitted

between higher level processes that.exist in units attached 'to

the serial 6hannel.

The data link control is completely transparent to the contents

of the I field. The I field could therefore, consist of any

number-of bytes, in any code, related to any character

structure and limited only by system requirements. The length

of the I field could be unrestricted, however, it should be

recognized that typical length is contingent on system

requirements and limitations beyond the link level. Factors

limiting I field length'include channel error char-acteristics,

'adapter. buffer size, and the logical properties of the data.

The 'length of the Information Field is restricted to be an -even

number of 8-bit bytes. A'length of'zero is specifically

permitted..

4-B-10

B2.2.10 Information Frame Check Sequence Field (FC3FC4)

If the Length Field (L1,L2) is non zero, the 16-bit Information

Frame Check Sequence Field (FC3,FC4) is present. The

information frame check sequence is computed on. all of the

binary bits in the Information Field (I). The same generation

polynomial that's used for FC1,FC2 is also used for FC3,FC4.

B2.2.11 Parameter Fields (P1,P2,P3)

The Parameter Fields are only defined for response messages.

They are used to convey status about the received command

message and the current state of the PDC TCU/TCI/Processor/DI

hardware.

B2.3 Additional Conventions

B2.3.1 Intermessage Time Fill

Intermessage time fill may be transmitted to maintain the

serial link in an active state to avoid timeouts and/or to hold

the authority to transmit. When used, intermessage time fill

must be a series of contiguous ones followed by a frame

synchronization character (F) preceding the message to be

transmitted.

B2.3.2 Abort

Abort is the process by which:the sender, in the act of

transmitting a message, decides before the end of that message

to terminate in an unusual manner which will cause the receiver

to discard the message. - There is no special Abort character in

LCNCP. In order to abort a frame the sender must terminate the

transmission before transmitting the proper FCS character.

4-B-11

B2.3.3 Invalid Message

An invalid message is defined as a message that is too short,

e.g., less than the minimum length. The minimum length is 10

characters after the frame synchronization sequence.

B2.3.4 Order of Bit Transmission

The order of transmission for all fields is most significant

bit first.

B2.3.5 Compatibility

The LCP protocol is not intended to be compatible with any

other protocol including SDLC, ADCCP and CDCP. The LCNCP is

intended for use in systems structures, specifically excluded

from SDLC, ADCCP and CDCP.

B3.0 DESIGN GUIDELINES

'The following are the design guidelines used in initial

implementation of the LCNCP protocol:

* 	Only one frame per message.

-. 	 No bit stuffing - byte synchronization is obtained by
using a frame synchronization sequence rather than a
unique character, a la SDLC..

* 	No special characters such as Abort or Flag to generate/

detect.

* 	Trunk level and higher level protocol are truly

divided - the header portion of a message contains only

the trunk control data. The information field of a

message contains only hi-gher level protocol data.

* 	Both the header and information fields contain an -even

number of bytes.

a 	All transactions on the trunk consist of a command

message and response message pair..

4-B-12

Streaming is allowed - the. trunk is held before command

or response messages by transmitting a long-frame

synchronization sequence.

w 	Messages can be aborted - messages are aborted by

terminating the. transmission before sending the FCS

characters. An abort.sequence can be initiated by a

hardware malfunction such as parity error, a hardware

master clear or a software.master clear.

4-B-13

APPENDIX C

PROPOSED LCN UNIFIED SECOND LEVEL PROTOCOL

INTRODUCTION

A PDC contains both device and network controlware. Device,

controlware interfaces to the attached equipment, e.g., host

machines, disk controllers, communication lines,. etc. Network

controlware controls the trunk hardware, and thus interfaces

with all PDCs on the network which share trunks. Network

controlware acts as the message delivery agent for device

controlware. The device/network controlware sets interface

each other by means of buffers, .flags, and procedures.

The method by which network controlware acts as a message

courier for device controlware is herein called the second

level protocol.

DESCRIPTION

The first level LCN protocol (FLP) defines the format of trunk

messages as interpreted by the-TCU/TCI hardware (figure C-I).

First level protocol includes routing information, a data field,

and checksums. The routing information specifies which PDC

sent the message and which PDC will accept it; the checksums

verify the legality of the message. The existence of the data

field is known by the hardware, but not the meaning of its

content.

Header 1 C I Data C

(Resync and Routing) I S I Field S I

Figure C-I. First Level Protocol Message

4-C-1

The proposed second level protocol message is contained within

the FLP data field (figure C-2). It consists of a header and a

data field. The header includes function, sequence number, and

other pertinent information; the data field is used to convey

informat-i-on for higher level protocols.

I<-- First le.vel protocol data field -->!

Header i
(Function, Seq #, etc.) I Data Field I

Figure C-2. Second Level Protocol Message

The second level protocol consists in part of a sequence of

messages limited by convention to a predefined order by

function and sequence number. Mutual control and

synchronization between cooperating PDCs is provided by these

fields.

Message sequences are usually transmitted in streaming mode.

In figure C-3 the boxes pointing to the right represent command

messages sent by a source to a destination PDC. The boxes

pointing left represent the response messages returned by the

destination.

REQUEST - Solicitation of destination PDC resources

GA - Go Ahead (resources granted)

DATA - Presenting data to -the destination

DATA/EOP - F.inal data message

ACK - Acknowledgement

4-C-2

I \ /Tl F\ /-FT- F-'-\. .. i \ /T'

I REQUEST I \ GA IDATA/ \ GA I IDATAI IDATA/EOP/-\ACKI

Figure C-3. -Unified-Second Level Protocol Message Sequence

The second level protocol also specifies a range of buffer

sizes, reflecting requirements which vary from short requests

(read disk) through medium size transfers (PRUs,. symmetric link)

up to high bandwidth activities(streaming 819s). In addition,

flags and procedures are defined by which the host and network

controlware inform each other of the state of the buffers.

Second Level Protocol Modes

Mode 1

Message sequence

I \ /--f
I MODEl REQ / \ ACK I

*I not stream mode

., block size: 512 bits

* no device interaction

Mode 1 consists of one command/response message pair. The

message is accepted if the Mode 1 queue is not full. Typical

use: high level control or function (read disk, time of day,

etc.).

Command Messages

Mode 1 request - the command message is itself to be placed in

the Mode 1 queue.

4-C-3

Response Messages

ACK - accepted and-placed into the queue

NAK - queue full

BUSY/ERROR - various

Mode 2

Message sequence

SU SD

v v

,' \/ II \

I MODE2 REQ / \ GA I DATA/EOP / \ ACK I

SU = source enters stream mode

SD = source exits stream mode

* source (only) in stream mode

* block size = 2K bytes (roughly 4 PRUs)

* no device interaction

Mode 2 consists of two command/response message pairs. The

request asks for room in the Mode 2 queue; the Go Ahead means

room is available. The DATA/EOP command message is the data;

the.ACK means the data has been accepted. Typical use:

symmetric link, PRU transfer, etc.

Command messages

Mode 2 request- request for mode 2 queue

DATA/EOP - last data block (only one data block allowed)

Response messages

NAK - mode 2 queue full

GA - ready for data

BUSY/ERROR - various

-ACK - acknowledgement

4-C-4

Mode 3

Message Sequence

SU SD
v I

V ." _ V

1 MODE3 REQ /\ GA I 1 DATA/EOP i \ ACK

a. block size 4K (roughly 8 PRUs, one 819 sector)

Mode 3 is identical to Mode 2 except for the request function,

the block size, and the queue (Mode 3 queue). Typical use:

819 single-sector transfers.

Mode 4

Message sequence

SU SD

i i

V V

,r--\ /----] -F - \ / - , T - I.

IMODE4 REQ/ \ GA I IDATA/ \ GA I IDATA/ IDATA/EOP/ \ACKI

DU DD

SU = source enters stream mode

SD = source exits stream mode

DU = destination enters stream mode

DD = destination exits stream mode

* both source and destination in stream mode

* block size = 4K bytes

" device interaction

Mode 4 may have virtually an unlimited set of command/response

message pairs. Typical use: streaming an 819; 176/176 file

transfers.,

4-C-5

Conrmald messages

1[ODE4-REQ - request to enter mode 4

DKATA - nth block in m block transfer

DATA/EOP - last block

.--BORT) source aborting

Command responses

GA - PDC and device ready for mode 4, and room for nex-t

data block

(WAIT) - device agrees to mode 4, but all resources not yet

ready

ACK - mode 4 normal close out

(ABORT) - destination aborting

ERROR - various

NAK - PDC disallows mode 4

"General

-o Modes 1, 2, and 3 all request their respective queue

resources at the destination. None ;of these modes require

device interaction.

" A given PDC may or may not have all four modes in its

function set (i.e., mode 4 not required on lower CYBER).

However, all would have at least Mode 1.

* 	Response set including exception conditions by mode (network

controlware generated).

4-C-6

