CR - (s22%9

A s
FEASIBILITY STUDY
FOR A
NUMERICAL AERODYNAMIC SIMULATION FACII:\[TY

 {NASA-CR-152289) FEASIBILITY STUDY FOR 3

-15 “ N79- :
RUMERICAL AERODYNAMIC SIHULATION  FACILITY. . 26070
gowﬂg 3: .FHP LANGUAGE SPECIFICATION/USER
SiiN‘UAL - Final Report (Control Data Corp.; - ) Unclas
- Paul, Minn.) 253 p HC A1Z2/8F A01 G3/09 28383
Volume Il — FMP Language Specification/User Manual

Contributions by: B. G. Kenner
N. R. Lincoin

MAY 1979

Distribution of this report is provided in the interest of information
exchange, Responsibility for the centents resides in the authors or

organization that prepared it.
Prepared under Contract No. NAS2-9895

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street

St. Paul, Minnesota 5b112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



Variables, arrays, non-generic function rames, constant names,

dynamic variables and dynamic arrays that appear in a STAR . . .

The appearance of a symbolic name other than the name of
an intrinsic function in a type statement . . .

. statement, the type of a symbolic name other than an
intrinsic function name is implied by the . . .

The predefined FORTRAN functions either possess predefined
types or else take their type from the type of their operand(s).
Implicit typing of any of these names has no effect. If the
names of any of these functions appear in explicit type state-
ments, the typing is ignored if it confirms the predefined type
of the function; otherwise, the name ceases to reference the
FORTRAN-supplied function. See Table 6-0 below for details.

Table 6-0. Effect of Typing an Intrinsic Function Name

Kind of Name Typing Result Diagnostic
Generic only, Any Function Warning
variable type becomes
{(MAX) EXTERNAL
Generic only, Confirms No effect None -~
fixed type predefined
(DBLE) type
Contradiets Funetion Warning
predefined  becomes
type EXTERNAL
Specific only Confirms No effect None
(MAXO) predefined
type
Contradicts Function Wamning
predefined  becomes
type EXTERNAL
Generic and Confirms No effect None
specific, predefined
variable type type of
(SQRT) specifie
function
Contradicts Function Warning
predefined  becomes
type of EXTERNAL
specific
function
Generic and Confirms No effect None
specific, predefined
fixed type type
(INT)
Contradicts  Function Warning
predefined  becomes
type EXTERNAL

6-1.1A



This page left blank intentionally

6-1.2A



IMPLICIT statements must precede all other specification state-
ments except PARAMETER statements. [If the type of a named
constant is specified by an IMPLICIT statement, the IMPLICIT
statement must precede the PARAMETER statement which defines
the value of the constant. Appearance of an IMPLICIT statement
which specifies the default type of symbolic names beginning with
some letter after 3 PARAMETER statement which defines a constant
whose name begins with that letter is prohibited.

The same letter must not appear as a single letter, or be included in
a range of letters, more than once in all of the IMPLICIT statements
in a program unit.

CHARACTER *K wy/d/,weldy/f,...,w fd, [
. element length in bytes of every w. This specifica- . . .
. byte is implied for every w-not accompanied . . .
d;  Optional. Represents the initial value for v; or w; If...

v; A variable, array, array declarator, function, or constant name.
If v; is the name of a constant,, d; must not appear

PRECEDING PAGE BLANK NOT FILMED

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

6-1.3A



*ki Optional. An integer constant or simple integer
variable specifying the element length in bytes for
v If v, is an array declarator, *k. must appear
bétween the declarator name and dislensions. If k.
is a variable, v; must be a dummy srgument and k;
must either be a dummy argument or in common.
A variable used in this way as an adjustable length
specification must either be implieitly integer, or
else must have appeared in an INTEGER type
statement before it appears in a CHARACTER (or
any other declaration) statement. If "'!ci is omitted,
the length of vy is determined by *K.

If the array declarator for an array appears in an explicit
type statement, it cannot appear alse in a2 ROWWISE,
DIMENSION, or COMMON statement. However, the array
name alone can appear in COMMON statements to include
the array in a common block. {An array deeclarator must
appear once and only once in a program unit.)

DIMENSION STATEMENT

The DIMENSION statement serves as a vehicle for one or
more array declarators. TFor an array declared in a
DIMENSION statement, subscripts are interpreted in the
conventional manner. For a discussion of rowwise and
conventional array element succession, see seetion 2.

Form: -

DIMENSION BysBy, - oo 58

8; An arrgy declarator.

If the array declarator for an array appears in 8 DIMENSION.

statement, it cannot also appear in @ ROWWISE, COMMON,
or explicit {ype statement. However, the array name alone
ean appear in an explieit type statement to type the array
and in COMMON statements to melude it in a common
block. (An array deelarator must appear once and only onece
in any program unit.)

ROWWISE STATEMENT

The ROWWISE statement serves as a vehiele for one or more
array declarators. It should be used in mueh the same way
that & DIMENSION statement is used, the difference lying in
the faet that for an array deelared in a ROWWISE
statement, subscripts are interpreted in a rowwise manner,
For a discussion of rowwise and conventional array element
suceession, see saction 2,

Form:

ROWWISE )89, -« o8

8 An grray declarator.

A L
If an array deelarator for a particular affay appears in a
ROWWISE statement, it cannot appear also in a
DIMENSION, COMMON, or explieit type declaration
statement. However, the array name alone can appear in an
explicit type statement to type the array and in COMMON
statements to inelude it in a common block, (An array
decla)mtor must appear onee and only once in a program
unit.

6-2

COMMON STATEMENT

The COMMON statement 1s a nonexecutable statement that
allows specified variables and arrays to be referenced by
more than one pregram unit. Elements in common storage
can be reflerenced and defined i any program unit that
contains 8 COMMON statement specifying common blocks
containing those elements. An element can be ineluded in
only one common bloek.

Storage for arrays and variables listed in a COMMON
statement is reserved in a common bloek in the order in
which the elements appear in the statement, and starting on
& double word boundary, The elements are strung together
in such a way that, for example, for & common block
containing a complex variable, a 10-integer array, and 64 bit
variables, 13 logieally consecutive words are reserved: the
first two words for complex data are followed immediately
by 10 words for the integer array, whieh is followed by one
word for 64 variables of type bit. The assignment of storage
is determined solely by consideration of data type and array
declarations for the variables and arrays in the COMMON
statement. One or more blocks can be speecified with a
single COMMON statement; the order of appearance of
bloeks in the statement is not signifieant,

Form:
COMMON /blkl/Iis'clj’bliczllist2 ... /blkn/listn

blk, A symbolic name denoting a labeled common
blogk, Absence of blk denotes the blank
common block; if the first block identified is
blank eommon, then the first pair of slashes
can be omitted as well.

list. A Dbleek specification list, a list of the
elements whose storage loeations are in the
common block blki. ‘The list has the form;

Ul.uz. ves ,llm

where u. is a varisble name, an array name, or
an :;m-ayl deeclarator,

Only an entire array can be placed 1n a ecommon block. An
array deelarator, but not an array element name, can appear
in 8 COMMON statement. Dummy arguments ¢annot appear
in COMMON statements.

A& block name can appear more than once in & COMMON
statement or 1n several COMMON statements in a program
unit; the elements are stored cumulatively in the order of
their oceurrence n all COMMON statements 1n the program
unit. Bleek names can also be used elsewhere in the
program to identify other entities. a common block name
ean unambiguously identify & variable, statement function,
or array in the same program. For example, a valid
COMMON statement is COMMON/ONE/ONE,TWO,THREE.

Blank common generally ean be used i the same way as

. labeled common, except that elements in blank common
' cannot be initiglized in DATA or type statements as can

elements in labeled common. Also, unhke any labeled
common block, the blank eommon block need not have the
same length in every program unit in which 1t is declared.
For example, the declaration in one progrem unit could be
COMMON//A(4),B/LAB/C,D and 1n another could be
COMMON//A{4)/LAB/C,D.

The size of a common bloek is the sum of the storage
required for the elements introduced nto that bloek through

60336200 E



B:

One of the following forms, where a; is a character array name,
ds; is a dimension specifier (that is, the string ads; is an array
declarator), and n; is a character variable, function, or counstant
name. If n; appears and is the name of a constant, d; may not
be used.

g

o K

3

3 dsi

a ”‘ki

a dSi *ki

% ko dy

An unsigned infeger constant, an integer constant eXpression
enclosed in parentheses, an asterisk enclosed in parentheses, or

a simple integer variable. If k; is a simple integer variable, the
entity being typed (a; or ;) must be a dummy argument and
k; must appear in every dummy argument list which also con-
tains the entity being typed or else k; must be in common. If
k; is a simple integer variable, it must be of default type integer
or else must have been previously typed, either by IMPLICIT
statement or by explicit type statement. . If *ki does not appear,
the length of the entity being typed is determined by =K if it
appears, or eise defaults to 1 regardless of any default lensth
declared for symbols of its initial letter in preceding IMPLICIT
statements.

COMMON [blklﬂistl s /blszlistz - /‘blknﬂistn

REPROD UCIBILITY
orF
ORIGINAL, ‘PAGE 13 POOR



8

c

COMMON and EQUIVALENCE statements. A double
precision or complex element requires two words; a logical,
real, or integer element requires one word; a charaeter
eiement requires one byte times the length specified for the
siement; & bit element requirss a single bit. Character
2’amants must (21l on byte boundaries and intager, complex,
togical, real. and dounle prec:sion elements must fall on
word boundaries. Character and bit types can appear in a
common block with other types, so leng as the elements
having the other types are not foreed off word boundaries,

Although block names must be the same name if they are to
refer to the same common block, the names and types of the
elements in the ecommon block ean differ among program
units. [f two program units define a particulsr common
block to have the same data type assigned to any two
elements in corresponding positions in the common bloek,
then the two elements refer to the same value. Otherwise,
any data in the common ares is treated as having the data
type of the name used to refer to it, and no type conversion
takes place.

If a program unit does not use gll loeations reserved in 2
labeled or blank common bloek, unused variables ean be
inserted in the COMMON deciaration to foree proper
correspondence of the variables or arrays in the common
areas. Alternatfively, correspondence in blank common can
be ensured by plaeing selected variables at the end of the
block in such a way that they can be omitted in the
COMMON declarations for a program unit that does not use
them. However, a common block (other than blank
commen) must have the same length in every program unit
in whieh jt is declared.

If en array declarator for a particular array appears in a
COMMON statement, it cannot gppear also in a ROWWISE,
DIMENSION, or explicit type statement. However, the
array name alone can appear in explicit type stetements to
specify the array's data type. (An array declarator must
appear once and only once in a program unit.)

In a subprogram, the dummy arguments for the subprogram
cannot be placed in common. However, variable dimensions
for & dummy array can be placed in common, so long as
chose varigbles are not also dummy arguments.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement is a nonexecutable statement
that permits two or more variables in the same program unit
to share storage locations. This arrangement of data can be
contrasted with that of variables and arrays not mentioned
in an EQUIVALENCE statement {(which are generally
assigned unique locaticns) and with that of variables and
arrays deelared in COMMON statements (the COMMON
stetement permits two or more variables, each in a different
program unit, to share storage loeations),

Form:
EQUIVALENCE(groupl), e ,(groupn)

A list of the form:
v

graup,
eV
where v, 1s a variable, array element, or
array name (array declarators are not
permitted), and m > 2, Each comma
separating two groups is optional.

m

60386200 E

All the elements in group, begm at the same storage
location. !

The neming of arrav elemants is reletivelr {lexibie .7 ag
EQUIVALENCE »taremsps.,  Unilke array nam2s i oSt
STAR TORTRAN statements, an array name in an EQUIVA-
LENCE statemeni-nemes-only the first element of the array.
Also, in an EQUIVALENCE statement any srray element can
be identified using an array element neme containing a
subseript having only a single subscript expression, where
the value of the expression is the location of the element in
the array as determined by the suceession formulas given in
teble 2-2. However, if neither of these forms is used, then
the subseript must conform to the ordinary subseript form,
Each subseript expression in an EQUIVALENCE statement
must be an integer constant; the number of subseript
expressions must correspond in number to the dimensionality
of the array or else must be one.

A storage location can be shared by variables having
different data types. A logieal, integer, or real variasble
equivalenced to a double precision or complex varieble
shares the same location with the real or most significant
half of the complex or double precision variable. However,
when one- or two-word variables are equivalenced to
charaeter or bit variables, they must begin on full word
boundaries, Similarly, if a character variable is equive-
lenced to a bit variable, the character variable must be
aligned on a byte boundary. Type is associated only with the
name used to reference a loeation, and that neme deter-
mines how data assigned to or read from the location 1s to
be interpreted; no type is remembered and no conversion
takes place, Consequently, if {for example) a real element
is equivalenced to an integer element, defining the real
element causes the integer element to become undefined,
and vice versa,

A variable can gppear in both EQUIVALENCE and COMMON
statements in a program unit. However, a variable in
common can be equivalenced to another variable only if that
varigble is not in any common block. A variable or array is
brought inte a common block if it is equivalenced to an
element in common. It is acceptable for an EQUIVALENCE
statement to lengthen a common block, so long as the
commeon block is extended beyond the lest assignment for
that block and does not extend the bloek’s origin, A dummy
argument must not appear in any EQUIVALENCE statement.

Figure 6-1" illustrates some of these concepts. In
figure 6-1A, array element A(2) in the labeled common
bleek BLK1 is equivalenced to array element 2(1), which is
not in ecommon. The EQUIVALENCE statement causes the
entire array B to be brought into commen, extending the
length of common by two words and equivalencing other
pairs of data elements as shown in figure 6-1B. I instead
A1} and B(2) has been equvalenced, an error would have
resulted because this would have been an attempt to extend
the common bloek's origin to P.

It 15 also incorreet directly or indirectly to cause a single
storage location to contain more than cne element of the
same array. For example, adding a2 seeond EQUIVALENCE
statement, EQUIVALENCE (A(4), B(2)), to the statements in
figure 6-1 would constitute a request for A(4) and A(3) to
share the same storage location.



. cannot be placed in common. However, dimension bound variables
for adjustably dimensioned arrays and length variables for adjustable
length character entities may be placed in common, so long as . . .

where v; is a variable, array element, substring, or array name
{array declarators are not permitted), and m is greater than or
equal to 2. Each comma . . .

LEVEL STATEMENT

The level statement assigns variables or arrays to the different levels of FMP memory.

Form:
LEVEL n, al,a2, . . ., am
ai Variables, array names or array declarators, separated by commas.
n Unsigned integer 1,2,3, or biank, or integer PARAMETER

indicating to which memory list is to be allocated.

| Main Memory
2  Intermediate Memory
3 Backing Storage

The Default Level is LEVEL 1. LEVEL statements must preceed the first executable
statement in a program unit. Names of variables which do not appear in a LEVEL
statement are allocated to Main Memory.

Type information may not be included in the LEVEL statement. Array declaratives
of the form A(nin2).) where ni is 2 simple integer are permitted. Array declarators
perform the same function as if they appeared in a DIMENSION statement.

Variables and arrays appearing in a LEVEL statement can appear in DATA, DIMENSION,
EQUIVALENCE, COMMON, type, DYNAMIC, SUBROUTINE, and FUNCTION statements.
Data assigned to LEVEL 3 can only consist of arrays, and may only be referenced in
COMMON, type, DIMENSION, EQUIVALENCE, DATA, CALL, SUBROUTINE, and
FUNCTION statements. FORTRAN expressions involving LEVEL 3 data must reference
the entire array or subarrays.

No restrictions are jmposed on the way in which reference is made to variables or arrays
allocated to LEVELS I and 2. DYNAMIC arrays may only be assigned to LEVELS 1
and 2.

If the level of any variable is multiply defined. the first level defined is assumed and a
warning diagnostic is printed.

All members of a common block must be assigned to the same level: a faial diagnostic is
issued if comflicting levels are declared. If some, but not all members of a common block
are declared in a LEVEL statement, ail are assigned to the declared level and an informa-
tional diagnostic is prinzed.

6-3.1A



If a4 variable or array name declared in 2 LEVEL statement appears as an actual argument in a
CALL statement, the corresponding dummy argument must be allocated to the same level in the
called subprogram. If a variabie or array name appears in an EQUIVALENCE and a LEVEL .
statement, the equivalenced variables must ail be allocated to the same level.
Example:

PROGRAM DEMO

DIMENSION A(100,B(200),C(300)

LEVEL 2,A.B

CIFAM+BM

The LEVEL statement allocates arrays A and B to Intermediate Memory. The arithmetic statement
will cause the fetching of the Ith element of A and B from Intermediate Memory, their summation,
and the storage of the result into Main Memory in the Ith element of C.

DYNAMIC STATEMENT

The DYNAMIC siatement ideniifies those variables whose dimensions, and perhaps memory allocation,
will be determined during program execution.

Form:
DYNAMIC v1v2 . ... v
vi A varigble, array declarator or array name of type REAL or INTEGER

All varjables in the DYNAMIC statement list are declared to be dynamic pointer data for actual

memory arrays, while arrays or array declarators signify that the named variable consists of an amay
of dynamic pointer data or a DYNAMIC ARRAY.

DYNAMIC variables and arrays may only appear in memory LEVELS 1 and 2. DYNAMIC vari-
ables may appear in COMMON, CALL, FUNCTION, SUBROUTINE, type, DIMENSION and arithmetic
and input/output statements. DYNAMIC variables may not appear in EQUIVALENCE, DATA or as
the parameters in DO statements.

If DYNAMIC variables or arrays are passed as parameters in FUNCTION and SUBROUTINE call
statements. then the comresponding dummy arguments must also be declared DYNAMIC and possess
the same dimensionality in the called subprogram unit.

The number of storage locations used by the pointer data is variable throughout program execution

for DYNAMIC variables and arrays. The space required is a function of the dimensionality of the
arrays being described by the DYNAMIC variable. Thus COMMON statements in two different program
-units which contain DYNAMIC variables must have identical format.

6-3.2A



The following form is, therefore, illegal:
PROGRAM DEMO
DYNAMIC A(100)
COMMON/B/A

CALL C

END

SUBROUTINE C
COMMON/BfA(100)

D=A{)

In this case the programmer is erroneously attempting to deal with the DYNAMIC array as an armray
itself. Since the storage of FORTRAN arrays consist of one element per memory word and DYNAMIC
pointers take from 2 to 14 memory words per pointer element, the two COMMON statements imply a
different memory allocation, and this is an illegal condition which cannot be detected by the compiler
or at object time.

The values of DYNAMIC pointer variables can only be established by execution of expressions involving
subarray references or by the DEFINE statement.
Example:

PROGRAM DEMO

DYNAMIC A,B(4)

DIMENSION X(100),Y(10,20)

A=X(1:100)

B(2y=X(1:10)+Y(1:10.1)

The DYNAMIC statement declares variable A to be a dynamic pointer. and array B to be a dynamic
array of pointers. The initial value of all pointers is set to an internally recognized value of NULL.
This indicates that no data is pointed to, or the pointer is not yet defined.

6-3.3A



The replacement statement A=X(1:100) causes the following actions:

One hundred words are allocated from dynamic space in Main Memory. The address of this space
and the length 100 are then assigned to the pointer variable A. A map unit move is then performed
to transfer the data from the array X to the newly defined array A. The attributes of address and
length assigned by this dynamic activity will then be retained as the defined quantities for A until
another expression is encountered which changes either the memory allocation or dimensionality.

If the statement A=X(1:100) is executed again, the pointer data is unchanged and the same memory
space is reused. If another statement:

A=X(1:200)
is encountered, a new space allocation of two hundred elements is made from dymamic space, and a
new length of 200 established for the pointer A. The data is then transferred.
If the statement:

A=X(1:20)
is encountered, then the original memory address is retained for the DYNAMIC variable A, but the

length is changed to 20 and the data transferred from X. The remaining 80 elements that used to
be part of the space pointed to by A become undefined.

The second example assigns 10 words of dynamic space to the pointer element B(2), and performs
the arithmetic on the array elements X and Y, storing the results into the assigned dynzmic space.
The reallocation or contraction of space for DYNAMIC ARRAY elements follows the previous rules
given for DYNAMIC variables.
DYNAMIC variables can also be established by DEFINE statements.
Exampie:

PROGRAM DEMO

DYNAMIC A

LEVEL 2,B(100)

DEFINE (A,B(10:20))

A=A™A

In this example, the DYNAMIC variable is assigned the starting address of B(10) and a length of 11.
essentially describing a subarray of B. The operation A=A*A would then become a vector multiply of
elements 10 through 20 of arrav B by themselves, with the results. returned to elements 10 through 20.

6-3.4A



When DYNAMIC variables appear as the objects of replacement statements their dimensionality is
always redefined, with the following exception:

PROGRAM DEMO
DYNAMIC A
DIMENSION B(100)

A=B(1:00)+B(1:100)

A(31:50)=B(11:30)

In this case, the array pointed to by A begins as a 100 element array. The secord assignment
statement does not shrink the array to 20 elements, although that is all the data that is ‘being
moved. Instead, elements 31 to 50 are replaced and the memory address and dimensionality
remain unchanged.

When a DYNAMIC variable is referenced as a subarrayj.e., A(l:m:n) in an executable expression
and m is greater than the existing dynamically assigned dimensicnality in that direction, a fatal
object time diagnostic message is printed. Subarray references to DYNAMIC array elements,
except in DEFINE statemenis, are not permitted and will cause the compiler to generate a fatal
diagnostic message.

6-3.5A



A.
CHARACTER*10 CH,DH
COMMON/BLK1/A{4),CH,DH
DIMENSION B(8)
EQUIVALENCE (A(2),B(1))
B .
«®
«A(1): Bloek corigin.
B(l) +-A(2)
B(2)~» —A(3)
B(3)-+ —A(4)
B4} «first 8 bytes of CH
. remaining 2 bytes of CH,
B(S)—> “first 6 bytes of DH
B(6)—~ «remaining 4 bytes of DB
B{7)-—
B(8)—»

Figure 6~1. COMMON and EQUIVALENCE Statements

EXTERNAL STATEMENT

Before a subprogram name-can be used as an argument to

.another subprogram, it must be declered in an EXTERNAL.

statement in the calling program unit.
Form:

EXTERNALD,, . .. .p;,

P A procedure name or entry-point name.

The appesrance of g name in an EXTERNAL statement
declares that name to be an external procedure name rather
than a data element name.

Any name used as an actual argument in a procedure eall is
assumed to name data unless it appears in an EXTERNAL
statement. For example, any predefined FORTRAN
funetion name must be deeclared in an EXTERNAL statement
if it is to be used as an actual argument, A function
-reference in an actual argument list need not be declared in
an EXTERNAL statement, however, because 1t is not the
function, but the result of function evaluation, that is the
argument.

The effect that placing -a predefined FORTRAN funetion
name in an EXTERNAL statement has on the kind of code
generated is shown in table 6-1. ,

\ ;
DATA STATEMENT

Only varigbles and array elements assigned values with a
data initialization statement or in an explicit type state-
ment are.défined (possess a predietable value) when program
execution begins. The DATA statement is & nonexeecutable
statement used to assign initial values to varisbles and array
elements (including entire arrays).

Form:
DATAY, /Ky /ol o V%0

v A variable list of the form:

""'1’ ...,wm

where w, is & varisble, array element, array,
or impliéd DO. Subseripts used to identify
array elements must be integer constants,
exeept within an implied DO..

k. A data list of the form:
j*dl, ees ,j‘dm

where d. is an optionelly signed constant. The
constant can be preceded by an optional
repeat speeifieation j*, where ) is an (unsigned)
integer constant.

The ¢omma after each.second slash is optional. Except for-
certain varigble list:‘items of type bit, a one-to-one
correspondence must exist between the items in the variable
list and the constants in the data list. In particular:

An array of any type except.bit must correspond to a
number of items equal to the number of elements-in the
array.

A .simple variable of type bit must correspond to s bit
constant.

An implied DO specifying a number of elements of an
array of any type except bit must correspond to &
number of items equal to the number of array elements.
The elements specified need not be contiguous.

A Dbit array must correspond to a list of one or more
hexadecimal and bit constants whose total bit length is
the number of elements in the bit array.

A contizuous portiorn, {one or more elemenis) of & bit
array must correspond to a list of one or more
hexadecimal and bit constants whose total bit length is
the number of elements in the bit array portion. Such a
bit array portion is specified in the variable list by
means of g single bit array element or an implied DO.

An implied DO might specify more than one contiguous
portion of a bit erray. For example, in the initielization:

ROWWISE DSB{4,4)
BIT DSB .
DATA ((DSB(L,J}, J=1,4), 1=1,4,2)/2*B'1001Y

two contiguous portions disjoint from one another are
specified:

DSB(1,1), DSB(1,2), DSB(1,3), DSB(1,4)

DSB(3,1}, DSB(3,2), DSB(3,3), DSB(3,4)
In such a case, the correspondence rules must be applied
individually to each of the portions. Henee, initializing the

eight DSB array elements-with a single eonstant B'10011001f
{or X'99") would cause a fatal error.

60386200 G

B



EXTERNAL STATEMENT
The form of the EXTERNAL statement is
EXTERNAL pq,...,P,

where p; is the name of an external procedure or block data subprogram.
The appearance of a name in an EXTERNAL statement declares that
name to be defined externally to the declaring program unit. Such an
appearance implies that the name is not the name of an infrinsic function,
statement function, variable, or array.

If the name of an external procedure appears in an actuval arsument list,
an EXTERNAL declaration of that name is required. (If a reference to
an external function appears in an actual argument list, EXTERNAL dec-
laration is in an actual argument list, EXTERNAL declaration is permitted
but not required.)

If the name of an intrinsic function appears in an EXTERNAL statement,
the connection between the name and the intrinsic function is broken.
Thus the EXTERNAL declaration provides the user a means to substitute
his own function for the FORTRAN-supplied function.

{Note- that the STAR FORTRAN object library provides an external
version of every intrinsic function. See Table 6-1 for further details.)

INTRINSIC STATEMENT
The form of the INTRINSIC statement is
INTRINSIC By el

where Iy is the name of an intrinsic function. The appearance of a

name in an INTRINSIC statement declares that mame to be the name

of a FORTRAN-supplied intrinsic function. (Not all FORTRAN-supplied
functions are intrinsic functions. For example, the LENGTH and UNIT
functions used in connection with the BUFFER IN and BUFFER OUT
statements are not intrinsic. See Section 15 for further detajls.) Names
other than those of intrinsic functions may not appear in INTRINSIC
statements. A name which appears in an INTRINSIC statement cannot

be the name of a variable, array, statement function, or external procedure.

[atrinsic functions are of iwo kinds, generic and specific. A specific intrin-
sic is one with well-defined argument and result types; for example, MAXI
has REAL argnments and returns an INTEGER result. A generic intrinsic
is one which accepts more than one argument type. Some generic intrinsics
return a result whose type depends upon the type of their operands; for

6-4.14



example, MAX accepts arguments of type INTEGER, REAL, DOUBLE
PRECISION, or HALF PRECISION and returns a result whose type is the
same as the (common) type of its arguments. Other generic intrinsics
return a result of fixed type, independent of the {ype of their operands;
for example, CMPLX always returns a result of type COMPLEX regardless
of its argument type, which may be INTEGER, REAL, DOUBLE PRECE
SION, HALF PRECISION, or COMPLEX.

Some intrinsic function names are the names only of generic functions
(e.g., MAX); some are the names only of specific functions (e.g., MAXO);
some are the names of both generic and specific functions (e.g., SQRT).

Some specific intrinsic functions may be passed as' actual arguments.
No generic intrinsic function may be passed as an actual argument.
When a specific intrinsic is passed as an actual argument; its name
must appear in an INTRINSIC statement in the passing program unit.
It is permissible to pass a specific intrinsic whose name is also that

of a generic intrinsic; the appearance of the intrinsic name in an
actual argument list does not affect the generic properties of the name
within the passing program unit. For example, the first reference to
SQRT in the following sequence is a reference to the specific intrinsic
function which refurns the REAL sguare root of a REAL argument;
the second is a reference to the generic intrinsic function which, among
other things, returns the DOUBLE PRECISION square root of a
DOUBLE PRECISION argument.

DOUBLE PRECISION D1, D2
INTRINSIC SQRT

CALL SUB(SQRT)

D2'= SQRT(D1)

The specific intrinsics for type conversion, lexical relationship and for
choosing the largest or smallest value may not be passed as actual argu-
ments. All other specific intrinsics may be passed provided they are
declared INTRINSIC in the passing program unit.

The following table summarizes code generation for the various possible
combinations of INTRINSIC/EXTERNAL declaration for intrinsic and
non-intrinsic function names.

6-4.2A



Table 6-1.

Function Name

Code Generation for Function References

Declaration

Not intrinsic
Not intrinsic
Not intrinsic
Not intrinsic
Not intrinsic
Not -intrinsic
Specific only
Specific only
Speciiic - only

Specific only

Specific only
Specific only
Genei:ic only
Generic only
Generic only
Generic only
Generic only

Generic only

Generic and
Specific

Generic and
Specific

Generic and
Specific

Generic and
Specific

None

None

INTRINSIC

ENTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

Use
Referenced
Passed
Referenced
Passed
Referencad
Passed
Referenced
Passed
Referenced

Passed

Referenced
Passed
Referenced
Passed
Referenced
Passed
Referenced

Passed
Referenced
Passed

Referenced

Passed

8-4.3A

Generated Code

Slow call to
user routine
Compilation
error
Compilation
error
Compilation
error

Slow call to
user routine

Slow call to
user routine

Fast call or
inline
Compilation
error

Fast call or
inline

Slow call to
library
routine®
Slow call to
user routine

Slow call to
user routine

Fast call or
infine
Compilation
error
Fast call or
inline
Compilation
error

Slow call to
user routine

Slow call to
user routine

Fast call or
inline
Compilation
erTor

Fast call or
inline

Slow call to
library
routine™



Generic and EXTERNAL Referenced Slow call to

Specific user routine
Generic and EXTERNAL Passed Slow call to
Specific user roufine

*Agsuming the intrinsic is passable.

Notes: If the use is “PASSED”, the senerated code column describes
the code generated for a reference to the corresponding dummy
procedure in the called routine.

In this table, “‘user routine” means a routine which is, or at
least can be, written in FORTRAN. A roufine named SQRT

is such a routine. “Library routine” refers to a routine which
cannot be written in FORTRAN. A routine pamed FT_XSQRT

is such a routine,

PARAMETER STATEMENT

The names and values of named comstants are declared with the PARAMETER
statement. The form of a PARAMETER statement is

PARAMETER (py=eq~-sPp=ey)

where p; is the name of a constant and e; is a constant expression which de-
fines the value of p;, Named constants have associated types; the possible
types of a named constant are INFEGER, REAL, DOUBLE PRECISION,
HALF PRECISION, COMPLEX, CHARACTER, and LOGICAL. The type of
p;, and its length if it is of type CHARACTER, must have been specified,
either by default, by IMPLICIT typing, or by explicit typing, before the
PARAMETER statement which assigns p; its valie. If p; is of default implied
type, the default type of names beginning with its first letter may not be
changed by an IMPLICIT statement which appears after the PARAMETER
statement which assigns p; its value. If the type of p; is implied, either ac-
cording to the default implied typing or according -to some preceding IM-
PLICIT specification, then p may not appear in a subsequent type statement.

If p; is type INTEGER, REAL, DOUBLE PRECISION, HALF PRECISION, or
COMPLEX, then e; must be one of these same types, though not necessarily
the same as p;. If the types of p; and ¢; are not the same, e; is converted
to the type of p; before the value of p; is assigned. This conversion is
according to the same rules which obtain in arithmetic assisnment statements.
The expression e; is an arbitrary arithmetic expression except that the right-
hand operand of the exponentiation operator must be INTEGER and all the
operands must be constant,

If P is CHARACTER or LOGICAL, then e; must be, respectively, CHARAC-
TER or LOGICAL. If p; is CHARACTER, e; may be an arbitrary character
expression except that all the operands must be constant. If p; is logical,

6-4.4A



then e; may be an arbifrary LOGICAL expression except that all operands
must be constant and, furthermore, any arithmetic expressions which are
operands of relational operators in p; must conform to the restriction on
exponentiation previously stated.

The operands in e; may include previously defined named constants, including
those defined previously in the same PARAMETER statement {(i.e., p; for j
less than i).

Named constants may be used in expressions and in the consfant lists of
DATA statements. They may not be used in FORMAT statements, as
statement labels, or as parts of other constants (e.g., either half of a com-
plex constant).

SAVE STATEMENT
The form of the SAVE statement is
SAVE 87 yeeeslly

where 3; is a variable name, array name, or common block name enclosed
in slashes. An empty list is permitted: that is, n may legally be zero. g
'may not be the name of a dummy arguinent, a procedure, or an entity in
common. It is illegal for a; to be the same as 9 unless i is equal to j.
Furthermore, if Ay smeily and bl""'bm are the lists of any two SAVE state-
ments in the same program unit, it is illegal for any a; to be the same as
any bj. If a program unit contains 2 SAVE statement with an empty list,
then that must be the only SAVE statement in the program umit. If a
common block name is specified in a SAVE statement in any subprogram
of an executable program, then it must be specified in a SAVE statement
in every subprogram in which it is referenced.

The purpose of the SAVE statement is to preserve the definition of
variables which must remain defined beyond the execution of a RETURN
or END statement in a subprogram. In the absence of SAVE statements,
execution of a RETURN or END statement in a subprogram causes ail
variables and arrays known to the subprogram to become undefined (which
means that their contents can no longer be depended upon) except those
which are in blank common, are initially defined and are neijther redefined
nor undefined during execution of the subprogram, or are in a namned com-
mon block which appears in at least one other program unit which is,
either directly or indirectly, referencing the subprogram.

. substring, or Implied DO. Subseript expressions and substring
expressions used to identify array elements and substrings must be
integer constant expressions except that subscript expressions may

include references to the conirol variables of any containing implied
DOs.

6-4.5A



The data list item corresponding to the variable list item is
the variasble list item's mmtial value. The rules of corre-
spondence apply to it array initialization in BIT statements
as well as in DATA statements.

The form }* Sefore a constant in the data lst indicates the
number of tunes the constant is specified. The following
two DATA statements are identical in effect:

DATA K;L;M/0,0,0/

DATA K,L,M/3*0/

TABLE 6-1. EXTERNAL DECLARATION
OF A SUPPLIED FUNCTION

Code
declared external
. external (user-provided)
In-Line Funetion ot declared —
external
declared
. external external
External Function ot declared external
external
declared
Funetion Having external external
Both an External
-1 : not declared o ti
and In-Line Version external in-line

IMPLIED DO IN DATA STATEMENT

An implied DO in the variable list of a DATA statement can
be used as a shortened notation for specifying parts of an
array.

Form:

(p,i=m1,m2,m3)

p A subseripted array name, or another implied
Do,
i The implied-DO control variable, a simple

integer variable, i ecannot also be the
implied-DO control variable of an implied-DO
list containing this list.

m The initial vaiue parameter, an (umsigned)
integer constant, less than or equal to m,.

The terminal value parameter, an (unsigned)
integer constant, greater than or equal to m,.

m, Optional. The incrementation value param-
eter, an (unsigned) integer constant. When
omitted, the preceding comma must also be
omitted and an increment of 1 is assumed.

60386200 F

Implied-DO loops in the DATA statement can be nested up
to seven deep. Subscript expressions must be one of the
following forms:

c i-c
i k¥ite
ite k*i-¢

where ¢ and k are unsigned nonzero integer constants, and i
is the implied-DQ control variable of this implied-DO lst or
of an impHed-DO list that contains this list,

The order in which elements are speeified by an implied DO
in a DATA statement is identical to that in which elements
are-specified by an implied DO in an input/output list (see
section 9).

RULES FOR INITIALIZING VALUES

The rules for initializing values with the DATA statement
also apply to data imtislization with the type statements
deseribed earlier in this seetion: d; in the explicit type
statement form corresponds to the d. in the DATA state-
ment form. Nevertheless, several differences in form exist
and are as follows:

In a DATA statement, a list of simple variables ean be
initialized by a list of constants. In a type statement,
only an array ean be imtialized by a list.

Dimension declarators can oceur in type statements,
but only array slements can cceur in DATA statements.

The implied DO is allowed in DATA statements, but not
1n type statements.

The DATA statement eannot be used to assign values to
dummy srguments m a subprogram or to elements in blank
common. Elements in a labeled common block can be
initinlized with a data 1nitialization statement in any
program unit that mentions the block in a COMMON
statement; furthermore, different parts of a block can be
initialized in different program umts, as well as with
different statements in the same program unt.

Character or nolleritn constants used 1o imtigkze variable
list items are padded with blank characters on the right or
are truncated on the right to fit the variable length,
depending upon whether the number of characters in the
constant is less than or greater than the number of
characters defined by the varable list element. A warning
message 15 issued 1if truneation cceurs.

A st of bit and hexadecimal constants used to initialize a
eontiguous portion of a bit array, including possibly an entire
bit array, must have a total bit length exactly the same as
the length of the array portion. If the constant or constant
list bit length is too short, the system issues the fatal
diagnostic TQO LITTLE DATA IN HEX OR BIT CONSTANT.
If the constant or constant list bit length is teo long, the
system issues the fafal diagnostic TOO MUCH DATA IN
HEX OR BIT CONSTANT.

A Dbit or hexadecimal constant used to initiglize & veriable
list item of any type other than type bit 1s either right-
justified and padded on the left with zero bits or else
truncated on the left to fit the length of the variable,
depending on whether the number of bits in the constant is

E



delete
p A list of array element names and implied DQs.

my,my,m3  The initial, limit, and increment expressions for the implied DO. mg3, together with
the comma which precedes it, is optional. The expressions are arbitrary integer
expressions except that non-constant references must be restricted to the control
variables of containing ‘implied DOs. If m3 is omitted, a value of 1 is assumed.

. . . to seven deep. Subscript expressions appearing in implied DOs may be arbitrary integer
expressions so long as the only variable constituents of those expressions are implied-DO-variables
of containing implied DQs.

. . . list items are padded or truncated to fit the variable length .. . .



less then or greater than the number of bits defined for the
variable list item. A warning message is issued if truneation
ceours.

Example:

Given the array deelaration INTEGER I{2), the data state—
ment:

DATA 1-/2*X'38Y/

initializes each of the two elements of the array I with a
64-bit constant whose value is hexadecimal 38, equal to
decimal 56. Since the number of bits required to represent
X'38* (that is, 8 bits) is less than the number of bits required
for integer data, the constant would be padded on the left
with zero bits. The data statement in this example has the
same effect as the statement:

DATA I /2*56/
containing an integer constant instead of a hexadecimal one.
Bit arrays are g special case. Initializing a bit arpay or a
contiguous part of a bit array (the latter by means of an
implied-DO variable Hst item) is unlike initializing other
kKinds of quantities, including other type bit items. Any
contiguous part of a bit array = including & single element,
several elements, or the entire array = can correspond to
one data lst item whose length matehes exaetly the length

of the array part. For example, if B is g 10-¢lement array
of type bit, the following are allowable DATA statements:

DATA B(1) /B'0Y/
DATA B /B'11 1111 1111Y
DATA B /X'FF", 2*B'1Y/
" DATA (B(D), 1=1,8) /X'F Y/
DATA (B(I), I=3,10) /2*B'1, X'0', B'O', B'LY/
DATA (B(I), I=1,10,5) /2%B'0Y/
Except for the last one, s8ll of the above statements describe

contiguous parts of array B. The last PATA statement
identifies two parts of array B, elements B(1) and B{6); each

element properly correspends to a data list item having a
length of 1 bit. The following statement would be incorreet:

DATA (B(I), I=1,10,5} /B'00"/

An aitempt would be made to Initialize B(1) with B'00!, and

-the fatal diagnostic TOO MUCH DATA IN HEX CR BIT

CONSTANT would be issued.

Although more fhan one constant ¢an be used to initialize a
sigle bit array portion, two bit array portions csnnot be
initialized by a single constant. For example, two bit arrays
BA(2)} and BB(4) might be initialized aceeptably with either
of the statements:

DATA BA, BB /B9, X'AY/
DATA (BA(1),I=1,2),(BB(I),]=1,4} /B'10", X'AY/

but not with the statement:
DATA BA(1), BA(2), BB/ B, X'AY/

An attempt would be made teo initialize BA(1} with B'10° and
a fatal diagnostic would be issued. Similarly, parts of two
different bit arrays cannot be initielized with a single data
list item. For example, the statement: ‘

DATA BA,BE /B'10 1010%/

would be incorrect. An attempt would be made to initinlize
the two-element array BA with the bit.constant B'101019",
and a fatal diagnestic would be issued. The statement:

DATA BA,BB /B¢, B'1010Y
would, however, be acceptable.

The type of a veriable list item and the constant used to
initiglize it can differ in some eases. The constant value is
converted (if necessary) to the type of the variable when
both the variable and the constant have numerie data types;
by contrast, the veriable is initialized with the unconverted
constant value when the constant is one of the nonnumerie
data types hexadecimal, character, Hollerith, or hit, A
logical constant list item ean mitialize only & logieal
variable list item. Mixed mode data initinlization rules are
given in table 6-2, The conversion is the same as for
assignment statements.

TABLE 6-2. DATA INITIALIZATION CONVERSIONS

Constant Type
Varigbla
Type Logiedl Integer Real ;3:;2}2{1 Complex o?%a;ﬁ::_f{h Bit Hexadecimal

Logieal ROCOR n/a n/a n/a n/a nocon noeen nocon
Integer n/a nocon c e e noeon noeen necen
Real o n/a ¢ nocon ¢ c noeon noeon necon
Double n/a ¢ e noeen e nocon necon nocon
Precision
Complex nfa e e e noeon nocon noeon nocon
Character afa n/a n/a n/a n/a noeon nocon noeon
Bit n/a n/a n/a w/a n/a nfa nocen nocon
The letter ¢ indieates that conversion is performed; nocon, that conversion is not performed; and n/a, that the type ecom-
bination is not.allowed.

60386200 F



This page Ieft blank intentionally,

6-6A



-

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DEFINING PROGRAM UNITS AND 7
FUNCTIONS STATEMENT

1
1]
L

Discussed in this section are the statements used to define
and reference the foliowing user-writfen procedures:

Statement Not a program unit; one-statement
function gefinition; is referenced
Main Executable program unit; multistate-
program ment definition; is not referenced
Funetion Executable program unif; multistate-
subprogram ment definition; ig referenced
Subroutine Executable program unit; multistate-
subprogram ment definition; is referenced with a
CALL statement
Specification Nonexecutable progrem unit; multi~
subprogram statement definition; 15 pot
referenced

Not discussed are the predefined functions supplied with
FORTRAN; these are covered in section 15. Argument
passing {under the heading Passing Arguments Between
Subprograms) and. file declaration {(under the heading
PROGRAM Statement) are also covered here. CALL and
RETURN are covered in the flow control statement section.
Interfacing with non-FORTRAN external procedures is
diseussed in section 12.

The category of procedure definition to be used is
determined by its particular capabilities and the needs of
the program being written. If the program requires the
evaluation "of a standard mathematical function, often a
FORTRAN-supplied function ean be used. If a single
computation is needed repeatedly, a user-written statement
funetion can be includéd in the program. If a number of
statements are required to obtain a single resuit, a function
subprogram is written. If a number of caleulstions are
required to cbtain several values, a subroutine subprogram
should be written.

The first statement of a program unit defines the program
unit to be a msin program, Subroutine subprogram, funetion
subprogram, or speeification subprogram, A program umnit
whose first statement is not 28 FUNCTION, SUBROUTINE, or
BLOCK DATA statement 15 a main program. Normally, a
main program begins with a PROGRAM statement, but this
statement can be omitted 1f no input data is reguired and all
output is performed with PRINT statements. A subprogram
is a program umi that begms with a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

An executable FORTRAN program must contgin one main
program and can have any number of subprograms &nd
references to other externsl procedures, including the
predefined functions supplied with FORTRAN. A mam
program must npot be referenced by another program unit;
once defined, subprograms may or may not be so referenced.
Any program unit must never directly or mndirectly invoke
itself.

60386200 G

THE MAIN PROGRAM

The PROGRAM statement defines the name that is used as
the program's entry point name and as the object module
name for the loader, It is also used to declare files that are
used in the main program and in any subprograms that are
called,.

PROGRAM STATEMENT

‘The PROGRAM statement is the first statement in a main
program., However, the statement is optionzl when no
request for input Is made within the program, and no output
except using PRINT is performed. Only one PROGRAM
statement ean oceur in any program.

Form:
PROGRAM p (fipl, fipz, cae ,fipn)

P Optional when no fip list is present; the name
of the program.

fip. Optional. A file informaticon parameter that
can assume one of the following forms:

UNITn=f

TAPEn=f

gﬁglé,n[[P ;P :PgaP4Jlf:£_

n? :P ’P ,p =

INPUT 1F23E4

INPUT=f

ouTPUT

QUTPUT=f

PUNCH

PUNCH={

RLP

RLP=m

The logicel unit number n is an integer
constant in the range 1 to 98, The parameter
list [p,, D30y 1 specifies the fila to be an
exphc:‘: tde.> The filename f, a string of one te
eight letters or digits beginning with a letter,
is the name of g file required by the main
program or a subprogram. No more than 70
files can be declared (neluding QUTPUT,
whether or not it is listed). The specification
m 15 a positive integer. When no f{ip is
required, the list including parentheses is
om1tted.

The name p must not appear in any other statement in the
program unit, The program name p can be omitted from the
statement when no file information parameter lLst is
present, in which ecase the name M_A_I_N is supplied.

File Information Parameters

No file rames can appesar in & program, Instead, the forms
UNITn=f and TAPER=f are used interchangeably o associate
the file named £ with a logical unit number n. Whenever the
file f needs to be referred to in subsequent statements, the

PRECEDING PAGE BLANK NOT FILMED

AL VA LG SR




THE MAIN PROGRAM

- X G -
A main program is a program unit that does not have a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. It may have a PROGRAM statement as its first statement.

There must be exactly one main program in an execuiable program. Execution of an executable
program begins with- the first executable statement of the main program.

THE PROGRAM STATEMENT

The PROGRAM statement defines the name that is used as the program’s entry point name and as
the object module name by the loader. It may also be used to.declare files that are preconnected
to units used anywhere in the program and to request the mapping of &ynamic space into large
pages. See chapter 8 for a description- of preconnected files.

The form of the PROGRAM statement is:
PROGRAM pgm[([fp[.fp]...] LRLP{=m]]))
where: pgm is the symbolic name of the main program in which the PROGRAM statement appears.

fp is a preconnection specifier. It is either a file declaration specifier or an alternate unit
specifier.

RLP specifies that dynamic space is to be mapped in m large pages. If m is omitted a value.
of 1 is assumed. If RLP is omitted dynamic space is mapped in small pages. The comma
preceding the RLP list item must be omitted if it is the only item in the list.

Items enclosed in [] are optional and the eilipsis . . . means that the items may be repeated. The
preconnection specifier list may contain a maximum' of 70 specifier items fp.

A PROGRAM statement is not required to appear in an executable program. If it does appear, it
must be the first statement of a main program. If it'is omitted the symbolic name M A I N is

supplied for pgm. Units are preconnected as described in chapter 8 if the PROGRAM statement

is omitted.

The symbolic name pgm is global to the executable program and must not be the same as the name
of an external procedure, block data subprogram, or common block in the same executable program.
The name pgm must not be the same as any local name in the main program, except that it may
be the same as a file name or an alternate unit name.

FILE DECLARATION SPECIFIER

A file declaration specifier provides the means of specifying, for an external file, the file name. the
unit(s) to which it is preconnected, and the input/output buffer length in small pages.

The forms of a file declaration %pecifier are:

fn
fn=bl

7-1.1A



where: fn is a symbolic file name.

bl is a buffer length specifer, consisting of an unsigned integer constant in the range 1..24,
If bl is omitted a: value of 3 is assumed.

The appearance of a symbolic file name fn is a file declaration specifier has the same unit-file
connection effect as the execution of an OPEN statement prior to the execution of any inputfoutput
statement that refers to the file defined by fn.

The OPEN statement has the form:

OPEN(UNIT=nHfn FILE=*n’,. . .)
where n is the number of characters in “fn’. If the character string ‘fn’ has either the character
string ‘TAPE’ or the character string “UNIT’ as an initial substring and has a digit string u, with
a non-zero leading digit, as its only other characters, then the unit-file connection affect of a
second OPEN statement of the form:

OPEN(UNIT=u,FILE=‘fn’,. . .}

is also implied. Note that if “fn’ is either "TAPEQ’ or ‘UNITO’ then this second OPEN statement
is equivalent to:

OPEN(UNIT=0,FILE="{r’,. . .)
The scope of a symbolic name is the PROGRAM statement in which it appears.

If the file with file name ‘fn’ exists, the values of the other parameters required for the OPEN
statement are determined from the attributes of the file. If the file does not exist, the values of
the parameters will be determined from the first input/output statement that references the file and
can cause it to be created. If necessary a value of 512 words {{ small page). will be supplied for
the record length parameter. The OPEN statement is described in chapter 8.

The buffer length specifier bl specifies the length in small pages of a buffer to be supplied by the
processor for input/output data transfefs. An emor condition exists if an attempt is made to change
bl by means of an OPEN statement.

ALTERNATE UNIT SPECIFIER

An alternate unit specifier provides the means of specifying one, or more, external unit identifiers
of units to be preconnected to an external file.

The form of an alternate unit specifier is:
an = in

where: an is a symbolic name such that nHap; where the value of n is the number of characters
in an, is an external wunit identifier. an is an alternate unit name.

fn is a symbolic file name.

7-1.2A



An alternate unit name an may appear only in one alternate unit specifier in a program. It must
not appear in as file declaration specifier of that program.

A symbolic file name fn that appears in an alternate unit specifier must have appeared previously
in a file declaration specifier in the same PROGRAM statement. Note that a particular symbolic
file name may appear in more than one alternate unit specifier.

The appearance of an alternate unit specifier an=fn has the same unit-file connection effect as the
execution of an OPEN statement prior to the execution of any input/outpmt statement that refers
to the file defined by fu.

The OPEN statement has the form:
OPEN(UNIT=nHan,FILE=*fn’, . . .}

where n is the number of characters in ‘an’. If the character string ‘an’ has either the character
string “TAPE’ or the charactersstring ‘UNIT’ as an initial substring and has a digit string u, with a
non zero leading digit, as its only other characters, then ihe unit-file connection affect of a second
OPEN statement of the form:

OPEN(UNIT=u,FILE=fn", . . .)
is implied. Note that if ‘an’ is either ‘TAPEO’ or ‘UNITO’ the OPEN statement is equivalent to:
OPEN(UNIT=0,FILE=‘fn’, . . )

The scope of an alternate unit name is the PROGRAM statement in which it appears.

MAIN PROGRAM RESTRICTIONS

The PROGRAM statement may appear only as the first statement of a main program. A main
program may contain any other statement except a BLOCK DATA, FUNCTION, SUBROUTINE,
ENTRY, or RETURN statemment. The appearance of a SAVE statement in a main program has
no effect.

A main program may not be referenced from a subprogram or from itself,

A main program may optionally begin with a PROGRAM statement.

7-1.3A



CRAET)

logical unit number must be used instead of the name;
therefore, the logical unit number must be associated with
ordy one file name. Even files that are mentioned only in a
subprogram must appear in the PROGRAM statement of the
main program.

INPUT or INPUT={f declares the f{ile read by a READ
statement without a file designator. OUTPUT or OUTPUT={
de¢lares the file written by a PRINT statement, and also
declares the file to which diegnosties, as well as STOP and
PAUSE messages, are written. If neither OQUTPUT nor
OUTPUT={ is speecified, OUTPUT is declared implicitly.
PUNCH or PUNCH=f decleres the file written by a PUNCH
statement,

Note that the declaration (OUTPUT=DIAG,UNITG=OUTPUT)
would send diagnosties-and PRINT output to the file DIAG,
and would send unit 6 output to the file OUTPUT. The
deciaration (QUTPUT=QUT,UNITE=0UT) would send.
diagnosties, PRINT output, and unit 6 output to the file
ouUT.

Files are opened at run time upon processing of the
PROGRAM - statement, The file search order used to find a
file with a particular name is:

1, If a private file (local ¢r attached permanent) exists,
the private file is opened and used.

2. If an attached pool file exists, the pool file is cpened
and used.

3. If no file is found, a loeal file is REQUESTed with 2

length of 128 blocks.

For example, if the user declares PUNCH in the PROGRAM
statement, a file named PUNCH of length 128 is created
unless it already exists. OUTPUT is-alsc created with length
128 unless a file called PRFILE exists prior to execution, If
it does, PRFILE is renamed as QUTPUT and used {or
renamed as f if OUTPUT={ was declared). This allows the
user to speeify an output file length other than the defauit

< value of 128. Such an expedient is necessary, because the

file named OUTPUT- unlike other files—cannot be
precreated in a bateh job,

At the end of execution, the length of a disk output file will
be reduged if the last operation on the file was a write
operation or an ENDFILE. The length of the file is reduced
from 128 bloeks (or the user-specified Iength) to the number
of blocks actually written.

Declaration of Files for Explicit /O

Files ean be specified in the PROGRAM statement to be
explicit files (see section 13 for a discussion of 1mplicit end
explicit I/O on SRM-structured files) by providing four
parameters enclosed in brackets following the TAPE or
UNIT specification, Tape files must be explieit, but disk
files ean be either explicit or implicit. The files INPUT,
OUTPUT, and PUNCH cannot be accessed explicitly.

Form:
[Pl: Pa» Py Péj

Omit this parameter for disk (p3=4). Number

Py
of tape tracks:

7 = 7-track tape

9 = 9-track tape

e

Py Omit this parameter for disk (p3=4)
recording density in bpi:
200 = T-track tape, bpt density of 200
556 = 7-track tape, bpi density of 556

800 = 7- or 9-track tape, bpi density of :
800

]
1600 = 9-track tape, bpi density of 1600

Py Recording mode:
0 = 7-track tape, BCD mode, even parity

1 = 7- or 9-track tape, binary mode, odd
parity

2 = 7-track tape, CDC 64-character
ASCII subset, odd parity
4 = Disk

For values of 0 and 2, conversion takes place
from binary data into BCD and ASCII
characters respectively,

Buffer size specified as the number of small
pages in the buffer. The value can be from 1
to 24, Default is 3.

Py

‘The eommas must remain to indicate preceding parameters
that are wunspecified. For example, the statement
PROGRAM P (TAPE5{,,4]=FILE]) declares the file FILEL to
be an explicit disk file with a default buffer size of three
small pages.

For transferring data in guantities of over tnree small pages
in length, explieit input/output is generally more efficient in
that fewer system ecalls are generated and more data is
passed per call. However, this efficiency is degraded if the
system is overloaded with jobs to the degree that physical
memoty becomes filled and the system must start swapping
pages in and out of memory. For transferring data in
quantities of less than three small pages in length, implicit
input/output is simpler and is comparable {with respect to
efficiency) with expliert input/output. All buffer statement
mput/output should be (and all tape input/output must be)
performed on explicit files,

Parameters must be supplied at the first reference within
the PROGRAM stetement to en explieit file and are not
allowed f{or subsequent references to the same file. If
TAPE7 is to be an explicit tape file associated with file
name DATA1, the following statement is correct:

PROGRAM P (TAPES [7,800,1] = FIL1, TAPE7=FIL1}

The following statement is not correct:

PROGRAM P (TAPEG=FIL1,TAPE?{7,800,1)=FIL1}

The explicit parameters given with TAPET are ignorea and
TAPET becomes an implicit aisk file, the same as TAPES.

The RLP parameter is used te reguest the mapping of
dynamic space into large pages. The number of large pages
is specified by m. If m Is omitted, one large page 1s
assumed. The RLP parameter can be used to improve the
performance of programs that use large vector temporaries.
Dynamic space includes veetor temporaries and veetors
assigned with the ASSIGN statement using DYN.

1

1

60386200 G

Tape

&

—




Ar  delete page 7-2.

oF THE
{}‘]Blbfﬂ i



STATEMENT FUNCTIONS

A statement funetion 5 a procedure defined by a single
statement. A statement funetion must be defined in the
program umt that references it; consequently, the funection
cannot be referenced by any other program unit.

DEFINING STATEMENT FUNCTIONS

The user defines a statement function with a single
statement similar in form to an assignment statement. The
statement function must precede the first executsble
statement in the program unit, and must follow ail
{nonexecutable statements exeept DATA, FORMAT, or
NAMELIST statements,

Form:
f(al,az, . ,an)=e
f The function's symbolic name. L

a Dummy argument, a simple variable name

distinet from any of the other dummy

{ arguments, The list must be present, and it

A must contain at least one dummy argument
{that is, n > 1).

e Any scslar expression.

Sinee dummy arguments serve only to indicate type, length,
number, and order of the actusl arguments, the names of
dummy arguments can be the same as variable names of the
same type and length appearing elsewhere in the pregram
unit. Besides the dummy arguments, the expression e can
contain constants, variables, array elements (the array name

B {eannot be dummy), references to external functions

{function subprogrems and FORTR AN-supplied funetions, for
instance), and previously-defined statement furetions,

The type of the statement function result is determined by
the type of the function name. Type must be assigned to the
funetion name in the same way that type Is assigned to &
variable; that is, the function name ean either appear in an
explicit type statement or be typed implieitly, Although the
function name cen appeer in a type statement, 1t must not
appear in an EQUIVALENCE, COMMON, or EXTERNAL
statement, and must not be dimensioned or given an initial
value. Type conversion from the expression type to the
funection name type ccecurs as for assignment statements (see
table 4-1),

REFERENCING STATEMENT FUNCTIONS

A statement function is referenced when the function-name
suffixed with an aectual argument lst appears in an
arithmetic, logieal, or charscter expression. The sctual
arguments, each of whiech can be any scalar expression of
the same type as the corresponding dummy argument, must
agree -in order, fnumber, and length with the dummy
arguments,

Evaluation of a statement function occurs during evaluation
of an expression that contains a reference to the function.
The values of the actual arguments are the values they have
at the time of each eveluation of the function, while any
name in the funetion expression that is net a dummy
argument retains the value it would have, had it oceurred
outside the funetion at that time.

Examples:
Definition Reference

ADD(X,Y,C,D)=X+Y+C+D RZLT=GROSS-ADD(TAX,

) FICA,INS,RES)
AVG(0,P,Q,R)=(0O+P+Q+R)/4 GRADE=AVG(T1,T2,T3,T4)

+MID

LOGICAL A,B,EQV TEST=EQV(MAX,MIN)L.AND,
EQV(A,B)=(A.AND.B).OR. ZED

(.NOT.A.AND..NOT.B)

COMPLEX Z
Z{X,Y)=(1.,0.)*EXP(X)*COS(Y)
+(0.,1.}*EXP(X)*SIN(Y)

RZLT2~(Z(BETA,GAMMA
(FFK))**2~1.)/SQRT(T2)

SUBPROGRAMS

A subprogram is & program unit that s defined by more than
one staiement but is not & mamn program. The differences
between funetion and subroutine spectfication and use are
summarized in table 7-1, All references in the table to
funetion name and subroutine name apply also to function
entry point name and subroutine entry point name,
respectively.

An external procedure is a procedure defined externally to
the program units that reference 1t. Funetion and sub-
routine subprograms are external procedures that are
written 1n FORTRAN, Inline functions and statement
funetions are not external procedures. Because name

TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBRQUTINES

Funeticn

Subroutine

How referenced

The function name appears in an expression.

The subroutine name appears in a CALL
statement.

Arguments
funetion name,

One or more arguments must sppear with the

The subroutine name can gppesr with or without
an argumment list.

Type and length

The type and length of a function name is the

No type or length Is assoclated with the name.

type and length of the funetion result,

A function must return a value through the fune-
tion name. It ean also return any number of
values through arguments and COMMON.

A subroutine ¢an return any number of values
through arguments and COMMON.

Results

60386200 G 73


http:EQV(A,B)=(A.AND.B).OR

- arguments. The parentheses are required even if there are no dummy arguments.

. cannot be dummy), references to external, wnirinsic, and dummy funciions .

. written in FORTRAN. Statement functions are not external procedures. Intrinsic functions
are not external procedures even if they invoke routines in the FORTRAN library. Because name . . .

- agree in order and number with the dummy arguments.

For a character argument, the length of the actual argument must be at least as great as the length
of the dummy argument. If the length of the actual argument is greater, the excess characters are
ignored.

. nonexecutable statements except DATA, FORMAT, ENTRY and . . .

TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBROUTINES

Function Subroutine

How referenced The function name appears in an
expression. Parentheses after the
name are required even if there are
no arguments.

The subroutine name appears in a CALL
statement. Parentheses after the name
are optional.

Type and length The type and length of the function
name are the type and length of

the function result.

No type or length is associated with
the name.

Results A function must return a value
through the function name. It can
also return any number of values
through arguments and COMMON,
so long as it does not alter the value
of any thing which occurs elsewhere
in the statement containing the
function reference, and does not
alter a value in COMMON which
affects the value of any other
function reference in the statement.

A subroutine can return amy number of
values through arguments and COMMON.

Altemate retum Alternate return specifiers may

not occur as arguments.

7-3A

Alternate return specifiers may occur
as agruments.



E|

Af
B{

‘|

C

D

definitions for data are loeal to the program unit in which
the names appear, names within an externgl procedure can
be used in other program units of the same executable
program to refer to unrelated entities,

PASSING ARGUMENTS BETWEEN SUBPROGRAMS

A transfer of control out of a program unit takes place when
a CALL statement or externsl function reference is
executed,  Argument associations are made, and the
referenced program unit executes until a RETURN state-
ment relinquishes control to the referencing program unit.
Upen return, any definitions made of arguments persist, If a
STOP statement is executed within the referenced
subpropram, program execution iIs terminated without
control being returned to the referencing program unit.

Values can be made available to an external procedure in
two ways: through use of COMMON statements and by
means of argument lists. See section 6 for a discussion of
COMMON statement usage.

Dummy and aetual argument lists are the mechanism that
FORTRAN employs to pass values between subprograms. An
argument's being durmmy or actual depends upon the context
in which the argument appears. An argument appearing in a
FUNCTION, SUBROUTINE, or ENTRY statement is a
dummy argument, while an argument appearing in a
subprogram reference is an actval argument. At the time a
subprogram reference 15 executed, each variable listed as a
dummy argument js associated with -the same stforage
location as the actual argument corresponding to it (call by
address). Each definition of a dummy argument can change
the value in that storage loeation. Thus, when control
returns to the referencing program unit, the values of the
actual arguments can be different from what they were
before the subprogram reference.

Dummy arguments are variable names, array names,
external subprogram names, or (for subroutine definitions
only) multiple return statement label indieators {asterisks).
They are assigned data types as appropriate and are used in
the executable statements of the subprogram. Actual
arguments can be expressions, variables (ineluding
deseriptors, and double deseriptors), vectors, constants,
arrays, array elements, external procedures, or (for
subroutine calls only) labels in the calling program unit. (A
label is prefixed with an ampersand.) The dummy argument
list for a subprogram and an -actual argument list for a
reference to the same subprogram must agree in argument
order, number, data type, and length {length is applicable to
type CHARACTER elements only). The only exception 1s
that getual arguments whieh are charseter or Hollerith
constanis ean also ecorrespond to dummy arguments of a type
other than character.

Dummy argument arrays, like all other arrays, must have
their sizes declarsd. The deelarator dimensions can be
integer constants, or simple integer varigbles which either
must be dummy arguments as well or else must be in

common. A dummy ergument must never appear in a
COMMON, EQUIVALENCE, or DATA specification
statement.

If an agetual argument is an external subprogram name, the
name must appear in an EXTERNAL statement in the
referencing program unit. Furthermore, the corresponding
dummy argument can only be used as an external
subprogram reference or as an actual argument in g
subprogram reference in. the referenced subprogram. An
example of this usage is shown in figure 7-1. As a result of
the first call to 5, SAM is executed on the call to SUB; on

7-4

the second call to §, TIME 1s executed on the call to SUB.
However, if the externael subprogram name is suffixed with
an argument list then the name 1S not an argument but a
function reference; here, the funetion is executed and it 1s
the result that becomes the actual argument, A funetion
referenced in an argument list need not have its name
appear in an EXTERNAL stetement in order to gct as an
argument. An example of this usage 1s shown 1a figure 7-2.
The value of RZLT is the type real value returned by the
execution of SAM.

PROGRAM P
EXTERNAL SAM,TIME

CALL § (X,Y,2,8AM,1)

CALL 8 {T,U,V,TIME,W)

END

SUBROUTINE 8 (A,B,C,8UB,D) ~

.

CALL SUB

.

RETURN
END

Figure 7-1. Subprogram Name as Actual Argument

PROGRAMR

CALL 8 (X,Y,Z,5AM(X),))

END

SUBROUTINE S {(A,B,C,RZLT,D)

.

DIMP = RZLT**2/NIM+1,

RETURN
END

Figure 7-2. Subpregram Reference as Actual Argument

Kinds of actual arguments allowed to eorrespond with a
partieular type of dummy argument are listed in table 7-2.
When a dummy argument 15 associated with an actual
argument that is either a constant or an expression
containing operators, the dummy argument must not be
defined n the subprogram.

603386200 G



B.

. arrays, array elements, external, intrinsic, or dummy procedures, or (for . . .

label is prefixed with an asterisk or an ampersand.) The dummy argument.

. . their sizes declared. Dimension bound expressions for dummy argument arrays may contain
integer variables which are in common or are dummy arguments. In the latter case, each such
variable must occur in the argument list of every ENTRY, SUBROUTINE, and FUNCTION state-
ment which contains the array name. The upper bound of the last dimension (first dimension for
ROWWISE arrays) may be an asterisk. The array is then called an assumed-size array. An
assumed-size array may not appear without subscripts in an 1O list or in an arra)} assignment.

A dummy argument must never appear in a . . ,
If an intrinsic function is used as an actual argument, it must appear in an INTRINSIC statement.
If a subroutine, external function, or dummy procedure is used as an actual argument, it must
appear in an EXTERNAL statement. The corresponding dummy argument in the referenced
subprogram may be used as an actual argument andfor in subprogram references. An . . .

Dummy arguments are variables, arrays, dynamic variables, dynamic arrays, dummy procedures, or
(for subroutine definitions . . .

For a character argument, the length of the actual argument must be at least as great as the length
of the dummy argument. For character arrays, what matters is the total length in characters of

the entire array — it is irrelevant how many characters are in each array element. If the length

of the actual arguments exceeds the length of the dumumy argument, the excess cahracters are ignored

When an H constant occurs as an actwal argument, the compiler appends blanks if required fo fill
out a whole number of words. If the corresponding dummy argument is complex or doeuble
precision, the H constant must contain at least 9 characters in order to be padded out to 2 words
(16 characters).

. . . order, number, and data type. The only exception is . . .

7-44



M

Y

TABLE 7-2. CORRESPONDENCE OF ACTUAL TO
DUMMY ARGUMENTS

Dummy Argument

Aetual Argument

Simple variable

'Sealar expression

Descriptor

Descriptor
Descriptor array element
Veetor

Double deseriptor

Double deseriptor
Double deseriptor
array element

Simple array

Simple array
Array element (simple)

Descriptor array

Descriptor array
Deseriptor array element

Bouble Descriptor array

Double deseriptor array
Double deseriptor
array element

External procedure name

External procedure name

* (asterisk denoting-
dummy label - for
subroutines only)

Statement label, prefixed by
an ampersand

* {asterisk denoting Descriptor
vector function result) | Deseriptor array element
Veetor

FUNCTION SUBPROGRAMS

A funetion subprogram is a program unit whose first line is a
FUNCTION statement. A function subprogram must be
referenced in at least one other program unit to be
executed, and contains a RETURN statement to return
control to the referencing program unit. Statements that
cannot be included in a funetion subprogram are the
PROGRAM, BLOCK DATA, and SUBROUTINE statements,
and any statement that direetly or indirectly references the
function being defined. The execution of a STOP statement
within the function terminates the program.

The FUNCTION statement defines the program unit to be a

funetion and not a subroutine or the main program. Only
one FUNCTION statement is allowed in a subprogram.

Forms:

t FUNCTION f (al,az, e eesBp)

CHARACTER FUNCTION f*m (al,az, ca ,an)

t Optional. A declaration of the type of f; ¢an
be INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or, as in the second
form, CHARACTER.

{ The funetion's symbolie name. N

m Length specification, in bytes, of  the
character function result returned as the value

of f. When *m is not specified in the second
form, the assumed length is 1,

60386200 G

a, A dummy ergument that can be & variable,
array, or external procedure name. No two
dummy arguments can have the same name.
At least one argument is required.

Within the funeticn, the name [ 15 treated as a variabie. It
must be given a value at least once during the execution of
the function subprogram. Once defined, the function name
can be referenced and redefined without an oceurrence of
the name being interpreted as a funetion self-reference. The
value returned to the expression that referenced the
funetion f is the value that f has upon execution of a
RETURN statement within the function subprogram.

The type of the function name f must be the same as in any
program unit that references the funetion. Type specifica-
tion can be explicit = it can appear before the word
FUNCTION or else appear in a type declaration statement
within the function (f must not be initialized)  or it can be
implieit. Imphiett type specification takes effect only when
no explicit typing of the function name was used, The
function name must not appear in any nonexecutable
statements within the function, exeept for purposes of type
declaration or in a list of identifier names in a NAMELIST
statement,

If the function name f is the same as that of & predefined
function, the predefined funetion is unavailable in the user-
defined function. Throughout the rest of the program, a
reference to & function named f causes execution of the
user—defined function unless the predefined funetion f 1s m-
line (see appendix E to determine whether f is in-line or
externat). The presence of an external declaration for f
governs whether or not an in-line predefined funection is
executed,

A function subprogram can modify the value of one o¢ more
of 1ts arguments to return extra (side effect} values to the
referencing program unit, with one restriction: because the
order of evaluation of the components of an expression or
statement is not guaranteed, a function referesnee must not
define any other entity occurring 1n the same statement.
The funetion's capability for modifying its arguments also
applies to individual elements of an argument which
represents an array. Other values can be returned by
altermg the values of entities in COMMON (the same side
effect restriction applies). For example, given the
statement

X(T) = FN(T,I+K,Y) + 3*FN([,N,Z) - R

where X is an array, FN is a function, and R is 1n common,
the variables T, I, N, and R must not be defined by FN.
However, Z and Y can be so defined.

A function 1s referenced by using its name suffixed by an
argument list, including parentheses and commas, instead of
a data element 1n any expression. Each dummy argument in
the FUNCTION statement must correspond to an actual
argument 1n the function reference ergument list. See the
heading Passing Arguments Between Subprograms in this
section for a further deseription of actual and dummy
arguments in function references.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is a program unit whose first line 1s
8 SUBROUTINE statement. To be executed, a subroutine
subprogram must be referenced with a CALL statement in
another program umt; 8 RETURN siatement returns eontrol
to the calling program unit. Statements that cannot be
ineluded in s subroutine subprogram are the PROGRAM,

7-5

L

D

}E

}F



Dunimy procedure Subroutine External function Intrinsic function Dummy procedure.

* (asterisk denoting Statement label, prefixed by an asterisk or an ampersand,
dummy label —
for subroutines only)

Optional. May be INTEGER, REAL, HALF PRECISION, DOUBLE
PRECISION, COMPLEX, LOGICAL. CHARACTER or CHARACTER"m.

Intrinsic function except in program units where the function name appears in an EXTERNAL
statement.

. . . altering the values of entities in COMMON. A value in COMMON may not be altered if it
occurs in the statement containing the function reference, or if its value affects the value of another
function reference in the same statement. For example, given the .

« . a data element in any expression. The parentheses are required even if there are no arguments.
Each dummy argument in . . .

m may be any integer constant expression where value is greater than 0. Alternately, m may be an
asterisk enclosed in parentheses: (*). In this case the length of the result is determined by the type
declaration for f in the referencing program unit.

a; A dummy argument that can be a variable, array, dynamic variable, dynamic array, or dummy

1
procedure name. The parentheses are required even if there are no arguments. No two dummy
arguments can have the same name.

. executed, and must contain a RETURN statement to return . . .
CHARACTER FUNCTION f (a9, . . . ag)

. of f. When *m is not specified the assumed length is 1.

If the function name f is the same as that of an intrinsic function, the intrinsic function is
unavailable in the user- . . .

[RILITY OF THE
REPRODUCES o B 00R

ORIGINAL PAG

7-34



Al

i

d

cf

BLOCK DATA, and FUNCTION statements and any state~
ment that directly or indirectly references the subroutine
being defined. The execution of a STOP statement within
the subroutine causes the program to terminate.

The SUBROUTINE statement defines the program unt to be
a subroutine and not a funetion or the main program. Only
one SUBROUTINE statement 1s allowed in a subprogram.

Form:
SUBROUTINE sla,,a,, - - - .&;)
s The subroutine’s symbolie name.

8 Optional. A dummy argument that can be a
variable, array, external procedure name, or
an * denoting a return point specified by a
statement label in the calling program unit.
When the argument list is omitted, the paren-
theses and commas must also be omitted,

The SUBROUTINE statement contains the subprogram name
s that indicates the subprogram's main entry point (the first
executable statement in the subroutine), The name s is not
used to return results to the calling program the way that
function names do, 15 not associated with a data type, and
must not appear in any statement in the subprogram except
the SUBROUTINE statement. Results are returned to the
calling program unit only through definition or redefinition
of one or more of the dummy arguments or through common.
Dummy erguments in & SUBROUTINE statement are
discussed elsewhere in this section under Passing Arguments
Between Subprograms.

Whenever an asterisk oceurs as a dummy argument in the
SUBROUTINE statement, there must be the statement label
{oreceded by an ampersand) of a statement in the calling
routine-as the corresponding actual argument. In the CALL
statements used to reference subroutine subprograms, an
argument is a statement label if it is a string ecomposed of
an ampersand followed by the digits required for the label.

BLOCK DATA SUBPROGRAMS

Besides having one or more exeeutable program units, a
program can contain nonexecutsble BLOCK DATA
subprograms, A BLOCK DATA subprogram is a STAR
FORTRAN specification subprogram consisting of only the
following kinds of statements:

BLOCK DATA statement
IMPLICIT statements

explicit type statements
EQUIVALENCE statements
DIMENSION statements

ROWWISE statements

COMMON statements
DESCRIPTOR statements

DOUBLE DESCRIPTOR statements
DATA statements

The order of the statements in & BLOCK DATA subprogram
should be gs shown in figure 1-2.

A subprogram is a specification subprogram if the first
statement 1s 2 BLOCK DATA statement.

Form:
BLOCK DATA Db

b Optional. Symbelie name of subprogram.

7-6

The single function of a BLOCK DATA subprogram is to
initislize the values of elements in labeled common blocks
(but not blank common) prior to program execution. If any
element in a given common block is being given an initial
value in such a subprogram, a complete set of specification
statements for the entire commeon biock must be present
(including any type, EQUIVALENCE, and DIMENSION state-
ments required to fully specify the common block's organi-
zation), except that not all of the elements of the block
need be initiglized, Initial values can be entered into more
than one block 1n a single subprogram. Different variables
and array elements 1 a common block can be initialized in
different program urits, but no variable or array element
cen be initialized more than once.

MULTIPLE ENTRY SUBPROGRAMS’

The first executsble statement following a FUNCTION or
SUBROUTINE statement is the main eatry point to that
subprogram, Other entry points can be defined in subroutine
and funetion subprograms by using the ENTRY statement:
the ENTRY statement in 2 subprogram specifies that the
first executable statement following the ENTRY statement
is 8 secondary entry point. More than che secondary entry
point can be declared in a subprogram.

Like the FUNCTION and SUBROUTINE statements, an
ENTRY statement is not executable and has no effect on the
logical flow of subprogram execution other than to specify
where subprogram execution is to begin when the subpro-
gram is referenced; also, like those statements, an ENTRY
statement must not be Iabeled, An ENTRY statement ean
oceur anywhere within & subroutine or funetion subprogram
except within the range of a DO; however, st least one
executable statement must appear between an ENTRY
statement and the END line mn the subprogram., An ENTRY
statement must not appear in a main program cor m &
BLOCK DATA subprogram.

Form:
ENTRY ¢ (al,az, veeo8p)
e The symbolic name of the entry poimnt.

8; Dummy argument thst can be & vanable,

array, external procedure name, deseriptor, or
(in a subroutine subprogram) an * denoting 2
return point specified by a statement label in
the calling program umt, Argument list 1s
optional for an ENTRY statement in a sub-
routine subprogram. When argument list is
omitied, the parentheses and commas must
also be omitted. At least one argument is
required for an ENTRY statement m a
function subprogram.

Control passes to the first executable statement following
the ENTRY statement when the entry point name s is used
in a CALL statement or function reference. In a subroutine
subprogram, the entry point name s is not associated with a
data type and must not gppear in any statement in the
subprogram except the ENTRY statement. In a function
subprogram, however, the entry point name s must be
associated with a data type umplicitly or with explicit type
statements. The distinctions between entry ponts in
funetions and subroutines are shown in table 7-1.

FUNCTION SUBPROGRAM ENTRY POINT NAMES

An entry point name in s function subprogram must be
associated with a data type and can be assigned wvalues

60386200 G

JE

e

(G

H



A. ... variable. array, dynamic variable, dynamic array, dummy procedure, or . . .

B: ... SUBROUTINE statement, there must be the statement label of a statement in the calling
C: ... an asterisk or an ampersand followed by the digits required for the label.

D: PARAMETER statements

SAVE statements
END statements

E: ... gram is referenced. An ENTRY statement can

F: ... except within the range of a DO, or between a block IF statement and its corresponding
END IF staternent. An ENTRY . ..

G: . .. array, dynamic variable, dynamic array, dummy procedurs, or . . .
H: ... omitted, the parentheses are optional.

I: . . these are optional.

I Delete

7-6A



B

Lk

during execution, The entry point name must not appear
any nonexecutable statement in the function exeept in a
FUNCTION or ENTRY statement, explicit type statement,
or in the list of names in a MAMELIST statement.

An entry point name need not be of the same data tvpe as
the mam entry point hame or ary other secondary enicy
point names in the funetion; however, a function reference
using that entry point name must have the same data type as
the name., Also, STAR FORTRAN permits scaler function
subprograms to have vector funetion entry points, and
vector functions {see section 11} to have sealar funetion
entry peints.

All enfry point names in a function are assoeiated seo that 2
definition of one causes definition of all others having the
same type and length, and causes undefinition {(unpredictable
values) of those having & different type or length associa-
tion. In effect, all entry point names are eguivalenced as in
an EQUIVALENCE statement.

Puring each execution of the subprogram, at least one of the
eniry point names must he assigned a value {become
defined), and once defined ecan be referenced and redefined.
(A reference to the entry point name within the funetion
refers to this value and is not a reference to the function.)

A { An entry point name having the same type and length as the

entry point name used t{o enter the subprogram must be
defined at the time of execution of any RETURN statement
in the subprogram; the value of the name at that time is the
funection value returned to the referencing program unit.

SECONDARY ENTRY POINT ARGUMENT LISTS

An entry point to a funetion subprogram must have at least
one argument, and an entry point to a subroutine subprogram
need heve no arguments. A subprogram can modify the
value of one or more of the arguments in the argument list
of the ENTRY statement associated with the current entry
to retww values to the calling program unit. See the
heading Passing Arguments Between Subprograms earlier in
this seetion for specifications for dummy arguments in
ENTRY statements.

The list of arguments in an ENTRY statement need not

contain the same elements as other argument lists in

FUNCTION, SUBROUTINE, or other ENTRY statements in

the same program umt, Nevertheless, no statement in the

subprogram ecan be executed that would esuse reference or

definition of an argument not’ in the argument list of the
{ current entry.

REFERENCING SECONDARY ENTRY POINTS

A secondary entry point to a subroutine subprogram is
referenced by a CALL statement containing the entry pomt
Raeme. An example of multiple subroutine entry pomnts is
shown in figure 7-3. In the example, the statement CALL
CLEAR(SET1) references the primary entry point of the
subroutine. Elements of the array are set to zero before
values are read into the array, Later in the program, the

. statement CALL FILL(SET1) references the secondary entry

. pownt FILL. Values are read into the array without any
inittalization of the elements to zero,

A secondary entry peint to a funetion is referenced in the
same way that the main entry point is referenced. See the
heading Passing Arguments Between Subprograms earlier 1n
this section for actual argument list specifieations. An
example of multiple function entry points is shown in
figure 7-4. In  the example, the statement
RT1 = FSHN(X,Y,Z) references the primary entry point of

650386200 G

the function. The calevlation of the FSHN value is
performed, and contrel returns to the main program. Later
in the program, the statement RTZ=FRED(R,5T)
~eferences the secondary entry point FRED. Deapending on
the value of the first argument, the return value is 21ther
the calculated value of FRED or FSHN. 3inece multipie
function entry point nemes ere effectively squivalencsd, {
either FRED or FSHN can oe used fo set the return value. 4

Lt

PROGRAM T{INPUT)
DIMENSION SET1{25)

-
-

CALL CLEAR(SET1)

CALL FILL{SET1}

END

SUBROUTINE CLEAR(RA)
DIMENSION RA(25)
INTEGER P
C—MAIN ENTRY POINT
DO 1801=1,25
100 RA(D) = 0.0
ENTRY FILL(RA)
C—SECONDARY ENTRY POINT
300 READ?2, VP
2 FORMAT{10X, F7.2, I4)
RA(P)=V
IF(P.LT.0.0R.P.GT.25) RETURN
GOTO 300
END

Figure 7-3. Multiple Entry Subroutine

PROGRAM @

.
-
.

RT1 = FSHN(X,Y,7)

RT2 = FRED(R,S,T)

.
.
.

END

FUNCTION FSHN(A,B,C)
C--MAIN ENTRY POINT
300 FSHN = A*B/C**2
RETURN
ENTRY FRED(A,B,C)
C—SECONDARY ENTRY POINT
IF{A.LE,702) GOTO 300
FRED = {C+A)/B i
RETURN
END

A

Figure 7-4. Multiple Entry Funetion

Subroutines cannot reference their own mean entry points or ;
secondary entry points direetly or indireetly . A funetion
subprogram can reference any of its entry pomnt names, so
long as the name is not followed by an argument list,
because this does not constitute a function reference.


http:IF(P.LT.0.OR.P.GT.25

A:  An eniry point name having the same type and the same or greater length as the . . .

B: A subprogram can modify the

C: ... current entry. If a dummy array is an argument in an ENTRY list, each variable which
occurs in a dimension bound expression for the amray must be in common or in the argument list

of the same ENTRY statement. (The same rule also applies to FUNCTION and SUBROUTINE
statements.)

7-7A



Replace all of Section- 8 with the following pages.

81



CDC CYBER 200 FORTRAN 77 INPUT/OUTPUT STATEMENTS

INPUT/QUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal storage or from an
internal file to internal storage. This process is called reading. Output statements provide the means of trans-
ferring data from internal storage to external media or from internal storage to an internal file. This process
is cajled writing. Some inputfoutput statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the
external medium, or to inquire about or describe the properties of the connection to the external medium.

There are 14 inputfoutput statemenis:

1. READ 8. ENDFILE
2. WRITE 9. REWIND

3. PRINT 10. PUNCH

4. OPEN 11. ENCODE

5. 'CLOSE 12. DECODE

6. INQUIRE 13. Q7BUFIN
7. BACKSPACE “14.  Q7BUFOUT

The READ, WRITE, PRINT, PUNCH, Q7BUFIN, and Q7BUFOQUT statements are data transfer input/output
statements, The OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE, and REWIND statements are auxiliary
inputfoutput statements. The BACKSPACE, ENDFILE, and REWIND statements are f{ile positioning input/
output statements.

RECORDS

A record is a sequence of values or a sequence of characters. For example. a punched card is usually con-
sidered to be a record. However, a record does not necessarily correspond to a physical entity. There are
three kinds of record:

1. Formatted
2. Unformatted

3 Endfile

8-1A



FORMATTED RECORD

A formatted record consists of a sequence of characters that are capable of representation in the processor.
The length of a formatted record is measured in characters and depends primarily on the number of characters
_ put into the record when.it is written. However, it may depend on the processor and the external medium.

The length may be zero. Formatted records may be read or written only for formatted input/output state-
ments.

Formatted records may be prepared by some means other than FORTRAN; for example, by some manual in-

put device,
UNFORMATTED RECORD

An unformatted record consists of a sequence of values in a processor dependent form and may contain both
character and non-character data or may contain no data. The length of an unformatted record is measured

in processor dependent units and depends on the output list used when it is written, as well as on the processor
and the external medium. The length may be zero.

The only statements that read and write unformatted records are unformatted inputfoutput statements,
Q7BUFIN and Q7BUFOUT statements.

Unformatted Records Containing Data of Type Bit

The smallest unit of storage that may be transferred to or from an external file is a character. When data of
type bit are being transmitted at least one character will be-read from or written on the external file.

Let b be the number of bits occupied by the data of type bit.

On input, the leftmost b bits will be transferred to the intemal storage from the next INT((b+7)/8) characters
read from the current record. Unused bits will be skipped.

On output, INT((b+7)/8) characters will be written on the external file. Unused bits will be undefined.
ENDFILE RECORD

An endfile record is written by an ENDFILE statement. An endfile record may occur only as the last record
of a file. An endfile record does not have a length property.

FILES

A file is a sequence of records.

There are two kinds of file:

8-2A



.  External

2.  Internal
Internal files are also categorized by the type of storage provided for the file.
FILE EXISTENCE
At any given time, there is a processor determined set of files that are said to exist for an executable pro-
gram. A file may be known to the processor, yet not exist for an executable program at a particular time.
For example, security reasons may prevent a file from existing for an executable program. A file may exist

and contain no records; an example is a newly created file not yet written.

To create a file means to cause a file to exist that did not previously exist. To delete a file means to
terminate the existence of the file.

All input/output statements may refer to files that exist. The INQUIR.E, OPEN, CLOSE, WRITE, PRINT,
PUNCH, Q7BUFOUT and ENDFILE statements may also refer to files that do not exist.

FILE PROPERTIES

At any given time, there is a processor determined set of allowed access methods, a processor determined sct of
allowed forms, and a processor determined set of allowed record lengths for a file.

Each external file has exactly one file name, and is called a named file. The name of a named file is a character
string, consisting of one to eight letters or digits, the first of which must not be a digit.

An external file may have zevo or more alternate file names._ An alternate ﬁ_k:_ name provides a means of refer-
ring to an external file by more than one unit identifier. An alternate file name has the form of a file name,
and is specified by the PROGRAM statement.

Both a file name and an alternate file name are global to the executable program. However, the scope of the
file name extends to the external environment of the program, such as the processor operating system; the
scope of the laternate file name is restricted to the executable program.

Note that, uniike a file name, an alternate file name is not a property of an external file. For example.
execution of an INQUIRE by file statement that refers to an external file by an alternate filz name and inquires

the NAME causes the specifier variable fn to become defined with the file name, not an alternate file name.

An internai file does not have a name.

8-3A



FILE POSITION

A file that is connected to a unit has a position property. Execuntion of certain inputfoutput statements
affects the position of a file. Certain circumstances can cause the position of a file to become indeterminate.

The iditial point of a file is the position just before the first record. The terminal point is the position just

after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is no current record.
Let n be the number of records in the file. If 1< i=n and a file is positioned within the ith record or between
the (i-1)th record and the ith record, the (i-1)th record is the preceding record. If n 21 and a file is positioned
at its terminal point, the preceding record is the nth and last record. If »=0 or if a file is positioned at its
initial point or within the first record, there is no preceding record.

If 1={=n and a file is positioned within the ith record or between the ith and (j+1)th record, the (i+1)th
record is the next record. If n 2 1 and the file is positioned at its initial point, the first record is the next

record. If n=0 or if a file is positioned at its terminal point or within the nth and last record, there is no
next record.

FILE ACCESS

There are two methods of accessing the records of an external file. sequential and direct. Some files may
have more than one allowed access method; other files may be restricted to one access method. For example,
a processor may allow-only sequential access to a file on magnetic tape. Thus, the set of allowed access
methods depends on the file and the processor.

The method of accessing 2 file. is determined when the file is connected to 2 unit.

Sequential Access

When connected for sequential access, a file has the following properties:

. The order of the records is the order in which they were written. A record that has not
been written since the file was created must not be read.

. The records of the file are either all formatted or all unformatted, except that the last record
of the file may be an endifile record.

4
. The records of the file must not be read or written by direct access input/output statements.

3-4A



Direct Access
When connected for direct access, a file has the following properties:

. The order of the records is the order of their record numb?rs. The records may be read or
written in any order. '

. The records of the file are either all formatted. or all unformatted, The file must not contain
an endfile record.

. Reading and writing records is accomplished only by direct access input/output statements.
. All records of the file have the same length.

e Each record of the file is uniquely identified by 2 positive number called the record number.
The record number of a record is specified when the record is written. Once established, the record
number of a record can never be changed. Note that a record may not be deleted; however, it
may be rewritten,

. Records need not be read or written in the order of their record numbers. Any record may be
written into the file while it is connected to a unit. For example, it is permissible to write
record 3 even though records 1 and 2 have not been written. Any record may be read from the file
while it is connected to a unit, provided that the record was written since the file was created.

s The records of the file must not be read or written using list-directed formatting.

INTERNAL FILES

Internal files provide a means of transferring and converting data from internal storage to intemal storage.
There are two types of internal file, standard and extended. A standard internal file is a sequence of character
storage units. An extended internal file is a sequence of numeric storage units. An extended internal file may

only be accessed by the ENCODE and DECODE staternents.

The standard or extended property of an internal file is established by the type of storage provided for the
file. ~

Throughout the remainder of this document, the phrase intemal file shall be interrupted to mean standard
internal file, unless explicitly prefixed with extended.

Standard Internal File Properties

A standard internal file has the following properties:

8-34



. The file is a character variable, character array element, character array, or character substring.
. A record of an internal file is a character variable, character amay element, or character substring,

. If the file is a.character variable, character array elefent, or character substring, it consists of a
single record whose length is the same as the length of the variable, array element, or substring,
respectively. If the file is a character array, it is treated as a sequence of character array elements.
Each array element is a record of the file. The ordering of records in the file is the same as the
ordering of the array elements in the array. Every record of the file has the same length, which is
the length of the array element in the array.

. The variable, array element, or substring that is the record of the internal file becomes defined
by writing the record. If the number of characters written in a record is less than the length of
the record, the remaining portion of the record is filled with blanks.

. A record may be read only if the variable, array element, or substring that is the record is defined.

e A-variable, array element, or substring that is a record of an internal file may become defined (or
undefined) by means other than an output statement. For example, the variable, array element,
or substring may become defined by a character assignment statement.

. An internal file is always positioned at the beginning of the first record prior to data transfer,

Standard Internal File Restrictions

A standard internal file has the following restrictions:

. Reading and writing records is accomplished only by sequential access formatted. Input/output
statements that do not specify list-directed formatting or NAMELIST formatting.

. An auxiliary input/output statement must not specify an internal file.

Extended Internal File Properties

An extended internal file has the following ;;roperties:
’ The file is a non-character variable, non-character array element, or non-character array.
. A record of the file is one or more contguous numeric storage units.
) The length of a record of the file is measured in characters, and is equal to

=

a4~ m

8-64



where: a is the maximum number of characters that can be stored in a single numeric siorage
unit at one time

m is the number of numeric storage units in the reocrd.
Every record of the file has the same length.
The variable or array element that is a record of the file is defined by writing the record. If
the number of characters written in a record is less than the length of the record, the remaining
portion of the record is filled with blanks.

A record may be read only if the variable or array element(s) that is the record is defined.

A variable or array element(s) that is a record of the file may become defined (or undefined)
by means other than an input statement.

An extended internal file is always positioned at the initial point of the first record prior to
data transfer.

Extended Internal File Restrictions

An extended internal file has the following restrictions:

UNITS

Reading and writing records is accomplished only be DECODE and ENCODE statements. List-
directed formatting must not be specified.

The file must be accessed sequentially.

An auxiliary ipputfoutput statement must not specify an extended internal file.

A unit is a means of referring to a file,

UNIT EXISTENCE

At any given time, there is a- processor determined set of units that are said to exist for an executable program.
A unit exists for each allowed external unit idenfifier.

"All input/output statements may refer to units thar exist. The INQUIRE and CLOSE siatements may also refer
to units that do not exist.

3-7A



CONNECTION OF A UNIT

A unit has a property of being connected or not connected. If connected, it referes to a file. A unit may
become connected by preconnection or by the execution of an QPEN statement. The property of connection
is symmetric: If a unit is connected to a file, the file is connected to the unit.

Preconnection means that the unit is connected to z file at the beginning of execution of the executable pro-
gram and therefore may be referenced by inputfoutput statements without the prior execution of an OPEN
statement. Each unnit that exists is preconnected to a file. The file name of the file to which a unit is precon-
nected may be specified by a preconnection specifier in the PROGRAM statement of the main program. Other-
wise, the processor determines the file name from the unit specifier u as follows:

e If INT(u) has a value representable by the digit string n in the range 0. . .99, the file name is
TAPE,,.

. If u has a value of the form nHf, where { is a valid system file name, the file name is _t;

Otherwise, the unit specified does not exist.

All inputfoutput statements except OPEN, CLOSE, and INQUIRE must reference a unit that is connected to
a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, but an external file may be connected
to more than one unit at the same time. However, means are provided fo change the status of the unit and to
connect a unit to a different file.

After a unit has been disconnected by the execution of a CLOSE statement, it may be connected again within the
same executable program to the same file or a different file. After a file has been disconnected by the execu-
tion of a CLOSE statement, it may be connected again within the same executable program to the same unit or

a different unit. Note, however, that the only means to refer to a file that has been disconnected is by its name
in an OPEN or INQUIRE statement. Therefore, there may be no means of reconnecting an unnamed file once

it is disconnected.

UNIT SPECIFIER AND IDENTIFIER
The form of a unit specifier is:
(UNIT=)u

where u is an external unit identifier or an intemal file identifier.

8-8A



An external unit identifier is used to refer to an external file. An internal unit identifier is used to refer to
an internal file.

An external unit identifier is one of the following:

1. An integer expression i whose value must be either
a.  An integer in the range 0. .999, or

b, Of the form nHf, where { isa valid system file name.

In case {b), if { is of the form TAPEs or UNITk, where k is an integer in the range 0. .999 with
no leading zero, it is equivalent ot the infeger k for the purpose of identifying external units.

2. An asterisk, identifying a particular processor determined exterral unit that is preconnected for
formatted sequential access.

The external unit identified by the value of i is the same external unit in all program units of the executable
program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=6
REWIND n
the value 6 used in both program umits identifies the same external unit.

An external unit identifier in an auxiliary input/output statement must not be an asterisk.

An internal file identifier provides the means of referring to a standard or extended internal file. An internal

file identifter for a standard internal file is the symbolic name of a character variable, character array, character
array element, or character substring. An internal file identifier for an extended internal file is the symbolic name
name of a non-character variable, a non-character array, or non-character array element.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the first item
in a list of specifiers.

FORMAT SPECIFIER AND IDENTIFIER-

The form of a format specifier is:
{FMT=)L.

where f is a format identifier.

8-5A



A format identifier identifies a format. A format identifier must be-one of the following:

o  The statement label of a FORMAT statement that appears in the same program unit as the
format jdentifier.

r

) An intéger variable that has been assigned the.statement label of a FORMAT statement that
appears in the same program unit as the format identifier.

. A character array name.

) Any character expression except a character expression involving conatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbolic name

of a constant. Note that a character constant is permitted.
° An asterisk, specifying list-directed formatting.
. A NAMELIST group name specifying NAMELIST formatting.

® A non-character array name.

If the optional characters FMT= are omitted from the format specifier, the format specifier must be the second
item in the control information list and the first item must be the unit specifier without the optional characters

UNIT=.

RECORD SPECIFIER

The form of a record specifier is:
Torord spesier

REC=m

where rm_is an integer expression whose value is positive it specifies the number of the record that is to be

read or written in a file connected for direct access.

ERROR AND END-OF-FILE CONDITIONS

The set of input/output error conditions is processor dependent.

An end-of-file condition exists if either of the following events occurs:

. An endfile record is encountered during the reading of a file connected for sequential access.

In this case, the file is positionsd after the endfile record.

. An artempt is made to read a record beyond the end of an internal file.

8-10A

CF



If an error condition oceurs during the execution of an input/output statement, execution of the input/output
stafement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of a READ statement, execution of
the READ statement terminates and the entities specified by the input list and implied-DO-variables in the input
list become undefined. Note that variables and array elements appearing only in subscripts, substring expres-
sions, and implied-DO parameters in an input st do not become undefined when the entities specified by the
list become undefined.

If an error condition occurs during the execution of an output statement, execution of the output statement

terminates and implied-DO-variables become undefined.

If an error condition occurs during execution of an inputfoutput statement that contains neither an input/
output status specifier nor an error specifier, or if an end-of-file condition occurs during execution of a READ
statement that contains neither an input/output status specifier nor an end-of-file specifier, execution of the
executable program terminates.

INPUT/QUTPUT STATUS, ERROR, AND END-OF-FILE SPECIFIERS

The form of an input/output status specifier is:

IOSTAT =1ios
where ios is an integer variable or integer array element.

Execution-of an inputfoutput statement containing this specifier causes ios to become defined:

. with a zero value if neither an error condition nor an end-of-file condition is encountered by
the processor,

. with a processor dependent positive integer value if an error-condition is encountered, or

. with a processor dependent negative integer value if an end-of-file condition is encountered
- and no error condition is encountered.

The positive integer value denoting an error condition is, for each error, the same value used as the runtime
error number when the input/output status specifier is omitred.

ERROR SPECIFIER

The form of an error speaifier 1s:

2-11A



where s is the statement label of an executable statement that appears in the same program unit as the error
specifier.

If an input/output statement contains an error specifier an the processor encounters an -error- condition during
the execution-of the statement:

s.  execution of the inputfoutput statement terminates,
. the position of the file specified in the input/output statement becomes indeterminate,

. if the inputfoutput statement contains an input/output status specifier, the variable or array
element ios becomes defined with a processor dependent positive integer value, and

[ execution continues with the statement labeled s.
END-OF-FILE SPECIFIER
The form of an end-of-file specifier is:
END =5

where s is the statement label of an executable statement that appears in the same program unit as the end-of-
file specifier.

If a READ statement contains an end-of-file specifier and the processor encounters an end-of-file condition and
no error condition during the execution of the statment:

e execution of the READ statement terminates,

. if the READ statement contains an input/output status specifier, the variable or array element
ios becomes defined with a processor dependent negative integer value, and

e execution continues with the-statement labled s.

READ, WRITE, PRINT, AND PUNCH STATEMENTS

The READ statement is the data transfer input statement. The WRITE, PRINT, and PUNCH statements
are the data transfer output statements. The forms of the data transfer input/output statements are:

READ (eilis?) (iolist)
READ f(iolist}
WRITE (cilist) (iolist)

8-12A



PRINT £(iolist)
PUNCH {( iolist)

where: cilist is a control information list that includes:

A reference to the source-or destination of the data to be transferred.

Optional specification of editing processes.

Optional specifiers that detefmine the exe;:ution sequence on the occurrence of certain events.
Optional. specification to identify a record.

Optional specification to provide the retumn of the inputfoutput status.

1 15 a format identifier.

iolist is an inputfoutput list specifying the data to be transferred.

If*the format identifier f is a NAMELIST group name, the iolist must not be present.

CONTROL INFORMATION LIST

A control information list, cilist, is a list whose st items may be any of the following

(UNIT=) g
(FMT =)
REC=m
TOSTAT = ios,
ERR =5
END =5

A control information list must contain exactly one unit specifier, at most one format specifier, at most one
record specifier, at most one input/output status specifier, at most one error specifier, and at most one end-of-

file specifier.

If the control information list contains a format specifier, the statement is a formatted [nput/output statement:
otherwise. it is an unformatted inputfoutput statement.

if the control information list contains a record specifier. the statement is a direct access input/output state-
ment: otherwise, it is a sequential access inputfoutpur statement.

8-13A



If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the first item
in the contro! information list.

The unit specifier must not specify an extended internal file.

If the optional characters FMT= are omitted from.the format specifier, the format specifier must be the ‘second
item in the control information list and the first item must be the unit specifier without the optional charac-
ters UNIT=,

A control information list must not contain both a record-specifier and an end-of-file specifier.

If the format identifier is an asterisk, the statement is a list-directed input/output statement and a record
specifier must not be present.

In a WRITE statement, the control information list must not contain an end-oi-file specifier.

If the unit specifier specifies an internal file, the control information list must contain a format identifier
other than. an asterisk and must not contain a record specifier,

INPUT/OUTPUT LIST

An input/output Iist, jolist, specifies the entities whose values are transferred by a data transfer input/output

statement.

An inputfoutput list is a list of input/output list items and implied-DO list. An input/output list item is either
an input list item or an output list item.

If an array name appears as an input/output list item, it is treated as if all of the elements of the array were
specified in the order given by array element ordering. The name of an assumed-size dummy array must not
appear as an input/output list item,

Input List Items

An input list item must be one of the following:

ey At

. A variable name.

. An array element name.

. A character substring name.
. An array name.

Only input list items may appear as input/output lst items in an input statement.

8-14A



Output List Items

An putpat list item must be one of the following:
. A variable name.
o< An array element name.
) A character substring name.

L 3 An array name,

. Any other expression except a character expression involving concatenation of an operand whose
length specification is an asterisk in parentheses unless the operand is the symbolic name of a
constant.

Note that a constant, an expression involving operators or function references, or an expression enclosed in
parentheses may appear as an output list item but must not appear as an iaput list item.

Implied-DO List
An implied-DO list is of the form:
(dlist, i= el , €2 [ 3])
where: 1, el, e2, and-e3 are as specified for the DO statement

dlist is an input/output list.

8-15A



The range of an implied-DO list is the list dlist. Note that dlist may contain implied-DO lists. The iteration
count and the values of the DO-variable i are established fro?:;_i , e2, and e3 exactly as for a DOHoop: In
an input statement, the DO-variable i, or an associated entity, must not appear as an input list item in dlist,
When an implied- DO list appears in an input/output list, the list items in dlist are specified once for each
iteration of the implied- DO list with appropriate substitution of values for any occurrence of the DO-variable

1.

EXECUTION OF A DATA TRANSFER INPUT/OUTPUT STATEMENT

The effect of executing a data transfer input/output statement must be as if the following operations were
performed in the order specified:

' Determine the direction of data transfer.
® Identify the unit,

. Establish the format if any is specified.
e  Position the file prior to data transfer.

. Transfer data between the file and the entities specified by the inputfoutput list (if any), or
identified by association with 2 NAMELIST group name (if one).

* Position the file after data transfer.

. Cause the specified integer variable: or array element in the input/output status specifier (if any)
to become defined.

DIRECTION OF DATA TRANSFER

Execution of a READ statement causes values to be transferred from a file to the entities specified by the
input list, if one is specified.

Execution of a WRITE, PRINT, or PUNCH statement causes values to be transferred to a file from the
entities specified by the output list and format specification (if any). Execution of a WRITE, PRINT, or
PUNCH statement for a file that does not exist creates the file, unless an error condition occurs.

IDENTIFYING A UNIT

A data transfer input/output statement that contains a control information list includes a unit specifier that
identifies an external unit or an internal file. A READ statement that does not contain a control mformation
list specifies a particular processor determined unit, which is the same as the umt identified by an asterisk in

a READ statement that contains a control information list. A PRINT statement specifies some other processor
determined unit, which is the same as the unit identified by an asterisk in a WRITE statement. A PUNCH

8-16A



statement identifies yet another processor determined unit. Thus each data transfer inputfoutput statement
identifies an external unit or an internal file.

Data transfer input/output statements that do rot contain control information lists refer to units that are
preconnected as follows:

Statement Standard Unit File Name
READ INT(SHINPUT) “INPUT”
PRINT INT(6HOUTPUT) “QUTPUT”
PUNCH INT(SHPUNCH) “PUNCH”

The unit identified by a data transfer input/output statement must be connected to a file when execution
of the statement begins.

ESTABLISHING A FORMAT

If the control information list contains a format identifier other than an asterisk or NAMELIST group name,
the format specification identified by the format identifier is established. If the format identifier is an asterisk,
list-directed formatting is established. If the format identifier is 2 NAMELIST group name, NAMELIST for-

matting is established.

On output, if an internal file has been specified, a format specification that is in the file or is associated with
the file must not be specified.

FILE POSITION PRIOR TO DATA TRANSFER
The positioning of the file prior to data transfer depends on the methed of access: sequential or direct.

If the file contains an endfile record, the file must not be positioned after the endfile fecord prior to data
transfer.

Sequential Access

On input, the file is positioned at the beginning of the next record. This record becomes the current record.
On output, a new record is created and becomes the last record of the file.

An internat file is always positioned at the beginning of the first record of the file. This record becomes the
cument record.

8-17A



Direct Access

For direct access, the file is positioned at the beginning of the record specified by the record specifier. This
record becomes the current record.

DATA TRANSFER

Data are transferred between records and entities specified by the inputfoutput list. The list items are
processed in the order of the input/output list.

All values needed to determine which entities are specified by an input/output list item are determined at
the beginning of the processing of that item.

All values are transmitted o or from the entities specified by a list item prior to the processing of any suc-
ceeding list item. In the example,

READ (3) N, A (N)
two values are read; one is assigned to N, and the second is assigned to A(N) for the new value of N.

An input list item, or any entity associated with it, must not contain any portion of the established format
specification.

If an internal file has been specified, an input/output list item must not be in the file or associated with
the file.

A DO-variable becomes defined at the beginning of processing of the items that constitute- the range of an
implied-RO list.

On output, every entity whose value.is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not previously been written
causes all the entities specified by the input list to become undefined.

Unformatted Data Transfer

During unformatted data transfer, data are transferred withour editing between the current record and the
entities specified by the inputfoutput list. Exactly one record is read or written,

8-18A


http:value.is

On input, the-file must be positioned so that the record read is an unformatted record or an endfile record.

On input, the number of values required by the input list must be less than or equal to the number of values in
the record.

On input, the type of each value in the record must agree with the type of the comesponding entity in the
input list, except that one complex value may correspond to two real list entities or two real values may
correspontd o one complex list entity. If an entity in the input list is of type character, the length of the

chamacter entity must agree with the lengih of the character value,

On output to a file connected for direct access, the output list must not specify more values than can fit into a
record.

On output, if the file is connected for direct access and the values specified by the output list do not fill the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is prohibited.
The unit specified must be an external unit.

Formatted Data Transfer

During formatted data transfer, data are transferred with editing between the entities specified by the input/
output list ang the file. The current record and possibly additional records are read or written.

On input, the file must be positioned so that the record read is a formatted record or an endfile record.
If the file is connected for unformatted input/output formatted data transfer is prohibited.
USING A FORMAT SPECIFICATION

If 2 format specification has been established, format control is initiated and editing is performed as described
in Chapter 9,

On input. the input list and format specification must not require more characters from a record than the
record contains.

If the file is connected for direct access, the record number is increased by one as cach succeeding record is
read or written.

On output, if the file is connected for direct access or 15 an infernal file and the characters specified by the
output list and formar do not fill a record, blank characters ave added to fill the record.

8-19A



On output, if the file is connected for direct access or is an internal file, the output list and format specification
must not specify more characters for a record than can fit into the record.

LIST-DIRECTED FORMATTING

" If list-directed formatting has been established, editing is performed as described in Chapter 9.

PRINTING OF FORMATTED RECORDS

The transfer of information in a formatted record to certain devices determined by the processor is called
printing. If a formatted record is printed, the first character of the record is not printed. The remaining char-

acters of the record, if any, are printed in one line beginning at the left margin.

The first character of such a record determines vertical spacing as folows:

Character Vertical Spacing Before Printing
Blank One Line

0 Two lines

H To First Line of Next Page

+ No Advance

If there are no characters in the record, the vertical spacing is one line and no characters other than blank are
printed in that line.

A PRINT statement does not imply that printing will occur, and a WRITE statement does not imply that print-
ing will not occur,

FILE POSITION AFTER DATA TRANSFER

If an end-of-file condition exists as a result of reading an endfile record, the file is positioned after the endfile
record.

i no error condition or end-of-file condition exists, the file is positioned after the last record read or written
and that record becomes the preceding record. A record written on a file connected for sequential access

becomes the last record of the file.

If the file is positioned after the endfile record, execution of a data transfer input/output statement is prohibited.
However, a BACKSPACE or REWIND statement may be used to reposition the file,

If an error condition exists. the position of the file is indeterminarte.



INPUT/OUTPUT STATUS SPECIFIER DEFINITION

if the data transfer inputfoutput statement contains an input/output status specifier, the integer variable or
array element ios becomes defined. I no error condition or end-of-file condition exists, the value of jos is
zero. If an error condition exists, the value of ios is positive. If an end-of-file condition exists and ro error
condition exists, the value of ios is negative.

AUXILIARY INPUT/QUTPUT STATEMENTS

OPEN STATEMENT

An OPEN statement may be used to connect an existing file to a unit, create a file-that is preconnected, create
a file and connect it to a unit, or change certain specifiers of a connection between a file and a unit.

The form of an OPEN statement is:
OPEN {olist)

where olist is a list of specifiers:

[UNIT =] u
TOSTAT = os.
ERR =3

FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL =1l
BLANK = blnk
BUFL = bl

olist must contain exactly one external unit specifier and may contain at most one of each of the other speci-
fiers.

The other specifiers are described as follows:

IOSTAT = ios

is an inputfoutput status specifier. Execution of an OPEN statement containing this specifier causes
ios to become defined with a zero value if no error condition exists or with a processor dependent
positive integer value if an error condition exists,

8-21A



ERR

- i

is an error specifier.

FILE = fin_

fin is a character expression whose value when any trailing blanks are removed is the name of the
file to be connected to the specified unit, The file name must be a name that is allowed by the
processor. [f this specifier is omitted and the unit is not connected to a file, it becomes connected
to a processor determined file. The processor determines a file name from the unit specifier v as

follows:

1.  If INT{u) has a value representable by the digit string n in the range 0. 999, the file
name is TAPEn.

2. I u has a value of the form nHf, where { is a valid system file name, the file name is f.

Otherwise, the unit specified does not exist.

STATUS = sta

sta Is a character expression whose value when any trailing blanks are removed is OLD, NEW,
SCRATCH, or UNKNQWN, If OLD-or NEW is specified, a FILE= specifier must be given. If OLD
is specified, the file must exist. If NEW is specified, the file must not exist. Successful execution
of an OPEN statement with NEW specified creates the file and changes the status to OLD. If
SCRATCH is specified with an unnamed file, the file is connected to the specified unit for use by
the executable program but is deleted at the execution of the CLOSE statement referring to the
same unit or at the termination of the executable program. SCRATCH must not be specified with
a named file, If UNKNOWN is specified, the status is processor dependent. If this specifier is
omitted, a value of UNKNOWN is assumed. -

ACCESS = acc

acc is a character expression whose value when any trailing blanks are removed is SEQUENTIAL or
DIRECT. It specifies the access method for the connection of the file as being sequential or direct.
if this specifier is omitted, the assumed value is SEQUENTIAL. For an existing file, the specified
access method must be included in the set of allowed access methods for the file. For a new file.
the processor creates the file with a set of allowed access methods that includes the specified
method.

FORM = fin

fm is a character expression whose value when any trailing blanks are removed is FORMATTED or
UNFORMATTED. If specifies that the file is being connected for formatted or unformatred mput/
output respectively. If this specifier is omitted. a value of UNFORMATTED is assumed if the f{ile
is being connected for direct access, and a value of FORMATTED is assumed if the file is being
connected for sequential access. For an existing file. the specified form must be included in the set



of allowed forms for the file. For a new file, the processor creates a file with a set of allowed forms
that includes the specified form.

RECL = 1i

tl is an integer expression whose value must be positive. It ‘specifies the length of each record in a
file being connected for direct access. If the file is being connected for formatted inputfoutput, the
length is the number of characters. If the file is being connected for unformatted inputfoutput, the
length is measured in processor determined units. For an existing file, the value of 1l must be in-
cluded in the set of allowed record lengths for the file. For a new file, the processor creates the
file with a set of allowed record lengths that includes the specified value, This specifier must be
given when the file is being connected for direct access; otherwise, it must be omitted.

BLANK = bink

blnk is a character expression whose value when any trailing blanks are removed is NULL or ZERO.
If NULL is specified, all blank characters in numeric formatted input fields on the specified unit are
ignored, except that a field of all blanks has a value of zero, If ZERQ is specified, all blanks other
than leading blanks are treated as zeros, If this specifier is omitted, a value of NULL is assumed.
This specifier is permitted only for a file being connected for formatted inputfontput.

BUFL = bl

bl is an integer expression whose value must be in the range 1 . . 24, It specifies the buffer length
for the unit in small pages. If the file is already connected to the unit and the buffer length is being
changed, an error condition exists. If this specifier is omitted a value of three small pages is assumed.

The unit specifier is required to appear; all other specifiers are optional, except that the record length ¥l must be
specified if a file is being connected for direct access. Note that some of the specifiers have an assumed value if
they are omitted.

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in any prégram unit of an executable program
and, once connected, may be referenced in any program unit of the executable program.

Open of a Connected Unit

If a unit is connected to a file thar exists, execution of an OPEN statement for that unit is permitred. If the
FILE= specifier is not included in the OPEN statement, the file to be connecred to the unit is the same as the
file to which the unit is connected.

If the file ro be connacted to the unit does not exist, bur is the same as the file to which the unit 15 precon-
nected, the properties specified by the OPEN statement become part of the connection.

8-23A



If the file to be connected to the unit is not the same as the file fo which the unit is connected, the effect is as
if a CLOSE statement without the STATUS= specifier had been executed for the unit immediately prior to the
execution of the OPEN statement,

if the file to be connected to the unit is the.same-as the file to which the unit is connected, only the BLANK=
 specifier may have a value different from the one currently in effect. Execution of the OPEN statement causes

the new value of the BLANK= specifier to be in effect. The position of the file is unaffected.

i a file is connected to a unit, execution of an OPEN statement on that file and a different unit is permitted.
The effect is that the file becomes connected to more than one unit.

CLOSE STATEMENT
A CLOSE statement is used to terminate the connection of a particular file to a unit.
The form of CLOSE statement is:

CLOSE (cllist)

where cllist is a list of specifiers:

[UNIT =] u
IOSTAT = ios
ERR = 5
STATUS = sta

cllist must contain exactly one external unit specifier and may contain at most one of each of the other specifiers.
The other specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier. Executing of a CLOSE statement containing this specifier causes
ios to become defined with a zero value if no error condition exists or with a processor dependent
positive integer value if an error condition exists.

ERR = s

is an error specifier,

STATUS = st

sta is a character expression whose value when any trailing blanks are removed is KEEP or DELETE.
sta determines the disposition of the file that is connected to the specified unit. KEEP must not be

8-24A



specified for a file whose status prior to execution of the CLOSE statement is SCRATCH. ¥ KEEP
is specified for a file that exists, the file continues to exist after the execution of the CLOSE state-
ment. If KEEP is specified for a file that does not exist, the file will not exist after the execution
of the CLOSE statement. If DELETE is specified, the file will not exist after the execution of the
CLOSE statement. If this specifier is omitted, the assumed value is KEEP, unless the file status
prior to execution of the CLOSE statement is SCRATCH, in which case the assumed value is
DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an executable program -
and need not occur in the same program unit as the execution of an OPEN statement referring to that unit.

Execution of a CLOSE statement specifying the unit that does not exist or has no file connected to it is per-
mitted and affects no file,

After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the
same executable program, either to the same f{ile or to a different file. After a file has been disconnected by
execution of a CLOSE statement, it may be connected again within the same executable program, either to the
same unit or to a different unit, provided that the file still exists.

Implicit Close at Termination of Execution

At termination of execution of an executable program for reasons other than an error condition, all units that
are connected are closed. Each unit is closed with status KEEP unless the file status prior to termination of
execution was SCRATCH, in which case the unit is closed with status DELETE., Note that the effect is as
though a CLOSE statement without the STATUS= specifier were executed on each connected unit.

INQUIRE STATEMENT

An INQUIRE statement may be used to inquire about the properties of a particular file or of the connection to
a particular unit. There are two forms of the INQUIRE statement; inquire by file and inguire by unit. All value
assignments are done according to the rules for assignment statements.

The INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values as-
signed by the INQUIRE statement are those that are current at the time the statement is executed.

INQUIRE by File

The form of an INQUIRE by file statement is:
INQUIRE (iflist)

where iflist is a list of specifiers that must contain exactly one file specifier and may contam other inquiry
specifiers. The iflist may contain at most one of each of the inquiry specifiers described below.



The form of a file specifier is:
FILE = fin
where fin is a character expression whose value when any trailing blanks- are removed specifies the name of the
"~ file being inquired about. The named file need not exist, or be connected to a unit. The value of fin must be of

a form acceptable to the processor as a file name.

INQUIRE by Unit

The form of an INQUIRE by unit statement is:

INQUIRE (julist)
where iulist is a list of specifiers that must contain exactly one extemal unit specifier and may contain other
inquiry specifiers. The iulist may contain at most one of each of the inquiry specifiers described below. The

unit specified need not exist or be connected to a file. If it is connected to a file, the inquiry is being made
about the connection and about the file connected.

Inquiry Specifiers-

The following irquiry specifiers may be used in either form of the INQUIRE statement:

10STAT = ios
ERR = s
EXIST = ex.

OPENED = od—
NUMBER = num
NAMED = amd

NAME = fn
ACCESS = ace
SEQUENTIAL = seq_
DIRECT = dir_
FORM = fm_

FORMATTED = fmt
UNFORMATTED. = unf
RECL = rcl

NEXTREC = nr

BLANK = bink

8-26A



The specifiers are described as follows:

I0STAT = ios

is an input/output status specifier. Execution of an INQUIRE stateiment containing this specifier
causes jos to become defined with a zero value if no error condition exists or with a processor
dependent positive integer value if an error condition exists.

ERR = s

is an error specifier.

EXIST = ex

ex is a logical variable or logical array element. Execution of an INQUIRE by file statement causes
eX to be assigned the value true if there exists a file with the specified name; otherwise, ¢x is as-
signed the value false. Execution of an INQUIRE by unit statement causes ex to be assigned the
value true if the specified unit exists; otherwise, ex is assigned the value false.

OPENED = od

od is a logical variable or logical array element. Execution of an INQUIRE by file statement causes
od to be assigned the value true if the file specified is connected to 2 unit, otherwise, od is assigned
the value false, Execution of an INQUIRE by unit statement causes od to be assigned the value
true if the specified unit is connected to a file; otherwise, od is assigned the value false.

NUMBER = num

num is an integer variable or integer array element that is assigned the value of the external unit
identifier of the unit that is currently connected to the file. If more than one unit is currently
connectec to the file, the choice of the unit used to assign a value to num is described below. If
there is an external unit identifier u currently connected to the file such that either

a.  INT(u) has a value in the range 0. . 999, or

b.  u has a value of the form nHTAPEK or nHUNITK, where k is an integer in the range
0. . 999 with no leading zero,

then the value assigned to num will be in the range 0. . 999. (In case (a) the value assigned to pum
is the value of u, and in case (b) it is the value of k. If external unit identifiers of both types (a)
and (b) are currently connected to the file, the processor may assign either a type (a) ora tvpe (b)
value.) Otherwise, the value assigned to num is of the form INT(nHf), where f is a valid system file
name. If there is no unit connected to the file, num becomes undefined.

NAMED = nmd

nmd is a logical variable or logical array element that is assigned the value true if the file has a
name; otherwise, it is assigned the value false.

827A



NAME = fa

fn is a character variable or character array element that is assigned the value of the name of the
file, if the file has 2 name; otherwise, it becomes undefined. Note that if this specifier appears-in an
INQUIRE by file statement, its value is.not necessarily the same as the name given in the FILE=
specifier. For example, the processor may return a file name qualified by a user identification.
However, the value returmed must be suitable for use as the value of a FILE= specifier in an OPEN
statement.

ACCESS = acc

acc is a character variable or character array element that is assigned the value SEQUENTIAL if the
file is connected for sequential access, DIRECT if the file is connected for direct access, and
UNKNOWN if the processor is unable to determine the method of access. If there is no connection,
acc becomes undefined.

SEQUENTIAL = seq

seq is a character variable or character array clement that is assigned the value YES if SEQUENTIAL
is—i;lcluded in the set of allowed access methods for the file, NO if SEQUENTIAL is not included

in the set of allowed access methods for the file, and UNKNOWN if the processor is unable to
determine whether or not SEQUENTIAL is included in the set of allowed access methods for the
file.

DIRECT = dir

dir is a character variable or character array element that is assigned the value YES if DIRECT is
included in the set of allowed access methods for the file, NO if DIRECT is not included in the set
of allowed access methods for the file, and UNKNOWN if the processor is unable to determine
whether or not DIRECT is included in the set of allowed access metliods for the file.

FORM=fE

fm is a character variable or character array element that is assigned the value FORMATTED if the
file is connected for formatted inputfoutput, and is assiened the value UNFORMATTED-if the file
is connected for unformatted input/output. If the processor is unable to determine the form. fm
is assigned the value UNKNOWN. If there is no connection fm becomes undefined.

FORMATTED = fmt

fmt is a character variable or character array element that is assigned the value YES if FORMATTED
is included in the set of allowed forms for the file, NO if FORMATTED is not included in the set
of allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

8284



UNFORMATTED = unf

unf is a character variable or character array element that is-assigned the value YES if UNFORMAT-
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in
the set of allowed forms for the file, and UNKNOWN if the processor is unable to determine whether

or not UNFORMATTED is included in the set of allowed forms for the file.

RECL = rcl

rcl is an integer variable or integer array element that is assigned the value of the record length of
the file connected for direct access. If the file is connected for formatted.inputfoutput, the lensth
is the number of characters. If the file is connected for unformatted inputfoutput, the length is
measured in processor dependent units. If there is no connection or if the connection is not for
direct access, rcl becomes undefined.

NEXTREC = nr

nr is an integer variable or integer array element that is assigned the value u+l, where n is the
record number of the last record read or written on the file connected for direct access. If the
file is connected but no records have been read or written since connection, Ir is assigned the
value 1. If the file is not connected for direct access or if the position of the file is indeterminate
because of a previous error condition, nr becomes undefined.

BLANK = bink

blnk is a character variable or character array element that is assigned the value NULL if nufl blank
control is in effect for the file connected for formatted input/output, and is assigned the value ZERO
if zero blank control is in effect for the file connected for formatted input/output. If there is no
connection, or if the connection is not for formatted input/output, blnk becomes undefined.

A variable or array element that becomes defined or undefined as a result of its use as a specifier in an
INQUIRE statement. or any associated entity, must not be referenced by any other specifier in the same
INQUIRE statement.

Execution of an INQUIRE by file statement causes the specifier variables or array elements amd, fn, seq, dir.
fint, and unf to be assigned values only if the value of fin is acceptable to the processor as a file name and if
there exists a file by that name; otherwise, they become undefined. Note that num becomes defined if and
only if od becomes defined with the value true. Note also that the specifier variables or array elements acc.
fm, r¢l, nr, and blak may become defined only if od becomes defined with the value true,

Execution of an INQUIRE by unit statement causes the specifier variables or array elements num. nind, fn.
ace. seq, dir, fin, fmt. unf, rel, nr,.and bluk to be assigned values ¢nly if the specified unit exists and if a file

is connected to the unit: otherwise, they become undefined.

If an error condition occurs during the execution of an INQUIRE statement, all of the inquire specifier vari-
ables and array elements except ios become undefined.

8-29A



Note that the specifier variables or array elements ex and od always become defined unless an error condition
accurs.

FILE POSITIONING STATEMENTS
The forms of the file positioning statements are:

BACKSPACE u_
BACKSPACE (alist)

ENDFILE u_
ENDFILE (alist)

REWIND u
REWIND (alist)
where: 1 is an external unit identifier.

alist is a list of specifiers:

[UNIT=] u
IOSTAT = ios
ERR = s

alist must contain exactly one external unit specifier and may contain at most one of each.of the other specifiers.

The external unit.specified by a BACKSPACE, ENDFILE, or REWIND statement must, be cbnnected for sequen-
tia} access. . )

Execution of a file positioning statement containing an inputfoutput status specifier causes ios to become defined
with a zero value if no error condition exists or with a positive integer value if an error condition exists.

BACKSPACE Statement

Execution of 3 BACKSPACE statement causes the file connected to the specified unit to be positioned before the
preceding-record. If there is'no preceding record, the position of the file is not changed. Note that if the
preceding record 15 an endfile record, the file becomes positioned before the endfile record.

Backspacing a file that is connected but does not exist i1s prohibited.

Backspacing over records written usmg list-directed formatting is prohibited.

8-30A



ENDFILE Statement

Execution of an ENDFILE statement writes an endfile record as the next record of the file. The file is then
positioned after the endfile record. If the file may also be connected for direct access, only those records
before the endfile record are considered to have been written. Thus, only those records may be read during
" subsequent direct access connections io the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must.be used to reposition
the file prior to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates the file.

REWIND Statement

Execution of a REWIND statement causes the specified file to be positioned at its initial point. Note that if the
file is already positioned at its initial point, execution of this statement has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is permitted but has no effect.

RESTRICTIONS ON FUNCTION REFERENCES AND LIST ITEMS

A function must not be referenced within an expression appearing anywhere in an input/output statement if
such a reference causes an: inputfoutput statement to be executed. Note that a restriction in the evaluation of
expressions prohibits certain side effects.

RESTRICTION ON INPUT/OUTPUT STATEMENTS

If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain
imputfoutput statements, those statements must not refer to the unit.

NAMELIST INPUT/OUTPUT

NAMELIST provides formatted input/output with processor determined editing.

A symbolic name is a NAMELIST group name if and only if it appears in a NAMELIST statement. A NAME-
LIST group name is local to a program unit,

A NAMELIST group name provides the means of.referring to a NAMELIST inputfoutput list. Usage of 2 group
name is the means of specifying NAMELIST formatting. A NAMELIST statement is used to specify a NAME-
LIST group name and the input/output list to be subsequently associated with that group name.

NAMELIST formarting is established for an input/output data transfer by using a NAMELIST group name as

the format identifier { in a READ, WRITE, PRINT, or PUNCH statement: the statement must not include an
inputfoutput lst.

8-31A



NAMELIST STATEMENT
The form of 2 NAMELIST statement is:

NAMELIST [ grpname [ niplisi [/ grpname / niplist ]

where: grpname is a NAMELIST group name., Only one appearance of a group name in all of the NAME-
LIST statements of a program unit is permitted.

niplist is a NAMELIST input/output list of one or more items, each of which must be one of the
following:

1. A variable name.

2.  An array name.
Each name in the list niplist may be of any data type. It may not be an assumed size array.
NAMELIST DATA TRANSFER

A NAMELIST block is one or more formatted records that consist of a sequence of characters in NAMELIST
format. Execution of an inputfoutput data transfer statement with NAMELIST formatting causes one NAME-
LIST block to be transferred.

Execution of a WRITE, PRINT, or PUNCH statement with NAMELIST formatting causes one NAMELIST
bleck to be written to a file. Data are transferred from internal storage in the order specified by the input/
ouniput list associated with the NAMELIST group name that appears in the output data transfer statement.

Execution of 2 READ statement with NAMELIST formatting causes one NAMELIST biock to be read from a
file. The NAMELIST group name in the block read must be the same as the group name in the READ state-
ment being executed. Each variable or array name in the bleck must appear in the input/output list associated
with the group name. Iiem names in the block may occur in any order and number. Note that an item name
may appear more than once in a block, possibly resulting in more than one definition of an entity. The block
is transferred with NAMELIST editing to internal storage in the order of item name appearance. Values are
transmitted to the entities specified by the item names, The definition status of entitites whose names do not
appear in the block is unchanged upon completion of the transfer. Note that an entity named in the associated
inputfoutput list but not named in the block retains its prior definition status: it is unaffected by the transfer,

On input, an ervor condition exists if the file is not positioned at the beginning of a NAMELIST block.

The effect of executing a data transfer inputfoutput statement with NAMELIST formatting is otherwise
described under “executing a data transfer input/outpur statement.” ’

8-32A



ENCODE AND DECODE STATEMENTS

The ENCODE statement is the internal file data transfer output statement that permits access to both standard
and extended internal files. The DECODE statement is the internal file data transfer input statement that pe:-
mits access to both standard and extended internal files. The forms of the statements are:

ENCODE (, £, u) [iolist]
DECODE (k, £, u) [iolist]

where: k is an unsigned integer constant or integer variable having a positive value. The value specifies
the number of characters in each record of the internal file identified by u.

1is a format identifier that does not specify list-directed formatting.

u is an internal file identifier.

iolist is an input/output lst specifying the data to be transferred.
Execution of an ENCODE statement causes values to be transferred to an internal file from the entities speci-
fied by the output list iolist (if any) and the format identifier I. The execution sequence, restrictions, and
error conditions are as described for a formatted WRITE statement that transfers data to an internal file.
Execution of a DECODE statement causes values to be transferred from an internal file to the entities specified
by the input list iolist (if any). Execution proceeds as described for a formatted READ statement that transfers

data from an internal file.

Action is unspecified if the total length of all the records read or written exceeds the number of character
storage umnits in the file.

Action is unspecified if any item of iolist is in the file or is associated with the file.
On output, 2 format specification that is in the file or is associated with the file must not be specified.

Note that an internal file may be defined or redefined by means other than an ENCODE statement. Such means
must ensure that the record length is established as provided above.

CONCURRENT INPUT/OUTPUT STATEMENTS

The concurrent inputfoutput statements using Q7BUFIN and Q7BUFOUT are described in the chapter on
processor supplied subroutines.

8-33A



Replace--all- of Section 9 with the following pages.

91



CDC CYBER 200 FORTRAN 77 FORMAT SPECIFICATION

A format used in conjunction with formatted input/output statements provides information that directs the

editing between the internal representation and the character strings of a record or a sequence of records in the
file.

A format specification provides explicit editing information. An asterisk (*) as a format identifier in an input/
output statement indicates list-directed formatting.

FORMAT SPECIFICATION METHODS

Format specifications may be given:

. In FORMAT statements.

. As values of character arrays, character variables, or other character expressions.
FORMAT STATEMENT
The form of a FORMAT statement is:

FORMAT is

where is is a format specification, as described under “form of a format specification.”™ The statement must be
labeled.

CHARACTER FORMAT SPECIFICATION

If the format identifier in a formatted input/ocutput statement is a character array name. character variable
name, or other character expression, the leftmost character positions of the specified entity must be in a defined
state with character data that constitute a format specification when the statement is execuied.

Z

A character format specification must be of the form described under ““form of a format specification.” Note
that the form begins with a left parenthesis and ends with a right parenthesis. Character data may follow the
right parenthesis that ends the format specification. with no affect on the format specification. Blank charac-

ters may precede the format specification.

If the format identifier is a character array name, the length of the format specification may exceed the length
of the first element of the array: a character array format specification is considered to be a concatenation of

914



all the array elements of the array in the order given by array element ordering. However, if a character array
element name is specified as a format identifier, the length of the format specification must not exceed the
length of the array element.

NON CHARACTER ARRAY-FORMAT SPECIFICATION

I the format identifier in a formatted input/output statement is a non character array name, the first m ele-
ments of the array must be in a defined state'such that the first m elements (for some positive integer m)
constitute a valid format specification when the statement is executed.

A non character array format specification must be of the form described under “form of a format specifica-
tion.” Note that the form begins with a left parenthesis and ends with a right parenthesis. There is no require-
ment on the information contained in the array-following the right parenthesis that ends the format specifica-
tion. Blank characters may precede the format specification.

FORM OF A FORMAT SPECIFICATION

The form of a format specification is:

( [flist] )

where flist is a list. The forms of the flist items are:

[r] ed
ned
[l £

where: ed is a repeatable edit descriptor.
ned is a non-repeatable edit descriptor,
fs is a format specification with a non empty list flist.

_ris a non zero, unsigned, integer constant called a repeat specification.

The comma used to separate list items in the list flist may be omitted as follows:

) Between a P edit descriptor and an immediately following F, E, D, or G edit descriptor.
. Before or after a slash edit deseriptor.

s  Before or after z{s colon edit descripror.

9-2A



EDIT DESCRIPTORS.
An edit descriptor is either a repeatable edit descriptor or a non-repeatable edit descriptor.

The forms of a repeatable edit descriptor are:

a le |~
[es]
1

[rnn. R |t
|m

N
[# 1
I8

where: ILF,E B, G L, AR, Z, and B indicate the manner of editing
w and e are non zero, unsigned, infeger constants

d and m are unsigned integer constants.

The forms a non-repeatable edit descripfor are:

i‘hlhz .. }_!_Il”
nHhlh2 ... hn

9-3A



where: apostrophe, H, T, TL, TR, X, slash, colon, S, SP, S5, P, BN, and BZ indicate the manner of editing
h is one of the characters capable of representation by the processor
i and’ ¢ are non zero, unsigned, integer constants

k is an optionally signed.iateger constant

INTERACTION BETWEEN INPUT/OUTPUT LIST AND FORMAT

The beginning of formatted data transfer vsing a format specification initiates format control. Each action of
format control depends on information jointly provided by:

o  The next edit descriptor contained in the format specification, and
e  The next item in the input/output list, if one exists.

If an input/output list specifies at least one-list item, at least one repeatable edit descriptor must exist in the
format specification. Note that an empty format specification of the form { ) may be used only if no list
items are specified; in this case, one input record is skipped or one output record containing no characters is
written. Except for an edit descriptor preceded by a repeat specification, r ed, and a format specification pre-
ceded by a repeat specification r(flist), a format specification is interpreted from left to right. A format speci-
fication or edit descriptor preceded by a repeat specification r is processed as a list of r format specifications or
edit descriptors identical to the format specification or edit descriptor without the repeat specification. Note
that an omitted repeat specification is treated the same as a repeat specification whose value is one.

To each repeatable edit descriptor interpreted in a format specification, there corresponds one item specified by
the input/output list, except that a list item of type complex requires the interpretation of two F, E, D, or G
edit descriptors. To each P, X, T, TL, TR, S, SP, S§, H, BN, BZ, slash, colon, or apostrophe edit descriptors,
there is no corresponding item specified by the inputfoutput list, and format control communicates information
directly with the record.

Whenever format control encounters a repeatable edit descriptor in a format specification, it determines
whether there is a corresponding item specified by the input/output list. If there is such an item, it trans-
mits appropriately edited information between the item and the records, and then format control proceeds. If
there is no corresponding item, format control terminates.

If format control encounters a colon edit descriptor in a format specification and another list item is not speci-
fied, format control terminates.

If format control encounters the rightmost parenthesis of a compiete format specification and another list item
is not specified. format control terminates. However. if another list itém 1s specified. the file is positioned at
the beginning of the next record and format contirol then reverts to the begmnng of the format specification
terminated by the last preceding right parenthesis. If there is no such preceding right parenthesis, format con-
trol reverts to the first left parenthesis of the format specification. If such reversion occurs, the reused portion

94A



of the format speciﬁcation‘ must contain at least one repeatable edit descriptor. If format control reverts to a
parenthesis that is preceded by a repeat specification, the repeat specification is reused. Reversion of format

conirel, of itself, has no effect on the seale factor, the §, SP; or S8 edit descriptor sign control, or the BN or
BZ edit descriptor blank control.

POSITIONING BY FORMAT CONTROL

After each I, F,.E, D,G, L, A, H, R, Z, B, or apostrophe edit descriptor is processed, the file is positioned
after the last character read or written in the current record.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as described under “posi-

»y

tional editing” and “slash editing.

If format control reverts as described in the previous section, the file is positioned in a manner identical to the
way il is positioned when a slash edit descriptor is processed.

During a read operation, any unprocessed characters of the record are skipped whenever the next record is
read.

EDITING

Edit descriptors.are used to specify the form of a record and to direct the editing between the characters in a
record and internal representations of data.

A field is a part of a record that is read-on input or written on output when format control processes one I, F,
E, D, G, L, A, H, R,Z, B, or apostrophe edit descriptor. The field widih is the size in characters of the field.

The interhal representation of a datum corresponds to the internal representation of a constant of the corre-
sponding type.

APOSTROPHE EDITING

The apostrophe edit descriptor has the form of a character constant. It causes characters to be written from
the enclosed characters (including blanks) of the edit descriptor itself. An apostrophe edit descriptor must not
be used on input.

The width of the field is the number of characters contzined in, but not including, the delimiting apostrophes.
Within the field, two consecutive apostrophes with no intervening blanks are counted as a single apostrophe.

H EDITING
The nH edit descriptor causes character information to be written from the n_characters {including blanks) fol-

lowing the H of the nH edit descriptor in the formar specification itself. An H edit deseriptor must not be used
on input.

9-3A



Note that if an H edit descriptor occurs within a character constant that includes an apostrophe, the apostrophe
must be represented by two consecutive apostrophes, which are counted as one character in specifying n.

POSITIONAL EDITING

The T, TL, TR, and X edit descriptors specify the position at whick the next character will be transmitted to

or from the record.

The position specified by a T edit descriptor may be in either direction from the current position. On output,
this allows portions of ihe record to be processed more than once, possibly with different editing.

The position specified by an X edit descriptor is forward from the current position. On inpuf, a pesition beyond
the last character of the record may be specified if no characters are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be transmitted and therefore
does not by itself affect the length of the record. If characters are transmitted to positions at or after the
position specified by the T, TL, TR, or X edit descriptor, portions skipped and not previously filled are filled
with blanks. The result is as if the entire record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit descriptor never
directly causes a character already placed in the record to be replaced. Such edit descriptors may result in
positioning so that subsequent editing causes replacement.

T. TL, AND TR EDITING

The Tg edit descriptor indicates that the transmission of the next character-to or from-a record is to occur at
the cth character position.

The TLg edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position ¢ characters backward from the current position. However, if the current position is
less than or equal to position ¢, the TLc edit descriptor indicates that the transmission of the next character to
or from the record is to occur at position one of the current record.

The TRe edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position g characters forward from the current position.

X EDITING

The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur af
the position n characters forward from the current position.

9-6A



SLASH EDITING
The slash edit descriptor indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the remaining portion of the current record is skipped
and the file is positioned at the beginning of the next record. This record becomes the current record. On

output to a file connected for sequential access, a new record is created and becomes the last and current
record of the file.

Note that a record that contains no characters may be wriiten on output. If the file is an internal file or a file
connected for direct access, the record is filled with blank characters. Note also that an entire record may be
skipped on input.

For a file connected for direct access, the record number is increased by one and the file is positioned at the
beginning of -the record that has that record number. This record becomes the current record.

COLON EDITING

" The colon edit descriptor terminates format control if there are no more items in the input/output list. The
colon edit descriptor has no effect if there are more items in the input/output list.

S, 5P, AND 88 EDITING

The 8, SP, and S8 edit descriptors may be used to control optional plus characters in numeric output fields. At
the beginning of execution of each formatted output statement, the processar has the option of producing a
plus in numeric output fields. If an SP edit descriptor is encountered in a format specification, the processor
must produce a plus in any subsequent position that normally contains an optional plus. If an SS edit
descriptor is encountered, the processor must not produce a plus in any subsequent position that normally
contains an optional plus. If an S edit descriptor is encountered, the option of producing the plus is

restored to the processor.

The §, 8P, and S8 edit descriptors affect only I, F, E, D, and G editing during the execution of an output
statement. The 8, SP, and S8 edit descriptors have no effect during the execution of an input statement.

P EPITING
A scale factor is specified by a P edif descriptor. which is of the form:
kP

where k is an optionally signed integer constant called the scale factor.

9-7A



Scale Factor

The value of the scale factor is zero at the beginning of execution of each inputfoutput statement. It applies to
all subsequemly interpreted F, E, D, and G edit descriptors until another scale factor is encountered, and then
that scale factor is established. Note that reversion of forunat control does not aifect the established scale fac-

tor.
The scale factor k affects the appropriate editing in the following manner:

1.  Oninput, with F, E, D, and G editing {provided that no exponent exists in the field) and F
output editing, the scale factor affect is that the externally represented number equals the
internally represented number multiplied by 10¥"k.

2. On input, with F, E, D, and G editing, the scale factor has no effect if there is an exponent
in the field.

3.  On output, with E and D editing, the basic real constant part of the quantity to be produced
is multiplied by 10**k and the exponent is reduced by k.

4.  On output, with G editing, the effect of the scale factor is.suspended unless the magnitude of
the datum to be edited is outside the range that permits the use of F editing. If the use of E
editing is required, the scale factor has the same effect as with E output editing.

BN AND BZ EDITING

The BN and BZ edit descriptors may be used to specify the interpretation of blanks, other than leading- blanks,
in the numeric input fields. At the beginning of execution of each formatted input statement, such blank
characters are inferpreted as zeros or are ignored, depending on the value of the BLANK= specifier currently

in effect for the unit. If a BN edif descriptor is encountered in a format specification, all such blank charac-
ters in suceeeding numeric input fields are ignored. The effect of ignoring blanks is to treat the input field as
if blanks had been removed, the remaining portion of the field right-justified, and the blanks replaced as leading
blanks. However, a field of all blanks has the value zero. If a BZ edit descriptor is encountered in a format
specification, all such blank characters in succeeding numeric fields are treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G editing during execution of an input statement.
They have no effect during execution of an output statement.

NUMERIC EDITING

The I, F. E. D. and G edit descriptors are used to specify input/output of integer. half precision. real. double
precision, and complex data. The following general rules apply:

1. On input, leading blanks are not significant. The interpretation of blanks, other than leading
blanks, is determined by a combination of any BLANK= specifier and any BN or BZ hlank

9-8A



contfrol that is currently in effect for the unit. Plus signs may be omitted. A field of all
blanks is considered to be zero.

I~

O input, with F, E, D, and G editing, a decimal point appearing in the input ficld over-
rides the portion of any edit descriptor that specifies the decimal point loeation. The input
field may have more digits than the processor uses to approximate the value of a datum.

3.  On output, the representation of a positive or zero internal value in the-field may be prefixed
with a plus, as controlled by the S, SP, and SS edit descriptors or the processor. The repre-
sentation of a negative internal value in the field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in a formatted output record.

4.  On output, the representation is right-justified in the field. If the number of characters pro-
duced by the editing is smaller than the field width, leading blanks will be inserted in the
field:

5. On ouiput, if the number of characters produced exceeds the field width or if an exponent
exceeds its specified length using-the Ew. dEe or Gw. dEe edit descriptor, the processor will fill
the entire field of width w with asterisks. However, the processor must not produce asterisks if
the field width is not exceeded when optional characters are omitted. Note that when an SP
edit.descriptor is in effect, a plus is not optional.

Integer Editing
The Tw and Tw. m edit descriptors indicate that the field to be edited occupies w positions. The specified

inputfoutput list item must be of type integer. On input, the specified list item will become defined with an
integer datum. On ouiput, the specified list item must be defined with an integer datum.

On input, an Iw. m edit descriptor is treated identically to a Tw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer constant, except for
the interpretation of blanks.

The output field for the Iw edit descriptor consist of zero or more leading blanks followed by a minus if the
vaiue of the internal datum is negative, or an optional plus otherwise. followed by the magnitude of the internal
value in the form of an unsigned integer constant without leading zeros. Note that an integer constant always
consists of at least one digit.

The output field for the Iw. m edit déscriptor is the same as for the Iw edit descriptor. except that the
unsigned integer constant consists of at lease m digits and. if necessary. has leading zeres. The value of m must
not exceed the value of w, If m is zero and the value of the internal datum is zero. the output field consists of
only blank characters, regardless of the sign control in effect.

9-3A



Half Precision, Real, and Double Precision Editing

The F, E, D, and G edit descriptors specify the editing of half precision, real, double precision. and complex
data. An inputfoutput list item corresponding to an F, E, D, or G edit descriptor must be half precision, real,
double precision, or-complex. An input list item will become defined. with a-datum whose type is the same as
that of the list item. An output list item must be defined with a datum whose type is the same as that of the
last item.

F EDITING

The Fw and Fw. d edit descriptors indicate that the field to be edited contains w positions. If . d is specified,
it indicates that the fractional part of the field consists of d digits; if omitted, there will be no fractional digits.

The input field consists of an optional sign, followed by a string of digits optionally containing a decimal
point. If the decimal point is omitted, the rightmost d digits of the string, with leading zeros assumed if neces-
sary, are interpreted as the fractional part of the value represented . The string of digits may contain more digits

than a processor uses to approximate the value of the constant. The basic form may be followed by an expon-
ent of one of the following forms:

1.  Signed integer constant.

2.  E followed by zero or more blanks, followed by an optionally signed integer constant.

3. D followed by zero or more blanks, followed by an optionally signed integer constant.
An exponent containing a D is processed identically to an exponent containing an E.
The output field consists of blanks, if necessary, followed by a minus if the internal value is negative, or an
optional plus otherwise, followed by a string of digits that contains a decimal point and represents the magni-
tude of the internal value, as modified by the established scale factor and rounded to d fractional digits. Lead-
ing zeros are not permitted except for an optional zero immediately to the left of the decimal point if the
magnitude of the value in the output field is less than one. The optional zero must appear if there would
otherwise be no digits in the outpur field.
E AND D EDITING
The Ew. d, Dw. d, and Ew. dEe edit descriptors indicate that the external field occupies w positions, the frac-
tional part of which consists of d digits, unless.a scale factor greater than one is in effect, and the exponent
part consists of e digits. The ¢ has no effect on input.

The form of the input field is the same as for = editing.

The form of the output field for a scale factor of zero is:

9-10A



{x] [0] - X1X2.. Xdexp
where: + signifies a plus or a minus,

X1X2. . .Xd are the d most significant digits of the value of the datum after ronnding.

exp is a decimal exponent, of one of the following forms:

Edit Absolute Value Form of

Deseriptor of Exponent _Exponent

Ewd lexp | =99 Efzlz2 or +0z1z2
99 < |exp | =999 +z12223

Ew.dEe exp | = (10%7%) -1 E+zlz2. . .ze

Dwd |exp | =99 D+zlz2 or E+z]z2 or +0z1z2
99 < jexp| =999 +212223

where 2 is-a digit. The sign.in the exponent is required. A plus sign must be used if the exponent value is
zero. The forms Ew. d and Dw. d must not be used if |exp | - 999.

The scale factor k& controls the decimal normalization. If d < k =z 0, the output field contains exactly ! s l
leading zeros and d - k significant digits after the decimal point. If 0 < ks d + 2, the output field con-
tains exactly k significant digits to the left of the decimal point and d - k + 1 significant digits to the right of
the decimal point. Other values of k are not permitted. ’

G EDITING

The Gw. d and Gw. dEe edit descriptors indicate that the external field occupies w positions, the fractional
part of which consists of d digits, unless a scale factor greater than one is in effect, and the exponent part
consists of g digits.

G input edifing is the same as for F editing.

The method of representation in the output field depends on the magnitude of the datum being edited. Let N
be the magnitude of the internal datum. If N < 0.1 or N z 10**d, Gw. d output editing is the same as kPEw. d
editing and Gw, dFe output editing is the same as kPEw. dEe output editing, where k is the scale factor cur-
rently in effect. If N is greater than or-equal te 0.1 and is less than 107d, the scale factor has no effect. and
the value of N determines the editing as follows:

9-11A



Magmitude of Datum Equivalent Conversion
0.1 <« N < 1 Fwn) . d. n(*b")
1 = N=<10 Flwn) - (&1, n("D”)
10%%(d-2) <= N < 10%%(d:1) Fw-n) . 1, n(*b)
10%%(d-1) < N < 10%*d Flwa) . 0, n("0")

where: b is a blank.

n is 4 for Gw. d and e+2 for Gw. dEe,

Note that the scale factor has no effect unless the magnitude of the datum to be edited is outside the range that
permits the effective use of F editing.

COMR LEX EDITING

A complex daium consists of a pair of separafe real data; therefore, the editing is specified.by two successively
interpreted F, E, D, ot G edit descriptors. The first of the edit descriptors specifies the real part; the second
specifies the imaginary part. The two edit descriptors may be different. Note that non repeatable edit
descriptors-may appear between the two successive F, E, D, or G edit descriptors.

L EDITING

The Lw edit descriptor indicates that the field occupies w positions. The specified input/output list item must
be of type logical. On input, the list item will become defined with a logical datum. On output, the specified
list item must be defined with a logical datum.

The input field consists of optional blanks, optionally followed by a decimal point, followed by a T for true or
F for false. The T or F may be followed by additioral characters in the field. Note that the logical constants

. TRUE . and . FALSE . are acceptable input forms.

The output field consists of w-1 blanks followed by a T or F, as the value of the internal datum is true or
false, respectively.

A EDITING
The A[w] edit descriptor indicates that the field occupies w positiens. The specified input/output list ttem is
treated as if it were of type character, regardless of its declared tvpe, except that it must not be used with an

input/output list item of type bit.

On input, the input list item will become defined with character data.

9-12A


http:specified.by

If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w_
is not specified with the A edit descriptor, the number of characters in the field is the length of the input/
output list item in characters.

Let len be the length in characters of the input/output list item. If the specified field width w for A input is
greater than or equal to len, the rightmost len characters will be taken from the input field. If the specified
field width is less than len, the w characters will appear left justified with len-w trailing blanks in the internal
representation.

If the specified field width w for A output is greater than len, the output field will consist of w-len blanks
followed by the len characters from the internal representation. If the specified field width w is less tham or
equal to len the output field will consist of the leftmost w characters from the internal representation.

PROCESSOR DEPENDENT EDITING

The R, Z, and B-edif descriptors are used to specify processor dependent editing. The editing consists of direct
bit, hexadecimal, or character code conversion between internal storage and character strings of a record.
Conversion proceeds on a bit-by-bit basis; no numeric or logical significance is attached to-the data. Any data
except type bit may be edited with the R-and Z edit descriptors. Data of type bit may only be edited with a
B edit deseriptor.

Note that if an inputfoutput list item is of type complex two repeatable edit descriptors are required for the
item. These edit descriptors do not have to be the same.

R Editing

The Rw edit descriptor indicates that the field occupies w positions. The specified input/output list item is
treated as if it were of type character, regardless of its declared type.

Let Len be the length in characters of the input/output list item. If the specified field width w for R input

is greater than or equal to len, the rightmost len characters will be taken from the input field. If the specified
field width is less than-len the w characters will appear right-justified with len-w leading characters filled with
binary zeros in the internal representation.

If the specified field width w for R output is greater than len, the output field will consist of w-len leading
zero characters followed by the len characters from the internal representation. I the specified field width is
less than or equal to len, the output field will consist of the rightmost w characters from the internal repre-
sentation.

Z Editing
The Zw and Zw. m edit descriptors indicate that the field occupies w positions. The specified input/outpurt

list item is treated as 2 sequence of hexadecimal digits, each occupying 4 bits in the internal representation of
the inputfoutput list item.

9-13A



On input, the Zw and Zw. m edit descriptors are treated identicaily,
Let a be the number of hexadecimal digits that may be stored in the input/output list item at one time.

If the specified field width w for Z input is greater than or equal to a, then the rightmost a hexadecimal digits
are transmitted to the input list item after conversion from their character representation. I the specified field
width is less than a, the w_hexadecimal digits will appear right-justified and preceded by a-w hexadecimal zeros
in the internal representation after conversion from their character representation. Blanks which appear any-
where in the field are treated as zeros.

If the specified field width w for Zw output is greater than a, the output field will consist of w-a blanks
followed by the a hexadecimal digits from the internal representation. If the specified width is less than or
equal to a, the output field will consist of the rightmost w hexadecimal digits from the internal representation.

The output field for the Zw. m edit descriptor is the same as for the Zw edit descriptor, except that at least

m hexadecimal digits will appear, with leading hexadecimal zeros if necessary. The value of m must not exceed
the value of w. If the value of m is zero and the internal representation of the output list item consists of ail
hexadecimal zeros, the output field will consist of only blank characters.

B Editing
The Bw edit descriptor indicates that the field occupies w positions. The specified input/output lst item must
be of type bit. On input, the list item will become defined with a bit datum. On output, the specified list

item must be defined with a bit datum.

Both the input and output fields consist of w-1 blanks followed by a D or a 1.

LIST-DIRECTED FORMATTING
The characters in one or more list-directed records constitute a sequence of values and value separators. The
end of a record has the same effect as a blank character, unless it is within a character constant. Any sequence

of two or more consecutive blanks is treated as a single blank, unless it is within 2 character constant,

Each value is either a consiant, a null value, or one of the forms:

where r is an unsigned, non zero, integer constant. The r*¢ form is equivalent to r successive appearances of
the constant ¢. and the r* form is equivalent to r successive null values. Neither of these forms may countamn
embedded blanks, except where permitted in the constant ¢.

9-14A



A value separator is one of the following:

1. A comma optionally preceded by one or more contiguous blanks and optionally followed by
one or more contignous blanks.

2. A sIash’option'ally preceded by one or more contignous blanks and optionally followed by
one or more contiguous blanks.

3. One or more contiguous blanks between two constants or following the last constant.

LIST-DIRECTED INPUT

Input forms acceptable to format specifications for a given type are acceptable for list-directed formatting,
except as noted below. The form of the input value must be acceptable for the type of the input list item.
Blanks are never used as zeros, and embedded blanks are not permitted in constants, except within character
constants and complex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant.

When the corresponding input list item is of type half precision, real, or double precision, the input form is
that of a numeric input field. A numeric input ficld is a. field suitable for F editing that is assumed to have no
fractional digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the input form consists of a left parenthesis followed by
an ordered pair of numeric input fields separated by a comma, and followed by a right parenthesis. The

first numeric input field is the real part of the complex constant and the second is the imaginary part. Each
of the numeric input fields may be preceded or followed by blanks. The end of a record may occur between
the real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type character, the input form consists of a non-empty string of charac-
ters enclosed in apostrophes. Each apostrophe within a character constant must be represented by two con-
secutive apostrophes without an intervening blank or end of record. Character constants may be continued
from the end of one record to the beginning of the next record. The end of the record does not cause a blank
or any other character to become part of the constant. The constant may be continued on as many records

as needed. The characters blank, comma, and slash may appear in character constanis.

Let len be the length of the list item, and let w be the length of the character constant. If len is less than or
equal to w, the leftmost len characters of the constant are transmitted to the list item. If ien is greater than
w, the constant is transmitted to the leftmost w characters of the list item and the remaining len-w characters
of the list item are filled wath blanks. Note that the effect is as though the constant were assigned to the list
item in an assignment statement.

A null value is specified by having no characters between successive value separators, no characters preceding
the first value separator in the first record read by each execution of a list-directed input statement, or the
I form. A null value has no effect on the definition status of the corresponding mput list item. If the input



list item is defined, it retains its previous value; if it is undefined, it remains undefined. A null value may
not be used as either the real or imaginary part of a complex constant, but a single null value may represent
an entire complex constant. Note that the end of a record following any other separator, with or without
separating blanks, does not specify a nuli value.

A slash encountered as a value separator during execution of a list-directed input statement causes termination
of execution of that input statement after assignment of the previous value, If there are additional items in the
input list, the effect is as if null values had been supplied for them.

Note that all blanks in a list-directed input record are considered to be part of some value separator except for
the following:

1.  Blanks embedded in a character constant.
2.  Embedded blanks surrounding the real or imaginary part of a complex constant.

3.  Leading blanks in the first record read by each execution of a list-directed input statement, unless
immediately followed by a slash or comma.

LIST-DIRECTED OUTPUT

The form of the values produced is the same as that required for input, except as noted otherwise. With the
exception of character constants, the values are separated by one of the following

1.  One or more blanks.

2.  A-comma optionally preceded by one or more blanks and optionally followed by one or more
blanks,

The processor may begin new records as necessary, but, except for complex constants and character constants,
the end of a record must not occur within a constant and blanks must not appear within a constant.

Logical output constants are T for the vaiue true and F for the value false.
Integer output constants are produced with the effect of an I w edit descriptor, for some reasonable value of w.

Real and double precision constants are produced with the effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x of the value and a range 10¥*dl < x < 107*d2, where d1 and d2

are processor dependent integer values. If the magnitude of A is within this range, the constant is produced
using OPFw. d: otherwise, IPEw dEe is used. Reasonable processor dependent values of w, d. and ¢ are used
for 2ach of the cases invoived.

Complex constants‘.ére enclosed in parentheses, with a comma separating the real and imaginary parts. The end
of a record may occur between the comma and the imaginary part only if the entire constants is as long as. or

9-16A



longer than, an entire record. The only embedded blanks pernﬁtted! within a complex constant are between the
comma and the end of a record and one blank at the beginning of the next record.

Character constants produced are not delimited by apostrophes, are not preceded or followed by a value
separator, have each internal apostrophe represented extemnally by one apostrophe, and have a blank character
inserted by the processor for carriage control at the beginning of any record that begins with the continuation of

a character constant from the preceding record.

If two or more successive values-in an output-record produced have identical values, the processor has the op-
tion of producing a repeated constant of the for r*c instead of the sequence of identical values.

Slashes as value separators, and null values are not produced by list-directed formattins.
Each output record begins with a blank character to provide carriage control when the record is printed.

NAMELIST FORMATTING

The form of a NAMELIST block is:

&grpname namvalf ,namval] ... &END

where: grpname is the group name of the block.

namval js one of the forms:

vname = ¢

aname {(s)] = [r*]c[[r]c] ...

where: yname is a variable name,
c is a constant,
aname is an array name,
8 is an array subscript in which each subscript expression is an integer constant.
I is an unsigned, positive integer constant,

The optional form r*c is equiralent to r successive appearances of the constant ¢,

A NAMELIST block consists of one or more formatted records, the last character. other than the character
blank, of each record must be one of the following:

9-17A



I. A comma that occurs after the constant ¢. Note that a complex constant must begin and end

) in the same record.
2.  The last character of the block terminator &END.

I eich record of 3 NAMELIST block, column one is reserved for carriage control. On input, the character in
column one is ignored. On output, a carriage control character is placed in column one of each record.

An embedded blank must not occur within the strings:

1. &grpname

2. vname
3. aname[(s)]
4.  &END

A blank is otherwise not significant in a NAMELIST block.
NAMLIST INPUT

The group name of the NAMELIST block being transmitted must appear in the READ statement being exe-
cuted. Each variable name and array name in the block must appear in the input/output list referred to by
the READ statement.

Each constant ¢ must agree with the type of the corresponding input list item as follows:

1. A bit, logical, character, or complex constant must be of the same type as the corresponding
input_list item. A character constant is truncated from the right or extended to the right with
biank characters, if necessary, to yield a character constant the same length as the correspond-
ing character variable, character array element, or substring.

2. An integer, half precision, real, or double precision constant may be used for an integer, half
precision, real, or double precision input list item. The constant is converted to the type-of
the list item during transmission. For conversion to half precision, real, or double precision.
an integer has an implied decimal point to the right of the rightmost digit.

The forms of a logical constant having the value true are:
T
T

.TRUE.
TRUE

9-18A



The forms of 2 logical constant having the value false are:
F
FALSE,
FALSE

A character constant must have the same form as if it appeared in a statement of an executable progiam (the
delimiting apostrophes must be present).

The forms of integer, half precision, real, double precision, and complex constants are as described for list-
directed input,

A Dbit constant must be either a Qora 1,

The character blank is ignored within a non-character constant. Use of the BLANK= specifier in an OPEN
statement has no effect on NAMELIST editing.

An error condition exists if a constant has no characters other than the character blank. (A character constant
is allow to have only blank characters between the delimiting apostrophes).

NAMELIST OUTPUT
On output, each NAMELIST block is terminated with the characters END,

The processor begins a new record for each block transferred. Column one of the first record of each block
contains-the carriage control character blank.

The processor begins a new record for the group name, for each variable name. for each array name, and for
the block terminator &END. Column one of each such record contains the carriage control character blank.

The processor begins a new record if the output field width of a constant would exceed the number of
unfilled character positions remaining in the current record. The current record is instead filled with blank
characters and terminated. A new record is begun with the carriage control character blank in column one and
the leftmost character of the constant in column two.

Logical constants are produced as T for the value true and F for the value false.

Bit constants are either 0 or 1.

Character constants are produced with delimiting apostrophes.

Integer constants are produced with the effect of an I edit descriptor.

9-19A



Except for the value zero, half precision, real, and double precision constants are produced with the effect of
an E edit descriptor. The scale factor is zero; no significant digits are produced before the decimal point. The
number of significant digits produced to the right of the decimal point is that minimum number appropriate
te the precision of the internal datum. Trailing zeros are eliminated. The characters 0.0 are produced for the

value zero.

Complex constants are produced as a pair of real constants enclosed in parentheses and with a comma separat-
ing the real and imaginary parts. Each real constant is produced as described in the preceding paragraph.

9-20A



This page left blank intentionally.



PRECEDEG PAGE BLANK NOT
ARRAY ASSIGNMENT TILMED

The array assignment statement discussed in this seetion is
neither & part of the standard.set.of FORTRAN statements
{as defined by American National Standard X3.9-19686,
FORTRAN) nor directly related to the veetor programming
capabilities of STAR FORTRAN. An array assignment
statemient, which is typified by one or more operands
written in subarray notation, is a shorthend for FORTRAN

DO loops. If the DO.loop equivalent of an-array assignment-

statement satisfies the criteria listed in seeotion- 11 for
vectorizable Ioops, and if the V compiler option of the
FORTRAN system control statement is on, then the array
assignment statement will be compiled into machine vector
instruetions.

SUBARRAY REFERENCES

A subarray is a-cross-section of an array; it ean -be one
element, several elements, or all of the elements of the
array. A subarray is identified by an grray name, or an
array name qualified by a subseript containing one-or more
implied-DO subscript expressions plus any number of other
subseript expression forms {see section-2).
subseript expressions can appear cnly in array- expressions
whieh, in turn, cen appeer onty in array assignment
statements.

The three implied-DO subseript expression forms are shown
below.

Forms:
. Mgsingimg
=
T .

m,:*:m,

my Initial value of subseript expression; an integer
constant or simple integer variable.

m2 Terminael value of subseript expression; an
integer constant or simple integer variable,

m, Optional inecrementation value; an integer con-
stant or simple integer variable, When m, is
omitted, the colon immediately L:sreeeding;‘l it
must also be omitied and a value of 1 is
assumed for the inerementation value.

* Represents a constant with & value equal to

the declared dimension size.

The first form indicates subscript expression velues-ranging
from m, up through m,, starting with m, and ineremented
by m.,. The seeond implied-DO form is equivalent to the
form ‘?l:m_ :1, where m,, is equal to the declared size of the
array dimiension. Theé third implied-DO form indieates
subseript expression values starting with m,, up through the
declared size of the array dimension and in inecrements of
m,. In every case, if the value {m,-m,)/m, is not integral,
the subseript expression never tak& oh thg terminal value
i,. The initial value m, must be less then or equal to the
te?‘minal value m,.

60386200'E

Implied-DO-

Example:

A(5,10,2)-is the array declarator. Then,

A(*,*,1) designates one-half of the array-elements, and
A(*;*,2) designates the other half,

A(1:2,1:2,1:2) names the following elements:

Al1,1,1)
Af2,1,1)
A(1,2;1)
A(2,2,1)
A(l‘nlyz)
Af2,1,2)
4(1,2,2)
Al2,2,2)

A(1:5:2,1,1) designates the following elements:

Af1,1,1)
A(3;1,1)
A(5,1,1)

An entire artay cen be designated by the unsubseripted array
name.

Example:

A{10,10) is the array declarator. Then, the following
implied-DO forms aere equivelent:

A
A(1:10,1:10)
A(l:10,%
Al*,1:10)
A(%,®)

The order In which the array elements are indicated by a
subarray is elways with the leftmost subseript expression
varying through its range, then the next subscript expression
being ineremented and the first subseript varying through its
range again, and so on until every implied DO has been run
through its range at least once. This rule applies to all
subarrays, regardless of whether an arrsy is rowwise or
columnwise. However, whether or not an array is rowwise
does affect whether oF not its elements are accessed
consecutively in memory.

The association between an instance of the subarray
notation and the values elicited by it is displayed in
figure 10~1. For en array declared as A{10,3), the figure
shows the transformation from a subarray A(1,*} to its
equivalent in array element references, which m-turn elicit
different sets of values according to whether A is rowwise
or columnwise. In contrast.to the subarray A{1,%), the
subarray A{*,1) would not identify consecutive elements in
memory if the array declarator occurred in a ROWWISE
statement. In general, only a single row of elements in a
rowwise array (of any size) ean be specifiad consecutively in
memory at ene time using the subarray notation.

10-1



. (as defined by American National Standard X3.9-1978, . . .

*  Represents a constant with a value equal to the declared upper bound for the corresponding
dimension.

. form ml:m2:1 where ml and m2 are, respectively, the declared lower and upper bounds for
the corresponding array dimension. The third form is equivalent to the form ml:m2:m3 whers m2
is the declared upper bound for the corresponding array dimension. The second and third forms may
not be used for the last (ist if ROWWISE) dimension of an assumed size array In every case,
if the value (m2-m1)/m3 is not integral, . . .

. m2. there is no resiriction on the values of ml, m2, and m3. m3 may be negative, m! may

be greater. than m2, or both. If m3 is negative and mil is less than m2, or if m3 is positive
and ml is greater than m2, the subarray is empty.

10-1A



A(L,®)
1st element
SUBARRAY inA
INTERPRETATION N 5th element
3 in A
9th element
inA
A(LD)
A(1,2)
A(1,3)
1st element
in A
.2nd element
inA
3rd element
inA

Figure 10-1. Meaning of a Subarray

CONFORMABLE SUBARRAYS

Two subarrays are called conformable if they satisf'y both of
the following conditions: .

¢ The number of subseript expressions that are implied-
DO subseript expressions must be the same for both.

® Scanning from left to right in the subseript, the it
implied-DO s ipt expression in one must be the
same as the i implied-DO subseript expression in the
other. Implied-DO subsecript expressions are considered
to be the same when the expansions of the subseript
expressions into the following form are identieal:

initial value : terminal value : incrementation value

The subarrays need not have the same number of subseript
expressions to be conformable, nor must the subarrays be
the same data type. The number of entities specified in &
subairay is the same as in the subarrays conformable with it.

Exampies:

Given the array declarators A(5,3), B(8,5), and C(5,3,4), the
following pairs of subarrays are conformable:

A A{1:5,3) A(1:5,3) Af1:4,3)

A B{1:5:1,2) B(1,1:5) €(1,2,1:4)
A A(1:5,1:3) A(l1:5:2,2)
B(1:5,1:3) C(1:5,2,1:3) B(1:5:2,4)

and the following pairs of subarrays are nonconformable:

A(1:4,3)

A B(1:5,1:3)
C(1:1,2,1:4)

B B(1:3,1:5)

10-2

ARRAY EXPRESSIONS

An arrey expression has the form of any scalar expression —
erithmetic, relational, or logical = except that it must
contain at least one subarray. Any two subarrays in an array
expression must be conformable.

Evaluation of an array expression proceeds with the stated
operations being performed on corresponding elements of
the array operands, Any sealsr primaries are treated as
arrays having the same number of elements as a subarray in
the expression, with all elements containing the sealar
value,

Examples:

Given the array deelarstors A(5,5), B(10,3), and C(5,10), the
following are array expressions:

A+3.1
A(1:3,1)%A(1:3,2)/A(1:3,3)%A(1:3,4)
A(L1:51%2.0
B(10,1:5HC(1:5,101+1.0-A(1,1)
{A-B(1:5,*))/24.5%C(*,1:5)

ARRAY ASSIGNMENT STATEMENT

An array assignment statement has the following form:
a=expr
expr AN array expression, or any sealer expression.

a A subasrray conformable with the value of
expr.

If the value of expr is a sealar (one value), execution of the
assignment statement assigns that value to all identified
elements of the subarray a. If the value of expr is a
subarray (more than one value), the identified elements of
a are replaced with the corresponding elements in the
arrey expression resuit.

Data type conversion rules on assignment are 1dentical to
those deseribed in seection 4 for sealar assignment ‘state-
ments.

Examples:
Each of the statement pairs:

DIMENSION X(5,3),Y(2,5)
X{1:5,3) = ¥{2,1:5)

DIMENSION X(5,3), Y(2,5}
X(*,3) = Y(2,%

has the same effect as the statement:

DIMENSION X(5,3),Y(2,5)
DO 100 I=1,5,1
X(1,3) = Y(2,1)

100 CONTINUE

which in turn would aceomplish the following set of
assignments:

X(1,3) = Y(2,1)
X(2,3) = Y(2,2)
X(3,3) = ¥(2,3)
X(4,3) = ¥(2,4)
%(5,3) = Y(2,5)

60386200 E



This page left blank intentionally.

10-2A



Similarly, the statement pair: whieh would accomplish the following set of assignments:

X(1,1) = ¥(3,1,2)
DIMENSION X(5;3), ¥(10,3,2) X{4,1) = ¥(4,1,2)
X(1:*:3,*) = Y(1:5:3,%,2) X(1,2)=¥(1,2,2)
X(4,2) = ¥(4,2,2)
X(1,3) = ¥(1,3,2)
X(4,3) = ¥(4;3;2} *
hes the same effeet as the statements:.
) - : If any or- all of the DIMENSION statements in these
examples. are changed to ROWWISE statements, the

DIMENSION- X(5,3),¥(10,3,2) examples remein correet:  Furthermore, if in the: first
DO 200 12=1,31 example. the. array declarator for- X appesred in the
DO 100 11=1,5,3 DIMENSION statement and the earray declarator for Y
X(11,12) = ¥(11,12,2) appesred in a ROWWISE statement, the array- assignment
100. CONTINUE" statement. would.be-vectorizable.because the elements of X
- 200 CONTINUE and:Y. would be accessed consecutively in mermory.

: - MED
PRECEDING PAGE BLANK NoT FIL

60386200 E 10~3



DEFINE STATEMENT

Subarrays can be identifjed by single variable names or array element names through the use of the
DEFINE statement. The DEFINE statement is an executable statement which establishes memory
allocation and pointer data for DYNAMIC variables. A single DYNAMIC variable then can he made
to describe a subarray, and that description can be changed throughout the program executiom, if
desired. DEFINE.can aiso be used to dynamically establish the level of memory assigned to a
arrays.

Forms:
DEFINE LEVEL idvldv2, ... .. dvm
DEFINE (dv1,51),(dv2,82), . . . .{dvmn,Sm)
i An integer constant, simple integer variable or integer expression

dvn Dynamic variable name or Dynamic array element

Sn A subarray reference to an array, a dynamic varable or without array name (to establish
dimensionality only}

Forms for Sn:
A(s1:52:53,54:55:56, . . . . . . )
{sl:s2:53,54:55:56, . . . ., )
dV(s1:52:53,54:55:56, . . . .)
dA(1,32, . jm)
A Name of a REAL, DOUBLE, HALF, COMPLEX, or INTEGER array
dV  Name of a dynamic variable ‘
dA Name of dynamic array
jn  Imteger subscript expression, constant or integer
variable
51:52:53  Can optionally be s1:52 or sl
sl Initial value of subscription integer constant or simple integer variabie

s2 If present, terminal value of subscript expression; an integer constant or
simple integer variable

s3 Optional incrementation value; an integer constant or simple integer variable
In all cases, 1 to 7 dimensions are allowed. The first form establishes the level of memory to be
used as dynamic space for the dynamic variables or dynamic array elements ramed in the list.
Example:
PROGRAM DEMO
DIMENSION A(100)
DYNAMIC C

10-3.1A



=2

DEFINE LEVEL I,C

C=A(1:100)

The dynamic variable C would be assigned to point to Intermediate (LEVEL 2) Memory. The
replacement statemeni would then accompiish the transfer of 100 elements of A from Main Memory
to Intermediate Memory, into 100 words of dynamic space there.

The integer expression i may have values from one to three. Any other value will cause the genera-
tion of a fatal object time diagnostic.

Changing memory level assignments wifl have no effect on the named variables when they appear as
sources for operands:
DEFINE LEVEL 2,C

=A(1:100)
DEFINE LEVEL 1,C

A(1:100)=C**2 .

The data moved to C will still be pointed at when C**2 is invoked. When C appears as an object
of a replacement statement again, however, the dynamic variable C is redefined and a new memory
allocation made, hence:

DEFINE LEVEL 1,C

A(1:100)=C*%2

This wouid cause C to be defined as pointing to dynamic space in main memory. and the 10 elements
of A moved there. It is then possible for the dynamic variable C to point to two different areas
the same FORTRAN statement:

DEFINE LEVEL 2.C
C=A(100)
DEFINE LEVEL 1,C
C=C*+2
A=C
10324



The first allocation for C would be in Intermediate (LEVEL 2) Memory. The second allocation
‘pending’ for C would be in Main Memory. The replacement statement would move 100 elements
of A from main memory to Intermediate Memory. The arithmetic statement C=C**2 would muitiply
the data in Intermediate Memory by itself and store the result in the newly allocated area in Main
;Memory. The oid data in LEVEL 2 for C would be abandoned.

Level reassignnients of dynamic variables which are, in fact, pointers into subarrays of other arrays
are ignored. The level of memory allocated to the main array, of which the subarray is part, is
that level assigned to the dynamic variable.

The major purpose in a dynamic level assignment is to allow the most efficient use of the memories
for program execution, although data base sizes and memory requirements may not be known until
object time.

The second form assigns dynamic variable or dynamic array elements as pointers to subarrays or
arTay components.
Example:

PROGRAM DEMO

DIMENSION A(100)}

DYNAMIC C

DEFINE (C,A(10:20))

C=3.14159

The dynamic variable C becomes synonymous with the subarray A(10:20). The statement C=3.14159
results in. the generation of a data transfer of the constant 3.14159 to elements 10 through 20 of A.

If the array name is omitied, then the subarray statement is used to establish implicit dimensions for
C, and causes the allocation of dynamic space to C.
Exampie:

PROGRAM DEMO

DYNAMIC C,

DEFINE (C,(10,10,10))

C=3.1415926

5

10-3.3A



This establishes C as an array in Main Memory dynamic space of dimensions 10 by 10 by 10.
The replacement statement would transfer the constant 3.1415926 to all 1000 elements of C.

Dynamic variables and dynamic array element pointers establish the characteristics of the array they
are describing. These dynamically established arrays may themselves be subdivided into subarrays';

Example:
PROGRAM DEMO
DYNAMIC C,D

DEFINE (C,(10,10,10)).
DEFINE (D,C(1,1,1:10))

D=3.1415926

The dynamic variable D would point to the first ten elements of the dynamically assigned array C.
Dynamic array elements can be referenced in subarray form only in DEFINE statements.

The processing of dynamic variables and define statements is reserved for object time execution. All

errors in conformability, memory allocation conflict and rense of names and data space will result in
the generation of fatal object time diagnostics.

Dynamic variables that are DEFINED as pointers into subarrays must be of the same data type as
the subarray. A type mismatch will be the result in a fatal compile time diagnostic.

10-3.4A



Section ,:11 is deleted entirely.



-Section- 12 is deleted entiely,

12-1



Section 13 is delefed entirely.

13-1



STAR FORTRAN-SUPPLIED SUBROUTINES 14

The following types of system-defined subroutines can be
called from 2 STAR FORTRAN program:

Special calls: Used to plece speeific STAR-100
machine instruetions in the object
code. Although & special esll looks
like a subroutine eall, the special call
generates in-line code.

Data Flag Used to trap special conditions and to

Branch Manager branch fto an interrupt-handling

calls: routine as a result of trapping such a
condition.

MDUMP calls: Used to dump specified areas in

virtuel memory during program
execution,

Used to aiter FORTRAN's run-time
error processing so that, for example,
execution halts when an error ocecurs
that would normaily have resulted in
only a warning being issued.

System Error
Processor calls:

Conecurrent I/0  Used to perform input and output of

ealls: large arrays while at the same time
leaving the CPU free for computa-
tional processing.

| STAR FORTRAN SPECIAL CALLS

STAR FORTRAN users are able to have the compiler
direetly generate any instruction in the machine language
. repertoire. Such requests are made in the form of CALL
statements to subroutines with special reserved names. The
"argument lists in the special call statements are used to
" provide label references, symbolic references, and literals to
be ineluded with the generated instruction. The user of
special calls should be familiar with the hardware instruc-
tions or should have access to the STAR-100 Computer
Hardware Reference Manual.

-

o

NOTE

The wuse of speeial ecalls is not
recommended for the average FORTRAN
user. Special calls should only be used
when absolutely necessary for specific
programining tasks.

Form:

CALL m(al, e ,an)

m One of the spectal cell names beginning with
Q8.
a. An argument corresponding to one of the fields

' ! of the instruetion format.

‘ "The speeigl call formats are listed in appendix D.
{

60386200 G

ARGUMENTS

All arguments are either label references, symbolic 3

references, or literals.
NOTE

The arguments for the special calls
correspond to the fields of the hardware
instruetions. Arguments for the STAR
Assembler instruetions ean  appear
different but are funetionally the same.
For example, the register to register
hardware instruetion (op code 78) is RTOR
R,T in STAR Assembler but CALL
Q8RTOR(R,T) in the special eall format.
The extra comma aceounts for the missing
S operand in the instruetion.

The speciel call arguments must rigidly follow the
instruction format because they represent the information
associated with the instruetion fields. Any missing
argument must be indicated by a comme, except that
trailing missing arguments can be omitted. With some
exceptions, the arguments must appear in the order of the
definable fields in the hardware instruction. An exception is
that only one argument is allowed for an entire 8-bit
G-designator field having 1-bit subfields. Another
exception is that in indexed branch instructions (BO through
B5), the combined Y and B fields require only one argument,
usually a label reference. If the combined fields represent
two register designators, however, the user must use &
16-bit hexadecimal constant.

When an argument is a literal, the value of the literal goes
in the instruction field. When an argument is a variable, the
register number of the variable goes in the instruction field;
the compiler generates a load before the designated instrue-
tion and a store afterwards, if required. Only registers £0
through FF (hexadecimal) are used for this purpose. The
user is free to use thé low-order temporary registers, but
the contents are destroyed by generated object code when
the user reverts to standard STAR FORTRAN statements.

Subfunetion bits in the G field of formats 1, 2, and 3 are not
eross-checked with the operands to assure validity of the
instruetion, Warnings are not generated if the user codes a
jump into or out of range of 2 DO loop.

Label References

A label reference is designated by prefixing a statement
label with the ampersand character. Label references can
appear in the following instruction formats:

In the combined Y and B fields of a format C
mstruetion,

In the 48-bit immediate'{I) field of the format 5
instruction, except when only 24 bits of the field are
used by certain instruetions,

In the 8~bit immediate (I) field of format 9 and
format B instructions.

14-1

b e




B: Deleted

14-1A



If the lebel reference occurs in the combined Y and B fields
of a format C instruction, the label reference is translated
into & code half-word offset from the special CALL to the
statement within the program unit identified by the label,
The labeled statement can be ahead of or behind the spectal
CALL statement.

If the label reference oceurs in the 48-bit immediate field
of a format 5 instruction, the proeessor translates the label
reference into g bit address of the statement tagged by the
label. This bit address is a relative bit address with respect
to the eode base of the program unit in which the special
CALL statement ocecurs.

If the label reference occurs in the 8-bit immediate field of
a 2F, 32, or 33 instruetion, the processor translates the label
reference into & half-word offset from the speeial CALL
statement, to the statement tagged by the label. If the
resultent half-word offset exceeds a magnitude of 255, a
zero is used to initielize the 8-bit immediate field, and the
processor generates no warning te the user.

A label reference is the only permissible operand in the
branch field of a relative branch instruetion.

Symbolic References

A symbolie reference can be a simple variable of type real,
integer, or logical; an array-element of type real, integer, or
logical; a deseriptor; a deseriptor array element; or a
veetor. Symbolie referenees can cceur in any 8-bit register
designator field (except in half-word registers). Registers
modified by branch instructions eannot be referenced
symbolically.

Literais

A literal ean be a decimal, hexadeeimal, bit, character, or
Hollerith constant, and ean be used for any instruetion field.
Any missing arguments are presumed to be zero eonstants.
Generally, constants are taken to be register designators,
rather than as data used by an instruetion.

EXAMPLES OF SPECIAL CALL USAGE

The call to Q8BSAVE shown in figure 14-1 sets register 3 to
the bit-address of the next instruction, whieh has statement
label 10. The call of Q8EX in statement 10 sets register 4
to the statement 10 bit offset from the code base address,
In the next statement, the call to Q8SUBX sets integer
varieble CB to the code base address. The next call to
Q8EX sets variable I to contain the statement 20 bit ofiset.
Following that, variable L20 15 set to the actual address of
statement 20. This information is then used in the ecall to
Q8BGE,

The calls in figure 14-2 produce identicel results; each
enters the character string AB in register 41 {hexadecimal),
These examples are given to show how literals can be used
as arguments; however, it should be noted that the use of
register 41 would probably cause a program bug, because
registers 20 to FF (hexadecimal) are assigned by the
compiler.

CALL Q8ES{65,’AB"

CALL Q8ES(X'417,X'4142Y)
CALL Q8ES(B'1000001','AB%
CALL QSES('A','AB")

Figure 14-2. QB8ES Usage

The' speecial ecalls in figure 14-3 genergte the machine code
shown in figure 14-4 provided J has been assigned to
register 22 by the compiler.

CALL Q8EsS(3,1)
CALL Q8ES(4,2)
CALL Q8ADDX(3,4,3)

Pigure 14-3. Additional Q8 Usage

ES R3,1
ES R4,2
ADDX R3,R4,R22

PFigure 14-4. Generated Machine Code

If J has not been assigned any register by the compiler, the
code shown in figure 14-5 would be generated.

ES R3,1
ES R4,2 .
ADDXR3,R4,T1

STO (DATA BASE, RELATIVE
LOCATION OF J),T1

INTEGER CB,L20
CALL Q8BSAVE(3,,3)

10 CALL Q8EX(4,&10)
CALL Q8SUBX(3,4,CB)
CALL Q8EX{I,&20)
L20=1+CB

CALL Q8BGE(A,B,L20)

-

20

Figure 14-1, Special CALL Statement

14-2

Figure 14-3. Additional Generated Code

DATA FLAG BRANCH MANAGER

The data flag branch manager (DFBM) is a FORTRAN run-
time library routine, A data flag branch is & hardware
funetion of the STAR-100 computer. DFBM is software that
processes data flag branches whenever they occur during
execution of a FORTRAN program. Use of the data flag
braneh feature eliminates the time penalty that weuld be
ineurred if the FORTRAN user were compelled to perform
explieit ehecks for special conditions. If the FORTRAN user
takes no specific action with respect to data flag branches
and DFBM, then any of the following causes a data flag
braneh to oceur:

® A square root operation attempted with a negative
operand

¢ A division operation attempted with a zero divisor

®  An exponent overflow in computation of a number too
large to be represented internaily

®  An operation attempted using an indefinite operand

60386200 G




A:

delete page 14-2,



® Reduction of the job interval timer to zero {ecannot
oceur unless the program sets the JIT)

®  Execution of & hardware breakpoint instruction under
certain usage conditions f{eannot ocecur unless the
program uses DEBUG or & BKP mnstruction)

Control passes to DFBM which performs interrupt processing
for the condition. DFBM interrupts the executing
FORTRAN program, issues an error diagnostie, dumps the
contents of the data flag branch register, and aborts the
program. If the program is running as part of a bateh job, 2
post-mortem dump is produced. Defauit interrupt
processing for other conditions that the user ean specify
does not cause the program to abort,

The FORTRAN user car select the special condltions which
ean cause a data flag branch and DFBM interrupt to oceur.
The user cen also specify the processing that is to be
performed as a result of the interrupt. Interrupt conditions
and interrupt processing can be selected through calls to the
DFBM entry points QTDFSET, Q7DFOFF, Q7DFLAGS, and
Q7DFCLI.

DATA FLAG BRANCH HARDWARE

For the FORTRAN user, the most significant part of the
data flag branch hardware is the data fleg braneh (DFE)
register. The 64-bit DFB register, loeated in the STAR~100
central processor, is formatted as shown in figure 14-6.
Each interrupted task has.a DFB register copy in its invisible
package in the minus page,

The data flags are bits 35 through 47 of the DFB register.
These bits indicate special c¢onditions that have occeurred.
For example, the STAR hardware sets bit 41 at the endof &
floating point divide fault (instructien in which the divisor is
zero), Data flegs remain set until the FORTRAN programm
or DFBM clears them.

The mask bits are bits 19 through 31 of the DFB register.
They seieet the conditions whieh are to esuse a data flag
branech and DFBM interrupt. For example, bit 25 enables a
data flag branch on & floating point divide fault. Bits 19, 20,

25, 29, 30, and 31 are set during FORTRAN run-time
initialization; thereafter, the user ean set and clear mask
bits by calting DFBM entry points.

The product bits are btts 3 through 15 of the DFB register.
Each 15 the dynamie logical produet of a data flag and the
pssoctated mask bit. For example, the product bit for
floating peint divide fault is bit 8, which is set by STAR
hardware if bits 25 and 41 are set., Bit 9 is cleared if either
bit 25 or bit 41 is cleared, The product bits can be tested
with a Q8BADF special call.

Bit 58 is the pipe 2 register instruction data flag. Setting of
this bit indicates that one of the other data flags has been
set by a pipe 2 instruetion, STAR hardware sets the bit,
which remains set until the FORTRAN program or DFBM
clears it.

Bit 51 is the dynamie inclusive OR of all the produect bits.
Bit 52 is the data fiag branch enable bit; if bit 52 is cleared,
any further data flag branehes of any kind are disabled until
bit 52 is set again. DFBM and the STAR hardware clear and
set bit 52. When both bit 51 and bit 52 are set, the STAR
hardware initiates a data flag branch.

The condition indieated by each of the 13 data flags, along
with a designator for the condition, is shown in table 14-1.
Also given in the table are the mask and product bit
associated with each data flag and & classification of I.or I
for each eondition.

Default Conditions

At the time a FORTRAN program starts executing, six
interrupt conditions are enabled. The conditions enabled as
a result of run-time initialization are JIT, SFT, BKP, IND,
SRT, and FDV.

- The JIT, SFT, and BKP conditions do not ececur unless the

program takes specific action to cause the conditions.

An FDV condition occurs if a floating point division
operation is attempted with a zero divisor. A zero divisor is
either a machine zero or a floating point number having an

{These are undefined bits,
Any nstruction that
attempts to set, clear,
or sample these bits
produces undefined
results,

0 3 16 19 32 35 48 50 53 35 59 83
t | productbits | ¥ | mask bits dataflags | T t
Dynamic Y
inelusive OR of
product bits
Data
flag branch
enable b1t

Free data flags

Monitering counter |
enable flags

Pipe 2 register
instruction flag

Figure 14-6, Data Flag Branch Register Format

60386200 G

14-3



TABLE 14-1. DATA FLAG BRANCH CONDITIONS

Produet
Class | Designator Cendition Deseription Mask Bit | Data Flag Bit | Product Bit | Bit Search
Order
I SFT {Reserved.) 191- 35 3 2
I JIT Job interval timer has reduced to zero. Zﬂf 36 4 1
m SsC Selected condition has not been met. In search 21 37 § 11
for masked key, there was no mateh; or count of
nonzero transiated bytes is greater-than 6553510.
’ DDF Decimal dats fauit. A sign was found in a digit 22 38 6 12
‘ position, or vice versa,
I TRBZ Truneation of leading nonzero digits or bits, or 23 39 7 13
decimal or binary divide by zero.
o CRD Dynamie inclusive OR of the preceding three 24 49 8 5
conditions (SSC, DDF, and TEZ). Enabling this
condition permits an interrupt on any of the
three conditions.
m FDVY | Floating point divide fault. 25! 4 9 8
11 EXO Exponent overflow. 26 42 16 9
m RMZ Result is machine zero. 27 43 11 10
I ORX Dynamie inclusive OR of the preceding three 28 44 12 4
conditions (FDV, EXO, and RMZ). Enabling this
condition permits ar interrupt on sny of the
three conditions.
i1 SRT _ Square root eperation on negative operand. 2BT 45 13 6
m IND “Indefinite result or indefinite operand. 301‘ 46 14 7
1 BKP' | Breskpoint flag was set on the breakpoint oy " 15 3
instruction (instruetion 04).
fSet during run-time initialization.
all-zero coefficient. A divisor having an indefinite value is Branches

not a gero divisor and does not cause a floating point divide
fault. The resuit of a division by zero is an indefinite value
which sets the IND data flag.

An SRT condtion occurs if a square root operation is
attempted with a negative operand. The square root of the
absclute value of the negative operand is taken in this case,
and the two's complement of this square root is stered as the
result, The result, although meaningful, is not equivalent to
the mathematical value of the square root of & negative
number,

An IND condition ceeurs if an.indefinite value is computed
and stored into memory or into the register file. The
condition aise vccurs if either or both of the operands of
certain fleating point operations have indefinite values
{floating powmnt arithmetic operations and floating point
compare operations can set the IND data flag). Since an
incefinite value results from a fleating point operation in
winch either or both of the operands are indefinite values,
indefintte values are likely to propagate. An FDV or EXO
condition also sets the IND data flag.

o 14-4

When a data flag braneh oceurs, bit 52 is cleared, the
address of the instruction that would have been executed
next had the branch not oceurred is stored in register 1, and
control branches to the address in register 2. The address of
a DFBM entry point is placed 1n register 2 during FORTRAN
run-time mitialization. Subsequent preocessing is determined
by the tit settings in the DFB register and specifications
made in any Q7DFSET, QTDFOFF, and QTDFCLI1 ecalls.

The address in regster 1 does not necessarily point to the
instruction immedately following- the instruction that
caused the data flag traneh. The hardware initiates a date
flag branch only after all currently executing instructions
have completed. Because wmnstructions might be executing in
parallel when the condition causing the deta flag brench
seeurs, the branech can oecur up to 35 instruetions after the
instruction that caused it. Also, the point at which control
branches to DFBM can vary between executions of the same
program because the load and store hardware operations ean
oceur at different points as a result of the asynchronous
nature of STAR 1/C.

60386200 G



NOTE

The user car effect changes in the DFB
register that conflict with DFBM. Use of
the FORTRAN-supplied function Q8SDFBE,
the special cells QE8BADF and QBLSDFR,
or the system-provided utility DEBUG In &
FORTRAN program that uses calls to
DFBM entry points all should be done with
great care. -

DATA FLAG BRANCH SOFTWARE

A dats flag branch, together with the subsequent processing
performed by DFBM before the FORTRAN program resumes
or aborts, is called a DFBM interrupt, A call to the DFBM
entry point Q7DFSET can be used to enable and disable
DFBM interrupts on specified conditions. Interrupt-handling
routines are optional and can be specified through calls to
one of the DFBM entry points Q7DFSET and Q7DFCLIL, as
deseribed later in this seetion.

If the STAR hardware initiates a data flag branch during
execution of a FORTRAN program, control branches to
DFBM. DFBM checks the DFB register produect bits in the
following order:

1. JIT  (bit 4)
2. SFT {bit 3)
3. BKP (bit 15)
4. ORX {bit 12)

5. EXO (bit 10}
10. RMZ (bit 11}
11. 88C (bit 5)
12. DDF (bit 6)
13. TBZ (bit 7)

5. ORD (bit 8)
6. SRT (bit 13}
7. IND (bit 14}
8. FDV (bit 9}

Depending on the bits DFBM finds set and the interrupt-
handling routines that the FORTRAN user has specified,
DFBM calls the routine FT_ERMSG or passes control to an
interrupt-handling routine established by the programmer.

Interrupt Classes

The DFBM interrupt conditions shown in table 14-1 can be
divided into two classes, depending on whether the
FORTRAN user can disable interrupts for the eondition and
how the interrupts are handled by DFBM. Interrupts on the
elass I conditions are always enabled; the corresponding
mask bits are always set for the following conditions:

JIT
SFT
BKP

The FORTRAN user can enable or disable interrupts for all
of the other conditions, which are classIII conditions.
Enabling or disabling of classII conditions is done using
calls to one of the DFBM entry powmnts QT7DFSET and
QTDFOFF as described later in this seetion.

DFBM processes the class Il conditions as a group, as if they
were gll caused by a single eveni. Class] conditions sre
processed individually, as if they had been caused by
separate evenis. A DFBM interrupt that processes a class1
condition is calied a class I interrupt, and one that processes
class I conditions 15 celled a ¢lass I interrupt.

Multiple Interrupts

The execution of a single hardware instruetion ean in some
cases flag several class Il conditions as well as one or more
elass I conditions. A number of product bits might be on

~

60386200 G

when DFBM receives control as the result of a data flag
branch. A single data fleg branch could ceceur with enough
produet bits set that it would be transiated into four DFBM
interrupts, that is, three class I interrupts and one class Il
interrupt.

Ii a data flag branch cceurs and more than one product bit is
set, DFBM processes any classI interrupts first, one &t a
time, in the order JIT, SFT, and BKP. Then, if DFBM has
been able to process the elass I interrupts without aborting
the program, it will process a class IIT interrupt. If a class [
bit and a class III bit are set when DFBM ggins control after
a data flag branch, and if the specified interrupt-handling
routines return after executing, the interrupt processing
that would be performed is shown in table 14-2, Default
processing for DFBM interrupts consists of issuing gn error
message and then either aborting or resuming the program,
depending on whether the error was nonfatal, ‘fatal, or
catastrophie.

TABLE 14-2. MULTIPLE INTERRUPT PROCESSING

Class I Class HI
Interrupt~ | Interrupt- Processing Performed
Handling Handling After Datp Flag Branch
Routine Routine Manager Gauns Control
Provided Provided
= —— |

No No Class I error message
issued, program aborted

Yes No Class I routine executed,
class IIT error message
issued, program aborted
for fatal message and
resumed otherwise

No Yes Class I error message
issued, program aborted
(elass M1 routine not
execnted glthough class IIT

o condition flagged)

Yes Yes Class I routine executed,
elass I routine then
executed, program resumed
(no error messages 1ssued
by DFBM)

Defavlt Interrupt Processing

In a typical DFBM interrupt, a class I interrupt might oceur
with one or more class I product bits set and with default
processing being performed because no interrupt-handling
routine has been specified. If the user does not specify any
interrupt-handling routines and a data flag branch oceurs,
DFBM performs default interrupt processing as follows.
Having gained control as a result of the date flag branch,
and having checked the DFB register product bits in the
order listed earlier, DFBM cails the routine FT ERMS3G to
issue an error message for the condition indiedled by tne
first produet bit found to be on,

If the FT_ERMSG entry point SEP (System Error Proeessor,
deseribed in this section) was called previously in the
FORTRAN program to specify an error exit subroutine for
the error, FT ERMSG calls the subroutine. An error
message is issued (if applicable) before the user routine is
called.

14-5 ®



@ 14-5

If the error message that FT ERMSG issued was nonfatal,
DFBM restarts the interruptéed FORTRAN program at the
address in register 1. If the error message was fatal or
eatsstrophie, a dump of the contents of the DFB register is
written onto the output file immediately following the error
message, and the FORTRAN program aborts without return
of control to DFEM. If the aborted program was bemng run
as part of a batch Job, the system utility DUMP writes a
post-mortem dump onto the outpui file, The dump Includes
a full subroutine traceback in which DFBM appears to have
been called by the interrupted routine (DFBM execution has
actually been initiated by a hardware data flag branch). The
system utility DUMP is deseribed in the STAR Operating
System Reference Manual, Volume 1.

Each class Il eondition has a separate error message, but
only one message is issued when default processing is
performed for a class OI interrupt. The class Il message
issued is for the first class I produet bit found en. For
example, assume that the default class Il interrupt condi~
tions SRT, IND, and FDV are in effect at the time that a
division operation is performed in which the divisor is zero.
Also assume that the FORTRAN program is running in a
bateh job, has not disabled all data flag branches (has not
cleared DFB register bit 52), and has not previously called
SEP or QTDFSET to specify a routine to handle division by
zero. The division operation initiates a data flag branch.
DFBM finds that bit 14 (IND produet bit) of the DFB register
is on and, since no class I interrupt-hendling routine is
available, calls FT ERMSG. Since the user has not specified
an error exit subroutine, FT ERMSG issues a fatal error
message for the IND condition, eauses a DFB register dump
to be written to the output file, and aberts the program.
The error message and DFB register dump are shown in
figure 14~-7. Finally, since the job is a bateh job, the DUMP
utility produces a post-mortem dump. Note that no error
message for the FDV cendition is produced.

As another exampie, essume the same situation as in the
previous example, with the exception that the FORTRAN
program has called QTDFSET to alter the class III interrupt
conditions to ORX, SRT, and IND, The division operation
with the zero divisor initiates a data figg branch. DFBM
finds that bit12 (ORX product bit} is on and calls
FT_ERMSQG, since no class OI interrupt-handling routine is
available. FT ERMSG issues an error message for the ORX
eondition. Sifee the error is a warning, DFBM restarts the
interrupted program at the address in register 1, even
though a normally fatal condition (IND) has oceurred.

CLASS Il INTERRUPTS

If a elassII interrupt oecurs, DFBM performs default
processing if the FORTRAN user has not provided a class IH
interrapt-handling routine through a Q7DFSET call. If the

user has specified & elass OI interrupt-handling foutine,
DFBM takes the following actions:

1. Deteets the condition by checking the DFE register
product bits.

2. Saves a copy of the entire register file of the
interrupted routine,

3. Clears the data flags (this also clears the product bits),
leaving the mask bits as they are.

4. Setsbit 52, re-enabling data flag branches.

5. Calls the class I interrupt-hendling routine.

L
In a class 0T interrupt where an interrupt-handling routine is
called, no standard error message 1s issued by DFBM. DFBM
manages class Il interrupts according to the following rules:

® Apy routine or subroutine of a FORTRAN program can
specify and respecify class I interrupt eonditions and
interrupt~-handling routines as frequently as desired.
QTDFSET calls are used to make the specifieations.,

® When g routine ¢alls a subroutine, the alass HI interrupt
conditions and elass I interrupt-handling routines in
effeet in the calling routine are put into effect in the
subroutine.

® When a routine returns to its ecaller, the class il
interrupt conditions and class I interrupt-handling
routines In effect at the time of the cell are reinstated.

Each subroutine in & FORTRAN program can meke different
specifications of how elass [Ii interrupts are to be handled
loeally and in lower-level routines, without those speciiiea-
tions affecting how classHi interrupts are handled by
higher-level routines.

The rules of scope are illustrated in figure 14-8. In the
figure, the main program begins execution with the default
conditions in effeet and executes until a call to Q7DFSET
alters the default seleetion. A new set of condihons is
selected by the second eall to Q7DFSET and remams in
effect until subroutine K is eslled. Selections remain in
effect until subroutine K ecalls Q7DFSET. This newest set of
conditions continues in effeet when subroutine D is called
and when the return to subprogram K occurs. When K
ecompletes execution and control returns to the main
program, conditions in effect at the time subroutine K was
called are reestablished and persist through the call to
subprogram Z and the return to the main program.

DATA FLAG BRANCH REGISTER

PRODUCT BITS (3~15] 0 ¢ 9
MASK BITS (l9=31) 1 1 o0 0 0
DATA FLAGS {35w47) 4 ¢ o 0 ¢

ERROR 124 DATA FLAG BRANCH = INOEFINITE RESULT = REGISTER 1 ADDRESS 000000012240

00000000 01000010 00013000 01000111 00000000 01001210 GOODLO0J0 06100000
SFT JIv SOSC DgF TBZ ORD FDY EXQO RMZ ORX SRT IND BKP

) 0 ] 9 ¢ 1 ¢
1 g 0 0 1l 1 1l
1 @ 0 i o 1 0

Figure 14-7. DFB Register Dump Example

REPRODUCIBILITY OF THE
ORIGINAL P

60386200 G
AGE 1S POOR




MAIN

CALL QTDFSET

CALL QTDFSET

CALL Q7DFSET

CALL D

RETURN

RETURN

Figure 14-8. Scope of Selected Conditions

Interrupt-Handling Routines

A class I interrupt-handling routine can appropriately be
written in FORTRAN. The routine must have no arguments,
Any communication with higher-level routines must be
through the use of COMMON statements.

At the time that the elass I interrupt-handling routine
gains control, all interrupts that were enabled at the time of
the data flag braneh are still enabled (the mask bits have not
been altered, and bit 52 has been set), If a class HI interrupt
oceurs while the interrupt-handling routine or any lower-
level routine is executing, DFBM causes a catastrophic error
message to be issued and the program to be aboerted. The
interrupt-handling reutine can disable class I interrupts for
the period of time that it is executing by calling Q7DFSET.
Any classI interrupts oceurring in & class II interrupt-
handling routine are handled immediately.

All data flags in the DFB register have been cleared when
the elass I interrupt-handling routine receives control from
DFBM. The routine can learn the status of the data flags as
they were at the time of the data flag branch, as well as
certain other information about the interrupt, by calling
QTDFLAGS.

If the classII interrupt-handling routine executes a
RETURN statement, DFBM restarts the interrupted
FORTRAN program or subprogram at the address
register 1. DFBM leaves the DFB register mask bits exactly
as they were at the time of the data flag braneh unless the
class Il interrupt-handling routine has Mmade a call to
QTDFOFE. An interrupt-handling routine ean call QTDFOFF
to disable specified conditions in the interrupted FORTRAN
program af the time that the program is restarted. A call to
QTDFOFF might be advantageous if the conditions eausing 2
date flag branch would cause a large number of other data
flag branchesto oceur.

60386200 G

Q7DFSET

A call to Q7DFSET can be used to do either or both of the
following:

® Specify the conditions on which a elass O 1pterrupt is to
oecur (that is, alter DFB register mask bits).

& Specify the name of a userprovided interrupt-handling
routine to be called in the event of a class T interrupt.

Default class I interrupt conditions can be reestablished
using QTDFSET, either by specifying the SRT, IND, and FDV
conditions or by specifying 'STD' as an argument. Default
cless I interrupt processing can also be reestablished. with a
QTDFSET esil.

Forms:
CALIL QTDFSET (ihr)
CALL Q7DFSET (ihr, 'NULY
CALL QTDFSET ({ihr, 'mb;", +. ., 'mbn')

ihr Zero, or the name of a user-provided
interrupt~handling routine that is to be called
if & elass I interrupt oceurs, Zero indieates
thet default processing is to be performed for
class HI interrupts (zero reestablishes the
specification in effect at the time that the
FORTRAN program began executing).

INUL' Indicates that all class I mask bits are to be
elesred, disabling all class I interrupts.

'mbi' 1STD, or one of the class [ interrupt condition
designators given in table 14-1. The
designater must be enclosed in apostrophes. A
designator from table 14-1 indicates that the
corresponding mask bit is to be set, 'STD'
indicates that the default class I mask bits -
corresponding to the SRT, IND, and FDV
conditions - are to be set. 'STD' can be used in
combination with other designators in the
same argument list,

No mask bits are alfered from thetr current settings when
QTDFSET is called with only one argument, ihr. When
QTDFSET is called with two or more arguments, any class [II
mask bits not indicated by the argument list are clesred.
The user must remember to declare any subroutine name
used in & QTDFSET call with an EXTERNAL statement.

For example, given the declaration EXTERNAL USRRTHN,
the following are valid Q7DFSET calls:

CALL Q7DFSET (USRRTN)}

CALL QTDFSET (USRRTN, 'EXO', INDY, 'SRT', 'FBV))
CALL Q7DF3ET (USRRTN, 'EX0!, '5TDY

CALL Q7DFSET (0, 'STDY)

CALL Q7DFSET (0, 'NUL). -
The first call specified USRRTN to be the class [l interrupt-
handling routine. The second or third call has the effect of

specifying that USRRTN s to be the class I interrupt-
handling routine, that mask bits 23, 26, 29, and 30 are to be

14-T o



set, and that mask bits 21, 22, 23, 24, 27, and 28 are to be
cleared. The f{fourth call restores the default set of
conditions and default class Il interrupt processing, The
fifth call restores defsult classIll interrupt processing but
disables all data flag branches on all class III eonditions,

Q7DFLAGS
The user can obtain information about the most recent
class IIl interrupt by ealling Q7TDFLAGS.

Form:
CALL QTDFLAGS(pb,fb,ad,rf)

pb A type logical array, declared to be a one-
dimensional array of ten elements, in which
DFBM returns the ten class Il produet bits
{pits 5 through 14). ¥alues returned are
FALSE. for bits that are cleared and .TRUE.
for bits that are set. The order of the values
in the array is the same as for the eclass I
conditions listed in table 14-1.

fb A type logieal array, declared to be a one-
dimensional array of eleven elements, in which
DFBM returns the ten olassII data flags
(bits 37 through-4g), followed by the pipe 2
register instruction data flag as the eleventh
value, Values returned are ,FALSE, for bits
that are cleared and .TRUE. for bits that are
set. The order of the values in the array is the
same a5 for the classIT conditions shown in
table 14-1,

ad A varigble of type integer in which DFBM
returns the address confained in register 1 at
the time of the data flag branch.

of Optional. A type integer or real array {or a
descriptor array of type integer or real) of size
256 in whmeh DFBM returns the register file
contents as they were at the time of the data
flag branch.

If QPDFLAGS is called before any class Il jnterrupts have
occurred, all of the data flags and product bits are shown to
be .FALSE. and all other values retutned are zero.

For example, the statements

LOGICAL P(10), DF(11)
INTEGER ADDR, REGS(2586)
CALL Q7DFLAGS (P,DF,ADDR,REGS)

place the product bits in logical array P, the data flags in
logical array DF, the register 1 address in integer variable
ADDR, and the register file in integer array REGS,

Q7DFOFF

By calling QTDFOFF, a class I mterrupt-handing routine
can cause class I mnterrupt conditions to be disabled at the
time that the interrupted FORTRAN program is restarted.
A QTDFOFF call issued from & routine other than an
ir;_;_errupt—hancﬂing routine or lower-level routine has nc
effeet.

. 14-8

Form:

CALL QTDFOFF {mby*, ..., 'mb )

‘mbl' TALLY, 'STD', or cne of the class I interrupt
condition -designators given i table 14-1, A
designator from table 14-1 indicates that the
corresponding mask bit is to be cleared at the
time that the interrupted routine is restarted.
'ALLY indicates that all class Il interrupts are
to be disabled. 'STD' indicates that the SRT,
IND, and FDV classIH interrupis are to be
disabted.

Any mask bits not specified in the call are left unaffected
by the eall. If a class I interrupt-handling routine executes
a RETURN statement after calling QTDFOFF, DFBM gains
control and disables the specified elass I interrupts. The
interrupts remain disabled until a new call to Q7DFSET is
made. The scope of a QTDFOFF call is the same as the
scope of its essoeiated Q7TDFSET call.

For example, the following are valid Q7TDFOFF calls:

CALL QTDEOFF(IND','EDV")
CALL QTDFOFF({'ALL"Y)

The first call will cause DFB register bits 25 and 30 to be
cleared at the time that DFBM restarts the interrupted
FORTRAN program. The second call would catse &l of the
class IIT mask bits to be cleared at that time.

CLASS 1 INTERRUPTS

Class I interrupts are always enabled; the class I mask bits
gre glways on, and-the FORTR AN program cannot be used to
clear them. A FORTRAN user ean specify class I interrupt~
handling routines. A separate routine can be specified for
each of the three class I conditions,

A user-specified interrupt-handling routine for handling a
class I interrupt must be written 1n a lower-level langusge
sueh as an assembler language. FORTRAN 15 net a
sufficiently low-level language for the purpose of handling
class I interrupt conditions. ClassI interrupts do not occur
unless the user fakes specific aetion to cause them, such as
utilizing the breakpomnt feature of the DEBUG system utility
or issuing the special call Q8WJTIME to set the job interval
timer.

If a class! interrupt oceups, DFBM performs default
processing unless the FORTRAN user has provided an
interrupt-handling routine for the elass [ condition and made
1t known by means of a QTDFCL] call, If the user has
specified an appropriate classl interrupt-handling routine,
DFBM takes the following actions:

1. Deteets the condition by checking the DFB register
product bits,

2. Turns off the date flag associated with the interrupt
(this also clears the associated product bit).

3. Branches to the address speeified in the most recently
axecuted QTDFCLI call for the speecifie condition.

Bit 52, the data flag enable bit, was cleared as part of the
data flag branch and is not set by DFBM before the branch
to the elass ] interrupt-handling routine cecurs.

60386200 G



DFBM manages elass [ interrupts aceording to the following
rules:

®  Any routine or subroutine in a FORTRAN program can
speerfy and respectfy an interrupt-handling routine for a
class 1 interrupt condition as frequently as desired.
QTDFCLI calls are used to make the specification.

&  Subroutine levels are not considered in managing class [
interrupts in the way that they are in the managing of
class IIl interrupts. The specification of a classl
nterrupt-handling routine is in effeect for the duration
of the program or until ancther Q7TDFCL1 call is tssued.

Interrupt-Handling Routines

A class [ interrupt-handling routine is responsible for most
of the interface between itself and DFBM. Sinece DFBM
does not -execute a standard call sequence, but instead
simply branches to an address in the interrupt-handling
routine, the address of the data base of the class I interrupt-
nandling routine is not available in register 1E. The
interrupt-handiing routine is responsible for saving registers
1 through FF and restoring them before branching back to
DEFBM. The address to which the elass I interrupt-handling
routine must branch is returned in a parameter of the
QTDFCL1 ecall that wss mest recently issued by the
FORTRAN program. At the time that control branches to
the class1 interrupt-handling routine, all interrupts have
been disabled,

Q7DFCLI

A cell to QTDFCLI1 can be used to specify the name of a
user~provided elassl interrupt-handling routine to which
DFBM must branch if the specified class | Interrupt oecurs.
Q7DFCL}Y returns the address in DFBM to which the
interrupt-handing routine must return upon completion.

Form:
CALL Q7DFCL1(ihr, return, 'mb?)

ihr A one-word variable containing the virtual bit
address of an interrupt-handling routine to
whiech DFBM is to branch in the event that the
specified classI interrupt condition, mb,
oeeurs,
return A one-word variable i which Q7DFCL1
returns the virtual bit address in DFBM to
whieh the interrupt-handling routine for the
condition mb must branch upen completion,
'mb' One of the classl interrupt condition desig-
nators JIT, SFT, and BKP. The designator
must be enclosed in spostrophes.

At least one QTDFCLL call must be mada for each of the

MDUMP

MDUMP is an objeet module callable by FORTRAN
programs or META subroutines of a FORTRAN program.
The module can be called as often as necessary to perform
dumps of specified areas of virtual memory.

Form:
CALL MDUMP({irst,len;dtype,u)

Simple varigble, array, or array element with
which the area to be dumped begins.

first

len Length (in words) of ares to be dumped.

dtype  Dump format:

'z Hexadecimal dump
T Integer dump

‘Ew.d" Floeting point dump, where w is the
or field width and d is the fractional
'Fw.d' decimal digit count

If dtype has a value other than one of the
above, a hexedecimal dump is made,

u Logical unit number of file to which dump is to
be written. If u=0, the dump is written to
OUTPUT.

The dump is written to a file or f{iles defined in the
PROGRAM statement or in the statement that reguests
exeeution of a FORTRAN program. For example, if a call
to MDUMP 1s made, indicating that the dump is to be
written to logieal wunit3, then a file declaration
UNIT3=filename rust also be made. See section 7 for
UNITn=f parameters in the PROGRAM statement.

MDUMP can be ealled from META subroutines of &
FORTRAN program using the standard ealling sequence
conventions described i section 12,  The logical unit
referenced in the esll must be defined in the same way as
for calls made to MDUMP from a FORTRAN routine.

Sample cutput from & call to MDUMP is given in figure 14-8,
An array! was declaered and mitialized with the two
statements

DIMENSION (20}
DATA I/5%7,15*12/

and then using the statement
CALL MDUMP(1,20,'Z',0)

a call to MDUMP was made. The output generated by this

elass I conditions for which the user desires other than
defgult processing to be parformed.

eall shows 20 words of memory, four

output.

words per line of

As 'Z', that is, a hexadecimal dump, was requested

000000070180
000000070280
006000070380
000000070480
0000000705280

HEX DuMp
WIT AOQORESS

000000900
00000000
ado0e000
ogoc00a0
09000000

20000007
ao0age0T
000006 0c
0000000C
2060000¢C

TIME 22433.02

Q0000000
40000000
gaooo0ao
0gopo0oe
[LELEL LY

CALL AQDAESS 0QQ000G0082C0

CaQeNuTegap=Tes

0000007
0000000¢C
g000a00c
0000900¢
0goco0c

20000000
20000000
20008000
90000000
00000000

0g000007
0000000¢C
an0caoat
0800000C
90000008

00000000
000000490
0000000
00000000
ea000000

PegoogeT
000p000C
0000000C
0000900C
2900000¢

¥ORO AQGRESS

00000001C06
P00Q00QLCOA
0000000 1C0E
Q0000001C12
00000001C16

ASCiI

606386200 G

Figure 14-8, MDUMP Qutput

14~9


http:22.33.02

in the parameter list of the call, the 15 elements with value
of 12-appear in the dump as hexadeecimal C,

SYSTEM ERROR PROCESSOR (SEP)

The function of the STAR System Error Processor (SEP) is to
engble the user to change certain run-time error attributes.
FORTRAN run-time error conditions can belong to one of
three classes: warming {W) for nonfatal but probably
undesirable conditions, fatal {F} for conditions that eause
abnormal termination of the program during exeeution, and

.catastrophie {C) for conditions that are not subject to user

control. By using SEP, the user can set fatal error

conditions to nonfatal status, and warning eonditions can be |

made fatal.
program.

SEP is called.as & subroutine by an executing

Form:
CALL SEP(p;,D,,D4,P4:P5:Pg:07)

Py The error number of the run-time error (see
appendix B). When p, is zero, then all other
parameters ‘must be "zero exeept p,, which
refers to the global nonfatal errer count.

Py Indieates the error class to which p, is to be
changed. Paramaeter py ean be or}e of the
following:

' Sets the "error class to fatal. Program

execution is-termmated-abnormally when’

this condition oceurs.

W' Sets the error class to warning. Execution
continues when this nonfatal condition
oceurs,

0 No error class change is to take place.

When a fatsl error is changed to a warning

error, parameter p, should also be specified to
change-the maximlfm error count to & nonzero
number,

Py The error exit subroufine entry. point name
(whish must be included in an EXTERNAL
statement {n the same program unit)h. If the
error p, oeceurs, entry point p, is celled and
execunlon continues from theré. If p, is zero,
no error exit is implied and p%ocessing
continues if the error is nonfatal. If p, isa
fatal error gnd the subroutine p, execules a
RETURN, the program aborts; if 3 is nonfatal
and p executes & RETURD?‘, program
execution continues,

By An integer constant indicating the maximum
error count for nonfatal errors; if the number
of nonfatal error condition eceurrences
reaches p, then execution terminates. An
infinite er%or eount Is indicated by a value of
-1, If p, is zero, no change for this parameter
is indicated {p, might have been sssigned &
value n a previéus SEP eall),

. The maximum error count for a warning error
for which SEP has not been called is 25. The
maxiumum error count for a fatal error for
which SEP bas not been called is zero. When
p, changes & fatal error to a warmng error, p 4
sflould also be specified.

14-10

Pg The error display suppression argument,
applying only to nonfatal errors, p. can
assume one of the following values:

18" Indiestes that the error message, normally
sent to the user's output file and to the
termingl, is to be suppressed.

-0 _No message suppression is.to take place.

Pg The number of eharacters in p,, excludirng
bracketing apostrophes. The name of the
routine or file in which the error ceeurred is
appended automatically to the message string
whenever applicable. .

Dq A character string that replaces the ‘standard,
message associated with p,. The string must
be enclosed by apostrophes to form =&
character constant.  Parameter p, must
appear when ps appeurs.

Parameter p, and at least one additional parameter must be
included-in t}re call. Any parameter other thap p, must be
indicated as.zere if that one is not to be speecified; however,
trailing Zero parameter list entries can be omitted.

Calls. to SEP ean appear s frequently as required in a
program, and the error attributes change any number of
times during program execution. The SEP routine 1s
especially useful during program checkout, enabling traps te
be set for error conditions- that could prove difficult to
diagnose. Care should be exercised when altering fatal
errors to nonfatal status: )

Examples:

CALL SEP(éﬁ,'W',S‘UB,S,O:SS,’ATTEMPT TO
READ INTEGER UNDER D FORMAT")

Use of ‘the above call causes the standard message for error
26, INTEGER MODE, CONVERSION CODE D, to be replaced
with the error message ATTEMPT TC READ INTEGER
UNDER D FORMAT, and the error level altered from fatal
to warning. If error 26 oceurs during program execution, the
program issues the message, then brenches to & subroutine
narmed SUB,.and processing continues from that point. When
the error condition occurs for the -fifth time, program
execution is aborted.

CALL SER(75,'F"
This call means that if the condition associated with error
75 oecurs at any time in the program, it is considered fatsl
and the program execution is sborted.

CALL SEP(26,'W".0,10)
In the sbove call, error condition 26 is made nonfatal.” When
the error oceurs for the tenth time, program execution 1s
aborted.

CALL SEP(72,'W",0,100,'5")
This call means that error 72 can cccur up to 100 times.

without the error message appearnng on the user's terminal
or cutput file.

60386200 G


http:called.as

CONCURRENT 1/0 SUBROUTINES

The mass storage input/output subroutines for concurrent
-1/0 transmit data in an optimal manner between main
memory and unstruetured files on mass storage. No buffers
are required and no structuring raformation is processed
when a concurrent I/0 routine is used. The routines also
allow overlapping of computation with put or output of
large data arrays, thus maximizing the use of system
resources. Unless these routines are being used, processing
of a FORTRAN program is suspended while an input/output
request is being honored.

‘The four concurrent IO routines and their funetions are:

QTBUFIN Transfer deta from mass storage to main

memory

QIBUFOUT Transfer data from main memory to mass

storage

QIWAIT Test or wait for input/output completion;
obtain error status of operation

QTSEEK Reset page address at which data is to be

transferred

Any file referenced in a call to the coneurrent I/0 routines
must be declared in the PROGRAM statement to be an
explicit mass storage file. The file cannot be referenced in
any of the FORTRAN input/output or unit positioning
statements. Onece input or output is performed on a file
using coneurrent /O routines, all input and output on that
file must be performed only by means of those routines,

The user is responsible for the correspondence between the
data record size and the size of the physical bloek to or
from which the data is transferred, Any padding required to
reconcile record size with block size is also the user's
responsibility, as is the determination of any logical end-of-
file that might exist before the physical end of the mass
storage assigned to the file. (The eoncurrent I/0 routines
recognize the physical end of a file-but no logieal end-of-
file.) The user is also responsible for cheeking for the
existence of error condittons resulting from the transfer.
No notification of the user is made of error conditions
although certain conditions are flagged so that the user can
query the system about them by ealling Q7WAIT.

The greatest efficieney in input/output using the eoncurrent
I/0 routines may be obtained when overlap of input/output
and computational operations is maintafned througheut
execution. When computational aetivity continues until
completion of the previous input/output request, maximum
overlap has been achieved.

ARRAY ALIGNMENT CONSIDERATIONS

The user must align the arrays named m the Q7BUFIN and
QTBUFOUT calls on small page boundaries, and must define
the arrays to be multiples of small pages (padding must be
added by the user if neecessary). At the time a concurrent
I/O call is executed, the program aborts if the array has not
been aligned on a page boundary. Alignment can be
accomplished by declaring the arrays to reside in one or
more labeled common blocks, then using the GRSP param-
eter of the LOAD system control statement to load the
eommon bloeks on small page boundaries.

60386200 G

If the size of an array is greater than 24 small pages (that is,
12 288 words), the array should be placed on a large page to
obtain the I/O efficiency that is derived from using
coneurrent 1/0, The GRLP parameter of the LOAD system
control statement can be used to load a labeled common
block containing the large array on & lerge page boundary.
More than one array can be defined within the 85 536 words
of a large page. If necessary, a single greay can overlap a
large page boundary; however, this results in decreessed
efficiency because multiple expliert {/0 requests must be
issued by the system to transfer that array. When multiple
explicit I/O requests are issued, econcurrent processing
ceases after the first of the multiple requests completes and
cannot resume during the remainder of the I/O for that call.
I the array did not overlap a large page boundary, a single
explieit I/O request would initiate transfer of the array and
control would return immediately to the program so that
computation could eontinue.

For example, suppose that in a FORTRAN program &
20-page array BIGRAY and a 100-page array RA2 are used
in calls to the concurrent I/O routines. The program then
should aiso contain the statement

COMMON/ANAME/BIGRAY(10240},RA2{51200)

which declares an array BIGRAY with 10 240 words and an
array RA2 with 51 200 words to reside in the labeled
common block ANAME. After the program is compiled
(using the system control statement FORTRAN.), loading is
performed using the system control statement

LOAD,BINARY,CN=XECUTE,GRLP=*ANAME

which produces the executable virtual code file XECUTE
from the file BINARY, and loads the common block ANAME
on a large page boundary.

Whether or not an array has been placed on a large page, a
call to Q7BUFIN or QTBUFOUT transfers exactly the
number of small pages specified in the call. The user can
aid the 1/0 routines in deciding how an array was mapped by
specifying 'SMALL' or 'LARGE' for the map parameter of
the Q7BUFIN or QTBUFOUT call (specification of the
parameter does not itself cause the alignment to be
performed).

SUBROUTINE CALLS

Two QTBUFIN calls, two Q7BUFQUT calls, or & Q7BUFIN
and & QTBUFOUT call can be active at one time for a given
file. If a third eall is made for data transmission before a
QTWAIT call 15 1ssued, the program is sborted. The
programmer is responsible for assuring that the speaified
portions of a file on which there are two outstanding I/O
requests do not overlap,

The file address to whieh data 1s written or from which data
15 read can be specified in either of two ways. The
Q7BUFIN or QTBUFOUT call can speecify a relative page
address as g parameter. Alterhatively, the QTSEEK eall can
establish a relative page address for a succeeding
QTBUFOUT or QTBUFIN call. In the absence of either
specification of page address, the file is scanned
sequentially, beginning at page zero of the file when 1t is
first referenced by the program. Each Q7BUFIN or
Q7BUFQUT call moves the current read/write position
forward by a specified amount (equel to the value of tha len
parameter).

14-11



OF THE

1TY
RE?RODUGIE%E(J}E 18 PO?R 1 to 99, assoclated with the file b
Q7BUFN ORIGINAL of the PROGRAM statement,

The QTBUFIN subroutine transfers data from a mass starage
file to an array in main memory by means of explieit 1/0.
The first time 1t is called by the progeam, QTBUFIN defines
the array specified in the call to be the buffer for explieit
input/output and imuates data transfer from the file.
Control then returns immediately to the program uniess the
user aligned the array in such a way that the system is
forced to issue multiple I/O requests. The array must not be
referenced until a cal! to QTWAIT has established that the
transfer was successfully completed.

Form:
CALL Q7BUFIN(u,a,len,map,faddr}

u Logical unit number of the mass storage file
irom which data is to be read. An integer
constant or integer variable having a value of
from 1 to 99, associated with the file by-means
of the PROGRAM statement.

a Array element or array name (an array name
indieates the first element of the array). Dats
from u is stored beginning at &, which must lie
on a small page boundary,

len An Integer constant or integer variable
indieating the number of small pages to be
transferred.

map Optional. The character (or Hollerith)
constant 'SMALL' {or SHSMALL) or 'LARGE!
(or SHLARGE), indicating that the array a was
mapped onto a small page or large page,
respectively. Recommended when array a has
& length greater than 24 but was not mapped
onto & large page (map would be 'SMALL').

faddr  Optional {if faddr is specified, map must also
be specified). An integer constant or integer
variable to whose value the current read
position on u is modified before the read
begins. A vanmable faddr is defined and
redefined only by the user. If faddr is omitted,
default is the eurrent read position.

Depending on the value of len, a QTBUFIN esll might
trapsfer data into only part of the array named by a, or it
might transfer data to the words located beyond the end of
the array,

Q7BUFQUT

The QYBUFQUT subroutine transfers deta from an array in
main memory to 2 mass storage file by means of explieit
1/0. The first time it is called by the program, Q@7BUFOUT
defines the array specified in the call to be the buffer for
explicit input/output and initiates data transfer to the file.
Control then returns immediately to the program unless the
user &ligned the array in such a way that the system is
forced to issue multiple I/0 requests. The array must not be
referenced until a call to QTWAIT has established that the
transfer was stuccessfully completed.

Form:
CALL QTBUFOUT{u,a,len,map,faddr)
u Logical unit number of the mass storage file to

which data is to be written. An integer
constant or integer variable having a value of

14-12

a Array element or array name (an array name
indicates the first element of the array). Dats
from the block starting at a, which must lie on
& small page boundary, is output to u.

len An integer constant or integer variable
indicating the number of small pages fo be
transferred.

map Optional. Same as the msp parameter for
Q7BUFM.

faddr  Optional (if faddr is speecified, map must also
be specified). An integer.constant or integer
variable to- whose velue the current write
position 1s modified before the write begins. A
variable faddr is defined and redefined only by
the user, If faddr is omitted, default is the
current write position.

Depending on the value of len, a Q7EUFOUT call might
transfer only part of the array named by &, or it might
transfer data located beyond the end of the array.

Q7WAIT

The QTWAIT subroutine must be called .to determine
whether or not input/output operations have completed
without {ransmisston error for a prier QTBUFIN or
QTBUFQOUT ecall for the specified file. 1/O errors are
reported to the user only through the stet parameter of this
call. Each time Q7TWAIT executes, it returns a status value
(stat} that indicates data transmission status, When data
transmission is still in progress, control either returns
immediately to the program or is relinquished by the
program until the data transfer is complete, depending on
the parameters in the ecall. QTWAIT can ealso be used to
determine when the physical end of the mass storage
assigned to a {file has been reached.

Form:
CALL QTWAIT(u,a,stat,ret,len}

u Logical unit number of the file associated with
the array a in & coneurrent I/0O operation in
progress. An integer constant or integer
variable having a value of from 1 to 99,
associated with the file by means of the
PROGRAM statement.

a Apray element or array nsme (an array name
indicates the first element of the array)
invelved in a Q7BUFIN or @QVBUFOUT
operation.

stat An integer veriable whose value 1s returned by
the call to Q7WALT. The value returned
indicates the status of the 1/0 operation:

0 = Normal completion

1 = Physical ‘end-of-file reached

4 = Data transfer error due to hardware
failure

3 = I/O operation not yet completed

60386200 G




ret Optional. Integer constant or integer variabie
specifying action to be taken upon return from
N QTWAIT ¢gll:

0 = If 1/O is-still in progress &t time of
eall, program shotld wait {eomputa-
tion should cease) until I/Q .is
completed normally or abnormaily,
Default.

et
1]

If 1/0 is still in progress at time of
cell, program should not wait but
contirol should be returned to it
immediately.

len Optionel. If Ien is specified, ret must also be,
specified. An integer varisble whose value is
returned by the call to QTWAIT. The value
returned is the number of pages actually
transmitted .during the I/O operation. (If the
physieal end of the mass storage was reached,
len might be less than the number of small
pages requested to be transferred.) ’

Q7 SEEK

The QYSEEK subroutine resets the page address at which
date transmission is to oceur. It is an elternative to a faddr
parameter in a QTBUFIN-or QTBUFOUT cali.

Form:
CALL Q7SEEK({u,faddr)

u Logical unit number of unit to be referenced in
a subssquent QYBUFIN or QTBUFQUT cell. An
integer constant or integer variable having a
value of from 1 to 99, assoeciated with the file
by means of.the PROGRAM statement.

Optional. If faddr is zero or omitted, the
current read/write position of u is repositioned
at the beginning of the file (a REWIND is
executed), Otherwise, faddr has the same
effeet as the faddr paramster of a2 Q7TBUFIN
or QTBUFQUT call.

faddr

A CALL QTSEEK(u,0) or CALL Q7SEEK(u) statement
: performs a rewind on u,

Q8WIDTH SUBROUTINE

The subroutine Q8WIDTH enables a program to set a fixed
record length for an ASCI output file. The default record
length for a PUNCH file is 80 characters. For all other
files, the default record length 1s vanable, with trailing
blanks removed from the end of each lne.

Form:
CALL Q8WIDTH(u,width)
u Logiezl unit number of the file

width Reeord length for subsequent ASCI output to

the file, The width must not exceed 137, If
width is specified as zero, trailing blanks are
removed from each line and the record length
is variable.

60386200 G

SUPPLIED SUBROUTINES

A number of predefined subroutines are provided with the @
STAR FORTRAN compiler. The predefined subroutines are ¥

referenced by CALL statement. The subroutines are listed
1n alphabetie order. .

DATE
This subroutine generates the same result as the DATE
funetion, The form is
CALL DATE(a)
The result is stered in the argument g, which can be any

8-byte variable. Within-any particuler routine, DATE must
be consistently called- either-as a function or a subroutine.

RANGET

This subroutine cbtains the current value-of the seed in the
random number generataor, The form is

CALL RANGET(n)}

The ergument i must be of type integer.

RANSET

This subroutine sets the seed in the random number
generator. The form is

CALL RANSET(n)

The argument n must be integer. The eurrent seed is set to
the specified velue if the afgument is an odd positive
integer, If the specified value is an even positive integer,
the value is incressed by 1 to an odd value. If the specified
value is zero or negative, the current seed is set to the
default value X'0000 54F4 A3B9 33BD'.

SECOND

This subfoutine generates the same result as the SECOND
funetion deseribed in section 15. The form is

CALL SECOND({(a}

The result is stored in the argument a, which can be any real
varjable. Within any particular routine, SECOND must be
consistently called either as a function or a subroutine.

-

TIME

This subroutine generates the same result as the TIME
function-described in section 15. The form 1s

CALL TIME{a)
The result is stored in the argument &, which can be any
8-byte variable. Within any particular routine, TIME must
be consistently called etther as a funetion or a subroutine.

VRANF

This subroutine generates a vector of random numbers. The
form is

CALL VRANF(v,n)

14-13

A !




The argument v is a real array that is to contein the
generated vector of random numbers. The argument n is an
integer that specifies the length of argument v.

STACKLIB ROUTINES

The STACKLIB routines car: be ealled for the purpose of
optimizing certain loep construets that cannot be
vectorized. A loop eonstruct that can be optimized is coded
as a subroutine call. The subroutine name establishes the
type of operation, and the arguments speeify the operands to
be used. In all cases, a STACKLIB eall can be considered as
replacing an equivalent DO loop.

The efficiency of STACKLIB routines is gained through
maximum use of the instruction stack and through optimal
use of the register file. For example, & STACKLIB routine
can use s large part of the register file to heold elements of a
vector operand. STACKLIB routines typically contain
unrolled loops that produce more than one result per locp
iteration,

The STACKLIB naming conventions allow for a large number
of possible routine names. The routines currently supported
represent a selection of the most useful STACKLIB
construets, The available STACKLIB routines are listed
table 14-3 and table 14~4.

Dyadie form:
CALL Q&fbrm(res,v2,vl,num)

f One of the four arithmetic operations (A=add,
S=subtract, M=multiply, D=divide},

b Broadeast mask indieating whether either operand
is invariant, -that is, sealar (0=both vectors,
1=operand v1 seglar, 2=operand v2 sealar).

res

v2

vi

REPRODUCIBILITY OF THE
ARIGINAL PAGE I8 POOR

Recursion mask {0=no recursion, l=recursive vi,
2=pecursive-v2). "

Miscellaneous designator (currently always-0).

Result operand first address. A vector must be of
type real,
Left operand first address. A vector must be of

type real.

Right operand first address. A vector must be of
type real.

num The number of results to be produced. The value

Triadie form:

b

-

must be.a positive integer.

CALL QB8fsbrm(res,v4,v2,v1,num)

£

One of the four arithmetie operations (A=add,
=subtract, M=muitiply, D=divide} used as the first
operator,

One of the four arithmetic operators used as the
second operator,

Broadeast' mask indieating any invariant operands
{0=no scalar operands; 1, 3, or 5=sealar vi; 2, 3, or
6=sealar v2; 4, 5, or 6=scalar v4).

Recursion mask (0=no recursion; 1, 3, or
S=recursive v1; 2, 3, or 6=recursive- vZ; 4, 5, or
6=recursive v4)

Miscellaneous designator (0 or 2=forward count; 1
or 3=backward count; 0 or 1l=forward order of
operations; 2 or 3=reverse order of operations)

TABLE 14-3. STACKLIB CALLS WITH.FORWARD COUNT

Equivalent Statement Contained
Deseription Type STACKLIB Call With Sample Arguments In The Loop PO xx [ = 2,N
Where I Ranges From 2 Through N
—_— e o — — ——

Add, recursive vI- Dyadie CALL Q8A010(A(2),B(2),A(1),N-1) A(EB(IFA(-1)
Add, recursive v2 Dysdie CALL Q8A020{A(2),A(1),B{2),N-1) A(D=A(-1)+B(D)
Multiply add, Triadie CALL Q8MA020(A{2),B{1),A(1),C(2),N-1) AM=(B(I-1)*A(-1)1C{)
recursive v2
Multiply add, Triadic CALL QaMAD40{A(2),A(1),B(1),C(2),N-1) AD=(AQ-1*B(I-1)y+C(I)
recursive v4
Multiply add, Triadie CALL Q8AMO11(A(2),B(2),C(1),A(1),N-1) A(M=R{IH{C{I-1yA(-1)
recursive vl,
reverse ¢rder
Muitiply add, Triadie CALL Q8AMO021(A(2),B(2),A(1),C(1),N-1) AURBIFAT-1)*CI-1)
re:eursive v2, :
reverse order
Subtract multiply, Triadic CALL Q88M011{A(2),B(2},C(2),A{1),N-1) A(D=B{IHCI*A(-1))
recursive vi, .
reverse order
Subtract multiply, Triadie CALL Q8SM021(A(2),B(2),A(1),C(2),N-1) A=BIHAI-1*C)
recursive v3,
reverse order

o 14-14

50386200 G




res Result operand first address. A vector must be of
type real.

v4 Left operand first address. A vector must be of
type real.

v2 Middle operand first address., A veetor must be of
type real.

vl Right operand first address. A vector must be of
type real,

num The number of results to be produced. The value
must be a positive integer.

The general form of a DO loop equivalent to a dyadie
STACKLIB reference is:

DO xx ind = first,last
xx res(ind) = v2{ind}(f) vi(ind)

The general form of a DO loop equivalent to a triadie
STACKLIB reference with b=0 and m=0 is:

DO xx ind = first,last
xx res(ind) = v4(ind) ) v2(ind) ) vi(ing)

The @a.nd@indicate one of the funetions +, -, %, or /., In
the triadie operation, the first operator is used on v4 and v2,
and the second operater is used on the result of the first
operation and vl. The count can be backward rather than
forward, as indieated by the m part of the routine name. If
the count is backward, the general form becomes:

DO xx ind ="first,last
irev = last+first-ind
xx res(irev) = va(irev}{(f) va(irev) ) vi(irev)

The order of operations can be reversed, as indicated by the
m part of the routine name. In reverse order, the second
operator is used on v2 and vl1, and the first operatar is used
on v4 and the result of the first operation.

The operanrds can-be scalar rather than vector, as indicated
by the b part of the routine name.

NOTE

Sinece STACKLIB routines are imple-
mented for efficiency, the validity of
arguments is not checked. If the routine
name indieates a certain recursive
operand, an offset of 1 from the result
first address is assumed, and the first
address value given in the argument list is
ignored,

TABLE 14-4. STACKLIB CALLS WITH BACKWARD COUNT

Deseription Type

STACKLIB Call With Sample Arguments

Equivalent Stetement As Contained
in The Loop DO xx I = 2,N With
J = (N+1)}-[ Included, Where J
Ranges From N-1 Through 1

| ——

Multiply add, Triadie
recursive vl,,
scalar v2
Multiply add, Triadie
recursive vl,
sealar v4
Multiply add, Triadic
recursive v4,
seealar v1,
reaverse order
Multiply add, Triadie
recursive vd,
sealar v2,

reverse order
Subtraet multiply, | Triadie
recursive vi,
reverse order
Subtract multiply, { Triadie
recursive vz,
reverse order
Divide add, Triadic
recursive v32,
sealar v4 and vl,
reverse order
Divide add, Triadie
recursive vi,
sealer v4 and v2,
reverse order

CALL Q8MA212(A(N-2),B(N-2),5, A(N-1),N-1)

. CALL Q38MA412(A(N-2),8,B(N-2),A(N-1),N-1)

CALL Q8AM143(A(N-2),A(N-1},B(N-2),8,N-1)

CALL Q8AM243(A(N-2),A(N-1),5,B(N-2),N-1)

CALL Q88M013(A(N-2),B{N-2),C(N-2),A{N-1),N-1}

CALL Q85M023({A(N-2),B(N~2), A(N-1),C(N-2),N-1)

CALL Q8DA523(A(N-2),5,A(N~1),T,N-1)

CALL Q8DAB13(A(N-2),8,T,A(N-1),N-1)

A(D=(BJIY*8)+A(dr1)

A(=(S*BEFAIH)

A{J)=AF+1)+{B(3)*S)

A(TAT+FIHE*B(I)

AW EBEIMCI*AT+L)

A(I=BIHA@+1)*CW)

AlI)=S/A(F+F1T)

A)=5/(T+A(J+1))

60386200 G

1415 ®




This page left blank intentionally.

14-16A



Replace Chapier 15 with the following pages.

PRPCTTING PAGE BLANK NOT FILMED

15-1



STAR FORTRAN INTRINSIC FUNCTIONS 15

A group of predefined functions is provided with the STAR FORTRAN compiler. These functions, listed
and described in this section, perform the conventional manipulations such as changing the sign of a
number, or frequently used mathematical computations such as logarithms and the trigonometric functions.
A reference is made to one of these functions by using the function name followed by the appropriate
list of arguments, as a data element in an arithmetical or logical expression. In FTN 77 certain functions
may only appear in a character expression. The actual argument can be any expressions that agree in
type, number, and order of arguments. Upon execution of a statement containing a reference to a pre-
defined function, the function is executed using the values that the arguments have at the time of the
reference, the function result is then made available to the expression.

The functions fall into three categories; functions when referenced:
. Cause inline code to be generated during compilation

e  Cause transfer of conirol to a library module during execution

e Can cause either of the above.

FTN ‘66 FUNCTION USAGE

When the ¥TN ‘66 option is selected the following rules apply. If the name of any function in the first
category appears in an EXTERNAL specification statement, no in-line code is generated and the user must
provide an entry point with that name. Any function that is to appear in an actual argument list must
appear in an EXTERNAL statement in the same program unit.

The library version of a function in the third category is used if the function name appears in an
EXTERNAL statement in the same program unit as the function reference; otherwise the inline version
is used. Any function in this category performs the same operations whether it is external or in-line.

FUNCTION USAGE

When the FTN 77 option is selected the following rules apply. If a function appears in an EXTERNAL
statement the user must provide an entry point with that ‘name. Any function that is to appear in an
actual argument list must appear in an INTRINSIC statement in the same program unit. (FTN ‘66
differs from FTN '77 in function usage as specified in the appendices.)

15-1A



SCALAR INTRINSIC FUNCTIONS

Scalar intrinsic functions are those intrinsic functions which preduce a scalar result. The argument of
these functions may be either scalar, vector, or, in some cases, a mixture of scalar and vector.

STAR FORTRAN provides a group of intriisic functions with the prefix Q8S in their names. These
* functions perform more involved manipulations of data than the other scalar functions, often taking
advantage of a specific STAR hardware feature. In general these functions must not appear in an
INTRINSIC statement.

The scalar functions are Iisted in table 15-1. In this table the letter a is used for scalar arguments, the
letter v for vector arguments, the letter ¢ is used for control vectors, and the letter i for index vectors.
The control vector must be of type BIT and the index vector of type INTEGER. The types of the other
arguments are indicated in the table.

Scalar arguments can be general scalar expressions. Vector arguments must be amays or dynamic variables.

15-2A



Vesl

TABLE 15.1. SCALAR INTRINSIC FUNCTIONS
Intiinsic Number of Generic Specific Type of
Funetion Definition Arguments Name Name Argoment Function
Type Conversion Conversion to integer 1 INT - Integer Integer
INT (a) THINT Half Integer
See Note | INT Real Integer
IFIX Real Integer
IDINT Douhle Integer
- Complex Integer
Coaversion to real 1 REAL REAL Integer Real
See Note 2 FLOAT Integer Real
EXTEND Half Real
— Real Real
SNGL Double Real
- Complex Real
Conversion to half 1 HALF - Integer Half
pecision - Half Half
See Note 3 - Real ITalf
- Double Half
- Complex Half
Conversion to double i DBLE - Integer Double
See Note 4 - Half Double
- Real Doubie
- Double Double
— Complex Double
Conversion to complex 1or2 COMPLX — Integer Complex
See Note 5 - Half Complex
- Reai Complex
- Double Complex
- Complex Complex
Couversion to integer 1 ICHAR Character Integer
See Note 6
Conversion to character 1 CHAR Integer Character
See Note 6
Truncation Int, {A) | AINT HINT Half Half
See Note 1 AINT Real Reai
DTNT Double Double




VP51

TABLE 15-1. SCALAR INTRINSIC FUNCTIONS (Cont’d)

Type of

Intrinsic Number of Generic Specific
Function Definition Argumenis Name Name Argument Funetion

Nearest whole number | Int {a+0°3) if a | ANINT HNINT Half Half
Int {a-0'5) if a ANINT Real Real

DNINT Double Double

Neasest integer lnt (240°5) if a 1 NINT IENINT Half Integer

Int (a-0'5) if a NINT Real Integer

i IDNINT Double Integer

Absolute value [al 1 ABS FABS Integer Integer
See Note 7 HABS Half Half
2 1/2 ABS Real Real

(ar2+ai ) DABS Double DPouble
CABS Complex Real

Remaindering ay - Int(ag/aq)ay 2 MOD MOD Integer Integer
HMOD Half Half
See Note 1 AMOD Real Real

DMOD Double Double

Transfer of sign fap Jilay= 0 2 SIGN ISIGN Integer Integer
_/ a / if 1, < 0 HSIGN Half Half
L 2 SIGN Real Real

DSIGN Double Double

Positive Difference ay mag if a4y > 0 p DIM IDIM Integer Integer
0if 8, = 2 HDIM Half Half
1 2 DIV Real Real

DDIM Pouble Double

Extended pecision ap *oay 2 DPROD Reul Double
HPROD Half Real

Choosing kngest value lex(nl,az. L) =2 MAX MAXO Integer Integer
HMAXI Half Half
AMAXI Real Real

DMAXI Double Double
AMAXO Integer Real

MAXI Real Integer




TABLE 15-1.

SCALAR INTRINSIC FUNCTIONS (Cont’d)

intiinsic Number of Generic Specific Type of
Funetion Definition Arguments Name Name Argument Function
Choosing smallest value | Min(a 1y - - J =2 MIN MINO Integer Integer
HMINI Half Half
AMINI Real Real
DMINI Double Double
AMINO Integer Real
MINI Real Integer
Length Length of a character 1 LEN Character Integer
entity
See Note 12
Index of a substring Location of substring 2 INDEX Character Integer
s in substring ag.
See Note 11.
Imaginy pai of ai 1 AINAG Complex Real
a complex mpument
Conjugate of complex | (ar-ai) 1 CONIG Complex Complex
argument
Square 100t 2 1 SORT HSORT Half Half
SORT Real Real
DSORT Double Double
CSORT Complex Complex
Exponential ety 1 EXP HEXP Half Half
EXP Real Reul
DEXP Double Double
CEXP Complex Complex
Natural logmithm Lop(a) 1 LOG HLOG Half Half
ALOG Real Real
DLOG .Double Double
CLOG Complex Complex
Common logarithin Logl0{a) 1 LOG10 HLOG10 Half Half
ALOG10 Real Real
DLOG10 Double Doubie
Sine Sin(a) 1 SIN HSIN Holf Haif
SIN Real Real
DSIN Double Double
CSIN Complex Complex




V981

TABLE 15-1.

SCALAR INTRINSIC FUNCTIONS (Cont'd)

Intrinsic Nomber of Generie Specific Type of
Function Definition Arguments Name Name Argument Function
Cosine Cos(a) i COos HCOS Half Half
CoSs Real Real
DCOS Double Double
CCoS Complex Compiex
Tangent Tan(a) 1 TAN HTAN Half Half
TAN Real Real
DTAN Double Double
Cotangent Cotan(a) 1 COTAN HCOTAN Half Half
COTAN Real Real
Arcsine Arcsin(a) i ASIN HASIN Haif Half
ASTN Real Real
DASIN Double Double
Arccosine Arccos(a) } ACOS HACOS Half Haif
ACOS Real Real
DACOS Double Double
Alctangent Arctan(a) 1 ATAN HATAN Half Half
ATAN Real Real
DATAN Double Double
Arct:m(:ll/uz) 2 ATAN2 HATAN?2 Half Half
ATAN2 Real Real
DATAN2 Double Double
Hyperbolic sine Sinh{a) 1 SINH HSINH Half Half
SiNH Real Reul
DSINH Double " Double
Hypeibolic cosine Cosh(a) i COSH HCOSH Half Half
COSH Real Real
DCOSH Double Double
Hyperbolic tangent Tanh{a) 1 TANH HTANH Half Half
TANH Real Real
DTANH Double Double
Lexically gicater ap = ay 2 LGE Character Logical
than or equal See Note 13




Vi€l

TABLE 15-]. SCALAR INTRINSIC FUNCTIONS (Cont’d)
inirinsic Number of Generic Specific Type of
Function Definition Arguments Name Name Argument Funetion
Lexically gieater than | ap > a, 2 16T Character Logical
See Note 13.
Lexically less than 1y <Ly 2 LLE Character Logical
or equal See Noie 13.
Lexically less than ap < a9 2 LLT Character Logical
Sce Note 13.
Random nomber Generate sandom num- 0 RANF Real
ber in range 0..1 .
Time of day Obtain time of day 0 TIME Character”8
Date Obtain the date 0 DATE Character*8
CPU time Obtain time in seconds 0 SECOND Real
since start of job
Insert Dits [nsert bits from a; in 4 Q8SINSB — Real Typeless
25. See Note 14. | - Integer Typeless
Extract bits Extiatt bits from a. 3 Q8SECTB - Real Typeless
See Note 15. — Integer Typeless
Test data flag Test specified bit in 2 Q8SDFB Integer Logical
branch register data tlag branch register.
Sce Note 16,
Summalion Suu vector’s elements. 1 or2 Q8SSUM - Integer Integer
See Note 17. — Half Half
— Real Real
Product Obtain product of 1 or2 Q8SPROD - Integer Integer
vector’s elements.
See Note 17.
Dot product Obtain dot product of 2 Q8ShOoT - Integer Integer
iwo veclors. :
Sec Note 18,
Bit count Count number of 1 bifs 1 Q8SCNT Bit Integer
in bi{ veeto




61

TABLE [5-1. SCALAR INTRINSIC FUNCTIONS (Cont’d)

Intrinsic Number of Generic Specific Type of
¢/ Funciion Definition Arpuments Name Naine Argument Function
Vector lengih Obtain length. of a 1 Q8SLEN — Integer Integer
veclor or value vector - Half Integer
- Real Integer
- Complex Integer
Chaosing lmgest value | Obtain maximun valued 1 or 2 Q8SMAX - Integer Integer
vector element. - Half Half
See Note 17. - Real Real
Countl elements 1or2 Q8SMAXI — Half Half
preceding maximum - Real Real
valued vector element,
See Note 17.
Choosing smallest valug| Obtain minimum value 1or2 Q8SMIN - Half [Half
vector element. - Real Real
See Note 17.
Count elements 1 or2 Q8SMINI - Integer - Integer
preceding minitmum - Half Half
valued vector element. - Real Real
See Note 17.
Find elements Find tirst pair of 2 Q8SEQ - Integer Integer
equal elements — Half Integer
- Real Integer
Find first pair of 2 Q8SGE - Integer Integer
elements for which v - Half Integer
clement 2> v, clement - Real Integer
Find first pair of 2 Q8SLT - Integer Integer
elements for which v - Half Integer
clement < v, clement - Real Integer
Find fust pair of 2 Q8SNE - Integer Integer
unequal elements — Half Integer
- Real Integer




NOTES for Table 15-1

(n

2

(3

@

(5)

(®)

For a of type integer, int{a) = 2. For a of type integer, half precision, real or double precision,
there are two cases: if fa / - 1, int(a) = 0; if fa/ = 1, int(a) is the integer whose magnitude
is the largest integer that does not exceed the magnitude of a and whose sign is the same as the
sign of a. For example,

int(-3.7) = -3

For a of type complex, int(z) is the value obtained by applying the above rule to the real part
of a

For a of type real, IFIX(2) is the same as INT(a).

For a of type real, REAL{a} is 2. For a of type integer, half or double precision, REAL(a) is
as much precision of the significant part of a as a real datum can contain. For a of type
complex, REAL(a) is the real part of a.

For a of type integer, FLOAT(a) is the same as REAL(a).

For a of type half precision HALF(a) = a. For g of type integer, real or double precision,
HALF(g) is as much precision of the significant part of a as a half precision datum can contain.
For a of type complex HALF(a) is the value obtained by applying the above rule to the real
part of a,

For a of type double precision, DBLE(a) is a. For a of type integer, half precision or a
DBLS(g) is as much precision of the significant part of a as a double precision datum can
contain. For a of type complex, DBLS(a) Is as much precision of the significant part of the
real part of 2 as a double precision datum can contain.

CMPLX may have- ome or two arguments. [f there is one argument, jt may be of type integer,
real, half or double precision, or complex. If there are two arguments, they must both be of
the same type and may be of type integer, real, half or double precision.

For a of type complex, CMPLX(a) is 2. For a of type integer, real, half or double precision,
CMPLX(2) is the complex value whose real part is REAL(a) and whose imaginary part is zero.

CMPLX(ay,a+) is the complex value whose real part is REAL(a;) and whose imaginary part is
REAL(EI?‘)I. =

ICHAR provides a means of converting from a character to an integer, based on the position of
the character in the processor collating sequence. The first character in the collating sequence
corresponds to position 0 and.the last to position 255, as there are 256 characters in the
collating sequence,

The value of ICHAR(a) is an integer in the range: 0 = ICHAR(a) = 255, where a is an
argument of type character of length one. The value of a must be a character capable of

representation in the processor. The position of that character in the collating sequence is the
value of ICHAR.

For any characters c¢; and ¢, capable of representation in the processor. (¢; .LE. ¢5) is true if
and only if (ICHAR(c,) .LE” ICHAR(c,)) is true. and (¢; -EQ. ¢4) is true if and only if
(ICHAR(¢;) -EQ. ICHAR(c,)) s true. > 2

CHAR(i) returns the character in the ith position of the processor collating sequence. The value
is of type character of length one. i must be an integer expression whose value must be in the
range 0 = i = 255

ICHAR(CHAR(i)) = i for 0 i = 255.

CHAR(ICHAR(c)) = ¢ for any character c capable of representation in the processor.

15-8A



NOTES for Table 15-1 {Cont’d)

(7)

8)

(9)
(10)
(11)

(12)

(13}

(19
(15)

(16)
- an

(18)

A complex value is expressed as an ordered pair of reals, (ar,ai), where ar is the real part and
ai is the imaginory part.

All angles are expressed in radians.

The result of a function of type complex is the principal value.

All arguments in an intrinsic function reference must be of the same type.

INDEX(aj,2,) returns an integer value indicating the starting position within the character string
?)% of a subString identical to string a;. If ay occurs more than once in ay, the starting position

the first occurrence is returned.

If a5 does not occur in aj, the value zero is reiurned. Note that zero is retumed if LEN(ay) <

LEI\%az).

The value of the argument of the LEN function need not be defined at the time the function
reference is executed.

LGE(ag.a,) returns the value true if a; = a, or if ay follows a, in the collating sequence described
in American National Standard Code for Irlt%nnation ]Interchange, ANSI X3.4-1977 (ASCI), and
otherwise returns the value false.

1GT(a ,a: ) retumns the value true if a; follows a5 in the collating sequence described in ANSI
X3.41577 (ASCID), and otherwise retuins the valie false.

LLE(a;,2,) returns the value true if a; = a5 or if a; precedes a, in the collating sequence
described"in ANSI X3.4-1977 (ASCI[), and otherwise “returns the value false.

1LT(ay,a4) returns the value true if a; precedes a, in the collating sequence described in ANSI
X3.4-1]977 {ASCII), and otherwise returns the valué false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the shorter operand is
considered as if it were extended on the right with blanks to the length of the longer operand.

The argument list for this function is (ay,m.n,a,) where a; and a, may be of type integer or
real. Arguments m and n must be of t¥pe ‘integer. The result of the function is typeless.

The argument list for this function is (a,m,n) where a may be of type integer or real. Arguments
m and n must be of type integer. The result of the function is typeless.

The data flag branch manager is described in Chapter 14.

The argument list for this function is (v) or (v,c) where v is a vector of type integer, half
precision or real, and c is vector of type bit.

The argument list for this function is (v{,v9).

15-10A



VECTOR INTRINSIC FUNCTIONS

Vector intrinsic functions are those intrinsic functions which produce a vector result. The argumenis of
these functions may be either scalar, vector or, in some cases, a mixture of scalar and vector.

Many of the vector intrinsic functions are the vector equivalent of a scalar function. These functions

" have names beginning with the letter v. The arguments of these functions are vectors and are equivalent
to the application of the scalar function to each element in the vector. For example, the following are
equivalent:

DO 1 1= 164
I M) = INT(AD)

M(1:64) = VINT(A(1:64))

STAR FORTRAN also provides a group of intrinsic functions whose names start with Q8V. These functions
perform raore involved manipulations of data than the other vector functioms, often taking advantage of a
specific STAR hardware feature. In gemeral these functions must not appear in an INTRINSIC statement.

The vector functions are listed in. Table 15-2. In this table the letter a is used for scalar arsuments, the
letter v for vector argumenis, the letter ¢ for control order- vectors, the letter i for index vectors, and
the letter u for results vectors. The result vector must always be specified, must always be the last argu-
ment and is separated from the other arguments by a semicolon.

Scalar arguments can be general scalar expressions, vector argwments must be arrays or dynamic variables.

15-11A



YCI-51

TABLE 15-2. VECTOR

INTRINSIC FUNCTIONS

Intrinsic Definition Generic Specific Type of
Function (See Note 1) Arguments Name Name Argument Function
Type conversion Conversion to integer {v) VINT VIHINT Half Integer
VINT Real Integer
VIFIX Real Integer
Conversion to real (v) VFLOAT Integer Real
VEXTEND Half Real
VSNGL Double Real
VREAL Complex Real
Conversion to half (v) VHALF - Integer Half
precision - Real Half
- Double Half
- Complex + Half
Conversion to complex v) VCMPLX Real Complex
Truncation Ini{a) {v) VAINT Real Real
VHINT Half Half
Nearest whole number| Int(a+0'5) if a = 0 {v) VANINT Real Real
Int(a-0-5) if a << 0 VHNINT Half Half
Nemest integer Int(a+0'5) if a = 0 ) VNINT Real Integer
Int(a-05) if a << 0 VIHNINT Half Integer
Absolute value falf (v} VIALS Integer Integer
5 2.1 2 VHABS Half Haif
{ar® + ai”} VABS Real Real
VCABS Complex Real
Remaindering ag - Int@agfazyiag {v) YMOD Integer Integer
: VHMOD Half Half
VAMOD Real Real
, .
Thansfer of sign falif ay 2 0 (vi:v9) VISIGN Integer Integer
—-/:ll/ if iy =<0 VHSIGN Half Half
' VSIGN Real Real
Positive diffesence ag -ty i ag S a, (vy.vp) ViDIM Integer Integer
0if 8] = ‘ay VHDIM Half Half
VDIM Real Reat




VeI-S1

TABLE 152, VECTOR INTRINSIC FUNCTIONS (Cont'd)

Type of

fntrinsic Definition Generic Specific
Function (See Note 1) Argnments Name Name Argument
Imaginary pmt of ai v VAINAG Complex
complex argument
Conjugate of & (ar,-ai) (v) VCONIG Complex
complex argument
Square root (:1)” 2 {v) VHSORT Halé
¢ VSORT Real
VCSORT Complex
Expanential ety V) VHEXP Half
VEXP Real
VCEXP Complex
Natutal logarithm Log(a) v) VHLOG Half
VALOG Real
VCLOG Complex
Common loguithm Logl 0(a) v) VHLOG10 Half
VALOGI10 Real
Sine Sin(a) 4] VIISIN Half
VSIN Renl
VCSIN Complex
Cosine Cos(a) {v) VHCOS Half
VCOS Real
YCCOS Complex
Tangent Tan{a) (v) VHTAN Half
YTAN Real
Aresine Arcsin(a) (v) VHASIN Half
VASIN Reatl
Arccosine Arceos(a) v) VHACOS Half
VACOS Real
Arclangent Archan(a) (v) VHATAN YHalf
VATAN Real
Arctan(a fa) (v) VHATAN2 ttalf
VATAN2 Real

Function

Real

Complex

Hatf
Real

Complex

Half
Real
Complex

Half
Real
Complex

Half
Real

Half
Reasl
Complex

Half
Real
Complex

Lalf
Real

Half
Real

Hulf
Real

Half
Real

Hali
Real



VPI-sl

TABLE 15-2. VECTOR INTRINSIC FUNCTIONS (Cont’d)

Intrinsic Definition Generic Specific Type of
Function (See Note 1) Arguments Name Name Argument Function
Find order of Find order of equal (v1:v0) Q8VEQI - Half Integer
clements. See elements - Real Integer
Note 2.
Find order of meater (vy:v9) Q8VGEI - Half | Integer
than or equal elements - Renl Integer
Find order of less than (vy:¥2) Q8VLTI - Half Integer
clements - Real Integer
Find order of unequal (vyvq) Q8VYNEI - Half Integer
clements - Real integer
Mask vectows Mask values in two (vl,vz,c) Q8VMASK — Integer Integer
vectors into result vector - Half Half
- Real "7 Real
Merge vectors Merge values in two (vl,vz,c) Q8VMERG - Integer Integer
vectors info aesult vector - Half Half
- Real Reai
Compress vecior Delete selected elements (vc) Q8VCMPRS — Integer Integer
from vector - Half Half
- Real Real
Expand veetor Ensert zero valued (v,c) Q8VXPND - Integer Inieger
clements in vector ' - Half Half
- Real Real
Contract vector Select elements for (v,i) Q8VGATHR — Infeger Integer
wesult vector - Half Half
- Real Real
Scatier vector Scaller clements into {v,i) Q8VSCATR — Integer Integer
result vector - Half Half
- Real Real
Store selected clements | Store selected elemens (v,c} Q8VCTRL - Integer Integer
in result vector - Half Half
- Real Real
Delete elements Delete elements below ‘(v],vz) Q8VARCMP - Integer Integer
thieshold in spaise vector - Half Hall
- Real Real




VeI-Sl

Intrinsic
Function

Reverse vector

Create an arithmetic

progression

Compuie polynominal

Compuie differences

Cieate a bit patiern

Compiite averages

I

A
i

TABLE 15-2. VECTOR INTRINSIC FUNCTIONS (Cont’d)

Type of

Definition Generic Specific
(See Note 1) Arguments Name Name Argument Function
Reverse order of clements v . Q8VREV - Integer Integer
in vector — Half Half
- Real Real
Create a vector whose (ag,a9) Q8VINTL - Integer . Integer
clements form an arith- - Half Half
metic progression See Note 3 — Real Real
Compute a polynomial (viva) Q8VPOLY - Half Half
at several values — Real Real
Computer differences v) Q8VDELT — Half Half
between adjacent elements - Real Reql
of vector
Fist group of bits are (ag,24) Q8VMKO - Integer Bit
one Sce Llo%e 3
First group of bits are (ag.a,) Q8VMKZ - Integer Bit
7ero See ho%e 3
Compute averape of v) Q8VADIM — Half Half
adjacent elements - Real Real
Compute average of (vpva) Q8VAVG - Half Half
corresponding clements — Real Real
Compute average (v,,vz) Q8VAVGD — Half Half
difference of correspond- - Real Real

ing elenenls




NOTES for Table 15-2

{1) The entity a is an clement of the integer, half precision, or real vector v. ar and aj are
the real and imaginary partS respectively of a complex vector.

(2) Equivalent to issuing a series of QS8S<rel op > calls in which one of the arguments is a
scalar equal to an element of one of the argument vectors.

(3) The arguments a; and a, are of type integer and the result is of type bit.
1 2

15-16A



Function Descriptions

The following descriptions are listed in alphabetical order.

The values of some of the mathematical functions can be infinite.

~The type of the result of a generic function is either predefined or depends on the type of its arguments.
For example LOG(a) retums a result with the same type as a, but REAL(a) always has a real result regard-
less of the type of a. ’

A generic function name may not be passed as an actual argument, unless it corresponds to a specific
function name.

ABS(a)

This function computes the absolute value of the specified argument. Ifs arguments may be of type
integer, half precision, real, double precision or complex. It is the specific function name for obtaining
the absolute value of a real argpment. For a real argument x, ABS(x) computes / x /. The other specific
functions which compute absolute values are CABS, DABS, HABS, and IABS.

ACOS(a)

This function computes the arccosine of a half precision, real, or double precision argument. It is the
specific function name for compiling the arccosine of a real argument. The other specific functions which
comnpute arccosines are DACOS, and HACOS. See ASIN for a description of the ACOS function.

AIMAG(a)

This returns the imaginary part of a complex number as a real nﬁmber; if xHy is the complex number,
AIMAG returns y.

AINT(a)

This function computes [a], where [a] is the sign of a times the largest integer less than or equal to [ a /[
The type of a may be half precision, real, or double precision. It is the specific function name for
truncating a real argument. The other specific function names which truncate the argument are HINT and
DINT,

ALOG(a)

This computes the natural logarithm of a real mumber greater than zero. The result is a real number
accurate to approximately 45 bits.

15-17A



ALOG10(z)
This computes the logarithm of a real number. The result is a real number that is accurate to approxi-
mately 45 bits.

A.MAXO(aI ,32,...9

This searches a list of integer numbers for the list element having the maximum value. The integer found

is refurned as a real number.

AMAX1(ay,29,-)

This searches a list of real numbers for the list element having. the maximum value and retums that value.

AMINO(al,az,...)
This searches a list of integer numbers for the list element having the minimum value. The integer found
is returned as a real number.

AMINl(aI,az,...)
This searches a list of real numbers for the list element having the minimum value and returns the number
when found.

AMOD(ay a4,...)

This computes one real number modulo z second real number and produces a real result. AMOD(x,¥) is

* defined as x-[x/y]*y, where [A] is the sign of A times the largest integer less than or equal to fA[.

ANINT(a)
This function computes the nearest whole number to the specified half precision, real, or double precision

arsument. It is the specific function name for obtaining the nearest whole number to a real argument.
The other specific function names which compute the nearest whole number are DNINT and HNINT.

Example:

Given a = -3-5D+00
ANINT(a) = AINT{-3-5D+00 - 50D - 01)
= - 4-0D+00

ASIN(a)

This function computes the arcsine of a half precision, real, or double precision argument. It is the specific
function name for computing the arcsine of a real argument. The other specific functions which compute
arcsines are DASIN and HASIN.

The specific functions ASIN and ACOS compute the arcsine and the arccosine of a real number having an
absolute value less than or equal to 1.0. The result is 2 real number expressed in radiansy-and. is accurate
to approximately 45 bits. The range of the result for ASIN is -pi/2 through pif2, inclusive; and the range
of the result for ACOS is 0 through pi, inclusive.

15-18A



ATAN(a)

This function computes the arctangent of a half -precision, real, or double precision argument. It is the
specific function name for computing the arctangent of a real argument, The other specific functicn names
for computing arctangents are DATAN and HATAN.

. The -specific function ATAN computes the arctangenf of a real number., The real result is accurate to
approximately 45 bits, and is In the range -pif2 through pi/2 (net inclusive). )
ATAN2(ay 2,)

This function computes the arctangent of the ratio of two half precision, real, or double precision argu-
ments. It is the specific function name for computing the arctangent of the ratio of two real arguments.
The other specific functions for computing the arctangent of a ratio are DATAN2 and,d HATAN2.

The specific function ATAN2 computes the arctangent of the ratio of two real numbers. The real result,
expressed in radiams, is accurate to approximately 45 bits and is in the range -pi through pi.

CABS(a)

This computes the modulus of a complex number, and produces a real result that is greater than or equal
to zero which is accurate to approximately 45 bits.

CCOS(a)

This computes the cosine of a complex number. The result is a complex number whose real and imaginary
parts are each accurate to approximately 43 bits.

CEXP(2)

This computes the exponential of a complex number. The result is 2 complex number that is accurate to
approximately 45 bits.

CHAR(I)

This function returns the character in the ith position of the ASCII 256 character set. For example,
CHAR(65) returns the character A and is equivalent to CHAR(X1411).

CLOG(a)

This computes the natural logarithm of any complex number except 0. + i0.. The result is a complex

number that is accurate to approximately 45 bits.

CMPLX{(a) or COMPLX(ay,2,}

This function constructs a complex number from one or two integer, half precision, real, double or complex

arguments. When two arguments are given they must be of the same type.

For a of type complex, CMPLX(a) is a. For a of type integer, half, real or double precision CMPLX(a)
is the complex value whose real part is REAL{a) and whose imaginary part is zero.

15-19A



CMPLX(2,,a,) is the compiex value whose real part is REAL(ay) and whose imaginary part is REAL(a,)

There are no specific function names for constructing a complex number.

LONIG(a)

This computes the conjugate of a complex number. If the complex number is xHy, the conjugate is -x-iy;
the real part, x, of the complex number is assigned to a real part of the result, and the imaginary part, y,
of the complex number is negated and assigned fo the imaginary part of the result.

COS(a)

This function computes the cosine of a half precisiom, real, double precision, or complex argument expressed
in radians. It is the specific function name for computing the cosine of a real argument. The other specific
funetions which compute cosimes are CCOS, DCOS, and HCOS. See SIN for a description of the COS
funetion.

COSH(a)

This function computes the hyperbolic cosine for half precision, real, or double precision argument. It is
the specific function name for computing the hyperbolic cosine of a real argument. The other specific
functions which compute hyperbolic cosines are DCOSH and HCOSH.

The function COSH computes the hyperbolic cosine of a real number and produces a real result that is
greater than or equal to 1.0 and accurate to 47 bits.

COTAN(a)

This function computes the cofangent of a half precision or real argument expressed in radians, It is the
specific function name for computing the cotangent of a real argument. The other specific function for
computing cotangent is HCOTAN.

The function COTAN computes the cotangent of a real number expressed in radians. The function first
reduces its argument modulo 2 pi. The result is a real number that is accurate to approximately 45 bits,

CSIN(a)

This computes the sine of a complex number. The result is a complex number accurate to approximately
45 bits.

CSQRT(a)

This computes the square root of a complex number in which the real part is greater than or equal to zero,
and returns a complex result that is accurate to approximately 45 bits. Whenever a result is retwmed in
which the real part is zero, the imaginary part is greater than or equal to zero.

DABS(a)

For a double precision number x, DABS(x) computes the absolute value /x/.

15-20A



DACOS(a)
See DASIN for a description of the DACOS function.

DASIN(a) and DACOS(a)

* These compute the arcsine and arccosine of a double precision number having an absolute value less than
or equal to 1.0. The double precision resuit, expressed in radians, is accurate to 94 bits.

DATAN(a) and DATAN2(ab)

These compute the arctangent of the ratio of two double precision numbers. If the denominator is 1.0,
it need not be specified (DATAN is used). The double precision result, expressed in radians, is accurafe-
to approximately 90 bits.

DATAN2(a,b)
See DATAN for a description of the DATAN2 function.

DATE( )
This function returns the date in CHARACTER*8 format. Note that the function has no arsument.

DBLE(a)

For a of type double precision DBLE(a) = a. For a of type integer, half precision, or real, this Function
produces a double precision result equal to a for a type complex DBLE(a) = DBLE(REAL(a)). There are
no specific functions for forming a double precision resuit.

DCOS(a)
See DSIN for a description of the DCOS routine.

DCOSH(a)

This computes the hyperbolic cosine of a double precision number and produces a double precision result
that is accurate to 94 bits.

DD IM(HI ,az)

This computes the positive excess of one double precision number over another double precision number.
DDIM(x,y) returns the value x-y if x is greater than or equal to y, and returns a double precision value
of 0.0 otherwise. The function value is accurate to 94 bits.

DEXP@

This computes the exponential of a double precision number. The result is double precision and is accurate
to approximately 90 bits.

15-21A



D IM(al ,32)

This function computes the positive excess of a; over a;. a; and a, must be of the same type and may
be integer, half precision, real or double precision. It is the specific function name for computing the
positive excess of one real number over another. The othei specific functions which compute the positive
. excess are DDIM, HDIM, and IDIM. DIM(ay,a,) is equal to aj - ay if a; > a4 and 0 otherwise.

DINT(a)

For a double precision number x, DINT(x) computes [x], where {A] is the sign of A times the largest
integer less than or equal to fA/. DINT returns a double precision result even though iis value is always

integral.

DLOG(a)
This computes the: natural logarithm of a double precision number. The result is a double precision number
that is accurate to approximately 90 bits.

DLOG10(a)

This computes the logarithm of a double precision number. The result is a double precision number that
‘is accurate to approximately 90 bits. )

DMAXl(al,az,...)
This searches a list of double precision numbers for the list element having the maximum value and returns
that value,

DMINI(al,az,...)
This searches a list of double precision numbers for the list element having the minimum value and retums
the number when found.

DMOD(ay,a7)

This computes one double precision number modulo a second double precision number and calculates a
double precision result. Valid arguments for DMOD lie in the imterval -0.476 854 057 715 93E + 8645=x
=+ 0.476 854 057 715 93E + 8645 (the largest allowable argument value is half of the largest aliowable
real number).

DNINT(a)

This function computes the nearest whole number to a, both the argument and result are of type double
precision. Note that for a double precision argument a DNINT(a) = ANINT(a).

15-22A



FEASIBILITY STUDY
FOR A
NUMERICAL AERODYNAMIC SIMULATION FACILITY

Volume |l — FMP Language Specification/User Mznual

Contributions by: B. G. Kenner
N. R. Lincoln

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Strest

St. Paul, Minnesota 585112

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



FMP FORTRAN

This manual is intended to show the revisions and additions that Control Data proposes to make to the
current STAR FORTRAN. All references to STAR FORTRAN in the manual should be considered to
be a reference to FMP FORTRAN.

The revisions have generally been to show where FMP FORTRAN will be different than the currently
existing FORTRAN. Places where a change is to occur in the original manual are marked and the facing
page (and following pages, if necessary) of this manual shows the expected change.

This manual is a preliminary and is subject to further changes.



1. INTRODUCTION

Program Fomn
END Lines
END Statement
Cominents
Statements
Statement Labels
Continuation of Statements
Ordering Statements
Columms 73 throagh End of
Source Line
Program Data

2. STATEMENT ELEMENTS

Character Set
Data Elements
Constants
Variables
Arrays
Subscripts and Array
Declarators
Subscript Interpretation
Substrings
Element Forms
Integer Elements
Real Elements
Double Precision Elements
Half Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

Data

3. SCALAR EXPRESSIONS

Arithmetic Expressions
Exponentiation
Evaluation of Arithmetic
Expressions
Type of an Arithmetic Expression
Character Expressions
Relational Expressions
Logical Expressions
Bit Expressions

4. SCALAR ASSIGNMENT STATEMENTS

Arithmetic Assignment Statement
Character Assignment Statement
Logical Assignment Statement
Bit Assignment Statement

CONTENTS

11

11
1.2
1-2A
i-2
i-2
12
12
1-2
13
13

L3 )
H
—

. e

Gl

Wl LW WU
N ]

N
A

4.1

.F..
(RS}

4.2
42

iii

5.  FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO
Assigned GO TO
ASSIGN Statement
Assisned GO TO Statement
Computed GO TO
IF Statement
Arithmetic IF
Logical IF
DO Statement
Defining 2 DO Loop
Nesting DO Loops
No Zero Trip Option
CONTINUE Statement
Nesting of DO Leops and Blocks
PAUSE Statement
STOP Statement
RETURN Statement
CALL Statement
END Statement

6.  SPECIFICATION AND DATA
INITIALIZATION STATEMENTS

Type Statements
IMPLICIT Statement
Explicit Typing
DIMENSION Statement
ROWWISE Statement
COMMON Statement
LEVEL Statement
DYNAMIC Statement
EQUIVALENCE Statement
EXTERNAL Statement
INTRINSIC Statement
SAVE Statement
DATA Statement
Implied DO in Data Statement
Rules for Initializing Values

7. DEFINING PROGRAM UNITS AND
STATEMENT FUNCTIONS

The Main Program
The PROGRAM Statement
File Declaration Specifier
Alternate Unit Specifier
Main Program Restrictions
Statement Functions
Defining Statement Functions
Referencing Statement Functions
Subprograms
Passing Arguments Between Subprograms
Function Subprograms

iy
—

mmgnu;gntﬂltgat;h
T D I 1 Bt bt ek et

:.3‘.‘".

52
5-3
5-3A
53
5-3A
54 .
54
54
5-4
5-5A

[
oy

L

[ e - = -
00 03 G 1D DD D et b e

O Ch ON G
LRLE
tn b=
-

6-5
6-5

-
N

Bl Ind b b
B e e e e

+

uu.&:-.wwdaw»—u—u—u—-m
I

‘-sl\l‘-l‘-xl‘-xl‘:-l‘-l'-'-.l‘-.l'--.l'--.l

N



Subroutine Subprograms
Block Data Subprograms

Multiple Entry Subprograms

. Function Subprogram Entry Point
Names
Secondary Entry Point Argument Lists
Referencing Secondary Enfry Points

8. CDC CYBER 200 FORTRAN 77
INPUT/OUTPUT STATEMENTS

Input/Output Statemenis
Records
Formatted Record
Unformatted Record
Unformatted Records Containing
Date of Type Bit
Endfile Record
Files
File Existence
File Properties
File Position
File Access
Sequential Access
Direct Access
Internal Files
Standard Internal File Properties

Standard Intemal File Restrictions

Extended Internal File Properties

Extended Intemal File Restrictions

Units
Unijt Existence :
Connection of a Unit
Format Specifier and Identifier
Record Specifier
Error and End-of-File Conditions
Input/Qutput Status, Error, and End-of-File
Specifiers
Error Specifier
End-of-File Specifier
READ, WRITE, PRINT, and PUNCH
Statements
Control Information List
Input/Output List
Input List Items
Output List [tems
Tmplied-DO List
Execution of a Data Transfer Input/Output
Statement
Direction of Data Transfer
Identifying a Unit
Establishing a Format
File Position Prior to Data Transfer
Sequential Access
Direct Access
Data Transfer
Unformatied Data Transfer
Formatted Data Transfer
Using a Format Specification
List-Directed Formatting
Printing of Formatted Records

7-5
7-6
7-6

7-6
77
77

8-1A

8-1A
8-1A
82A
8-2A

8-2A
824
824
834
83A
84A
844
844
8-3A
8-5A
8-5A
8-6A
8-6A
8-7A
8-7A
8-7TA
3-8A
8-9A
8-10A.
8-10A

8-11A
8-11A
8-12A

8124
8-134
8-14A
8-14A
8-14A
8-154

8-16A
8-16A
8-16A
S-17A
8-17A
8-17A
8-18A
8-184
8-18A
8-19A
8-19A
3-204
3-20A

iv

File Position After Data Transfer
Input/Output Status Specifier Definition
Auxiliary Input/Output Statements
OPEN Statement
Open of a Connected Unit
CLOSE Staiement
Implicit Close at Termination
of Execution’
INQUIRE Statement
INQUIRE By File
INQUIRE By Unit
Inquiry Specifiers
File Positioning Statements
BACKSPACE Statement
ENDFILE Statement
REWIND Statement
Restrictions on Input/Output Statements
NAMELIST Input/Output
NAMELIST Statement
NAMELIST Data Transfer
ENCODE and DECODE Statements
Concurrent Input/Cutput Statements

9. CDC CYBER 200 FORTRAN 77
FORMAT SPECIFICATION

Format Specification Methods
Character Format Specification
Non-Character Array Format
Specification
Form of a Format Specification
Edit Descriptors
Interaction Befween Input/Output
List and Format
Positioning By Format Control
Editing
Apostrophe Editing
H Editing
Positioning Editing
T, TL, and TR Editing
X Editing
Slash Editing
Colon Editing
S, SP, and SS Editing
P Editing
Scale Factor

BN and BZ Editing

Numeric Editing
Integer Editing
Half Precision, Real, and Double
Precision Editing

F Editing

E and D editing

G Editing

Complex Editing

L Editing

A Editing

Processor Independent Editing
R Editing
Z Editing
B Editing

List-Directed Formatting

8-20A
8-21A
8-21A
8214
8-23A
824A

825A
825A
8254
8-26A
8-26A
8-30A
8-30A
8-31A
8-31A
831A
8-31A
8-32A
8324
8-33A
8-33A

9-14

9-1A
9-1A

9-2A
924
9-3A

9-3A
9-5A
9-5A
9-5A
9-35A
9-6A
9-6A
9-6A
9-7A
9-7A
9-7A
9-7A
9-8A
9-8A
9-8A
9-9A

9-10A
9-10A
9-10A
9-114
9-124
9-124
9-124
9-13A
2-13A
9-13A
9-14A
S-14A



List-Directed Input
List-Directed Output
NAMELIST Fommatting
NAMELIST Input
NAMELIST Output

10. ARRAY ASSIGNMENT
Subarray References
Conformable Subarrays
Array Expressions

Array Assignment Statement
DEFINE Statement

11. Deleted

12. Deleted

13. " Deleted

14. STAR FORTRAN-SUPPLIED

SUBROUTINES AND SPECIAL

CALLS

Data Flag Branch Manager

Data Flag Branch Hardware
Default Conditions
Branches

Data Flag Branch Software
Interrupt Classes
Multiple Interrupts
Default Interrupt Processing

Class III Interrupts
Interrupt-Handling Routines
Q7DFSET
Q7DFLAGS
Q7DFOFF

Clags I Interrupts
Interrupt-Handling Routines
Q7DFCL1

Special Call Statements

Qmyg

Compatability Features

STAR FORTRAN °77 Statement List

9-154 -
9-16A
9-17A
9-18A
9-19A

101

10-1
10-2
102
162
10-3.1A

14-1

142
14.3
143
144
145
145
145
14-5
14-6
147
147
14-8
14.8
14.8
14-9
14.9

APPENDIXES

D-1
F-1A
G-1

MDUMP
System Error Processor (SEP)
Concurrent IfO Subroutines

Array Alignment Considerations
Subroutine Calls

Q7BUFIN

Q7BUFOUT

Q7WAIT

Q7SEEK

Q8WIDTH Subroutine
Supplied Subroutines
STACKLIB Routines

15. STAR FORTRAN INTRINSIC

FUNCTIONS

Function Usage
Scalar Intrinsic Funetions
Vector Intrinsic Functions

PROGRAM COMPILATION

FORTRAN Statement

A — Assembly Listing

B — Build Object File

- Cross Reference Listing

— Extended Basic Block Optimization
— Instruction Scheduling

— 64-Bit Compare

Source Listing Suppression
Map of Register File and
Storage Assignments

— Optimijzation

Redundant Code Elimination
Create Debug Symbol Tables
Unsafe Vectorization
Vectorization

Syntax Check

DO Loop Optimization
STAR-100 Optimization
STAR-100A Optimization

BRSO

NENACORO
{

14-9

14-10
14-11
14-11
14-11
14-12
14-12
i4-12
14-13
14-13
14-13
14-14

15-1A

15-1A
15-2A
15-114

16-1

16-1
16-1
16-1
16-1
16-1
16-2
16-2
16-2

16-2
16-2
16-2
16-2
16-2
16-2
16-2
16-2
16-2
16-2



STAR FORTRAN ‘77

Externai Reference Specification



PREFACE

This document is the STAR FORTRAN °77 External Reference Specification. [t comprises Chapters 1-11
and 14-156 and Appendices D, F, and G of Revision G of the STAR FORTRAN Reference Manual,

modified to reflect language changes which will be made as part of the implementation of FORTRAN 77
on STAR.

This document takes the form of the original reference manual material, plus change pages. The changes
have not been integrated in order that the differences between current STAR FORTRAN and FORTRAN
*77 will be clearer.

The usual format will be the reference manual page on the reader’s left, followed by the changed passages

which appear on the reader’s right. The changes and additions are page nmumbered with an A following the
page number.



INTRODUCTION 1

The FORTRAN programming language for the STAR-100
computer contams both CDC and.unique STAR extensions to
the standard FORTRAN (as defined by American National
Standards ¥3.9-1966, FORTRAN). Throughout this manual,
shading is used to distinguish these extensions from the
standard FORTRAN language features.

Several of the STAR FORTRAN extensions to standard
FORTRAN allow the FORTRAN user to exploit the vector
proeessing capabilities of the STAR computer. In STAR
FORTRAN, vectors can be expressed with an explieit
notation, functions are provided that retucn vector results,
and special call statements enable access to any machine
\instmetton.

PROGRAM FORM

A FORTRAN program consists of one or inore separately
defined program umts. A program umit, which is either a
main program or a subprogram, consists of a series of source
lines that contain statements, optional comment lines, and
B{one and only one END lme. An executable FORTRAN
program must contam one main program; it can also contain
any-number of subprograms.

If the executable program consisting of source lines aggre-
gated as program units ts accepted by the STAR FORTRAN
compiler, the program s changed into a form that can be
loaded and executed by the STAR operating system. The
compiier executes in response to the FORTRAN system
control statement. Onee the program has been ecmpiled, it
can be loaded and executed In response to further system
control statements.

Execution of the compiled program proceeds with one
program umt having control until it relinquishes 1t to
another program unit or stops. Values can be passed at the
time that eonirol is passed from one program umt to
encther. During execution, the compiled program can make
use of execution-time routines that are part of the system
library. Files referenced in the program are read and
written by STAR Record Manager. Depending on the source
program statements, other system-defined or compiler-
defined procedures such as conditional interrupt routines and
error processing routines might also be 1nvoked during
execution.

An example of a complete STAR FORTRAN program 1s
provided mn figure 1-1.

CONTROL DATA
CORTAZY CLOING FDRM
_:EOGEAM _ _2{"_&%{{, NAME
wounInNg 0aTE rage
:;: ;:" '_.(;E U FORTAAN STATEMENT o
the B a0 ; [ Pl ez
T T ST T S ] ol e e e e el e e ) 132318 162165 1841951501971 82 3 [ 1, 2] g teysi o g e
- ....’.‘f..dlé_ﬁ.a'.mie_ﬁjsﬂlﬁ'_b'.‘gﬂmﬂpmﬁ)' ta ke vt sov ey iy g by s g e e v ey p g e g iy
_._,....11"'?:5_&._5.&‘-41111!}!:-' ISR RN RN NN R RN ER NS N NN
'L._..f_’A-T_A_.:In[__llilJli/'Il/l:=IlIi'lll g1t p v e ey tverr v v a v e b ety beyargre ksl g ra
AR I S N N L LT N N N N NN TR NN RSN RS RSN IR E R & (I N
-.".-L...P.QLENJT'.A).I(_L‘UI'Tl:;I'Ildln'"' rv gy Lo v s v e by gy g b sy s lvivienyen
et L ERMATL haHU QS hATINANS [ar M 70 ! ? R O A T T RN Y
T 111 X N e P B S S R R TR TR I!ll'll!llrlll-llrl a|:r||l||lu NS ENEN
€ 11 i ns ;--:'E-r Lo v by e ee g g be o pa v e vy v ey v by re gy b e
Lo ....._,_D‘gi.gfd 1540 il [ I I it 11 1s 1 [ N RN N RN 3 [N}
IS 35 W W SO W S 'L""l"ll L30T T O OO0 N T Y T O I lrl!lrl-l!irllllzll:l i prr sy
1 |.<)=-i~-'rl;ql"!'|lll'l||lll lililrlllll|l|r||l|I!lII‘ll.Il!||i||||!
Qiiixdlilkz'ila-!:°'l!!llllllitdlIil!!|l|l|lirlllllinslljiltllga RN NN
] iy = Lo Yoot 80 o 0 g s g o e =|||;|r;r1|E:|a-|||=-1||r:u-|[riul 1 et
Z SoinNT 3 G Joy ek olel 30 o boov s v o v s vk B v v a s b ks lllnlflll;lll- ')
LY R LA R0 C-3 M T TR T e e e et e b
e ..__,.S.T.?(..E._......_,.l L S S T ll"l"l L SO I T |I||§':..r.;||r [ LK) !
........-....='|'D‘.-.........." LI -ll'-|:"llll' 'Elll'lllll P2y 1 |;‘l}lll|l] ,:-.I;-.u
brrimim - ——— o — Al [ lill"‘l!'!lll lEll!ll| llelll'l' P trillll'cil'lflbllg
4 ! L 0 S T | fl'lllll'l 1 v 41t !lllrll|1|1!|||||| n|!||||11||- LI I Y B
| .. I'E. . teeqpd s g sy 10141t ] 1||l||r1;§l|!vl|l!l]!|r'L!FIII s LA T N T |
S '.Lz.:: ire l""'lrnlltilt LI !ll‘ll!llfll!ll'$!l ptore vy by g by v By
’ e J. §oeLsag .St Ty ue ;.:—} R R P e e T Pt SR L e e e e JEC I u.a-.u.umlmumm.;..Lu;: S| SAIEINT MLALEOTE FTIAE IS5 168004 )22 | 3 msn s e
Figure 1-1. Sample Coded FORTRAN Program
60386200 E REPRODUCIBILITY OF THE 1-1

ORIGINAL PAGE IS POOR



END STATEMENT

The END statement must be the last statement of each main program
or subprogram. If execuied in a main program, the END statement
acts like

STOP ‘END’

If executed in a subroutine or function subprogram, END acts like
RETURN



SPECIFICATION AND DATA INITIALIZATION STATEMENTS 6

Specification statements are nonexecutable -statements
whose purpose is to define storage requirements of

variables, arrays, and function results. They define the type.

of a symbolic name, specify the dimensions of an array,
stipulate the length of a charaeter variable, and define how
storage is to be shared.

If specification statements are used, they must appeer
before the first executable statement of the program unit in
which they oceur. Any program that refers to an array must
have at least -one specification statement. Otherwise,
specification statements may or may not be required.

The' nonexecutable data initialization statement 15 alse
described in this seetion.

TYPE STATEMENTS

A{ Variables, arrays, and funetion names that appear in & STAR
FORTRAN program must each be associated with a data
type. Explieit type statements and implicit typing are the
two ways to make this association.

B{ The appearance of & symbolic name in g type statement
wforms the compiler that the neme is of the specified data
type in the program unit. In the absence of & type

£ istatement, the type of a symbolic name is implied by the

first letter of the name; unless IMPLICIT statements alter
the correspondences of first letters to data types, the
letters I, J, K, L, M and N imply type integer and all other
letters imply type resl. (This default type association is
referred to as the first-letter rule.) -

The predefined FORTRAN f{function names possess pre-
determined data types. Implicit typing of any of these
names has no effeet. If the name of a FORTRAN-supplied
function is explieitly associated with a type other than its
predefined type, the name ceases to reference the
FORTRAN-supplied func}ion.

IMPLICIT STATEMENT

The IMPLICIT statement alters the default correspondences
between first letters and data types for symbolic names.
The statement can also specify length for type character.
E IMPLICIT statements must precede all other specifieation
statements.

Form:
IMPLICIT typl(lxstl), - ,typm(listm)

typ; The name of a data type: INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL,
BIT, or CHARACTER. The character variable
names are sssumed to be of length one uniess
the word CHARACTER is followed by *n,
where n is an integer constant that specifies
the character variable length in bytes.

60386200 D

l!sti A list of the foi'm:

VisVgs v e eV

where v, is a range of first letters of variables
to be considered of type typ. v; is either a
single.alphabetic character, or two such char-
acters separated by & minus.sign to denote the
first and last charaeters of a range. The
second character in a range specification-must
follow the first in alphabetic sequence.

A character must not be associated with more than one dats
type or byte length by IMPLICIT statements.

An IMPLICIT statement in a function or subroutine subpro-
gram affects the data type assoeiated with dummy argu-
ments and the function name, as well as with other variables
in the subprogram.

Explieit typing of a variable, array, or function name in an

explieit type statement or FUNCTION statement overrides
any, implicit type specification.

EXPLICIT TYPING

An explieit type statement 1s used to declare one or more
entities to be of the specified data type. It overrides or
eonfirms any implieit typing and can supply dimenston and
byte length information.
Forms:
INTEGgR vlldll,vzjdzl, ‘e ,vn/dn/
REAL vlldlf,vzfdzl, ‘e ,vn/dn/
DOUBLE PRECISION vildfveldafs o o VL /AL
COMPLEX AT T ZYL Y Vo/dy/
LOGICAL vlldll,vzldzl, e eavpfd/
CHARACTER *Kvl*klldll,vz*kzldzl, - ,vn*kn/dn/ }G
BIT vyfdy/valdyd, .. Mo/
v, A variable, array, array declarator, or function
name.
d; Optional. Represents the initial value for vi. K |}
omitted, the surrounding slashes must als¢ be
omitied. (Rules for initializing within a type
statement eare given under the heading DATA
Statement later in this section.)

*K Optienal. An integer constant specifying the

element length n bytes of every v. This specifies- |H

tion is overridden by the individual *k length
speeifications. If *K is omitted, a length of one
byte is implied for everyv not accompanied}{
by a *k.



There are two neariyéidentical FORTRAN languages for the Control Data
STAR-100 and CYBER 200 series computers. One, FTNG66, is

based on American National Standard X3.9-1966 FORTRAN and

includes that language as a subset. The other, FTN77, is

based on, and includes, ANS X3.9-1978 FORTRAN.

FTN66 is composed of ANS X3.9-1966 FORTRAN together with
three kinds of extensions:

1. Those which are common in FORTRAN dialects used on
other Control Data computers,

2.  Those designed to provide access to the vector processing
capabilities of the CDC STAR-100 and CYBER 200 .series
compuiters, and

3. Those derived from ANS X3.9-1978. FTN66 includes all
the features of the 1978 standard except those which are
incompatible with the 1966 standard,

FIN77 is composed of ANS X3.9-1978 FORTRAN tcgether with the
first two kinds of extensions mentioned above.

This manual describes FTN77 phis extensions for FMP FORTRAN

. one and only one END statement. An executable
FORTRAN . . .



A statement is written as one or more source lines, and a
comment, as one source line. The first line of a statement
is called an inttial line and the succeeding ones are called
continuation lines. Each line is a string of any characters tn
the &4-character ASCII subset listed in appendix A. The
character positions min a line are called columns and are
consecutively numbered left to right.

A FORTRAN program can be written on a eoding form such
as the one tllustrated in figure 1-1. Each line on the coding
form represents 4 source line that can be either keypunched
on a card or typed tn at & terminal. No more than one
statement is permitted on a2 single line. The conventional
significance of esch column of a souree line is shown in
table 1-1.

TABLE 1-1. COLUMN CONVENTIONS

Columns Signifieance
1 The letter C indicates that thisisa
comment line, and that the remainder of
the line is to be ignored by the FORTRAN
s eompiler,
1thru§ One to five numeric characters in this
field are interpreted as a statement label.
& Any ASCII charaeter other than a blank or
zero indieates that this is a continuaticn
line.
7 thru 72 | STAR FORTRAN statement, with blank
i characters ignored exeept in charaeter and
s Hollerith constants, can appear anywhere
within this fleld,
73 thru end | Identifiestion field, the contents of which
of source are always ignored by the FORTRAN
line compiler, can contain any characters.
END LINES

An END line indicates to the FORTRAN compiler the end of
a program unit. Every program teit must have an END line
as its Iast line.

Form:
END
Program units are deseribed in section 7.

COMMENTS

Comment lines are used for purposes of in-line documenta-
tion. They ere not statements. Exeept for being printed in
the output file, comment lines have no effect. The letter C
in column 1 of a line indicates that this is a comment line;
the comments themselves can be written anywhere after
column 1. If a comment requires more than one line, each
line must have a C in column 1.

STATEMENTS

The statements m the STAR FORTRAN language fall into
two classes: executable and nonexecutable (see table 1-2).
In general, 2 FORTRAN program unit consists of nonexecut-
abje statements followed by executable statements; how-
aver, there are a8 few significant exceptions to this
separation.

TABLE 1-2. TYPES OF STATEMENTS

Executable Nonexecutable

Procedure definition state-

Input statements
ments (seetions 7 and 11)

{section 8)

Assignment statements
(sections 4, 10, and 11)

Specification statements
(sections § and 11)

Data initislization state-
ments (seetions 6 and 11)

Flow control statements
(seetion 5)

FORMAT statements

OQutput statements

{section 8) (seetion 9)
NAMELIST statements
(section 8)

Executable statements speecify actions to be taken during
program execution. Executable statements are used
typically in the course of a program to request that data be
input, that data be operated upon and stored, and sub-
sequently that results are to be output.

Nonexecutabls statements describe characteristices, arrange-
ment, and format of data, as well as entry points and file
requirements of the program. The first statement in a main
program is, generaily, the nonexecutable PROGRAM state-
ment. A nonexecutable statement {suech as a FORMAT or
DATA statement) that appears in the executable portion of
8 program is processed once by the compiler and does not
affect the flow of execution.

Statement Labels

Within a program unit, a statement label - any one- to five-
digit integer - uniquely identifies a statement so that it can
be identified by another statement. Labels on statement
continuation lines are ignored, as are blanks and leading
zeros in.a label. Statements that are not referred to by
other statements need not be labeled. Labels need not cceur
in numerical order. A statement label can be referred to as
frequently as necessary, but it must not be used more than
onece in the same program unit to label a statement. Also,
no statement can refer to the label of a statement that 1s
contained in another program unit.

Continuation of Statements

If a statement s longer than 66 columns, it can be continued
on as many as 19 continuation lines. Unless a line is a
gomment line, & character other than blank or zero in
column 6 indicates a continuation line. Celumns 2 through 3
can contain any characters in the FORTRAN character set
(they are ignored), and column 1 ean contain any character
in the set execept C. A continuation line can follow only
another continuation line or the initial line of a statement.

Ordering of Statements

The {ollowing table shows the genersl form of a FORTRAN
program unit. Statements within a group ¢an appesar in any
order (with one exception), but groups (indieated by }
1,2,...,8) must be ordered as shown in figure 1-2.
Comment linss can appear anywhere within the program
before the END line, except before siatement continuation}
lines.

60386200°E

}p



1 The letter C or an asterisk indicates that this is a
comment line, and that the remainder of the line is
ignored by the FORTRAN compiler. (In FTN66, an
asterisk in column 1 does not indicate a comment
line.)

END STATEMENT

An END statement indicates the end of a program uait to the
FORTRAN compiler. Every program unit must have an END
statement as its last line. The END statement may be

labeled but must not be continued.

. . . the output file, comment lines have no effect. Any line
with the letter C or an asterisk in column 1 is a comment
line; a blank fine is also a comment line. (In FTN66, any
line with the letter C in column 1 is a comment line; any
blank line is also a comment line. A line with an asterisk

in column 1 is not a comment line.)

. . in the set except C or asterisk. (In FTN66, a
continuation line may have an asterisk in column 1.) A
continuation line may follow an initial hine, a continnation
line, or a comment line which follows an initial line or a
continuation line.

. order (with one exception), but groups must be ordered
as shown in Figure 1-2.

Comment lines may appear anywhere at all within the program
unit, including before its first non-comment line.

1-2A



PROGRAM
FUNCTION
SUBROUTINE
BLOCK DATA

2 IMPLICIT

NAMELIST
Type Tt
COMMON

3 DIMENSION
ROWWISE
EQUIVALENCE
EXTERNAL

4 Statement funetion definitions

5 Executable statements

FORMAT and ENTRY t statements

DATA statements

G END line

tExeept within ranges of DO loops; must not appear
immediately before an END line,

+An INTEGER type statement that is being used to type
a variable that is an adjustable dimension or adjustable
length in the program unit must appear before any of
the other statements in group 3. .

Figure 1-2. Ordering of Statements .

60386200 E

COLUMNS 73 THRCQUGH END OF SOURCE LINE

Any information can appear in eny columns that f{ollow
column 72. The characters in these columns are copred 1o
the cutput file but have no other efiect. These columns
might be used, for example, to order the cards m a punched
deck.

PROGRAM DATA

No restrictions other than those implied in sections 8 and 9
are imposed on the format of data mput to the program.
Input datg ean gppear in any of the eolumns of an input line
and use as many input lines as required. Except on initiation
of a read, or interpretation of a slash separator m the
FORMAT statement associated with a READ statement, the
input line boundary s not significant. Input data s not part
of the source program record.



Al

i Comment

Lines

PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA

FORMAT, PARAMETERZ |1 IMPLICIT?

ENTRY! | ! Other2,3
Specification
Statements

DATA Statement
Function
Definitions

Executable
Statements

END

[
H

May not appear within block IFs or DO-loops

If the type of a constant is defined by an IMPLICIT or
type statement,” the IMPLICIT or fype statement must
precede the PARAMETER statement which defines its value.

If the type of integer variable used in a dimension
bound expression is defined by an IMPLICIT or type
statement, the IMPLICIT or type statement must precede
the statement which contains the array declarator in
which the variable is referenced.

1-3A



STATEMENT ELEMENTS 2

The elements of a syntactically correet STAR FORTRAN
statement could include any of the following:

Identifiers
Keywords

Speeial characters

An identifier is a name or & number. For example, & number’

(the statement label) is used for identifying a statement.
Input and output units are also numbered. Names are used
to identify data elements-such as variables and. arrays-and
for identifying procedures and blocks. A symbolie name
consists of alphanumerie characters, the first of which must
be alphabetie, STAR PORTRAN allows.-d symbolic name to
have a lengrth of eight characters.

In the appropriate econtexts, keywords and some of the
special characters (the plus sign, for example) mean that
specific actions are to be taken with respeet to the
identified data. Other special characters. (the comma, for,
example) serve to punctuate statements. FORTRAN does
not contain reserved words, which'means that a keyword out
of the appropriate context is interpreted to be ‘an identifier.

CHARACTER SET

Exeept for character and Hollerith constants, and character
and Hollerith editing specifications in FORMAT statements,
STAR FORTRAN statements are written with the 52
characters listed in table 2-1. Character and Hollerith
constants and editing specifications can contain any of the
64 characters in the ASCH subset that is given in
appendix A. -

TABLE 2-1. FORTRAN CHARACTER SET

Character Class Characters

Alphabetie Letters A thru Z
Numerie Digits 0 thru 9
Special ) Blank

= Equals sign

+ Plus sign

Minus sign or hyphen
Multiply sign or asterisk
Divide sign or slash

Left parenthesis

Right parenthesis

Comma

Decimal pownt or period
Ampersand

Apostraphe or single quote
Colon -
Semicolon

Right bracket

Left bracket

L -

[ )

™

60385200 E

Other than within character and Hollerith constants-and in
editing-specifications, the blank character is not significant
within FORTRAN statements. Conseguently, the user can
insert blanks within a statement, even within identifiers and
numeric constants, tc make the program readable. The
symbol b is used in this manual to denote a blank character
that is not opticnal.

DATA ELEMENTS:

Data. can be represented in a STAR FORTRAN program as
constants, variebles, and arrays.

CONSTANTS

A constant is a quantity identified by its value. The value of } A
& constant cannot be changed at any time during execution
of a program.

A constant has one of-nine data types:

Integer

Real

Double preecision
Complex
Logieal
Hollerith
Character
Hexadecimal

Bit

Each type of eonstant has its own source program form and
computer internal representation. For example, 1f the
constant 1061 appears 1n a source program, it represents the
decimal value 1061 and has the dats type integer. The full
word the number oceupies in memory has the 64-bit binary
representation 0'. .., 010000100101,

VARIABLES

A variable is a quantity whose value can be changed during
program- execution. A variable 15 identified by a symbolie
name. A variable name is generally associated by the
FORTRAN compiler with a storage location; whenever the
variable is referenced in & source program, the value
currently in that location is accessed.

A variable can be a simple (that 1s, scalar) variable, &
deseriptor, or a double descriptor. Deseriptors and double
deseriptors are discussed-in the vector programming section.

Some of the ways that the value of a variable can be
changed during program execution are:

Executing an assignment statement in whieh the
variable name occurs to the left of an equals sign

Executing an ASSIGN statement

2-1



Al

C:

A constant is a quantity identified by its value or by a symbolic name.
Constants which have symbolic names are those defined in PARAMETER
statements. Named constants must be defined before use and must not
be-redefined. A constant name has an associated type; if it is other
than the defauit implied type, the name must be typed by an IMPLICIT
or type statement before the value js assigned in a PARAMETER state-
ment.

The value of . . .

A constant has one of ten data types. Named constants are restricted
to the first seven types; that is, there are no named Hollerith, hexadecimal,
or bit comstants. The constant types are:

Integer

Real

Double Precision
Half Precision
Complex

Logical

Character
Hexadecimal

Bit

Hollerith

Deleted

2-1A



Reading & new value into it

Using it s an argument to a subprogram that changes
the argument value

Changing the value of a variable to which it has been
equivalenced

The data type of a variabie pame is determined 1mplieitly by
the namef's first letter (this is referred to as the first-letter
rule) unless the name is explicitly typed by an explicit type
statement. The correspondence of first letters to types is as
follows, except as altered by IMPLICIT statements:

Letters Data Type
A through H, and O through Z Real
I through N Integer
ARRAYS

An array is a totally ordered set of variably valued elements
identified by z single symbolic name. A single element of
the array can be named by suffixing the array name with a
subseript that speecifies the element's position within the
array.
unsubseripted array name oceurs in a souree program, it
refers to the entire array (see Subarray References in

section 10).

Exeept in an EQUIVALENCE statement, when the

An unsubscripted array name in an EQUIVA-

LENCE statement or namelist input references only the first
_ element of the array.

An array can be a simple array, deseriptor array, or double
deseriptor grray. An array containing scalar elements is a
simple array.

For each array, a DIMENSION, ROWWISE, COMMON, or
type declaration statement must be used to deelare the

array's size.

This declaration must be made once tn each

program umt that references or defines the array; if more
thsn one program unit uses the array, the declaration rust
be the same mn all of the program units.

An array declarator is used to declare the size of an array,
and has the following form:

The dimensior{

a(d)

& The array name.

d  Alist of the form:
s - -0y

where n is the number of dimensions the array 1s to
have; and where d. 1s an integer constant or simple
integer variable Whose magnitude indicates the
maximum value that & subseript expression for the
ith dimension may attain m any array element
name.

d. can be a variable only when & 1s a dummy

argument in &' subprogram. Also, an augmented form of the
array declarator, in which an element length specifieation of
the form *k appears between the array name and the left
parenthesis, can appear in the CHARACTER type state-
ment. Type statements and dummy erguments are diseussed
later in sections 6 and 7.

The data type of an array is determined by the same explicit
and implicit rules that determine the data type of a varigble
name.

The data type of an array element is that of the

array. It is possible (but not necessary) to declare the size
and data type for an array with the use of a single array

declarator.

For example, the explicit type statement

COMPLEX A(50) declares the array A to have 50 elements

all of which are of type complex.

in this example, no

additional statement would be required {or allowed) for

assigning a data type to the array.

The amount of storage reserved for an array is determined
by the array's size and data type. For any array, the number
of words, bytes, or bits reserved is the number required for a
single element of the particular data type, times the number
of elements. For example, COMPLEX A(50} reserves 100
words of storage for A, because any data element of type
eomplex requires 2 words for its internal representation, and
the array A consists of 50 of such complex data elements.

Arrays can have one to seven dimensions.

A one-dimen~

sional array can be thought of as a list or series; a two~

dimenstonal array, as & matrix.

The produet of the

dimension sizes equais the number of elements in the array.

Subscripts and Array Declarators

A subseript consists of a pair of parentheses enclosing one to

seven subscript expressions separated by commaes.

Sub~

seripted array names must not be copfused with array
declarators: an array declarator declares the dimensions of
an array, and a& subseripted array name identifies a single

array element.
name, immediately after the array name.
EQUIVALENCE statement, the number of

A subseript eppears in an array element
Except in an
subserpt

expressions must always equal the number of dimensions for

the array.

Each dimension in an array declarator can be an integer
constant or, 1n a subprogram, a single integer vamable. An
integer variable dimension, permitted only when the array 15} B
a dummy argument, must either also be a dummy argument

or else be in common.

A variable used in this way as an

adjustable dimension must either be implicitly integer, or
else must appear in an INTEGER type statement before it

appears in any other declaration statement.

Each subseript expression In an array element name can be
any scalar arithmetic expression of type integer, real, or
double preeision, and must never assume g value less than 1}
or larger than the maximum length specified in the
declarator {the value is not checked at run time)., When the
value of the expression is not integer, it is truncated to

integer.

Subscript Interpretation

A subsecript can 1dentify an element in the array in erther of

two ways,
oceurred

depending on whether the array declarator
in a ROWWISE statement or occurred

m a

DIMENSION, COMMON, or type declarafion statement. The
conventional succession of elements in an array 1s defined by
& succession of subseripts in which the value of the leftmost
subseript expression varies through its range (from 1 to the
meaximum valie of that dimension), then the value of the
subseript expression to i1ts right is inereased by 1 and the
first goes through its range again, and so on, unti esch
subseript expression has gone throughout its entire range at
least once. The subscript significance 1s just the reverse for
an array that has been declared in & ROWWISE statement:
the succession of elements is-.defined by a succession of
subscripts m which the value of the mghtmost subseript
expressjon varies through its range, then the value of the
subseript expression to its left increases by 1 and the last
goes through its range again, and so on, until each subseript
expression has gone through its entire range at least once.

60386200 E

D



A:

. - . have; and where d; is a dimension bound declarator. A dimension bound
declarator. A dimension bound declarator for an array which is not a dummy
argyment is an integer constant expression or two integer constant expressions
separated by a colon. A dimension bound declarator for an array which is a
dummy argument is an integer expression or two integer expressions separated
by a colon, except that d, (d; if the amay declarator appears in a ROWWISE
statement) may be an asterisk, or else an integer expression followed by a
colon and an asterisk in that order. Nonconstant references in a dimension
bound declarator for an array which is a dunmy argument are restricted to
simple integer variables which are in common or else appear in every dummy
argument list in which the array name appears. ’

Ii d; consists of a single integer expression, the dimension size of the ith
dimension is just the value of that expression; if d; consists of two integer

.expressions separated by a colon, the dimension size of the ith dimension is

1 plus the value of the second expression minus the value of the first. If the
nth dimension bound declarator (Ist if the array declarator appears in a ROW-
WISE statement) has an upper bound of asterisk, the dimension size of the nth
(1st if ROWWISE) dimension is unknown.

If the array declarator appears in a CHARACTER type statement, it may be
optionally followed by an asterisk and a length specification k, or, as a non-
standard alternative, the asterisk and length specification may be inserted between
the array name a, and the following left parenthesis:

a std-declarator.
a .non-std-deciarator.

.character array declarator.

.std declarator. + = dimension.
: = .dimension. .length-spec.

.non-std-declarator. : = .length-spec.  .dimension.
.dimension, = (dll, C e dn)
Jength-spec. = *k

The length specification, k, is a nonzero unsigned integer constant, an integer
constant expression enclosed in parentheses. If it is an asterisk enclosed in
parentheses, the array must be a dummy argument: in that case, the elements
of the dummy array are of the same length as those of the associated actual
array (8.4.2).



This page left blank intentionally

(%]
;

E\J
(]
0



Each dimension of an array is defined by one or two dimension bound
-expressions {except the last of an assumed size array or the first of a

- ROWWISE assumed size array). A dimension bound expression must be
an integer constant expression' except when a dummy amay is being
declared, in which case it may involve references to integer variables in
common and to infeger dummy arguments which appear in every dummy
argument list in which the dummy array name also appears. A variable
used in this way as an . . .

. any scalar arithmetic expression of type integer, real, double precision,
or half precision, and must never assume a value less than the lower or

greater than the upper dimension bound specified in the . . .

. subscript expression varies through its range {(from lower dimension
bound to upper}, then the value of the . . .

An array can be a simple array or a.dynamic array.

2-2.3A



To find the location of an array element in the linear
sequence in which the elements are stored given its
identifying subseript, the formulas listed in table 2-2 ean be
A{used. In the table, eapital letters gre dimension sizes and
Tower case letters ere the subsceript expression values of a

particular subseript.

A comparison is made of the ordering for conventional and
rowwise subseripts for a- 3-dimensional array of 24 elements
in table 2-3. Interpreted geometrieally, the conventional
ordering is 2 rows, 3 columns, and 4 planes, as shown in
figure 2-1. The rowwise ordering interpreted geometricelly

is 4 rows, 3 columns, and 2 planes, shown in figure 2-2.

DATA ELEMENT FORMS

A dsta element or funetion name must be associated
implicitly or explicitly with a data type.
applies to every occurrence of the name throughout the

program unit in which the assoeiation is defined.

The deta type of a variable, array, or function name is
implied by the first letter of the name or else must be
specified explicitly (the data type of @ FORTRAN-supplied
¢ The data type of a constant is
implied by its form. The internal representation of a value
of a particular data type is the same whether it is the value

funetion is predefined).

of a veriable, of an array element, or of & constant.

The association

TABLE 2-3. SUBSCRIPTING ORDER FOR A
THREE-DIMENSIONAL ARRAY A(2,3,4)

ROWWISE Conventional
Subseript Ordinality Subseript
Sticeession Suceession
A(1,1,1) 1 Al1,1,1)
AQ1,1,2) 2 A2,1,D)
A1,1.3) 3 AQ1,2,1)
A(1,1,4) 4 Af2,2,1)
Af1,2,1) 5 A(1,3,1)
A(,2,2) 5 A(2,3,1)
Al1,2,3) 7 A1,1,2)
Al1,2,4) 8 Al2,1,2)
Af1,3,1) 9 A(1,2,2)
A(1,3,2) 10 A(2,2,2)
A{1,3,3) 11 A1,3,2)
A(1,3,4) 12 A(2,3,2)
A(2,1,1) 13 A(1,1,3)
Al2,1,2) 14 al2,1,3)
A2,1,3) 15 A(1,2,3)
A2:1,4) 16 A(2,2,3)
Af2,2,1) 17 A(1,3,3)
A{2,2,2) 18 A(2,3,3)
A{2,2,D) 19 Al1,1,4)
4(2,2,4) 20 Al2,1,4)
A(2;3,1) 21 All1,2,4)
A(2,3,2) 22 Al(2,2,4)
A(2:3,3) 23 A(1,3,4)
A(2,3;4) 24 A(2,3,4)

TABLE 2-2. ARRAY ELEMENT SUCCESSION FORMULAS

Dimensionality Declarator Dimensions Instence of Subseript Loeation of Array Element
1 {4) (a) ]
2 (a,B) (a,b)
(B,A)t b,a)t atA*{b-1)
3 {4,B,C) (a,b,c) a+A*(b-1)
(C,B,A)t (e,b,a)t +A*B*(c-1)
4 (A,B,C.D) (a,b,e,d) atA*b-1)
(D;C,B,A)T (d,e,b,a)t +A*B*(e-1)
+A*B*C*{(d-1}
5 {A,B,C,D,E) {a,b,e,d,e) a+A*{b-1}
+A*B*e-1)
(E.D.C,B,A)1 {e.d,c,b,a}t +A*B*C*(d-1)
+A¥B*C*D*e-1)
6 (4,8,0,D,E,F) (a,b,c,d,e,0) atA*(b-1)
+A*B*(c-1)
(F.E,D,C,B,A)T +A*B*C*d-1)
. {f,e,d,e,b,2)t +A*B*C*D*(e-1)
+A*B:C*D*E*(f—1)
7 (A.B,C,D,E,%,G) {a,b,¢,d,&,f,8) a+A=(b-1)
+A*B*(e-1)
(G,F,EpD,C:B:A) t (g,f,e,d,c,b,a) + +A*Btc‘(d_1)
i +A*B*C*D*e-1)
i +A*B*C*D*E*({-1)
.;.AtBtctDaEtFt(g_l}
1This is a subseript for an array declared in a ROWWISE statement. -

60386200 E



- used. In the table, capital letfers are dimension bounds and . . .

SUBSTRINGS

A substring reference is a character variable name or character array element
name followed by a left parenthesis, an integer expression, a colon, an integer
expression, and a right parenthesis. Both integer expressions are optional;
they defauit to 1 and the length of the character substring references datum
respectively.

. specified explicitly.

The type of a specific intrinsic function name is predefined. The type of
& generic intrinsic name depends upon the type of its argument or else is
predefined. See section 6 for the effect of explicitly typing an intrinsic
function name. . ’

The data type of a comstant is . . .

Displacement of

Dimensionality Declarator Subscript Array Element
1 (AL: AU) (a) a‘AL
2 (AL:AU‘BL: Bu) (a,b) a-AL+{AU.A'L+1)‘>:f(b-BI_)1

b-B L+(BU___B L+1 )"(a—AL)

Note It This is the displacement for an array declared in a ROWWISE
statement.

2-3A



181 21 | 23
20| 22 { 24
13 | 15} 17
14 } 16 18
7 2 {11
8 | 10 | 12
1 3 5
2 4 ]

Figure 2-1. Conventionga!l Ordering of Elements in a
Three-Dimensional Array, A(2,3,4)

- dwnfufaf

g B E7Y STY PP :
15118} 23
) 16] 20| 24

1 518

2 § |10
3 7111
4| 8] 12

Figure 2-2. ROWWISE-Declared Array, A(2,3,4)

INTEGER ELEMENTS
An integer constant has the following form:
dldz . dm
d; A decimal digit (0 through 8); 1 < m < 14.

It is wrtten without & decimal point and without embedded
commas.

2-4

A signed integer constant is an integer constant prefixed by
a plus or minus sign. If an integer i5 positive, the plus sign
can be omitted. If an integer is negative, a minus sign must
be present. An optionally signed integer constant is an
integer constant or & signed integer constant. Integer zero
is neither positive nor negative but can be signed (with no
signifieance).

The velue range for en integer is -247 through 2471,
Integers used in addition, subtraction, multiplication,
division, or exponentiation, as well as the results of such
operations, must be within this range.

Integer date oecupies one word of storage in the following
format:

0 16 63

integer in two's complement

b'l?ary-'zem representation

A varigble or array can be associated with the integer data} A

type implicitly or explicitly, as described under Variables in
this section,

Examples of integer constants:
237 0 13593569
Examples of signed integer constants:
~237 +13593569

REAL ELEMENTS
A resl constant can have one of the following forms:

n
nEx
mEx

n A string of one or more deeimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m  An integer constant.

X An optionally signed integer constant in the range
-8617 through 8645.

The Ex in the real constant form expressgs the exponent.
Interpreted arithmetically, nEx means n*10" and mEX means
m*10%. An exponent of E+0 is assumed if a real constant
contains no exponent. A signed real constant 15 a real
constant prefixed by a plus sign or minus sign. The constant
must be preeeded by a minus sign if the real number
represented is negative, but the plus sign 1s optional if the
number is positive. An optionally signed real constant is a
real constant or 4 signed real constant,

The absolute value range for a real number is approximately
0 through .953 708 115 431 87TE+8645. The smallest positive
real number that can be represented is approximately
519 211 284 565 73E-8617.  The precision retained in
caleulations invelving real numbers is approximately 14
significant decimal digits.

60386200 E



A7 A variable, array, or named coustant can be associated with the integer
data . . .

REPRODUCIBILITY OF AHE
ORIGINAL PAGE 1S PONR



Resal data occupies one word of storage in the following
format:

0 16 63

exponent, a
two's comple-
ment integer

mantissa, a two's complement
integer

Examples of real econstants:

2.5 25E+1 .25E1  2500E-3 CEO

Examples of signed real constants:

+2.5 -.25E+1 +.25E1 -~2500E-3 +0E0
Real data is always represented in normalized form in that
the most significant it of the mantissa appears in bit 17,

with the value of the exponent adjusted appropriately. The
STAR-100 Computer Hardware Reference Manual contains

more detailed descriptions of the hardware representations:

for numeric data.

A{A variable or array can be associated with the real data type
either implicitly or explieitly, as deseribed under Variables
in this section,

DOUBLE PRECISION ELEMENTS
A dnuble preeision constant has one of the following forms:

nDx
mDx

n A string of one or more decimal digits and one
decimal peint. The decimal point can be placed
anywhere in the string, including first or last.

m An integer constant.

X  An optionally signed integer constant in the range
=-8617 through 8645.

The Dx in the form expresses the exponent.

A double precision constant is written end intefpreted in
exactly the same way as a real constant, except that the
exponent must always be used and the letter D is used in the
exponent instead of an E.

The value range for double preeision numbers is the same as
for real numbers; however, the precision retained is approxi-
mately 28 significant digits instead of 14. The largest
double prectsion number that can be represented is .361 194
593 766 944 619 962 041 407 3D=8645. The smallest positive
double precision numbper that can be represented 1$ approxi-
mately .519 211 284 585 733 055 700 413 533 9D-8617.

Double precision data occupies two contiguous words of
storage. The first word is in the same format as for type
real data and expresses the most significant digits. The
second word is in the same format as the first, except that
the exponent value 1s 47 less than the exponent of the first
and the mantissa has not been normalized. The second word
is always nonnegative (zero or positive).

B{ A variable or array can be asscciated with the double

i precision data type by means of the DOUBLE PRECISION or
the IMPLICIT type declaration statement.

60386200 G

Examples of double preecision constants:
.25D+1 .25D1 2500D-3
3.141 592 653 589 793 238 462 643 3D+
Examples of signed double precision ¢constants:

+.25D*¥1 -.25D1 +2500D-3

COMPLEX ELEMENTS

A complex constant must have the following form:

(rl,rz)
r;  Anoptionally signed real constant.

A complex constant is written as an ordered pair of
optionally signed real constants separated by a comma and
enclosed in parentheses. The parentheses are part of the
constant and must always appear. The value range for
either ryorr, is the same as for type real data.

Complex data occupies two contiguous words of storage,
each of which is in the format for type-real data. The first
word (r; in the form), represents the rea] part of the
complex number. The second word (1'2 in the form),
represents the imaginary part.

A variable or array can be associated with the complex data} C
type only by means of the IMPLICIT or the COMPLEX type
declaration statement.

Examples of complex constants:

(4.0, 3.0), which has the value of the complex

number 4.0 + 5.0i, where1 = J-1
(0., -1.)
(+.4E1, 5.0
(-4., -5.)

LOGICAL ELEMENTS

A logical constant has one of the following ferms:
.TRUE.
JFALSE.

The periods are part of the constants and must &ppear.

Logical data occupies one word of storage in the following
format:

0 63

0000 . .. -..00g¢

where d is & 1 bit or 0 bit for ,TRUE., and .FALSE.
respectively.

A variable or array is associated with the logical data type} D
by means of the IMPLICIT or the LOGICAL type declaration
statement.



A variable, array, or named constant can be associated with the real data type . .
A varabie, array. or named constant can be associated with the double . . .

A variable, array, or named constant can be associated with the complex
data . . .

A variable, array, or named constant is associated with the logical data

type . . .

HALF PRECISION ELEMENTS

A half precision constant has the following form:

.half-precision-constant, =n 8 x
=+n8 x
=n 8 +tx
=4+ 18 +x
where n is a string of decimal digits including an optional decimal point
and x is a string of decimal digits. )

A half precision constant is interpreted as
+n* 10 ** (1)

Examples of half precision constants: -136 3.1415980
6.23823 1.058-06

The largest normalized half .precision datum which can be internally repre-

sented is #6F 7F FF FEF (approximately 2.177807x10%0); the smallest

is #6F 80 00 00 {approximately ~2.'L77807x1040). The smallest normalized
haif precision datum which is greater than zero is #90 40 00 00 (approxi-
mately 8.077936:(10'28); the largest less than zero is #90 BF FF FF (approxi
mately -8.077938x10°2%),

Half precision data occupy halfwords of storage in the following format:

0 7 8 31
I exponent, a mantissa, a two’s complement

| two’s comple- integer

! ment integer

(The internally stored exponent is a power of two, not ten.)

A variable, array. or named constant of type HALF PRECISION may be
declared with the HALF PRECISION or IMPLICIT type statements.



HOLLERITH ELEMENTS

A Hollerith constant is a string composed of an (unsigned)

A integer constant followed by the letter H and a nonempty
string of any m of the 64 characters in the ASCII subset,
The blank character is an acceptable and sigmfieant
character in a Hollerith constant.

Form:
mis

m An (unsigned} integer constant less than or
equal to 255 and nonzero.

s A string of exactly m charaeters included in
the 64-character ASCI  subset {see
appendix A).

Hollerith data uses m contiguous bytes {a byte is eight bits)
te represent m characters, Eight characters fill one
machine word, The word boundary generally does not effect
how Hollerith date is stored; however, when used as an
aetual argument 1 g subroutine call or function reference, &
Hollerith constant is aligned on & word boundary and
extended with blanks on the right so that it oceupies a whole
number of words,

C

Examples of Hollerith constants:

19HRESULT NUMBER THREE 5H12345

SHBBBBD 1H,

A Hollerith constant can be used as an getual argument, or
for data initialization in a DATA or type statement. For
compatibility with FORTRAN Extended, other uses of
Hollerith constants are supported as deseribed in
appendix G.

it 1s not possible to declare a variable or array to be type
Hollerith.

CHARACTER ELEMENTS

A character constant is & nonempty string of characters
enclosed in single quotes. If a single quote ('} is required
within the string as one of the charaeters, 1t must be
prefixed with another single quote. The chargeter blank isa
significant charaecter in a character constant.,

Form:
H L]
L NERE -

2 A character selected from the 64-character
ASCII subset; m is less than or equal to 255.

Character data uses m contiguous bytes of storage to
represent m characters: eight characters fill one machine

a word,
Examples of character constants:
'RESULT NUMBER THREFE'

12345 BBEBKE 4y

2-6

In contrast to the Hollerith data type, the character data
type can be associated with a variable or array, in whieh
case the variable or array must have length as well as type
speeified in an IMPLICIT or CHARACTER type declaration
statement.

HEXADECIMAL ELEMENTS

A hexadecimal constant is a string composed of the letter X
followed by a nonempty string of m hexadecimal digits
enclosed in single quotes. The 16 hexadecimal digits are the l
digits 0 through 9 and the letters A through F.

Form:
1
Xhyh, ... 0
h. A hexadecimal (base 16) digit; m is less than or

! equat to 255,

Hexadeeimal date uses as many contiguous bits of storage as
are required to represent m digits: the digits 0 through F
(interpreted as the hexadecimal equivalents of the decimal
digits 0 through 15) each take four bits. The word boundary
is not significant for hexadecimal data.

Examples of hexadecimal constants;
3y X'1A9" X'FFFFFFFFFFFFFFFF!

Hexadecimal constants are restricted to use in data initiali-
zation and special CALL statement argument lists.

It is not possible to deelare a variable or array to be type] E
hexadecimal.

BIT ELEMENTS

A bit constant is a string composed of the letter B followed
by a nonempty string of m binary digits (bits) enclosed in
single quotes.

Form:
4 L]
Bb.b,...b,
b. A bit (0 or 1); m isless than or equal to 255.

1

Bit data uses m contiguous bits; the word boundary is not
significant, The digits ¢ and 1 each correspond te one bit in
storage.

Examples of bit constants:
Bor B'10101111 B'000000000000001"

Bit eonstants are restricted to use in subprogram references,

sealar and vector bit assignment statements, and data

initialization.

A bit varisble is associated with the bit data type by means F
of the BIT or the IMPLICIT type declaration statement.

603856200 G



. integer constant m followed by the letter H or the letter R and a
nonempty . . .

hollerith-constant. =m Hs
=mRs
m  An unsigned integer constant less than 256.

machine word. H constants (R constants) are stored aligned to a word
boundary on the left (righf) and blank (zero) filled to a word boundary
on the right (left).

Hollerith constants are arithmetic constants and may be used wherever
other arithmetic constants are legal. In particular, they may appear in
arithmetic expressions, where they are fypeless (that is, they assume the
type of the operand with which they are combined), except that they
are of type INTEGER when the arithmetic expression consists of a single
Hollerith constant and no operators.

Hollerith constants are not character constants; they may not appear in
character expressions.

Truncation of H (R} constants to their leftmost (rightmost) eight characters
occurs whenever long H (R) constants appear in contexts other than actual
arguntent lists. In particular, long H (R) constants in constant lists of DATA
statements are truncated and inifialize only a single word.

It is not possible to declare a variable or array to be type Hollerith.
Hollerith constants are not permitted in PARAMETER statements.

It is not possible to declare a variable or array to be type hexadecimal. _
Hexadecimal constants may not appear in PARAMETER statements.

A Dbit variable is associated with the bit daia type by means of the BIT

or the IMPLICIT type declaration statements. Bit constants may not appear
in PARAMETER statements. There are no named constants of type bit.

2-6A



SCALAR EXPRESSICNS 3

A

A FORTRAN expression is a string of one or more oparands
and zero or more operators that is evaluated during_program
execution to -yield -a -value. “The conventional precedences
for the FORTRAN arithmetic and logical operators are
given later in this section.

An expression generally specifies a computation or a
comparison between operands. However, in its simplest
form an expression consists of a single data element (2

{single constant, variable, or array element) or a funetion

reference. This section gives the formation and evaiuation
tutles for the following kinds of sealar expréssions:

Arithmetic Yields numeric values; appears in
arithmetic assignment statements and in
relational expressions

Character  Contains no operators; is used in charae-
ter’ assignment statements and relationat

expressions
Tields logieal values; appears in logical
expressions
Yields logical values;. appears in logieal
expressions and logical  assignment
statements

Bit Yields bit values;
assignment statements

Relationgl

Logieal

appears in  bit

When an expression is evaluated during pregram execution,
the result is retained in a variable, {s used immediately as an
operand for another operation, or is passed as an argument
to a function or subroutine. An expression-whose evaluation
yields a result of a certain type is ealled an expression of
that type; for example, an expression whose evaluation
yields an integer result is ealled an integer expression.

Examples of expressions:

Expression Value

X Cuwrrent value of the variable X

3.5 Constant resal number 3.5

'CHARACTERS Character constant, 10 ASCIT
characters

DB1/DB2**2 Value of DB1 divided by the square
of the value of DB2

A(C/B) Array element A(I), where I is the

value of the expression C/B

SQRT (TRUNK) Function reference

{A+B+3*C)/2.56 The sum of the expressions A, B, and
3*C, divided by 2.56

.TRUE, if the value of X is less than
the value of Y-1.0, .FALSE. other-
wise

X.LT. ¥-1.0

.NOT. PNLOG(B} .TRUE, if the value of the expression

PNLOG(B) is .FALSE., .FALSE.
otherwise

60386200 E

If the value of an expression cen be established without
evaluatifig a certain part of the expression, then that part
might never be evaluated, For this reason the user eannot
rely on any side effects an expression might be able to
produce.

Example:
During evaluation of the.logical expression
Y.OR.F(X).OR. Z
if Y has the value .,TRUE., the expression has the value
.TRUE. whatever the values of F(X) and Z may be. In

this situation the exeeution of F might or might not
oceur as a result of the expression evaluation,

Another consideration for the user is compatibility between
operand types during. evaluation. The operand types that ean
be ecombined in the same arithmetic or relational expression
are the following, in order of decressing dominance:

Complex (cannot oecur in relational expressions)
Double preecision
Real

Integer

In general, when two operands that are to be operated upon
have different types, the value of the dominated operand is
converted to the type of the dominant operand before the
operation Is performed. For example, if the cperand types
of an expression (eonsisting of ‘two operands and a dyadie
operator) were real and integer, the effect would be as
though the integer had been converted to type real data
before a real operation {an operation involving only type real
cperands) was performed.

ARITHMETIC EXPRESSIONS
The FORTRAN arithmetic operators are:
+ Addition; unary plus

- Subtraction; unary minus

* Multiplication
/ Division
hid Exponentiation

Unary plus and minus are conceptusally like dyadie addition
and subtraction using an implied zero operand of the same
type as the given unary operand,

An arithmetic expression can be a single constant, simple
variable, array element, or function reference. If X is an
arithmetie expression, then (X) is an arithmetie expression.
Each left parenthesis must have a corresponding right

3-1


http:A+B+3*C)/2.56

Q

. single constant, variable, subsiring, or array element} or a function . . .

Character Is used in charac-

Complex

Haif Precision



parenthesis in the same expression: Furthermore, if Xand Y
are arithmetic expredsions, then the following are also
arithmetie expressions: N

X+Y

X*Y

X-Y

XY

X=*y
All operations must be specified explicitly, For example, to
multiply twe variables X and ¥, the expression X*Y must be
used; XY, (X) (¥); or X.Y does not result in multiplication.
Also, operators in an expression must not be contiguous, A
unery plus or unary minus can be separated from another
operator in an expression by using parentheses around the
signed element.
Examples of arithmetie expressions:

3.5

35+N

~{3.5+N)/2**M

(XBARHBIL,J+1,K)/3.0))

-{C+DELTA*AERQ)

(-B-SQRT(B**2-(4*A*C)))/(2.0%4)

GROSS ~ (TAX*0.04)

TEMP + V(M,AMAXI{A,BY*Y**C/(H-FACT(K+3))

( EXPONENTIATION

The following types of base and exponent are permitted in
exponentiation: . ’

Type of Base Type of Exponent
Integer Integer, reai, double precision
Real - Integer, real, double preeision

Double preeision Integer, real, double preecision

Complex Integer, real

Also, & negative-valued base can have an exponent of type
integer only and a zero-valued base can be raised to a
positive exponent only.

An expression (or a subexpression delimited by parentheses)
that contans only operands and the exponentiation operator
is evaluated from- right to left. That is, A**B**C means
{A**(B**C)). This interpretation can be changed with
appropriate use of parentheses, for exampie, (A**B)**C.

“~EVALUATION OF ARITHMETIC EXPRESSIONS

The value of an arithmetic expression is a close approxima-
tion to the mathematical interpretation. The sequence in

3-2

which the elements of an expression are evaluated is
governed by the following ruleslisted in descending prece—
dence:

1. Subexpressions delimited by parentheses are evaluated
beginning with the innermost subexpressions.

2. Subexpressions defined by arithmetic operdtors are
-evaluated:

3. Subexpressions containing cperators of equsl prece-
dence are evaluated in effect from left to right, except
for exponentiation which is evaluated from right to left
(the exponent’s velue is caleulated before the base's
value).

For example, the expression
A/B/C-D*E**F
might be eveluated as follows:
1. Eis raised to the power of F.
2. A is divided by B.
3. Quotient in step 2 is divided by C.
4. Result of step 1 is multiplied by D.
5. Product in step 4 is subtracted from result of step 3.

If the result of an integer division is not integral, then the
fractional part is discarded. The result of an integer
division is the nearest integer whose absclute value does not
exceed the absolute value of the magnitude of the mathe-
maticai ratio, For example, 3/2*4 has the value 4, -3/2%4
has the value -4, and 3/(-2)*4 has the value -4,

Operators that are mathematically assoeiative or commuta~
tive might be reordered during compilation. The user can
foree a definite ordering of mathematically associative
operators of equal precedence by appropriate use of paren-
theses. Subexpressions containing integer divisions are not
reordered within the division/multiplication precedence
level, however, because the truncation resulting from an
integer division renders these operations nonassociative.

The evaluation-of an array element or function reference in
an expression requires the evaluation of the subsecript or
actuat arguments. The evaluation of the subscript or actual
arguments does not affect the type of the value of the
expression in which the subseript or argument List appears;
neither does the expression type affect subseript or actual
argument evaluation. Evaluation of a funetion must not
alter the value of any other element within the statement
which the funection reference appears.

No element can be evaluated whose value is not mathe-
matically defined, For example, division by zero or the
square root of a negative number cannot be evaluated.

TYPE OF AN ARITHMETIC EXPRESSION

The arithmetic operators +, -, *, and/ can be used to
combine any elements of the same numeric data type inte an
expression; the resultant value has the same data type as
that of the operands. For example, when two resl numbers
are added, the data type of the result is real, and the
operation is referred to as a real operation. Furthermore, a

60386200 E


http:TAX*0.04

!
The base and exponent may be any arithmetic types. The dominance of
types is the same as for ofher arithmetic operators.

However. if the value of the base is negative, the exponent must be type
integer unless one or both ;'operands are type complex. If the value of
the base is zero, the exponent must be type integer and ‘the exponent’s
value must be greater than zero.

3-2A



A{ complex, double precision, real, or integer element can be
ecombined with one of these operaters into an expression
with an element of any of the types complex, double

B{ crecision, regl, or integer. with the resultant value having
the type possessed py the dominant operand.

(CHARACTER EXPRESSIONS
A character expression consists of exactly one data element
and no operators. This element can be any one of the
following:
A character constant
C A Hofllerith constant
A character array element
A character variable
A character function reference

The value of a character expression is the value of the
element. The type of a character expression is character,

RELATIONAL EXPRESSIONS
The FORTRAN relational operators are:

LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE, Not equal to
«GT. Greater than
.GE. Greater than or equal to
The periods are part of the operators and must appear.

A relational expression is a relational cperator bracketed by
twa operands:

aexprl op aexprz

Gexprj Op Cexpr,

op A relational operator.

cexpr; A character expression.

aexor; An anthmetic expression.
The operands can be either two arithmetie expressions or
two character expressions. As the forms above show, a
:ﬁi::‘.xonal expression cannot contain two relational opera-
Examples of relational expressions:

D{  SHASTER .LT.C

'ANEMONE' .EQ. FNCHAR -

X+Y/3.*Z .NE, X

A(l) .GE. SQRT(R)

AMRYL .LT. 1.5D4

60386200 B

Evaluation of = relational expresston comsisting of amth-
metic expressions proeeeds as Zollows: each aritametic
expression is evaluated; type conversion to the dominant
type takes place 1f the {ypes of the arithmetic exprassicns
Ciffer; then the compare is mads. The relationul 2xpresgsion
has the logieal result .TRUE. or .FALSE. as tne celation is
true or false, respectiveiy,

Arithinetie expressions in relational expressions cannot be of
type complex; they can be integer, reel, or double preeision,
however. For example, (2.0,1.0/*N is syntactically correct,
but {(2.0,1.0)*N).GE.M is not.

When a relational expression consists of character expres-
sions, the correspending characters in the values of the twe
expressions are compared one charaeter at a time from left
-to right. A character is considered greater than snother
character, for example, if 1ts hexadecimal equivalent as
shown in appendix A is greater than that of the other. If the
two character expressions have different lengths, com-
parison proceeds as though the shorter had been padded on
the right with blank chargcters until the expressions were of
equal length (the hexadecimal equivalent of the blank
character is less than that of any other character in the
ASCII subset),

LOGICAL EXPRESSIONS
The FORTRAN logicel operators.are:

.AND. Logical and

.OR.  Logical or

XOR. Logiesl exclusive or

.NOT. Logical negation
The periods must appear in any occurrence of a logical
operator. The mathematical definitions of the logieal
operators are given in table 3-1.

TABLE 3-1. LOGICAL OPERATOR TRUTH TABLES

\
p g p.AND.g | p.OR.g | p.Z0R.g | .-NOT.p

T T T T F F

T F F T T F

¥ T F T T T

F F F F ¥ T

A logical expression ean be a single relational expression,
logieal constant, logieal varieble, logical array element,
logieal funetion reference, or a logical expression enclosed
in parentheses. Also, if X and Y are logical expressions,
then .NOT.X, and X followed by & binary logical operator
followed by Y, are logical expressions.

Examples of logical expressions:
(X).AND..NOT.Y
X*2.114 .NE.(B*22.114).AND. Z1 .AND. Z2 .AND. Z3
.NOT. (X.AND..NOT.Y) .OR. (Z.EQ.98.6)
B-C .LE. A .AND. A .LE, B+C

- 3-3
REPRODUGIBILITY OF THE
ORIGINAL PAGE IS POOR



- complex, double precision, teal, half precision, or integer element can
be . .. ’

. - . precision, real, haif precision, or integer, with the resultant value
having . . .

CHARACTER EXPRESSIONS
The FORTRAN character operator is:
[/ Concatenation
A character expression may be any of the following:

A character constant

A character variable

A character array element

A character function reference
* A character substring

cexpry [ | cexprs
(CexPl]') -

where cexpr, cexpry, and Cexpr, are character expressions. The concatena-

tion operator forms a character string whose initial characters are the first

operand and whose final characters are the second operand. For example,

if the character variable VERB has the value ‘LOQK’, then the expression

VERB [/ / ‘ING’ has the value ‘LOOKING’.

Examples of character expressions:

‘ING”
YERB
VERBS(K)
W(X+Y)
VERB(1:2)
VERBS(K){L:L+1)
VERB / / ‘ING®
where YERB is a character variable, VERBS is a character amray, and W is

a character function.
Character expressions may not exceed 63,535 characters.

A character substring is a character variable or character array element
followed by a substring designator of one of the following forms:

G:%)

(:k} meaning (1:k)

(i ) meaning {j:n)

{.-) meaning (1:n)
where j is greater than or equal to one and less than or equal to k and k
is less than or equal to n and n is the number of characters in the character
“wiable or array element. The character substring consists of the jth through

ie kth characters (inclusive} of the character variable or array element.

3-3.1A



This page left blank intentionally

3-3.2A



delete

Complex expressions are allowed as operands in relational expressions only
when the operator s .EQ. or NL.

EQV. Logical equivalence
NEQV. Logical noneduivalence

Table- 3-1. LOGICAL BINARY OPERATOR TRUTH TABLES

p-AND.q pORq  pEQVq p-NEQV.q

e
T |2
g v
g o] e
3 13 g
kg md o g

"XOR. is the same as .NEQV.

Table 3-2. LOGICAL UNARY OPERATOR TRUTH TABLE
.NOT. p

F
T

e |

PRECEDING PAGE BLANK NOT FILMED

3-3.3A



.NOT. can appear adjacent to .itself only with intervening
parentheses as in the following types of construets:

.NOT. (NOT.p}
.NOT. (.NOT. {.LNOT.p))

NOT. can appear adjacent to any other logieat operator only
es the operator on the right, as in the following constructs:
!
p-AND..NOF.q )

p.OR..NOT.q
p.XOR..NOT.q

The operators .AND., .OR., and" .XOR. cannot sappear
adjacent to each other; they are always flanked by relational
expressions, logical elements, or any such logical expres-
sions. (This corresponds to the mathematical usage of
logical conjunction and disiuncetion.)

Whenever precedence is not established explieitly by paren—
theses, the logieal, relational, and srithmetic operations
that might appear in a logical expression are evaluated
according to the precedences shown in table 3-2. The
wmparenthesized expression X.0OR.Y.AND.Z.OR.W, for
example, means (X.0R.((Y.AND.Z).OR.W)), and if the user
had intended (X.OR.Y).AND.(Z.OR.W), then the parentheses
would need to be explieit., The plus/minus eategory in the
table applies to both unary and dyadic additive operations.
The value of a logiecal expression is always of type logieal.

BIT EXPRESSIONS

A -bit expression is formed with bit dats elements and the
logical operators used in logieal expressions. A bit
expression can be a single bit constant, bit variable, bit
array element, or bit expression enclosed in parentheses.
Alse, if B and C are bit expressions, then .NOT.B, and B
followed by a binary logical operator followed by C, are bit
expressions.

The operators used in bit expressions are the logical
operators interpreted so that truth is the bit value 1 and
falsity is the bit value 0. The mathematieal definitions of
the logrieal operators are given in table 3-1; the precedences

of the operaters are the same as for logical operators in
logiceal expressions.

Bit expressions might be used to define e bit variable or bit
array element, or as a more efficient use of storage for
logical aperations (bits instead of words).
Examples of bit expressions:
B'T '
Cc1¥)
(B).AND,..NOT.C
BL.AND.B2.AND.B3.AND.B4
.NOT.(BOG,AND.,.NOT.BOH).OR.CO2

C1{H).XOR.C2(N)

TABLE 3-2. OPERATOR PRECEDENCES

3

QOperator Precedence Category

** first

‘i second Arithmetie

3 third

EQ.

.NE.

‘ghg fourth Relational

LT,

GT.

NOT. fifth

LAND. sixth Logical

.OR.

.XOR. seventh

60386200 E



http:NOT.(BOG.AND..NOT.BOH).OR
http:B1.AND.B2.ANDf.B3.AND.B4

p.AND..NOT.q
p.OR..NOT.q
p.X XR._NOT.q
p-EQV.NOT q
p-NEQV..NOT.q

The binary operaters .AND., .OR., .XOR., .EQV,, and .NEQV. ..

Table 3.3 OPERATOR PRECEDENCES

Precedence Operators Category
1st ok Arithmetic
2nd =/ Arithmetic
3rd + - Arithmetic
4th [/ Character
5th .EQ.,.NE.,.LT. .LE.,.GT.,.GE. Relational
6th .NOT. Logical
7ih AND. Logical
8th .OR. Logical
9th XOR.,.EQY..NEQV. Logical

344


http:EQ.,.NE.,.LT.,.LE.,.GT.,.GE

SCALAR ASSIGNMENT STATEMENTS 4

A scalar assignment statement initiates evalugtion of the
expression on the right side- of 'the eguals sign. When
evaiuation is complete, the varjable to the left of the equals
sign is assigned the value of the expression.

This section gives the formation rules for the following
types of sealar assignment statements:

Arithmetic
Charaecter.
Logical

Bit

The terms left hand side and right hand side of an
assignment statement refer in this manual to everything in
the statement that lies to the left of and to the right of the
equals sign, respectively.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statément hes the following
form:

var=expr B

expr An arithmetic expression.

var A simple variable or array element, of type
integer, real, double preeision, or complex.

If the type of the element to the left of the equels sign
differs from that of the expression on the right, type
conversion tekes place during assignment. The value of the
expression, converted to the type of the variable on.the left
side, replaces the value of the variable.

Examples:
Statement Meanin
A=A+l Replace-the value of A with the

valueof A+1
K(4) = K(1) + K(2) Replace the value of K(4) with the
sum of the array elements K(1) and
K(2)
I ={-2.3, 1.5) Replace the value of I with the trun-
cated real part of the complex
constant, -2

Replace the value of A with 3.0

The rules for conversion during arithmetic assignment are
given in table 4-1. Terms used in thé table are defined gs )
follows: .

Contract Convert double precision to real.

Extend Convert real to double precision, filling
the new mantissa with zeros.

Float Convert integer to real.

Fix Convert real to integer, truncating the
fraetional part.

Real part Real part of a complex velue.

Imaginary  Imaginary part of a complex value.

part . J

TABLE 4-1. CONVERSION FOR ARITHMETIC ASSIGNMENT

Yariable Type

Expression Type

(Left Side) Integer

ormrremra—— ramre—
u—— —

Real

S A E—

Pouble Precision Complex

I

Contract and fix

Integer No conversion Fix Fix real part.and
diseard imaginary
part

Real Float . No converston Contract Use real part and

diseard imeaginary
part

Double Precision Float and extend Extend

Extend real part and
diseard imagmary
part

No converston

Float and use for real
part; zero imaginary
part

Complex

Use for real part; zero
imagmnary part

Contract and use for No eonversion
real part; zero im-
aginary part

.

§0386200°G

4=-1




var

real, double or half precision, or complex.

A simple variable or array element of type integer,

Left T ‘—*__“"'gg'};'t Side E}i)""“‘“‘""“""‘”""]
Side

(L) Integer Real Double Half Complex
Integer I=R ; LFINT(R) L=INT(R) L=INT(R) 1 L=INT(R)
Real LRE:;LL(R) =R L=REAL(R) L=REAL(R) E=REAL(R)
Double | L=DBLE(R) | L=DBLE(R) | L=R L=DBLE(R) | L=DBLE(R)
HALF | L=HALF(R) | L=HALF(R) | L=HALF(R) | i=R L=HALF(R)
Complex | L=CMPLX(R) | L=CMPLX(R) | L=DMPLX(R) { L=CMPLX(R) | L=R

C: ... given in Table 4-1. In the table, L stands for the left hand side of an

assignment statement; R stands for the right.

The functions referenced (INT,

REAL, DBLE, HALF, and CMPLX) are just the generic intrinsic functions for
type conversion; their behavior is described in Chapter 15 of this manual.

4-1A



CHARACTER ASSIGNMENT STATEMENT Execution of the logical assignment statement causes the
value of the logical expression to be assigned to the logical

entity specified to the left of the equals sign.
The character assignment statement has the following forms
Examples:
var=expr
. LOGICAL LOG2Z LOG2 is assigned the value .FALSE.
expr A character expression. . =1 becguse [ does not equal 0.
LOG2=1.EQ. 0

var A character varigble or a character array
A elemerit. LOGICAL NSUM, VAR
BIG = 200, NSUM is assigned
When the length of the entity var and the length of the YAR = .TRUE. the value ,TRUE,
character value of the expression expr are the same, NSUM = BIG ,GT. 200. .XOR. VAR
execution of the character assignment statement causes the
value of the charscter expression to be assigned to the LOGICAL A,B,C,D.E,LGA,LGB,LGC
character entity to the left of the equals sign. REAL F,G,H
LGB=B.AND.C.AND.D
The elements var and expr can have different lengths. When A=F GT.G.OR.F.GT.H
var is longer than expr, expr is extended to the right with A=.NOT.(A.AND..NOT.B)L.AND.(C.CR.D)
blank charaeters until it matches the length of var, and then LGA=.NOT.LGB
is assigned. If var is shorter than expr, expr is truncated LGC=E.OR.LGC.OR.LGB.OR.LGA.OR.{A.AND.B)
from the right until it matehes the length of var, and then is
assigned,
Examples: BIT ASSIGNMENT STATEMENT
Given the declarations The bit assignment statement has the following form:
CHARACTER*10C var=expr
CHARACTER*5 VOWELS, CARRAY (50)
expr A bit expression
Statement Meaning
var A bit variable or bit array element
VOWELS = "AEIOU*  Replace the value of VOWELS with
the value of 'AEIOU" i Execution of the bit assignment statement causes. the bit
value of the bit expression to be assigned to the bit entity to
C=CARRAY (N) Replace the value of C with the the left of the equals sign.
value of CARRAY (N) left-justified
in C and padded on the right with Examples:
five blank characters
Given the declaration
LOGICAL ASSIGNMENT STATEMENT BIT Bz, AI(3000
Statement, Meanil
The logieal assignment statement has the following form: —=
B2 = AI(N).OR.B'0'  Assign to B2 the value 1 if AI(N) is a
var=expr 1 bit, the value 0 otherwise,
expr A logieal expression.
B2 = B! Replace the value of B2 with a value
vap A logical varisble or e logical array element. of 1.

4-2 60386200 E


http:A=.NOT.(A.AND..NOT.B).AND.(C.OR

var A character variable or a character array element, or a substring of
either of these. (No part of var may be part of expr —— that is,
may be part of any operand of expr.)



FLOW CONTROL STATEMENTS 5

The statements of & STAR FORTRAN program are in effect
executed consecutively except when flow is altered by a
control statement or by an exceptional condition (for
example, end-of-file on Input, or & data flag branech
interrupt). The execution of a control statement alters,
interrupts, terminates, or otherwise modifies the normal
sequential flow of program execution.

Some control ststements indicate where control is to be
transferred by referring to a statement label. The transfer
of control must not be made to-a nonexecutable statement
such as a FORMAT statement. It ean be mede to the
dummy exeeutable statement CONTINUE {which is used for
no other purpose than to be labeled) or to any other labeled
executable statement.

Besides the CONTINUE statement, STAR FORTRAN con-
tains four kinds of eontrol statements:

Unconditional branch (G0 TO statement; assigned GO
TO statement) ’

Conditional branch (computed GO TO; arithmetie and
logical IF)

Loop (DO statement)
Program control (PAUSE; STOP; CALL; RETURN)

Cnly the fourth kind does not involve labels.

GO TO STATEMENT.

The three types of GO TO statements are unconditional,
asgsigned, and computed.

UNCONDITIONAL GO TO
The unconditional GO TO statement has the following form:
GOTOn

n The statement label of an executahle state-
ment.

Control is transferred on execution of the GO TO so that the

statement labeled n 15 the next statement to be executed.
The statement labeled n must be in the same program unit,

ASSIGNED GO TO

An ASSBIGN statement 15 used I conjunction with the
assigned GO TO statement. This ASSIGN statement is not
related to the descriptor and double deseriptor ASSIGN
statements deseribed in the vector programming section.
ASSIGN Statement

The ASSIGN statement initializes a variable for subsequent
use in an assigned GO TO statement. It has the following

form:

ASSIGN n TO var

60386200 E

n The statement label of an executable state-

ment,
var A simple integer variable.

n is the label of the executable statement to which control
is transferred by an assigned GO TO statement that contains
the variable var, The statement labeled n must be in the
same program unit in which the ASSIGN statement appears.

Use of the ASSIGN statement does not have the same effect
as use of an assignment statement; for instance, an
arithmetie assignment cannot be used interchangeably with
an ASSIGN. Once a variable var is associated with a labeled
statement by means of an ASSIGN, it.must be used
exclusively in ASSIGN statements and in sssigned GO TO
statements until it is defined by means of an assignment
statement. Similarly, once it has been defined by an
assignment statement, it must be used exelusively in
statements other than the assigned GO TO statement until it
is associated with a labeled statement by means of an
ASSIGN. That is, resuits are unpredictable in either of the
following cases:

use of the varisble var in an assigned GO TO statement
when var's current value was defined by other thar an
ASSIGN statement .

use of the variable var in an arithmetic expression when

var is currently associated with & lsbeled statement s
a result of an ASSIGN

Assigned GO TO Statement
The assigned GO TO statement has the following form:

GO TO var,(nl,nz, - ,nm)

GO TO var

var A simple integer variable,

n; The statement Jsbel of an executabie
statement.

The comma separating var from the label list is optional.
Control is transferred so that the labeled statement
associgted with var is the next statement to be executed.
The statement labeled n, must be in the same program unit
in which the GO TO statement referencing it appears.

At the fime of execution of an assigned GO TQ, the variable
var must have been associated with g labeled statement by
prior execution of an ASSIGN statement. In the first form
of the statement, var must be associated with one of the
labels in the parenthesized list, while in the second form var
must be asscciated with a label in the program unit.

Examples:

ASSIGN 100 TO LSWICH
GO TO LSWICH (590,100,159,206)

Control transfers to statement 100 upon execution
of the GO TO statement.

5-1



A: The following statements are classified as control statements:

Unconditional GO TO
Cemputed GO TO
Assigned GO TO
Arithmetic IF
Logical IF

Block IF

ELSE IF

ELSE

END IF

DO

CONTINUE

sTOP

PAUSE

END

CALL

RETURN



ASSIGN 110 TO LSWICH
GO TO LSWICH (500,100,150,200)

D Results of executing the GO TO statement are

unpredictable because 110 is not one of the labels
in the list.

COMPUTED GO TO
The eomputed GO TO statement has the following form:
GO TO(nl,nz, .es .nm),sel
E{ sel
n; The statement label of an executable
statement.

A simple integer variable,

The comma separating sel from the label list is optional.
The statement labeled n, must be in the same program unit.
The computed GO TO statement transfers control’ to a
statement whose label is in the parenthesized list. If the

F{selecting variable sel has the value 1, then the statement

lebeled n, is the next statement to be exeeuted; if sel has
the value™i, the statement labeled n, is the next statement
to be executed. If the value of sel is not in the range 1 to
m, the first executeble statement following the computed
GO TQ is executed next.

Example:
QGiven the statements:

GO TO (200,1060,400,200),1
CAT =FUR + GRIN

the Iabel of the next statement executed is:

200ifL=1
100ifL=2
400ifL=23
200ifL=4 -

If L >5o0rif L < 0, control falls through to the
statement immediatély following the GO TO statement,
in-this case CAT = FUR + GRIN,

IF STATEMENT

G{The two types of IF statements provide for transfer of
control on sign and on truth value conditions,

ARITHMETIC IF

The arithmetic IF statement has the following form:

IF (expr} Ny,Mo g

expr
H

n. The statement lsbel of an executable
statement.

Any arithmetic expression of type integer,
real, or double precision.

The statement labeled n, must be 1n the same program
unit, On execution of the IF statement, the arithmetic
expression expr is evaluated and control transfers to one of
the statement labels Ny, Ny, OF Ny according to whether the

§-2

value of expr is-less than zero, zero, or greater than zero,
respectively.

LOGICAL IF
The logical IF statement has the following form:

1F-(expr) s
expr Any logieal expression.

s Any executable statement, exeept a DO
stetement or logical IF statement.

Upon execution of this statement, the logical expression
expr is evaluated. Then, if the value of expr is false,
statement s is not executed and control passes to the next
executsble statement following the logical IF statement. If
the value of expr is true, statement s is executed; then
the next executable statement following the IF statement is
executed, unless s caused a transfer of eontrol. )

The K compile option controls how .EQ. and .NE. compares
are performed in evaluation of the logical expression in this
ststement. If the K option has not been selected, only the
bits 16-63 are compared. Selsction of the K option causes a
full word compare to take place during evaluation of the
expression.

DO STATEMENT

Execution of a group of statements can be repeated a
specified number of times through use of the DO statement.
The range of a DO statement is the set of executable
statements beginning with the {irst executable statement
following the DO and ending with the terminal statement
associated with the DO. A DO statement along with its
range is referred to as a DO loop.

DEFINING A DO LOOP
The DO statement has the following form:

DOni= m,,m,,m,

n The label of the terminal statement.
i The control variable, a simple integer variable,
m,y The initial value parameter of i, an integer

- constant or a simple integer variable with a
value greater than zero,

: m, The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

mg Opticnal. The incrementation value parameter

for i, an integer constant or & simple integer
varigble with a value greater than zero.
Default value is 1.

The terminel statement of a DO loop can be any assignment
statement and almost any input or output statement.
However, any control statement other than a CONTINUE is
either highly restricted or must not appear as the terminal
statement of a DO. The terminal statement must not be any
of the following:

A RETURN, STOP, or PAUZE statement ‘

A GO TO statement of any form

60386200 E




A: 5 Any executable statement except DO, logical IF, block IF,
ELSE IF, ELSE, END IF, or END.

B: Block IF, ELSE IF, ELSE, and END IF as described in ANSI X3.9-1978
sections 11.6-11.9.

C: DO n,i= ey, €3 &3

n The label of the terminal statement.
The comma after n is optional.

i The control variable. The type of i
may be any arithmetic type except
complex.

e; The initial value. e; may be any
non-complex arithmefic expression.

ey The terminal value. e, may be any
non-complex arithmetic “expression,

e Optional incrementation value. If e
3 . h ; b
is omitted, the incrementation value
is 1. e; may be any non-complex
arithmetic expression.

D:  delete
E: sel  An integer expression
F: ... selecting expression sel has the value 1, then the statemant . . .

G: The IF statements provide for transfer of . . .

H: expr An arithmetic expression of any type
other than complex.

E A RETURN or STOP statement
An unconditional GO TO or assigned GO TO
A block IF, ELSE IF, ELSE, or END IF
An END statement



A special eall statement
A DO statement

' A READ statement containing an ERR or END branch
A CALL statement that passes g return label

An arithmetic 1P statement

F A logieal IFP statement containing any of these
restricted forms

The terminal statement must physically follow and be in the
same program unit as the DO statement that refers to it.

Example:

DO 10 1=1,11,3
IF(ALIST(D)-ALIST{I+1))15,10,10
15 ITEMP=ALIST{D)
10 ALIST{D}=ALIST{I+1}
300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, 10,
Statement 300 is then executed.

A DO loop can be initially entered only through the DO
statement. That is, the group of statements in figure 5-1
are incorrect; The GO TO statement in figure 5-1 transfers
control into the range of the DO before the DO statement
has been executed. .

GO TO 100
DO 1601=1,50
100 A(B=I

Figure 5-1. Incorrect: Entering Range
of DO Before DO Execution

Execution of a DO statement causes the following sequence
of operations:

1. i is assigned the value of m,.
2. The range of the DO statement 15 executed.
3. iisincremented by the value of Mg

4. 1 is compared with m,. If the value of i is less than
or equal to the value of m,, the sequence of
cperations starting at step 2 15 repeated. If the
value of | is greater than the value of m, then the
DO is said to have been satisfied, thze eontrol
varigble becomes undefined (has an unpredictable
value), and control passes to the statement follow—
ing the statement labeled n. If m, is greater than
m,, the range of the DO is still executed once.

A transfer out of the range of a DO lcop 1s allowable at any
time. When such a transfer ocecurs, the control variable
remains defined at its most recent value in the logp. If
eontrol eventually 1s returned to the same range without
entering at the DO statement, the statements executed
while control is out of the range are said to define the
extended renge of the DO. The extended range of a DO
must not contaiff a DO that has its own extended range.

v

60386200'E

The control variable, initiel parameter, terminal parameter,
and inerementation parameter of & DO must not be
redefined during the execution of the range of that DO.
However, the-group of statements-in figure 5-2 are correct.
If ever an element of the array RA is zero or negative, it is
set to I and the DO statement is reentered, which
reinttializes the control variable I.

K=0

GO TO 300
200 RA(D=1.
360 DO 100 1=1,50

K=K+l

IF (RA(ILLE.0.JGO TO 200
100 RA(D=K

Figure 5-2. DO Control Variable Reinitialization
NESTING COQ LOOPS

When a DO loop contains another DO statement, the
grouping is called a DO nest. DO loops can be nested to any
number of leveis. The range of a DO statement can include
other DO statements only if the range of eaeh inner DO is
entirely within the range of the containing DO statement.
When DO loops are nested, eaeh must have a different
control variable.

The terminal statement of an inner DO loop must be either
the same statement as the terminal statement of the
containing DO locp or must cecur before it. If more than
one DO loop has the same terminal statement, a branch to
that statement can be made only from within the range or
extended range of the innermost PO, Figure 5-3 gives an
example of an incorrect tramsfer into the range-of an Inner
DO. Since statement 500 in figure 5-3 15 the termmnal
statement for more than one DO loop, if the first element of
any row in array A is less than or equal to gzero, the
consequent branch to the CONTINUE statement will be an
entrance into the range of the inner DO.

If the nested loops in figure 5-3 did not share a terminal
statement, or if the outer loop did not reference the
terminel statement, the loops would be correctly nested.

DO 500 I=1,5
IF (A{L,1).LE.0.) GOTO 500
DO 500 K=1,10
AlLK)=SQRT(A(LK))

500 CONTINUE

Figure 5-3. Example of Incorrect Sharing
of Terminal Statement

CONTINUE STATEMENT

The CONTINUE statement has the following form:
CONTINUE

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere m a
program without interrupting the flow of conirol. The
CONTINUE statement is generelly used to carry & statement
label. For example, it can provide DO lcop termination
when & GO TO or IF would otherwise be the last statement
of the range of the DO.

5-3

fs



1.  The initial, terminal, and incrementation values my, my, mjy
are determined by evaluating the expressions ey, €y, €3 and
converting them to the type of i

ta

The DO-variable i is initialized to the value of my.
3. The iteration count is defermined as

k = MAX (0, INT {(my *+ my - ml)lm3)).

my may not be zero. The iteration count is zero
if I'I'll >m2 and m3 > 0, or if ml < m2 and m3
£0. :

4.  The range of the DO is executed k (possibly 0) times.
After each execution of the range, i is incremented by ms.

5.  Execution then continues at the first executable statement
after the statement labeled n (unless that statement is also
the terminal statement of another DO containing this one).
Unlike ANSI 66 FORTRAN, the DO-variable i remains
defined; its value is now my + k* ms.

NESTING OF DO loops AND BLOCKS

A DO loop range, IF block, ELSE IF block, or ELSE block which
contains a DO statement must contain all statements in the range of
that DO. Likewise, a range or block which contains a block IF,
ELSE IF, or ELSE statément must contain all statements in the IF
block, ELSE IF ‘block, or ELSE block.

Note that the last statement in the range of a DO may not be a
block IF, ELSE IF, ELSE, or END IF statement.

NO ZERO TRIP OPTION

The compiler may generate more efficient object code for a DO
loop if the No-Zero-Trip option is selected on the FORTRAN
control statement. In this case, the test for loop termination

will be made at the bottom of the loop rather than the top.
Thus a loop will always be executed at least once. This 15 the
way the STAR FORTRAN system functioned prior to the upgrade
to ANSI 77.

The 66 oprtion imrplies the No-Zero-Tiip option.

The control variable may not be redefined in the range or
extended range of the DO. However, variables which appear

in the expressions ey, ey, ey may be redefined without any
effect on the DO.

delete

delete



PAUSE STATEMENT
;
The PAUSE statement has the following form:
PAUSE n

CJ n  Optional. A string of one to five decimal digits, or
{ a chargeter constant. :

If a string is given, it is displayed in the job dayfile or at the
terminal. The string is also placed in the output file for the
job. Program execution then continues with the next
executable statement following the PAUSE statement. If
no string is given, instead of n being displayed and output,
the string PAUSE is displayed and output before proegram
execution continues.

STOP STATEMENT

The STOP statement has the fellowing form:
STOP n

n  Optional. A string of one to five decimal digits, or
a charaeter constant,

Upon execution of the STOP statemernt, program execution
unconditionally terminates and control is returned to the
operating system. If a string is given, it i5 displayed in the
job dayfile or at the terminal. The string is also placed in
the output file for the job. If no string is given, instead of n
being displayed and output, the string STOP is displayed and
output.

RETURN STATEMENT

Subroutine and funetion subprograms contain one or more
RETURN statements that when executed cause immediate
return of control to the referencing program' unit. The
RETURN statement must not appesar in a main program.

Form:
RETURNN
n Optional in subroutine subprograms, prohibited
D in funection subprograms. An integer constant
or simple infeger varisble that specifies the

nth dummy argument asterisk in the 3UB-
ROUTINE or ENTRY statement.

In a function subprogram, execution of & RETURN causes
the funetion value to be returned to the refereneing program
unit and i{o be substituted for the most recently executed
funetion reference 1 that program unit. Evaluation of the
expression that contained the funetion reference continues.
The integer n must not appear after a RETURN statement in
& function subprogram.

in a subroutine subprogram, when n is not given, execution
of a RETURN returns control to the first executsble
statement following the CALL statement last executed in
the calling program unit. When n is given, control returns
instesd to a stgtement indicated in the argument list of the
CALL statement. The statement label to which control

4

returns is given by the actual argument corresponding to the
nth asterisk dummy argument in the SUBROUTINE or
ENTRY statement of the called subroutine. If there are
fewer than n sueh statement label arguments or if n < §, the
return is as if n had not been speeified (that 1s, control
returns to the first executable statement following the
appropriate CALL statement).

CALL STATEMENT

The CALL statement is used to transfar control to a
sbroutine subprogram, STAR Record Mansger module,
META subroutine, or any other external subroutine. The
execution of & CALL statement is not complete until the
subroutine designated in the statement completes execution
and returns control to the calling program unit,

Form:

CALL s (al'ai’ cee ,an)

s The symbolic name of a subroutine, or an enfry
point name in a subroutine.

a, Optional, An actyal argument which ean be an
expression, vector, deseriptor, double deserip-
tor, array, exterpsl proeedure name, or the
Iabel of an executable statement in the same
program unit (the label is prefixed by an
ampersand), When the argument list is omit-
ted, the parentheses and commas must also be
omitted. n must equel the number of dummy
arguments in the SUBROUTINE or ENTRY
statement for s.

Execution of the CALL statement transfers control to entry
pomnt name s. See the heading Passing Arguments Between
Subprograms in section 7 for a further deseription of actual
arguments in CALL statements.

Contro! normally retupns to the first executable statement
following the CALL statement. However, control can be
made to return to some other statement in the program unit
by appropriate selection of the CALL statement's actual
arguments. If the dummy argument list in the ecalled
subroutine eontains at least n asterisks, and if the called
subroutine contains a RETURN n statement, then upon
execution of the RETURN n statement, control returns to
the statement having the nth statement label in the CALL
statement actual argument lst.

For example, the program in figure 5-4 uses both the
RETURN n and the RETURN statement formats, If the data
read with the READ statement in the subroutine is less than
1.0 or greater than 10.0, then control transfers baex to the
mein program statement having the label 100. A message is
printed out and the program termnates. On the other hand,
if the data is within the appropriate range, then the
subroutine continues exescuting until the RETURN statement
is reached, at which time control transfers back to the mamn
program statement that immediately ioltows the call to the
subprogram.

60386200 E




a An actual argument. Each actual argument may be an
expression, array, external function, intrinsic function.
dummy procedure, SHADE subroutine, dynamic
variable, dynamic array, dynamic array element,
or aliernate return specifier. An alternate return

specifier is a statement label prefixed by an asterisk
or an ampersand.

If there are no actual arguments, the parentheses in the
CALL statement are optional.

n is displayed in the job dayfile or at the ferminal. If n is omitted,
PAUSE is displayed. The same x is also displayed at the operator
console, and the program waits for operator response. When the
operator responds, the response is displayed in the job dayfile or at
the terminal. The program execution continues,

n One to five decimal digits or . . .

. in function subprograms. An integer thai specifies the . . .



PROGRAM P{INPUT)

CALL S(A, &100,B)

.

STOP
100 PRINT 2
2 FORMAT (1X, 'BAD DATAY)
STOP
END .

_. SUBROUTINE 5 (D1,*,D2) -

READ 34X, )
. FORMAT.(F4.1). - ’
- IF- (X.LT.I. 0 .OR. X.GE m.o) RETURN 1
:~° RETURN- . L
-~ END ) e

. Figure:5~4. Example 6 RETURN Staterents.

60386200 E

5~3



DPROD(ay ,a5) -

This computesu the double precision product of two real numbers. Valid arguments for DPROD lie in the
interval -0.476 854 057 715 93E + 8645 =< x =+ 0.476 854 057 715 93E + 8645 (the largest allowable
argument value is half of the largest allowable real mumber). The double precision equivalents of the real
numbers are multiplied and a double precision result obtained that is accurate to 94 bits.

DSIGN(ay a4)

.This combines the abs‘:;lute value of one double precision number with the sign of another double precision
number; DSIGN(x,y) =1 x 1 if y= 0; DSIGN(x,y) = -1 x 1 if y<< 0.

DSIN(a) and DCOS(a)

These compute the sine and cosine of a double precision number expressed in radians. The double precision
number modulo 2 pi is used by the functions. The results are double precision numbers in the range -1 to
1, inclusive, and are accurate to approximately 90 bits.

DSINH(a)

This computes the hyperbolic sine of a double precision number and produces a double precision result that
s accurate to approximately 90 bits.

DSQRT(a)

This computes the square root of a double precision number greater than or equal to zero and retums a
double precision result that is accurate to approximately 90 bits.

DTAN(2)

This computes the tangent of a double precision number expressed in radians. The double précision number
modulo 2 pi is used by DTAN. The result is a double precision number that i accurate to approximately
50 bits. Allowable arguments for-the-DTAN function are in the range -.110 534 964 875 444 D+15<x=<
.110 534 964 875 444 D+15.

DTANH(a)

This computes the hyperbolic tangent of a double precision number and returns a double precision result
that is accurate to 90 bits.

EXP(a)

This function computes the exponential of a half precision, real. or double precision argument. It is the
specific name for computing the exponential of a real argument. The other functions for computing the
exponential and CEXP, DEXP, and HEXP. The specific function EXP computes the exponential of a real
number. The resuit, accurate to approximately 45 bits, is.a real number greater than or equal to zero.

15-23A



DSINH(a)
This computes the hyperbolic sine of a double precision number and produces a double precision result
that is accurate.to approximately 90 bits. .

DSQRT(za)
This computes the square root of a double precision number greater than or equal to zero and returns a
double precision result that is accurate to approximately 90 bits.

DTANG) .

This computes the tangent of a double precision number expressed in radians. The double precision number
moduio 2 pi is used by DTAN. The result is a double precision number that is accurate to: approximately
90 bits. Allowable arguments for the DTAN function are in the range -.110 3534 964 875 444 D+15<x<
110 534 964 875 444 D+15, ’

DTANH(a) -
This computes the hyperbolic tangeni of a double precision number and returns a double precision result
that is accurate to 90 bits.-

EXTEND(a)

This function converts the half precision argument a into a real result.

FLOAT(a)

This converts an integer number to.a real number by normalizing the integer' number.

HABS(a) .

For a half precision argument a, HABS(a) computes the absolufe value /af.

HACOS(a)

This function computes the arccosine of a half precision argument.

HACOS(a) = HALF(ACOS(EXTEND(A)))

HALF(a)

For a -of type half precision HALF(a) = a. For a of type integer, real, or double precision this function
produces a half precision result equal to a. For a of type complex

HALF(2) = HALF(REAL(a))

There are no specific functions for forming a half precision result.

15-24A



HASIN(a)

Fhis function computes the arcsine of a half precision arsument.
HASIN(z) = HALF(ASIN(EXTEND(a)))

" HATAN(a)

This function computes the arctangent of a half precision arsument.
HATAN(a) = HALF(ATAN(EXTEND(a)))

HATAN2(al,a2)

This function computes the arctangent of the ratio of two half precision arguments.
HATAN2(a;a,) = HALF(ATAN2(EXTEND(a;),EXTEND(a,)})

HCOS(a)

This function computes the cosine of a half precision argument.

HCOS(a) = HALF(COS(EXTEND(a)))

HCOSH(z)

This function computes the hyperbolic cosine of a half precision argument.

HCOSH(a) = HALF(COSH(EXTEND(a)))

HCOTAN(z)

This function. computes the cotangent of a half precision argument.

HCOTAN(a) = HALF(COTAN(EXTEND(a)))

HDIM(a, ,a:,_)

This function computes the positive excess of one half precision number over another half precision number.

HDIN(nI,aﬁ,) is ay - dy if a) >>a,, otherwise it is zero.

HEXP(z)
This function computes the exponential of a half precision argument.

HEXP(a) = HALF(EXP(EXTEND(a))

HINT(a)

This function computes [a], where [a] is the sign of a times the largest integer less than or equal to faf..

15-25A



HLOG(a)

This function computes the npatural logarithm of a half precision argument.
HLOG(a} = HALF(ALOG(EXTEND(a)))
“"HLOG10(a)
This function computes the common logarithm of a half precision argument.
HLOG10{a) = HALF(ALOG10(EXTEND(a)))
HMAXI(al ,32,.. .)

This function searches the list of half precision arguments for the element having the maximum value and
returns ithis value.

I-IM[NI(al,aZ,...)
This function searches the list of half precision arguments for the element having the minimum value and
returns this value.

I']MOD(&I ,32)

This function computes one half precision number modulo a second half precision namber. For ay and a5

of type half precision.
HMOD(a;2,) = ay - a5 *HINT(2/a5)

HNINT(a)

This function computes the nearest whole number to a. Both the argument and result are of type. half
precision. Note that for a half precision argument a

HNINT(a} = ANINT{a)

HPROD(24,29)

This computes the single precision product of two half precision numbers,

HSIGN(ay.a4)
. This function combines the absolute value of one half precision number with the sign of another half

precision number.
HSIGN(ay.aqy) = fag/ if 2,2 0,
HSIGN(EI,ﬂz) = ‘l/all if 32 < 0.
HSIN(2)
This function computes the sine of a half precision argument.

HSIN(2) = HALF(SIN(EXTEND(2))

15-26A



HSINH(a)

This function compntes-the hyperbolic sign of a half precision arsument.

HSINH(z) = HALF(SINH(EXTEND(a)))

" HSORT(a)

This function computes the square root of a half precision number using the machine instruction QBSORT.

HT AN(a)

This function computes the tangent of a half precision argument.

HTAN(2) = HALF(TAN(EXTEND(a)))

HTANH(2)

This function computes the hyperbolic tangent of a half precision argument.

HTANH(z) = HALF(TANH(EXTEND(a)))

IABS(a}

For an integer number x, IABS{x) computes the absolute value [x/.

ICHAR(z)

For a of type character, this function returns the integer corresponding to the ASCII code for a. For
example :

1cHAR(1AY) = xla1!

IDIM:(&I ,8.2)

This computes the positive excess of one integer number over snother integer number. IDIM(x,y) retums

the value x-y if x is greater than or equal to y, and returns a value of 0 otherwise.

IDINT(a)

For a double precision number x, IDINT(x) computes [x], where [A] is the sign of A times the largest
integer less than or equal to [A[.

DNINTG)

This function computes the integer nearest to the double 'precision argument a. For example

IDNINT(4°1D+00) = 4
and
IDNINT(-4"1D+00) = -4

15-27A



JEIX(a)
This function converts the real argument a into an integer and is an alternative name for the specific
function usage of INT.

. JHINT(a)
For a half precision number a, IHINT(a) computes [a], where [a] is the sisn of a times the largest
integer less than or equal to faf.

THNINT(a)

This function computes the imteger nearest to the half precision argument a.

lNDEX(al,az)

This function returns an integer value indicating the starting position within the character string a; of a3
substring identical to a5, I a5 occurs more than once in a;, the starting position of the first occurrence
is returned. -

If ay does not occur in ay, the value zero is returned. Note that zero is returned if LEN(aI) < LEN(az).

INT(a)

For a of type integer INT(a) = a. For a of type half precision, real, or double precision, there are two
possible results. If /a/ <1 then INT(a) = 0. If faf =1, INT(a) is the integer whose magnitude does
not exceed the magnitude of a and whose sign is the same as the sign of a. For example

INT(-37) = -3

For a of type complex, INT(a) is, the value obtained by applying the above rule to the real part of a.
INT is the specific name for converting a real argument to an integer. The other specific functions which
convert their argument to an infeger are IDINT, IFIX, and IHINT. '

ISIGN(al,az)

This combines the absolute value of one inteser number with the sign of another integer number.
ISIGN(al,az) = /3.1/ if 3.2 = 0
ISIGN(al,az) = -/3.1! if 32 =<0

LEN(a)

This function returns the number of characters in the character arsument a.

LGE(SI 59)

This function returns the result .TRUE. or .FALSE. depending ‘on the relation between the character entities

59 and s5. If a; and a4 are corresponding characters in sy and s5 then

LGE(sy.s5) = -TRUE. if ICHAR(a;) = ICHAR(a,) for all a; and a,

15-28A



mT(Sl,S»Z)
This function returns the result .TRUE. or .FALSE. depending on the relation between the character entities
sy and s5. I a; and a, are corresponding characters in sy and s, then

LGT(sy.5) = .TRUE. if ICHAR(ay) >I&IHAR(a2) for all a; and a,

LLE(SI,Sz)
This function returns the result .TRUE. or .FALSE. depending on the relationship between the character
entities sy and s5. If a; and a, are corresponding characters in a; and a5 then

LLE(s|sy) = .TRUE. if ICHAR(a;) < [CHAR(a,) for all a; and a,

LLT(s{,55)

This function returns the result .TRUE. or .FALSE. depending on the relationship between the character
entities sy and s5. If a; and a5 are corresponding characters in sy and s then

LLT(sy.s9) = .TRUE. if ICHAR(a;) < ICHAR (a;) for all a; and a,

LOG(a}

This- function computes the matural logarithm for a haif precision, real, double precision-or complex arsument.
The specific function names are ALOG, CLOG, DLOG, and HLOG.

LOGI10(a)
This function computes the common logarithm of a half precision, real, or double precision argument. The
specific function names are ALOG10, DLOG10, and HLOGI10.

MAX(a;.29,.-)

This function searches the list of teger, half precision, real, or double precision numbers for the list element
having the maximum value and returns this value. The type of the result is the same as the tvpe of the
arguments. The specific function names are AMAX1, DMAXI1, HMAXI, and MAXO.

MAXO(al ,32,...)

This searches a list of integer numbers for the list element having the maximum value and returns that

value,

MAXI(al,az,...)

This searches a list of real numbers for the kst element having the maximum value. The selected real number

is converted with IFIX before being rzturned.

MIN(a; .a5,...)

This function .searches the list of integer, half precision, real, or double precision numbers for the iist element
having the minimum value and returns this value the type of the result is the same as the tvpe of the argu-
ments. The specific function names are AMIN1, DMIN1, HMIN1, and MINO.

15-29A



MIN{](al ,az,...)
This searches a list of integer numbers for the list element having the minimum value and returns the integer

when found.

. MINl(al,az,)
This searches a list of real numbers for the lst element having the minimum value. The selected real number
is converted with IFIX before being returned.

MOD(EI ,az)
This function computes one number modulo a second number. Both numbers must must be of the same

type which may be integer, half precision, real, or double precision. It is the specific function name for
compiling one integer modulo another integer. The other specific names for this function are AMOD, DMOD,

and HMOD.

NINT(a)
This function compiles the nearest infeger to the specified half precision, real, or double precision argument.
It is the specific function name for computing the nearest integer to a real number, Examples:

NINT(3-5) = INT(3'5 + 0'5) = 4

NINT(-0-1} = INT(-0'1 -0:5) = 0

The other specific function names for computing the nearest integer are IDNINT and ITHNINT.

Q8SCNT(v)

This counts the number of 1 bits in a bit vector. The result returned is an integer:

Q8SDFB(a,b)

This tests the bits in the data flag branch register, given a pair of integer constants (x,y), where x indicates
the bit to be tested, and y is an indicator that can assume one of the following values:

0 means the bit tested is not to be altered.

1 means the bit tested is to be set to 0.

2 means the bit tested is to be set to 1.

3 means the bit tested is to be toggled (that is, if 1, set to 0, and if 0, set to I1).

Bit x in the data flag branch register is tested and a logical result of .FRUE. or .FALSE. returnied, depending
on whether bit x is 1 or 0. Action is also taken according to the indicator v.

Example:
Given
the 10th bit in the DFB register is 1
x=9
y =3

the value of Q8SD¥B(x,y) is .FRUE., and the 10th bit in the DFB register, since it is I,
is sef to (L

15-30A



QBSDOT(vy,v5)

This calculates the dot product of two vectors having the same length and data type. Q8SDOT produces
a scalar result that has the same data type as its arguments.

For given vectors x and y, the procedure for calculating the dot product is as follows. Corresponding
elements in x and y are multiplied together, and the sum of the resuiting products is taken.

Example:
Given
x=013 200
y=2220
the value of Q8SDOT(x,y) is
O*D+{A*DP+B3*2)+ 000 =38

Q8SEQ(vy )

From among the pairs of corresponding elements in two real, half precision, or integer vectors, Q8SEQ selects
the first pair of elements that are equal. (A vector and a seslar is an alternative to the two vectors.)
The result is an integer scalar,

Q8SEQ(x,y) compares the corresponding clements of vectors x and y, beginning with the first element of
x and the first element of y, until a pair is found that has-equal elements, or until all elements in the
vectors have been compared. The value returned is the number of unsuccessful compares that were made.
A scalar x or ¥ is considered to be a vector of the appropriate length with every element being the scalar
value.

Example:
Given

x=01454
y=10354
the value of Q8SEQ(x,y) is 3.

Q8SEXTB(a,m,n)

This extracts m bits, beginning with bit n of a. The result if right-justified in a 64-bit word with zero
fil. The m and n values are integer. Biis in the word are numbered from left to right, beginning with
Zero.

QSSGE(VI,VZ)

This is identical to Q8SEQ, except that Q8SGE searches for an element in x that is greater than or equal
to the corresponding element in v.

1531A



Q8SINSB(a,m,n.b)

This produces a word into which bits have been inserted. The result is equal to b, except that m bits,
beginning with bit n, are replaced by the m rightmost bits of a. The argument b is not altered. The

m and r values are integer. Bits in the word are numbered from left to right, beginning with zero.

Q8SLEN(v)
This counts the number of elements in a half precision, real, integer, or complex vector, or the number of elements

in the value vector part of a real or integer sparse vector. The result returned is an integer. For a
complex vector, the number of elements is half the number of words.

Q8SLT{(vy,¥)

This is identical to QB8SEQ, except that Q8SLT searches for an element in x that is less than the corres
ponding element in y.

Q8SMAX(Y) or Q8SMAX(v.c)

This selects the maximum from among the elements in a half precision, real or integer vector, or only those elements
selected by an optional bit control vector. The result is a scalar that has the same data type as the
function argument.

For a given vector x and a bit control vector ¢, the procedure for selecting the element having the maxi-
mum value is the same as for Q8SMIN, except that the maximum rather than the minimum js selected.

Example:
The elements in x, as presented to Q8SMAX, might be:
x=2319 6 -1
When. only x is presented to Q8SMAX for evaluation, the function selecis the element from among
all of the elements of x: ’
Q8SMAX = 19
A bit mask presented as argument c might appear as:
c=01011
When a bit in ¢ is zero, it inhibits the inclusion of the corresponding element of x in the
evaluation of the function. Therefore, if the argument list for Q8SMAX includes ¢, the function
result would be:
Q8SMAX = 6

Q8SMAX(v) or Q8SMAXI(v,c)

Like Q8SMAX, this finds the maximum from among the elements in a half precision or real vector or only those
elements selected by an optional bit control vector. However Q8SMAXI returns not the value itself but,
instead, a count of the number of elements preceding, but not including, the element having the maximum
value.

15-32A



The procedure for selecting the element having the maximum value is the same for Q8SMAXI as for
Q8SMAX. The control vector bits thut are set to zero {when the control vector is present) have no
effects on the count returned by Q8SMAXI The action of the control vector is the same for both
functions in afl other respects.

- Example:

The example given for Q8SMAX is an example for Q8SMAXI as well, except that where
Q8SMAX equals 19 or 6, depending on the presence of the bit control vector argument,
Q8SMAXI would return 2 and 3 respectively.

Q8SMIN(v) or Q8SMIN(v,c) :
This selects the minimum from among the elements in a half precision, real or integer vector, or from among only

those elements selected by an optional bit control vector. The result is a scalar that has the same data
type as the vector.

For a given vector x and a bit control vector ¢, the procedure for selecting the element having the mini-
mum value is as follows. When ¢ is not present, the minimum value in x is selected. If ¢ is present, it
acts as a binary mask; each element in ¢ that is set to 1 permits the corresponding element in x to be
included in the function evaluation, whereas each element in ¢ that is set to O causes the corresponding
element in x to be excluded from the evaluation.

Example:
The elements in x, as presented to Q8SMIN, might be:
x=23196-1
When only x is presented to Q8SMIN for cvaluation, the function selects the element from
among all of the elements of x:
Q8SMIN = -1
A bit mask presented as arpument ¢ might appear as:
c=10110
When a bit in c is zero, it inhibits the inclusion of the comresponding element of x in the

evaluation of the function. Therefore, if the argument list for Q8SMIN includes ¢, the function
result would be:

Q8SMIN = 2

Q8SMINI(v) or Q8SMINI(v.c)

Like Q8SMIN, this finds the minimum from among the elements in a real vector or only those elements
selected by an optional bit control vector. However, Q8SMINI returns not the value itsellf but, instead,
a count of the mumber of elements preceding, but not including, the element having the minimum value.

The procedure for selecting the element having the minimum value is the same for Q8SMINI as for Q8SMIN.
The control vector bits that are set to zero (when the control vector is present) have rfo effect on the count
returned by Q8SMINI. OQtherwise, the action of the control vector is the same for both funciions

15-33A



Example:

The example given for Q8SMIN is an example for Q8SMINI as well, except that where
Q8SMIN equals -1 or 2, depending on the presence of the bit control vector argument,
Q8SMINI would return 4 and  respectively,

- QSSNE(VI,VZ)
This is identical to Q8SEQ, except that Q8SNE searches for an element in x that is not equal to the
corresponding element in y,.

Q8SPROD(v) or Q8SPROD(v.c)

This calculates the product of the elements in a half precision or real or integer vector, or only those elements selected
by an optional bit control vector. A scalar result is produced that has the same data type as the vector.

For a given vector x and a bit control vector ¢, the procedure for calculating the product is as follows.
When ¢ is not present, the product of all of the elements in x is computed. If c is present, it acts as a
binary mask; each element in c that is set to 1 permits the corresponding element in x to be included in
the product, while each element in ¢ that is set to 0 causes the corresponding element in x to be excluded
from the compntation. H ¢ is all zero, the result of Q83PROD is one.

Example:
The elements in x, as presented to QS8SPROD, might be:
x=2143
When only x is given to Q8SPROD for evaluation, the function calenlates the produet of all
the elements to obtain the evaluation:
Q8SPROD =2 # 1 * 4 * 3 =24
A bit mask presented as argument ¢ might appear as:
c=0011
When a bit in ¢ is zero, it inhibits the inclusion of the comesponding element of x in the
function evaluation. Therefore, the function resmit if ¢ is present would be:
Q8SPROD =4 * 3 = 12

Q8SSUM(v) or Q8SSUM(v,c)

This sums the elements in a half precision, real or integer vector, or only those elements selected by an optional bit

controi vector. A scalar result is produced that has the same data type as the vector.

For a given vector x and a bit control vector ¢, the procedure for calculating the sum is as follows. When
c is not present, the arithmetic sum of all of the elements in x is taken. If ¢ is present, it acts as a
binary mask; each element in c that is set to 1 permits the corresponding element in x to be included

in the sum, while each element in c that is set to 0 causes the- corresponding element in x to be excluded
from the summation. If ¢ is all zero. the result of Q8SSUM(x,c) is zero.

Example:
The elements in x, as presented to Q8SSUM, might be:
x=2143

15-34A



When oniy x is presented to Q88SUM for evaluation, the function sums all of the elements
to obtain the evaluation:
Q8SSUM =2+ 1+4 +3 =10
A bit mask presented as argument ¢ might appear as:
c=1011
When a bit in ¢ is zero, it inhibits the inclusion of the corresponding element of x in the
evaluation of the function. Therefore, the function’ result, if ¢ is present, would" be:
Q8SSUM =2 +4+3 =9

Q8VADIM(v)
This computes-the averages of adjacent elements of the half precision or real input vector. For a given real vector x,
Q8VADIM(x;x) forms.the ! element of the result vector r by adding the n® ang (n-i'l)th elements of x

and dividing the sum by 2. That is, T, = (xIl +x, +1)/2, where the result vector r is one element shorter
than the input. vector x,

Example:
Given
x=35 3 5 3.5 4. 5 3.
the result vector r for Q8VADIM(x) is
r=4. 4. 4, 4. 45 45 4.

Q8VARCMP(v,v,)

This deletes from a half precision, real or integer vector any element having a value below the threshold value provided
by the corresponding element of another vector. The lengths and data types of the real or integer vector
and the threshold vector must be the same. The result is a sparse vector.

Q8VARCMP(x,t;r) creates the result sparse vector as follows. For each element of x, if the element value
is less than the value of the corresponding element in the threshold vector 5, a 0 bit is placed in the order
vector of the result sparse vector. If the element value is greater than or equal to the value of the corres-
ponding element in the threshold vector, the element is placed in the result value vector and a 1 bit is
placed in the result order vector. Evaluation proceeds from first to last element of the vector 'x.

The length of x governs the operation. If t is shorter thanm x, t is in effect extended with zeros. If t is
longer than x, the excess elements are jgnored.

The initial lengths of the value vector and order vector components of r are ignored.- Upon completion of
the operation, the length of the order vector component of r is that of x. and the length of the value vector
component of r is that if the number of 1 bits in the order vector.

Example:
Given
x =10 11 44 11 9 -1 0 50
t=1010 108 10 10 10 10

15-35A



the value of Q8VARCMP(x,t} is the sparse vector
r = vailue vector: 10 11 44 11 50
order vector: 1 1110001

QS_V_-A‘[G(VI 3V2)
This computes the averages of corresponding elements of two half precision or reat input vectors. A vectoranda
scalar is an alternative to a pair of vector arguments.

For given real vectors x and y, Q8VAVG(x,yx) forms the at? element of the result vector r by adding the

il element of x and the nff! element of y, then dividing the sum by 2 (that is r, = (xn. + yn)/2). The
vectors X, y, and r all have the same length. A scalar x or y is considered to be a vector of the appropriate
length with every element being the scalar value.

Example:
Given
x =1
y =93 104 18 891 0.1
the value of Q8VAVG(x,y) is the vector
f=515 57 9.5 4955 0.55

Q8VAVGD(vy,v5)
This computes the average differences of corresponding elements of the two input vectors. A vector and a
scalar is the alternative to the two input vectors.

th clement of the result vector r by subtracting

For given -real vectors x and y, Q8VAVGD{(x,yy) forms the n
the n element of y from the o element of X, then dividing the difference by 2 (that is, r, = (x; - y,(/2.
The vectors x, y, and r all have the same length. A scalar x or y is considered to be a vector, of the

appropriate length with every element being the scalar value.

Example:
Given
x = 100. 100. 100. 100. 100.
y =4. 9.9 15, 14,
the value of Q8VAVGD(x,y) is the vector
t = 48, 45,5 45.5 42.5 43,

Q8VCMPRS(v.c)

This-deletes selected elements from a half precision or real or integer vector under control of a bit control vector.

For a given real vector x and control vector ¢, the deletion procedure is as follows: every value in the
vector X whose position corresponds to that of a 0 in the bit vector c is deleted, leaving for the result vector
only those values in the vector x whose positions correspond to those of Is in the bit vector c. The length
of the result vector will be the number of 1s in c.

15-36A



Example:
Given
x=455440
c=9011004¢
the value of Q8VCMPRS(x,c) is the vector
r=535

Q8VCTIRL{v,c)

This changes the vatues of only selected elements in a half precision or real or integer result vector, using the elements
in another vector of the same data type to provide the new values. Selection of values fs performed with a
bit control vector.

For a given real or integer vector y (the result vector), a vector x of the same data type as y, and a
control vector ¢, the procedure for modifying y is as follows. Any element in the vector X that corresponds
to a 1 in the control vector ¢ is directly assigned to the comresponding element in the result vector y. All
other elements in y (the elements that correspond to 0s in c) retain whatever values they had before.

Example:
Given
Xx=555199 40
c=00010
y=999109
the value of Q8VCTRL(x,c) is the vector
y=99999
Q8VDELT(v)

This computes the differences between the adjacent elements of the input vector. For a given real vector X,
Q8VDELT(x) computes the ntl element of the result vector r by subtracting the ath element of x from

the (n-I-l)th element of x. That is,

o = (Xp+q - Xp)s where the result vector r is one element shorter than

the input vector x.

Example:
Given
x=5 353 5 45 3.
the result vector r for Q8VDELT(x) is’
r=2 2 -2. 2. -1. 1. -2.

QBVEQI(vy.v4)
The effect of a call to QSVEQI is identical to that of issuing a series of Q8SEQ calls in which one of the

arguments for Q8SEQ is a half precision or real scalar. For given real vectors x and v, Q8VEQI(x.y) performs a
search iteration for each element of x, beginning with the first efement of x. A search iteration consists of

15-37A



comparisons of the element of x with successive elements of y, beginning with the first element of y,
until an element of y is found which is equal to the element of x or until the element of x has been
compared with every element of y. The result of the ath iteration, which is performed using the aft
element of x and which is a count of the number of unsuccessful compares that were made on this

iteration, is placed in the n element of r.

Example:
Given
x=0 1. 4. 5. 4.
y =-1. 0. 3. 5. 4.
the value of Q8VEQI(x,y) is the vector
r=15434

I}

Q8VGATHR(v.,i)

This creates a half precision or real or integer vector, using the elements in another vector of the same data type to
provide the values. Selection of values is performed with an integer index vector.

For a given real or integer vector x and an index vector i, the procedure for comstructing the result vector
is as follows. A 1 in i indicates that the corresponding clement in the result vector is to be assigned the
value of the first element in x, a 2 in i indicates that the corresponding element in the resuit vector is to
be assigned the value of the second element in x, and so on. The value of any one element in x can be
assigned to more than one element in the result vector, and not every element in x need be used. The
index vector and the result vector must be the same length.

Example:

Given
x=101911150693
i=7656311

the value of Q8VGATHR(x,i) is the vector
r=3909111010

Q8VGEI(vy,v,)

This is identical to QBVEQI, except that Q8VGEI searches for an element in y that is greater than or equal
to the element in x which is of concern for the current iteration.

Q8VINTL(a;25)

This forms a haif precision or real or integer vector whose adjacent elements have values differing by a specified interval.
For given constant scalars x and y, both integer or both real, Q8VINTL(x,y) creates the vector r as follows.
The first element of r is assigned the value x. Each succeeding element of r is assigned a value arrived at
by adding the constant y to the preceding element’s value (that is, r, = r _; *+ v). When r is filled the .
calculations cease.

15-38A



Example:
Given
X = 0.0
y = 6.7
length of r = 12
the value of Q8VINTL(x,y) is the vector
r= 0.0 6.7 13.4 20.1 26.83 33.5 40.2 46.9 53.6 60.3.67.0 73.7

QSVLTI(VI ,vz)

This is identical to Q8VEQI, except that Q8VGEI searches for an element in y that is less than the
element in x which is of concern for the current iteration.

QSVMASK(VI ,vz,c)

Q8VMASK(x,y,c)} creates a result vector, each element of which is the corresponding element of one of
the vectors x and y {one or both of x and y can alternatively be scalar). The arguments (x and y only)
and the result vector must all have the same data type.

For given vectors x and y, and a bit control vector c, the result vector is created as follows. If an element
is ¢ is 1, then the corresponding element in vector x is placed in the corresponding position in the result
vector. If an element in ¢ is 0, then the corresponding element in vector y is placed in the corresponding
position in the result vector. A scalar x or v Is considered to be a vector of the approprate length with
every element being the scalar value.

The length of ¢ governs the operation; the lengths of X and y are ignored and the length of r is set to that
of ¢

Example:
Given
x=123123123
y =19
c=1101106110
the result vector r for Q8VMASK(x,y,c} is
r=121912191 219

QSVMERG(vy,v5,¢)

This merges the elements in two half precision, two real or two integer vectors, under control of a bit control vector,
into a single result vector. Q8VMERG(x,yc} merges X and y as foilows. If an element in ¢ is 1, then
the corresponding position in the result vector is assigned the first element from x that has not already been
selected. If an element in c is 0, then the corresponding position in the result vector is assigned the first
element from x that has not already been selected. If an element in ¢ is (. then the corresponding position
in the result vector is assigmed the first element from v that has not already been selected. Control vector
¢ is scanned in this way from first to last element. The merge stops when the result vector is full. even
when there are unmerged elements remaining in x and y.

15-35A



The length of c¢ governs the operation; the lengths of x and y are ignored and the length of r is set to
that of c.

Example:
Given
x =10 11 12 14 13
y=54321
c=11001

the value of Q8VMERG(x,y,c} is the vector
r=1011 5 4 12

This forms a bit vector whose elements are either all zeros or else a repeated patiern of ones and zeros,
beginning with a one. For given integer constants x and y, Q8VMKO(x,yx) creates the elements of the
vector r as follows. The pattern, which consists of a string of x ones followed by a string of y-x zeros,
is repeated until the result vector r has been filled. The length of r need not be divisible by y.

Example:
Given
x=3
y=6
length of ¢+ = 10
the value of Q8VMKO(x,y) is the bit vector
- r = 1110001110

QSVMKZ(al ,az)

This forms a bit vector whose elements are either all ones or else a repeated pattemn of ones and zeros,
beginning with a zero. For given integer constants x and y, Q8VMKZ(x,y ) creates the elements of the
vector r as follows. The pattern, which consists of a string of x zeros followed by a string of y-x ones,

is repeated until the result vector r has been filled. The length of the result vector r need not be divisible

by v.

Example:
Given
x=17
y = 25
length of v = 10
the value of Q8VMKZ(x,y) is the bit vector
r = 0000000111

Q8VNEI(v,v5)

This is.identical to Q8VEQ!, except that Q8VNEI searches for an element in y that is not equal to the
element in x “which is of concern for the current iteration.

15-40A



Q8VPOLY(v},v,)

This computes a polynemial at several vatues. For given half precision or real vectors x and y, Q8VPOLY(x,y) is
evaluated as follows (x can also be a scalar). The input vector y contains the coefficients of the poly-
nomial: the first element of the vector y contams the coefficient of the highest order term of the poly-

. nomial and the last element of the vector y contains the lowest order term of the polynomial (the constant).
The length of the vector y defermines the order of the polynomial: if n-is the length of y, the order of the
polynomial is n-I. The polynomial is evaluated for each element of x and the result is placed in the corres-
ponding element in the result vector r. If y is a scalar rather than a vector, the result r must be referenced
as a vector with length equal to I, not as a scalar.

Example:

Given
x=-2-1123
y=103 2

the value of Q8VPOLY(x,y) is the vector
r =369 15 48 101

The elements of r are computed as follows:
1) = 10(23) + 3(2) + 2 = 36
H2) = 10(-1%) + 3()) +2 =9
13) = 10(1%) + 3(1) + 2 = 15
H4) = 1023 + 22) + 2 = 48
15) = 103%) + 3(3) + 2 = 101

It

Q8VREV(Y)

This reverses the order of the elements in a half precision or real or integer vector, by {ransmitting the elements of
the input vector in reverse order to the result vector.

Example:
Given
x=4356910
the value of Q8VREV(x} is the vector
r=1096534

Q8VSCATR(v,i)
This changes the values of only selected elements in a half precision, real or integer result vec;:or, using the elements

in another vector of the same data type to provide the new values. Selection of values is performed with
an integer index vector.

For a given real or integer vector y (the result vector), a vector x of the same data type as y, and an
index vector i, the procedure for modifying v is as follows. A I in i indicates that the corresponding
element in x is to be assigned to the first position in y, 2 2 in i indicates that the corresponding element
in x is to be assigned to the second position in v, and so on. More than one value assignment can De

made to be so defined. Elements in y that are not given a value retain the values they already had.

15-41A



If x is shorter than i, then x is extended with zeros to match the length of i

Example:

Given
x =0 50-16070
i=12155
y=99999

the vector y passes through the following five stages during the computation of

Q8VSCATR(x,i)
y=09999
y=0509939
y=-150999
y=-1509960

t

y=-1509970
and the result is the vector
y=-1509970

Q8VXPND(v,c)

This inserts additional elements having the value 0 (or 0.0) into a half precision or real or integer vecior, under control
of a bit control vector. The effect of the procedure is as though a Q8VMERG(x,n,c) had been performed,
where n is a vector of zeros, and x, ¢, and y are the real or integer vector, the control vector, and the
result vector respectively.

The length of ¢ governs the operation; the length of x is ignored and the length of v is set to that of c.

Example:
Given
x=535
c=011000
the value of Q8VXPND(x,c) is the vector
r=055000

RANF

This returns a random number. It has no argument. The multiplicative congruential method modulo 2*¥47
is used to generate the next random number in the sequence.

Xp+p = (@ 7 x) mod 27%47

The value of the multiplier a is X°0000 4C65 DA2C 866D°. The seed can be obtained and reset with the
subroutines RANGET and RANSET, respectively. The default value of the seed is X'0000 54F4 A3B9
33BD’. A vector of random numbers can be returned with the subroutine VRANF,

15-424



REAL(a)

For a of type real REAL(a) = a. For a of type integer, half or double precision, REAL(a) is as much
precision of the significant part of a as a real number can obtain. For a of type complex, REAL{a) is
the real part of a. This function is the specific name for conversion of .an integer to real and for an integer
. argument REAL(2) = FLOAT(a). The other specific functions for conversion to real are EXTEND and SNGL.

SECOND

This queries the sysiem as to how much CPU time in seconds has elapsed since the job started. The result
is a real number expressing the- time in seconds, accurate to within one microsecond. This function has no
argument,

SIGN(EI.I ,3.2)

This function: combines the sign of one argument with the absolute value of the other. Both arsuments
must be of the same type which may be integer, haif precision, real, or double precision. It is the specific
function name for transferring the sign between iwo real numbers.

Examples:

SIGN(-2.0,2.5) = 2.0
SIGN(-10.0,0.0) = 10.0
SIGN(3.4,7.0) = -3.4

The other specific function names for transferring sion are DSIGN, HSIGN, and ISIGN.

SIN(a)

This computes the sine of a half precision, real, double precision or complex argument. It is the specific
function name for computing the sine of a real argument. The other specific functions which compute
sines are CSIN, DSIN and HSIN.

The specific functions SIN and COS calculate the sine and cosine of a real argument,

SINH(a)

This function computes the hyperbolic sine of a half precision, real, or double precision argument. It is
the specific name for computing the hyperbolic sine of a real arsument. The other specific functions which
compitte hyperbolic sines are DSINH and HSINH.

The specific function SINH computes the hyperbolic sine of a real number and produces a real result that
is accurate to 47 bits.

SNGL{a)
This converts a double precision number to a real number by retaining only the most significant part (the
first word) of the double precision number.

15-43A



SORT(2)

This function computes the square root of a half precision, real, double precision or complex argument.
It is the specific name for computing the square root of a real argument and the machine instruction SQRT,
is used in this case. The other specific fum:ti_ons which compute square roots are CSQRT, DSQRT, and

HSQRT. f

TAN(a)

This function computes the tangent of a half precision, real, or double precision number. It is the specific
name for computing the tangent of a real argument. The other specific functions which compute tangents
are DTAN and HTAN.

The specific function TAN computes the tangent of a real number expressed in radians. The function first
reduces its argument modulo 2 pi. The result is a real number that is accurate to approximately 45 bits.
The valid arguments for TAN lie in the inferval

0,276 334 121 886E + 14=x=+ (.276 334 121 886E + 14
Note that

(246.1) * pif8 = 0.276 334 121 886E + 14

TANH(a}

This function computes the hyperbolic tangent of a half precision, real, or double precision argument. It
is the specific function name for computing the hyperbolic tangent of a real argumeni. The other specific
functions wihich compute hyperbolic tangents are DTANH and HTANH.

The specific function TANH computes the hyperbolic tangent of a real number expressed in radians. It
produces a result that is-in the range -1 through 1, inclusive, and which is accurate to approximately 45
bits.

TIME

This queries the system as to the time of day, and returns a result of type CHARACTER *8 in the following
format:

hh:mm:ss
hh  Pair of decimal digits expressing the hour,
mm Pair of decimal digits expressing the minute.
ss  Pair of decimal digits expressing the second.

This function has no argument.

15-44A



VABS(v )

For each element x in a real vector, VABS computes the absolute value (x). The real result is accurate
to 47 Dits.

. VACOS(v)

This computes the arccosine of each element in a real vestor. The result real vector contains elements that
are accurate to approximately 45 bifs.

VAIMAG(v)

This constructs a. real vector from the imaginary parts of a complex vector. For each element of the

complex vector, if x+iy is the complex elemhent, y is assigned to the result vector. Aeccuracy of the result
is 47 bits.

VAINT(v)

For each element x in a real vector, VAINT computes (x) and converts it to real before assigning it to 2
real vector. (A) is the sign of A times the largest integer less than or equal to (A). The real results are
accurate to 47 bits. The effect of VAINT on each x is that of the expression AINT{x).

VALOG(v)

This computes the natural logarithm of each element in a real vector. VALOG returns a result vector of
real numbers that are each accurate to approximately 45 bits.

For a given real number x, VALOG(x) is computed as described for the function ALOG.

VALOG1X(v) .

This computes the logarithm of each element in a real vector, returning a result vector of real numbers
accurate to approximately 45 bits.

VAMOD(v; ,v2)

For each pair of corresponding elements in two real vectors, this computes one real number modulo the
second real number to produce a real result that is assigned to the real result vector. For each pair of
elements (x,y),x(xfy) * y is computed, where (A) is the sign of A times the largest integer less than or
equal to (A).

VANINT(v)
For each element x of the real vector v, VANINT computes ANINT(x).

VASIN(v )

This computes the arcsine of each element in a real vector. The magnitude of the error that is intro-
duced into the results because. a~rabl§:=“ lookup technique is used for fast computation of VASIN is approvi-
mately 2745, T,

15-45A



VATAN(v)

This computes the arctangent of each element in a real vector. The magnitude of the error that is intro-

duced into the results because a table lookup technique is used for fast computation of VATAN is approxi-
45
y 2.

matel
VA.TAN?.(VI ,Vz )

This computes the arctangent of the ratio of two real elements in corresponding positions in two real vec-

tors. The result is a real vector having elements that are accurate to approximately 45 bits.

VCABS(v}
This computes the modulus of each element in a complex vector, and places the results in a real result
vector. Each result is accurate to approximately 45 bits.

VCCOS(v)
See VCSIN for a description of the VCCOS function.

VCEXP(v)

This computes the exponential of each element in a complex vector, and produces-a.complex vector of
results.

VCLOG(v)

This computes the natural logarithm of each element in a complex vector, returning a complex result vector.

VCMPLX(v},v5)

This constructs a complex vector from two real vectors. For each pair of corresponding elements (x,y) in’
the two real vectors, X is assigned to the real part and y is assisned to the imaginary part of the corres-
ponding element in the complex result vector. Accuracy of the result is 47 bits for each part of the com-
plex value.

VCONIG(v)

This constructs a vector of conjugates from a complex vector. For each element x+iy 'of the complex
vector, X-iy is assigned to the result vector. The function sets up a control vector of ones and zeros.
copies the real parts of the complex vector and negates the imaginary parts before assigning them.,

VCOS(v)
See VSIN for a description of the VCOS function.

_ VCSIN(v) and VCCOS(v)

These compute the sine and cosine of each element in a complex vector. Each complex result is accurate
to approximately 45 bits.

15-46A



VCSQRT(v)

This computes the square root of each element in a complex vector, and places the resuits in a complex
result vector. For a given complex vector x, VCSQRT(x) is computed exactly as for the function CSQRT.

_ VDBLE(y)

This constructs a double precision vecter from a real vector. For each element of the real vector, the
element value is assigned to the most significant part (the first word) in the double precision result vector;
the least significant parts are real zero. Accuracy of the result is 94 bits.

VDIM(vy,v5)

For each pair of corresponding elements in two real vectors, this computes: the positive excess of one real
number over the other real number; for a pair (x,y), the value x-y is assigned to the result vector if x is
greater than or equal to y, and the value 0.0 is assigned otherwise. Accuracy of the result is 47 bits,

YEXP(v)

This computes the exponential of each element in a real vector. VEXP returns a result vector of real
numbers,

VEXTEND(v)

For each element of the half precision vector v, VEXTEND computes EXTEND(x). The result is a real
vector.

VFLOAT(Y)

This constructs a real vector from an integer vector. Each integer vector element is normalized and
assigned to the real vector.

VHABS(¥)

For each element x of the half precision vector v, VHABS computes HABS(x). The result is a half .preci-
sion vector.

VHACOS(v)

For each element of the half precision vector v, VHACOS computes HACOS(x). The result is a half
precision vector.

VHALF(v)

For each element x of the input vector v, VHALF computes HALF(x). The input vector may be of type
integer, real, double precision or complex. The result is a half precision vector.

15-47A



VHASIN(v)

For each element x of the half precision vector, VHASIN computes HASIN(x). The result is a half
precision vector.

. VHATAN(y) . {
For each element x of the half precision vector v, VHATAN computes HATAN(x). The result is a half

precision vector.

VHATAN2(v{.v5)
For each corresponding pair of elements xy and x5 of the input vectors vy and v,, VHATAN2 computes
HATANz(xl,xz). The arguments and result are half precision vectors.

VHCOS(v)
For each element x of the half precision vector v, VHCOS computes HCOS(x). The result is a half
precision vector.

VHDIM(VI ,Vz)

For each corresponding pair of elements x; and x,. of the input vectors vy and v,,. VHDIM computes
HDIM(x).x5). The arguments and result are half precision vectors.

.

VHEXP(v)

For each element x of the half precision vector v, VHEXP computes HEXP{x). The result is a half
precision vector. :

VHINT(v)
For each element x of the half precision vector v, VHINT computes HINT(x). The result is a half
precision vector.

VHLOG(v)

For each element x of the half precision vector v, VHLOG computes HLOG(x). The result is a half
precision vector.

VHLOG10(v) -

For each element x of’the half precision vector v, VHLOGI10 computes HLOG10(x). The result is a
half precision vector.

VHMOD(vyv,)

For each corresponding pair of elements x; and x, the input vectors vy and v,. VHMOD computes
HMOD(x;.x5). The arguments and result are half precision vectors.

15-48A


http:lHlOD(xl.x2

VHNINT(v)

For each element x of the half precision vector v, VHNINT computes HNINT(x). The result is a half
precision vector.

. VHSIGN(v{ ) St

For each corresponding pair of elements' x; and X4 of the input vectors v; and V4, VHSIGN computes
HSIGN(xI ,xz). The arguments and result are half precision vectors.

VHSIN(v)

For each element x of the half precision vector v, VHSIN computes HSIN(v). The result is 2 half preci-
sion vector. .

VHSQRT(v)

For each element x of the half precision vector v, VHSQRT computes HSQRT(x). The result is 2 half
precision vector.

VHTAN(v)

For. each element x of the half precision vector v, VHTAN computes HTAN(x). The resulf is a half
precision” vector.

VIABS(v)

For each element x in an integer vector, VIABS computes the absolute value (x).

VIDIM(vy,v5)

For each pair of corresponding elements in two integer vectors, this gives the positive excess of one integer
number over the other integer number; for a pair (x,y), the value x-y is assigned to the result vector if x
is greater than or equal to y, and the value 0 is assigned otherwise.

VIFIX(v)

This constructs an integer vector from a real vector. VIFIX, which is an alternative name for VINT. com-
putes (x) for each element X in a real vector. (A) is the sign of A times the largest integer less than or
equal to (A).

VIHINT(v)

For each element x of the half precision vector v, VIHINT computes IHINT(x). The result is an integer
vector. )

VIHNINT(v)

For each element x of the half precision vector v, VIHNINT computes IHNINT(x). The result is an integer » =-
vector.

15-49A



VINT(v)
For each element x in a real vector, VINT computes (x) and assigns the resulting value to an integer
vector, (A) is the sign of A times the largest integer less than or equal to (A).

. VISIGN(v1.v5)

For each pair (x,y) of corresponding elements in two integer vectors, this combines the sign of x with the
absolute value of y; the effect of VISIGN on each pair (x,y) is that of the expression ISIGN(x,y).

VMOD(v,v4)

For each pair of corresponding elements in two real vectors, this computes one integer number modulo the
second integer number to produce an integer result that is assigned to the integer result vector. For each
pair of elements (x,y), x{x/y) * y is computed, where (A) is the sign of A times the largest integer less
than or equal to (A).

VNINT(v)

For each element x of the real vector v, VNINT computes NINT(x). The result is an integer vector.

VREAL(v)

This constructs a real vector from the real parts of a complex vector. For each element of the complex
vector, if x+y is the complex element, x is assigned to the result-vector. Accuracy of the result is
47 bits.

VSIGN(vyv5)

For each pair (x,y) of corresponding elements in two real vectors, this combines the sign of x with the
absolute value of y; the effect of VSIGN on each pair (x,y) is- that of the expression SIGN(x.y).
Accuracy of each result is 47 bits.

VSIN(v} and VCOS(v)

These compute the sine and cosine of each element in a real vector. The magnitude of the error that is
introduced into the tesults by use of the table lookup technique for fast computation of VSIN and VCOS
is approximately 245,

VSNGL(v)

This converts a double precision vector to a real vector, The most significant part (the first word) of each

double precision element is assigned.to the result vector. Accuracy of each result is 47 bits.

15-50A



VSQRT(v)
This computes the square root of each element in a real vector. The real result vector contains elements

that are accurate to approximately 47 bits.

For a given real element x of the vector argument, the appropriate element of the result vector is indefi-
nite if x< 0.0. For each x =0.0, a resuit is compuied. '

VTAN(v)

This computes the tangent of each element in a real vector. A table lookup techmique is used for fast
computation of VTAN; consequently, the error for small results has a magnitude of approximately 4



PROGRAM COMPILATION 16

The system control statements accompanying a STAR
FORTRAN program must include a call to the FORTRAN
compiler. The parameters for this call opticnally declare
files for input and output, and optionally include instruections
to the compiler to (for example} output storage maps.
Additional control statements are required to load and te
execute the compiled program, and can be used to change at
run time the file declarations made in a PROGRAM
statement.

FORTRAN STATEMENT

The FORTRAN system control statement is used to execute
the STAR FORTRAN compiler. In the statement parameter
deseriptions that follow, underlining indicstes the minimum
number of charseters that can be used in specifying the
parameter.

Forms;
FORTRAN.

FORTRAN(INPUT={f

BINARY=f, /1, LIST=f /1 /d.,
OPTIONS=olist) 272 3733

1!

iNPUT=f1 Optional. f, is the name of the file

containing the PORTRAN source pro-
gram to be compiled. When the
parameter 15 omitted, the default file

name INPUT is used.

Opticnal. {, is the name of: the file
that is to receive the compiler-
generated object modules, 1, is a
specification of the length of t2 » and
can be either an integer constant or a
hexadecimal number prefixed with
a # 1, can be omitted along with
the slas%:. When the entire param-
eter is omitted, the default file name
BINARY is used. When 1, or the
entire parameter is omitged, the
default file length of 16 small pages
i3 used,

BINARY=f,/1,

_I:IS'I"—'f3/13/d3 Optional. f, is the name of the file

that is to” receive the compiler~
generated listings and program
output. 1, 15 a specification of the
length of f,. Like 1,1, can be either
an integer constant ‘or°a hexadecimal
number prefixed with a #. d, 1s the
routing disposition of f, and inust be
PR (the line printer) or ecan be

omitted (in which case no routing is -

performed). 1, and d, can oceur in

either order. ﬂfhen 1, 1s omitted, the

default file size of 3§6 small pages is

used. When the entire parameter is

omitted, the default is OUTPUT,
OPTIONS=clist Optional. olist is some logieal combi-
nation of the compile option letters
ABCEIKLMORSUVYZ12, with the
restrietion that Y must not oecur
with any other option except L.
Default olist is B.

60386200 G

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis along with a period

replacing the right parenthesis. When communicating
interactively with the system, the user can replace a period
with a earriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default velues used for the omitted
parameters, The first form of the FORTRAN statement
seleets gll defaults for the parameters. The I=, B=, and L=
parameters can be interchanged without consequence; the
O= parameter must oceur last.

The object and output files (specified by the B= and L=
parameters of the FORTRAN system control statement)
mey or may not exist when the control statement is
executed. If the file does not exist, it is automatically
created on a unit assigned by the operating system and with
the length specified in the control statement. If the f{ile
does exist and has write access, it is automatically
destroyed and recreated on the same unit with the length
specified in the control statement. If the file does exist but
does not have write access, a request is made to interactive
users for permission to destroy the file. If permission is
granted, the procedure followed is the same as for files that
exist with write access. If permission is not granted,”or if
the user is in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, eertain actions are performed during compilation
that would not be performed otherwise. The L option 1s an
exception in that the listing of the source program is
inhibited rather than initiated by its appearance in olist.

When O=olist is omitted, or when B is included in olist, the
objeet file for the program is built. The only time when the
objeet file is not built is when the O=olist parameter, with B
not in olist, appears in the parameter list for the FORTRAN
system control statement.

A — ASSEMBLY LISTING

An assembly listing of the object code can be placed in the
output file by selecting the A opticn.

B — BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be bult is
made by selecting the B option.

€ — CROSS REFERENCE LISTING

Al mentions in the source program to'labels and symbolie
names are listed in tabular form in the output file by
selecting the C optron.

E — EXTENDED BASIC BLCCK
OPTIMIZATION

The E option selects optimization of extended basic blocks.
Optimization involves redundant ecode eliminstion and
instruetion scheduling. The E option is ineluded in the O
option. The E option effectively selects options R and 1.

16-1




I — INSTRUCTION SCHEDULING

The 1 option seleets optimization of cobject instructions
aceording to the results of a eritical path analysis. The [
option is included in the O and E options.

¥ — 64-BIT COMPARE

This option engbles full word (64-bit) integer compares for
.EQ. and .NE, operators in legical IF statements, Otherwise,
48-bit compares are performed for the .EQ, and .NE.
operations {integers are 48 bits),

L — SOURCE LISTING SUPPRESSION

The first part of the output file for 2 STAR FORTRAN
program is normally the source program listing. This can be
omitted from the file by selecting the L option.

M — MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and deseriptors, along with a map of the
contents of the register file, is produced when the M option
is selected,.

O — OPTIMIZATION

The O option selects all available optimization of scalar
object code. More efficient object code is produced at the
expense of incressed compilation time. The O option
effectively seleets options Z, E, R, and L

R — REDUNDANT CODE ELIMINATION

"i‘he R optien seleets elimination of redundent code. The R
option is ineluded in the O and E options.

S — CREATE DEBUG SYMBOL TABLES

The effect of this option is to generate in the bwnary output
& debug symbol table for each program unit. The symbol
table makes it possible for the system-provided debugging
utility DEBUG to recognize names in the FORTRAN
program. The user must seleet this option if DEBUG 1s
going to have to interpret variables, names, and symbolie
addresses; if only absolute addresses will be used in
commands to DEBUG, the S option need not be selected,

U — USAFE VECTORIZATION

The U option enables unssfe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and the
loop contains any references to dummmy errays, then the
compiler cannot determine the number of iterations of, the
loop. Vectomzation of such loops is considered unbafe
because the loop count might exceed 65 535, which is'the
maximum length of a veetor.

Y — VECTDRIZATION

Vectorization of certain STAR FORTRAN language con-
structs 15 requested with the V compile option. The
language consiruets that produce vector machine instrue-
ulions in the object code are described in seotion 11,

16-2

Y — SYNTAX CHECK

A partial compilation can be performed to check the syniax
of a FORTRAN program, &nd output any resulting
diagnosties, by selecting the Y eomptle option. The Y oplion
can appear alone or with the L option only (as LY or YL); all
other ¢ption combinations using Y, such as CMY or SY, are
invalid eompile option lists and produce an error
accompanied by a dayfile message.

Z — DO 100P CPTIMIZATION

The Z option selects optimizations of DO loops and loop
nests, Optimizetion involves invariant code removal and
strength reduction of subscript caleulations. The Z option is
ineciuded in the O option.

1 — STAR-100 CPTIMIZATION

The 1 option seleets optimization for the STAR-100. The 1
option conflicts with the 2 option, When 1 or 2 Is not
seleeted, optimization is for the mainframe on which
eompilation is performed.

2 — STAR-100A OPTIMIZATION

The 2 opticn selects optimization for the STAR-100A. The 2
option conflicts with the 1 option. When 1 or 2 is not
selected, optimization is for the mainframe on whieh
eompilation is performed.

COMPILER-GENERATED LISTINGS

As” a result of requesting compilation of a FORTRAN
program with a FORTRAN system ccntrol statement, a
variety of information is placed in the output file, The
compile options A, C, and M directly request such
infermation.

A header line at the top of each page of printed compiler
output contains the compiler version, the compile options
selected, the type of listing, and the time, date, and page
number,

Unless the L compile opticn has been selected, the source
program (including comments) is the first 1tem to be placed
on the file, The source program is Listed 58 lines per printed
page (excluding headers); the output lines are numbered on
the right and the FORTRAN statements are numbered on
the left. The statement numbers are used in the cross-
reference maps.

Diagnosties are colleeted and listed at the end of each
prograim unit. When no comptle options have been selected,
any error diagnosties immediately follow the source listing;
or, if the syntax of the program is acceptable to the
compiler, the message NO ERRORS appears instead, Listed
with each diagnostie 1s the line aumber of the souree lune
during the processing of which the etror was detected, as
well as the error number (see appendix B) and the severity
lavel of the error.

The order in which the assembly listing, cross-reference
maps, and storage Mmaps appear on the output file following
the source listing is:

Cross-reference map

Assembly listing

Storage map and register map

Thts order cen be seen in the sample output in figure 16-1.
Any diagnosties follow the storage and register maps.

603862C0 G



CROSS-REFERENCE TABLES

When the C compile option is sslected, either one or two
cross—reference tables appear in the output for the program
comptlation. These tables appear immediately following the
source program listing or, when the L compile option was
also selected, as the first listings in the output.

Any statement labels in the source program are itemized in
the first cross-reference table. For each statement label,
the statement where the label was defined is given, followed
by any statements that reference the label. Statements are
indicated by source listing statement line numbers,

The cross-reference table itemizing all symbolie names in
the source program appears after the statement label eross-
reference table, For each symbolic name, the source listing
statement numbers of any statements containing the name
are listed.

ASSEMBLY LISTING

When the A compile option is selected, a listing of the
assembly representation of the FORTRAN program appeers
after any cross-reference tables, Given are the location
counter {the offset from the code area base address), the
machine instruetion in hexadecimal (either half- or full-word
instruetion), the source listing line number of the associated
sourece program statement, the instruction mnemonie,
instruetion qualifiers, and operands. Refer to the Assembler
Reference Manual for an interpretation-of META assembler
langusge.

REGISTER MAP AND

STORAGE MAPS

When the M compile option is selected, a listing of the
contents of the 256-register register file is produced,
appeering after any assembly listing. The STAR FORTRAN
register usage conforms to standerd STAR operating system
register conventions, which are deseribed in volume 2 of the
STAR Operating System Reference Manual. Also produced
under this option is a storage map, giving the following
information: -

Start address and size of data area copy of the register
file

Neme, locetion, class, and data type of all sealars,
constants, and externals assigned to registers

Name, location, and class of deseriptors assigned to
registers

Length and start address of the object code

Length and start address of character constants,
literals, and format segments

Length and start address of argument vectors

Length and start address of constants, externals,
descriptors, variables (not in COMMON), namelist
groups, and character scalars not assigned to registers
Quantity of temporary storage

Common blocks

Entry points
Externsals

60386200 G

EXECUTION-TIME FILE
REASSIGNMENT

The PROGRAM statement declarations for files can be
entirely or partially overridden at program execution time
(run time)., The alternative to having the files cpened as
declared in the PROGRAM statement is to call the
coniroliee file (default controllee file is GO) foliowed by one
of the following forms:

{(**message)
(message)

File declarations in the same forms as for
the PROGRAM statement (described in
section 7).

message

With use of the first form, the file declarations in the
PROGRAM statement are ignored and the file declarations
in the message are used, With use of the second form, any
logical unit assignment in the message overrides the
assignment made to the same logical unit in the PROGRAM
statement. If a unit was given in the message but was not
given in the PROGRAM statement, it is opened in addition
to those declared in the statement.

Al file declarations in the message must be presented in
exactly the same- form as used for f{ile information
parameters in a PROGRAM statement. If'files are partially
reassigned, the original PROGRAM statement declaration
string is still proeessed. Therefore, it is not possible to get
around syntax, file name, or parameter errors in the
PROGRAM statement by attempting partial run-time
reassignment,

The effeect of partial run-time reassignment is the same as if
the run-time declaration of a partieular unit had appeared in
the PROGRAM statement deelaration instead of the original
declaration. After the original PROGRAM statement is
processed, the originsl data for a unit is overwritten with
run-time data taken from the file tables. However, the user
must consider the effeet of run~time changes on other
declarations. For example, if the original unit declarations
in the PROGRAM statement were:

TAPES[7,800,1]=DATA1,TAPET=DATAI
and the run-time reassignment specified was:
TAPE6=MYFILE

then the explicit parameters for TAPES in the PROGRAM
statement would be lost, and DATAl1 would become an
implieit disk file,

When & program is executed interactively under DEBUQG, the
user is prompted for file reassignment. As the prompt
indicates, the user must then either enter a pericd for no
file reassignment or a f{ile resssignment enclosed in
parentheses.

CONTROL OF DROP FILE SIZE

If a DROP FILE OVERFLOW run-time error message is
issued, the user cen mcrease the size of the drop file and
rerun the program, The CDF parameter of the LOAD
system control statement or the D parameter of the
SWITCH system control statement can be used to make the
drop file size larger, Increesing the size of the drop file
can usually solve the overflow probiem, but & program error
(especially an infinite loop) might be the cause.

16-3



=01

a 00598E09

STAR FORTRAN 2.0

CYCLE 115 SOURGE LISTING L343 HNSe JTHARTT

opnpy PROGRAM PASCAL (QUTPUTY s
ooog2 INTEGER Lf11) !
obaas DATA L) 71/
c
anoo 4 PRINT 4, (I,I%1,114])
to00as & FORHAT (44H4COMBINATIONS OF H THINGS TAKEN N AT A YIHE.//20% ¢ SHeN=/
111 15)
poonG D0 200 I*1410
60007 K=11-1
06008 L{K)=g
qoep9 00 101D J=X.10
0o010 100 LEJI=sL D +LLJ+)
00041 zoo PRIKY 3,4LEJ) sdnKy11)
pagt2 g FORMAT 11115}
aeeLry LSTOP
aburs ‘gm0
STAR FORTRAN 2.0 CYCLE 145 CROSS REF LISTING 13069 HRS . ASHARTT PASCAL
CROSS REFERENCE TABLE
LAREL NEFIMNED REFERENCES
108 000010 08c009
2o 000411 D0DOOLE
3 ae8012 o0C011
L Cuss0S Q0C0ON
STAR FORTRAN 2.0 CYCLE 115 CROSS REF LYSTING 13149 HAS. 15HARTY? PASCAL

CROSS REFERENCE TABLE

SYHOOL
1 co0o0s
J 100009
X, ogoea’
L Q00902
PASCAL aoanot

REFERE NCES

s0000% o00p00é osap0?

000040 000010 QODOO10 0DQC0:0 600011 OODQ1L

goagn? 000004 00000 000009

000003 000008 Q00008 008010 000010 CODOED 000D4D cooait

PAGE 00061%
ppoi/aonoy

. 006L/00002

0001708003
0O00L/0000G
sogL/06005
po0L/a0006
Qaai/agon?
po0t/a0008
po0L700009
godLi/oeoLo
boos/o0011
gooisdoolz
0001700013
00017000156
0001700015
504700016
0081700047

PAGE 0p02

PAGE Q003

wjgure 16-1. Sample Output (Sheet 1 of 5)




a 00298g0s

&-81

STAR FORTRAN 2.0 CYCLE 115

LOLATION
COUNTER

0000009
gogngzo
0000040
poooose
66GA04g
0000040
Qoonaco
D0000ED
0090100
0806120
0ooGiY0
0000160
0000130
0000140
agnoLca
o0001ED
0000208
0000223
aoon2ug
0080268
sooozio
0000240
0eo02ce
00n0300
a00n320
0800340
opon3en
0000390
000G3AD

00003Co
t0003ED
0000400
nognhzo
« 0000b4g
CapotLap
naonkho
noogs4co
60004ED
0000500
ooonS2a
gjagcos4q
0890560
0000520
aapnscn
Qoo0SED
00o062D
0090640
0000660

MACHINE
INS FRUCTION

7000151C
781C0010
781Bp01C
IFLBL400
ZA1CaG650
3Equ0500
6ILEQLOL
FCLET LY
o1 490
X0z2iFa2o
282064000
78660003
7861001E
361AG060
781800 4C
78670004
750001E
361A005C
78540059
78590003
785FDO01E
3614005F
BL4D65954000355%59
785B001E
361A005A
7e54pp 59
67555957
TFB55754
78570058

TE655803
TEBLS5804
63030405
FF 55805
B4 O65854L0004565h
78680000
7850001€
361A005C
78570058
rE6S5803
TASFONLE
36 1A00GE
B4 06585400035550
7856004E
261AN0DSA
84065954001 45659
3E030000
T863001E
36140062

LINE
NUMBER

pooas

. 0000k

09006
nooo?

a0009

oot

oopLL

nogL3

SOURCE
LABEL

PASCAL
PASCAL

"pooonz

togoas

BUOOOK
$100

S200

Daoaos

. ARSSEMBLY LISTING

13849 HRS ., 1SHART?

ASSEHBLY REPRESENTATION

INENT
ENTRY
SHap
RTOR
RTOR
£33
ELEN
ES
ADDx
ELEN
S HAP
SHIFTI
ELEN
~RTOR
RTOR
ASEVE
RYOR
RTOR
RYDR
BSAVE
RTOR
RTOR
RTOR
BSAVE
T XL E,BRE
TOR
BSAVE
YDA
susx
S0,
RYOR

t.on
Loo
ADNX
STD

© I8YLE,PRB

RYOR

RTOR
BSAVE
RTOR

Lon

RTOR
BSAVE

I BYLE,.BRB
RTOR
OSAVE
IBXLE.BRS
£s

RIOR
ASAVE

END

PASCAL

0,C. 844,302 _STACK
CUR_STACK,PREV_STACK
OYN,_SPACE,CUR_STACK
DYR_SPAGE, #1407
CUR_STACK,#50

PR _ky #5480
CALLEDATAPR_LyPR_ 1%
PR_hy#t A

PR_4yC 02040 .
CODEANA D, #F Q. CODEADRH
CODEAORM, #4000
L_C00004_DESCR,PR_3
FY_INIY_0B, CALLEDATA
RETURN, FT_INIT_ADR
DYN_SPACE,PI_DYNSP
L_F4_DESSR,PR_4
FY_HTIPR_DB.CALLEDATA
RETURN, FT_HTIPR_ADR
C_#1,1

1.PR_3
FT_MTIE_D0+CALLEDATA
RETURN, FY_HTTE_AOR
140 #1,000002+0_ 484X
FY_NTTPR_DS+CALLEDATA
RETURN, FT HYTPR_ADR
C.M,I )

C.18, 1K

[L_18 _DESCR.K1,C_#¢
Kt{

(L _18_BESCR.JITPR 3
IL_20_DESI4J14PR_%
PR_31PR_44PR_S
EL_18_DESCRWJIWPR_5
JeG M1,00008%+C_#A4J
L_F3_DESCR,PR_4
FTI_HTIPR_DB.CALLEDATA
RETYURN, FT_HTIPR_ADR
Ksd
[L_18_DESCR.43,PR_3
FT_HITE_nN3, CALLEDAYA
RETURN, FT_HYIE_ADR
JeG_814D00005,56_8844 _
FY_HYTPR 0B ,CALLEDAYA
RETURNFT_HTTPR_ADR
YoC #1,+D00003+C_ PA,1
PR_3s0

FY_STOP_NB, CALLEDATA
RETURN, FY_STOP_ADR'

PASCAL

-PAGE gope

Figure 16-1. Sample Output {Sheet 2 of 5)




8-51

{ 00298¢0%

STAR FORTRAN 2.0 CYCLE 115.

REG.
HO

00
01
-4
03
A
ik
[ 1)
97
on
09
A
ik}
oG
on
114
nF
19
11
12
13
14
15
16
t7
14
19
14
18
10
10
1€
1F
-20
21
22
23
24
25
26
27
78
29
24
2f
4"
2h
?F
-1
30
i
32

NAME REG.,

NQ

4] [HAGHINE ZERD) 313
DATA_FLAG_RETURN L}
TH_TNTERUPT _ENTRY 15
PR_3 36
PR_4 37
PR_S 38
PR_B 39
PR_7 3A
PR_A in
PR_9 k{3
PR_A 3n
PR_8 IE
PR _C 3F
PR_DO 40
PR_E k1
PR_F 42
PR_10 43
PR_11 hh
TH_SCRATGH 45
TH_RCOUEST_ENTRY 46
C_.#20 47
C_a14 ua
C.1 49
C_PARM_DESCR WA
F.2ET1 4R
F_RET2 4G
RETURN 40
BYY_SPACE WE
CUS_STACK 3
PREV_STACK 50
CALLEDATA 51
ON_UNIT 52
CONEADPH 53
CODEADRR 5
PaRM_DESGR 55
DATABASE 5h
TFR_24 57
TFP_25 S8
TFP_286 59
TFR_27 54
YFP_23 58
TFR_2?9 5C
JFR_24 50
TF®_2R SE
TFR_20 5F
TFe_20 1]
TFR_2Z 61
TFR_2F 62
TFR_30 63
TFR_ 31 by
YFR_32 65

NAHE

TFR_ 33
TFR_34
TFR_35
TFR_36
TFR_37
TFR_38
TFR_39
TFR_3A
TFR_34
TFR_3C
TFR_3N
TFR_3F
TFR_3F
TFR_4¢
TFR_t1
TFR_42
TFR_&3
TFR_u4
TFR_45
TFR_45
TFR_47
TFR_4A
TFR_4L9

TFR_ 44
TFR_4B
PI_DYNSP
P_DYNBAS
L_TARVEC
LFN_TARG
V_TEHPL
V_TEHPZ
V_TEHP3
V_TEHPY
C_"

c_#B

C_nA

K

J

X
FT_HTTPR_ADR
Ft_WTTea_nA
FT_HTIPR_AOR
FY_MTIFR_0R
FY_HYIE_AOR
FY_HTIE_Da
FT_YNT T_ARR
FT_INTT_ O
FY_STOP_ADR
FY_STOP_GAR
L_20_DESCR
L_18_0DESCR

REGISTER MAP

REG.
NO

66
67
68
69
6A
68
56
60
6E
6F
70
71
72
73
7t
75
76
7
78
79
74
78
70
70
7E
TF
80
8y
82
83
84
85
86
a7
84
89
84
8n
8g
AD
8E
8F
9p
91
92
93
95
as
a6
97
a8

13149 HRS . {5HARTZ

HAHE

L_G00004. DESCR
L_F4_DESCR
L_F3_DESCR
FP_69
FR_BA
FR_EA
Fe_6C
FP_ED
FP_6E
FR_6F
FR_70
Fo_7y
FR_T72
FP_73

Fo_ 74
FR_75
Fo_76
Fo_77
FR_78
FP_79
FRZ7A
FR_78
FP_7G

REG.

NO

99
94
9B

9g’

90
€
9F
Ap

FR_99

NAME

PASCAL

REG.
NO

, PAGE 0005
HANE

Figure 16-1. Sample Qutput (Sheet 3 of 5)




-4-87

@ 00298505

STAR FORTRAN 2.0 CYCLE 115 STORAGE HAP 131493 HRS. 1SHARYY PASGAL ’ PAGE 0005

PROGRAH NAHE IS PASGAL TOTAL LENGTH IS S5E  HEX HALF WORDS

DATA AREA COPY OF ALL REGISTERS USED BY THIS FORTRAN PROGR AM

START ADBRESS = s80 4 START ADDRESS IS RELATIVE TO DATA AREA BASE ADORESS
SCALARS ,CONSTANTS AND EXTERMALS ASSIGNED TO REGISYERS (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADORESS)

LOCATION  REG.NO HAME CLASS TYPE

1040 4C PI_OYNSP ! SIMPLE VARIAILE INTGR

10C0 40 P_OYNRAS SIMPLE VARIASLZ INTGR

1100 4E L_TARVEC . b STMPLE VARIAILD IRTGR

1140 uF LEN_TARG SIMPLE VARTA9LE INTGR

1180 59 V_TENPY SINPLE VARIASLE INTGR

1160 %1 V_.TENPS ’ SIHPLE VARTAGLE INTGR

1200 52 V_TENPY SIMPLE VARIAILSZ INTGR

1240 53 V_TENPY SIHPLE VARIABLE INTGR

1288 54 c_# CONSTANT INTGR

12Co0 5% c_om e GONSTQNT INTGR

1300 56 c_#ac COMSTANT INTGR

1340 57 K SINPLE  VARIAGLE INTGR

1380 58 J STHPLE WARXABLE INTGR

13C0 59 T . SIMPLE VARTAALE INTGR

1400 S5A.S8 FY_HTTYPR_ADR »FT_MTTPR_DB . REFLEXTERNAL SUBPR UNKNH

1480 5C,50 FT_WTIPR_ADR +FT_WTIPR_OB REF.EXTERMAL SUBPR INYGR

1500 SE,S5F FT_NYIE_ABR +FT_NTIE_DB REF <EXTERNAL SuapRr UNKNH

1580 60461 FI_INIT_AOR +FT_INIY_DB REF . EXTERNAL SUBPR UNKNH

1600 62463 FT_STOP_ADR +FT_STOP_DB REF LEXTERNAL SUBPR INTGR

DESCRIPTORS ASSIGMED 'T0 REGISTERS (LOCATIONS ARE RELATIVE TO DATA AREA BASZ ADDRESS)

LOCATION  REG.NO NAME CLASS *

1680 64 L_20_DESCR ARRAY HAME

16C0 &5 L_18_DESCR ARRAY WAHE

1700 66 L_Cocooi_DESCR CHARGONSY o Z/FORHAT

1740 67 L_Fu_DESCR CHARJCONST « /FIRHAT

1760 68 L_F3_DESCR "CHAR.CONST . /FORMAT

NOTEt TOTAL NUMBER OF REGISTERS YO BE FETCHED INTO REG.FILE STARTING WITH REG.20 HEX IS 49 HEX

GENERATED 08JECT CODE

STARY ADDRESS = p LENGTH = 3% HEX HALF WORODS (START ADDRESS IS RELATIVE TO'GODE AREA BASE ADDRESS)

CHARAGYER CONSTANTS,LITFRALS AND FORMAYT SEGMENTS

. 1
START ANDRESS = g LENGTH = 14 HIX HALF WORDS . {START ADDRESS IS. RELATIVE TO DATA AREA BASE ADORESS)

ARGUHENT VECTQORS

START ANDRESS = 000000000280 LENGTH = T HEX HALF HWORDS (START ADDRESS IS RELATIVE 'TO DATA AREA BASE: ADDRESS)

CONSTANTS,FXTERNALS.NESCPIPTORS AND NON-COMMQL, VARTARLES NOT ASSIGHED TG .RFGISTERS. .MAWFL TRYS.LHARARIFR SEALARS

Figure 16-1, Sample Output (Sheet 4 of 5)



http:CnNSTANTSFXTERNALS.nE

-8-81

PASGAL PAGE o007

1314 HRS . LSHARTT

STORAGE HAP
({START ADDRESS IS RELATIVE TO DATA AREA- BASE ADDRESS

16 HEX HALF NORDS
[LOCATIONS ARE RELATIVE YO DATA AREA OASE ADDRESS)

STAR FORTRAN 2.0 CYCLE 115
STARY AQDRESS = 0o00DDCOO280 LENGTH =
LOCATION SYMBOLYC HAHE OR HEX VALUE CLASS TYPE
280 t ARRAY VARIABLE INYGR
YEHMPORARY SYORAGE '
LENGTH = T REX HALF WORD3 {STORAGE IS SCATTERED THROUSHOUT DATA AREX)
COMHON BLOCKS
HO COHKON BLOCK IS SPECIFXED
(LOCATIONS ARE- RELATIVE T0 CODE _AREA hgszunuuRQSSl

LIST OF ALL ENTRY POINTS
LOGATION SYHBOLYC NAME
PASCAL

LIST OF ALL EXTERMALS
SYHBOLTC NAME

FT_MTTPR
FT_NTIPR
FT_NTIE
FY_INIT
FT_STOP

NO ERRORS
Figure 16-1. Sample Output (Sheet 5 of 5)

a 006Z98£09




' SPECIAL CALL STATEMENTS D

This appendix deseribes the avaiable specigl ceil
statements. Each special _call-statement directly generates
-a-machiné instruetion, Special ealls aré deseribed in general
terms in seetion 14. Each special call name is a mnemonic
preceded by @8. The mnemonics are identical to the STAR
Assembler mnemonics in most cases. Certain special calls
use an abbreviated mnemonie because the name is limited to
6 characters following the Q8.

The first field of each machine mnstruction is the op code
(F), indieating which funetion is to be performed. The
special call name supplies the op code {F) in the generated
instruetion. QOther operands are specified as arguments in
the special call, The operand designators are explained in
table D-1.

The speeial call formats are shown in table D-2. The G bits
that can be set either to 0 or 1 are indicated with the
marking x. In-the table, the following additional notations
are used:

f Indicates & fullword register containing an
operand.

h Indicates a halfword register containing an
operand.

a Indicates a fullword register containing an
address; length field is ignored.

i Indicates a fullword register containing an
index.

i

d Indicates a fullword register containing a
descriptor.

e Indicates a fullword register wrth an exponent
field that eontains & length operand.

eh Indicates a~halfword.register with an exponent
field that contains a length operand..

FP Is an abbreviation:for floating point.

ov Is an abbreviation for order vector.

RdJ Is an abbreviation for right-justified.

SE Is an abbreviation for sign extended.

.OP. Indicates one of the logical operators .EQ.,
NE., .GE. or .LT.

Indicates upper result,
Indicates lower result,

Indieates normalized upper result.

m 7 o g

Indicates significant result,

The instruetion format is cne of the twelve possible
instruction formats shown in figure D-1. Additionat
information about any machine, instruction, including the G
bit settings, can be found in the STAR-100 Computer '
Hardware Reference Manual,

TABLE D-1. OPERAND DESIGNATORS

Designator Format Type Definition
A 1and 3 Specifies g register that contains a field length and.base address for the corresponaing
source vector or string f{ield.
2 Specifies a register that contains the base address for a source sparse vector field.
C Specifies a register that contains, based on bit 12 of the instryction (G-bit-4}, either a two's
complement or unsigned integer in the nghtmost 48 bits.
B 1 and 3 Specifies a register that aontains a field length and base address-for the correspording
source veetor or string field.
2 Specifies a register that contains the base address ror g source sparse vector leld
C Spectfles a register that contains the branch base address 1n the rtghtmost 48 bits
c I, 2, and 3 Specifies a register that contains the fieldlength and base adaress for storing the result
veetor, sparse vector, or string feld.
c Specifies the register that will contain, based on it 12 ot the instruction {G-ott-4), etther
a two's complement or unsigned sum of (A) = /%) ir the rightmo~t 48 hits. The leftmost
16 bits are cleared.
C i 1 Specifies a register containing the offset for (* ano Z vector fields. 1t the € - 1 designator
15 used, the C designator must specify an even-numoerad register.,

60386200 G

D-1 »



TABLE D-1. OPERAND DESIGNATORS (Contd)

Designator Format Type Definition
G 1,2,3,89, 8-bit designator specifies certzin subfunction conditions. Subfunctions include length of

Band C operands {32~ or 64-bit), normal or broadeast source vectors, ete. The number of bits used
in’ the G designator varies with instructions.

I 5 48-bit index used to form the branch address in a B6 branch instruetion. In BE and BF index
instruetions, I is a 48-bit operand.

& In 3E and 3F index instruetions, I is & 16-bit cperand.

B In the 33 branch’instruetion, the 6-bit I is the number of the DFE cbjeet bitsused in the
brarching operation.

R 4 In the register and 3D instructions, R is the register containing an operand:to be used in an
arithmetic operation,

5 and 6 In the 3E, 3F, BE, and BF index Instructions,-R is a destination register for the transfer of
an operand or operand sum, In.the B6 branch instruction, this register contains an item.
count used to form the branch address.

7,8,and A R specifies registers and branching conditions given in the individuel instruetion
descriptions.
S 4 In the register and 3D instructions, S is a register contaimung an operand to be used in an
arithmetic operation,
7, 8,and & S specifies registers and branching conditions given in the individual instruction
deseriptions,
T 4 T specifies a destination register for the transfer of the arithmetic results,
7,8,9,andB T specifies a register that contains the base address and, in some cases, the field length of
the eorresponding result field or branch address.

A T specifies a register eontaining the old state of a register, DFB register, ete.; in an index,

branch, or inter-register transfer operation.
X 1and3 Specifies a register that contains the offset or index for vector or string source field A.

2 Specifies a register that contains length and base address for order vector correéponding to
source sparse veetor field A.

4 In the B0-BS Branch instructions; this register contains, based on bit 12 of the instrgction
(G-bit-4), either a two's complement or unsigned integer in the rightmost 48 bits uséd as an
operand in the branching operation.

Y 1and3 Specifies & register that contains the offset or index for vector or string field B,

2 Specifies a register that contains the length and base address for the order vector corre-
sponding to source sparse veetor field B,

c In the B0-B5 Branch instructions, ¥ specifies a register that contamns an index used to form
the braneh address.

Z 1 Z specifies a register that contains the base address for the order vector used to control the
result veetor in-field C.

2 Z specifies a register that contains the length and base address for the order veetor corre~
sponding to result sparse vector field C,

3 Z specifies a register that contains the index for resualt field C.

c In the BO-BS Branch instruetions, Z specifies a register that contains, based on'dit 12 of
the instruetion {G-bi1t-4), etther a two's complement or unsigned integer in the rightmost
48-brts. It is used as the comparison operand in determining whether the branch condition
is met.

OF THE
®-D-32

, 7
ODUCIB‘J:._LI . -
%%?gmAL PEEE-15 POOR



TABLE D-2. SPECIAL CALL FORMATS

Instrue-
Special Call O?HC:?e tion Description G Bits
e Format
CALL QSABS(Rf, T 79 A Absclute, fullword FP: AES(Rf)—:-Tf
" CALL QSABSH(R,, ,T,) 59 A Absolute, halfword FP: ABS(R,)—Ty

CALL Q8ABSV(G,X,4A, , ,Z,C) ag 1 Absclute, vector: ABS(A)—C XXXX 0000
CALL QBACPS(G,X,A,Y,B,Z,C) CF 1 An.GE.Bn—>Cn,set Zn.OV leng’th—:»zﬂ,.15 X000 XK
CALL Q8ADDB(,X,A,Y,B,Z,C) E0 3 Add binary: A+B—C
CALL Q8ADDD(,X,A,Y,B,Z,C) E4 3 Add decimal: A+B->C
CALL QSADDL(Rf,Sf,Tf) 61 4 Add lower, fullword FP: ((Rf)+(sf))L ->T,
CALL QSADDLEN(R e’sf’Te) 2B 4 Add to length,

By 15%548-63 " T0-15F16-63 " T16-63
CALL QSADDLH(Rh,Sh.'I_‘h) 41 4 Add lower, halfword FP:

((Rh)+(5h))L—'>Th
CALL Q8ADDLS(G,X,A,Y,B,2,C) Al 2 Add lower, sparse veetor: (A+B)L—>C X00X XXX¥X
CALL Q8ADDLV(G,X,A,Y,B,Z,C) 81 1 Add lower, vector: (A+B)L—>C XXKX XXXY
CALL Q8ADDMOD(G,X,A,Y ,B,Z,C) EC 3 Add modulo bytes: (An+Bn] mod (I&)~-~=~Crl
CALL QSADDN{Rf,Sf,Tf) 62 4 Add normalized, fullword FP:

((Rf)+(5f))N—-5’Tf
CALL QSADDNH(Rh,Sh,Th) 42 4 Add normelized, halfword FP:

((Rh)'*(Sh))N—;’Th
CALL Q8ADDNS(G,X,A,Y,B,Z,C) A2 2 Add normalized, sparse vector: (A+B)N—>C LOOX XXXX
CALL Q8ADDNV(G,X,4,Y,B,Z,C) 82 1 Add normalized, veétor: (A+B)N—->C boveodb'ee ]
CALL Q8ADDU(R,3,,T;) 60 4 Add upper, fullword FP: ((R (SN —T,
CALL QSADDUH(Rh,Sh,Th) 40 4 Add upper, halfword FP: ((Rh)i-(sh))u—->Th
CALL Q8ADDUS(G,X,A,Y,B,Z2,C) AD 2 Add upper, sparse vector: (A+B)U—>C X00X XXXX
CALL Q8ADDUV(G,X,A,Y,B,Z,C) 80 1 Add upper, vector: (A+B);—>C XXXK 100X
CALL QGADDX(Rf,Sr,Tf) 83 4 Add index, fullword:

R16-63"516-63" T16-63-F0-15"To-15

60386200 G D-3e



,'f TABLE D-2. SPECIAL CALL FORMATS (Contd)

& D-4

i Instrue-
Special Call ‘ O?H(Z:)de tion Deseription G Bits
Format
CALL Q8ADDXV(G,X,A,Y,B,Z,C) 83 1 Add 1ndex, vector:
. : A16-63"P16-63 7 C16-620-15 " Cp-15 XXX X000
CALL QSADJE(Rf,Sf,Tf) 75 4 Adjust exponent, fullword FP:
(Rf) per SH>Tf
CALL Q8ADJ EH(Rh,Sh,Th) 55 4 Adjust exponent, halfword FP:
(Rh} per S—s‘*Th
CALL QBADJEV(G,X,A,Y,B,Z,C) 95 1 Adjust exponent,vector: A per B->C XAXX X000
CALL @8ADJIM(G,X.,4A, , ,Z,C) D 1 Adjacent meaty (An +1+An)/2—->cn XXXO 0000
CALL QBADJS(Rf,Sf,Tf) 74 4 Adjust significance, fullword FP:
(Rf) per S—»>’l"f
CALL QSADJSH(Rh,Sh,Th) 54 4 Adjust significance, halfword FP:
(Rh) per S—>Th
CALL Q8ADJSV(G,X,A,Y,B,Z,C) 94 1 Adjust significance, vector: A per B-+C X¥AX X000
CALL Q8AND(,X,A,Y,B,Z,C) F1 3 Logical AND: AeB—C
CALL Q8ANDN(,X,A,Y,B,Z,C) F6 3 Logreat AND NOT: AeEB—>C
CALL QBAYCG(G,X,4, , ,Z,0) Do 1 Yeetor average: (An+Bn)/2--?>Cl_1 XXXX X000
CALL.Q8AVGDI(G,X,4, , ,Z,0) D4 1 Veetor average difference: (ﬁLn-Bn)/z—>Cn XXXX X000
CALL Q8BAB(G,S a’Ta) 32 9 Branch and alter bit:
(Sa) is bit to be altered,
(Ta) is branpeh address XXXX 0XX0
CALL QSBADF(G,IE,Ta) 33 B D.F. reg. bit branch and alter:
16 is bit altered, (Ta) is branch address KHXX OXXO
CALL Q8BARB(G,5,T) 2F 9 Branch to [S] on condition of bit 63 of
register T XXXX 0000
CALL QSBEQ(Rf,Sf,Ta) 24 3 Braneh to (Ta) if (Rf).EQ.(Sf), fullword FP
compare
CALL QSBGE(Rf,Sf,Ta) 26 3 Braneh to (Ta) if (Rr).GE.{Sf),
fullword FP compare
CaALL QBBHEQ(Rh,Sh,Ta) 20 8 Branch to (Ta) if (Rh).EQ.(Sh},
halfword FP compare
P THS
PRODUCIBILITY OF Fop
B GINAL PAGE 15 2O
ORIGIN 60386200 G




TABLE D-2. SPECIAL CALL FORMATS (Contd)

Instrue-
Special Call Ogﬂnge tion Deseription G Bits
Format
CALL QBBHGE{Rh,Sh,Ta) 22 3 Branch to (Ta) if (Rh).GE.(Sh),
haifword FP compare !
CALL Q8BHLT(R 5., T, 23 8 Branch to (T,) if (R).LT.(S,),
halfword FP compare
CALL Q8BHN E(Rh,Sh,Ta) 21 8 Branch to (Ta) if (Rh).NE.(Sh},
halfword FP compare
CALL QSBIM(RPMB) BB 5 Branch immediate to (Ri)+I48
CALL Q8BKPT(R ) 04 4 Breakpoint: R,,. ., —>breakpoint register
. CALL QSBL‘I‘(RE,SPT&) 27 8 Braneh to (Ta) if (Rf).LT.(Sf),
fullword FP compare
CALL QBBNE(RPSPT&) 25 2 Branch to (Ta) if (Rf).NE.(Sf),
fullword FP compare
CALL QSBSAVE(Rf,S.l.Ta) 36 i Set (Rf) to next instruction address,
branch to [Ta+SlI
CALL QSBTOD(Rf, ,Tf) 11 A Convert binary R to packed BCD T,
fixed length
CALL QBCLG(RP ,Tf) 72 A Ceiling, fullword FP:
nearest integer .GE.(Rf)—->Tf
CALL QSCLGH(Rh, ,Th) 52 A Ceiling, halfword FP:
nearest integer ‘GE'(Rh)—>Th
CALL Q8CLGV(G,X,A4, , ,2,C) 92 1 Ceiling, vector: nearest integer .GE.A—C XXXX 0C00
CALL Q8CLOCK(, ,T;) 39 A Transmit {real time clock)—>T18_63,0~>T0_15
CALL Q8CMPB(,X,A,Y,B) E8 3 Compare bingry,set:
DFB 53 operands equal
DFB 54 1st operand high
DFB 535 1st operand low
CALL Q8CMPD(,X,A,Y.,B) Eg 3 Compare decimal, set:
DFB 53 operands equal
DFB 54 1st operand high -
DFB 55 1st operand low
80386200 G ‘D-5 ®



TABLE D-2. SPECIAL CALL FORMATS {Contd)

Op Code !nsf.ru:.h
Spectal Call (Hex) tion Description G Bits
: Format
CALL QECMPEQ(G,X,A,Y,B,2) c4 1 . . %00X X000
CALL QSCMPGE(G,X,A,Y,B,Z) . C6 1 Yector comp;are, form order vector: XOOX %00a
CALL Q8CMPLT(G, XA Y .B,Z) < 1 if (A n).OP.(Bn), set bit 2, in order vector XOOX X0OC
CALL QS8CMPNE(G,X,A,Y,B.2) Ch 1 XOGK K000
CALL Q8CNTEQ(R d‘si‘Tf) 1E 7 Count: # of leading bits equal to bit at
[R+81=>T 5.3
CALL QSCNTO(BG,Si,Tf) 1F 7 Count 1's in field R: #¢ of 1's in field
(R+8]-Tyg g3
CALL QECON(Rf, ,Th) 76 A Contraet, fullword FP: R 4—>T32
CALL QBCONV(G.X.4, , ,Z.C} 95 1 Contraet, veetor: Ag 4—3*032 TAX 0000
CALL Q8CPSB(R S, Ty 14 7 Compress bit string: every R_ substring
from R *S pattern—>T
CALL Q8CPSV(G, ,A, . ,Z,C) BC 2 Compress veetor: vector A—>sparse C,
controlled by OV Z XX00 0000
CALL Q8DBNZ(R,S;,T,) 35 7 (Re-1->(Ry), if (Ry) 50 braneh to [T,*5]
CALL Q8DELTA(G XA, , ,Z,C} Ds 1 Yector delta: (A—&Ml--An)-—»Cl_l XXX0 0000
CALL Q8DIVB(,X,A,Y.B,2,C) E3 3 Divide binary: A/B—C
CALL Q8DIVD(,X,4,Y,B,Z,C) E7 3 Divide decimal: A/B—C
CALL QSDIVS(Rf,Sf,Tf) 6F 4 Divide signifieant, fullword FP:
((Rr)lsf))s—PTf
CALL QBDIVSH(Rh,Sh,Th) 4F 4 Divide sigmficant, halfword FP:
((Rh)/(Sh))(_\:'-—="Th
CALL Q8DIVSS(G,X,4,Y,B,2,C) AF 2 Divide significant, sparse vector:
(4/B)g—~C X0OX XXXX
CALL Q8DIVSY(G,X,A,Y,B.Z,C) 8F 1 Divide significant, vector:
(A/B)S—DC KKK KEKX
CALL Q8DIVU(R,S,,T ) 8C 4 Divide upper, fullword FP:
((Rf)/(Sf))U -Tg
CALL QSDWUH(Bh,Sh,‘I‘h) 4G 4 Pivide upper, halfword FP:
((Rh)/(Sh))U --?-’I‘h
REPRODUCIBILITY OF THE
ORIGINAL PAGEJS POOR
REPRODUCIBILITY OF THE
& D-6 650385200 G


http:QSDIVSH(Rh.Sh.Th
http:Q8CPSB(Rd.Se.Td

TABLE D-2. SPECIAL CALL FORMATS (Contd}

Instrue-
Speecial Call O(PH?;?G tion Description G Bits
Format

CALL Q8DIVUS(G,X,A,Y,B,Z,C) AC 2 Divide upper, sparse vector: (A/B)U—>C X0O0X XXXX
CALL Q8DIVUV(G,X,A,Y,B,Z,C} 8C 1 Divide upper, vector: (A/B)U—>C XXX 100t
CALL Q8DOT3(G,X,A,Y,B, ,C) DD 2 Sparse vector dot preduct: AeB-—>C,C+1 X000 XXX
CALL Q8DOTV{(G,X,A,Y,B,Z,C) ales i Dot product veetor: AeB—>C, C+1 XX00 0000
CALL QSDTOB(RE. ,Tf) 10 A Convert packed BCD to binary T, fixed length
CALL Q8DTOZ(G,X,4A, , ,Z2,0) FC 3 Unpack BCD to zoned: A—»C XX00 0000
CALL Q8ELEN(R e,116) 24 6 Enter length: IJ.Ei—v'Eln_ls,Rm_63 unchanged
CALL Q8EMARKI(G,X,A,Y,B,Z,C) EB 3 Edit and mark: A per pattern B—C,

G=1st significant result address
CALL QBES(Rf.Ilﬁ) 3E 8 Enter short, fullword:

IlB—>R16_63,RJ,SE,0—>RD_15
CALL QSESH(Rh,IIS} 4D ] Enter short, halfword:

116—>Rg_s. .RJ,SE0—>R, .
CALL QBEX(RE,MS) BE 3 Enter index, fullword:

M8—>Rq 620Ry 5
CALL QBEXH(Rh,IM) CD 5 Enter index, haifword:

124—>R8_31,0—>R0_7
CALL Q8EXIT 09 4 Exit force, job mode to monitor mode
CALL QSEXP{Re, ,Tf) TA A Exponent, fullword:

Ro.157T16-53-5E0>Tg 5
CaLl QSEXPH(Reh. T 54 A Exponent, halfword:

RoqTg31SE0>Ty 4
CALL Q8EXPV(G.X,A, , ,Z,0) A 1 Exponent vector:

A0_15—9C48_63,SE,D—>CO_15 XXXX 0000
CALL Q8EXTB(R,S . T() BE 4 Extract bits from R; 1o Tf per S
CALL QSE.\TH(Rh. .Tr} 5C A Extend haifword FP. R32_>T64
CaLL Q8EXTV(G.x,A., ,Z,C) 9C 1 Extend vector: A32 ->C64 0XXX 0000

60386200 G D-7 1



TABLE D-2. SPECIAL CALL FORMATS {Contd)

Instrue—
Special Call O?Higie tion Deseription G Bits
Format
- - ;
CALL QSEXTXH(R,, ,Tg) 5D A Extend index, halfword F2: ;
Ry a1 > T15-63 50 R g7 Tgo15°F
CALL Q8FAULTI(G) 08 7 Simulgte fault OGO XRKK
CALL QSFILLC(IS,Si.Td) 1A 7 Fill field T with byte: repeat i3 for
field [T+5]
CALL QsFILLR(Rf.si,Td) iB 7 Fill field T with byte: repeat (Rs 6_63) for
field {T+5]
CALL Q&FLR(RP ,Tf) 71 A Floor, fullword FP:
nearest integer .LE.{Rr)—be
CALL QSFLRH(Rh, ,‘I‘h) 51 A Floor, halfword FP:
nearest integer .LE. (R }->T,
CALL Q8FLRV(G,X.4,, ,Z,C) 91 1 Floor, vector: nearest integer .LE.A->C L 0000
CALL Q8IBNZ(R,S,,T ) 3 7 {(ReH1->(Ry), if (Rg) #0 branch to [T a,si}
. Increment and branch index:
CALL Q8IBXEQ(G,X,4,Y,B,5,C) BO c VS 4 =0, paudh =>C, 12 0000 XXXX
CALL Q8IBXGE(G.X.A,Y,B,Z,C) B2 c 16-637"16-83 ~ "16-63"70-15 ~ "0-15 0000 XKX
CALL Q8IBXGT(G,X,A,Y,B,2,C) BS C if A +X oP.Z 0000 XXXX
CALL Q8IBXLE(G,X,A,Y,B,Z,C) B4 cC 16-63 “16-63" " "716-63 0000 XXXX
CALL Q8IBXLT(G,X,A,Y,B,Z,C) B3 C B o000 XXX
CALL Q8IBXNE(G,X,A,Y,B,Z,0) B1 C then branch to Y or relative from current 0000 XXXX
location
CALL QSIDLE an 4 Idle: enable external interrupts and idle
CALL QSINSB(Rf,S G‘Tf) 6D 4 Insert bits from Reto Tt' per S d
CALL QBINTVAL(G, ,A,, B,Z,C) DF 1 Interval vector: A+{({n~2)*B)—=C XNXO 00C0
CALL QSIOR(,X,A,Y,B,Z,C) F2 3 Logieal inclusive OR: A+B—C
' CALL QEIS(R 118} 3F ] Increase short, fullword:
R16-63+I16_>R15-63’R0-15 unchanged
CALL QSISH(Rh,IIB) 4E 6 Increase short, halfword:
\ RS_M*I'IIa—ﬂlg_al,Rﬂ_,‘r unchanged
CALL QSIX(RI.,MB) BF 5 Increase index, fullword: I48+R—>R
CALL QSIXH{Rh,IZ‘Q CE ] Increase index, halfword: I24+R-R
* -8

50386200 G



TABLE D-2. SPECIAL CALL FORMATS (Contd)

Instrue-
Special Call O?H?;?e tion Deseription G Bits
Format

CALL Q8LOD(R ,8,,T;) 7E 7 Load-fullword: load [R a+sj.l]—r»"rf
‘CALL QSLODAR oD 4 Load associetive registers:

beginning at 400xx,—~AR
CALL Q8LODC(R a'si'Tf) 12 7 Load byte: {R a-l-Si]»Tsa_sa, O-—>T0_55
CALL QBLODH(Ra,Si,Th) 5E 7 Load halfword: load [R a+si] —>’I’h
CALL QBLODKEY(RPS a,’I‘a) OF 4 Load key from (Rf), transiate virtual (Sa) to

absolute T

a

CALL QSLSDFR(Rf, ,Tf) 3B A Load and store data flag register:

(DFR)—?-Tf,(Rf)-—PDFR
CALL Q8LTOL(R - ,Te) 338 A Transmit length Rﬂ-l 5 to length TU—15’

T16-63 unchanged
CALL QSLTOR(R o ,Tf) 7C A Length to register, fullword FP:

Ro-15"T4p-530>Tp-a7
CALL Q8MASKB(R d,S d,Td) 15 7 Mask bit strings: aiternate (Rd) string and

s d) string ~» T string
CALL QEMASKO(Re,Se,Td) 1D 7 Form-bit mask: repeat (Rn) ones and

(Sn)-(Rn) zeros —> T string
CALL Q8MASKV{G, ,A, ,B,Z,C) BB 2 I Zn=1, An—>Cn; if Zn=0, Bn—>Cn;

result 1ength—>CD_15 X00X X000
CALL Q8MASKZ(R e’se’Td) 1C 7 Form mask: repeat (Rn) zeros and

(SnHRn) ones~> T string
CALL Q8MAX(G,X,4A, ,B,Z,C) D8 1 Yector maximum:

) Am ax—>C, item count—B XX00 0X00

CALL Q8MCMPC(G,X,A,Y,B,Z,C) FD 3 Find An=Bn per mask C, A and B index.

mneremented by 3 of bytes XX00 OXXO
CALL QBMIN(G,X,A, ,B,Z,C) Dy 1 Veetor minimum:

Amin—bc’ itern count —B XX00 0X00
CALL QSMMRGC(I8,X,A,Y,B,Z,C) EA 3 Merge bits per byte mask:

A or B per 18=0 or 1 —=C XXX XXXX
CALL Q8MOVL{G,X,A, ,B,Z,C) F8 3 Move bytes left: A->C (left to right) XXXX OXOX

60386200 G D-9 e



TABLE D~2. SPECIAL CALL FORMATS (Contd)

; Instrue-
Special Call O?Hci‘)ie tion Description G Bits
b Format
CALL Q8MCVYLC(G,X,4, ,B,Z,C) F9 3 Move bytes left, ones complement:
’ A—>C (left to right) AKX OXOX
CALL QSMOVR(Ri,Si,Td) 18 7 Move bytes right: (Td)'!'(Ri)—?(Td)*(Ri)*(Si)
CALL Q8MOVS({,X,A, ,3,2,C) FA 3 Move and seale: A—»C, sesle (B) decimal
places
CALL QSMPYB(,X,A,Y,B,Z,C) E2 3 Multiply binary: A*B—C
CALL Q8MPYD(,X,A,Y,B,Z,C) E 3 Multiply degimal: A®B—>C
CALL QSMPYL(R S;.T¢) 69 4 | Multiply lower, fullword FP:
(RS —T,
CALL QSMPYLH(Rh,Sh,Th) 49 4 Muldtiply lower, halfword FP:
((Rh)"(sh))L—ﬂ'Th
CALL QaMPYLS(G;X,A.Y.B.Z.C) A9 2 Multiply lower, sparse vector:
(A‘B)L->C XO0X X0
CALL Q8MPYLV(G,X,A,Y,B,Z,C) 89 b3 Multiply lower, vector: (A*B)L—>C HXKX XAXE
CALL QBMPYS(RE,Sf,Tf} 6B 4 Multiply signifieant, fullword FP:
((Rf)*(sf))s—?"l’f
CALL QSMPYSH(Rh,Sh,Th) 4B 4 . Multiply significant, halfword FP:
. ((Rh)"‘(Sh))S—bTh
CALL Q8MPYSS(G,X,A,Y,B,Z,C) AB 2 Multiply significant, sparse vector:
(A*B)S—>C XOOX XXXX
CALL Q8MPYSV(G,X,A,Y,B,Z,C} 8B 1 Multiply significant, vector: (A*B)S-—>C KA KKK
CALL Q8MPYU(R S, Tp) g8 | 4 Multiply upper, fullword FP:
((Rf)*(Sf))U =T
CALL Q8MPYUH(R, 8,.T\) 48 4 Multiply upper, halfword FP:
((Rh)*{sh»U_)Th
CALL Q8MPYUS(G,X,A,Y,B,2,C) A8 2 Multiply upper, sparse vector:
(A*B)y —=C X00X XXXX
CALL Q8MPYUV(G,X,5,Y,B,Z,C)- 88 1 Multiply upper, vector: (A*B)U—>C XXXX XXX
CALL QBMPYX(Rf,Sf,Tf} 3D 4 Multiply index, fullword:
Ry6-g3*S16-53T16-630 7 To-15
FPRODUCIBILITY sogo BT oF ushD
IGINAL -RAGE I %P opU
#® D-i0 QRQ R 60386200 G

oRICT M



TABLE D~2. SPECIAL CALL FORMATS (Contd}

Instrue-
Special Call 0&32;39 tion Description G-Birs
Format N
CALL QBMPYXH(Rh,Sh,Th) 3C 4 Multiply inde¥, halfword:
By 41%8g-31>Ta-a00 > Tor
CALL Q8MRGB(R 4,557, d) 15 7 Merge bit steings: interleave (R g string
with (S d) string =T 4 string
CALL Q8MRGC(R d,S d’T d) 17 7 Merge byte strings: (R d):(S d) Jdesser =T d
CALL Q8MRGV(3, ,A, ,B,Z,C) BD 2 Merge vector: if'Zn=1, An-—-?Cn;
if 2 =0, Bn-—>Cn; result length ->Co_15 XCOX XOO0X
CALL QSMTIME(Rf) DA 4 Transmit (Rf‘) - monitor interval timer
CALL Q8NAND(,X,A,Y,B,Z,C) F3 3 Logicel NAND: A®B—~C
CALL Q8NOR(,X,A,Y,B,Z2,0) F4 3 Logieal NOR: A¥B—=C
CALL Q80RN(,X,A,Y,B,Z,C) F5 3 Logiesl OR NOT: A+3~>C
CALL QSPACK(RE,Sf,Tf) 7B 4 Pack, fullword FP:
Ryg g3 21951663771
CALL QSPACKH(Rh,Sh.Th) 5B 4 Pack, halfword FP:
Rog-g1 8ndSg 3Ty
CALL Q8PACKV(G,X.A,Y,B,2.C) 9B 1 Pack, vector:
Ayp-63 and 316-63“}0 ¥XXX X000
CALL Q8POLYEV(G,X,A,Y,B,2,C) DE 1 Polynomial evaluafton: A, per B_>Cn XXX Q0Q0
CALL Q8PRODCTI(G,X,4, , ,Z,C) DB 1 Veetor product: Product(Ao,Al,...A n)-->C XXCO Q000
CALL QSRAND(RE,Sf,Tf) 2D 4 Logical AND: RS—T
CALL QSRCON(Rf, 'Th) 77 A Rounded contract, fullword FP: R6 4—>T32
CALL Q8RCONY(G,X,4, , .2,0) 97 1 Rounded contract, vector:
Ae 4 rounded 32 OXXX 0000
CALL QSRIOR(Rf,Sf,Tf) 2E 4 Logieal inclusive OR: R,S5=->T
CALL Q8RJTIME(, ,Tf) 37 a Read job interval-timer 1o (T{.)
CALL QSRTOR(RF, ,Tf) 78 A Register to register fullword transmit:
(Rf)-->Tf
CALL Q8RTORH(R,, ! 58 A Register to register halfword transmit:
(RhJ—:-Th
60386200 G D-11 0



TABLE D-2. SPECIAL CALL FORMATS (Contd)

G Bits

Instrue-
Speecial Call O?Hc::?e tion Description
€ Format

CALL QBRXOR(RI.,SPT%) C 4 Logical exclusive OR: R,8—=T

CALL Q&SCNLEQ(!B,Si,Td) 28 T Sean left to right frem [T d,Si] for byte.
equal to I8, index Si

CALL QSSCNLNE(IB,SE,T d) 29 T “Sean left to right from [T d,Si] for byte
not equal to 18, index 3;

CALL Q8SCNRNE (IB.Si,Td) 19 7 Scan right-to left from [T, d'Si] for byte
not equal to 18, decrement S;

CALL Q8SELEQ(G,X,A,Y,B,Z,C) co 1 s

CALL Q8SELGE(G.X.A.Y,B,2.C) Ca 3 Yector seleet: if An.OP‘.Bn

CALL Q8SELLT{(G,X,A,Y,B,2.C) c3 1 then count up to the condition met —~>C

CALL Q8SELNE(G,X,A,Y,B,Z,C) Cl i

CALL QESETCF(R,) 08 4 Input/output: set channel (R ;) channel ﬂag

CALL Q8SHIFT (R,S;,Tp) 34 4 Shift R, by (Sp) =T,

CALL QESHIFTI(Rf,IS,Tf} 30 7 Shift Rf by IS-?'Tf

TALL Q8SKEYB{(G,X.A.Y.B,Z,0) D¢ 3 Segreh A for Bper C,
Ajndex™ #£ no mateh (bits)

CALL Q8SKEYC(G;X,A,Y,B,Z,C) FE 3 " Search A for B per C,
Am dex = #£ no mateh (bytes)

CALL Q8SKEYW(G,X,A,Y,B,Z,C) FF 3 Search A for B per C,
Aindex= #£no match (words)

CALL QSSQRT(R,, ,Tp) 73 A Significant square root, fullword FP:
(SQRT(Rg—>T;

CALL QSSQRTH(Rh, 'Th} 53 A Significant squara root, halfword FP:
(SQE‘.T(Rh))S---}>'I'h

CALL Q83QRTV(G,X,A, , ,2,C} a3 1 Significant squa;'e root, vector:
SQRT{A)S'—?’C

CALL Q8SRCHEQ(G, ,4, ,B,2,C) cs 1 ; .

CALL QSSRCHGE(G, A, 1B,2,0) CA 1 Vector search from indexed list:

CALL Q8SRCHLT(G, ,A, ,B.Z, C) CB 1 each (An).OP.(BnJ, count —~>Crj

CALL Q3SRCHNE(G, 14, ,B,Z,C) o] !

CALL Q3STO(R 8, Ty) 7F 47 Store, fullword: store (Ty)—>address (R +5;]

§
&

® D-12

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS-POOR

¥XoX Xo0o
¥X0X X000
¥xox X000
XX0X X000

AKX OXX0

XHXXo 0000
XXX0 0000
AXXO 000
XXX0 GO0

50386200 G


http:T8.Si.Td
http:QSRXOR(RfSf.Ti

TABLE D-2. SPECIAL CALL FORMATS (Contd}

Instrue-
Special Call O?Higt)ie tion Deseription G Bits
Format

CALL Q85TOAR oC 4 Store associative registers:

AR—>40l]xx8 and higher addresses
CALL QSSTOC(Ra,Si,Tf) 13 7 Store byte (character):

'I‘s -6 3-->address R a-!-Si}
CALL Q8STOH(R a’si’Th) 5F 7 Stere, halfwaord: (Th)->address IR a-!-Si]
CALL Q8SUBB(,X,A,Y,B,Z,C) E1 3 Subtraet-binary: A-B—»C
CALL Q8SUBD{,X,A,Y,B,Z,C) E5 3 Subtract decimal: A-B-—-C
CALL QBSUBL(Rf,Sf,Tf) 65 4 Subtract lower, fullword FP:

((Rf)--(Si-))I_.-»Tf
CALL QBSUBLH(Rh,Sh,Th) 45 4 Subtract lower, halfword FP:

(R -6, —>T¢
CALL Q8SUBLS(G,X,A,Y,B,Z,C) Ad 2 Subtraet lower, sparse veetor: (A‘B)L—r-C XOO0X XXXX
CALL Q8SUBLV(G,X,A,Y,B,2,0) 85 1 Subtract lower, vector: (A—B)L—-i’c XXX XAXX
CALL Q8SUBMOIXi8,X,A,Y,B,2,C) ED 3 Modulo subtraet bytes:

(A -B,)mod(I8}—>C
CALL QSSUBN(Rf,Sf,Tf) 66 4 Subtract normalized, fulilword FP:
CALL QSSUBNH(Rh,Sh,Th) 48 4 Subtraect normalized, halfword FP:

(B~ (8 —>T;
CALL Q8SUBNS(G,X,A,Y,B,Z,C) AB 2 Subtraet normalized, sparse veetor:

(A-B)y—>C XOOX XXXX
CALL Q8SUBNV(G,X,A,Y,B,2,C) 86 1 Subtract normalized, vector: (A-B)N—DC KUK XXXX
CALL QSSUBU(Rf,Sf,Tf) 64 4 Subtraet upper, fullword FP:

((Rf)--(Sf))U—?*'I'f
CALL QSSUBUH(Rh,Sh,Th) 44 4 Subtraect upper, halfword FP:
CALL Q8SUBUS(G,X,A,Y,B,Z,C) A4 2 Subtract upper, sparse vector: (A-B)y—>C XOOX XXXX
CALL Q8SUBUV(G,X,A,Y,B,Z,C) 84 1 Subtraet upper, vectar: (A-B);—>C XKXXX XXXX
CALL QSSUBX(Rf,Sf,Tf) 67 4 Subtraet index:

Ry 6-637516-63" T16-63"0-15" 1015

603856200 G D-i3 @



TABLE D-2. SPECIAL CALL FORMATS (Contd)

) Instrue- -
Special Call OFHC:?E tion Deseription G Bits
. € Format

CALL Q8SUBXV(G,X,A,Y,B,Z,T) 87 1 Subtraet index, vector:

A16-63"B16-63C15-63'40-15"Co-15 OXXX X000
CALL Q8SUM(G,X,4A, , ,Z,C) DA 1 Veetor sum: Sum(Ao,AI,...An)—>C,C+1 XX00 Q00
CALL Q8SWAP(R ST d) D 7 Swap registers: start with S, storing at T

and loading from R d
CALL 9Q8TL(G,X,A,Y,B,Z,C) EE 3 Translate bytes: Bn-->Cn XXAX OXOX
CALL Q8TLMARKI(G,X,A,Y,B,Z,C) D7 3 Transiate and mark: A per B—-vector C XX00 XX00
CALL Q8TLTEST(G,X,A,Y,B,Z,C) EF 3 Translate and test:

Bl‘l—bc,An‘-;vZ if Bn.NE.O XX00 0X00
CALL Q8TLXI(R a’si’Tf) 9E 4 Translate external interrupt:

- (Tf)=priority, branech to Ra[siJ

CALL Q3TPMOV{G,X,A,Y,B,Z,C) BY9 i Transpose and move 8 by 8 matrix XOXX X000
CALL QBTRU(RP ,Tf) 70 A Truneate, fullword FP:

neerest integer .LE.(Rf)-éTf
CALL Q8TRUH(R,, ,T,) 50 A Truneate, halfword FP:

nearest integer .LE.(Rh}H‘*Th
CALL Q8TRUV(G,X,A, , ,Z,C) 90 1 Truncate, veetor:

nearest integer .LE.{A)—=C 20000 0000
CALL Q8VREVV(G,X,4, , ,Z2.C) B3 1 Transmit veetor reversed to vector

Ar evéc XAKGQ 0000
CALL Q8VTOV(G,X,4, , ,Z,C) 98 1 Vector to veetor transmit: A—C XXX Q000
CALL Q8VTOVX(G, ,A, ,B, ,C) B? 1 Veetor to veetor indexed transmit:

B—C indexed by A KOO0 XOXX
CALL QBVXTOV(G, ,A, ,B, ,0) BA 1 Veetor to vector indexed transmit:

B indexed by A—C X000 COXX
CALL QBWJTIME(Rf) A A Transmit (Rf)—?’ job interval timer
CALL Q8X0R(,X,A,Y,B,Z2,C) Fo 3 Logical exclusive OR: A-B—C
CALL Q8X0RK(,X,A,Y,B,Z,C) F7 3 Logicsal equivalence {exclusive OR NOT):

A-B—C

. CALL Q8ZTOD(G,X,4, , ,Z,C) FB 3 Pack zoned to BCD: A—C XX00 0000

® D-14

i

60386200 G



1] -] 16 24 2 40 48 58 53
E g X (LENGTH AND 4 (LENGE (CONTROY VECTOR| (LENGEH A%D
AND
(FUNCTION) [SUBFUNCTION) | (OFFSETFORA) { gyop appress) | (OFFSETFOR I | 4ase ApDRESS) | DASE ADDRESSH | BASE ADDRESS)
1 cr |
Format 1 - Used for yectoe, vector stacro and some noatypreal mstruetions {OFFSET
FOrRC&Z) |
U — —F
[] H 5 24 2 38 53
X ¥ Z [~
P G {ORDER VECTOR A (ORDER YEGTOR B {ORDER YECTOR RESULT
{(FURCTION) {5UBFUNCTION) LENGTH & BASE} (BASE ADDRESS) LENGTH AND (BASE ADDRESSH LENGTH AND LENGTH aND
- BASE ADDRESS) BASE ADDRESS) BASE ADDRESS
Formet 2 = Used for sparse vector and some noatypiea! Instreetions |
] 3 16 24 iz 10 CH 58 53
F G X A ¥ 8 z - ¢
NGTH AND
guNcTion) | (sussubomom) | @oEipora) | SEGTLARD | gwoexzorm | LSNGTEAND | UNDEXFORC) | gysr apDADSS)
Pormat # - Uscd foc the logical string snd strig listructions .
a4 3
P B 3 T
{FUNCTION} {SOURCE 1) {SDURCE 2) (DESTINATION)
Porraat 4 - Used {or some reguster nstructions, for all moniter [nstructions, and for the 1D end 04 nontypieal nstructions
g, 33
e R I
(FUNCTION} (DESTIHATION) {48 BITS)
Pormat 5 = Used for the AE, BF, CD and CE index instructiony, and for the B branch instruction
Q E] 16 3
P R 1
{FUHCTION) {DESTINATION) (16 BIFS)
Focraat & — Used tor the 3E, IF, 4D and 4E index instructions, and for the 2A register instructlon
] 15 L3 3
4 R 5 T
(BUNCTION) (BASE APDRESS}
Format T - Used for some branch and neatypical instructions
3 3 24 2 .
4 R kS T N
(FUKCTION) (REGISTER) (REGGSTER) {BASE APDRESS}
Forriat 8 - Used far some branch mnstructions
3 g 18 2% 3
P G s
B[
(FUNCTION) DESIGNATOR ety T
Fornat 9 - Used foe the 32 branch wnstruetion
1] 3 24 k)
7 R \ T
(EUNKCTION) (OLD STATE) \ (HEW STATE)
UNDEFINED
(MUST BE ZEROS)
Format A - Used for some index, branch, and register nstruetjons
_*UNDEFINED (MUST BE ZEROS)
0 18 t . 3
7 .G I T
(FUNCTION) DESIGHATOR {5 BITS) {BASE ADDRESS}
Format B = Used for the 33 branch instruction
G RESIGRATOR
-5 17 16 24 32 10 i 56 53
g X A Y B z [
(FUNCTION} {REGISTER) (REGISTER) (FRDEX} {EASE ADDRESS} (HEGSTER) (REGISTER)
————
1)

e
NDEFINED  L-BRANCH CONTROL BITS
{MUST BE ZEROS)

ormat G- Used for the B0-BS branch m:

60386200 G

Lions

Figure D-1. Instruetion Formats




As a convenience for the user of special calls, the special
calls are listed by op code in.table D-3.

TABLE D-3. SPECIAL CALLS LISTED BY QP CODE

Op code Spc-:e:ﬁal Op code S%a:;la] Op cede Spg‘:ﬁal Op code Sig&al QOp code Sig:ﬁal

[H QSIDLE 34 Q8SHIFT 67 Q8SUBX 899 QBABSY Do QEAVG
@4 QB8BKPT 35 Q8DBNZ 68 Q8MPYU 9A Q8EXPY D1 QEADIM
06 Q8FAULT 36 Q8BSAVE 69 Q8MPYL 9B QBPACKY D4 QBAVGD
03 QASETCF 37 Q8RJTIME 6B Q8MPYS 9C QBEXTY D5 Q8DELTA
09 QBREXIT 38 Q8LTOL 6C Q8DIVU AQ Q8ADDUS D8 QRESKEYR
A QEMTIME 39 Q8CLOCK 6D QBINSB Al Q8ADDLS D7 Q8TLMARK
oc QESTOAR 3A QSWJITIME BE Q8EXTE A2 QEADDNS Ds QEMAX
oD QSLODAR 3B Q8LSDFR 6F Q8DIVS Ad Q85UBUS D3 Q8MIN
OE Q8TLXI 3c QEMPYXH 70 Q8TRU AS Q8SUBLS DA Q8SUM -
OF QSLODKEY 3P QBMPYX 71 Q8FLR A6 @85UBNS DB Q8PRODCT
10 Q8DTOB 3E QB8ES 72 Q3CLG A8 QE8MPYUS nc Q8DOTY
11 QSBTOD 3F Q8IS 73 Q8sSQRT AS QEMPYLS j3)) Q8DOTS
12 Q3LODC 40 QBADDUH 74 QBADJS AB Q8MPYSS DE QBPOLYEV
i3 Q35TOC 41 QR8ADDLH 75 QSADJE AC Q8DIVUS DF QBINTVAL
14 Q8CPSB 42 QBADDNH 78 Q8CON AF Q8DIVSS E0 QS8ADDB
15 QSMRGB 44 Q8SUBUH 77 Q8RCON. BO Q8IBXEQR El QB8SUBB
16 QSMASKB 45 Q8SUBLH 78 Q8RTOR Bl Q8IBXNE E2 QEMPYB
17 Q3MRGC 46 QBSUBNH 79 QB8AES B2 Q8IBXGE E3 QBDIVE
18 QSMOVR 48 QAMPYUH TA Q8EXP B3 Q8IBXLT E4 QR8ADDD
19 Q3SCNRNE 49 Q8MPYLH 7B Q8PACK B4 Q8IBXLE ‘Ej Q8SUBD
1A QSFILLC 4B QSMPYSH i QSLTOR BS Q8IBXGT E6 Q8MPYD
iB Q8FILLR 4C Q8DIVUH 7D QESWAP B6 Q8BIM E7 R8DIVD
ic QSMASKZ 4D Q8ESH T7E QELOD B7 Q8VTOVX ES8 Q8CMPB
iD QBMASKO 4E Q8ISH Viy Q85TO B8 QBYREVY ES QECMPD
1E QSCNTEQ 4F- Q8DIVSH 80 Q8ADDUY B9 Q8TPMOV EA QEMMRGC
iF¥ QS8CNTO 50 Q8TRUH 81 QBADDLY BA Q/VXTOV EB Q8EMARK
20 QSBHEQ 31 Q8FLRH 82 QB8ADDNY BB Q8EMASKY EC Q8ADDMOD

i 21 Q8BHNE 52 Q8CLGH 83 QB3ADDXV BC Q8CPSY ED Q8SUBMOD

R 22 Q8BHGE 53 Q8SQRTH 34 Q8sUBUY - BD - QS8MRGV EE Q8TL
23 Q8BHLT 54 R8ADJISH 85 . Q85UBLY BE Q8EX EF RB8TLTEST
24 QS8BEQ .55 QBADJEH 86 Q8SUBNV BF Q8IX Fo Q8XOR
25 QIBNE 58 Q3RTORH 87 Q8SUBXY Co Q8SELEQ Fi RBAND
26 Q8BGE 59 Q8ABSH 88 QIMPYUY Cl Q8SELNE F2 Q8IOR
27 QSBLT SA Q8EXPH 89 QSMEYLY c2 . Q8SELGE F3 QENAND
28 Q8SCNLEQ 5B Q8PACKH 8B Q8MPYSY Cc3 QS3ELLT F4 QRENOR
29 Q8SCNLNE s5C QB8EXTH 3C Q8DIYUY C4 QECMPEQ F5 Q8ORN
24 Q8ELEN 3D Q8EXTXH 8F Q8DIVSVY CH Q8CMPNE F8 RBANDN
2B QSADDLEN SE QS8LODH 90 Q8TRUY (o] Q8CMPGE F7 QEXORN
2C Q8RXOR 5F Q8STOH 91 Q8FLRYV cT7 QECMPLT F8 Q8MOVL
2D QSRAND 60 Q8ADDU 92 Q8CLGY Cs QESRCHEQ F9 QEMOVLC
2E Q8RIOR 61 QBADDL 93 QB8SQRTYV Cs Q8SRCHNE FaA QBMOVS
2F Q8BARB 62 QSADDN 94 QBADJSY CA Q8SRCHGE FB QBZTCH
3t Q8SHIFTI 83 QBADDX 95 Q8ADJEY CB Q8SRCHLT FC QBDTOZ
3L Q8IBNZ 64 Q8SUBU 98 QECONV CD ' Q8EXH FD QEMCMPC
32 Q8BAB 65 Q85UBL g7 Q8RCONYV CE Q8IXH FE Q8SKEYC
33 Q8BADF 66 Q85UBN 98 QE8VTOV CF QBACPS FF Q8SKEYW

7y OF THE
REERODUOTE e 16 POOR
GRIGINAL
® D-16 60386200 G



Appendix F

Replaced with the following page



Appendix F

STAR FORTRAN 77
STATEMENT LIST

'

The following statement kis is intended only to suggest the scope of the STAR dialect of FORTRAN '77.
See the body of the manual for details concerning the correct constrmction and-use of the various
statements, )

Statement function definition statement

i ) oF THE
LeralLITy (U
Assignment statements: EPB,ODUOIB o 18 POOR
GINAL
arithmetic scalar — arithmetic .expression
character entity — character expression
logical entity — logical expression
array or dynamic variable — arithmetic expression or vector arithmetic expression
bit scalar or bit vector — bit scalar or bit vector

Keyword statements:

ASSIGN (descriptor) ENDFILE PAUSE
ASSIGN (statement label) END IF PRINT
BACKSPACE ENTRY PROGRAM
BIT ‘ EQUIVALENCE PUNCH
BLOCK DATA EXTERNAL READ
BUFFER IN FORMAT REAL
BUFFER OUT FREE RETURN
CALL FUNCTION REWIND
CHARACTER GO TO (assigned) ROWWISE
CLOSE GO TO (computed) SAVE
COMMON GO TO (simple) STOP
COMPLEX HALF PRECISION SUBROUTINE
CONTINUE IF (arithmetic) WRITE
DATA [F (block)

DECODE IF (logical)

DIMENSION IMPLICIT

DO INQUIRE

DOUBLE PRECISION INTEGER

DYNAMIC INTRINSIC

ELSE LOGICAL

ELSE [F NAMELIST

ENCODE OPEN

END PARAMETER

ENF

F-1A



COMPATIBILITY FEATURES G

Certgin features of STAR FORTRAN are provided only for
compatibility.with FORTRAN Extended. The compatibility
features are deseribed in this appendix. ’

ROTE

The features deseribed in this- appendix
should not be used for-new programs and
are intended only for the conversion of
existing programs.

HOLLERITH CONSTANT COMPATIBILITY

Hollerith elements are described in section 2, Statement
Elements. For compatibility, Hollerith econstants are
supported in relational snd arithmetic expressions.

A Hollerith constant used in an arithmetie or relational
expression is limited to 8 characters. A Hollerith constant

Ay is left~justified with blank fill in a full word. A Hollerith

d

constant. thatis too long is truncated on the right hand side,
and a warning diagnostie is issued.

The Hollerith constant is considered typeless. A typeless
constant is not converted for use as an argument or for
assignment. If Hollerith-constants are the only operands in
an grithmetie expression, the result is type integer.

BUFFER IN AND BUFFER OUT
COMPATIBILITY

Input, cutput, and memory transfer statements are deseribed
in section 8. The BUFFER IN and BUFFER OUT statements
are provided for compatibility with FORTRAN Extended.
The UNIT and LENGTH funections are also provided for
compatibility. ’

The BUFFER IN and BUFFER OUT statements are used to
transmit binary data between SRM-struetured files and main
memory. The length of the buffer area in which the data is
contained should be an even nuinber of bytes for tape files,
or a rultiple of pages for disk files, Ordering the data in
this manner provides for the most economical use of
storage.

A file referenced in & BUFFER statement must be declared
i the PROGRAM statement to be an explicit file. The file
cannot be referenced in any other input or oufput statement;
however, it can be referenced in the unit positioning
statements BACKSPACE, REWIND, and ENDFILE. Once
buffered input/output is established for a logieal unit in &
FORTRAN program, all input and output for that umt must
be buffered.

After a BUFFER IN or BUERFER QUT, the error status of the
logical unit involved should be checked using the UNIT
function before another operation with the unit is initieted.
The unit states should also be cheeked before the buffered
data is used. After the unit check, the number of bytes read
by 8 BUFFER IN ean be obtained with the LENGTH
funetion.

60386200 G

BUFFER IN STATEMENT

Execution of the BUFFER IN statement causes transfer of
datae from the logical unit specified, in the mode given, to
the buifer defined in this statement as storage locations
first to last. Only one record is read for each BUFFER IN
statement.

Form:
BUFFER IN(u,mode){first,last)
‘U* The logieal unit number.
mode  An integer-constant or simple integer variable

that specifies the recording mode of the data
being read. The permitted values are:

0 = T-track tape, BCD made, even parity

1 = T-track or 9-track tape, binary mode,
odd parity

2 = 7-track tape, CDC 64-character
ASCII subset, odd parity

4 = Disk
first A varisble or array element name that can be
type charaeter, integer, real, double precision,
complex, or logical, and which defines the first
loeation in the buffer into which data is to be
transmitted. .

last A variable or array element name that can be
type character, integer, real, double preecision,
complex, or logicel, and which defines the
location in the buffer into which the last data
item is to be transmitted.

The location of last cannot precede first in memory., The
quentity (last-first+1) must be less than or equal to 24 small
pages.

BUFFER QUT STATEMENT

The execution of the BUFFER OUT statement transfers data
to the logieal unit specified m the mode given, from the
buffer defined in this statement as storage locations first to
last.

Form:
‘BUFFER OUT{u,mode}first,last) ,
u The logical unit number.

mode  An integer constant or simple integer variable

that specifies the mode 1 which the data
record 15 to be written:

0 = 7~-track tape, BCD mode, even parity

1 = T~track or $~track tape, binary mode,
odd parity




A Hollerith .constant used in an arithmetic or relational expression is
limited to 8 characters. An H-constant is left justified with blank

fill in a full word. An R-constant is right justified with zero fill in
a full word. An H-constant that is too long is truncated on the right
hand side and a waming diagnostic is issued. . An R-constant that is
too long is truncated on the left hand side and a warning diagnostic
is issued.

A file referenced in a BUFFER I/O' statement must be preconnected
or comiected for sequential access. The specified unit must not be
referenced in any other data transfer inputfoutput statement while
connected. However, the unit may be closed and opened again. The
unit may be referenced in the file positioning statements BACKSPACE,
ENDFILE, and REWIND. The unit may also be referenced in an
INQUIRE by unit statement and the file in an INQUIRE by file
statement.

. . . transmit binary data between files comnected for sequential access
and internal storage. The length of the buffer area in which the data

is ..

u An external unit identifier.
meode Ignored.

u An external unit identifier.
mode Ignored.

G-1A



= 7-track tape, CDC G4-character SUPPLIED FUNCTION COMPATIBILITY

Al - ASCH suhset, odd parity
4 = Disk : Supplied funetions are deseribed in section 15, STAR
FORTRAN-Supplied Functions. For compatibility, a number
first A variable or array element name that can be of additional functions are supplied. The funections are
type character, real, integer, double precision, shown in table G-1.
complex, or logical, and whieh defines the first
. Iq_catiop in the buffer from: which data is.to be
transmitted;. ’ TABLE G-1. FUNCTIONS SUPPLIED
- FOR COMPATIBILITY.
last A variable or' array element:name that can be ORC
type-character, real, integer, double precision, .
complex, or logieal, and which defines the . Function- Type of
location in the.buffer from which the-Jast:data: - Fimetion Reference.
item.is to be transmitted: . . Arguments I Result
One logieal- record is written for each- BUFFER OUT Masking MASK(n) Integer Typeless
statement. The parameters first and last must refer-tc-the Funetions-
safte array, and last cannot-precede-first.in memory. SHIET(a,n) Real or
A . . R © I Integer Typeless
el ST : ' COMPL(s) * Real or
UNIT FUNCT!ON L . . N . Integer | Typeless
The UNIT function chedks to- sée whether or not data " | AND{a,,8,....) Realor |
transmission-was completed without error. After a BUFFER 172 Integer | Typeless
IN or BUFFER' QUT, the-UNIT should-be referen‘ced before “f . -
any further-operations are:performed-on the files = : = . ’ . OR(a,.8,,...) Real or
’ b ol . L Integer | Typeless
The UNIT function is-suiteble forevaluatwnrm an, -arithmetic:
IF statement that' &auses: branching- to. appropriate KOR(B, 8 r0) Real or
statements, as directed by. the-value returned.. .«, | e 172 Integer | Typeless
Form: T \__ .. --.‘-:; — D
AR ST
UNIT{u)

A typeless function generates s result that is typeless. A
typeless resuit is not converted for use as an argument or
for assignment. For example, the statement

The function returns one of the following real values:

-1.0

Unit ready-
0.0

Unit ready; end-of-file encountered X =Y +SHIFI{L5)

n

1.0 = Unit ready; parity error encountered' . does not involve conversion of the SHIFT resuft from integer
B to real. The result is typeless and is used without

conversion.
LENGTH FUNCTION.

The length of the physical record read from the logical unit
by the previous BUFFER IN statement can be determined by AND (&l,az, i)
the LENGTH function.
This computes the bit-by-bit Ilogical produet of a;

Form: : througha .
LENGTH(w)
c{ u The logieal unit number. COMPL (a)
The funetion returns an integer value that represents the This eomputes the bit-by~bit Boolean complement of a.

number of bytes actually read. If the buffer area is larger
than the physical record, the excess buffer spaee is
undefined. If the physical record is larger than the buffer,
the remainder of the record is lost. MASK (n)

This forms a mask of n bits set to 1 starting at the left of
the word. The n value must be in the range 0<n<64. The

* SPECIFICATION COMPATIBILITY . result is undefined for an argument outside the range.

Input/output lists and data formaiting is described in
section 9. For compatibility with FORTRAN Extended, the

* specification is supported; the * specificrtion is identical OR (al,az, veal
to the ' specification, except that sasterisks replace the
apostrophes, This computes the bit-by-bit logicel OR of ay through 8.

® G-2 60386200 G


http:cannot-precedefirst.in

delete

Note that the significance of the signs of the values returned by the
UNIT function is different from that for the inputfoutput status
specifiers described in Chapter 8. ’

1 An external unit identifier.

Type Conversion DFLOAT(D) Integer Double
Precision

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PONR

G-2A



SHIFT {a,n}

-

This produces a shft of n bit positions in a. If n is positive,
the shift is left cireular, If n is negative, the-shift is right
end-off with sign extension from bit zero. The n value must
be in the range -64<n<64. The result is undefined if n is
outside the range. The T value is integer.

XOR (al,az, ool
This computes the bit-by-bit exclusive OR of a, througha .

The supplied-funetion list in appendix E indicates:the type.of
code generated by the funetion and the fast call name, if
any. The information about funetions deseribed in. this
appendix is shown in table G-2.

60386200 G

TABLE G-2. COMPATIBILITY FUNCTIONS LIST )

Funection

Category

Fast Call Name.

AND
COMPL
MASK
OR
SHIET
XOR

2oz =z

et
noun

In-line
External
In-line and external




A:  DFLOAT()

This function.converfs an integer number to a double precision number.
The result is accurate to 94 bits.

G-3A



