
FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY{NASA-cR--152289) FflSI-TX StinDro
O 70

NUMEBICAL AERODYNA IC SI1LULATION-FACILIY.7

VOLUME 3-:, F1p 1AlGUAGE SPECI-ICATIbUSEs
MANUAt . Final Report (Control Data Corp., - Unclas
1St. Paul, Minn.-I '263 p HC A12/MF AO1 G3/09 28383

Volume III - FMP Language Specification/User Manual

Contributions by: B. G. Kenner
N. R. Lincoln

MAY 1979

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION , 7
Research and Advanced Design Laboratory /? .
4290 Fernwood Street
St. Paul, Minnesota 55112 Cn

for %

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

A: 	 Variables, arrays, non-generic function names, constant names,

dynamic variables and dynamic arrays that appear in a STAR . . .

B: 	 The appearance of a symbolic name other than the name of

an intrinsic function in a type statement . . .

C: 	 . . . statement, the type of a symbolic name other than an

intrinsic function name is implied by the . . .

D: 	 The predefined FORTRAN functions either possess predefined

types or else take their type from the type of their operand(s).
Implicit typing of any of these names has no effect. If the

names of any of these functions appear in explicit type state­

ments, the typing is ignored if it confirms the predefined type

of the function; otherwise, the name ceases to reference the
FORTRAN-supplied function. See Table 6-0 below for details.

Table 6-0. Effect of Typing an Intrinsic Function Name

Kind 	of Name Typing Result Diagnostic

Generic only, Any Function Warning
variable type becomes
(MAX) EXTERNAL

Generic only, Confirms No effect None ­

fixed type predefined
(DBLE) type

Contradicts Function Warning
predefined becomes
type EXTERNAL

Specific only Confirms No effect None
(MAXO) predefined

type

Contradicts Function Warning
predefined becomes
type EXTERNAL

Generic and Confirms No effect None
specific, predefined

variable type type of

(SQRT) specific

function

Contradicts Function Warning
predefined becomes
type of EXTERNAL
specific
function

Generic and Confirms No effect None
specific, predefined
fixed type type
(INT)

Contradicts Function Warning
predefmed becomes
type EXTERNAL

6-1.IA

This- page left blank intentionally

6-1.2A

E: IMPLICIT statements must precede all other specification state­

ments except PARAMETER statements. If the type of a named

constant is specified by an IMPLICIT statement, the IMPLICIT

statement must precede the PARAMETER statement which defines

the value of the constant. Appearance of an IMPLICIT statement

which specifies the default type of symbolic names beginning with

some letter after a PARAMETER statement which defines a constant

whose name begins with that letter is prohibited.

F: The same letter must not appear as a single letter, or be included in

a range of letters, more than once in all of the IMPLICIT statements

in a program unit.

G: CHARACTER *K w1 /dl/,w2 1d2/,.,Wn/dn/

H: . . . element length in bytes of every w. This specifica-

I: . . . byte is implied for every w -not accompanied . . .

J: di Optional. Represents the initial value for vi or wi. If . . .

K: vi A variable, array,

If vi is the name

array

of a

declarator, function, or constant

constant,, di must not appear

name.

PRECEDING PAGE BLANK NOT FRLMEbj

REPRODUCIBIL1rY OF THE
ORIGINAL PAGE IS POOR

6-1.3A

*k. 	 Optional. An integer constant or simple integer
variable specifying the element length in bytes for
v.. If v. is an array declarator, *k. must appear
between 'the declarator name and dinlensions. If k.
is a variable, v. must be a dummy argument and k!

A must either be a dummy argument or in common.
A variable used in this way as an adjustable length
specification must either be implicitly integer, or
else must have appeared in an INTEGER type
statement before it appears in a CHARACTER (or
any other declaration) statement. If *k. is omitted,
the length of vi is determined by *K.

If the array declarator for an array appears in an explicit
type statement, it cannot appear also in a ROWWISE,
DIMENSION, or COMMON statement. However, the array
name alone can appear in COMMON statements to includethe 	array in a common block. (An array declarator mustappear once and only once in a program unit.)

DIMENSION STATEMENT
as a vehicle for one orThe DIMENSION statement serves

more array declarators. For an array declared in a
DIMENSION statement, subscripts are interpreted in the
conventional manner. For a discussion of rowwise and
conventional array element succession, see section 2.

Form:

DIMENSION ana1 ,a2.

An array declarator.

If the array declarator for an array appears in a DIMENSION
statement, it cannot also appear in a ROWWISE, COMMON,
or explicit type statement. However, the array name alone
can appear in an explicit type statement to type the array
and in COMMON statements to include it in a common
block. (An array declarator must appear once and only once
in any program unit.)

ROWWISE STATEMENT
The ROWWISE statement serves as a vehicle for one or more
array declarators. It should be used in much the same way
that a DIMENSION statement is used, the difference lying in
the fact that for an array declared in a ROWWISE
statement, subscripts are interpreted in a rowwise manner,
For a discussion of rowwise and conventional array element
succession, see section 2.

Form:

ROWWISE a A, .. an

a1 	 An array declarator.

an declarator a particular array acommonin
ROWWISE statement, it cannot appear also in a
DIMENSION, COMMON, or explicit type declaration
statement. However, the array name alone can appear in an
explicit type statement to type the array and in COMMON
statements to include it in a common block. (An array

If array for If anappears a

deelarator must appear once and only once in a programunit.)

COMMON STATEMENT

The COMMON statement is a nonexecutable statement that
allows specified variables and arrays to be referenced by
more than one program unit. Elements in common storage
can be referenced and defined in any program unit that
contains a COMMON statement specifying common blocks
containing those elements. An element can be included in
only one comrhon block.

Storage for arrays and variables listed in a COMMON
statement is reserved in a common block in the order in
which the elements appear in the statement, and starting on
a double word boundary. The elements are strung together
in such a way that, for example, for a common block
containing a complex variable, a 10-integer array, and 64 bit
variables, 13 logically consecutive words are reserved: the
first two words for complex data are followed immediatelyby 10 words for the integer array, which is followed by one
word for 64 variables of type bit. The assignment of storage

is determined solely by consideration of data type and array
declarations for the variables and arrays in the COMMON
statement. One or more blocks can be specified with a
single COMMON statement; the order of appearance ofblocks in the statement is not significant.

Form:

COMMON /blk 1/listl/blk2 /list2 /blkn/list B
1

blki A symbolic name denoting a labeled common
block. Absence of blk denotes the blank
common block; if the first block identified is
blank common, then the first pair of slashes
can be omitted as well.

list i A block specification list, a list of the
elements whose storage locations are in the
common block blki . The list has the form:

Ul1U....2 um
un

where u. is a variable name, an array name, or
an arra9 declarator.

Only an entire array can be placed in a common block. An
array declarator, but not an array element name, can appear
in a COMMON statement. Dummy arguments cannot appear
in COMMON statements.

A block name can appear more than once in a COMMON
statement or in several COMMON statements in a program
unit; the elements are stored cumulatively in the order of
their occurrence in all COMMON statements in the program
unit. Block names can also be used elsewhere in the
program to identify other entities, a common block name
can unambiguously identify a variable, statement function,
or array in the same program. For example, a valid
COMMON statement is COMMON/ONE/ONETWO,THREE.

Blank common generally can be used in the same way as
labeled common, except that elements in blank common - -cannot be initialized in DATA or type statements as can

": elements in labeled common. Also, unlike any labeled
block, the blank common block need not have the

same length in every program unit in which it is declared.
For example, the declaration in one program unit could be
COMMON//A(4),B/LAB/C,D and in another could be
COMMON//A4)/LAB/C,D.
The 	 size of a common block is the sum of the storageTesz facmo lc stesmo h trgrequired for the elements introduced into that block through

60386200 E
 6-2

A: wi One of the following forms, where ai is a character array name,
ds i is a dimension specifier (that is, the string aids i is an array
declarator), and ni is a character variable, function, or constant
name. If ni appears and is the name of a constant, di may not
be used.

nI

n1 *k i

ai

a dsi

ai 'ki

ai ds1 k­

a1 *k* ds.

ki An unsigned integer constant, an integer constant expression
enclosed in parentheses, an asterisk enclosed in parentheses, or
a simple integer variable. If ki is a simple integer variable, the
entity being typed (ai or h) must be a dummy argument and
ki must appear in every dummy argument list which also con­
tains the entity being typed or else ki must be in common. If
ki is a simple integer variable, it must be of default type integer
or else must have been previously typed, either by IMPLICIT
statement or by explicit type statement. - If *ki does not appear,
the length of the entity being typed is determined by 'K if it
appears, or else defaults to 1 regardless of any default length
declared for symbols of its initial letter in preceding IMPLICIT
statements.

B: COMMON /blklpist1 , /blk2/list 2 /blknist n

REPRODUCIBILITY OF THEg
ORIGINAL PAGE IS POOR

6-2A

COMMON and EQUIVALENCE statements. A double
precision or complex element requires two words; a logical,
real, or integer element requires one word; a character
element requires one byte times the length specified for the
element: a bit element requires a single bit. Character
e.ements must fall or, byte boundaries and integer, complex,
.cgical. real. and dounle prec:sion elements must fall on
word boundaries. Character and bit types can appear in a
common block with other types, so long as the elements
having the other types are not forced off word boundaries,

Although block names must be the same name if they are to
refer to the same common block, the names and types of the
elements in the common block can differ among program
units. If two program units define a particular common
block to have the same data type assigned to any two
elements in corresponding positions in the common block,
then the two elements refer to the same value. Otherwise,
any data in the common area is treated as having the data
type of the name used to refer to it, and no type conversion
takes place.

Ifa program unit does not use all locations reserved in a
labeled or blank common block, unused variables can be
inserted in the COMMON declaration to force proper
correspondence of the variables or arrays in the common
areas. Alternatively, correspondence in blank common can
be ensured by placing selected variables at the end of the
block in such a way that they can be omitted in the
COMMON declarations for a program unit that does not use
them. However, a common block (other than blank
common) must have the same length in every program unit
in which it is declared,

if an array declarator for a particular array appears in a
COMMON statement, it cannot appear also in a ROWWISE,
DIMENSION, or explicit type statement. However, the
array name alone can appear in explicit type statements to
specify the array's data type. (An array declarator must
appear once and only once in a program unit.)

In a subprogram, the dummy arguments for the subprogram

A Jcannot be placed in common. However, variable dimensions
\for a dummy array can be placed in common, so long as

chose variables are not also dummy arguments.

C

EQUIVALENCE 	 STATEMENT
The EQUIVALENCE statement is a nonexecutable statement
that permits two or more variables in the same program unit
to share storage locations. This arrangement of data can be
contrasted with that of variables and arrays not mentioned
in an EQUIVALENCE statement (which are generally
assigned unique locations) and with that of variables and
arrays declared in COMMON statements (the COMMON
statement permits two or more variables, each in a different
program unit, to share storage locations),

Form:

,group.)

EQUIVALENCE(grouP)......(...Un
group A list of the form:

Vl,... IViIt

where v. is a variable, array element, or
B 	 array nime (array declarators are not

permitted), and m > 2. Each comma
separating two groupfiis optional,

All the elements in groupi begin at the same storage
location.

The nammng of array elements is relativel- flexible .,an
EOUIVALENCE -taremert.Uniike array n ins M,nost
STAR FORTRAN statements, an array name in an EQUIVA-
LENCE statement-names-only the first element of the array.
Also, in an EQUIVALENCE statement any array element can
be identified using an array element name containing a
subscript having only a single subscript expression, where
the value of the expression is the location of the element in
the array as determined by the succession formulas given in
table 2-2. However, 	if neither of these forms is used, then
the subscript must conform to the ordinary subscript form.
Each subscript expression in an EQUIVALENCE statement
must be an integer constant; the number of subscript
expressions must correspond in number to the dimensionality
of the array or else must be one.

A storage location 	 can be shared by variables having
different data types. A logical, integer, or real variable
equivalenced to a double precision or complex variable
shares the same location with the real or most significaunt
half of the complex or double precision variable. However,
when one- or two-word variables are equivlenced to
character or bit variables, they must begin on full word
boundaries. Similarly, if a character variable is equiva­
lenced to a bit variable, the character variable must be
aligned on a byte boundary. Type is associated only with the
name used to reference' a location, and that name deter­
mines how data assigned to or read from the location is to
be interpreted; no type is remembered and no conversion
takes place. Consequently, if (for example) a real element
is equivalenced to an integer element, defining the real
element causes the integer element to become undefined,
and vice versa.

A variable can appear in both EQUIVALENCE and COMMON
statements in a program unit. However, a variable in
common can be equivalenced to another variable only if that
variable is not in any common block. A variable or array is
brought into a common block if it is equivalenced to an
element in common. It is acceptable for an EQUIVALENCE
statement to lengthen a common block, so long as the
common block is extended beyond the last assignment for
that block and does not extend the block's origin. A dummy
argument must not appear in any EQUIVALENCE statement.

Figure 5-1" illustrates some of these concepts. In
figure 6-1A, array element A(2) in the labeled common
block BLK1 is equivalenced to array element B(I), which is
not in common. The EQUIVALENCE statement causes the
entire array B to be brought into common, extending the
length of common by two words and equivalencing other
pairs of data elements as shown in figure 6-1B. If instead
A(l) and B(2) has been equivalenced, an error would have
resulted because this would have been an attempt to extend
the common block's origin to P.

is also incorrect directly or indirectly to cause a single
storage location to contain more than one element of the
same array. For example, adding a second EQUIVALENCE
statement, EQUIVALENCE (A(4), B(2)), to the statements in
figure 6-1 would constitute a request for A(4) and A(3) to
share the same storage location.

60386200 B 6-3

A: 	 . . . cannot be placed in common. However, dimension bound variables
for adjustably dimensioned arrays and length variables for adjustable
length character entities may be placed in common, so long as . . .

B. 	 where vi is a variable, array element, substring, or array name
(array declarators are not permitted), and in is greater than or
equal to 2. Each comma

C: 	 LEVEL STATEMENT

The level statement assigns variables or arrays to the different levels of FMP memory.

Form:

LEVEL n, al,a2..... am

ai Variables, array names or array declarators, separated by commas.

n Unsigned integer 1,2,3, or blank, or integer PARAMETER
indicating to which memory list is to be allocated.

1 Main Memory
2 Intermediate Memory
3 Backing Storage

The 	 Default Level is LEVEL 1. LEVEL statements must preceed the first executable
statement 	 in a program unit. Names of variables which do not appear in a LEVEL

statement 	are allocated to Main Memory.

Type information may not be included in the LEVEL statement. Array declaratives
of the form A(nl,n2)..) where ni is a simple integer are permitted. Array declarators
perform the same function as if they appeared in a DIMENSION statement.

Variables and arrays appearing in a LEVEL statement can appear in DATA, DIMENSION.
EQUIVALENCE, COMMON, type, DYNAMIC, SUBROUTINE, and FUNCTION statements.
Data assigned to LEVEL 3 can only consist of arrays, and may only be referenced in

COMMON, type, DIMENSION, EQUIVALENCE, DATA, CALL, SUBROUTINE, and
FUNCTION statements. FORTRAN expressions involving LEVEL 3 data must reference
the entire array or subarrays.

No restrictions are imposed on the way in which reference is made to variables or arrays
allocated to LEVELS I and 2. DYNAMIC arrays may only be assigned to LEVELS 1
and 2.

If the level of any variable is multiply defined, the first level defined is assumed and a
warning diagnostic is printed.

All members of a common block must be assigned to the same level: a fatal diagnostic is
issued if conflicting levels are declared. If some, but not all members of a common block
are declared in a LEVEL statement, all are assigned to the declared level and an informa­
tional diagnostic is printed.

6-3.1 A

If a variable or array name declared in a LEVEL statement appears as an actual argument in a
CALL statement, the corresponding dummy argument must be allocated to the same level in the
called subprogram. If a variable or array name appears in an EQUIVALENCE and a LEVEL
statement, the equivalenced variables must all be allocated to the same level.

Example:

PROGRAM DEMO

DIMENSION A(100,B(200),C(300)

LEVEL 2,A,B

C(I)=A(I)+B(Q)

The LEVEL statement allocates arrays A and B to Intermediate Memory. The arithmetic statement

will cause the fetching of the Ith element of A and B from Intermediate Memory, their summation,

and the storage of the result into Main Memory in the Ith element of C.

DYNAMIC STATEMENT

The DYNAMIC statement identifies those variables whose dimensions, and perhaps memory allocation,

will be determined during program execution.

Form:

DYNAMIC vlv2. . . . vn

vi A variable, array declarator or array name of type REAL or INTEGER

All variables in the DYNAMIC statement list are declared to be dynamic pointer data for actual
memory arrays, while arrays or array declarators signify that the named variable consists of an array
of dynamic pointer data or a DYNAMIC ARRAY.

DYNAMIC variables and arrays may only appear in memory LEVELS I and 2. DYNAMIC vari­
ables may appear in COMMON, CALL, FUNCTION, SUBROUTINE, type, DIMENSION and arithmetic
and input/output statements. DYNAMIC variables may not appear in EQUIVALENCE, DATA or as
the parameters in DO statements.

If DYNAMIC variables or arrays are passed as parameters in FUNCTION and SUBROUTINE call
statements, then the corresponding dummy arguments must also be declared DYNAMIC and possess
the same dimensionality in the called subprogram unit.

The number of storage locations used by the pointer data is variable throughout program execution
for DYNAMIC variables and arrays. The space required is a function of the dimensionality of the
arrays being described by the DYNAMIC variable. Thus COMMON statements in two different program
,units which contain DYNAMIC variables must have identical format.

6-3.2A

The following form is, therefore, illegal:

PROGRAM DEMO

DYNAMIC A(100)

COMMON/B/A

CALL C

END

SUBROUTINE C

COMMON/B[A(100)

D=A(I)

In this case the programmer is erroneously attempting to deal with the DYNAMIC array as an array
itself. Since the storage of FORTRAN arrays consist of one element per memory word and DYNAMIC
pointers take from 2 to 14 memory words per pointer element, the two COMMON statements imply a
different memory allocation, and this is an illegal condition which cannot be detected by the compiler
or at object time.

The values of DYNAMIC pointer variables can only be established by execution of expressions involving
subarray references or by the DEFINE statement.

Example:

PROGRAM DEMO

DYNAMIC A,B(4)

DIMENSION X(100),Y(10,20)

A=X(1: 100)

B(2)=X(l:10)+Y(I:1O1)

The DYNAMIC statement declares variable A to be a dynamic pointer, and array B to be a dynamic
array of pointers. The initial value of all pointers is set to an internally recognized value of NULL.
This indicates that no data is pointed to, or the pointer is not yet defined.

6-3.3A

The replacement statement A=X(1:100) causes the following actions:

One hundred words are allocated from dynamic space in Main Memory. The address of this space

and the length 100 are then assigned to the pointer variable A. A map unit move is then performed

to transfer the data from the array X to the newly defined array A. The attributes of address and

length assigned by this dynamic activity will then be retained as the defined quantities for A until

another expression is encountered which changes either the memory allocation or dimensionality.

If the statement A=X(l:100) is executed again, the pointer data is unchanged and the same memory

space is reused. If another statement:

A=X(1:200)

is encountered, a new space allocation of two hundred elements is made from dynamic space, and a

new length of 200 established for the pointer A. The data is then transferred.

If the statement:

A=X(I:20)

is encountered, then the original memory address is retained for the DYNAMIC variable A, but the

length is changed to 20 and the data transferred from X. The remaining 80 elements that used to

be part of the space pointed to by A become undefined.

The second example assigns 10 words of dynamic space to the pointer element B(2), and performs

the arithmetic on the array elements X and Y, storing the results into the assigned dynamic space.

The reallocation or contraction of space for DYNAMIC ARRAY elements follows the previous rules

given for DYNAMIC variables.

DYNAMIC variables can also be established by DEFINE statements.

Example:

PROGRAM DEMO

DYNAMIC A

LEVEL 2,B(100)

DEFINE (A,B(10:20))

A=A*A

In this example, the DYNAMIC variable is assigned the starting address of B(10) and a length of 11.

essentially describing a subarray of B. The operation A=A'A would then become a vector multiply of

elements 10 through 20 of array B by themselves, with the results. returned to elements 10 through 20.

6.3.4A

When DYNAMIC variables appear as the objects of replacement statements their dimensionality is

always redefined, with the following exception:

PROGRAM DEMO

DYNAMIC A

DIMENSION B(100)

A=B(1:00)+B(1: 100)

A(31:S0)=B(11:30)

In this case, the array pointed to by A begins as a 100 element array. The second assignment
statement does not shrink the array to 20 elements, although that is all the data that is -being
moved. Instead, elements 31 to 50 are replaced and the memory address and dimensionality
remain unchanged.

When a DYNAMIC variable is referenced as a subarray;i.e., A(l:m:n) in an executable expression
and m is greater than the existing dynamically assigned dimensionality in that direction, a fatal
object time diagnostic message is printed. Subarray references to DYNAMIC array elements,
except in DEFINE statements, are not permitted and will cause the compiler to generate a fatal

diagnostic message.

6-3.3A

Form:A.

CHARACTER*1O CH,DH 	 DATAv /kl/,v2/k 2 / .v,/k/1

COMMON/BLKl/A(4),CH,DH

DIMENSION B(8) vi A variable list of the form:

EQUIVALENCE (A(2),B(l))

B. 	 wIl . Wn

where w. is a variable, array element, array,
or itnplid DO. Subscripts used to identify Bbe integer constants,

_____Block origin,_array 	 elements must
.-A(1): Block origin, except within an implied DO.

B(1)- -A(2) k. A data list of the form:

B(2)-. -A(s) 	 jd.... jdm

B(3)-. ,-A(4)
where d. is an optionally signed constant. TheB(4)-. -first 8 bytes of CH 	 constani can be preceded by an optional
repeat specification j*, where I is an (unsigned)B(5)- remaining 2 bytes of CH,inercosat

first 6 bytes of DH integer constant.

B(6)-- -remaining 4 bytes of DH

B(7)­
-The comma after each-second slash is optional. Except for

B(8)-. 	 certain variable list 'items of type bit, a one-to-one
correspondence must exist between the items in the variable
list and the constants in the data list. In particular:

An array of any type except.bit must correspond to aFigure 6-1. COMMON and EQUIVALENCE Statements number of items equal to the number of elements-in the
array.

EXTERNAL STATEMENT A.simple variable of type bit must correspond to a bit

Before a subprogram name-can be used as an argument to constant.

another subprogram,
 it must be dedlared in an EXTERNALAstatement in the calling program unit. 	 An implied DO specifying a number of elements of anarray of any type except bit must correspond to a

Form: number of items equal to the number of array elements.
The elements specified need not be contiguous.

EXTERNALp, ... Pn A bit array must correspond to a list of one or more

hexadecimal and bit constants whose total bit length is
Pi A procedure name or entrypoint name. the number of elements in the bit array.

The appearance of a name in an EXTERNAL statement A contiguous porrior, (one or more elements) of a bitdeclares that name to be an external procedure name rather array must correspond to a 	 list of one or more
than a data element name. hexadecimal and bit constants whose total bit length is

A the number of elements in the bit array portion. Such aAny name used as an actual argument in a procedure call is bit array portion is specified in the variable list byassumed to name data unless it appears in an EXTERNAL means of a single bit array element or an implied DO.
statement. For example, any predefined FORTRAN
function name must be declared in an EXTERNAL statement An implied DO might specify more than one contiguous
if it is to be used as an actual argument. A function portion of a bit array. For example, in the initialization:

-reference in an actual argument list need not be declared in

an EXTERNAL statement, however, because it is not the -­
function, but the result of function evaluation, that is the ROWWISE 0B(4,4)

argument. BIT DSBDATA ((DSB(l,J), J=l,4), I=1,4,2)/2"B'I0I'/
The effect that placing -a predefined FORTRAN function
name in an EXTERNAL statement has on the kind of code
generated is shown in table 6-1. two contiguous portions disjoint from one another are

specified;

DATA STATEMENT DSB(1,l), DSB(l,2), DSB(1,3), DSB(1,4)

Only variables and array elements assigned values with a DSB(3,1), DSB(3,2), DSB(3,3), DSB(3,4)

data initialization statement or in an explicit type state­
ment are.d&fined (possess a predictable value) when program In such a case, the correspondence rules must be applied
execution begins. The DATA statement is a nonexecutable individually to each of the portions. Hence, initializing the
statement used to assign initial values to variables and array eight DSB array elements-with a single constant B'10011001'
elements (including entire arrays). 	 (or X'99') would cause a fatal error.

60386200 G
 6-4

A: EXTERNAL STATEMENT

The form of the EXTERNAL statement is

EXTERNAL P ,...,Pn

where pi is the name of an external procedure or block data subprogram.
The appearance of a name in an EXTERNAL statement declares that
name to be defined externally to the declaring program unit. Such an
appearance implies that the name is not the name of an intrinsic function,
statement function, variable, or array.

if the name of an external procedure appears in an actual argument list,
an EXTERNAL declaration of that name is required. (If a reference to
an external function appears in an actual argument list, EXTERNAL dec­
laration is in an actual argument list, EXTERNAL declaration is permitted

but not required.)

If the name of an intrinsic function appears in an EXTERNAL statement,

the connection between the name and the intrinsic function is broken.
Thus the EXTERNAL declaration provides the user a means to substitute
his own function for the FORTRAN-supplied function.

(Note- that the STAR FORTRAN object library provides an external

version of every intrinsic function. See Table 6-1 for further details.)

INTRINSIC STATEMENT

The form of the INTRINSIC statement is

INTRINSIC il.in

where ik is the name of an intrinsic function. The appearance of a
name in an INTRINSIC statement declares that name to be the name

of a FORTRAN-supplied intrinsic function. (Not all FORTRAN-sup'plied
functions are intrinsic functions. For example, the .LENGTH and UNIT

functions used in connection with the BUFFER IN and BUFFER OUT
statements are not intrinsic. See Section 15 for further details.) Names
other than those of intrinsic functions may not appear in INTRINSIC

statements. A name which appears in an ENTRINSIC statement cannot
be the name of a variable, array, statement function, or external procedure.

Intrinsic functions are of two kinds, generic and specific. A specific intrin­

sic is one with well-defined argument and result types; for example, MAXI
has REAL arguments and returns an INTEGER result. A generic intrinsic
is one which accepts more than one argument type, Some generic intrinsics
return a result whose type depends upon the type of their operands; for

6-4.1 A

example, MAX accepts arguments of type INTEGER, REAL, DOUBLE

PRECISION, or HALF PRECISION and returns a result whose type is the
ame as the (common) type of its arguments. Other generic intrinsics

return a result of fixed type, independent of the type of their operands;
for example, CMPLX always returns a result of type COMPLEX regardless
of its argument type, which may be INTEGER, REAL, DOUBLE PRECI-
SION, HALF PRECISION, or COMPLEX.

Some intrinsic function names are the names only of generic functions
(e.g., MAX); some are the names only of specific functions (e.g., MAXO);

some are the names of both generic and specific functions (e.g., SQRT).

Some specific intrinsic functions may be- passed as- actual arguments.
No generic intrinsic function may be passed as an actual argument
When a specific intrinsic is passed as an actual argument; its name

must appear in an INTRINSIC statement in the passing program unit.
It is permissible to pass a specific intrinsic whose name is also that
of a generic intrinsic; the appearance of the intrinsic name in an

actual argument list does not affect the generic properties of the name
within the passing program unit. For example, the first reference to
SQRT in the following sequence is a reference to the specific intrinsic
function which returns the REAL square root of a REAL argument;
the second is a reference to the generic intrinsic function which, among
other things, returns the DOUBLE PRECISION square root of a
DOUBLE PRECISION argument.

DOUBLE PRECISION D1, D2
INTRINSIC SQRT
CALL SUB(SQRT)
02 = SQRT(D1)

The specific intrinsics for type conversion, lexical relationship and for
choosing the largest or smalest value may not be passed as actual argu­
ments. All other specific intrinsics may be passed provided they are
declared INTRINSIC in the passing program unit.

The following table summarizes code generation for the various possible

combinations of INTRINSIC/EXTERNAL declaration for intrinsic and
non-intrinsic function names.

6-4.2A

Table 6-1. Code Generation for Function References

Function Name

Not intrinsic

Not intrinsic

Not intrinsic

Not intrinsic

Not intrinsic

Not -intrinsic

Specific only

Specific only

Specific - only

Specific only

Specific only

Specific only

Generic only

Generic only

Generic only

Generic only

Generic only

Generic only

Generic and

Specific

Generic and
Specific
Generic and
Specific

Generic and
Specific

Declaration

None

None

INTRINSIC

INTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

EXTERNAL

EXTERNAL

None

None

INTRINSIC

INTRINSIC

Use

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Referenced

Passed

Generated Code

Slow call to
user routine
Compilation
error
Compilation
error
Compilation
error
Slow call to
user routine
Slow call to
user routine
Fast call or
inline
Compilation
error
Fast call or
inline
Slow call to
library
routine*
Slow call to
user routine
Slow call to
user routine
Fast call or
inline
Compilation
error
Fast call or
inline
Compilation
error
Slow call to
user routine
Slow call to
user routine
Fast call or

inline

Compilation
error

Fast call or
inline

Slow call to
library
routine'

6-4.3A

Generic and EXTERNAL
Specific

Referenced Slow call to
user routine

Generic and EXTERNAL
Specific

Passed Slow
user

call to
routine

*Assuming the intrinsic is passable.

Notes: 	 If the use is "PASSED", the generated code column describes
the code generated for a reference to the corresponding dummy
procedure in the called routine.

In this table, "user routine" means a routine which is, or at
least can be, written in FORTRAN. A routine named SQRT
is such a routine. "Library routine" refers to a routine which
cannot be written in FORTRAN. A routine named FTXSQRT
is such a routine.

PARAMETER STATEMENT

The names and values of named constants are declared with the PARAMETER
statement. The form of a PARAMETER statement is

PARAMETER (pl=el,...,pn=en)

where pi is the name of a constant and ei is a constant expression which de­
fines the value of pi. Named constants have associated types; the possible
types of a named constant are INTEGER, REAL, DOUBLE PRECISION,
HALF PRECISION, COMPLEX, CHARACTER, and. LOGICAL. The type of

pi, and its length if it is of type CHARACTER, must have been specified,
either by default, by IMPLICIT typing, or by explicit, typing, before the
PARAMETER statement which assigns pi its valbe. If pi is of default implied
type, the default type of names beginning with its first letter may not be
changed by an IMPLICIT statement which appears after the PARAMETER
statement which assigns pi its value. If the type of pi is implied, either ac­
cording to the default implied typing or according -to some preceding IM-
PLICIT specification, then p may not appear in a subsequent type statement.

If pi is type INTEGER, REAL, DOUBLE PRECISION, HALF PRECISION, or
COMPLEX, then ei must be one of these same types, though not necessarily
the same as pi. If the types of pi and are not the same, is convertedei ei
to the type of pi before the value of pi is assigned. This conversion is
according to the same rules which obtain in arithmetic assignment statements.
The expression ei is an arbitrary arithmetic expression except that the right­
hand operand of the exponentiation operator must be INTEGER and all the
operands must be constant.

If pi is CHARACTER or LOGICAL, then ei must be, respectively, CHARAC-
TER or LOGICAL. If pi is CHARACTER, ei may be an arbitrary character
expression except that all the operands must be constant. If pi is logical,

6-4.4A

then ei may be an arbitrary LOGICAL expression except that all operands
must be constant and, furthermore, any arithmetic expressions which are
operands of relational operators in pi must conform to the restriction on
exponentiation previously stated.

The 	 operands in ei may include previously defined named constants, including
those defined previously in the same PARAMETER statement (i.e., pi for
less than i).

Named constants may be used in expressions and in the constant lists of
DATA statements. They may not be used in FORMAT statements, as
statement labels, or as parts of other constants (e.g., either half of a com­
plex constant).

SAVE STATEMENT

The 	 form of the SAVE statement is

SAVE al,...,an

where ai is a variable name, array name, or common block name enclosed
in slashes. An empty list is permitted: that is, n may legally be zero. a
may not be the name of a dummy argument, a procedure, or an entity in
common. It is illegal for a to be the same as aj unless i is equal to j.
Furthermore, if al,...,an and bl,...,bm are the lists of any two SAVE state­
ments in the same program unit, it is illegal for any ai to be the same as
any b . If a program unit contains a SAVE statement with an empty list,
then that must be the only SAVE statement in the program unit. If a

common block name is specified in a SAVE statement in any subprogram
of an executable program, then it must be specified in a SAVE statement
in every subprogram in which it is referenced.

The purpose of the SAVE statement is to preserve the definition of
variables which must remain defined beyond the execution of a RETURN
or END statement in a subprogram. In the absence of SAVE statements,
execution of a RETURN or END statement in a subprogram causes all
variables and arrays known to the subprogram to become undefined (which
means that their contents can no longer be depended upon) except those
which are in blank common, are initially defined and are neither redefined
nor undefined during execution of the subprogram, or are in a named com­

mon block which appears in at least one other program unit which is,
either directly or indirectly, referencing the subprogram.

B: 	 . . . substring, or implied DO. Subscript expressions and substring

expressions used to identify array elements and substrings must be
integer constant expressions except that subscript expressions may
include references to the control variables of any containing implied
DOs.

6-4.5A

The data list item corresponding to the variable list item is
the variable list item's initial value. The rules of corre-
spondence apply to bit array initialization in BIT statements
as well as in DATA statements.

The form I* before a constant in the data list indicates the
number of times the constant is specified. The following
two DATA statements are identical in effect:

DATA KLLM/0,0;0/'

DATA K,LM/3*0/

TABLE 6-1. EXTERNAL DECLARATION
OF A SUPPLIED FUNCTION

CodeCode_

declared external
external (user-provided)

In-Line Function
A 	 not declared in-line

external

declared external
external external

not declared externalexternal

declared externalFunction Having external

Both an External
and In-Line Version not declared in-line

external

IMPLIED 	DO IN DATA STATEMENT

An implied DO in the variable list of a DATA statement can
be used as a shortened notation for specifying parts of an
array.

Form:

(p,i=m1 ,m 2,m3)

p 	 A subscripted array name, or another implied
DO.

The implied-DO control variable, a simple
integer variable. i cannot also be the
implied-DO control variable of an implied-DO
list containing this list.

mI 	 The initial value parameter, an (unsigned)
integer constant, less than or equal to in2.

in2 	 The terminal value parameter, an (unsigned)
t: integer constant, greater than or equal to mi.

in3 	 Optional. The incrementation value param-
eter, an (unsigned) integer constant. When
omitted, the preceding comma must also be
omitted and an increment of 1 is assumed,

Implied-DO loops in the DATA statement can be nested up
to seven deep. Subscript expressions must be one of the
following forms:

c i-c

D
i+c k*i-c

where a and k are unsigned nonzero integer constants, and i
is the implied-DO control variable of this implied-DO list or
of an implied-DO list that contains this list.

The order in which elements are specified by an implied DO
in a DATA statement is identical to that in which elements
are-specified by an implied DO in an input/output list (see
section 9).

RULES FOR INITIALIZING VALUES

The rules for initializing values with the DATA statement
also apply to data initialization with the type statements
described earlier in this section: d. in the explicit type
statement form corresponds to the I. in the DATA state­
ment form. Nevertheless, several differences in form exist
and are as follows:

In a DATA statement, a list of simple variables can be
initialized by a list of constants. In a type statement,
only an array can be initialized by a list.

Dimension declarators can occur in type ttements,but only array elements can occur in DATA statements.

The implied DO is allowed in DATA statements, but not
in type statements.

The DATA statement cannot be used to assign values to
dummy arguments in a subprogram or to elements in blank
common. Elements in a labeled common block can be
initialized with a data initialization statement in any
program unit that mentions the block in a COMMON
statement; furthermore, different parts of a block can be
initialized in different program units, as well as with
different statements in the same program unit.

Character or nolleritn constants useo to initahze variable
list items are padded with blank characters on the right or E
are truncated on the right to fit the variable length,
depending upon whether the number of characters in the
constant is less than or greater than the number of
characters defined by the variable list element. A warning
message is issued if truncation occurs.

A list of bit and hexadecimal constants used to initialize a
contiguous portion of a bit array, including possibly an entire
bit array, must have a total bit length exactly the same as
the length of the array portion. If the constant or constant
list bit length is too short, the system issues the fatal
diagnostic TOO LITTLE DATA IN HEX OR BIT CONSTANT.
If the constant or constant list bit length is too long, the
system issues the fatal diagnostic TOO MUCH DATA IN
HEX OR BIT CONSTANT.

A bit or 	hexadecimal constant used to initialize a variable
list item of any type other than type bit is either right­
justified and padded on the left with zero bits or else
truncated on the left to fit the length of the variable,
depending on whether the number of bits in the constant is

60386200 F
 6-5

A: delete

B: p A list of array element names and implied DOs.

C: ml,m-,m 3 The 'initial, limit, and increment expressions for the implied DO. m3 , together with
the comma which precedes it, is optional. The expressions are arbitrary integer
expressions except that non-constant references must be restricted to the control
variables of containing implied DOs. If m3 is omitted, a value of 1 is assumed.

D: . . . to seven deep. Subscript expressions appearing
expressions so long as the only variable constituents

of containing implied DOs. -

in implied DOs may be
of those expressions are

arbitrary integer
implied-DO-variables

E: . . . list items are padded or truncated to fit the variable length-...

6-5A

less than or greater than the number of bits defined for the
variable list item. A warning message is issued If truncation
occurs.

Example:

Given the array declaration INTEGER 1(2), the data state-
ment.

DATA I./2 tX'38,/

initializes each of the two elements of the array I with a
64-bit constant whose value is hexadecimal 38, equal to
decimal 56. Since the number of bits required to represent

W38' (that is, 8 bits) is less than the number of bits required
for integer data, the constant would be padded on the left
with zero bits. The data statement in this example has the
same effect as the statement*

DATA 1/2*56/

containing an integer constant instead of a hexadecimal one.

Bit arrays are a special case. Initializing a bit array or a
contiguous part of a bit array (the letter by means of an
implied-DO variable list item) is unlike initializing other
kinds of quantities, including other type bit items. Any
contiguous part of a bit array . including a single element,
several elements, or the entire array . can correspond to
one data list item whose length matches exactly the length
of the array part. For example, if B is a 10-element array
of type bit, the following are allowable DATA statements:

DATA B(1) /BO'/

DATA B /B'11 1111 1111'/

DATA B /X'FF', 2*B'l'/

DATA (B(1), 1=1,8) /X'F'/

DATA (B(I), 1=3,10) /2*Bltl, X'O', B'0, 1'3'/

DATA (B(I), I=1,10,5) /2*B'0'/

Except for the last one, all of the above statements describe
contiguous parts of array B. The last DATA statement
identifies two parts of array B, elements B() and B(6); each

element properly corresponds to a data list item having a
length of I bit. The following statement would be incorrect:

DATA (B(I), I=1,10,5) /B'00'/

An attempt would be made to initialize B(1) with B'00', and
the fatal diagnostic TOO MUCH DATA IN HEX OR BIT
CONSTANT would be issued.

Although more than one constant can be used to initialize a
single bit array portion, two bit array portions cannot be
initialized by a single constant. For example, two bit arrays
BA(2) and BB(4) might be initialized acceptably with either
of the statements:

DATA BA, BE /B'10', X'A'/
DATA (BA(1),I=I,2),(BB(1),I=4,4) 1110', X'A'/

but not with the statement:

DATA BA(1), BA(2), BS / B'10', X'A'/

An attempt would be made to initialize BA1) with B'10' and
a fatal diagnostic would be issued. Similarly, parts of two
different bit arrays cannot be initialized with a single data
list item. For example, the statement:

DATA BABB /B'10 1010'/

would be incorrect. An attempt would be made to initialize
the, two-element array BA with the bit constant B1 0',10 10 1
and a fatal diagnostic would be issued. The statement:

DATA BA,BB /B'10', B1010'/

would, however, be acceptable.

The type of a variable list item and the constant used to
initialize it can differ in some cases. The constant value is
converted (if necessary) to the type of the variable when
both the variable and the constant have numeric data types;
by contrast, the variable is initialized with the unconverted
constant value when the constant is one of the nonnumeric
data types hexadecimal, character, Hollerith, or bit, A
logical constant list item can initialize only a logical
variable list item. Mixed mode data initialization rules are
given in table 6-2. The conversion is the same as for
assignment statements.

TABLE 6-2. DATA INITIALIZATION CONVERSIONS

Constant Type

Variable

Type Logical Integer Real Double Character

Precision Complox or Hollerith Bit Hexadecimal

Logical nocon n/a n/a n/a n/a nocon nocon nocon

Integer rn/a nocon c e c nocon nocon nocon

Real n/a c nocon C C nocon nocon nocon

Double 1/a e c nocon c noon nocon nocon
Precision I

Complex n/a e c c nocon nocon nocon nocon

Character n/a n/a n/a n/a n/a nocon nocon nocon

Bit na/a n/a n/a nocon nocon

The letter c indicates that conversion is performed; nocon, that conversion is not performed; and n/a, that the type com­
bination is not.allowed.

60386200 F
 6-6

This page left blank intentionally.

6-6A

7

REPRODUCIBILITY OF THE-
ORIGINAL PAGE IS POOR

DEFINING PROGRAM UNITS AND
FUNCTIONS STATEMENT

Discussed in this section are the statements used to define
and reference the following user-writfen procedures:

Statement Not a program unit; one-statement
function definition; isreferenced

Main Executable program unit; mulistate­
program ment definition; is not referenced

Function Executable program unit; multistate-
subprogram ment definition; is referenced

Subroutine Executable program unit; multistate-
subprogram ment definition; is referenced with a

CALL statement

Specification Nonexecutable program unit; multi-
subprogram statement definition; is not

referenced

Not discussed are the predefined functions supplied with
FORTRAN; these are covered in section 15. Argument
passing (under the heading Passing Arguments Between
Subprograms) and. file declaration (under the heading
PROGRAM Statement) are also covered here. CALL and
RETURN are covered in the flow control statement section.
Interfacing with non-FORTRAN external procedures is
discussed in section 12.

The category of procedure definition to be used is
determined by its particular capabilities and the needs of
the program being written. If the program requires the
evaluation 'of a standard mathematical function, often a
FORTRAN-supplied function can be used. If a single
computation is needed repeatedly, a user-written statement
function can be included in the program. If a number of
statements are required to obtain a single result, a function
subprogram is written. If a number of calculations are
required to obtain several values, a subroutine subprogram
should be written.

The first statement of a program unit defines the program
unit to be a main program, subroutine subprogram, function
subprogram, or specification subprogram. A program unit
whose first statement is not a FUNCTION, SUBROUTINE, or

(BLOCK DATA statement is a main program. Normally, a
main program begins with a PROGRAM statement, but this

B 	statement can be omitted if no input data is required and all
output is performed with PRINT statements. A subprogram
is a program unit that begins with a FUNCTION,
SUBROUTINE, or BLOCK DATA statement,

one main
n executable FORTRAN program must contain

program and can have any number of subprograms and
references to other external procedures, including the
predefined functions supplied with FORTRAN. A main
program must not be referenced by another program unit;
once defined, subprograms may or may not be so referenced.
Any program unit must never directly or indirectly invoke
itself.

THE MAIN PROGRAM
The PROGRAM statement defines the name that is used as
the program's entry point name and as the object module
name for the loader. It is also used to declare files that areused in the main program and in any subprograms that are

called.,

PROGRAM STATEMENT
The PROGRAM statement is the first statement in a main
program. However, the statement is optional when no
request for input is made within the program, and no output
except using PRINT is performed. Only one PROGRAM
statement can occur in any program.

Form:
PROGRAM p at 1, tip2. tip)

A

p 	 Optional when no fip list is present; the name

of the program,

fip. 	 Optional. A file information parameter that

can assume one of the following forms:

UNITn-f

TAPEn=f

UNITn[pl.P 2 'P3,P4]=f
TAPFn1Pl 1P2 ,P3 ,P4

= fINPUT
INPUT=f
OUTPUT

OUTPUT=f
PUNCH

PUNCH=f

RLP

RLP=m

The logical unit number n is an integer
constant in the range 1 to 99. The parameter
list 1p ,p0,p3,p4] specifies the file to be an
explici file. The filename f, a string of one to
eight letters or digits beginning with a letter,
isthe name of a file required by the main

files can be declared (including OUTPUT,
whether or not it islsted). The specification
w or otii intlised. The nc tion
rqired te iti g paentheses is
required, the list including parentheses is

omitted.

The name p must not appear in any other statement in the
program unit. The program name p can be omitted from the
statement when no file information parameter list is
present, in which case the name M A I N is supplied.

File Information Parameters

No file names can appear in a program. Instead, the forms
UNITn=f and TAPEn=f are used interchangeably to associate
the file named f with a logical unit number n. Whenever the
file f needs to be referred to in subsequent statements, the

60386200 G 	 7-1

PRZOEDING PAGE BLANK NOT FILMED

A: THE MAIN PROGRAM

A main program is a program unit that 'does not have a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. It may have a PROGRAM, statement as its first statement.

There must be exactly one main program in an executable program. Execution of an executable
program begins with- the first executable statement of the main program.

THE PROGRAM STATEMENT

The PROGRAM statement defines, the name that is used as the program's entry point name and as
the object module name by the loader. It may also be used to. declare files that are preconnected
to units used anywhere in the program and to request the mapping of dynamic space into large
pages. See chapter 8 for a description- of preconnected files.

The form of the PROGRAM- statement is:

PROGRAM pgm[([fp[,fp]...] [,RLP[=m]])]

where: pgm is the symbolic name of the main program in which the PROGRAM statement appears.

fp is a preconnection specifier. It is either a file declaration specifier or an alternate unit

specifier.

RLP specifies that dynamic space is to be mapped in m large pages. If m is omitted a value.

of 1 is assumed. If RLP is omitted dynamic space is mapped in small pages. The comia

preceding the RLP list item must be omitted if it is the only item in the list.

Items enclosed in [] are optional and the ellipsis . . . means that the items may be repeated. The
preconnection specifier ligt may contain a maximum, of 70 specifier items fp.

A PROGRAM statement is not required to appear in an executable program. If it does appear, it
must be the first statement of a main program. If it is omitted the symbolic name M A I 'N is
supplied for pgm. Units are preconnected as described in chapter 8 if the PROGRAM statement
is omitted.

The symbolic name pgm is global to the executable program and must not be the same as the name
of an external procedure, block data subprogram, or common block in the same executable program.
The name pgm must not be the same as any local name in the main program, except that it may
be the same as a file name or an alternate unit name.

FILE DECLARATION SPECIFIER

A file declaration specifier provides the means of specifying, for an external file, the file name. the
unit(s) to which it is preconnected, and the input/output buffer length in small pages.

The forms of a file declaration Fpecifier are:

fn

fn7lbl

7-1.1A

where: 	 fn is a symbolic file name.

bl is a buffer length specifer, consisting of an unsigned integer constant in the range 1..24.

If bi is omitted a value of 3 is assumed.

The appearance of a symbolic file name fn is a file declafation specifier has the same unit-file
connection effect as the execution of an OPEN statement, prior to the execution of any input/output
statement that refers to the file defined by fn.

The OPEN statement has the form:
OPEN(UNIT=-nHfn,FILE='fn',..

where n is the number of characters in 'fn'. If the character string 'fn' has either the character
string 'TAPE' or the character string 'UNIT' as an initial substring and has a digit string u, with
a non-zero leading digit, as its only other characters, then the unit-file connection affect of a
second OPEN statement of the form:

OPEN(UNIT--u,FILE='fn',..

is also implied. Note that if 'fn' is either 'TAPEO' or 'UNITO' then this second OPEN statement
is equivalent to:

OPEN(UNIT=0,FILE='fn',..

The scope of a symbolic name is the PROGRAM statement in which it appears.

If the file with file name 'fn' exists, the values of the other parameters required for the OPEN
statement are determined from the attributes of the file. If the file does not exist, the values of
the parameters will be determined from the first input/output statement that references the file and

can cause it to be created. If necessary a value of 512 words (1 small page), will be supplied for
the record length parameter. The OPEN statement is described in chapter 8.

The buffer length specifier bl specifies the length in small pages of a buffer to be supplied by the
processor for input/output data transfers. An error condition exists if an attempt is made to change
bl by means of an OPEN statement.

ALTERNATE UNIT SPECIFIER

An alternate unit specifier provides the means of specifying one, or more, external unit identifiers
of units to be preconnected to an external file.

The form of an alternate unit specifier is:

an = fn

where 	 an is a symbolic name such that nHan; where the value of n is the number of characters

in an, is an external unit identifier, an is an alternate unit name.

fn is a 	symbolic file name.

7-1.2A

An alternate unit name an may appear only in one alternate unit specifier in a program. It must
not appear in as file declaration specifier of that program.

A symbolic file name fn that appears in an alternate unit specifier must have appeared previously
in a file declaration specifier in the same PROGRAM statement. Note that a particular symbolic
file name may appear in more than one alternate unit specifier.

The appearance of an alternate unit specifier an=fn has the same unit-file connection effect as the
execution of an OPEN statement prior to the execution of any input/output statement that refers
to the file defined by. fn.

The OPEN statement has the form:

OPEN(UNIT=nHan,FILE='fn', . .

where n is the number of characters in 'an'. If the character string 'an' has either the character
string 'TAPE' or the characters string 'UNIT' as an initial substring and has a digit string u, with a
non zero leading digit, as its only other characters, then the unit-file connection affect of a second
OPEN statement of the form:

OPEN(UNIT=u,FILE='fn', - .

is implied. Note that if 'an' is either 'TAPEO' or 'UNITO' the OPEN statement is equivalent to:

OPEN(UNIT=0,FILE='fn', . . .)

The scope of an alternate unit name is the PROGRAM statement in which it appears.

MAIN PROGRAM RESTRICTIONS

The PROGRAM statement may appear only as the first statement of a main program. A main
program may contain any other statement except a BLOCK DATA, FUNCTION, SUBROUTINE,
ENTRY, or RETURN statement. The appearance of a SAVE statement in a main program has
no effect.

A main program may not be referenced from a subprogram or from itself.

B: A main program may optionally begin with a PROGRAM statement.

7-1.3A

logical unit number must be used instead of the name;
therefore, the logical unit number must be associated with
only one file name. Even files that are mentioned only in a
subprogram must appear in the PROGRAM statement of the
main program.

INPUT or INPUT=f declares the file read by a READ
statement without a file designator. OUTPUT or OUTPUT=f
declares the file written by a PRINT statement, and also
declares the file to which diagnostics, as well as STOP and
PAUSE messages, are written. If neither OUTPUT nor
OUTPUTf is specified, OUTPUT is declared implicitly.
PUNCH or PUNCH=f declares the file written by a PUNCH
statement.

Note that the declaration (OUTPUTsDIAGUNIT6=OUTPUT)
would send diagnostics-and PRINT output to the file DIAG,
and would send unit 6 output to the file OUTPUT. The
declaration (OUTPUT=OUT,UNIT6=OUT) would send
diagnostics, PRINT output, and unit 6 output to the file
OUT.

Files are opened at run time upon processing of the
PROGRAM-statement. The file search order used to find a
file with a particular name is:

1. 	 If a private file (local or attached permanent) exists,
the private file is opened and used.

2. 	 If an attached pool file exists, the pool file is opened
and used.

3. 	 If no file is found, a local file is REQUESTed with a
length of 128 blocks,

For example, if the user declares PUNCH in the PROGRAM
statement, a file named PUNCH of length 128 is created
unless it already exists. OUTPUT is-also created with length
128 unless a file called PRFILE exists prior to execution. If
it does, PRFILE is renamed as OUTPUT and used (or
renamed as f if OUTPUT=f was declared). This allows the
user to specify an output file length other than the default
value of 128. Such an expedient is necessary, because the
file named OUTPUT- unlike other files-cannot be
precreated in a batch job.

At the end of execution, the length of a disk output file will
be reduced if the last operation on the file was a write
operation or an ENDFILE. The length of the file is reduced
from 128 blocks (or the user-specified length) to the number
of blocks actually written.

Declaration of Files for Explicit 1/0

Files can be specified in the PROGRAM statement to be
explicit files (see section 13 for a discussion of implicit and
explicit I/O on SRM-structured files) by providing four
parameters enclosed in brackets following the TAPE or
UNIT specification. Tape files must be explicit, but disk
files can be either explicit or implicit. The files INPUT,
OUTPUT, and PUNCH cannot be accessed explicitly.

Form:
(Pl, P91 P31 P4]

P1 	 Omit this parameter for disk (p3=4). Number
of tape tracks:

7 = 7-track tape

9 = 9-track tape

7-2-

P2 	 Omit this parameter for disk (p3= 4). Tape
recording density in bpi:

200 = 7-track tape, bpi density of 200
556 = 7-track tape, bpi density of 556

800 = 7- or 9-track tape, bpi density of
800

1600 = 9-track tape, bpi density of 1600

P3 	 Recording mode:

0 = 7-track tape, BCD mode, even parity

1 = 7- or 9-track tape, binary mode, odd
-Z1. parity

- 2 = 7-track tape, CDC 64-character

ASCII subset, odd parity

4 = Disk

For values of 0 and 2, conversion takes place
from binary data into BCD and ASCII
characters respectively.

P 4 	 Buffer size specified as the number of small
pages in the buffer. The value can be from 1
to 24. Default is 3.

The commas must remain to indicate preceding parameters
that are unspecified. For example, the statement
PROGRAM P (TAPE5(,,4]=FILEI) declares the file FILEl to
be an explicit disk file with a default buffer size of three
small pages.

For transferring data in quantities of over tnree small pages
in length, explicit input/output is generally more efficient in
that fewer system calls are generated and more data is
passed per call. However, this efficiency is degraded if the
system is overloaded with jobs to the degree that physical
memory becomes filled and the system must start swapping
pages in and out of memory. For transferring data in
quantities of less than three small pages in length, implicit
input/output is simpler and is comparable (with respect to
efficiency) with explicit input/output. All buffer statement
input/output should be (and all tape input/output must be)
performed on explicit files.

Parameters must be supplied at the first reference within
the 	PROGRAM statement to an explicit file and are not
allowed 	 for subsequent references to the same file. If
TAPE7 is to be an explicit tape file associated with file
name DATAI, the following statement is correct:

PROGRAM P (TAPE6 [7,800,11 = FIL1,TAPET=FIL1)

The following statement is not correct:

PROGRAM P (TAPE6=FIL1,TAPE7[7,800,1]=FIL1)

The explicit parameters given with TAPE7 are ignorec and
TAPE7 becomes an implicit oisk file, the same as TAPES.

The RLP parameter is used to request the mapping of I
dynamic space into large pages. The number of large pages
is specified by m. If m is omitted, one large page is
assumed. The RLP parameter can be used to improve the
performance of programs that use large vector temporaries.
Dynamic space includes vector temporaries and vectors
assigned with the ASSIGN statement using DYN.

60386200 G

A

A: delete page 7-2.

v OF VE

vooowgs

STATEMENT FUNCTIONS 	 REFERENCING STATEMENT FUNCTIONS'

A statement function is a procedure defined by a single A statement function is referenced when the functionamne
statement. A statement function must be defined in the suffixed with an actual argument list appears in an
program unit that references it; consequently, the function arithmetic, logical, or character e.pression. The actual
cannot be referenced by any other program unit. arguments, each of which can be any scalar expression of

the same type as the corresponding dummy argument, must
agree in order, number, and length with the dummy

DEFINING STATEMENT FUNCTIONS arguments.

The user defines a statement function with a single Evaluation of a statement function occurs during evaluation
statement similar in form to an assignment statement. The of an expression that contains a reference to the function.
statement function must precede the first executable The values of the actual arguments are the values they have
statement in the program unit, and must follow all at the time of each evaluation of the function, while any

Elnonexecutable statements except DATA, FORMAT, or name in the function expression that is not a dummy
SNAMELIST statements, argument retains the value it would have, had it occurred

outside the function at that time.
Form:

Examples:
f(al'a2, " " " an)=e Definition Reference

f The function's symbolic name.
ADD(XY,C,D)=X+Y+O+D RZLT=GROSS-ADD(TAX,

Dummy argument, a simple variable name FICA,INS,RES)

distinct from any of the other dummy

arguments. The list must be present, and it AVG(O,P,QR)=(O+P+Q+R)/4 GRADE=AVG(T,T2,T3,T4)

A must contain at least one dummy argument 	 +MID

ai

(that is, n > 1).
LOGICAL A,B,EQV TEST=EQV(MAX,MIN).AND.

e Any scalar expression. 	 EQV(A,B)=(A.AND.B).OR. ZED
(.NOT.A.AND..NOT.B)

Since dummy arguments serve only to indicate type, length,
number, and order of the actual arguments, the names of COMPLEX Z RZLT2=(Z(BETA,GAMMA
dummy arguments can be the same as variable names of the Z(XY=(I.,0.)*EXP(X)*COS(Y) (I+K))**2-1.)/SQRT(T2)
same type and length appearing elsewhere in the program +(0.,I.)*EXP(X)*SIN(Y)
unit. Besides the dummy arguments, the expression e can
contain constants, variables, array elements (the array name

B(cannot be dummy), references to external functions SUBPROGRAMS

(function subprograms and FORTRAN-supplied functions, for

instance), and previously-defined statement functions. A subprogram is a program unit that is defined by more than

one statement but is not a main program. The differences
The type of the statement function result is determined by between function and subroutine specification and use are
the type of the function name. Type must be assigned to the summarized in table'7-1. All references in the table to
function name in the same way that type is assigned to a function name and subroutine name apply also to function
variable; that is, the function name can either appear in an entry point name and subroutine entry point name,
explicit type statement or be typed implicitly. Although the respectively.
function name can appear in a type statement, it must not
appear in an EQUIVALENCE, COMMON, or EXTERNAL An external procedure is a procedure defined externally to
statement, and must not be dimensioned or given an initial the program units that reference it. Function and sub­
value. Type conversion from the expression type to the routine subprograms are external procedures that are
function name type occurs as for assignment statements (see written in FORTRAN. In-line functions and statement}
table 4-1). functions are not 	 external procedures. Because name C

TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBROUTINES

Function 	 Subroutine

How referenced The function name appears in an expression. 	 The subroutine name appears in a CALL
statement.

F Arguments 	 One or more arguments must appear with the The subroutine name can appear -with or without

function name. an argument list.

Type and length 	 The type and length of a function name is the No type or length is associated with the name.
type and length of the function result.

Results 	 A function must return a value through the fune- A subroutine can return any number of values
tion name. It can also return any number of through arguments and COMMON.
values through arguments and COMMON.

60386200 G
 7-3

http:EQV(A,B)=(A.AND.B).OR

A: 	 . . . arguments. The parentheses are required even if there are dummy arguments.no

B: . cannot be 	 dummy), references to external, intrinsic, and dummy functions .

C: 	 . . . written in FORTRAN. Statement functions are not external procedures. Intrinsic functions
are not external procedures even if they invoke routines in the FORTRAN library. Because name . . .

D: 	 . . . agree in order and number with the dummy arguments.

For a character argument, the length of the actual argument must be at least as great as the length
of the dummy argument. If the length of the actual argument is greater, the excess characters are
ignored.

E: 	 . . . nonexecutable statements except DATA, FORMAT, ENTRY and . . .

F: 	 TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBROUTINES

Function 	 Subroutine

How 	 referenced The function name appears in an 	 The subroutine name appears in a CALL
expression. Parentheses after the statement. Parentheses after the name
name are required even if there are are optional.
no arguments.

Type and length 	 The type and length of the function No type or length is associated with
name are the type and length of the name.
the function result.

Results 	 A function must return a value A subroutine can return any number of
through the function name. It can values through arguments and COMMON.
also return any number of values
through arguments and COMMON,
so long as it does not alter the value
of any thing which occurs elsewhere
in the statement containing the
function reference, and does not
alter a value in COMMON which
affects the value of any other
function reference in 	 the statement.

Alternate return 	 Alternate return specifiers may Alternate return specifiers may occur
not occur as arguments. as agruments.

7-3A

definitions for data are local to the program unit in which
the names appear, names within an external procedure can
be used in other program units of the same executable
program to refer to unrelated entities,

PASSING ARGUMENTS BETWEEN SUBPROGRAMS

A transfer of control out of a program unit takes place when
a CALL statement or external function reference is
executed. Argument associations are made, and the
referenced program unit executes until a RETURN state-
ment relinquishes control to the referencing program unit.
Upon return, any definitions made of arguments persist. If a
STOP statement is executed within the referenced
subprogram, program execution is terminated without
control being returned to the referencing program unit.

Values can be made available to an external procedure in
two ways: through use of COMMON statements and by
means of argument lists. See section 6 for a discussion of
COMMON statement usage.

Dummy and actual argument lists are the mechanism that
FORTRAN employs to pass values between subprograms. An
argument's being dummy or actual depends upon the context
in which the argument appears. An argument appearing in a
FUNCTION, SUBROUTINE, or ENTRY statement is a
dummy argument, while an argument appearing in a
subprogram reference is an actual argument. At the time a
subprogram reference is executed, each variable listed as a
dummy argument is associated with -the same storage
location as the actual argument corresponding to it (call by
address). Each definition of a dummy argument can change
the value in that storage location. Thus, when control
returns to the referencing program unit, the values of the
actual arguments can be different from what they were
before the subprogram reference.

E(Dummy arguments are variable names, array names,
I external subprogram names, or (for subroutine definitions
only) multiple return statement label indicators (asterisks).
They are assigned data types as appropriate and are used in
the executable statements of the subprogram. Actual
arguments can be expressions, variables (including
descriptors, and double descriptors), vectors, constants,

A arrays, array elements, external procedures, or (for
subroutine calls only) labels in the calling program unit. (A

B label is prefixed with an ampersand.) The dummy argument
list for a subprogram and an- actual argument list for a
reference to the same subprogram must agree in argument
order, number, data type, and length (length is applicable to
type CHARACTER elements only). The only exception is
that actual arguments which are character or Hollerith
constants can also correspond to dummy arguments of a type
other than character.

El Dummy argument arrays, like all other arrays, must have

(their sizes declared. The declarator dimensions can be
c1 integer constants, or simple integer variables which either

must be dummy arguments as well or else must be in
common. A dummy argument must never appear in a
COMMON, EQUIVALENCE, or DATA specification
statement.

If an actual argument is an external subprogram name, the
name must appear in an EXTERNAL statement in the
referencing program unit. Furthermore, the corresponding

0 dummy argument can only be used as an external
subprogram reference or as an actual argument in a
subprogram reference in, the referenced subprogram. An
example of this usage is shown in figure 7-1. As a result of
the first call to S, SAM is executed on the call to SUB; on

7-4

the second call to S, TIME is executed on the call to SUB.
However, if the external subprogram name is suffixed with
an argument list then the name is not an argument but a
function reference; here, the function is executed and it is
the result that becomes the actual argument. A function
referenced in an argument list need not have its name
appear in an EXTERNAL statement in order to act as an
argument. An example of this usage is shown in figure 7-2.
The value of RZLT is the type real value returned by the
execution of SAM.

PROGRAM P
EXTERNAL SAM,TIME

CALL S (XY,Z,SAM,I)

CALL S (T,U,VTIME,W)

END

SUBROUTINE S (A,B,C,SUB,D)

CALL SUB

RETURN
END

Figure 7-1. Subprogram Name as Actual Argument

RROGRAM R

CALL S (X,Y,ZSAM(X),I)

END

SUBROUTINE S (A,B,C,RZLT,D)

DIMP = RZLT**2/NIM+I.

RETURN

END

Figure 7-2. Subprogram Reference as Actual Argument

Kinds of actual arguments allowed to correspond with a
particular type of dummy argument are listed in table 7-2.
When a dummy argument is associated with an actual
argument that is either a constant or an expression
containing operators, the dummy argument must not be
defined in the subprogram.

60386200 G

A: 	 . . . arrays, array elements, external, intrinsic, or dummy procedures, or (for . . .

B" label is prefixed with an asterisk or an ampersand.) The dummy argument.,

C. ... their sizes declared. Dimension bound expressions for dummy argument arrays may contain

integer variables which are in common or are dummy arguments. In the latter case, each such
variable must occur in the argument list of every ENTRY, SUBROUTINE, and FUNCTION state­
ment which contains the array name. The upper bound of the last dimension (first dimension for
ROWWISE arrays) may be an asterisk. The array is then called an assumed-size array. An

assumed-size array may not appear without subscripts in an 110 list or in an array assignment.

A dummy argument must never appear in a . . .

D: 	 If an intrinsic function is used as an actual argument, it must appear in an INTRINSIC statement.

If a subroutine, external function, or dummy procedure is used as an actual argument, it must

appear in an EXTERNAL statement. The corresponding dummy argument in the referenced

subprogram may be used as an actual argument and/or in subprogram references. An

E: 	 Dummy arguments are variables, arrays, dynamic variables, dynamic arrays, dummy procedures, or

(for subroutine definitions . . .

F: 	 For a character argument, the length of the actual argument must be at least as great as the length

of the dummy argument. For character arrays, what matters is the total length in characters of

the entire array - it is irrelevant how many characters are in each array element. If the length

of the actual arguments exceeds the length of the dummy argument, the excess cahracters are ignored

When an H constant occurs as an actual argument, the compiler appends blanks if required to fill

out a 	whole number of words. If the corresponding dummy argument is complex or double

precision, the H constant must contain at least 9 characters in order to be padded out to 2 words

(16 characters).

G: 	 . . . order, number, and data type. The only exception is . . .

7-4A

TABLE 7-2. CORRESPONDENCE OF ACTUAL TO
DUMMY ARGUMENTS

Dummy Argument

Simple variable

Descriptor

Double descriptor

M Simple array

Descriptor array

Double Descriptor array

A External procedure name

* (asterisk denoting-
B 	 dummy label - for

subroutines only)

* (asterisk denoting
vector function result)

Actual Argment

Scalar expression

Descriptor
Descriptor array element
Vector

Double descriptor
Double descriptor

array element

Simple arrayArray element (simple)

Descriptor array
Descriptor array element

Double descriptor array
Double descriptor

array element

External procedure name

Statement label, prefixed by
an ampersand

Descriptor
Descriptor array element
Vector

FUNCTION SUBPROGRAMS

A function subprogram is a program unit whose first line is a
FUNCTION statement. A function subprogram must be
referenced in at least one other program unit to be

I executed, and contains a RETURN statement to return
control to the referencing program unit. Statements that
cannot be included in a function subprogram are the
PROGRAM, BLOCK DATA, and SUBROUTINE statements,
and any statement that directly or indirectly references the
function being defined. The execution of a STOP statement
within the function terminates the program.

The FUNCTION statement defines the program unit to be a
function and not a subroutine or the main program. Only
one FUNCTION statement is allowed in a subprogram.

Forms:

t FUNCTION f (al,a2 ... an)
((anheading

CHARACTER FUNCTION f*m (al,a2 ...~arguments an)

canOptional. A declaration of the type of f;
be INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or, as in the second
form, CHARACTER.

f 	 The function's symbolic name.

m Length specification, in bytes, of' the
character function result returned as the value

K of f. When 4m is not specified in the second
form, the assumed length is 1.

60386200 G

a. 	 A dummy argument that can be a variable, I
array, or external procedure name. No two H
dummy arguments can have the same name.
At least one argument is required.

Within 	the function, the name f is treated as a variable. It

must be given a value at least once during the execution of

the function subprogram. Once defined, the function name

can be referenced and redefined without an occurrence of

the name being interpreted as a function self-reference. The

value returned to the expression that referenced the

function f is the value that f has upon execution of a

RETURN statement within the function subprogram.

The type of the function name f must be the same as in any

program unit that references the function. Type specifica­
tion can be explicit - it can appear before the word

FUNCTION or else appear in a type declaration statement

within the function (f must not be initialized) or it can be
implicit. Implicit type specification takes effect only when
no explicit typing of the function name was used. The
function name must not appear in any nonexecutable
statements within the function, except for purposes of type
declaration or in a list of identifier names in a NAMELIST
statement.

If the 	 function name f is the same as that of a predefined\L
function, 	the predefined function is unavailable in the user­
defined function. Throughout the rest of the program, a
reference to a function named f causes execution of the
user-defined function unless the predefined function f is in­
line (see appendix E to determine whether f is in-line or
external). The presence of an external declaration for f D
governs 	 whether or not an in-line predefined function is
executed.

A function subprogram can modify the value of one or more
of its arguments to return extra (side effect) values to the
referencing program unit, with one restriction: because the
order of evaluation of the components of an expression or
statement is not guaranteed, a function reference must not
define 	 any other entity occurring in the same statement.
The function's capability for modifying its arguments also
applies to individual elements of an argument which
represents an array. Other values can- be returned by
altering the values of entities in COMMON (the same sideE
effect restriction applies). For example, given thelE
statement

X(T) = FN(T,I+N,Y) + 3*FN(I,N,Z) - R

where X 	 is an array, FN is a function, and R is in common,
the variables T, I, N, and R must not be defined by FN.
However, Z and Y can be so defined.

A function is referenced by using its name suffixed by an
argument list, including parentheses and commas, instead of
a data element in any expression. Each dummy argument in} F
the FUNCTION statement must correspond to an actual
argument in the function reference argument list. See the

Passing Arguments Between Subprograms in this
section 	 for a further description of actual dummyin function references. and

SUBROUTINE SUBPROGRAMS

A, subroutine subprogram is a program unit whose first line is
a SUBROUTINE statement. To be executed, a subroutine
subprogram must be referenced with a CALL statement in
another program unit; a RETURN statement returns control
to the calling program unit. Statements that cannot be
included in a subroutine subprogram are the PROGRAM,

7-5-I

A: 	 Dummy procedure Subroutine External function Intrinsic function Dummy procedure.

B: 	 (asterisk denoting Statement label, prefixed by an asterisk or an ampersand.
dummy label ­
for subroutines only)

C: Optional. May be INTEGER, REAL, HALF PRECISION, DOUBLE
PRECISION, COMPLEX, LOGICAL. CHARACTER or CHARACTER~n.

D: 	 Intrinsic function except in program units where the function name appears in an EXTERNAL
statement.

E: 	 . . . altering the values of entities in COMMON. A value in COMMON may not be altered if it
occurs in the statement containing the function reference, or if its value affects the value of another
function reference in the same statement. For example, given the . . .

F: 	 . . . a data element in any expression. The parentheses are required even if there are no arguments.
Each dummy argument in . . .

G: 	 m may be any integer constant expression where value is greater than 0. Alternately, m may be an
asterisk enclosed in parentheses: (*). In this case the length of the result is determined by the type
declaration for f in the referencing program unit.

H: 	 ai A dummy argument that can be a variable, array, dynamic variable, dynamic array, or dummy
procedure name. The parentheses are required even if there are no arguments. No two dummy
arguments can have the same name.

I: 	 . . . executed, and must contain a RETURN statement to return . . .

J. 	 CHARACTER FUNCTION f (al,a 2 , . . . ,an)

K: 	 . . . of f. When *im is not specified the assumed length is I.

L: 	 If the function name f is the same as that of an intrinsic function, the intrinsic function is
unavailable in the user- - . .

THf5REPRODUCIBILITY OF
ORIGINAL PAGE IS POOR

7-5A

BLOCK DATA, and FUNCTION statements and any state-
ment that directly or indirectly references the subroutine
being defined. The execution of a STOP statement within
the subroutine causes the program to terminate,

The SUBROUTINE statement defines the program unit to be
a subroutine and not a function or the main program. Only
one SUBROUTINE statement is allowed in a subprogram.

Form:

SUBROUTINE s(ala2,.. 'an)

s The subroutine's symbolic name.

a. Optional. A dummy argument that can be a
variable, array, external procedure name, or
an * denoting a return point specified by a
statement label in the calling program unit.
When the argument list is omitted, the paren-
theses and commas must also be omitted,

The SUBROUTINE statement contains the subprogram name
s that indicates the subprogram's main entry point (the first
executable statement in the subroutine). The name s is not
used to return results to the calling program the way that
function names do, is not associated with a data type, and
must not appear in any statement in the subprogram except
the SUBROUTINE statement. Results are returned to the
calling program unit only through definition or redefinition
of one or more of the dummy arguments or through common.
Dummy arguments in a SUBROUTINE statement are
discussed elsewhere in this section under Passing Arguments
Between Subprograms.

Whenever an asterisk occurs as a dummy argument in the
BSUBROUTINE statement, there must be the statement label

B (preceded by an ampersand) of a statement in the calling
routine-as the corresponding actual argument. In the CALL
statements used to reference subroutine subprograms, an
argument is a statement label if it is a string composed of

c (an ampersand followed by the digits required for the label.

BLOCK DATA SUBPROGRAMS

Besides having one or more executable program units, a
program can contain nonexecutable BLOCK DATA
subprograms. A BLOCK DATA subprogram is a STAR
FORTRAN specification subprogram consisting of only the
following kinds of statements:

BLOCK DATA statement
IMPLICIT statements
explicit type statements
EQUIVALENCE statements
DIMENSION statements
ROWWISE statements
COMMON statements
DESCRIPTOR statements
DOUBLE DESCRIPTOR statements

D DATA statements

The order of the statements in a BLOCK DATA subprogram
should be as shown in figure 1-2.

A subprogram is a specification subprogram if the first
statement is a BLOCK DATA statement.

Form:

BLOCK DATA b

b Optional. Symbolic name of subprogram.

The single function of a BLOCK DATA subprogram is to
initialize the values of elements in labeled common blocks
(but not blank common) prior to program execution. If any
element in a given common block is being given an initial
value in such a subprogram, a complete set of specification
statements for the entire common block must be present
(including any type, EQUIVALENCE, and DIMENSION state­
ments required to fully specify the common block's organi­
zation), except that not all of the elements of the block
need be initialized. Initial values can be entered into more
than one block in a single subprogram. Different variables
and array elements in a common block can be initialized in
different program units, but no variable or array element
can be initialized more than once.

MULTIPLE ENTRY SUBPROGRAMS*
The first executable statement following a FUNCTION or
SUBROUTINE statement is the main entry point to that
subprogram. Other entry points can be defined in subroutine
and function subprograms by using the ENTRY statement:
the ENTRY statement in a subprogram specifies that the
first executable statement following the ENTRY statement
is a secondary entry point. More than one secondary entry
point can be declared in a subprogram.

Like the FUNCTION and SUBROUTINE statements, an
ENTRY statement is not executable and has no effect on the
logical flow of subprogram execution other than to specify
where subprogram execution is to begin when the subpro­
gram is referenced; also, like those statements, an ENTRY E
statement must not be labeled. An ENTRY statement canj E
occur anywhere within a subroutine or function subprogram
except within the range of a DO; however, at least one
executable statement must appear between an ENTRY F
statement and the END line in the subprogram. An ENTRY
statement must not appear in a main program or in a
BLOCK DATA subprogram.

Form:

ENTRY e (al,a2 . an)

e The synibolic name of the entry point.

ai Dummy argument that can be a variable,
array, external procedure name, descriptor, or)G
(in a subroutine subprogram) an * denoting a
return point specified by a statement label in
the calling program unit. Argument list is
optional for an ENTRY statement in a sub­
routine subprogram. When argument list is
omitted, the parentheses and commas must
also be omitted. At least one argument is H
required for an ENTRY statement in a
function subprogram.

Control passes to the first executable statement following
the ENTRY statement when the entry point name s is used
in a CALL statement or function reference. In a subroutine
subprogram, the entry point name s is not associated with a
data type and must not appear in any statement in the
subprogram except the ENTRY statement. In a function
subprogram, however, the entry point name s must be
associated with a data type implicitly or with explicit type
statements. The distinctions between entry points in
functions and subroutines are shown in table 7-1.

FUNCTION SUBPROGRAM ENTRY POINT NAMES

An entry point name in a function subprogram must be
associated with a data type and can be assigned values

60386200 G
 7-6

A variable, array, dynamic variable, dynamic array, dummy procedure, or . . .

B: . . . SUBROUTINE statement, there must be the statement label of a statement in the calling

C; . . . an asterisk or an ampersand followed by the digits required for the label.

D: PARAMETER statements
SAVE statements
END statements

E: . . . gram is referenced. An- ENTRY statement can

F: . . . except within the range of a DO, or between a block IF statement and its corresponding
END IF statement. An ENTRY . . .

G: . . . array, dynamic variable, dynamic array, dummy procedure, or .

H: . . . omitted, the parentheses are optional.

I: . . these are optional.

J: Delete

7-6A

during execution. The entry point name must not appear in
any nonexecutable statement in the function except in a
FUNCTION or ENTRY statement, explicit type statement,
or in the list of names in a NAMELIST statement.

An entry point name need not be of the same data type as
the main entry point name or any other secondary entry
point names in the function; however, a function reference
using that entry point name must have the same data type as
the name. Also, STAR FORTRAN permits scalar function
subprograms to have vector function entry points, and
vector functions (see section 11) to have scalar function
entry points.

All entry point names in a function are associated so that a
definition of one causes definition of all others having the
same type and length, and causes undefinition (unpredictable
values) of those having a different type or length associa-
tion. In effect, all entry point names are equivalenced as in
an EQUIVALENCE statement.

During each execution of the subprogram, at least one of the
entry point names must be assigned a value (become
defined), and once defined can be referenced and redefined.
(A reference to the entry point name within the fuhetion
refers to this value and is not a reference to the function.)

A (An entry point name having the same type and length as the
entry point name used to enter the subprogram must be
defined at the time of execution of any RETURN statement
in the subprogram; the value of the name at that time is the
function value returned to the referencing program unit.

SECONDARY ENTRY POINT ARGUMENT LISTS

An entry point to a function subprogram must have at least
B 	 one argument, and an entry point to a subroutine subprogram

need have no arguments. A subprogram can modify the
value of one or more of the arguments in the argument list
of the ENTRY statement associated with the current entry
to return- values to the calling program unit. See the
heading Passing Arguments Between Subprograms earlier in
this section for specifications for dummy arguments in
ENTRY statements.

The list of arguments in an ENTRY statement need not
contain the same elements as other argument lists in
FUNCTION, SUBROUTINE, or other ENTRY statements in
the same program unit. Nevertheless, no statement in the
subprogram can be executed that would cause reference or
definition of an argument not' in the argument list of the

C 	 current entry.

REFERENCING SECONDARY ENTRY POINTS

A secondary entry point to a subroutine subprogram is
referenced by a CALL statement containing the entry point
name. An example of multiple subroutine entry points is
shown in figure 7-3. In the example, the statement CALL
CLEAR(SET1) references the primary entry point of the
subroutine. Elements of the array are set to zero before
values are read into the array. Later in the program, the
statement CALL FILL(SETI) references the secondary entry

. point FILL. Values are read into the array without any
initialization of the elements to zero.

A secondary entry point to a function is referenced in the
same way that the main entry point is referenced. See theheading Passing Arguments Between Subprograms earlier inthis section for actual argument list specifications. An
example of multiple function entry points is shown in
figure 7-4. In the example, the statement
RT1 = FSHN(X,Y,Z) references the primary entry point of

60386200 G

the function. The calculation of the FSHN value is
performed, and control returns to the main program, Later
in the program, the statement RT2 = FRED(R,S,T)3J
references the secondary entry point FRED, Deoendng on
the value of the first argument, the return value is either
the calculated value of FRED or FSHN. Since multiple
function entry point names are effectively eqmvalenced,
either FRED or FSHN can De used to set the return value.

PROGRAM T(INPUT)

DIMENSION SETl(25)

CALL CLEAR(SETI)

CALL FILL(SETI)

END

SUBROUTINE CLEAR(RA)
DIMENSION RA(25)
INTEGER P

C-MAIN ENTRY POINT

DO 100 1= 1,25

100 RA(I) = 0.0

ENTRY FILL(RA)

C-SECONDARY ENTRY POINT
300 READ 2, V,P
2 FORMAT(10X, F7.2, 14)

RA(P) = V
IF(P.LT.0.OR.P.GT.25) RETURN
GOTO 300
END

Figure 7-3. Multiple Entry Subroutine

PROGRAM Q

RTI 	 FSHN(X,Y,Z)

RT2 	 FRED(R,ST)

END

FUNCTION FSHN(A,B,C)

C-MAIN ENTRY POINT
300 	 FSHN = A*B/C**2

RETURN
ENTRY FRED(A,B,C)

C-SECONDARY ENTRY POINT
IF(A.LE.702) GOTO 300
FRED = (C-A)/B
RETURN
END

Figure 	7-4. Multiple Entry Function

Subroutines cannot reference their own main entry points orsecondary entry points directly or indirectly . A function
subprogram can reference any of its entry point names, so
long as the name is not followed by an argument list,
because this does not constitute a function reference.

7-7

http:IF(P.LT.0.OR.P.GT.25

A: An entry point name having the same type and the same or greater length as the . . .

B: A subprogram can modify the

C: . . . current entry. If a dummy array is an argument in an ENTRY list, each variable which
occurs in a dimension bound expression for the array must be in common or in the argument list
of the same ENTRY statement. (The same rule also applies to FUNCTION and SUBROUTINE

statements.)

7-7A

Replace all of Section- 8 with the fAllowing pages.

8-1

C DC CYBER 200 FORTRAN 77 INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal storage or from an

internal file to internal storage. This process is called reading. Output statements provide the means of trans­

ferring data from internal storage to external media or from internal storage to an internal file. This process

is called writing. Some input/output statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the

external medium, or to inquire about or describe the properties of the connection to the external medium.

There are 14 input/output statements:

1. READ 8. ENDFILE

2. WRITE 9. REWIND

3. PRINT 10. PUNCH

4. OPEN 11. ENCODE

5. CLOSE 12. DECODE

6. INQUIRE 13. Q7BUFIN

7. BACKSPACE -14 Q7BUFOUT

The READ, WRITE, PRINT, PUNCH, Q7BUFIN, and Q7BUFOUT statements are data transfer input/output

statements. The OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE, and REWIND statements are auxilia

input/output statements. The BACKSPACE, ENDFILE, and REWIND statements are file positionin input!

output statements.

RECORDS

A record is a sequence of values or a sequence of characters. For example. a punched card is usually con­

sidered to be a record. However, a record does not necessarily correspond to a physical entity. There are

three kinds of record:

1. Formatted

2. Unformatted

3
 Endfile

8-IA

FORMATTED RECORD

A formatted record consists of a sequence of characters that are capable of representation in the processor.

The length of a formatted record is measured in characters and depends primarily on the number of characters

put into the record when-it is written. However, it may depend on the processor and the external medium.

The length may be zero. Formatted records may be read or written only for formatted input/output state­

ments.

Formatted records may be prepared by some means other than FORTRAN; for example, by some manual in­

put device.

UNFORMATTED RECORD

An unformatted record consists of a sequence of values in a processor dependent form and may contain both

character and non-character data or may contain no data. The length of an unformatted record is measured

in processor dependent units and depends on the output list used when it is written, as well as on the processor

and the external medium. The length may be zero.

The only statements that read and write unformatted records are unformatted input/output statements,

Q7BUFIN and Q7BUFOUT statements.

Unformatted Records Containing Data of Type Bit

The smallest unit of storage that may be transferred to or from an external file is a character. When data of

type bit are being transmitted at least one character will be-read from or written on the external file.

Let b be the number of bits occupied by the data of type bit.

On input, the leftmost b bits will be transferred to the internal storage from the next INT((_+7)/8) characters

read from the current record. Unused bits will be skipped.

On output, INT((b_+7)/8) characters will be written on the external file. Unused bits will be undefined.

ENDFILE RECORD

An endfile record is written by an ENDFILE statement. An endfile record may occur only as the last record

of a file. An endfile record does not have a length property.

FILES

A file is a sequence of records.

There are two kinds of file:

8-2A

I. External

2. Internal

Internal files are also categorized by the type of storage provided for the file.

FILE EXISTENCE

At any given time, there is a processor determined set of files that are said to exist for an executable pro­
gram. A file may be known to the processor, yet not exist for an executable program at a particular time.
For example, security reasons may prevent a file from existing for an executable program. A file may exist
and contain no records; an example is a newly created file not yet written.

To create a file means to cause a file to exist that did not previously exist. To delete a file means to

terminate the existence of the file.

All input/output statements may refer to files that exist. The INQUIRE, OPEN, CLOSE, WRITE, PRINT,
PUNCH, Q7BUFOUT and ENDFILE statements may also refer to files that do not exist.

FILE PROPERTIES

At any given time, there is a processor determined set of allowed access methods, a processor determined set of
allowed forms, and a processor determined set of allowed record lengths for a file.

Each external file has exactly one file name, and is called a named file. The name of a named file is a character
string, consisting of one to eight letters or digits, the first of which must not be a digit.

An external file may have zero or more alternate file names.-An alternate file name provides a means of refer­
ring to an external file by more than one unit identifier. An alternate file name has the form of a file name.
and is specified by the PROGRAM statement.

Both a file name and an alternate file name are global to the executable program. However, the scope of the
file name extends to the external environment of the program, such as the processor operating system; the
scope of the laternate file name is restricted to the executable program.

Note that, unlike a file name, an alternate file name is not a property of an external file. For example.
execution of an INQUIRE by file statement that refers to an external file by an alternate file name and inquires
the NAME causes the specifier variable fn to become defined with the file name, not an alternate fie name.

An internal file does not have a name.

8-3A

FILE 	POSITION

A file that is connected to a unit has a position property. Execution of certain input/output statements
affects the position of a file. Certain circumstances can cause the position of a file to become indeterminate.

The initial pdinj of a file is the position just before the first record. The terminal point is the position just
after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is no current record.

Let n be the number of records in the file. If 1< i Sn and a file is positioned within the ith record or between
the (i-1)th record and the ith record, the (i-1)th record is the preceding record. If n >-I and a file is positioned
at its terminal point, the preceding record is the nth and last record. If n=0 or if a file is positioned at its

initial point or within the first record, there is no preceding record.

If 1 <- i < n and a file is positioned within the ith record or between the ith and (i+l)th record, the (i+l)th
record is the next record. If n Z 1 and the file is positioned at its initial point, the first record is the next
record. If n=0 or if a file is positioned at its terminal point or within the nth and last record, there is no
next record.

FILE ACCESS

There are two methods of accessing the records of an external file. sequential and direct. Some files may
have more than one allowed access method; other files may be restricted to one access method. For example,
a processor may allow-only sequential access to a file on magnetic tape. Thus, the set of allowed access
methods depends on the file and the processor.

The method of accessing a file is determined when the file is connected to a unit.

Sequential Access

When connected for sequential access, a file has the following properties:

* 	 The order of the records is the order in which they were written. A record that has not

been written since the file was created must not be read.

* 	 The records of the file are either all formatted or all unformatted, except that the last record

of the file may be an endfile record.

* iThe records of the file must not be read or written by direct access input/output statements.

84A

Direct Access

When connected for direct access, a file has the following properties:

* 	 The order of the records is the order of their record numbers. The records may be read or

written in any order.

* 	 The records of the file are either all formatted-or all unformatted. The file must not contain
an endfile record.

* 	 Reading and writing records is accomplished only by direct access input/output statements.

* 	 All records of the file have the same length.

* 	 Each record of the file is uniquely identified by a positive number called the record number-

The record number of a record is specified when the record is written. Once established, the record
number of a record can never be changed. Note that a record may not be deleted; however, it

may be rewritten.

* Records need not be read or written in the order of their record numbers. Any record may be
written into the file while it is connected to a unit. For example, it is permissible to write

record 3 even though records I and 2 have not been written. Any record may be read from the file
while it is connected to a unit, provided that the record was written since the file was created.

* The records of the file must not be read or written using list-directed formatting.

INTERNAL FILES

Internal files provide a means of transferring and converting data from internal storage to internal storage.

There are two types of internal file, standard and extended. A standard internal file is a sequence of character
storage units. An extended internal file is a sequence of numeric storage units. An extended internal file may

only be accessed by the ENCODE and DECODE statements.

The standard or extended property of an internal file is established by the type of storage proxided for the

file.

Throughout the remainder of this document, the phrase internal file shall be interrupted to mean standard

internal file. unless explicitly prefixed with extended.

Standard Internal File Properties

A standard internal file has the following properties:

8-SA

* 	 The file is a character variable, character array element, character array, or character substring.

* 	 A record of an internal file is a character variable, character array element, or character substring.

* 	 If the file is a.character variable, character array element, or character substring, it consists of a
single record whose length is the same as the length of the variable, array element, or substring,
respectively. If the file is a character array, it is treated as a sequence of character array elements.
Each array element is a record of the file. The ordering of records in the file is the same as the
ordering of the array elements in the array. Every record of the file has the same length, which is

the length of the array element in the array.

* The variable, array element, or substring that is the record of the internal file becomes defined
by writing the record. If the number of characters written in a record is less than the length of
the record, the remaining portion of the record is filled with blanks.

* 	 A record may be read only if the variable, array element, or substring that is the record is defined.

*. 	 A-variable, array element, or substring that is a record of an internal file may become defined (or
undefined) by means other than an output statement. For example, the variable, array element,
or substring may become defined by a character assignment statement.

* An internal file is always positioned at the beginning of the first record prior to data transfer.

Standard Internal File Restrictions

A standard internal file has the following restrictions:

* 	 Reading and writing records is accomplished only by sequential access formatted. input/output
statements that do not specify list-directed formatting or NAMELIST formatting.

* An auxiliary input/output statement must not specify an internal file.

Extended Internal File Properties

An extended internal file has the following properties:

* 	 The file is a non-character variable, non-character array element, or non-character array.

* 	 A record of the file is one or more contguous numeric storage units.

* 	 The length of a record of the file is measured in characters, and is equal to

a ' m

8-6A

where: 	 a is the maximum number of characters that can be stored in a single numeric storage
unit at one time

m_is 	the number of numeric storage units in the reocrd.

* 	 Every record of the file has the same length.

* 	 The variable or array element that is a record of the file is defined by writing the record. If
the number of characters written in a record is less than the length of the record, the remaining
portion of the record is filled with blanks.

* 	 A record may be read only if the variable or array element(s) that is the record is defined.

* 	 A variable or array element(s) that is a record of the file may become defined (or undefined)

by means other than an input statement.

* 	 An extended internal file is always positioned at the initial point of the first record prior to
data transfer.

Extended Internal File Restrictions

An extended internal file has the following restrictions:

* 	 Reading and writing records is accomplished only be DECODE and ENCODE statements. List­
directed formatting must not be specified.

* 	 The file must be accessed sequentially.

* An auxiliary input/output statement must not specify an extended internal file.

UNITS

A unit is a means of referring to a file.

UNIT EXISTENCE

At any given time, there is a, processor determined set of units that are said to exist for an executable program.
A unit exists for each allowed external unit idenfifier.

*All input/output statements may refer to units that exist. The INQUIRE and CLOSE statements ma% also refer

to units that do not exist.

8-7A

CONNECTION OF A UNIT

A unit has a property of being connected or not connected. If connected, it referes to a file. A unit may

become connected by preconnection or by the execution of an OPEN statement. The property of connection
is symmetric: If a unit is connected to a file, the file is connected to the unit,

Preconnection means that the unit is connected to a file at the beginning of execution of the executable pro­

gram and therefore may be referenced by input/output statements without the prior execution of an OPEN

statement. Each unit that exists is preconnected to a file. The file name of the file to which a unit is precon­

nected may be specified by a preconnection specifier in the PROGRAM statement of the main program. Other­
wise, 	the processor determines the file name from the unit specifier u as follows:

0. 	 If INT(u) has a value representable by the digit stringnin the range 0.. .99, the file name is

TAPEn.

* 	 If u has a value of the form nHf, where f is a valid system file name, the file name is f.

Otherwise, the unit specified does not exist.

All input/output statements except OPEN, CLOSE, and INQUIRE must reference a unit that is coinected to

a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, but an external file may be connected

to more than one unit at the same time. However, means are provided to change the status of the unit and to
connect a unit to a different file.

After a unit has been disconnected by the execution of a CLOSE statement, it may be connected again within the
same executable program to the same file or a different file. After a file has been disconnected by the execu­

tion of a CLOSE statement, it may be connected again within the same executable program to the same unit or
a different unit. Note, however, that the only means to refer to a file that has been disconnected is by its name
in an OPEN or INQUIRE statement. Therefore, there may be no means of reconnecting an unnamed file once
it is disconnected.

UNIT 	SPECIFIER AND IDENTIFIER

The form of a unit specifier is:

(UNIT=)u

where u is an external unit identifier or an internal file identifier.

8-8A

An external unit identifier is used to refer to an external file. An internal unit identifier is used to refer to
an internal file.

An external unit identifier is one of the following:

1. 	 An integer expression i whose value must be either

a. 	 An integer in the range 0. .999, or

b. 	 Of the form nHf, where f is a valid system file name.

n case (b), if f is of the form TAPE.or UNITk, where k is an integer in the range 0. .999 with
no leading zero, it is equivalent ot the integer k for the purpose of identifying external units.

2. 	 An asterisk, identifying a particular processor determined external unit that is preconnected for
formatted sequential access.

The external unit identified by the value of i is the same external unit in all program units of the executable
program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=6
REWIND n

the value 6 used in both program units identifies the same external unit.

An external unit identifier in an auxiliary input/output statement must not be an asterisk.

An internal file identifier provides the means of referring to a standard or extended internal file. An internal

file identifier for a standard internal file is the symbolic name of a character variable, character array, character
array element, or character substring. An internal file identifier for an extended internal file is the symbolic name

name of a non-character variable, a non-character array, or non-character array element.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the first item

in a list of specifiers.

FORMAT SPECIFIER AND IDENTIFIER

The form of a format specifier is:

(FMT=)L

where f is a format identifier.

8-9A

A format identifier identifies a format. A format identifier must be-one of the following:

o 	 The statement label of a FORMAT statement that appears in the same program unit as the

format identifier.

* 	 An integer variable that has been assigned the.statement label of a FORMAT statement that

appears in the same program unit as the format identifier.

* 	 A character array name.

* 	 Any character expression except a,character expression involving conatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbolic name

of a constant. Note that a character constant is permitted.

* 	 An asterisk, specifying list-directed formatting.

* 	 A NAMELIST group name specifying NAMELIST formatting.

* A non-character array name.

If the optional characters FMT= are omitted from the format specifier, the format specifier must be the second

item in the control information list and the first item must be the unit specifier without the optional characters
UNIT=.

RECORD SPECIFIER

The form 	of a record specifier is:

REC- m

where mnis an integer expression whose value is positive it specifies the number of the record that is to be

read or written in a file connected for direct access.

ERROR AND END-OF-FILE CONDITIONS

The set of input/output error conditions is processor dependent.

An end-of-file condition exists if either of the following events occurs:

* 	 An endfile record is encountered during the reading of a file connected for sequential access.
In this case, the file is positioned after the endfile record.

* 	 An attempt is made to read a record beyond the end of an internal file.

8-10A

If an error condition occurs during the execution of an input/output statement, execution of the input/output

statement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of a READ statement, execution of

the READ statement terminates and the entities specified by the input list and implied-DO-variables in the input

list become undefined. Note that variables and array elements appearing only in subscripts, substring expres­
sions, and implied-DO parameters in an input list do not become undefined when the entities specified by the

list become undefined.

If an error condition occurs during the execution of an output statement, execution of the output statement

terminates and implied-DO-variables become undefined.

If an error condition occurs during execution of an input/output statement that contains neither an input/

output status specifier nor an error specifier, or if an end-of-file condition occurs during execution of a READ

statement that contains neither an input/output status specifier nor an end-of-file specifier, execution of the

executable program terminates.

INPUT/OUTPUT STATUS, ERROR, AND END-OF-FILE SPECIFIERS

The form of an input/output status specifier is:

IOSTAT = ios

where ios is an integer variable or integer array element.

Execution-of an input/output statement containing this specifier causes ios to become defined:

* 	 with a zero value if neither an error condition nor an end-of-file condition is encountered by

the processor,

* 	 with a processor dependent positive integer value if an error-condition is encountered, or

* 	 with a processor dependent negative integer value if an end-of-file condition is encountered

and no error condition is encountered.

The positive integer value denoting an error condition is, for each error, the same value used as the runtime

error number when the input/output status specifier is omitted.

ERROR SPECIFIER

The form of an error specifier is:

ERR = s

8-11A

where s is the statement label of an executable statement that appears in the same program unit as the error

specifier.

If an input/output statement contains an error specifier an the processor encounters an-error-condition during

the execution-of the statement:

*, 	 execution of the input/output statement terminates,

* 	 the position of the file specified in the input/output statement becomes indeterminate,

* 	 if the input/output statement contains an input/output status specifier, the variable or array

element ios becomes defined with a processor dependent positive integer value, and

* execution continues with the statement labeled s.

END-OF-FILE SPECIFIER

The form of an end-of-fie specifier is:

END = s

where s is the statement label of an executable statement that appears in the same program unit as the end-of­

file specifier.

If a READ statement contains an end-of-file specifier and the processor encounters an end-of-file condition and

no 	error condition during the execution of the statment:

0- execution of the READ statement terminates,

* 	 if the READ statement contains an input/output status specifier, the variable or array element

ios becomes defined with a processor dependent negative integer value, and

* execution continues with the-statement fabled s.

READ, WRITE. PRINT, AND PUNCH STATEMENTS

The READ statement is the data transfer input statement. The WRITE, PRINT. and PUNCH statements
are the data transfer output statements. The forms of the data transfer input/output statements are:

READ (cilist) (iolist)

READ f(.iolist)

WRITE (cilist) (iolis)

8-12A

PRINT f(,olist)

PUNCH f(,ojost)

where: eilist is a control information list that includes:

* A reference to the source-or destination of the data to be transferred.

* Optional specification of editing processes.

* Optional specifiers that determine the execution sequence on the occurrence of certain events.

* Optional.specification to identify a record.

* Optional specification to provide the return of the input/output status.

f is a format identifier.

jolist is an input/output list specifying the data to be transferred.

If-the format identifier f is a NAMELIST group name, the iolist must not be present.

CONTROL INFORMATION LIST

A control information list, eflist, is a list whose list items may be any of the following

(UNIT) ­

(FMT =) f

REC = rn

IOSTAT = ios

ERR = s

END = s

A control information list must contain exactly one unit specifier, at most one format specifier, at most one
record specifier, at most one input/output status specifier, at most one error specifier, and at most one end-of­
ffie specifier.

If the control information list contains a format specifier, the statement is a formatted input/output statement:
otherwise, it is an unformatted input/output statement.

If the control information list contains a record specifier, the statement is a direct access input/output state­
ment; otherwise, it is a sequential access inputoutput statement.

8-13A

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the first item

in the control information list.

The unit specifier must not specify an extended internal file.

If the optional characters FMT= are omitted from,the format specifier, the format specifier must be the second

item in the control information list and the first item must be the unit specifier without the optional charac­
ters UNIT=.

A control information list must not contain both a record-specifier and an end-of-file specifier.

If the format identifier is an asterisk, the statement is a list-directed input/output statement and a record

specifier must not be present.

In a WRITE statement, the control information list must not contain an end-of-file specifier.

If the unit specifier specifies an internal file, the control information list must contain a format identifier

other than. an asterisk and must not contain a record specifier.

INPUT/OUTPUT LIST

An input/outp list, jolist, specifies the entities whose values are transferred by a data transfer input/output

statement.

An input/output list is a list of input/output list items and implied-DO list. An input/output list item is either

an input list item or an output list item.

If an array name appears as an input/output list item, it is treated as if all of the elements of the array were

specified in the order given by array element ordering. The name of an assumed-size dummy array must not

appear as an input/output list item.

Input List Items

An input list item must be one of the following:

* A variable name.

" An array element name.

* A character substring name.

* An array name.

Only input list items may appear as input/output list items in an input statement.

8-14A

Output List Items

An output list item must be one of the following:

* A variable name.

.o An array element name.

* A character substring name.

.- An array name.

* Any other expression except a character expression involving concatenation of an operand whose

length specification is an asterisk in parentheses unless the operand is the symbolic name of a

constant.

Note that a constant, an expression involving operators or function references, or an expression enclosed in

parentheses may appear as an output list item but must not appear as an input list item.

Implied-DO List

An implied-DO list is of the form:

(dlist, i=el, e2 [,e3])

where: i, el, e2, and- e3 are as specified for the DO statement

dlist is an input/output list.

8-15A

The range of an implied-DO list is the list dlist. Note that dlist may contain implied-DO lists. The iteration
count 	and the values of the DO-variable i are established from el, e2, and e3 exactly as for a DO-loop: In
an input statement, the DO-variable i, or an associated entity, must not appear as an input list item in dtist.
When an implied- DO list appears in an input/output list, the list items in dlist are specified once for each

iteration of the implied- DO list with appropriate substitution of values for any occurrence of the DO-variable
.

EXECUTION OF A DATA TRANSFER INPUT/OUTPUT STATEMENT

The effect of executing a data transfer input/output statement must be as if the following operations were
performed in the order specified:

* 	 Determine the direction of data transfer.

* 	 Identify the unit.

* 	 Establish the format if any is specified.

* 	 Position the file prior to data transfer.

* 	 Transfer data between the file and the entities specified by the input/output list (if any), or
identified by association with a NAMELIST group name (if one).

* 	 Position the file after data transfer.

a 	 Cause the specified integer variable or array element in the input/output status specifier (if any)

to become defined.

DIRECTION OF DATA TRANSFER

Execution of a READ statement causes values to be transferred from a file to the entities specified by the
input list, if one is specified.

Execution of a WRITE, PRINT, or PUNCH statement causes values to be transferred to a file from the
entities specified by the output list and format specification (if any). Execution of a WRITE, PRINT, or
PUNCH statement for a file that does not exist creates the file, unless an error condition occurs.

IDENTIFYING A UNIT

A data transfer input/output statement that contains a control information list includes a unit specifier that
identifies an external unit or all internal file. A READ statement that does not contain a control information
list specifies a particular processor determined unit, which is the same as the unit identified by an asterisk in
a READ statement that contains a control information list. A PRINT statement specifies some other processor
determined unit, which is the same as the unit identified by an asterisk in a WRITE statement. A PUNCH

8-16A.

statement identifies yet another processor determined unit. Thus each data transfer input/output statement

identifies an external unit or an internal file.

Data transfer input/output statements that do not contain control information lists refer to units that are
preconnected as follows:

Statement Standard Unit File Name

READ INT(5HINPUT) "INPUT"

PRINT INT(6HOUTPUT) "OUTPUT"

PUNCH INT(SHPUNCH) "PUNCH"

The unit identified by a data transfer input/output statement must be connected to a file when execution
of the statement begins.

ESTABLISHING A FORMAT

If the control information list contains a format identifier other than an asterisk or NAMELIST group name,

the format specification identified by the format identifier is established. If the format identifier is an asterisk,

list-directed formatting is established. If the format identifier is a NAMELIST group name, NAMELIST for­
matting is established.

On output, if an internal file has been specified, a format specification that is in the file or is associated with

the file must not be specified.

FILE POSITION PRIOR TO DATA TRANSFER

The positioning of the file prior to data transfer depends on the method of access: sequential or direct.

If the file contains an endfile record, the file must not be positioned after the endfile 'ecord prior to data

transfer.

Sequential Access

On input, the file is positioned at the beginning of the next record. This record becomes the current record.

On output, a new record is created and becomes the last record of the file.

An internal file is always positioned at the beginning of the first record of the file. This record becomes the
current record.

8-17A

Direct Access

For direct access, the file is positioned at the beginning of the record specified by the record specifier. This
record becomes the current record.

DATA TRANSFER

Data are transferred between records and entities specified by the input/output list. The list items are

processed in the order of the input/output list.

All values needed to determine which entities are specified by an input/output list item are determined at

the beginning of the processing of that item.

All values are transmitted to or from the entities specified by a list item prior to the processing of any suc­
ceeding list item. In the example,

READ (3) N, A (N)

two values are read; one is assigned to N, and the second is assigned to A(N) for the new value of N.

An input list item, or any entity associated with it, must not contain any portion of the established format
specification.

If an internal file has been specified, an input/output list item must not be in the file or associated with

the file.

A DO-variable becomes defined at the beginning of processing of the items that constitute-the range of an

implied-DO list.

On output, every entity whose value.is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not previously been written
causes all the entities specified by the input list to become undefined.

Unformatted Data Transfer

During unformatted data transfer, data are transferred without editing between the current record and the
entities specified by the input/output list. Exactly one record is read or written.

8-18A

http:value.is

On input, the-file must be positioned so that the record read is an unformatted record or an endfile record.

On input, the number of values required by the input list must be less than or equal to the number of values in

the record.

On input, the type of each value in the record must agree with the type of the corresponding entity in the

input list, except that one complex value may correspond to two real list entities or two real values may

correspond to one complex list entity. If an entity in the input list is of type character, the length of the
character entity must agree with the length of the character value.

On output to a file connected for direct access, the output list must not specify more values than can fit into a
record.

On output, if the file is connected for direct access and the values specified by the output list do not fill the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is prohibited.

The unit specified must be an external unit.

Formatted Data Transfer

During formatted data transfer, data are transferred with editing between the entities specified by the input/

output list and the file. The current record and possibly additional records are read or written.

On input, the file must be positioned so that the record read is a formatted record or an endfile record.

If the file is connected for unformatted input/output formatted data transfer is prohibited.

USING A FORMAT SPECIFICATION

If a format specification has been established, format control is initiated and editing is performed as described
in Chapter 9.

On input, the input list and format specification must not require more characters from a record than the
record contains.

If the file is connected for direct access, the record number is increased by one as each succeeding record is

read or written.

On output, if the file is connected for direct access or is an internal file and the characters specified by the
output list and format do not fill a record, blank characters are added to fill the record.

8-19A

On output, if the file is connected for direct access or is an internal file, the output list and format specification
must not specify more characters for a record than can fit into the record.

LIST-DIRECTED FORMATTING

- If list-directed formatting has been established, editing is performed as described in Chapter 9.

PRINTING OF FORMATTED RECORDS

The transfer of information in a formatted record to certain devices determined by the processor is called
printing. If a formatted record is printed, the first character of the record is not printed. The remaining char­

acters of the record, if any, are printed in one line beginning at the left margin.

The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing Before Printing

Blank One Line

0 Two lines

1 To First Line of Next Page

+ No Advance

If there are no characters in the record, the vertical spacing is one line and no characters other than blank are

printed in that line.

A PRINT statement does not imply that printing will occur, and a WRITE statement does not imply that print­

ing will not occur.

FILE POSITION AFTER DATA TRANSFER

If an end-of-fle condition exists as a result of reading an endfile record, the file is positioned after the endfile

record.

If no error condition or end-of-file condition exists, the file is positioned after the last record read or written

and that record becomes the preceding record. A record written on a file connected for sequential access

becomes the last record of the file.

If the file is positioned after the endfide record, execution of a data transfer input/output statement is prohibited.
However, a BACKSPACE or REWIND statement may be used to reposition the file.

If an error condition exists, the position of the file is indeterminate.

8-20A

INPUT/OUTPUT STATUS SPECIFIER DEFINITION

If the data transfer input/output statement contains an input/output status specifier, the integer variable or
array element los becomes defined. If no error condition or end-of-file condition exists, the value of ios is
zero. If an error condition exists, the value of ios is positive. If an end-of-file condition exists and no error
condition exists, the value of ios is negative.

AUXILIARY INPUT/OUTPUT STATEMENTS

OPEN STATEMENT

An OPEN statement may be used to connect an existing file to a unit, create a file-that is preconnected, create
a file and connect it to a unit, or change certain specifiers of a connection between a file and a unit.

The form of an OPEN statement is:

OPEN (o1st)

where olist is a list of specifiers:

[UNIT=] u

IOSTAT = ios

ERR = s

FILE = fin

STATUS = sta

ACCESS = ace

FORM = fin

RECL = r

BLANK = bink

BUEL = bl

olist must contain exactly one external unit specifier and may contain at most one of each of the other speci­

fiers.

The other specifiers are described as follows:

IOSTAT = ins

is an input/output status specifier. Execution of an OPEN statement containing this specifier causes
ios to become defined with a zero value if no error condition exists or with a processor dependent
positive integer value if an error condition exists.

8-21A

ERR 	 = s

is an error specifier.

FILE = fin

fin is a character expression whose value when any trailing blanks are removed is the name of the
file to be connected to the specified unit. The file name must be a name that is allowed by the

processor. If this specifier is omitted and the unit is not connected to a file, it becomes connected

to a processor determined file. The processor determines a file name from the unit specifier u as

follows:

1. 	 If INT(u) has a value representable by the digit string n in the range 0. .999, the file

name is TAPEn.

2. 	 If u has a value of the form nHf where f is a valid system file name, the file name is f.

Otherwise, the unit specified does not exist.

STATUS = sta

sta is a character expression whose value when any trailing blanks are removed is OLD, NEW,
SCRATCH, or UNKNOWN. If OLD-or NEW is specified, a FILE= specifier must be given. If OLD
is specified, the file must exist. If NEW is specified, the file must not exist. Successful execution
of an OPEN statement with NEW specified creates the file and changes the status to OLD. If
SCRATCH is specified with an unnamed file, the file is connected to the specified unit for use by
the executable program but is deleted at the execution of the CLOSE statement referring to the

same unit or at the termination of the executable program. SCRATCH must not be specified with
a named file. If UNKNOWN is specified, the status is processor dependent. If this specifier is
omitted, a value of UNKNOWN is assumed.,

ACCESS acc

acec is a character expression whose value when any trailing blanks are removed is SEQUENTIAL or
DIRECT. It specifies the access method for the connection of the file as being sequential or direct.

If this specifier is omitted, the assumed value is SEQUENTIAL. For an existing file, the specified
access method must be included in the set of allowed access methods foi the file. For a new file.
the processor creates the file with a set of allowed access methods that includes the specified

method.

FORM = fn

fm is a character expression whose value when any trailing blanks are removed is FORMATTED or

UNFORMATTED. If specifies that the file is being connected for formatted or unformatted input/
output respectively. If this specifier is omitted, a value of UNFORMATTED is assumed if the file
is being connected for direct access, and a value of FORMATTED is assumed if the file is being
connected for sequential access. For an existing file, the specified form must be included in the set

8-22A

of allowed forms for the file. For a new file, the processor creates a file with a set of allowed forms
that includes the specified form.

RECL = rl

ri is an integer expression whose value must be positive. It'specifies the length of each record in a
file being connected for direct access. If the file is being connected for formatted input/output, the
length is the number of characters. If the file is being connected for unformatted input/output, the
length is measured in processor determined units. For an existing file, the value of rl must be in­
cluded in the set of allowed record lengths for the file. For a new file, the processor creates the
file with a set of allowed record lengths that includes the specified value. This specifier must be
given when the file is being connected for direct access; othervise, it must be omitted.

BLANK = blnk

bink is a character expression whose value when any trailing blanks are removed is NULL or ZERO.
If NULL is specified, all blank characters in numeric formatted input fields on the specified unit are

ignored, except that a field of all blanks has a value of zero. If ZERO is specified, all blanks other
than leading blanks are treated as zeros. If this specifier is omitted, a value of NULL is assumed.
This specifier is permitted only for a file being connected for formatted input/output.

BUFL = bi

b is an integer expression whose value must be in the range 1 . . 24. It specifies the buffer length
for the unit in small pages. If the file is already connected to the unit and the buffer length is being
changed, an error condition exists. If this specifier is omitted a value of three small pages is assumed.

The unit specifier is required to appear; all other specifiers are optional, except that the record length rl must be
specified if a file is being connected for direct access. Note that some of the specifiers have an assumed value if
they are omitted.

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in any program unit of an executable program
and, once connected, may be referenced in any program unit of the executable program.

Open of a Connected Unit

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted. If the
FILE= specifier is not included in the OPEN statement, the file to be connected to the unit is the same as the
file to which the unit is connected.

If the file to be connected to the unit does not exist, but is the same as the file to which the unit is precon­
necred, the properties specified by the OPEN statement become part of the connection.

8-23A

If the file to be connected to the unit is not the same as the file to which the unit is connected, the effect is as
if a CLOSE statement without the STATUS= specifier had been executed for the unit immediately prior to the
execution of the OPEN statement.

If the file to be connected to the unit is the-same-as the file to which the unit is connected, only the BLANK=
specifier may have a value different from the one currently in effect. Execution of the OPEN statement causes
the new value of the BLANK= specifier to be in effect. The position of the file is unaffected.

If a file is connected to a unit, execution of an OPEN statement on that file and a different unit is permitted.

The effect is that the file becomes connected to more than one unit.

CLOSE STATEMENT

A CLOSE statement is used to terminate the connection of a particular file to a unit.

The form of CLOSE statement is:

CLOSE (cllist)

where cllist is a list of specifiers:

[UNIT =] u

IOSTAT = ios

.ERR = s

STATUS = sta

ctlist must contain exactly one external unit specifier and may contain at most one of each of the other specifiers.

The other specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier. Executing of a CLOSE statement containing this specifier causes
ios to become defined with a zero value if no error condition exists or with a processor dependent
positive integer value if an error condition exists.

ERR = s

is an error specifier.

STATUS = sta

sta is a character expression whose value when any trailing blanks are removed is KEEP or DELETE.
sta determines the disposition of the file that is connected to the specified unit. KEEP must not be

8-24A

specified for a file whose status prior to execution of the CLOSE statement is SCRATCH. If KEEP

is specified for a file that exists, the file continues to exist after the execution of the CLOSE state­
ment. If KEEP is specified for a file that does not exist, the file will not exist after the execution

of the CLOSE statement. if DELETE is specified, the file will not exist after the execution of ile
CLOSE statement. If this specifier is omitted, the assumed value is KEEP, unless the file status
prior to execution of the CLOSE statement is SCRATCH, in which case the assumed value is

DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an executable program
and need not occur in the same program unit as the execution of an OPEN statement referring to that unit.

Execution of a CLOSE statement specifying the unit that does not exist or has no file connected to it is per­
mitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the
same executable program, either to the same file or to a different file. After a file has been disconnected by
execution of a CLOSE statement, it may be connected again within the same executable program, either to the
same unit or to a different unit, provided that the file still exists.

Implicit Close at Termination of Execution

At termination of execution of an executable program for reasons other than an error condition, all units that
are connected are closed. Each unit is closed with status KEEP unless the file status prior to termination of
execution was SCRATCH, in which case the unit is closed with status DELETE. Note that the effect is as

though a CLOSE statement without the STATUS= specifier were executed on each connected unit.

INQUIRE STATEMENT

An INQUIRE statement may be used to inquire about the properties of a particular file or of the connection to
a particular unit. There are two forms of the INQUIRE statement; inquire by file and inquire by unit. All value
assignments are done according to the rules for assignment statements.

The INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values as­
signed by the INQUIRE statement are those that are current at the time the statement is executed.

INQUIRE by File

The form of an INQUIRE by file statement is:

INQUIRE (iflist)

where iflist is a list-of,specifiers that must contain exactly one file specifier and may contain other inquiry
specifiers. The iflist may contain at most one of each of the inquiry specifiers described below.

8-25A

The form of a file specifier is:

FILE = fin

where fin is a character expression whose value when any trailing blanks-are removed specifies the name of the
file being inquired about. The named file need not exist, or be connected to a unit. Th6 value of fin must be of
a form acceptable to the processor as a file name.

INQUIRE by Unit

The form of an INQUIRE by unit statement is:

INQUIRE (iulist)

where ilist is a list of specifiers that must contain exactly one external unit specifier and may contain other

inquiry specifiers. The iulist may contain at most one of each of the inquiry specifiers described below. The
unit specified need not exist or be connected to a file. If it is connected to a file, the inquiry is being made

about the connection and about the file connected.

Inquiry Specifiers-

The following inquiry specifiers may be used in either form of the INQUIRE statement:

IOSTAT = los

ERR = s

E)CIST = ex

OPENED od-

NUMBER = num

NAMED = nmd

NAME = fn

ACCESS = ace

SEQUENTIAL = seq

DIRECT = dir

FORM = fm

FORMATTED = ftt

UNFORMATTED. = unf

RECL = rcl

NEXTREC = nr

BLANK = blnk

8-26A

The specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier. Execution of an INQUIRE statement containing this specifier

causes ios to become defined with a zero value if no error condition exists or with a processor

dependent positive integer value if an error condition exists.

ERR = s

is an error specifier.

EXIST = ex

ex is a logical variable or logical array element. Execution of an INQUIRE by file statement causes

ex to be assigned the value true if there exists a file with the specified name; otherwise, ex is as­

signed the value false. Execution of an INQUIRE by unit statement causes ex to be assigned the

value true if the specified unit exists; otherwise, ex is assigned the value false.

OPENED = od

ad is a logical variable or logical array element. Execution of an INQUIRE by file statement causes
od to be assigned the value true if the file specified is connected to a unit, otherwise, od is assigned

the value false. Execution of an INQUIRE by unit statement causes od to be assigned the value

true if the specified unit is connected to a file; otherwise, od is assigned the value false.

NUMBER = nurn

num is an integer variable or integer array element that is assigned the value of the external unit
identifier of the unit that is currently connected to the file. If more than one unit is currently

connected to the fie, the choice of the unit used to assign a value to num is described below. If

there is an external unit identifier u currently connected to the file such that either

a. 	 INT(u) has a value in the range 0.. 999, or

b. 	 u has a value of the form nHTAPEk or nHUNITk. where k is an integer in the range

0.. 999 with no leading zero,

then the value assigned to num will be in the range 0. . 999. (In case (a) the value assigned to num
is the value of u, and in case (b) it is the value of k. If external unit identifiers of both types (a)

and (b) are currently connected to the file, the processor may assign either a type (a) or a type (b)
value.) Otherwise, the value assigned to num is of the form INT(Hf. where fis a valid system file

name. If there is no unit connected to the file. num becomes undefined.

NAMED 	 = nmd

nmd is a logical variable or logical array element that is assigned the value true if the file has a

name; otherwise, it is assigned the value false.

8-27A

NAME = fn

fn is a character variable or character array element that is assigned the value of the name of the
file, if the file has a name; otherwise, it becomes undefined. Note that if this specifier appears-in an
INQUIRE by file statement, its value isnot necessarily the same as the name given in the FILE=
specifier. For example, the processor may return a file name qualified by a user identification.
However, the value returned must be suitable for use as the value of a FILE= specifier in an OPEN
statement.

ACCESS = ace

acc is a character variable or character array element that is assigned the value SEQUENTIAL if the
file is connected for sequential access, DIRECT if the file is connected for direct access, and
UNKNOWN if the processor is unable to determine the method of access. If there is no connection,
acc becomes undefined.

SEQUENTIAL = seq

seq is a character variable or character array element that is assigned the value YES if SEQUENTIAL
is included in the set of allowed access niethods for the file, NO if SEQUENTIAL is not included
in the set of allowed access methods for the file, and UNKNOWN if the processor is unable to
determine whether or not SEQUENTIAL is included in the set of allowed access methods for the
file.

DIRECT = dir

dir is a character variable or character array element that is assigned the value YES if DIRECT is
included in the set of allowed access methods for the file, NO if DIRECT is not included in the set
of allowed access methods for the file, and UNKNOWN if the processor is unable to determine
whether or not DIRECT is included in the set of allowed access methods for the file.

FORM = fro

fm is a character variable or character array element that is assigned the value FORMATTED if the
file is connected for formatted input/output, and is assigned the value UNFORMATTED-if the file
is connected for unformatted input/output. If the processor is unable to determine the form. fm
is assigned the value UNKNOWN. If there is no connection fm becomes undefined.

FORMATTED = fint

fint is a character variable or character array element that is assigned the value YES if FORMATTED
is included in the set of allowed forms for the file, NO if FORMATTED is not included in the set
of allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or not
FORMA-TTED is included in the set of allowed forms for the file.

8-28A

UNFORIATTED = unf

unf is a character variable or character array element that is-assigned the value YES if UNFORMAT-
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in
the set of allowed forms for the file, and UNKNOjN if the processor is unable to determine whether

or not UNFORMATTED is included in the set of allowed forms for the file.

RECL = rel

rcl is an integer variable or integer array element that is assigned the value of the record length of
the file connected for direct access. If the file is connected for formatted.input/output, the length
is the number of characters. If the file is connected for unformatted input/output, the length is
measured in processor dependent units. If there is no connection or if the connection is not for
direct access, rcl becomes undefined.

NEXTREC = nr

nr is an integer variable or integer array element that is assigned the value n+1, where n is the
record number of the last record read or written on the file connected for direct access. If the
file is connected but no records have been read or written since connection, nr is assigned the
value 1. If the file is not connected for direct access or if the position of the file is indeterminate
because of a previous error condition, nr becomes undefined.

BLANK = blnk

blnk is a character variable or character array element that is assigned the value NULL if null blank
control is in effect for the file connected for formatted input/output, and is assigned the value ZERO
if zero blank control is in effect for the file connected for formatted input/output. If there is no
connection, or if the connection is not for formatted input/output, bnk becomes undefined.

A variable or array element that becomes defined or undefined as a result of its use as a specifier in an
INQUIRE statement, or any associated entity, must not be referenced by any other specifier in the same
INQUIRE statement.

Execution of an INQUIRE by file statement causes the specifier variables or array elements nmd, fn, s dir.
f._t, and unf to be assigned values only if the value of fin is acceptable to the processor as a file name and if
there exists a file by that name; otherwise, they become undefined. Note that num becomes defined if and
only if od becomes defined with the value true. Note also that the specifier variables or array elements acc.
fin, rcl, nr, and blnk may become defined only if od becomes defined with the value true,

Execution of an INQUIRE by unit statement causes the specifier variables or array elements num. nmd. fn.
acc, seq, dir, fin, fmt. unf, rcl, nr,-ad bink to be assigned values only if the specified unit exists and if a file
is connected to the unit: otherwise, they become undefined.

If an error condition occurs during the execution of an INQUIRE statement, all of the inquire specifier vari­
ables and array elements except ios become undefined.

8-29A

Note that the specifier variables or array elements ex and od always become defined unless an error condition

occurs.

FILE POSITIONING STATEMENTS

The forms of the file positioning statements are:

BACKSPACE u
BACKSPACE Laust)

ENDFILE u

ENDFILE (alist)

REWIND u
REWIND (al)

where: 	 u is an external unit identifier.

alist is a list of specifiers:

[UNIT =] u

IOSTAT = ios

ERR = s

alist must contain exactly one external unit specifier and may contain at most one of each.of the other specifiers.

The external unit-specified by a BACKSPACE, ENDFILE, or REWIND statement must, be connected for sequen­

tial
access.

Execution of a file positioning statement containing an input/output status specifier causes ios to become defined

with a zero value if no error condition exists or with a positive integer value if an error condition exists.

BACKSPACE Statement

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned before the

preceding-record. If there is no preceding record, the' position of the file is not changed. Note that if the

preceding record is an endfile record, the file becomes positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records written using list-directed formatting is prohibited.

8-30A

ENDFILE Statement

Execution of an ENDFILE statement writes an endfile record as the next record of the file. The file is then
positioned after the endfile record. If the file may also be connected for direct access, only those records
before the endfile record are considered to have been written. Thus, only those records may be read during
subsequent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must.be used to reposition

the file prior to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates the file.

REWIND Statement

Execution of a REWIND statement causes the specified file to be positioned at its initial point. Note that if the

file is already positioned at its initial point, execution of this statement has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is permitted but has no effect.

RESTRICTIONS ON FUNCTION REFERENCES AND LIST ITEMS

A function must not be referenced within an expression appearing anywhere in an input/output statement if
such a reference causes an input/output statement to be executed. Note that a restriction in the evaluation of
expressions prohibits certain side effects.

RESTRICTION ON INPUT/OUTPUT STATEMENTS

If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain
input/output statements, those statements must not refer to the unit.

NAMELIST INPUT/OUTPUT

NAMELIST provides formatted input/output with processor determined editing.

A symbolic name is a NAMELIST group name if and only if it appears in a NAMELIST statement. A NAME-
LIST group name is local to a program unit.

A NAMELIST group name provides the means of.referring to a NAMELIST input/output list. Usage of a group

name is the means of specifying NAMELIST formatting. A NAMELIST statement is used to specify a NAME-

LIST group name and the input/output list to be subsequently associated wvith that group name.

NAMELIST formatting is established for an input/output data transfer by using a NAMELIST group name as

the format identifier f in a READ, WRITE, PRINT, or PUNCH statement: the statement must not include an

input/output list.

8-31A

NAMELIST STATEMENT

The form of a NAMELIST statement is:

NAMELIST / grpname / niplist [/ grpname / niplist]

where: grpname 	is a NAMELIST group name. Only one appearance of a group name in all of the NAME-
LIST statements of a program unit is permitted.

niplist 	is a NAMELIST input/output list of one or more items, each of which must be one of the
following:

1. A variable name.

2. An array name.

Each name in the list niplist may be of any data type. It may not be an assumed size array.

NAMELIST DATA TRANSFER

A NAMELIST block is one or more formatted records that consist of a sequence of characters in NAMELIST
format. Execution of an input/output data transfer statement with NAMELIST formatting causes one NAME-
LIST block to be transferred.

Execution of a WRITE, PRINT, or PUNCH statement with NAMELIST formatting causes one NAMELIST
block to be written to a file. Data are transferred from internal storage in the order specified by the input/
output list associated with the NAMELIST group name that appears in the output data transfer statement.

Execution of a READ statement with NAMELIST formatting causes one NAMELIST block to be read from a
file. The NAMELIST group name in the block read must be the same as the group name in the READ state­
ment being executed. Each variable or array name in the block must appear in the input/output list associated
with the group name. Item names in the block may occur in any order and number. Note that an item name
may appear more than once in a block, possibly resulting in more than one definition of an entity. The block
is transferred with NAMELIST editing to internal storage in the order of item name appearance. Values are
transmitted to the entities specified by the item names. The definition status of entitites whose names do not
appear in the block is unchanged upon completion of the transfer. Note that an entity named in the associated
input/output list but not named in the block retains its prior definition status: it is unaffected by the transfer.

On input, an error condition exists if the file is not positioned at the beginning of a NAMELIST block.

The effect of executing a data transfer input/output statement with NAMELIST fornatting is otherwise
described under "executing a data transfer input/output statement."

8-32A

ENCODE AND DECODE STATEMENTS

The ENCODE statement is the internal file data transfer output statement that permits access to both standard
and extended internal files. The DECODE statement is the internal file data transfer input statement that per­
mits access to both standard and extended internal files. The forms of the statements are:

ENCODE (k,f, uJ [iolist]

DECODE (S f u) [olist]

where: k is an unsigned integer constant or integer variable having a positive value. The value specifies
the number of characters in each record of the internal file identified by u.

f is a format identifier that does not specify list-directed formatting.

u is an internal file identifier.

iolist is an input/output list specifying the data to be transferred.

Execution of an ENCODE statement causes values to be transferred to an internal file from the entities speci­
fied by the output list iolist (if any) and the format identifier I. The execution sequence, restrictions, and
error conditions are as described for a formatted WRITE statement that transfers data to an internal file.

Execution of a DECODE statement causes values to be transferred from an internal file to the entities specified
by the input list iolist (if any). Execution proceeds as described for a formatted READ statement that transfers

data from an internal file.

Action is unspecified if the total length of all the records read or written exceeds the number of character

storage units in the file.

Action is unspecified if any item of iolist is in the file or is associated with the file.

On output, a format specification that is in the file or is associated with the file must not be specified.

Note that an internal file may be defined or redefined by means other than an ENCODE statement. Such means

must ensure that the record length is established as provided above.

CONCURRENT INPUT/OUTPUT STATEMENTS

The concurrent input/output statements using Q7BUFIN and Q7BUFOUT are described in the chapter on

processor supplied subroutines.

8-33A

Replace-,all- of Sectiun 9 with the following pages.

9-1

CDC CYBER 200 FOFITRAN 77 FORMAT SPECIFICATION

A format used in conjunction with formatted input/output statements provides information that directs the

editing between the internal representation and the character strings of a record or a sequence of records in the
file.

A format specification provides explicit editing information. An asterisk (')as a format identifier in an input/

output statement indicates list-directed formatting.

FORMAT SPECIFICATION METHODS

Format specifications may be given:

* In FORMAT statements.

* As values of character arrays, character variables, or other character expressions.

FORMAT STATEMENT

The form of a FORMAT statement is:

FORMAT is

where is is a format specification, as described under "form of a format specification." The statement must be

labeled.

CHARACTER FORMAT SPECIFICATION

If the format identifier in a formatted input/output statement is a character array name. character variable
name, or other character expression, the leftmost character positions of the specified entity must be in a defined
state with character data that constitute a format specification when the statement is executed.

A character format specification must be of the form described under "form of a format specification." Note
that the form begins with a left parenthesis and ends with a right parenthesis. Character data may follow the
right parenthesis that ends the format specification. with no affect on the format specification. Blank charac­
ters may precede the format specification.

If the format identifier is a character array name, the length of the format specification may exceed the length

of the first element of the array; a character array format specification is considered to be a concatenation of

9-1 A

all the array elements of the array in the order given by array element ordering. However, if a character array

element name is specified as a format identifier, the length of the format specification must not exceed the
length of the array element.

NON CHARACTER ARRAY-FORMAT SPECIFICATION

If the format identifier in a formatted input/output statement is a non character array name, the first m ele­
ments of the array must be in a defined state'such that the first in elements (for some positive integer m)

constitute a valid format specification when the statement is executed.

A non character array format specification must be of the form described under "form of a format specifica­
tion." Note that the form begins with a left parenthesis and ends with a right parenthesis. There is no require­

ment on the information contained in the array-following the right parenthesis that ends the format specifica­
tion. Blank characters may precede the format specification.

FORM OF A FORMAT SPECIFICATION

The form of a format specification is:

([flist])

where flist is a list. The forms of the flist items are:

fr] ed

- ned

where: ed is a repeatable edit descriptor.

ned is a non-repeatable edit descriptor.

fs is a format specification with a non empty list flist.

r is a non zero, unsigned, integer constant called a repeat specification.

The comma used to separate list items in the list flist may be omitted as follows:

* Between a P edit descriptor and an immediately following F, E, D, or G edit descriptor.

* Before or after a slash edit descriptor.

* Before or after a colon edit descriptor.

9-2A

EDIT DESCRIPTORS

An edit descriptor is either a repeatable edit descriptor or a non-repeatable edit descriptor.

The forms of a repeatable edit descriptor are:

1w

Iw. on

Fw

Fw. d

Ew. d

Ew. dEe

Dw. d

Gw. d

Gw. dEe

Lw

A

Aw

Rw

Zw
Zw mn

Bw

where: I, F, E, D, G, L, A, R, Z, and B indicate the manner of editing

w and e are non zero, unsigned, integer constints

d and m are unsigned integer constants.

The forms a non-repeatable edit descriptor are:

"hlh2 ... hm"

nI-Ih2 ... hn

TLc

TRc

nX

S
SP

kP
BN

BZ

9-3A

where: apostrophe, H, T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and BZ indicate the manner of editing

li is one of the characters capable of representation by the processor

n and'c are non zero, unsigned, integer constants

kis an optionally signedlinteger constant

INTERACTION BETWEEN INPUT/OUTPUT LIST AND FORMAT

The beginning of formatted data transfer using a format specification initiates format control. Each action of
format control depends on information jointly provided by:

" The next edit descriptor contained in the format specification, and

* The next item in the input/output list, if one exists.

If an input/output list specifies at least one-list item, at least one repeatable edit descriptor must exist in the
format specification. Note that an empty format specification of the form () may be used only if no list
items are specified; in this case, one input record is skipped or one output record containing no characters is
written. Except for an edit descriptor preceded by a repeat specification, r ed, and a format specification pre­
ceded by a repeat specification r(flist), a format specification is interpreted from left to right. A format speci­
fication or edit descriptor preceded by a repeat specification ris processed as a list of r format specifications or
edit descriptors identical to the format specification or edit descriptor without the repeat specification. Note
that an omitted repeat specification is treated the same as a repeat specification whose value is one.

To each repeatable edit descriptor interpreted in a format specification, there corresponds one item specified by
the input/output list, except that a list item of type complex requires the interpretation of two F, E, D, or G
edit descriptors. To each P, X, T, TL, TR, S, SP, SS, H, BN, BZ, slash, colon, or apostrophe edit descriptors,
there is no corresponding item specified by the input/output list, and format control communicates information
directly with the record.

Whenever format control encounters a repeatable edit descriptor in a format specification, it determines

whether there is a corresponding item specified by the input/output list If there is such an item, it trans­
mits appropriately edited information between the item and the records, and then format control proceeds. If
there is no corresponding item, format control terminates.

If format control encounters a colon edit descriptor in a format specification and another list item is not speci­
fied, format control terminates.

If format control encounters the rightmost parenthesis of a complete fIormat specification and another list item
is not specified. format control terminates. However. if another list item is specified. the file is positioned at
the beginning of the next record and format control then reverts to the beginning of the format specification
terminated by the last preceding right parenthesis. If there is no such preceding right parenthesis, format con­
trol reverts to the first left parenthesis of the format specification. If such reversion occurs, the reused portion

9-4A

of the format specification must contain at least one repeatable edit descriptor. If format control reverts to a
parenthesis that is preceded by a repeat specification, the repeat specification is reused. Reversion of format
control, of itself, has no effect on the scale factor, the S, SP; or SS edit descriptor sign control, or the BN or
BZ edit descriptor blank control.

POSITIONING BY FORMAT CONTROL

After each I, F, E, D, G, L, A, H, R, Z, B, or apostrophe edit descriptor is processed, the file is.positioned
after the last character read or written in the current record.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as described under "posi­
tional editing" and "slasi-editing."

If format control reverts as described in the previous section, the file is positioned in a manner identical to the
way it is positioned when a slash edit descriptor is processed.

During a read operation, any unprocessed characters of the record are skipped whenever the next record is

read.

EDITING

Edit descriptors.are used to specify the form of a record and to direct the editing between the characters in a
record and internal representations of data.

A field is a part of a: record that is read-on input or written on output when format control processes one I, F,
E, D, G, L, A, H, R,-Z, B, or apostrophe edit descriptor. The field width is the size in characters of the field.

The interhal representation of a datum corresponds to the internal representation of a constant of the corre­
sponding type.

APOSTROPHE EDITING

The apostrophe edit descriptor has the form of a character constant. It causes characters to be written from
the enclosed characters (including blanks) of the edit descriptor itself. An apostrophe edit descriptor must not
be used on input.

The width of the field is the number of characters contained in, but not including, the delimiting apostrophes.
Within the field, two consecutive apostrophes with no intervening blanks are counted as a single apostrophe.

H EDITING

The nfH edit descriptor causes character information to be written from the n characters (including blanks) fol­
lowing the H of the nH edit descriptor in the format specification itself. An H edit descriptor must not be used
on input.

9-5A

Note that if an H edit descriptor occurs within a character constant that includes an apostrophe, the apostrophe
must be represented by two consecutive apostrophes, which are counted as one character in specifying n.

POSITIONAL EDITING

The T, TL, TR, and X edit descriptors specify the position at which the next character will be transmitted to
or from the record.

The position specified by a T edit descriptor may be in either direction from the current position. On output,
this allows portions of the record to be processed more than once, possibly with different editing.

The position specified by an X edit descriptor is forward from the current position. On input, a position beyond
the last character of the record may be specified if no characters are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be transmitted and therefore
does not by itself affect the length of the record. If characters are transmitted to positions at or after the
position specified by the T, TL, TR, or X edit descriptor, portions skipped and not previously filled are filled
with blanks. The result is as if the entire record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit descriptor never
directly causes a character already placed in the record to be replaced. Such edit descriptors may result in
positioning so that subsequent editing causes replacement.

T. TL, AND TR EDITING

The Te edit descriptor indicates that the transmission of the next character-to or from-a record is to occur at
the cth character position.

The TLc edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position c characters backward from the current position. However, if the current position is
less than or equal to position c, the TLc edit descriptor indicates that the transmission of the next character to

or from the record is to occur at position one of the current record.

The TRc edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position c characters forward from the current position.

X EDITING

The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur at
the position n characters forward from the current position.

9-6A

SLASH EDITING

The slash edit descriptor indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the remaining portion of the current record is skipped
and the file is positioned at the beginning of the next record. This record becomes the current record. On
output to a file connected for sequential access, a new record is created and becomes the last and current
record of the file.

Note that a record that contains no characters may be written on output. If the file is an internal file or a file
connected for direct access, the record is filled with blank characters. Note also that an entire record may be

skipped on input.

For a file connected for direct access, the record number is increased by one and the file is positioned at the
beginning of the record that has that record number. This record becomes the current record.

COLON EDITING

The colon edit descriptor terminates format control if there are no more items in the input/output list. The
colon edit descriptor has no effect if there are more items in the input/output list.

S, SP, AND SS EDITING

The S, SP, and SS edit descriptors may be used to control optional plus characters in numeric output fields. At
the beginning of execution of each formatted output statement, the processor has the option of producing a
plus in numeric output fields. If an SP edit descriptor is encountered in a format specification, the processor
must produce a plus in any subsequent position that normally contains an optional plus. If an SS edit
descriptor is encountered, the processor must not produce a plus in any subsequent position that normally
contains an optional plus. If an S edit descriptor is encountered, the option of producing the plus is

restored to the processor.

The S, SP, and SS edit descriptors affect only I, F, E, D, and G editing during the execution of an output
statement. The S, SP, and SS edit descriptors have no effect during the execution of an input statement.

P EDITING

A scale factor is specified by a P edit descriptor. which is of the form:

kP

where k is an optionally siged integer constant called the scale factor.

9-7A

Scale 	Factor

The value of the scale factor is zero at the beginning of execution of each input/output statement. It applies to
all subsequently interpreted F, E, D, and G edit descriptors until another scale factor is encountered, and then
that scale factor is established. Note that reversion of format control does not affect the established scale fac­
tor.

The scale factor k affects the appropriate editing in the following manner:

1. 	 On input, with F, E, D, and G editing (provided that no exponent exists in the field) and F
output editing, the scale factor affect is that the externally represented number equals the
internally represented number multiplied by 10*'k.

2. 	 On input, with F, E, D, and G editing, the scale factor has no effect if there is an exponent
in the field.

3. 	 On output, with E and D editing, the basic real constant part of the quantity to be produced
is multiplied by 10**k and the exponent is reduced by k.

4. 	 On output, with G editing, the effect of the scale factor is.suspended unless the magnitude of
the datum to be edited is outside the range that permits the use of F editing. If the use of E

editing is required, the scale factor has the same effect as with E output editing.

BN AND BZ EDITING

The BN and BZ edit descriptors may be used to specify the. interpretation of blanks, other than leading, blanks,
in the numeric input fields. At the beginning of execution of each formatted input statement, such blank
characters are interpreted as zeros or are ignored, depending on the value of the BLANK= specifier currently

in effect for the unit. If a BN edit descriptor is encountered in a format specification, all such blank charac­
ters in succeeding numeric input fields are ignored. The effect of ignoring blanks is to treat the input field as
if blanks had been removed, the remaining portion of the field right-justified, and the blanks replaced as leading
blanks. However, a field of all blanks has the value zero. If a BZ edit descriptor is encountered in a format
specification, all such blank characters in succeeding numeric fields are treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G editing during execution of an input statement.
They have no effect during execution of an output statement.

NUMERIC EDITING

The 1, F, E, D. and G edit descriptors are used to specify input/output of integer, half precision, real. double
precision, and complex data. The following general rules apply:

1. 	 On input, leading blanks are not significant. The interpretation of blanks, other than leading
blanks, is determined by a combination of any BLANK= specifier and any BN or BZ blank

9-8A

control that is currently in effect for the unit. Plus signs may be omitted. A field of all

blanks is considered to be zero.

2. 	 On input, with F, E, D, and G editing, a decimal point appearing in the input field over­
rides the portion of any edit descriptor that specifies the decimal point location. The input
field may have more digits than the processor uses to approximate the value of a datum.

3. 	 On output, the representation of a positive or zero internal value in the-field may be prefixed
with a plus, as controlled by the S, SP, and SS edit descriptors or the processor. The repre­
sentation of a negative internal value in the field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in a formatted output record.

4. 	 On output, the representation is right-justified in the field. If the number of characters pro­

duced by the editing is smaller than the field width, leading blanks will be inserted in the
field:

5. 	 On output, if the number of characters produced exceeds the field width or if an exponent
exceeds its specified length using-the Ew. dEe or Gw. dEe edit descriptor, the processor will fill
the entire field of width w with asterisks. However, the processor must not produce asterisks if
the field width is not exceeded when optional characters are omitted. Note that when an SP
edit-descriptor is in effect, a plus is not optional.

Integer Editing

The Tw and Tw. m edit descriptors indicate that the field to be edited occupies w positions. The specified
input/output list item must be of type integer. On input, the specified list item will become defined with an
integer datum. On output, the specified list item must be defined with an integer datum.

On input, an Iw. n edit descriptor is treated identically to a Tw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer constant, except for
the interpretation of blanks.

The output field for the Iw edit descriptor consist of zero or more leading blanks followed by a minus if the
value of the internal datum is negative, or an optional plus otherwise. followed by the magnitude of the internal
value in the form of an unsigned integer constant without leading zeros. Note that an integer constant always

consists of at least one digit.

The output field for the Iw. m edit descriptor is the same as for the 1w edit descriptor, except that the
unsigned integer constant consists of at lease m digits and, if necessary, has leading zeros. The value of rn must
not exceed the value of w. If m is zero and the value of the internal datum is zero. the output field consists of
only blank characters, regardless of the sign control in effect.

9-9A

Half Precision, Real, and Double Precision Editing

The F, E, D, and G edit descriptors specify the editing of half precision, real, double precision. and complex
data. An input/output list item corresponding to an F, E, D, or G edit descriptor must be half precision, real,
double precision, or-complex. An input list item will become definedwith a-datum whose type is the same as
that of the list item. An output list item must be defined with a datum whose type is the same as that of the
last item.

F EDITING

The Fw and Fw. d edit descriptors indicate that the field to be edited contains w positions. If . d is specified,
it indicates that the fractional part of the field consists of d digits; if omitted, there will be no fractional digits.

The input field consists of an optional sign, followed by a string of digits optionally containing a decimal
point. If the decimal point is omitted, the rightmost d digits of the string, with leading zeros assumed if neces­

sary, are interpreted as the fractional part of the value represented. The string of digits may contain more digits
than a processor uses to approximate the value of the constant. The basic form may be followed by an expon­
ent of one of the following forms:

1. Signed integer constant.

2. E followed by zero or more blanks, followed by an optionally signed integer constant.

3. D followed by zero or more blanks, followed by an optionally signed integer constant,

An exponent containing a D is processed identically to an exponent containing an E.

The output field consists of blanks, if necessary, followed by a minus if the internal value is negative, or an
optional plus otherwise, followed by a string of digits that contains a decimal point and represents the magni­
tude of the internal value, as modified by the established scale factor and rounded to d fractional digits. Lead­
ing zeros are not permitted except for an optional zero immediately to the left of the decimal point if the
magnitude of the value in the output field is less than one. The optional zero must appear if there would
otherwise be no digits in the output field.

E AND D EDITING

The Ew. d, Dw. d. and Ew. dEe edit descriptors indicate that the external field occupies w positions, the frac­
tional part of which consists of d digits, unless.a scale factor greater than one is in effect, and the exponent
part consists of e digits. The ehas no effect on input.

The form of the input field is the same as for = editing.

The form of the output field for a scale factor of zero is:

9-10A

[±] [0] .X1X2... Xdexp

where: ± signifies a plus or a minus.

X1X2... Xd are the d most significant digits of the value of the datum after rounding.

exp is a decimal exponent, of one of the following forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent

Ew.d I M I - 99 E+zlz2 or +0zlz2

99 SIMI - 999 +zlz2z3

-Ew.dEe Ie I (10*×e) - 1 E+zlz2...ze

Dw.d I E I 1 99 D+zlz2 or E+zlz2 or +0zlz2

99" Iexp I-999 +zlz2z3

where z is a digit. The sign-in the exponent is required. A plus sign must be used ifdthe exponent value is
zero. The forms Ew. d and Dw. d must not be used if I exp I " 999.

The scale factor k controls the decimal normalization. If -d k -00, the output field contains exactly I I
leading zeros and d - k significant digits after the decimal point. If 0 k i d + 2, the output field con­
tains exactly k significant digits to the left of the decimal point and d - k + 1 significant digits to the right of

the decimal point. Other values of k are not permitted.

G EDITING

The Gw. d and Gw. dee edit descriptors indicate that the external field occupies w positions, the fractional
part of which consists of d digits, unless a scale factor greater than one is in effect, and the exponent part
consists ofe digits.

G input editing is the same as for F editing.

The method of representation in the output field depends on the magnitude of the datum being edited. Let N
be the magnitude of the internal datum. If N < 0.1 or N _ 10"d, Gw. d output editing is the same as kPEw. d
editing and Gw. dEe output editing is the same as kPEw. dEeoutput editing, where k is the scale factor cur­
rently in effect. If N is greater than or-equal to 0.1 and is less than 10"d. the scale factor has no effect, and
the value of N determines the editing as follows:

9-11A

Magnitude of Datum Equivalent Conversion

0.1 N II F(w-n) EL nQ'b")

I N 10 F(w- . (!-1), n"b")

10**(d-2) _ N < 10*(d-1) F(w.) 1, a_("')

10**(d.I) N < 10**d E(w-_n). 0, A("_')

where: b is a blank.

n is 4 for Gw. d and e+2 for Gw. dEe.

Note that the scale factor has no effect unless the magnitude of the datum to be edited is outside the range that
permits the effective use of F editing.

COMPLEX EDITING

A complex datum consists of a pair of separate real data; therefore, the editing is specified.by two successively
interpreted F, E, D, or G edit descriptors. The first of the edit descriptors specifies the real part; the second
specifies the imaginary part. The two edit descriptors may be different. Note that non repeatable edit
descriptors-may appear between the two successive F, E, D, or G edit descriptors.

L EDITING

The Lw edit descriptor indicates that the field occupies w positions. The specified input/output list item must
be of type logical. On input, the list item will lecome defined with a logical datum. On output, the specified
list item must be defined with a logical datum.

The input field consists of optional blanks, optionally followed by a decimal point, followed by a T for true or
F for false. The T or F may be followed by additional characters in the field Note that the logical constants
. TRUE . and . FALSE . are acceptable input forms.

The output field consists of w-1 blanks followed by a T or F, as the value of the internal datum is true or
false, respectively.

A EDITING

The A[w] edit descriptor indicates that the field occupies w positions. The specified input/output list item is
treated as if it were of type character, regardless of its declared type, except that it must not be used with an
input/output list item of type bit.

On input, the input list item will become defined with character data.

9-12A

http:specified.by

If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w
is not specified with the A edit descriptor, the number of characters in the field is the length of the input/
output list item in characters.

Let len be the length in characters of the input/output list item. If the specified field width w for A input is
greater than or equal to len, the rightmost len characters will be taken from the input field. If the specified
field width is less than len, the w characters will appear left justified with len-w trailing blanks in the internal
representation.

If the specified field width w for A output is greater than len, the output field will consist of w-len blanks
followed by the len. characters from the internal representation. If the specified field width w is less than or
equal to len the output field will consist of the leftmost w characters from the internal representation.

PROCESSOR DEPENDENT EDITING

The R, Z, and B-edit descriptors are used to specify processor dependent editing. The editing consists of direct
bit, hexadecimal, or character code conversion between internal storage and character strings of a record.
Conversion proceeds on a bit-by-bit basis; no numeric or logical significance is attached to the data. Any data
except type bit may be edited with the R-and Z edit descriptors. Data of type bit may only be edited with a
B edit descriptor.

Note that if an input/output list item is of type complex two repeatable edit descriptors are required for the
item. These edit descriptors do not have to be the same.

R Editing

The Rw edit descriptor indicates that the field occupies w positions. The specified input/output list item is
treated as if it were of type character, regardless of its declared type.

Let Len be the length in characters of the input/output list item. If the specified field width w for R input
is greater than or equal to len, the rightmost len characters will be taken from the input field. If the specified
field width is less than-len the w characters will appear right-justified with len-w leading characters filled with
binary zeros in the internal representation.

If the specified field width w for R output is greater than len, the output field will consist of w-len leading
zero characters followed by the len characters from the internal representation. If the specified field width is
less than or equal to len, the output field will consist of the rightmost w characters from the internal repre­
sentation.

Z Editing

The Zw and Zw. rn edit descriptors indicate that the field occupies w positions. The specified input/output
list item is treated as a sequence of hexadecimal digits, each occupying 4 bits in the internal representation of
the input/output list item.

9-13A

On input, the Zw and Zw. m edit descriptors are treated identically.

Let a be the number of hexadecimal digits that may be stored in the input/output list item at one time.

If the specified field width w for Z input is greater than or equal to a, then the rightmost a hexadecimal digits
are transmitted to the input list item after conversion from their character representation. If the specified field
width is less than a, the w hexadecimal digits will appear right-justified and preceded by a-w hexadecimal zeros
in the internal representation after conversion from their character representation. Blanks which appear any­
where in the field are treated as zeros.

If the specified field width w for Zw output is greater than a, the output field will consist of w-a blanks
followed by the a hexadecimal digits from the internal representation. If the specified width is less than or
equal to a, the output field will consist of the rightmost w hexadecimal digits from the internal representation.

The output field for the Zw. m edit descriptor is the same as for the Zw edit descriptor, except that at least
in hexadecimal digits will appear, with leading hexadecimal zeros if necessary. The value of m must not exceed
the value of w. If the value of m is zero and the internal representation of the output list item consists of all
hexadecimal zeros, the output field will consist of only blank characters.

B Editing

The Bw edit descriptor indicates that the field occupies w positions. The specified input/output list item must
be of type bit. On input, the list item will become defined with a bit datum. On output, the specified list

item must be defined with a bit datum.

Both the input and output fields consist of w-1 blanks followed by a 0 or a 1.

LIST-DIRECTED FORMATTING

The characters in one or more list-directed records constitute a sequence of values and value separators. The
end of a record has the same effect as a blank character, unless it is within a character constant. Any sequence
of two or more consecutive blanks is treated as a single blank, unless it is within a character constant.

Each value is either a constant, a null value, or one of the forms;

r c

r.

where r is an unsigned, non zero, integer constant. The rc form is equivalent to rsuccessive appearances of

the constant c. and the r form is equivalent to r successive null values. Neither of these forms may contain
embedded blanks, except where permitted in the constant c.

9-14A

A value separator is one of the following:

1. 	A comma optionally preceded by one or more contiguous blanks and optionally followed by

one or more contiguous blanks.

2. 	 A slash-optionally preceded by one or more contiguous blanks and optionally followed by

one or more contiguous blanks.

3. 	 One or more contiguous blanks between two constants or following the last constant.

LIST-DIRECTED INPUT

Input forms acceptable to format specifications for a given type are acceptable for list-directed formatting,
except as noted below. The form of the input value must be acceptable for the type of the input list item.
Blanks are never used as zeros, and embedded blanks are not permitted in constants, except within character
constants and complex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant.

When the corresponding input list item is of type half precision, real, or double precision, the input form is
that of a numeric input field. A numeric jnut field is a. field suitable for F editing that is assumed to have no
fractional digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the input form consists of a left parenthesis followed by
an ordered pair of numeric input fields separated by a comma, and followed by a right parenthesis. The
first numeric input field is the real part of the complex constant and the second is the imaginary part. Each
of the numeric input fields may be preceded or followed by blanks. The end of a record may occur between
the real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type character, the input form consists of a non-empty string of charac­
ters enclosed in apostrophes. Each apostrophe within a character constant must be represented by two con­
secutive apostrophes without an intervening blank or end of record. Character constants may be continued
from the end of one record to the beginning of the next record. The end of the record does not cause a blank
or any other character to become part of the constant. The constant may be continued on as many records
as needed. The characters blank, comma, and slash may appear in character constants.

Let len be the length of the list item, and let w be the length of the character constant. If len is less than or
equal to w, the leftmost len characters of the constant are transmitted to the list item. If len is sreater than
w, the constant is transmitted to the leftmost w characters of the list item and the remaining len-w characters

of the list item are filled with blanks. Note that the effect is as though the constant were assigned to the list
item in an assignment statement.

A null value is specified by having no characters between successive value separators, no characters preceding
the first value separator in the first record read by each execution of a list-directed input statement, or the
r'form. A null value has no effect on the definition status of the corresponding input list item. If the input

9-15A

list item is defined, it retains its previous value; if it is undefined, it remains undefined. A null value may
not be used as either the real or imaginary part of a complex constant, but a single null value may represent
an entire complex constant. Note that the end of a record following any other separator, with or without
separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed input statement causes termination
of execution of that input statement after assignment of the previous value. If there are additional items in the
input list, the effect is as if null values had been supplied for them.

Note that all blanks in a list-directed input record are considered to be part of some value separator except for
the following:

1. 	 Blanks embedded in a character constant.

2. 	 Embedded blanks surrounding the real or imaginary part of a complex constant.

3. 	 Leading blanks in the first record read by each execution of a list-directed input statement, unless
immediately followed by a slash or comma.

LIST-DIRECTED OUTPUT

The form of the values produced is the same as that required for input, except as noted otherwise. With the
exception of character constants, the values are separated by one of the following"

1. 	 One or more blanks.

2. 	 A-comma optionally preceded by one or more blanks and optionally followed by one or more
blanks.

The processor may begin new records as necessary, but, except for complex constants and character constants,
the end of a record must not occur within a constant and blanks must not appear within a constant.

Logical output constants are T for the value true and F for the value false.

Integer output constants are produced with the effect of an I w edit descriptor, for some reasonable value of w.

Real and double precision constants are produced with the effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x of the value and a range 10**dl < x < I"d2,where d and d2
are processor dependent integer values. If the magnitude of x is within this range, the constant is produced
using OPFw. d: otherwise, IPEw dEe is used. Reasonable processor dependent values of w,d. and e are used

for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and imaginary parts. The end
of a record may occur between the comma and the imaginary part only if the entire constants is as long as. or

9-16A

longer than, an entire record. The only embedded blanks permitted, within a complex constant are between the

comma and the end of a record and one blank at the beginning of the next record.

Character constants produced are not delimited by apostrophes, are not preceded or followed by a value

separator, have each internal apostrophe represented externally by one apostrophe, and have a blank character
inserted by the processor for carriage control at the beginning of any record that begins with the continuation of
a character constant from the preceding record.

If two or more successive valuesin an output-record produced have identical values, the processor has the op­
tion of producing a repeated constant of the for r*c instead of the sequence of identical values.

Slashes as value separators, and null values are not produced by list-directed formatting.

Each output record begins with a blank character to provide carriage control when the record is printed.

NAMELIST FORMATTING

The form of a NAMELIST block is:

&grpname namval[,namval] ...&END

where: grpname is the group name of the block.

namval is one of the forms:

vname = c

aname [s I.= [f"] c[,[fl j]

where: vname is a variable name,

c is a constant,

aname is an array name,

s is an array subscript in which each subscript expression is an integer constant.

r is an unsigned, positive integer constant,

The optional form r.c is equixalent to r successive appearances of the constant c.

A NAMELIST block consists of one or more formatted records, the last character, other than the character
blank, of each record must be one of the following:

9-17A

1. 	 A comma that occurs after the constant c. Note that a complex constant must begin and end
in the same record.

2. 	 The last character of the block terminator &END.

In e ch record of a NAMELIST block, column one is reserved for carriage control. On input, the character in
column one is ignored. On output, a carriage control character is placed in column one of each record.

An embedded blank must not occur within the strings:

1. 	 &grpname

2. 	 vname

3. 	 aname[(s)]

4. 	 &END

A blank is otherwise not significant in a NAMELIST block.

NAMLIST INPUT

The group name of the NAMELIST block being transmitted must appear in the READ statement being exe­
cuted. Each variable name and array name in the block must appear in the input/output list referred to by

the READ statement.

Each constant c must agree with the type of the corresponding input list item as follows:

1. 	 A bit, logical, character, or complex constant must be of the same. type as the corresponding
input list item. A character constant is truncated from the right or extended to the right with
blank characters, if necessary, to yield a character constant the same length as the correspond­

ing character variable, character array element, or substring.

2. 	 An integer, half precision, real, or double precision constant may be used for an integer, half
precision, real, or double precision input list item. The constant is converted to the typeof
the list item during transmission. For conversion to half precision, real, or double precision.
an integer has an implied decimal point to the right of the rightmost digit.

The forms of a logical constant having the value true are:

T
.T.
.TRUE.

TRUE

9-18A

The forms of a logical constant having the value false are:

F

.F .
FALSE.
FALSE

A character constant must have the same form as if it appeared in a statement of an executable program (the
delimiting apostrophes must be present).

The forms of integer, half precision, real, double precision, and complex constants are as described for list­
directed input.

A bit constant must be either a 0 or a 1.

The character blank is ignored within a non-character constant. Use of the BLANK= specifier in an OPEN

statement has no effect on NAMELIST editing.

An error condition exists if a constant- has no characters other than the character blank. (A character constant

is allow to have only blank characters between the delimiting apostrophes).

NAMELIST OUTPUT

On output, each NAMELIST block is terminated with the characters &END.

The processor begins a new record for each block transferred. Column one of the first record of each block

contains-the carriage control character blank.

The processor begins a new record for the group name, for each variable name, for each array name, and for
the block terminator &END. Column one of each such record contains the carriage control character blank.

The processor begins a new record if the output field width of a constant would exceed the number of
unfilled character positions remaining in the current record. The current record is instead filled with blank
characters and terminated. A new record is begun with the carriage control character blank in column one and
the leftmost character of the constant in column two.

Logical constants are produced as T for the value true and F for the value false.

Bit constants are either 0 or 1.

Character constants are produced with delimiting apostrophes.

Ilteger constants are produced with the effect of an I edit descriptor.

9-19A

Except for the value zero, half precision, real, and double precision constants are produced with the effect of

an E edit descriptor. The scale factor is zero; no significant digits are produced before the decimal point. The
number of significant digits produced to the right of the decimal point is that minimum number appropriate

to the precision of the internal datum. Trailing zeros are eliminated. The characters 0.0 are produced for the

value zero.

Complex constants are produced as a pair of real constants enclosed in parentheses and with a comma separat­

ing the real and imaginary parts. Each real constant is produced as described in the preceding paragraph.

9-20A

This page left blank intentionally.

9-21A'

10

PAGE BLANK NOT FILMED

ARRAY ASSIGNMENT

The array assignment statement discussed in this section is
neither a part of the standardset-of FORTRAN-statements

A{ (as defined by American National Standard . X3.9-1966,
FORTRAN) nor directly related to the vector programming
capabilities of STAR FORTRAN. An, array assignment,
statenient, which is typified by one or more operands
written in subarray notation, is a shorthand for FORTRAN
DO loops. If the DO-loop equivalent of n-array assignment-
statement satisfies the criteria listed in section- 11 for
vectorizable loops, and if the V compile option of the
FORTRAN system control statement is on, then the array
assignment statement will be compiled into machine vector
instructions.

SUBARRAY REFERENCES
A subarray is a-cross-section of an array; it can -be one
element, several elements, or all of the elements of the
array. A subarray is identified by an array name, or an
array name qualified by a subscript containing one' or more
implied-DO subscript expressions plus any number of other
subscript expression forms (see section-2). Implied-DO
subscript expressions can appear only in array- expressions
which, in turn, can appear only in- array- assignment
statements.

The three implied-DO subscript expression forms are shown
below,

Forms:

- m :m2m 3

m19':ms

Initial value of subscript expression; an integerm1

constant or simple integer variable.

nteTerminal value of subscript expression;a
integer constant or simple integer variable.

s3Otntr incrementation value; an integer con-
Optional iWhente valem n in ism3
omitted, the colon immediatly. precedn it
must also be omitted and a value of 1 is
assumed for the incrementation value.

RepresentsB the declared dimension size.

The first form indicates subscript expression values-ranging
from m I up through m , starting with m and incremented
by m . The second Iplied-DO form isequivalent to the
form 1:m 2:l, where m2 is equal to the declared size of the
array dimension. The third implied-DO form indicates
subscript expression values starting with m, up through the
declared size of the array dimension and in increments of
m . In every case, if the value (m -m)/m is not integral,
th subscript expression never takL ob thi terminal value

fim. The initial value m I must be less than or equal to the
D teminal value i 2.

Example:

A(5,1o;2)-is the array declarator. Then,

A(*,1) designates one-half of the array-elements and

A(*;*,2Ydesignates the other half.

A(l:2.l:2.l:2) names the following elements:
A(1,1,1)

A(1,1)

A(2,2,1)
A(1,2,1)

A(2;2,1)

A(r;',2)

A(2,1,2)

A(1,2,2)

A(2,2,2)

A(1:5t2,1,1) designates the following elements:

A(1.1,1)

A(3;1,1)

A(5,1,1)

An entire array can be designated by the unsubscripted array
name.

Example:

A(1O,1O) is the array declarator. Then, the followingimplied-DO forms are equivalent:

A

A(1:10,1:10)
A(1:lO,)

A(*,I:10)
A(*,*)

The order m which the array elements are indicated by a
subarray is always with the leftmost subscript expression

varying through its range, then the next subscript expression
being incremented and the first subscript varying through its
range again, and so on until every implied DO has been run
through its range at least once. This rule applies to all
subarrays, regardless of whether an array is rowwise orcolumnwise. However, whether or not an array is rowwise

does affect whether or not its elements are accessed

The association between an instance of the subarray
notation and the values elicited by it is dispiayed in
figure 10-1. For an array declared as A(10,3), the figure
shows the transformation from a subarray A(I,*) to its
equivalent in array element references, which in-turn elicit
different sets of values according to whether A is rowwise
or eolumnwise. In contrast -to the subarray A(, *), the
subarray A(*,I) would not identify consecutive elements in
memory if the array declarator occurred in a ROWWISE
statement. In general, only a single row of elements in a
rowwise arra (of any size) can be specified consecutively in
memory at one time using the subarray notation.

60386200,E

C

10-1

A: . . . (as defined by American National Standard X3.9-1978, . . .

B: * Represents

dimension.

a constant with a value equal to the declared upper bound for the corresponding

C: . . . form ml:m2:1 where ml and m2 are, respectively, the declared lower and upper bounds for
the corresponding array dimension. The third form is equivalent to the form ml:m2:m3 where m2
is the declared 'upper bound for the corresponding array dimension. The second and third forms may
not be used for the last (1st if ROWWISE) dimension of an assumed size array. In every case,
if the value (m2-ml)/m3 is not integral. ...

D: . . . m2. there is no restriction on the values of ml, m2, and, m3.
be greater, than m2, or both. If m3 is negative and ml is less than
and ml is greater than m2, the subarray is empty.

m3 may be negative, ml may
m2, or if m3 is positive

10-IA

1st 	 element
SUBARRAY in A
INTERPRETAT1ON 5th element

in A
9th 	 element

in A

A(1,2)

A(1,3)i
1st element

inA

.2nd element
in A

3rd 	 element
in A

Figure 10-1. Meaning of a Subarray

CONFORMABLE' SUBARRAYS
Two subarrays are called conformable if they satisfy both of
the following conditions:

* 	 The number of subscript expressions that are implied-
DO subscript expressions must be the same for both.

* 	 Scanning from left to right in the subscript, the ith
implied-DO sgsaript expression in one must be the
same as the i implied-DO subscript expression in the
other. Implied-DO subscript expressions are considered
to be the same when the expansions of the subscript
expressions into the following form are identical:

initial value : terminal value : incrementation value

The subarrays need not have the same number of subscript
expressions to be conformable, nor must the subarrays be
the same data type. The number of entities specified in a
subarray is the same as in the subarrays conformable with it.

Examples:

Given the array declarators A(5,3), B(8,5), and C(5,3,4), the
following pairs of subarrays are conformable:

A A(1:5,3) A(1:5,3) A(1:4,3)

A B(1:5:1,2) B(1,I:5) C(1,2,1:4)

A A(1:5,1:3) A(1:5:2,2)
B(1:5,1:3) C(1:5,2,1:3) B(1:5:2,4)

and the following pairs of subarrays are nonconformable:

A 	 B(15,1:3) A(1:4,3)
B 	 B(1:3,1:5) C(1:1,2,1:4)

ARRAY EXPRESSIONS
An array expression has the form of any scalar expression ­
arithmetic, relational, or logical - except that it mustcontain at least one subarray. Any two subarrays in an array
expression must be conformable.

Evaluation of an array expression proceeds with the stated
operations being performed on corresponding elements of
the array operands. Any scaler primaries are treated as

arrays having the same number of elements as a subarray in
the 	 expression, with all elements containing the scalar
value.

Examples:

Given the array declarators A(5.5), B(10,5), and C0(5,10), the
following are array expressions:

A+3.1
A(1:3,1)*A(1:3,2)/A(1:3,3)*A(l:3,4)

A(I.1:5)*'2.0

B(10,1:S)+C(I:5,10)+1.0-A(I,1)

(A-B(I:3 ,*))/24.5*C(*,1:5)

ARRAY' ASSIGNMENT STATEMENT
An array assignment statement has the following form:

a=expr

expr An array expression, or any scalar expression.
a A subarray conformable with the value of

expr.

If the value of expr is a scalar (one value), execution of the
assignment statement assigns that value to all identified
elements of the subarray a. If the value of expr is a
subarray (more than one value), the identified elements of
a are replaced with the corresponding elements in the

array expression result.
Data type conversion rules on assignment are identical to
those described in section 4 for scalar assignment -state­
ments.

Examples:

Each of the statement pairs:

DIMENSION X(5,3),Y(2,5)
X(1:5,3) = Y(2,1:5)

DIMENSION X(5,3), Y(2,5)X(*,3) --Y(2,*)

has the same effect as the statement:

DIMENSION X(5,3),Y(2,5)

DO 100 I=1,5,1

X(1,3) = Y(2,I)

100 CONTINUE

which in turn would accomplish the following set of
assignments:

X(1,3) = Y(2,1)
X(2,3) = Y(2,2)
X(3,3) =Y(2,3)
X(4,3) = Y(2,4)
X(5,3) = Y(2,5)

60386200 E
 10-2

This page left blank intentionally.

10-2A

Similarly, the statement pair: which would accomplish the'following set of assignments:

X(1,1) = Y(1,1,2)

DIMENSION X(5;3), Y(10,3,2) X(4,1) = Y(4,1,2)

X(:*:3,*) = Y(1:5:3,*,2) X(1,2) = Y(1.2,2)

X(4,2) = Y(4,2,2)
X(1,3) = Y(1,3,2)

has the same effect as the statements:-

If any or- all of the DIMENSION statements in these
examples. are changed to ROWWISE statements, the

DIMENSJON X(5,3),Y(10,3 2) examples remain correct. Furthermore, if in the first
DO 200 12=1,3;1 example. the, array deelarator for, X appeared in the
DO 100 I1=;r5,3 DIMENSION statement and the array declarator for Y
X(I1,12) = Y(1,12,2)- appeared in a ROWWISE statement, the array, assignment

100, CONTINUE statement.wouldbe-vectorizable.because the elements of X
200 CONTINUE and;Y would be accessed consecutively in memory.

NOT FILMED
? CD NG PAGE BLANK

60386200 E

10-3

A: 	 DEFINE STATEMENT,

Subarrays can be identified by single variable names or array element names through the use of the
DEFINE statement. The DEFINE statement is an executable statement which establishes memory
allocation and pointer data for DYNAMIC variables. A single DYNAMIC variable then can be made
to describe a subarray, and that description can be changed throughout the program execution, if
desired. DEFINE-can also be used to dynamically establish the level of memory assigned to a
arrays.

Forms:

DEFINE LEVEL i,dvl,dv2 dvm

DEFINE (dvl,Sl),(dv2,S2) . (dvm,Sm)

i An integer constant, simple integer variable or integer expression

dvn Dynamic variable name or Dynamic array element

Sn A subarray reference to an array, a dynamic variable or without array name (to establish
dimensionality only)

Forms for Sn:

A(sl:s2:s3,s4:sS:s6)

(sl:s2:s3,s4:sS:s6)

dV(sl:s2:s3,s4:sS:s6 .)

dAjlj2,. ..jm)

A 	 Name of a REAL, DOUBLE, HALF, COMPLEX, or INTEGER array

dV Name of a dynamic variable

dA Name of dynamic array

jn 	 Integer subscript expression, constant or integer

variable

sl:s2:s3 Can optionally be sl:s2 or sl

sl Initial value of subscription integer constant or simple integer variable

s2 If present, terminal value of subscript expression; an integer constant or
simple integer variable

s3 Optional incrementation value; an integer constant or simple integer variable

In all cases, 1 to 7 dimensions are allowed. The first form establishes the level of memory to be
used as dynamic space for the dynamic variables or dynamic array elements named in the list.

Example:

PROGRAM DEMO

DIMENSION A(100)

DYNAMIC C

10-3.1A

1=2

DEFINE LEVEL I,C

C=A(1:100)

The dynamic variable C would be assigned to point to Intermediate (LEVEL 2) Memory. The
replacement statement would then accomplish the transfer of 100 elements of A from Main Memory
to Intermediate Memory, into 100 words of dynamic space there.

The integer expression i may have values from one to three. Any other value will cause the genera­
tion of a fatal object time diagnostic.

Changing memory level assignments will have no effect on the named variables when they appear as
sources for operands:

DEFINE LEVEL 2,C

C=A(1: 100)

DEFINE LEVEL 1,C

A(I:100C**2

The data moved to C will still be pointed at when C**2 is invoked. When C appears as an object
of a replacement statement again, however, the dynamic variable C is redefined and a new memory
allocation made, hence:

DEFINE LEVEL I,C

A(1:100)=C**2

This would cause C to be defined as pointing to dynamic space in main memory, and the 10 elements
of A moved there. It is then possible for the dynamic variable C to point to two different areas in
the same FORTRAN statement:

DEFINE LEVEL 2,C

C=A(1O0)

DEFINE LEVEL 1,C

C-C**2

A=C

10-3.2A

The first allocation for C would be in Intermediate (LEVEL 2) Memory. The second allocation
'pending' for C would be in Main Memory. The replacement statement would move 100 elements
of A from main memory to Intermediate Memory. The arithmetic statement C=C'*2 would multiply
fhe data in Intermediate Memory by itself and store the result in the newly allocated area in Main
;Memory. The old data in LEVEL 2 for C would be abandoned.

Level reassignients of dynamic variables which are, in fact, pointers into, subarrays of other arrays
are ignored. The level of memory allocated to the main array, of which the subarray is part, is
that level assigned to the dynamic variable.

The major purpose in a dynamic level assignment is to allow the most efficient use of the memories
for program execution, although data base sizes and memory requirements may not be known until
object time.

The second form assigns dynamic variable or dynamic array elements as pointers to subarrays or
array components.

Example:

PROGRAM DEMO

DIMENSION A(100)

DYNAMIC C

DEFINE (C,A(10:20))

C=3.14159

The dynamic iariable C becomes synonymous with the subarray A(10:20). The statement C=3.14159
results in. the generation of a data transfer of the constant 3.14159 to elements 10 through 20 of A.

If the array name is omitted, then the subarray statement is used to establish implicit dimensions for
C, and causes the allocation of dynamic space to C.

Example:

PROGRAM DEMO

DYNAMIC C,

DEFINE (C,(10,10,10))

C=3.1415926

10-3.3A

This establishes C as an array in Main Memory dynamic space of dimensions 10 by 10 by 10.
The replacement statement would transfer the constant 3.1415926 to all 1000 elements of C.

Dynamic variables and dynamic array element pointers establish the characteristics of the array they
are describing. These dynamically established arrays may themselves be subdivided into subarrays:

Example:

PROGRAM DEMO

DYNAMIC C,D

DEFINE (C,(10,10,10)).

DEFINE (D,C(1,1,1:10))

D=3.1415926

The dynamic variable D would point to the first ten elements of the dynamically assigned array C.

Dynamic array elements can be referenced in subarray form only in DEFINE statements.

The processing of dynamic variables and define statements is reserved for object time execution. All
errors in conformability, memory allocation conflict and reuse of names and data space will result in
the generation of fatal object time diagnostics.

Dynamic variables that are DEFINED as pointers into subarrays must be of the same data type as
the subarray. A type mismatch will be the result in a fatal compile time diagnostic.

10-3.4A

Section 11 is deleted entirely.

11-1

-Section, -1-2 is deleted entikely.

12-1

Section 13 is deleted entirely.

13-1

STAR FORTRAN-SUPPLIED SUBROUTINES 14

The following types of system-defined subroutines can be
called front a STAR FORTRAN program:

Special calls: 	 Used to place specific STAR-100
machine instructions in the object
code. Although a special call looks
like a subroutine call, the special call
generates in-line code.

Data Flag Used to trap special conditions and to
Branch Manager branch to an interrupt-handling
calls: routine as a result of trapping such a

condition.

MDUMP cals: 	 Used to dump specified areas in
virtual memory during program
execution.

System Error 	 Used to alter FORTRAN's run-time
Processor calls: 	 error processing so that, for example,

execution halts when an error occurs
that would normally have resulted in
only a warning being issued.

Concurrent I/O Used to perform input and output of
calls: large arrays while at the same time

leaving the CPU free for computa-
tional processing.

STAR FORTRAN SPECIAL CALLS

STAR FORTRAN users are able to have the compiler
directly generate any instruction in the machine language
repertoire. Such requests are made in the form of CALL
statements to subroutines with special reserved names. The
argument lists in the special call statements are used to
provide label references, symbolic references, and literals to
be included with the generated instruction. The user of
special calls should be familiar with the hardware instrue-
tions or should have access to the STAR-100 Computer
Hardware Reference Manual.

NOTE

c The use of special calls is not
recommended for the average FORTRAN
user. Special calls should only be used
when absolutely necessary for specific
programming tasks.

Form:

CALL ma,.. a)

. 'a

in 	 One of the special call names beginning with
Q8.

a. 	 An argument corresponding to one of the fields
of the instruction format.

The special call formats are listed in appendix D.

ARGUMENTS
All arguments are either label references, symbolic
references, or lterals.

NOTE

The arguments for the special calls
correspond to the fields of the hardware
instructions. Arguments for the STAR'
Assembler instructions can appear
different but are functionally the same.
For example, the register to register
hardware instruction (op code 78) is RTOR
RT in STAR Assembler but CALL
Q8RTOR(RT) in the special call format.
The extra comma accounts for the missing
S operand in the instruction.

The special call arguments must rigidly follow the
instruction format because they represent the information
associated with the instruction fields. Any missing
argument must be indicated by a comma, except that
trailing missing arguments can be omitted. With some
exceptions, the arguments must appear in the order of the
definable fields in the hardware instruction. An exception is
that only one argument is allowed for an entire 8-bit
G-designator field having 1-bit subfields. Another A
exception is that in indexed branch instructions (0 through
BS), the combined Y and B fields require only one argument,
usually a label reference. If the combined fields represent
two register designators, however, the user must use a
16-bit hexadecimal constant.

When an argument is a literal, the value of the literal goes
in the instruction field. When an argument is a variable, the
register number of the variable goes in the instruction field;
the compiler generates a load before the designated instruc­
tion and a store afterwards, if required. Only registers 20
through FF (hexadecimal) are used for this purpose. The
user is free to use the low-order temporary registers, but
the contents are destroyed by generated object code when
the user reverts to standard STAR FORTRAN statements.
Subfunction bits in the G field of formats 1, 2, and 3 are not
cross-checked with the operands to assure validity of the
instruction. Warnings are not generated if the user codes a
jump into or out of range of a DO loop.

Label References

A label reference is designated by prefixing a statement
label with the ampersand character. Label references can
appear in the following instruction formats:

In the combined Y and B fields of a format C
instruction.

In the 48-bit immediate' (I) field of the format 5
instruction, except when only 24 bits of the field are
used by certain instructions.
In the 	 8-bit immediate (I) field of format 9 and
format Binstructions.

60386200 G 	 14-1

A:

B: Deleted

.C:

14-IA

If the label reference occurs in the combined Y and B fields
of a format C instruction, the label reference is translated
into a code half-word offset from the special CALL to the
statement within the program unit identified by the label,
The labeled statement can be ahead of or behind the special
CALL statement.

If the label reference occurs in the 48-bit immediate field
of a format 5 instruction, the processor translates the label
reference into a bit address of the statement tagged by the
label. This bit address is a relative bit address with respect
to the code base of the program unit in which the special
CALL statement occurs.

The calls in figure 14-2 produce identical results; each
enters the character string An in register 41 (hexadecimal).
These examples are given to show how literals can be used
as arguments; however, it should be noted that the use of
register 41 would probably cause a program bug, because
registers 20 to FF (hexadecimal) are assigned by the
compiler.

CALL Q8ES(S5,'AB')

CALL Q8ES(X'41',X'4142')

CALL Q8ES(B'1000001','AB')

CALL QSES(A''AB')

If the label reference occurs in the 8-bit immediate field of
a 2F, 32, or 33 instruction, the processor translates the label
reference into a half-word offset from the special CALL
statement, to the statement tagged by the label. If the
resultant half-word offset exceeds a magnitude of 255, a
zero is used to initialize the 8-bit immediate field, and the
processor generates no warning to the user.

A label reference is the only permissible operand in the
branch field of a relative branch instruction.

Symbolic References

A symbolic reference can be a simple variable of type real,
integer, or logical; an array-element of type real, integer, orIlogical; a descriptor; a descriptor array element; or a
vector. Symbolic references can occur in any 8-bit register
designator field (except in half-word registers). Registers
modified by branch instructions cannot be referenced
symbolically.

Literals

A literal can be a decimal, hexadecimal, bit, character, or
Hollerith constant, and can be used for any instruction field.
Any missing arguments are presumed to be zero constants.
Generally, constants are taken to be register designators,
rather than as data used by an instruction.

EXAMPLES OF SPECIAL CALL USAGE
The call to Q8BSAVE shown in figure 14-1 sets register 3 to
the bit-address of the next instruction, which has statement
label 10. The call of QSEX in statement 10 sets register 4
to the statement 10 bit offset from the code base address.
In the next statement, the call to Q8SUBX sets integer
variable CB to the code base address. The next call to
Q8EX sets variable I to contain the statement 20 bit offset.
Following that, variable L20 is set to the actual address of
statement 20. This information is then used in the call to
Q8BGE.

INTEGER CB,L20
CALL QSBSAVE(3,,3)

10 	 CALL QSEX(4,&10)
CALL Q8SUBX(3,4,CB)
CALL QSEX(I,&20)L20lI+CB

CALL Q8BGE(AB,L20)

20

Figure 14-1. Special CALL Statement

Figure 14-2. Q8ES Usage

The, special calls in figure 14-3 generate the machine code
shown in figure 14-4 provided J has been assigned to
register 22 by the compiler.

CALL Q8ES(3,1)
CALL QSES(4,2)
CALL Q8ADDX(3,4,J)

Figure 14-3. Additional Q8 Usage

ES R3,1
ES R4,2
ADDX R3,R4,R22

Figure 14-4. Generated Machine Code

If J has not been assigned any register by the compiler, the
code shown in figure 14-5 would be generated.

ES R3,1
ES R4,2
ADDX R3,R4,T1
STO (DATA BASE, RELATIVE

LOCATION OF J),T1

Figure 14-5. Additional Generated Code

DATA FLAG BRANCH MANAGER
The data flag branch manager (DFBM) is a FORTRAN rn­
time library routine. A data flag branch is a hardware
function of the STAR-100 computer. DFBM is software that
processes data flag branches whenever they occur during
execution of a FORTRAN program. Use of the data flag
branch feature eliminates the time penalty that would be
incurred if the FORTRAN user were compelled to perform
explicit checks for special conditions. If the FORTRAN user
takes no specific action with respect to data flag branches
and DFBM, then any of the following causes a data flagbranch to occur:

* 	 A square root operation attempted with a negative

operand
* 	 A division operation attempted with a zero divisor

* 	 An exponent overflow in computation of a number too
large to be represented internally

* 	 An operation attempted using an indefinite operand

60386200 G

A

14-2

A: delete page 14-2.

14-2A

* 	 Reduction of the job interval timer to zero (cannot
occur unless the program sets the JIT)

* 	 Execution of a hardware breakpoint instruction under
certain usage conditions (cannot occur unless the
program uses DEBUG or a BKP instruction)

Control passes to DFBM which performs interrupt processing
for the condition. DFBM interrupts the executing
FORTRAN program, issues an error diagnostic, dumps the
contents of the data flag branch register, and aborts the
program. If the program is running as part of a batch job, a
post-mortem dump is produced. Default interrupt
processing for other conditions that the user can specify
does not cause the program to abort,

The FORTRAN user can select the special conditions which
can cause a data flag branch and DFBM interrupt to occur.
The user can also specify the processing that is to be
performed as a result of the interrupt. Interrupt conditions
and interrupt processing can be selected through calls to the
DFBM entry points Q7DFSET, Q7DFOFF, Q7DFLAGS, and
Q7DFCL1.

DATA RLAG BRANCH HARDWARE

For the FORTRAN user, the most significant part of the
data flag branch hardware is the data flag branch (DFB)
register. The 64-bit DFB register, located in the STAR-100
central processor, is formatted as shown in figure 14-6.
Each interrupted task has a DFB register copy in its invisible
package in the minus page.

The data flags are bits 35 through 47 of the DFE register.
These bits indicate special conditions that have occurred,
For example, the STAR hardware sets bit 41 at the end of a
floating point divide fault (instruction in which the divisor is
zero). Data flags remain set until the FORTRAN program
or DFBM clears them.

The mask bits are bits 19 through 31 of the DFB register.
They select the conditions which are to cause a data flag
branch and DFBM interrupt. For example, bit 25 enables a
data flag branch on a floating point divide fault. Bits 19, 20,

0 	 3 16 19 32

t 	 product bits t mask bits t

Dynamic
inclusive OR of
product bits

tThese are undefined bits.
Any instruction that
attempts to set, clear,
or sample these bits
produces undefined
results.

25, 29, 30, and 31 are set during FORTRAN run-time
initialization; thereafter, the user can set and clear mask
bits by calling DFBM entry points.

The product bits are bits 3 through 15 of the DFB register.
Each is the dynamic logical product of a data flag and the
associated mask bit. For example, the product bit for
floating point divide fault is bit 9, which is set by STAR
hardware if bits 25 and 41 are set. Sit 9 is cleared if either
bit 25 or bit 41 is cleared. The product bits can be tested
with a QOBADF special call.

Bit 58 is the pipe 2 register instruction data flag. Setting of
this bit indicates that one of the other data flags has been
set by a pipe 2 instruction. STAR hardware sets the bit,
which remains set until the FORTRAN program or DFBM
clears it.

Bit 51 is the dynamic inclusive OR of all the product bits.
Bit 52 is the data flag branch enable bit; if bit 52 is cleared,
any further data flag branches of any kind are disabled until
bit 52 is set again. DFBM and the STAR hardware clear and
set bit 52. When both bit 51 and bit 52 are set, the STAR
hardware initiates a data flag branch.

The condition indicated by each of the 13 data flags, along
with a designator for the condition, is shown in table 14-1.
Alin given in the table are the mask and product bit
associated with each data flag and a classification of I,or Ill
for each condition.

Default Conditions

At the time a FORTRAN program starts executing, six
interrupt conditions are enabled. The conditions enabled as
a result of run-time initialization are JIT, SFT, BKP, IND,
SRT, and FDV.

The JIT, SFT, and BKP conditions do not occur unless the
program takes specific action to cause the conditions.

An FDV condition occurs if a floating point division
operation is attempted with a zero divisor. A zero divisor is
either a machine zero or a floating point number having an

35 48 50 5355 59 63

data flags tJ t

Data

flag branch
enable bit

Free data flags

Monitoring counter I
enable flags

Pipe 2 register

instruction flag

Figure 14-6. Data flag Branch Register Format

60386200 G 	 14-3

TABLE 14-1. DATA FLAG BRANCH CONDITIONS

Product
Class Designator Condition Description Mask Bit Data Flag Bit Product Bit Bit Search

Order

1 SFT (Reserved.) 19t 35 3 2

I If Job interval timer has reduced to zero. 20 36 4 1

Ill SSC Selected condition has not been met. In search 21 37 5 11
for masked key, there was no match; or count of
nonzero translated bytes is greater-than 6553510.

MI DDE Decimal data fault. A sign was found in a digit 22 38 6 12
position, or vice versa.

I TBZ Truncation of leading nonzero digits or bits, or 23 39 7 13
decimal or binary divide by zero.

MI ORD Dynamic inclusive OR of the preceding three
conditions (SSC, DDF, and TBZ). Enabling this

24 40 8 5

condition permits an interrupt on any of the
three conditions.

III FDV Floating point divide fault. 25t 41 9 8

m EXO Exponent overflow. 26 42 10 9

II RMZ Result is machine zero. 27 43 11 10

IMI ORX Dynamic inclusive OR of the preceding three 28 44 12 4
conditions (FDV,EXO, and RMZ). Enabling this
condition permits an interrupt on any of the
three conditions.

In SRT Square root operation on negative operand.

III IND Indefinite result or indefinite operand.

I BKE ' Breakpoint flag was set on the breakpoint
instruction (instruction 04).

iSet during run-time initialization.

all-zero coefficient. A divisor having an indefinite value is
not a zero divisor and does not cause a floating point divide
fault. The result of a division by zero is an indefinite value
which sets the IND data flag.

An SaT condition occurs if a square root operation is
attempted with a negative operand. The square root of the
absolute value of the negative operand is taken in this case,
and the two's complement of this square root is stored as the
result. The result, although meaningful, is not equivalent to
the mathematical value of the square root of a negative
number.

An IND condition occurs if an-indefinite value is computed
and stored into memory or into the register file. The
condition also occurs if either or both of the operands of
certain floating point operations have indefinite values
(floating point arithmetic operations and floating point
compare operations can set the IND data flag). Since an
indefinite value results from a floating point operation in
which either or both of the operands are indefinite values,
indefinite values are likely to propagate. An FDV or EXO
condition also sets the IND data flag.

* 14-4

29t 45 13 6

30 46 14 7

alt 47 15 3

Branches

When a data flag branch occurs, bit 52 is cleared, the
address of the instruction that would have been executed
next had the branch not occurred is stored in register 1, and
control branches to the address in register 2. The address of
a DFBM entry point is placed in register 2 during FORTRAN
run-time initialization. Subsequent processing is determined
by the bit settings in the DFB register and specifications
made in any Q7DFSET, Q7DFOFF, and Q7DFCL1 calls.

The address in register I does not necessarily point to the
instruction immediately following- the instruction that
caused the data flag branch. The hardware initiates a data
flag branch only after all currently executing instructions
have completed. Because instructions might be executing in
parallel when the condition causing the data flag branch
occurs, the branch can occur up to 35 instructions after the
instruction that caused it. Also, the point at which control
branches to DFBM can vary between executions of the same
program because the load and store hardware operations can
occur at different points as a result of the asynchronous
nature of STAR I/0.

60386200 G

NOTE

The user can effect changes in the DFB
register that conflict with DFBM. Use of
the FORTRAN-supplied function Q8SDFB,
the special calls QSBADF and Q8LSDFR,
or the system-provided utility DEBUG in a
FORTRAN program that uses calls to
DFBM entry points all should be done with
great care.

DATA FLAG BRANCH 	SOFTWARE
A data flag branch, together with the subsequent processing
performed by DFBM before the FORTRAN program resumes
or aborts, is called a DFBM interrupt. A call to the DFBM
entry point Q7DFSET can be used to enable and disable
DFBM interrupts on specified conditions. Interrupt-handling
routines are optional and can be specified through calls to
one of the DFBM entry points Q7DFSET and Q7DFCL1, as
described later in this section.

If the STAR hardware initiates a data flag branch during
execution of a FORTRAN program, control branches to
DFBM. DFBM checks the DFB register product bits in the
following order:

1. JIT (bit 4)
2. SFT (bit 3)
3. BKP (bit 15)
4. ORX (bit 12)

5. ORD (bit 3)
6. SRT (bit 13)
7. IND (bit 14)
8. FDV (bit 9)

9. EXO (bit 10)
10. RMZ (bit 11)
11. SSC (bit 5)
12. DDF (bit 6)
13. TBZ (bit 7

Depending on the bits DFBM finds set and the interrupt-
handling routines that the FORTRAN user has specified,
DFBM calls the routine FT ERMSG or passes control to an
interrupt-handling routine established by the programmer.

Interrupt Classes

The DFBM interrupt conditions shown in table 14-1 can be
divided into two classes, depending on whether the
FORTRAN user can disable interrupts for the condition and
how the interrupts are handled by DFBM. Interrupts on the
class I conditions are always enabled; the corresponding
mask bits are always set for the following conditions:

JIT
SFT
BKP

The FORTRAN user can 	enable or disable interrupts for all
,of the other conditions, which are class III conditions.
Enabling or disabling of class Ill conditions is done using
calls to one of the DFBM entry points Q7DFSET and
QTDFOFF as described later in this section.

DFBM processes the class 1 conditions as a group, as if theywere all caused by a single event. Class I conditions are
processed individually, as if they had been caused by
separate events. A DFBM interrupt that processes a class I
condition is called a class I interrupt, and one that processes
class Il conditions is called a class II interrupt.

Multiple Interrupts

The execution of a single hardware instruction can in some
cases flag several class HI conditions as well as one or more
class I conditions. A number of product bits might be on

60386200 G

when DFBM receives control as the result of a data flag
branch. A single data flag branch could occur with enough
product bits set that it would be translated into four DFBM
interrupts, that is, three class I interrupts and one class Ill
interrupt.

If a data flag branch occurs and more than one product bit is
set, DFBM processes any class I interrupts first, one at a
time, in the order JIT, SFT, and BKP. Then, if DFBM has
been able to process the class I interrupts without aborting
the program, it will process a class III interrupt. If a class I
bit and a class III bit are set when DFBM gains control after
a data flag branch, and if the specified interrupt-handling
routines return after executing, the interrupt processing
that would be performed is shown in table 14-2. Default
processing for DFBM interrupts consists of issuing an error
message and then either aborting or resuming the program,
depending on whether the error was nonfatal, 'fatal, or
catastrophic.

TABLE 14-2. MULTIPLE INTERRUPT PROCESSING

Class I Class III
Interrupt-
Handling
Routine
Provided

Interrupt-
Handling
Routine
Provided

Processing Performed
After Data Flag Branch
Manager Gains Control

No No Class I error message
issued, program aborted

Yes No Class I routine executed,

class III error message
issued, program aborted
for fatal message and
resumed otherwise

No Yes 	 Class I error message
issued, program aborted
(class II routine not
executed although class il
condition flagged)

Yes Yes 	 Class I routine executed,
class III routine then
executed, program resumed
(no error messages issued
by DFBM)

Default Interrupt Processing

In a typicl DFEM interrupt, a lass m interrupt might occur
with one or more class III product bits set and with default
processing being performed because no interrupt-handling
routine has been specified. If the user does not specify any
interrupt-handling routines and a data flag branch occurs,
DFBM performs default interrupt processing as follows.
Having gained control as a result of the data flag branch,
and having checked the DFB register product bits in the
order listed earlier, DFBM calls the routine FT ERMSG to
issue an error message 	 for the condition indicated by tnefirst product bit found to be on.

If the FT ERMSG entry point SEP (System Error Processor,
described'in this section) was called previously in the
FORTRAN program to specify an error exit subroutine for
the error, FT ERMSG calls the subroutine. An error
message is issmTd (if applicable) before the user routine is
called.

14-5 0

If the error message that FT ERMSG issued was nonfatal,
DFBM restarts the interruptea FORTRAN program at the
address in register 1. If the error message was fatal or
catastrophic, a dump of the contents of the DFB register is
written onto the output file immediately following the error
message, and the FORTRAN program aborts without return
of control to DFBM. If the aborted program was being run
as part of a batch job, the system utility DUMP writes a
post-mortem dump onto the output file. The dump includes
a full subroutine traceback in which DFBM appears to have
been called by the interrupted routine (DFBM execution has
actually been initiated by a hardware data flag branch). The
system utility DUMP is described in the STAR Operating
System Reference Manual, Volume 1.

Each class III condition has a separate error message, but
only one message is issued when default processing is
performed for a class I interrupt. The class III message
issued is for the first class I1 product bit found on. For
example, assume that the default class IN interrupt condi-
tions SRT, IND, and FDV are in effect at the time that a
division operation is performed in which the divisor is zero.
Also assume that the FORTRAN program is running in a
batch job, has not disabled all data flag branches (has not
cleared DFB register bit 52). and has not previously called
SEP or Q7DFSET to specify a routine to handle division by
zero. The division operation initiates a data flag branch.
DFBM finds that bit 14 (IND product bit) of the DEB register
is on and, since no class Ill interrupt-handling routine is
available, calls FT RMSG. Since the user has not specified
an error exit subroutine, FT ERMSG issues a fatal error
message for the IND condition, causes a DFB register dump
to be written to the output file, and aborts the program.
The error message and DfB register dump are shown in
figure 14-7. Finally, since the job is a batch job, the DUMP
utility produces a post-mortem dump. Note that no error
message for the FDV condition is produced.

As another example, assume the same situation as in the
previous example, with the exception that the FORTRAN
program has called Q7DFSET to alter the class III interrupt
conditions to ORX, SRT, and IND. The division operation
with the zero divisor initiates a data flag branch. DFBM
finds that bit 12 (ORX product bit) is on and calls
FT ERMSC, since no class HI interrupt-handling routine is
aviilable. FT ERMSG issues an error message for the ORX
condition. Since the error is a warning, DFBM restarts the
interrupted program at the address in register 1, even
though a normally fatal condition (IND) has occurred,

INTERRUPTSCLASS III

If a class III interrupt occurs, DFBM performs default
processing if the FORTRAN user has not provided a class Ii
interrupt-handling routine through a Q7DFSET call. If the

user has specified a class ll interrupt-handling routine,
DFBM takes the following actions:

1. 	 Detects the condition by checking the DEE register

product bits.
2. 	 Saves a copy of the entire register file of the

interrupted routine.

3. 	 Clears the data flags (this also clears the product bits),
leaving the mask bits as they are.

4. 	 Sets bit 52, re-enabling data flag branches.

5. 	 Calls the class III interupt-handling routine.

In a class iI Interrupt where an interrupt-handling routine is
called, no standard error message is issued by DFBM. DFM
manages class Ill interrupts according to the following rules:

* 	 Any routine or subroutine of a FORTRAN program can

specify and respecify class uI interrupt conditions and
interrupt-handling routines as frequently as desired.
QIDESET calls are used to make the specifications.

When a routine calls a subroutine, the class III interrupt
conditions and class IJI interrupt-handling routines in
effect in the calling routine are put into effect in the
subroutine.

* 	 When a routine returns to its caller, the class III
interrupt conditions and clas IT interrupt-handling
routines in effect at the time of the call are reinstated.

Each subroutine in a FORTRAN program can make different
specifications of how class HI interrupts are to be handled
locally and in lower-level routines, without those specifica­
tions affecting how clasis Il interrupts are handled by
higher-level routines.

The rules of scope are illustrated in figure 14-8. In the
figure, the main program begins execution with the default
conditions in effect and executes until a call to QIDFSET
alters the default selection. A new set of conditions is
selected by the second call to QIDFSET and remains in
effect until subroutine K is called. Selections remain in
effect until subroutine K calls Q7DFSET. This newest set of
conditions continues in effect when subroutine D is called
and when the return to subprogram K occurs. When K
completes execution and control returns to the main
program, conditions in effect at the time subroutine K was
called are reestablished and persist through the call to
subprogram Z and the return to the main program.

ERROR 124 DATA FLAG BRANCH , INDEFINITE RESULT - REGISTER 1 ADDRESS 000000012260

DATA FLAG BRANCH REGISTER

00000000 01000010 00011000 01000111 00000000 01001010 00010000 00100000

SFT JT SSC DF TOZ ORD FDV EXO RMZ ORX SRT IND BKP

PRODUCT BITS (3151 0 0 0 0 0 0 1 0 0 0 0 1 0
MASK BITS (19-311 1 1 0 0 0 0 1 0 0 0 1 1 1
DATA FLAGS (35-"7) 0 0 0 0 0 0 1 0 0 1 0 1 0

Figure 14-7. DFB Register Dump Example

S14-8 RLEPRODUCBILITY OF Tfri j 60386200 G

ORIG-NAL PAGE IS POOR

Q7DFSET

MAIN
 A call to QYDFSET can be used to do either or both of the

following:CALL Q7DFSET
LQDFSET Specify the conditions on which a class II interrupt is to

CALL 7occur (that is, alter DEE register mask bits).

CALL K * 	 Specify the name of a user-provided interrupt-handling

routine to be called in the event of a class III interrupt.

CALL Z KC
Default class Ell interrupt conditions can be reestablishedz
using QTDFSET, either by specifying the SRT, IND, and FDVND conditions or by specifying 'STD' as an argument. Default

CALL QVDFSET class IMinterrupt processing can also be reestablished-with a
Q7DFSET call.

CALL fl
Forms:

D
RETURN RETURN 	 CALL QIDFSET (ihr)

CALL Q7DFSET (ihr, 'NUL')

CALL Q7DFSET (ihr, 'mbl'..... 'mbn')

ihr Zero, or the name of a user-provided

interrupt-handling routine that is to be called
if a class I interrupt occurs. Zero indicatesFigure 14-8. Scope of Selected Conditions that default processing is to be performed for
class III interrupts (zero reestablishes the
specification in effect at the time that the
FORTRAN program began executing).

Interrupt-Handling Routines 	 'NUL' Indicates that all class III mask bits are to be
cleared, disabling all class III interrupts.

A class II interrupt-handling routine can appropriately be
written in FORTRAN. The routine must have no arguments. 'mb. ' 'STD', or one of the class Ill interrupt condition
Any communication with higher-level routines must be designators given in table 14-1. The
through the use of COMMON statements. designator must be enclosed in apostrophes. A

designator from table 14-1 indicates that the
time that the clams II interrupt-handlng routine corresponding mask bit is, to be set. 'STD'

At the indicates that the default class In mask bits ­
gains control, all interrupts that were enabled at the time of corresponding to the SRT, IND, and FDV
the data flag branch are still enabled (the mask bits have not conditions - are to be set. 'STD' can be used in
been altered, and bit 52 has been set). If a class III interrupt combination with other designators in the
occurs while the interrupt-handling routine or any lower- same argument list.
level-routine is executing, DEBM causes a catastrophic error
message to be issued and the program to be aborted. The
Interrupt-handling routine can disable class III interrupts for No mask bits are altered from their current settings when
the period of time that it is executing by calling QTDFSET. Q7DFSET is called with only one argument, ihr. When
Any class I interrupts occurring in a class I interrupt- Q7DFSET is called with two or more arguments, any class III
handling routine are handled immediately, mask bits not indicated by the argument list are cleared.

The user must remember to declare any subroutine name
EXTERNAL statement.

All data flags in the DFB register have been cleared when used in a QIDFSET call with an

the class III interrupt-handling routine receives control from For example, given the declaration EXTERNAL USRRTN,

DFBM. The routine can learn the status of the data flags as the following are valid Q7DFSET calls:

they were at the time of the data flag branch, as well as t

certain other information about the interrupt, by calling

Q7DFLAGS. CALL Q7DFSET (USRRTN)

CALL Q7DFSET (USRRTh, 'EO' 'IND', 'SaT', 'FDV')
routine executes

If the class Il interrupt-handling a

RETURN statement, DFBM restarts the interrupted CALL Q7DFSET (USRRTN, 'EXO', 'STD-)
FORTRAN program or subprogram at the address in
register 1. DFBM leaves the DFB register mask bits exactly CALL Q7DFSET (0, 'STD')
as they were at the time of the data flag branch unless the
class III ipterrupt-handling routine has made a call to CALL QYDFSET(0,'NUL).
Q7DFOFE. An interrupt-handling routine can call Q7DFOFF
to disable specified conditions in the interrupted FORTRAN
program at the time that the program is restarted. A call to The first call specified USRRTN to be the class III interrupt-
Q7DFOFF might be advantageous if the conditions causing a handling routine. The second or third call has the effect of
data flag branch would cause a large number of other data specifying that USRRTN is to be the class RI interrupt­
flag branchesto occur, handling routine, that mask bits 25, 26, 29, and 30 are to be

14-7 *60386200 G

set, and that mask bits 21, 22, 23, 24, 27, and 28 are to be
cleared. The fourth call restores the default set of
conditions and default class II interrupt processing. The
fifth call restores default class Ill interrupt processing but
disables all data flag branches on all class HI conditions,

Q7DFLAGS

The user can, obtain information about the most recentanobaiulinormatio abouThes 	 err D theto
class III interrupt by calling Q7DFLAGS.

Form:

CALL QTDPLAGS(pb,fb,ad,rf)

pb 	 A type logical array, declared to be a one-
dimensional array of ten elements, in which
DFBM returns the ten class Ill product bits
(bits 5 through 14). Values returned are
.FALSE. 	 for bits that are cleared and .TRUE.
for bits that are set. The order of the values
in the array is the same as for the clas III
conditions listed in table 14-1.

fb 	 A type logical array, declared to be a one­
dimensional array of eleven elements, in which
DFBM returns the ten class III data flags
(bits 37 through46), followed by the pipe 2
register instruction data flag as the eleventh
value. Values returned are .FALSE. for bits
that are cleared and .TRUE. for bits that are
set. The order of the values in the array is the
same as for the class M conditions shown in
table 14-1.

ad 	 A variable of type integer in which DFBM
returns the address contained in register I at
the time of the data flag branch,

rf 	 Optional. A type integer or real array (or a
descriptor array of type integer or real) of size
256 in which DFBM returns the register file
contents as they were at the time of the data
flag branch.

If Q7DFLAGS is called before any class III interrupts have
occurred, all of the data flags and product bits are shown to
be .EALSE, and all other values returned are zero.

For example, the statements

LOGICAL P(10), DF(i)

INTEGER ADDR, REGS(256)

CALL Q7DFLAGS (P,DFADDR,REGS)

place the product bits in logical array P, the data flags in
logical array DF, the register I address in integer variable
ADDR, and the register file in integer array REGS.

Q7DFOFF

By calling Q7DFOFF, a class Ill interrupt-handling routine
can cause class Ill interrupt conditions to be disabled at the
time that the interrupted FORTRAN program is restarted.
A Q7DFOFF call issued from a routine other than an
interrupt-handling routine or lower-level routine has no
effect.

*. 14-S

Form:

CALL Q7DFOFF ('mb 1' , Imbn)

' 'ALL', 'ST', or one of the class III interrupt

condition designators given in table 14-1. A
designator from table 14-1 indicates that the
corresponding mask bit is to be cleared at the
time that the interrupted routine is restarted.
'ALL' indicates that all class III interrupts are

be 	 disabled. 'STD' indicates that the SET,IND, and FDV class III interrupts are to be
disabled.

Any mask bits not specified in the call are left unaffected
by the call. If a class I Interrupt-handling routine executesa RETURN statement after calling QIDFOFF, DFEM gains
control and disables the specified class III interrupts. The
interrupts remain disabled until a new call to QIDFSET is
made. The scope of a Q7DFOFF call is the same as the
scope of its associated Q7DFSET call.

For example, the following are valid Q7DFOFF calls:

CALL Q7DFOFFQIND','FDV')

CALL QDlFOFE('ALL')

The first call will cause DFB register bits 25 and 30 to be
cleared at the time that DFEM restarts the interrupted
FORTRAN program. The second call would cause all of the
class m mask bits to be cleared at that time.

CLASS I INTERRUPTS

Class I interrupts are always enabled; the class I mask bits
are always on, and-the FORTRAN program cannot be used to
clear them. A FORTRAN user can specify class I interrupt­
handling routines. A separate routine can be specified for
each of the three class I conditions.

A user-specified interrupt-handling routine for handling a
class I interrupt must be written in a lower-level language
such as an assembler language. FORTRAN is not a
sufficiently low-level language for the purpose of handling
class I interrupt conditions. Class I interrupts do not occur
unless the user takes specific action to cause them, such asutilizing the breakpoint feature of the DEBUG system utility
or issuing the special call Q8WJTIME to set the job interval
timer.

If a class I interrupt occurs, DFBM performs default
processing unless the FORTRAN user has provided an
interrupt-handling routine for the class I condition and made
it known by means of a Q7DFCL1 call. If the user has
specified an appropriate class I nterrupt-handling routine,
DEEM takes the following actions:
1. 	 Detects the condition by ahecking the DFB register

product bits.

2. 	 Turns off the data flag associated with the interrupt
(this also clears the associated product bit).

3. 	 Branches to the address specified in the most recently
executed Q7DFCL1 call for the specific condition.

Bit 52, the data flag enable bit, was cleared as part of the
data flag branch and is not set by DFBM before the branch
to the class I interrupt-handling routine occurs.

60386200 G

DFBM manages class I interrupts according to the following
rules:

* 	 Any routine or subroutine in a FORTRAN program can
sAecify and respecify an interrupt-handling routine for a
class l interrupt condition as frequently as desired.
QDFCLI calls are used to make the specification.

& 	 Subroutine levels are not considered in managing class I

interrupts in the way that they are in the managing of
class Ill interrupts. The specification of a class I
interrupt-handling routine is in effect for the duration
of the program or until another Q7DFCL1 call is issued.

Interrupt-Handling Routines

A class I interrupt-handling routine is responsible for most
of the interface between itself and DFBM. Since DFBM
does not -execute a standard call sequence, but instead
simply branches to an address in the interrupt-handling
routine, the address of the data base of the class I interrupt-
handling routine is not available in register 1B. The
interrupt-handling routine is responsible for saving registers
1 through F? and restoring them before branching back to
DEBM. The address to which the class I interrupt-handling
routine must branch is returned in a parameter of the
Q7DFCL1 call that was most recently issued by the
FORTRAN program. At the time that control branches to
the class I interrupt-handling routine, all interrupts have
been disabled.

Q7DFCL1
A call to Q7DFCLI can be used to specify the name of aI interrupt-handing routine to which
user-provided class I interrupt o which
DEM must branch if the specified class I interrupt occurs.
Q7DFCL returns the address in DpM to which the
interrupt-handing routine must return upon completion.

Form:

CALL Q7DFCL1(ihr, return, 'mb')

ihr 	 A one-word variable containing the virtual bit
address of an interrupt-handling routine to
which DFBM is to branch in the event that the
specified class I interrupt condition, mb,
occurs.

return 	 A one-word variable in which Q7DFCL1
returns the virtual bit address in DFBM to
which the interrupt-handing routine for the
condition mb must branch upon completion.

'mb' 	 One of the class I interrupt condition desig-
nators JIT, SET, and BKP. The designator
must be enclosed in apostrophes.

At least one QDFCL call must be made for each of the
class I conditions for which the user desires other than
default processing to be performed.

MDUMP

MDUMP is an object module callable by FORTRAN
programs or META subroutines of a FORTRAN program.
The module can be called as often as necessary to perform
dumps Of specifed areas of virtual memory.

Form:

CALL MDUMP(first,len;dtype,u)

first 	 Simple variable, array, or array element with
which the area to be dumped begins.

len 	 Length (in words) of area to be dumped.

dtype 	 Dump format:

Z' 	 Hexadecimal dump

.I, Integer dump
Tw.d' Floating point dump, where w is the

or field width and d is the fractional
'Fw.d l decimal digit count

If dtype has a value other than one of the
above, a hexadecimal dump is made.

u 	 Logical unit number of file to which dump is to
be written. If u=0, the dump is written to

OUTPUT.

The dump is written to a file or files defined in the
PROGRAM statement or in the statement that requests
execution of a FORTRAN program. For example, if a call
to MDUMP is made, indicating that the dump is to be
written to logical unit 3, then a file declaration
UNIT3=filename must also be made. See section 7 for

UNITh=f parameters in the PROGRAM statement.

MDUMP can be called from META subroutines of a
FORTRAN program using the standard calling sequence
conventions described in section 12. The logical unit
referenced in the call must be defined in the same way as
for calls made to MDUMP from a FORTRAN routine.

Sample output from a call to MDUMF is given in figure 14-9.
An array I was declared and initialized with the two
statements

DIMENSION 1(20)
DATA I/5"7,15*12/

and then using the statement

CALL MDUMP(I,20,'Z',0)

a call to MDUMP was made. The output generated by this
call shows 20 words of memory, four words per line of
output. As 'Z', that is, a hexadecimal dump, was requested

REX OUMP TIME 22.33.02 CAL. AOORESS 0000000082C0

NIT 	ADOESS

oooooooroiao 00000000 0o00000

00000007080 00000000 00000007

000000070380 0o0000000 oooooooc

00000007080 00000000 O000000C

O00OO00070SO OOO040O0 000000C

C TQ-N-TT--t-r-5

00000000 000007 00000000 ooooo? 00000000 00000007
00000000 0000000C O0000000 0000000C 00000000 OOCOGOC
00000000 oooooooc oooOooo oo00OoC 00000000 000OOOC
00000000 0000000C 00000000 0000000C 00000000 0000000C
00000000 0000000C 0000000 0000009C 9000000 0000000C

Figure 14-9. MDUMP Output

WORO AOGRE5S ASCII

OOOOOO0lCOa

00000001COA

O0000001COE

00000001C12

00000001C 6

60386200 G 	 14-9

http:22.33.02

I 	 in the parameter list of the call, the 15 elehients with value
of 12 appear in the dump as hexadecimal C.

SYSTEM ERROR PROCESSOR (SEP)
The function of the STAR System Error Processor (SEP) is to
enable the user to change certain run-time error attributes.
FORTRAN run-time error conditions can belong'to one of
three classes: warning (W) for nonfatal but probably
undesirable conditions, fatal (F) for conditions that cause
abnormal termination of the program during execution, and
,catastrophic (C) for conditions that are not subject to user
control. By using SEP. the user can set fatal error
conditions to nonfatal status, and warning conditions can be
made fatal. SEP is called.as a subroutine by an executing
program.Form:

CALL SEP(plP 2,p32p43p5,p6,P7)

p1 	 The error number of the run-time error (see
appendix B). When p1 is zero, then all other
parameters *must be zero except pa which
refers to the global nonfatal error count.

Indicates the error class to which p is to beP2
changed. Parameter p. can be odb of the
following.
IF' Sets

sthe 'error class to fatal. Program
execution is-terminated-abnormally when
this condition occurs,

'IW' Sets the error class to warning. Execution
continues when this nonfatal condition
occurs.

0 No error class change is to take place.

When a 	fatal error is changed to a warning'
error, parameter p should also be specifiedto
change-the maximdm error count to a nonzero
number.

P3 	 The error exit subroutine entry- point name
(which must be included in an EXTERNAL
statement in the same program unit). If the
error p occurs, entry point p3 is called and
executIn continues from there. If p is zero,
no error exit is implied and pXcessing
continues if the error is nonfatal If p is a
fatal error and the subroutine p execihesa
RETURN, the program aborts; if is nonfatal
and p a programexecuteutes REURbt
executiLn continues.

An 	 integer constant indicating the maximump4
error count for nonfatal errors; if the number
of nonfatal error condition occurrences
reaches p then execution terminates. An
infinite erior count is indicated by a value of
-1. If p is zero, no change for this parameter
is indicn ed (p' might have been assigned a
value in a previbus SEP call).

The maximum error count for a warning error
for which SEP has not been called is 25. The
maximum error count for a fatal error for
which SEP has not been called is zero. When
p changes a fatal error to a warning error, P4
slould also be specified.

P6 	 The error display suppression argument,
applying only to nonfatal errors. p5 can
assume one of the following values:

IS'	Indicates that the error message, normally
sent to the user's output file and to the
terminal, is to be suppressed.

0 	 No message suppression is.to take place.

The number of characters inT excludi g
routine or file in whi h the error occurred is
appended automatically to the message string
whenever applicable.

A character string that replaces the standard, P7

message associated with p,. The string must
be enclosed by apostrophes to form a
character constant. Parameter P6 must
appear when pq appears.

Parameter p and at least one additional parameter must be
included-in the call. Any parameter other than p, must be
indicated as zero if that one is not to be specified; however,
trailing zero parameter list entries can be omitted.

Calls, to SEP can appear as frequently as required, in a
program, and the error attributes change any number of
times during program execution. The SEP routine is
especially useful during program checkout, enabling traps to
be set for error conditions that could prove difficult to
diagnose. Care should be exercised when altering fatal

errors to nonfatal status

Examples:

CALL SEP(26,'W',SUB,5,0;38,'ATTEMPT TO

READ INTEGER UNDER D FORMAT')

Use of the above call causes the standard message for error
26, INTEGER MODE, CONVERSION CODE D, to be replaced
with the error message ATTEMPT TO READ INTEGER
UNDER D FORMAT, and the error level altered from fatal
to warning. If error 26 occurs during program execution, the
program issues the message, then branches to a subroutine
named SUB,and processing continues from that point. When
the error condition occurs for the 'fifth time, program
execution is aborted.

CALL SEP(75,F)

This call means that if the condition associated with error
75 occurs at any time in the program, it is considered fatal

and the 	 program execution is aborted.

CALL SEP(26,'W',0,10)

In the above call, error condition 26 is made nonfatal.: When
the error occurs for the tenth time, program execution is
aborted.

CALL SEP(72,'w',0,100,'S')

This call means that error 72 can occur 'up to 100 times
without the error message appearing on the user's terminal
or output file.

60386200 G
 14-10

http:called.as

CONCURRENT I/O SUBROUTINES
The mass storage input/output subroutines for concurrent

.I/O transmit data in an optimal manner between main
memory and unstructured files on mass storage. No buffers
are required and no structuring information is processed
when a concurrent 1/0 routine is used. The routines also
allow overlapping of computation with input or output of
large data arrays, thus maximizing the use of system
resources. Unless these routines are being used, processing
of a FORTRAN program is suspended while an input/output
request is being honored.

The four concurrent I/O routines and their functions are:

QTBUFIN Transfereor data fromdcontrol mass storage to main
memory

Q7BUFOUT Transfer data from main memory to mass
storage

QIWAIT 	 Test or wait for input/output completion;
obtain error status of operation

QSEBK 	 Reset page address at which data is to be
transferred

Any file referenced in a call to the concurrent I/O routines
must be declared in the PROGRAM statement to be an
explicit mass storage file. The file cannot be referenced in
any of the FORTRAN input/output or unit positioningstatements. Once input or output is performed on a file
using concurrent I/O routines, all input and output on that
file must be performed only by means of those routines,

The user is responsible for the correspondence between the
data record size and the size of the physical block to or
from which the data is transferred. Any padding required to
reconcile record with is thesize block size also user'sresponsibility, as is the determination of any logical end-of-
file that might exist before the physical end of the mass
storage assigned to the file. (The concurrent I/O routines
recognize the physical end of a file- but no logical end-of-
file.) The user is also responsible for checking for the
existence of error conditions resulting from the transfer,
No notification of the user is made of conditionserror
although certain conditions are flagged so that the user can
query the system about them by calling Q7WAIT.
The greatest efficiency in input/output using the concurrent
I/0 routines may be obtained when overlap of input/output
and computational operations is maintained throughout
execution. When computational activity continues until
completion of the previous input/output request, maximumoverlap has been achieved.

ARRAY ALIGNMENT CONSIDERATIONS
A A AThe

The user mut align the arrays named in the Q7BUFIN and
Q7BUFOUT calls on small page boundaries, and must define
the arrays to be multiples of small pages (padding must be
added by the user if necessary). At the time a concurrent
I/O call is executed, the program aborts if the array has not
been aligned on a page boundary. Alignment can be
accomplished by declaring the arrays to reside in one or
more labeled common blocks, then using the GRSP param-
eter of the LOAD system control statement to load the
common blocks on small page boundaries,

60386200 G

If the size of an array is greater than 24 small pages (that is,
12 288 words), the array should be placed on a large page toobtain the 1/0 efficiency that is derived from using
concurrent I/O. The GRLP parameter of the LOAD system
control statement can be used to load a labeled common
block containing the large array on a large page boundary.
More than one array can be defined within the 65 536 words
of a large page. If necessary, a single array can overlap a
large page boundary; however, this results in decreased
efficiency because multiple explicit I/O requests must be
issued by the system to transfer that array. When multiple
explicit I/O requests are issued, concurrent processing
ceases after the first of the multiple requests completes and
cannot resume during the remainder of the I/ for that call.
If the array did not overlap a large page boundary, a singleexplicit I/O request would initiate transfer of the array andwould return immediately to the program so that
computation could continue.

For example, suppose that in a FORTRAN program a
20-page array BIGRAY and a 100-page array RA2 are used
in calls to the concurrent I/O routines. The program then
should also contain the statement

COMMON/ANAMB/BIGRAY(10240),RA2(
51 2 00)

which declares an array BIGRAY with 10 240 words and an
array RA2 with 51 200 words to reside in the labeled j
common block ANAME. After the program is compiled
(using the system control statement FORTRAN.), loading is
performed using the system control statement

LOAD,BINARY,CN=XECUTE,GRLP=*ANAME

which produces the executable virtual code file XECUTE
from the file BINARY, and loads the common block ANAME
on a large page boundary.
Whether or not an array has been placed on a large page, a

Q or

number of small pages speified in the call. The user can

aid the I/O routines in deciding how an array was mapped by

call to pBUFINQ7BUFOUT transfers exactly the

specifying 'SMALL' or 'LARGE' for the map parameter of
the Q7BUFIN or QBUFOUT call (speeifmation of the

parameter does not itself cause the alignment to be

performed).

SUBROUTINE CALLS

Two QTBUFIN calls, two QTBUFOUT calls, or a QTBUFIN

o Q7BUFN call two bU al or a Uin

and a QIBUFOUT call can be active at one
file. a 	 time for a givenIf third call is made for data transmission before aQ7WAIT call is issued, the program is aborted. The
programmer is responsible for assuring that the specified
portions of a file on which there are two outstanding I/O
requests do not overlap.

file address to which data is written or from which data
is read can be specified in either of two ways. TheQ7BUFIN or Q7BUFOUT call can specify a relative page
address as a parameter. Alternatively, the QISEEK call can
establish a relative page address for a succeeding
Q7BUFOUT or QBUFIN call. In the absence of either
specification of page address, the file is scanned
sequentially, beginning at page zero of the file when it is
first referenced by the program. Each Q7BUFIN or
Q7BUFOUT call moves the current read/write position
forward by a specified amount (equal to the value of the len
parameter).

14-11

O7BUFIN 	 O N-from OF THE I to 99, associated with the file by meansThe 	 Q7oOGR AL)IBUOWWI of the PROGRAM statement.
The Q7BUPIN subroutine transfers data from a mass storage
file to an array in main memory by means of explicit I/O. a Array element or array name (an array name
The first time it is caled by the program, QTBUFIN defines 	 indicates the first element of the array). Data
the array specified in the call to be the buffer for explicit from the block starting at a, which must lie on
input/output and initiates data transfer from the file. a small page boundary, is output to u.
Control then returns immediately to the program unless the
user aligned the array in such a way that the system is len An integer constant or integer variable ­

forced to issue multiple I/O requests. The array must not be indicating the number of small pages to be
referenced until a call to Q7WAIT'has established that the transferred.
transfer was successfully completed.

map Optional. Same as the map parameter for
Form: Q7BUFIN.

CALL Q7BUFIN(u,a,len,map,faddr) faddr Optional (if faddr is specified, map must also
be specified). An integerconstant or integer

u Logical unit number of the mass storage file variable to. whose value the current write
from which data is to be read. An integer position is modified before the write begins. A
constant or integer variable having a value of variable faddr is defined and redefined only by
from I to 99, associated with the file by.means the user. If faddr is omitted, default is the
of the PROGRAM statement. current write position.

a 	 Array element or array name (an array name Depending on the value of len, a QIBUFOUT call might
indicates the first element of the array). Data transfer only part of the array named by a, or it might
from u is stored beginning at a, which must lie transfer data located beyond the end of the array.
on a small page boundary.

len 	 An integer constant or integer variable

indicating the number of small pages to be Q7WAIT

transferred.

The Q7WAIT subroutine must be called .to determine
map Optional. The character (or Hollerith) whether or not input/output operations have completed

constant 'SMALL' (or SHSMALL) or 'LARGE' without transmission error for a prior Q7BUFIN or
(or SHLARGE), indicating that the array a was QIBUFOUT call for the specified file. I/O errors are
mapped onto a small page or large page, reported to the user only through the stat parameter of this
respectively. Recommended when array a has call. Each time Q7WAIT executes, it returns a status value
a length greater than 24 but was not mapped (stat) that indicates data transmission status. When data
onto a large page (map would be 'SMALL'). transmission is still in progress, control either returns

immediately to the program or is relinquished by the
faddr 	 Optional (if faddr is specified, map must also program until the data transfer is complete, depending on

be specified). An integer constant or integer the parameters in the call. QVWAIT can also be used to
variable to whose value the current read determine when the physical end of the mass storage
position on u is modified before the read assigned to a file has been reached.
begins. A variable fadd is defined and
redefined only by the user. If faddr is omitted, Form:
default is the current read position.

Depending on the value of len, a QIBUFIN call might CALL Q7WAIT(ua,statret,len)
transfer data into only part of the array named by a, or it
might transfer data to the words located beyond the end of u Logical unit number of the file associated with
the array. 	 the array a in a concurrent I/0 operation in

progress. An integer constant or integer
variable having a value of from I to 99,

Q7BUFOUT 	 associated with the file by means of the
PROGRAM statement.

The Q7BUFOUT subroutine transfers data from an array in
main memory to a mass storage file by means of explicit a Array element or array name (an array name
I/O. The first time it is called by the program, Q7BUFOUT indicates the first element of the array)
defines the array specified in the call to be the buffer for involved in a Q7BUFIN or QIBUFOUT
explicit input/output and initiates data transfer to the file. operation.
Control then returns immediately to the program unless the
user aligned the array in such a way that the system is stat An integer variable whose value is returned by
forced to issue multiple I/O requests. The array must not be the call to Q7WAIT. The value returned
referenced until a call to Q7WAIT has established that the indicates the status of the I/O operation:
transfer was successfully completed.

0 = Normal completion
Form:

I = Physical'and-of-file reached
CALL Q7BUFOUT(u,a,len,map,faddr)

2 = Data transfer error due to hardware
u Logical unit number of the mass storage file to failure

which data is to be written. An integer
constant or integer variable having a value of 3 = I/O operation not yet completed

14-12 	 60386200 G

ret 	 Optional. Integer constant or integer variable

specifying action to be taken upon return from
QTWAIT call:

0 = If I/O is still in progress at time ofcall, program should wait (computa-
tion should cease) until 1O is
completed normally or abnormally.
Default.

1 = If I/O is still in progress at time of
call, program should not wait but
control should be returned to it
immediately.

len 	 Optional. If len is specified, ret must also be,
specified. An integer variable whose value is
returned by the call to QVWAIT. The value
returned is the number of pages actually
transmitted during the I/O operation. (If the
physical end of the mass storage was reached,
len might be less than the number of small pages requested to be transferred.)

Q7SEEK

The QISEEK subroutine resets the page address at which
data transmission is to occur. It is an alternative to a faddr
parameter in a QIBUFIN-or Q7BUFOUT call.

Form:

CALL Q7SESK(u,faddr)

u 	 Logical unit number of unit to be referenced in
a subsequent Q7BUFIN or Q7BUFOUT call. An
integer constant or integer variable. having a
value of from 1 to 99, associated with the file
by means ofthe PROGRAM statement,

faddr 	 Optional. If faddr is zero or omitted, the
current read/write position of u is repositioned
at the beginning of the file (a REWIND is
executed). Otherwise, faddr has the same
effect as the faddr parameter of a QTBUFI1Nor Q7BUFOUT far.

IA CALL QSEEK(u,0) or CALL Q7SEEK(u) statement
performs a rewind on u.

Q8WIDTH SUBROUTINE
The subroutine QSWIDTH enables a program to set a fixed
record length for an ASCII output file. The default record
length for a PUNCH file is 80 characters. For all other
files, the default record length is variable, with trailing
blanks removed from the end of each line. 1
Form:

CALL QSWIDTH(u,width)

u 	 Logical unit number of the file

width 	 Record length for subsequent ASCII output to
the file. The width must not exceed 137. If
width is specified as zero, trailing blanks are
removed from each line and the record length
is variable.

60386200 G'

SUPPLIED SUBROUTINES

A number of predefined subroutines are provided with the
STAR FORTRAN compiler. The predefined subroutines are
referenced by CALL statement. The subroutines are listedin lphabetic order.

DATE

This subroutine generates the same result as the DATE
function. The form is

CALL DATEfa)

The result is stored in the argument a, which can be any
8-byte variable. Within-any particular routine, DATE must
be consistently called,eitheras a function or a subroutine.

RANGET
-the seed in theThis subroutine obtans the current vaueof-hse nte

random number generator. The form is

CALL RANGET(n)
The argument n must be of type integer.

RANSET

This subroutine sets the seed in the random number
generator. The form is

CALL RANSET(n)

The argument n must be integer. The current seed is set to
the specified value if the argument is an odd positive
integer. If the specified value is an even positive integer,
the value is increased by I to an odd value. If the specified
value is zero or negative, the current seed is set to the
default value X10000 54F4 A3B9 33BD'.

SECOND
This subroutine generates the same result as the SECOND
function described in section 15. The form is

CALL SECOND(a)

The result is stored in the argument a, which can be any real
variable. Within any particular routine, SECOND must be
consistently called either as a function or a subroutine.

TIME

This subroutine generates the same result as the TIME
functiondescribed in section 15. The form is

CALL TIME(a)

The result is stored in the argument a, which can be any
8-byte variable. Within any particular routine. TIME must
be consistently called either as a function or a subroutine.

VRANF

This subroutine generates a vector of random numbers. The
form is

CALL VRANF(v,n)

14-13

REPRODUCIBILITY OF THEh
ORIGINAL ,PAGE 18 POOR

The argument v is a real array that is to contain the r Recursion mask (O=no recursion, l=recursive vI,

generated vector of random numbers. The argument n is an 2=recursive-v2).

integer that specifies the length of argument v.

m 	 Miscellaneous designator (currently always-0).

STACKLIB ROUTINES 	 res Result operand first address. Avector must be of
type real.

The STACKLIB routines can be called for the purpose of
optimizing certain loop constructs that cannot be v2 Left operand first address. A vector must be of
vectorized. A loop construct that can be optimized is coded type real.
as a subroutine call. The subroutine name establishes the
type of operation, and the arguments specify the operands to v1 Right operand first address. A vector must be of
be used. In all cases, a STACKLIB call can be considered as type real.
replacing an equivalent DO loop.

num The number of results to be produced. The value
The efficiency of STACKLIB routines is gained through must bea positive integer.
maximum use of the instruction stack and through optimal
use of the register file. For example, a STACKLIB routine Triadic form:
can use a large part of the register file to hold elements of a
vector operand. STACKLIB routines typically contain CALL Qsfsbrm(res,v4,v2,vl,num)
unrolled loops that produce more than one result per loop
iteration., f One of the four arithmetic operations (A=add,

S=subtract, M=multiply, D=divide) used as the first
The STACKLIB naming conventions allow for a large number operator.
of possible routine names. The routines currently supported
represent a selection of the most useful STACKLIB s One of the four arithmetic operators used as the
constructs. The available STACKLIB routines are listed in second operator.
table 14-3 and table 14-4.

b Broadcast' mask indicating any invariant operands
Dyadic form: (0--no scalar operands; 1, 3, or 5=scalar v1; 2, 3. or

6=scalar v2; 4, 5, or 6=scalar v4).
CALL Q~fbrm(res,v2,vlnum) r 	 Recursion mask (0=no recursion; 1, 3, or

f 	 One. of the four, arithmetic operations (A=add, 5-=recursive v1; 2, 3, or 6-recursive- v2; 4, 5, or
S=subtract, M=multiply, Ddivide). 6=recursive v4)

b 	 Broadcast mask indicating whether either operand m Miscellaneous designator (0 or 2=forward count; 1
is invariant, 'that is, scalar (0=both vectors, or 3=backward count; 0 or l=forward order of
1=operand v1 scalar. 2=operand v2 scalar). operations; 2or 3=reverse order of operations)

TABLE 14-3. STACKLIB CALLS WITH.FORWARD COUNT

Equivalent Statement Contained
Description Type STACKLIB Call With Sample Arguments In The Loop DO xx I 2,N

Where I Ranges From 2 Through N

Add, recursive vI, Dyadic CALL Q8A010(A(2),B(2),A(1),N-I) 	 A(I)=B(I)+A(i-1)

Add, recursive v2 Dyadic CALL Q8A020(A(2),A(1),B(2),N-I) 	 A(I)=A(I-1)+B(I)

Multiply add, Triadic CALL QSMA020(A(2),B(l),A(1),C(2),N-1) A(I)=(B(I-I)*A(I-I)rC(I)

recursive v2

Multiply add, Triadic CALL QSMA040(A(2),A(1),B(1),C(2),N-4) A(I(A(I-)'B(I-))+C(1)

recursive v4

Multiply add, Triadic CALL QSAMOI(A(2),B(2),C(1),A(1),N-1) AQI±R(()(C(I-l)A(I4))

recursive v1,

reverse order

Multiply add, Triadic CALL Q8AM021(A(2),B(2),A(l),C(l),N-1) A(I)B(l)+(A(I-)*C(I-1))

reneursive v2,

reverse order

Subtract multiply, Triadic CALL Q8SMOl1(A(2),B(2),C(2),A(1),N-1) A(1)=B(I)-(C(1)*A(I-l))

recursive vi,

reverse order

Subtract multiply, Triadic CALL Q8SM021(A(2),B(2),A(1),C(2),N-1) A(I)=B(])-(A(I-1)*C(I))

recursive v2,

reverse order

50386200 G0 14-14

res Result operand first address. A vector must be of The (and (s indicate one of the functions +, -, *, or/. Intype reel. the triadic operation, the first operator is used on v4 and v2,
and the second operator is used on the result of the first

v4 Left operand first address. A vector must be of operation and vI. The count can be backward rather thantype rel. 	 forward, as indicated by the m part of the routine name. If
the count is backward, the general form becomes:

v2 Middle operand first address. A vector must be of DO xx ind =-first,last
type reel. irev = last+first-ind

xx res(irev) = v4(irev)® v2(irev)@®vl(irev)
v1 Right operand first address. A vector must be of The order of operations can be reversed, as indicated by the

type real. m part of the routine name. In reverse order, the second
operator is used on v2 and v1, and the first operator is used num The number of results to be produced. The value on v4 and the result of the first operation.

must be a positive integer.
The operands can-be scalar rather than vector, asindicated

The general form of a DO loop equivalent to a dyadic by the b part of the routine name.
STACKLIB reference is:

NOTE

DO xx nd = fintyast
res(ind) = v2(ind)vl(ind) Since STACKLIB routines are imple­

mented for efficiency, the validity of

arguments is not checked. If the routineThe general form of a DO loop equivalent to a triadic name indicates a certain recursiveSTACKLIB reference with b=0 and m=O is: operand, an offset of 1 from the result
first address is assumed, and the firstDO xx ind = firstlAst address value given in the argument list is

xx res(ind) = v4(ind) Q v2(ind) (vl(ind) 	 ignored.

TABLE 14-4. STACKLIB CALLS WITH BACKWARD COUNT

Equivalent Statement As Contained
Description Type STACKLIB Call With Sample Arguments In The Loop DO x I = 2,N WithJ = (N+I)-I Included, Where J

Ranges From N-1 Through 1

Multiply add, Triadic CALL Q8MA212(A(N-2),B(N-2),S,A(N-1),N-1) A(J)k(B(J)*S)+A(JrI)

recursive v1,

scalar v2

Multiply add, Triadic CALL QSMA412(A(N-2).S,B(N-2).A(N-1),N-1) A(J)=(S*B(J))+A(J+1)

recursive v1,

scalar v4

Multiply add, Triadic CALL QSAMI43(A(N-2),A(N-1),B(N-2),S,N-1) A(J)=A(J+I)+(B(J)*S)

recursive v4,

scalar vi,

reverse order

Multiply add, Triadic CALL QSAM243(A(N-2),A(N-1),S,B(N-2),N-1) A(J)=A(J+I)+(S*B(J))

recursive v4,

scalar v2,

reverse order

Subtract multiply, Triadic CALL QSSM013(A(N-2),B(N-2),C(N-2),A(N-1),N-1) A(J)=B(J)-(C(J)*A(J+I))

recursive vl,

reverse order

Subtract multiply, Triadic CALL QSSM023(A(N-2),B(N-2),A(N-1),C(N-2),N-1) A(J)=B(J)-(A(J+I)*C(J))

recursive v2,

reverse order

Divide add, Triadic CALL QSDA523(A(N-2),S,A(N-I),T,N-I) A(J)=S/(A(J+1>+T)

recursive v2,

scalar v4 and vl,

reverse order

Divide add, Triadic CALL Q8DA613(A(N-2),S,T,A(N-i),N-1) A(J)=S/(T+A(J+I))

recursive vl,

scalar v4 and v2,

reverse order

60386200 G 14-15 a

This page left blank intentionally.

14-16A

Replace Chapter 15 with the following pages.

P :nm G PAGfl BiANKt NOT iLMED

15-I

15 STAR FORTRAN INTRINSIC FUNCTIONS

A group of predefined functions is provided with the STAR FORTRAN compiler. These functions, listed
and described in this section, perform the conventional manipulations such as changing the sign of a
number, or frequently used mathematical computations such as logarithms and the trigonometric functions.
A reference is made to one of these functions by using the function name followed by the appropriate
list of arguments, as a data element in an arithmetical or logical expression. In FTN '77 certain functions
may only appear in a character expression. The actual argument can be any expressions that agree in
type, number, and order of arguments. Upon execution of a statement containing a reference to a pre­
defined function, the function is executed using the values that the arguments have at the time of the
reference, the function result is then made available to the expression.

The functions fall into three categories; functions when referenced:

* Cause in-line code to be generated during compilation

* Cause transfer of control to a library module during execution

. Can cause either of the above.

FTN '66 FUNCTION USAGE

When the FTN '66 option is selected the following rules apply. If the name of any function in the first
category appears in an EXTERNAL specification statement, no in-line code is generated and the user must
provide an entry point with that name. Any function that is to appear in an actual argument list must
appear in an EXTERNAL statement in the same program unit.

The library version of a function in the third category is used if the function name appears in an
EXTERNAL statement in the same program unit as the function reference; otherwise the in-line version
is used. Any function in this category performs the same operations whether it is external or in-line.

FUNCTION USAGE

When the FTN '77 option is selected the following rules apply. If a function appears in an EXTERNAL
statement the user must provide an entry point with that -name. Any function that is to appear in an
actual argument list must appear in an INTRINSIC statement in the sape program unit. (FTN '66
differs from FTN '77 in function usage as specified in the appendices.)|

15-1A

SCALAR INTRINSIC FUNCTIONS

Scalar intrinsic functions are those intrinsic functions which produce a scalar result. The argument of
these functions may be either scalar, vector, or, in some cases, a mixture of scalar and vector.

STAR FORTRAN provides a group of intrinsic functions with the prefix Q8S in their names. These
'functions perform more involved manipulations of data than the other scalar functions, often taking
advantage of a specific STAR hardware feature. In general these functions must not appear in an
INTRINSIC statement.

The scalar functions are listed in table 15-1. In this table the letter a is used for scalar arguments, the
letter v for vector arguments, the letter c is used for control vectors, and the letter i for index vectors.
The control vector must be of type BIT' and the index vector of type INTEGER. The types of the other
arguments are indicated in the table.

Scalar arguments can be general scalar expressions. Vector arguments must be arrays or dynamic variables.

15-2A

TABLE 15-1. SCALAR INTRINSIC FUNCTIONS

Intinsic
Function Definition

Number of
Arguments

Generic
Name

Specific
Name Argument

Type of
Function

Type Conversion Conversion to integer
INT (a)
See Note I

I INT -
TIIINT
INT
IFIX
DINT

Integer
Half
Real
Real
Double
Complex

Integer
Integer
Integer
Integer
Integer
Integer

Conversion to real
See Note 2

1 REAL REAL
FLOAT
EXTEND

Integer
Integer
Half

Real
Real
Real

SNGL
-

Real
Double
Complex

Real
Real
Real

Conversion to half
plecision
See Note 3

I HALF -
-
-
-
-

Integer
Half
Real
Double
Complex

Half
Half
Half
lalf

Half

> Conversion to double
See Note 4

I DBLE -
-
-
-
-

Integer
Half
Real
l)ouble
Complex

Double
Double
Double
l)ouble
Double

Conversion to complex
See Note 5

I or 2 COMPLx -
-
-
-
-

Integer
Half
Real
Double
Complex

Complex
Complex
Complex
Complex
Complex

Conversion to integer
See Note 6

I ICHAR Character Integer

Conversion to character
See Note 6

I CIIAR Integer Character

Truncation Int. (A)
See Note I

I AINT HINT
AINT
DTNT

Half
Real
Double

Ihf
Real
Double

TABLE 15-1. SCALAR INTRINSIC FUNCTIONS (Cont'd)

Intrinsic
Function Definition

Number of
Arguments

Generic
Name

Specific
Name Argument

Type of
Function

Nearest whole nunbe Int (a+05) if a 0 1 ANINT HNINT Half Half
hit (a-0-5) if a 0 ANINT Real Real

.DNINT Double Double
Nearest integer lut (a+0,5)

Int (a-0"5)
if a
if a

0
0

1 NINT IWNINT
NINT
IDNINT

Half
Real
Double

Integer
Integer
Integer

Absolute value [a
See Note 7

I1 ABS EABS
HABS

Integer
Half

Integer
Half

(1r2+ai212 ABSDABS Real
Double Real

Double
CABS Complex Real

Remaindering al - lnt(al/a2)a 2 2 MOD MOD Integer Integer

See Note I
HMOD
AMOD

Half
Real

Half
Real

DMOD Double Double

Transfer of sign / aI
P aI>

if 112

''"2

: 0
<0

2 SIGN ISIGN
HSIGNSIGN

Integer
HalfReal

Integer
HalfReal

DSIGN Double Double
Positive)ifference aI -a2 if al > 0 2 DIM IDIM Integer Integer

0 if aI a2 HDIM
DIM,
DDIM

Half
Real
Double

Half
Real
Double

Extended iCeisioI I * a2 2 DPROD Real Double
HPROD Half Real

Choosing hugest value Max(a I ,a2 . ..) 2 MAX MAXO Integer Integer
HMAXI Half Half
AMAXI Real Real
DMAXI Double Double
AMAXO
MAXI

Integer
Real

Real
Integer

Inhinsic
Function

Choosing smallest value

Length

Index of a substring

Inlaginuy pal(of
a complex agumlent

Conjugate of complex
argumlent

Square toot

Exponential

Natural logaithim

Common logan ifln

Sine

TABLE IS-1. SCALAR INTRINSIC FUNCi'IONS (Cont'd)

l)efinition
Number of
Arguments

Generic
Name

Specific
Name

Min(al,a 2 . . .) 2 MIN MINO
HMINI
AMINI
DMINI

AMINO
MINI

Length of a character I LEN
entity
See Note 12

Location of substring 2 INDEX
a2 in substring a1 .
See Note It.

ai I AINAG

(ar,-ai) I 	 CONIG

(a)1/2 1 SORT 	 HSORT
SORT
DSORT
CSORT

4a EXP
EXP
DEXP
CEXP

&-1 1 	 HEXP

Log(a) I LOG 	 HLOG
ALOG
DLOG
CLOG

Log 10(a) I LOG10 	 HLOG10
ALOGIO
DLOGIO

Sin(a) I SIN 	 IISIN
SIN
I)SIN
CSIN

Type of
Argument Function

Integer Integer
Half Half
Real Real
Double Double

Integer Real
Real Integer

Character Integer

Character Integer

Complex Real

Complex Complex

Half Half
Real Real
Double Double
Complex Complex

Half Half
Real Real
Double Double
Complex Complex

Half Half
Real Real
Double Double
Complex Complex

Half Half
Real Real
Double Double

Half Half
Real Real
Double Double
Complex Complex

Cosine

Intrinsic
FunctiOn)efinition

Cos(a)

TABLE 15-1. SCALAR

Number of
Arguments

I

Tangent Tan(a) I

Cotangent

Arcsiae

Cotan(a)

Arcsin(a)

I

I

Arccosine Arccos(a) I

>
Atetaugeut Arctan(a)

Arctan(al/a 2)

I

2

Hyperbolic sine Siuh(a) I

Ilypeibolic cosine Cosh(a) I

Hyperbolic tangent Tanh(a) I

Lexically gieater
than Or equal

"I
See

a12
Note 13.

2

INTRINSIC

Generic

Name

COS

TAN

COTAN

ASIN

ACOS

ATAN

ATAN2

SINH

COSH

TANH

FUNCTIONS (Contd)

Specific
Name

HCOS
COS
DCOS
CCOS

HTAN
TAN
DTAN

HCOTAN
COTAN

HASIN
ASTN
DASIN

HACOS
ACOS
DACOS

HATAN
ATAN
DATAN
HATAN2
ATAN2
DATAN2

HSINH
SINH
DSINH

HCOSH
COSH
DCOSH

HTANH
TANH
DTANH
LGE

Argument
Type of

Function

Half Half
Real
Double
Complex

Real
Double
Complex

Half
Real
Double

Half
Real
!Double

Half
Real

Half
Real

Half Half
Real
Double

Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half
Real
Double

Half Half
Real
Double

Real
Double

Half Half
Real
Double

Real
Double

Character Logical

Intrinsic
Function

Lexically gieater than

Lexically less titan
or equal

Lexically less than

Random number

Time of day

Date

CPU time

Insert bits

Extract bits

Test data flag
iatch tegister

Summation

Product

l)ot ploduel

Bit couut

TABLE 15-1. SCALAR INTRINSIC FUNCTIONS (Cont'd)

Number of Generic Specific
Definition Arguments Name Name

aI > a2 2 LGT
See Note 13.
it I . a2 2 LLE
See Note 13.

a < a2 2 LLT
See Note 13.

Generate random num- 0 RANF
ber in range 0..!

Obtain time of day 0 	 TIME

Obtain the date 0 	 DATE

Obtain time in seconds 0 SECOND
since start of job

Insert bits from a1 in 4 Q8SINSB ­
a2. See Note 14. -

Exhaet bits from a. 3 QSSECTB -
See Note 15. ­

'rest specified bit in 2 Q8SDFB

data flag branch register.

See Note 16.

Sun vector's elements. I or 2 Q8SSUM 	 -
See Note !7, 	 ­

-

Obtiin product of I or 2 Q8SPROD 	 ­

vector's elements.
See Note 17.

Obtain clot product of 2 Q8SDOT 	 ­
two vectors.
See Note 18,

Count numbe of I bits I Q8SCNT
in bit vecto

Type of
Argument Function

Character Logical

Character Logical

Character Logical

Real

Character*8

Character*8

Real

Real
Integer

Typeless
Typeless

Real
Integer

Typeless
Typeless

Integer Logical

Integer Integer
Half Half
Real Real

Integer Integer

Integer Integer

Bit Integer

TABLE 15-1. SCALAR

/
Intrinsic
Function Definition

Number of
Arguments

Vector length Obtain length. of a I
vector or value vector

Choosing laigest value 	 Obtain maximum valued 1 or 2
vector element.
See Note 17.
Count elements I or 2
preceding maximum
valued vector element.
See Note 17.

Choosing smallest value 	 Obtain minimum value I or 2
vector element.
See Note 17.
Count elements I or 2
preceding minimum-

Svalued vector element.
See Note 17.

Find elements 	 Find first pair of 2
equal elements

Find first pair of 2
elenents for which vI
element v2 element
Find first pair of 2
elements for which vI
element - elementv2

Find first pair of 2
unequal elements

INTRINSIC FUNCTIONS (Cont'd)

Generic Specific
Name Name

Q8SLEN -

Q8SMAX -

Q8SMAXI -

Q8SMIN -

Q8SMINI -

QSSEQ -

Q8SGE -

QSSLT -

Q8SNE -

Argument

Integer
Half
Real
Complex

Integer
Half
Real
Half
Real

Half
Real

Integer
Half
Real

Integer
Half
Real
Integer
Half
Real
Integer
Half
Real
Integer
Half
Real

Type 'of
Funcuion

Integer
Integer
Integer
Integer

Integer
Half
Real
Half
Real

Half
Real

Integer
Half
Real

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

NOTES for Table 15-1

(1) 	 For a of type integer, int(a) = a. For a of type integer, half precision, real or double precision,
there are two cases: if / a I 1, int(a) = 0; if /a/ 1, int(a) is the integer whose magnitude
is the largest integer that does not exceed the magnitude of a and whose sign is the same as the
sign of a. For example,

int(-3:7) = -3

For a of type complex, int(a) is the value obtained by applying the above rule to the real part
of a.

For a of type real, IFIX(a) is the same as INT(a).

(2) 	 For a of type real, REAL(a) is a. For a of type integer, half or double precision, REAL(a) is
as much precision of the significant part of a as a real datum can contain. For a of type
complex, REAL(a) is the real part of a.

For a of type integer, FLOAT(a) is the same as REAL(a).

(3) 	 For A of type half precision HALF(a) = q. For g of type integer, real or double precision,
HALF(a. is as much precision of the significant part of a as a half precision datum can contain.
For a- of type complex HALF(a) is the value obtained by applying the above rule to the real
part of A.

(4) 	 For a of- type double precision, DBLE(a) is a. For a of type integer, half precision or a
DBLS(a) is as much precision of the significant part of a as a double precision datum can
contain. For a of type complex, DBLS(a) is as much precision of the significant part of the
real part of . as a double precision datum can contain.

(5) 	 CMPLX may have- one or two arguments. If there is one argument, it may be of type integer,
real, half or double precision, or complex. If there are two arguments, they must both be of
the same type and may be of type integer, real, half or double precision.

For a of type complex, CMPLX(a) is a. For a of type integer, real, half or double' precision,

CMPLX(a)- is the complex value whose real part is REAL(a) and whose imaginary part is zero.

CMPLX(a la 2) is the complex value whose real part is REAL(al) and whose imagnary part isREAL(a2
".

(6) 	 ICHAR provides a means of converting from a character to an integer, based on the position of
the character in the processor collating sequence. The first character in the collating sequence
corresponds to position 0 and. the last to position 255, as there are 256 characters in the
collating sequence.

The 	 value of ICHAR(a) is an integer in the range: 0 : ICHAR(a) : 255, where a is an
argument of type character of length one. The value of a must be a character capable of
representation in the processor. The position of that character in the collating sequence is the
value 	of [CHAR.

For any characters cl and c-) capable of representation in the processor, (cL .LE. c,) is true if
and only if (ICHAR(cj) .LE.- ICHAR(c,2)) is true, and (c1 .EQ. c2) is true if and dnly if
(ICHAR(cl) .EQ. ICHAR(c 2)) is true. -

CHAR(i) returns the character in the ith position of the processor collating sequence. The value
is of type character of length one. i must be an integer expression wnose value must be in the
range 0 S5_i :_ 255.

[CHAR(CHAR(i)) i for 0 ! i < 255.

CHAR(ICHAR(c)) = c for any character c capable of representation in the processor.

15-9A

NOTES for Table 15-I (Cont'd)

(7) 	 A complex value is expressed as an ordered pair of reals, (ar,ai), where ar is the real part and
ai is the imaginary part.

(8) 	 All angles are expressed in radians.

(9) 	 The result of a function of type complex is the principal value.

(10) 	 All arguments in an intrinsic function reference must be of the same type.

(11) 	 INDEX(aI,a 2) returns an integer value indicating the starting position within the character string
a, of a substring identical to string a2 . If a2 occurs more than once in a,, the starting position
of the first occurrence is returned.

If a does not occur in a,, the value zero is returned. Note that zero is returned if LEN(al) <
LEN2 a).

(12) 	 The value of the argument of the LEN function need not be defined at the time the function
reference is executed.

(13) 	 LGE(al,a 2) returns the value true if a1 = a or if a1 follows a2 in the collating sequence described
in American National Standard Code for Intormation lnterchange, ANSI X3.4-1977 (ASCII), and
otherwise returns the value false.

LGT(a ,a) returns the value true if a, follows a2 in the collating sequence described in ANSI
X3.4-1977 (ASCII), and otherwise returns the value false.

LLE(al,a 2) returns the value true if a1 = a2 or if a1 precedes a2 in the collating sequence
described in ANSI, X3.4-1977 (ASCII), and otherwise returns the value false.

LLT(al,a,) returns the value true if a1 precedes a,) in the collating sequence described in ANSI
X3.4-1977 (ASCII), and otherwise returns the valuC false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the shorter operand is
considered as if it were extended on the right with blanks to the length of the longer operand.

(14) 	 The argument list for this function is (a1 ,m,n,a2) where and a may be of type integer or
real. Arguments m and n must be of type integer. The

a1result oi the function is typeless.

(15) 	 The argument list for this function is (a,m,n) where a may be of type integer or real. Arguments

m and n must be of type integer. The result of the function is typeless.

(16) 	 The data flag branch manager is described in Chapter 14.

(17) 	 The argument list for this function is (v) or (v,c) where v is a vector of type integer, half
precision or real, and c is vector of type bit.

(18) 	 The argument list for this function is (vl,v2).

15-1OA

VECTOR INTRINSIC FUNCTIONS

Vector intrinsic functions are those intrinsic functions which produce a vector result. The arguments of

these functions may be either scalar, vector or, in some cases, a mixture of scalar and vector.

Many of the vector intrinsic functions are the vector equivalent of a scalar function. These functions
" have names beginning with the letter v. The arguments of these functions are vectors and are equivalent

to the application of the scalar function to each element in the vector. For example, the following are
equivalent:

DO 1 I = 1,64

1 M(l) = INT(A(I))

M(1:64) = VINT(A(1:64))

STAR FORTRAN also provides a group of intrinsic functions whose names start with Q8V. These functions
perform more involved manipulations of data than the other vector functions, often taking advantage of a
specific STAR hardware feature. In general these functions must not appear in an INTRINSIC statement.

The vector functions are listed in. Table 15-2. In this table the letter a is used for scalar arguments, the

letter v for vector arguments, the letter c for control order vectors, the letter i%for index vectors, and

the letter u for results vectors. The result vector must always be specified, must always be the last argu­
ment and is separated from the other arguments by a semicolon.

Scalar arguments can be general scalar expressions, vector arguments must be arrays or dynamic variables.

15-11 A

TABLE 15-2. VECTOR INTRINSIC FUNCTIONS

Intrinsic
Function

Definition
(See Note 1) Arguments

Generic
Name

Specific
Name Argument

Type of
Function

Type conversion Conversion to integer (v) VINT VIHINT Half Integer

Conversion

Conversion
precision

Conversion

to real

to half

to complex

(v)

(v)

(v)

VHALF

VINT
VIFIX
VFLOAT
VEXTEND
VSNGL
VREAL

-

VCMPLX

Real
Real
Integer
Half
Double
Complex
Integer
Real
Double
Complex
Real

Integer
Integer
Real
Real
Real
Real
Half
Half
Half
Half
Complex

Truncation nt(a) (v) VAINT Real Real
VHINT Half Half

Nearest whole number Int(a+0"5)
Int(a-0"5)

if a
if a <

0
0

(v) VANINT
VHNINT

Real
Half

Real
Half

w
Neatest integer lnt(a+0"5) if a --

Int(a,0"5) if a -<
0
0

(v) VNINT
VIHNINT

Real
Half

Integer
Integer

Absolute value / a / (v) VIABS Integer 'Integer

(ar 2 ai2 1/2+ VHABS
VABS
VCABS

Half
Real
Complex

Half
Real
Real

Reniajidering a, - Int(al/a2)P1 2 (v) VMOD Integer Integer
VHMOD
VAMOD

Half
Real

Half
Real

Tiankfei of sign / a / if a2
-/al[if a2

a 0
- 0

(V1 ,V2) VISIGN
VHSIGN
VSIGN

Integer
Half
Real

Integer
Half
Real

Positive diffeLience aI -a2 if ai -a
o if a= 1a2

2 (VV 2) VIDIM
VHDIM
VDIM

Integer
Half
Real

Integei
Half
Real

TABLE 15-2. VECTOR INTRINSIC FUNCTIONS (Cont'd)

Intrinsic
Function

Definition
(See Note 1) Arguments

Generic Specific
Name Name

Imaginary pait of ai (v) VAINAG
complex argument

Conjugate of a
complpx argument

(ar,-ai) (v) VCONJG

Square root (a)112 (v) VHSORT
VSORT
VCSORT

Exponential C**a (v) VHEXP
VEXP
VCEXP

Naltal logarithm Log(a) (v) VHLOG
VALOG
VCLOG

Common logaithllm LogI 0(a) (v) VHLOGI 0
VALOG1O

Sine Sin(a) (v) VIISIN
VSIN
VCSIN

Cosine Cos(a) (v) VHCOS
VCOS
VCCOS

Tangent Tan(a) (v) VHTAN
VTAN

Aresine Arcsin(a) (v) VHASIN
VASIN

Arecosine Arccos(a) (v) VHACOS
VACOS

Aretangent Aretan(a) (v) VHATAN
VATAN

Aictan(ai/a 2) (v) VHATAN2
VATAN2

Type of
Argument Function

Complex Real

Complex Complex

Half Half
Real Real
Complex Complex

Half Half
Real Real
Complex Complex

Half Half
Real Real
Complex Complex

Half Half
Real Real

Half Half
Real Real
Complex Complex

Half Half
Real Real
Complex Complex

Half Half
Real Real

Half Half
Real Real

Half Half
Real Real

Half Half
Real Real

Ilalf Hall
Real Real

Intrinsic
Function

Find order of
elements. See
Note 2.

Mask vectois

Merge vectors

Compress vector

Expand vectot

Contract vector

Scatter vector

Store selected elements

l)elete elements

TABLE 15-2. VECTOR

Definition
(See Note 1) Arguments

Find order of equal
elements

(vlv 2)

Find order of gaeater (vlv 2)
than or equal elements
Find order of less than (VlV 2)
elements
Find order of unequal (vl,v2)
elements

Mask values in two (vl,v2 ,c)
vectors into result vector

Merge values in two (VlV 2 ,c)
vectors into iesult vector

Delete selected elements (v,c)
from vector

Insert zero valued (v,c)
elements in vector

Select elements for (v,i)
iesult vector

Scatter elements into (v,i)
tesult vector

Store selected elements (v,c)
in result vector

l)elete elements below (Vl,v 2)
tlneshold in spaise vector

INTRINSIC FUNCTIONS (Cont'd)

Generic
Name

Specific
Name

Q8VEQI -
-

Q8VGEI -
-

Q8VLTI -
-

Q8VNEI -
-

Q8VMASK -
-
-

Q8VMERG -
-
-

Q8VCMPRS -
-
-

Q8VXPND -
-
-

Q8VGATHR -
-
-

QSVSCATR -
-
-

Q8VCTRL -
-
-

Q8VARCMP -
-
-

Type of
Argument Function

Half Integer
Real Integer

Half, Integer
Real Intege
Half Integer
Real Integer
Half Integer
Real Integer

Integer Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Integer .Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Integer Integer
Half Half
Real Real

Intrinsic
Function

Reverse vector

TABLE 15-2. VECTOR

Definition
(See Note 1) Arguments

Reverse order of elements (v)
in vector

>

Create an arithmetic
progression

Compute polynoilial

Compute diffetences

Cleate a bit pattern

Comiptte averages

Create a vector whose
elements form an arith-
metie progression

Compute a polynomial
at seve:l values

Compluter differences
between adjacent elements
of vector

Fist group of bits are
one

First group of bits are
zero

Compute average of
adjacent elements

Compute average of
corresponding elements
Compute average
difference of correspond-
ing elenments

(al,a2)

See Note 3

(vl,v2)

(v)

(a ,a
See Note 3

(a ,a)
See Not'e 3

(v)

(vl,v2)

(vl,v2)

INTRINSIC FUNCTIONS (Cont'd)

Generic
Name

Specific
Name

Q8VREV -
-
-

Q8VINTL -
-
-

QgVPOLY -
-

QSVDELT -
-

QSVMKO -

Q8VMKZ -

QgVADJM
-

Q8VAVG ­

-

Q8VAVGD
-

Argument

Integer
Half
Real

Integer
Half
Real

Half
Real

Half
Real

Type of
Function

Integer
Half
Real

Integer
Half
Real

Half
Real

Half
Real

Integer Bit

Integer Bit

Half
Real

Half
Real
Half
Real

Half
Real

Half
Real
IHlf
Real

NOTES for Table 15-2

(1) The entity a is an element of the integer, half precision, or real
the real and imaginary parts respectively of a complex vector.

vector v. ar and ai are

(2) Equivalent to issuing a series of Q8S <tel op > calls in which
scalar equal to an element of one of the argument vectors.

one of the arguments is a

(3) The arguments a1 and a2 are of type integer and the result is of type bit.

15-16A

Function Descriptions

The following descriptions are listed in alphabetical order.

The values of some of the mathematical functions can be infinite.

-The type of the result of a generic function is either predefmed or depends on the type of its arguments.

For example LOG(a) returns a result with the same type as a, but REAL(a) always has a real result regard­

less of the type of a.

A generic function name may not be passed as an actual argument, unless it corresponds to a specific

function name.

ABS(a)

This function computes the absolute value of the specified argument. Its arguments may be of type
integer, half precision, real, double precision or complex. It is the specific function name for obtaining
the absolute value of a real argument For a real argument x, ABS(x) computes / x /. The other specific
functions which compute absolute values are CABS, DABS, HABS, and IABS.

ACOS(a)

This function computes the arccosine of a half precision, real, or double precision argument. It is the

specific function name for compiling the arccosine of a real argument. The other specific functions which

compute arccosines are DACOS, and HACOS. See ASIN for a description of the ACOS function.

AIMAG(a)

This returns the imaginary part of a complex number as a real number; if x+iy is the complex number,

AIMAG returns y.

AINT(a)

This function computes [a], where [a] is the sign of a times the largest integer less than or equal to I a I.
The type of a may be half precision, real, or double precision. It is the specific function name for
truncating a real argument. The other specific function names which truncate the argument are HINT and
DINT.

ALOG(a)

This computes the natural logarithm of a real number greater than zero. The result is a real number

accurate to approximately 45 bits.

15-17A

ALOG10(a)

This computes the logarithm of a real number. The result is a real number that is accurate to approxi­
mately 45 bits.

I AMAX0(a1,a 2,...)

This searches a list of integer numbers for the list element having the maximum value. The integer found
is returned as a real number.

AMA'X1(ala 2 ,...)

This searches a list of real, numbers for the-list element having, the maximum value and returns that value.

AMINO(apa 2)

This searches a list of integer numbers for the list element having the minimum value. The integer found

is returned as a real number.

AMINI(al,a 2 ,...)

This searches a list of real numbers for the list element having the minimum value and returns the number

when found.

AMOD(a 1 ,a2 ,...)

This computes one real number modulo a second real number and produces a real result. AMOD(xy) is

defined as x-[x/y]*y, where [A] is the sign of A times the largest integer less than or equal to /A/.

ANINT(a)

This function computes the nearest whole number to the specified half precision, real, or double precision

argument. It is the specific function name for obtaining the nearest whole number to a real argument.

The other specific function names which compute the nearest whole number are DNINT and HNINT.

Example:

Given a = -3"5D+00

ANINT(a) = AINT(-3"5D+00 - 5"0D - 01)

= - 40D+00

ASIN(a)

This function computes the arcsine of a half precision, real, or double precision argument. It is the specific

function name for computing the arcsine of a real argument. The other specific functions which compute

arcsines are DASIN and HASIN.

The specific functions ASIN and ACOS compute the aresine and the arccosine of a real number having an

absolute value less than or equal to 1.0. The result is a real number expressed in radians-and. is accurate

to approximately 45 bits. The range of the result for ASIN is -pi/2 through pi/2, inclusive; and the range

of the result for ACOS is 0 through pi, inclusive.

15-18A

ATAN(a)

This function computes the arctangent of a half-precision, real, or double precision argument. It is the

specific function name for computing the aretangent of a real argument. The other specific function names

for computing arctangents are DATAN and HATAN.

The -specific function ATAN computes the arctangeni of a real number. The real result is accurate to

approximately 45 bits, and is in the range -pi/2 through pi/2 (not inclusive).

ATAN2(aj ,a2)

This function computes the aretangent of the ratio of two half precision, real, or double precision argu­
ments. It is the specific function name for computing the aretangent of the ratio of two real arguments.

The other specific functions for computing 'the arctangent of a ratio are DATAN2 and HATAN2.

The specific function ATAN2 computes the aretangent of the ratio of two real numbers. The real result,

expressed in radians, is accurate to approximately 45 bits and is in the range -pi through pi.

CABS(a)

This computes the modulus of a complex number, and produces a real result that is greater than or equal

to zero which is accurate to approximately 45 bits.

CCOS(a)

This computes the cosine of a complex number. The result is a complex number whose real and imaginary

parts are each accurate to approximately 45 bits.

CEXP(a)

This computes the exponential of a complex number. The result is a complex number that is accurate to

approximately 45 bits.

CHAR()

This function returns the character in the ith position of the ASCII 256 character set. For example,

CHAR(65) returns the character A and is equivalent to CHAR(X 1 411).

CLOG(a)

This computes the natural logarithm of any complex number except 0. + iO.. The result is a complex

number that is accurate to approximately 45 bits.

CMPLX(a) or COMIPLX(al,a,)

This function constructs a complex number from one or two integer, half precision. real. double or complex

arguments. When two arguments are given they must be of the same type.

For a of type complex, CMPLX(a)_ is a. For a of type integer, half, real or double precision CMPLX(a)

is the complex value whose real part is REAL(a) and whose imaginary part is zero.

15-19A

CMPLX(ala 2) is the complex value whose real part is REAL(al) and whose imaginary part is REAL(a 2)

There are 'no specific function names for constructing a complex number.

.CONJX(a)

This computes the conjugate of a complex number. If the complex number is x+iy, the conjugate is -x-iy;

the real part, x, of the complex number is assigned to a real part of the result, and the imaginary part, y,

of the complex number is negated and assigned to the imaginary part of the result.

COS(a)

This function computes the cosine of a half precision, real, double precision, or complex argument expressed

in radians. It is the specific function name for computing the cosine of a real argument. The other specific

functions which compute cosines are CCOS, DCOS, and HCOS. See SIN for a description of the COS

function.

COSH(a)

This function computes the .hyperbolic cosine for half precision, real, or double precision argument. It is

the specific function name for computing the hyperbolic cosine of a real argument. The other specific

functions which compute hyperbolic cosines are DCQSH and HICOSH.

The function COSH computes the hyperbolic cosine of a real number and produces a real result that is

greater than or equal to 1.0 and accurate to 47 bits.

COTAN(a)

This function computes the cotangent of a half precision or real argument expressed in radians. It is the

specific function name for computing the cotangent of a real argument. The other specific function for

computing cotangent is HCOTAN.

The function COTAN computes the cotangent of a real number expressed in radians. The function first

reduces its argument modulo 2 pi. The result is a real number that is accurate to approximately 45 bits.

CSIN(a)

This computes the sine of a complex number. The result is a complex number accurate to approximately

45 bits.

CSQRT(a)

This computes the square root of a complex number in which the real part is greater than or equal to zero,

and returns a complex result that is accurate to approximately 45 bits. Whenever a result is returned in

which the real part is zero, the imaginary part is greater than or equal to zero.

DABS(a)

For a double precision number x, DABS(x) computes the absolute value /x/.

15-20A

DACO S(a)

See DASIN for a description of the DACOS function.

DASIN(a) and DACOS(a)

These compute the arcsine and arccosine of a double precision number having an absolute value less than

or equal to 1.0. The double precision result, expressed in radians, is accurate to 94 bits.

DATAN(a) and DATAN2(ab)

These compute the arctangent of the ratio of two double precision numbers. If the denominator is 1.0,

it need not be specified (DATAN is used). The double precision result, expressed in radians, is accurate­
to approximately 90 bits.

DATAN2(a,b)

See DATAN- for a description of the DATAN2 function.

DATE()

This function returns the date in CHARACTER*8 format. Note that the function has no argument.

DBLE(a)

For a of type double precision DBLE(a) = a. For a of type integer, half precision, or real, this function

produces a double precision result equal to a for a type complex DBLE(a) = DBLE(REAL(a)). There are

no specific functions for forming a double precision result.

DCOS(a)

See DSIN for a description of the DCOS routine.

DCOSH(a)

This computes the hyperbolic cosine of a double precision number and produces a double precision result

that is accurate to 94 bits.

DDIM(a 1 ,a2)

This computes the positive excess of one double precision number over another double precision number.

DDIM(x,y) returns the value x-y if x is greater than or equal to y, and returns a double precision value

of 0.0 otherwise. The function value is accurate to 94 bits.

DEXP(a)

This computes the exponential of a double precision number. The result is double precision and is accurate

to approximately 90 bits.

15-21A

DIM(al,a 2)

This function computes the positive excess of a1 over a2 . a1 and a2 must be of the same type and may

be integer, half precision, real or double precision. It is the specific function name for computing the

positive excess of one real number over another. The other specific functions which compute the positive

excess are DDIM, HDIM, and IDIM. DIM(al,a 2) is equal to a, - a2 if a, > a2 and 0 otherwise.

DINT(a)

For a double precision number x, DINT(x) computes [x], where [A] is the sign of A times the largest

integer less than or equal to lA. DINT returns a double precision result even though its value is always

integral.

DLOG(a)

This computes the- natural logarithm of a double precision number. The result is a double precision number

that is accurate to approximately 90 bits.

DLOG1O(a)

This computes the logarithm of a double precision number. The result is a double precision number that

-is accurate to approximately 90 bits.

DMAXI(al,a 2 ,...)

This searches a list of double precision numbers for the list element having the maximum value and returns

that value.

DMINI(a 1 ,a2 ,...)

This searches a list of double precision numbers for the list element having the minimum value and returns
the number when found.

DMOD(a 1 ,a2)

This computes one double precision number modulo a second double precision number and calculates a

double precision result. Valid arguments for DMOD lie in the interval -0.476 854 057 715 93E + 8645

!5+ 0.476 854 057 715 93E + 8645 (the largest allowable argument value is half of the largest allowable

real number).

DNINT(a)

This function computes the nearest whole number to a, both the argument and result are of type double

precision. Note that for a double precision argument a DNINT(a) = ANINT(a).

15-22A

x

FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

Volume III - FMP Language Specification/User Manual

Contributions by: B. G. Kennet
N. R. Lincoln

Distribution of this report is provided in the interest of information
exchange, Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 56112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FMP FORTRAN

This manual is intended to show the revisions and additions that Control Data proposes to make to the
current STAR FORTRAN. All references to STAR FORTRAN in the manual should be considered to
be a reference to FMP FORTRAN.

The revisions have generally been to show where FMP FORTRAN will be different than the currently
existing FORTRAN. Places where a change is to occur in the original manual are marked and the facing
page (and following pages, if necessary) of this manual shows the expected change.

This manual is a preliminary and is subject to further changes.

CONTENTS

1. INTRODUCTION 1-1 	 5. FLOW CONTROL STATEMENTS 5-1

Program Form 1-1 GO TO Statement 5-1

END Lines 1-2 Unconditional GO TO 5-1

END Statement 1-2A Assigned GO TO 54

Comments 1-2 ASSIGN Statement 5-1

Statements 1-2 Assigned GO TO Statement 5-1

Statement Labels 1-2 Computed GO TO 5-2
Continuation of Statements 1-2 IF Statement 5-2
Ordering Statements 1-2 Arithmetic IF 5-2

Columns 73 through End of Logical IF 5-2
Source Line 1-3 DO Statement 5-2

Program Data 1-3 Defining a DO Loop 5-2
Nesting DO Loops 5-3
No Zero Trip Option 5-3A

2. 	 STATEMENT ELEMENTS 2-1 CONTINUE Statement 5-3
Nesting of DO Loops and Blocks 5-3A

Character Set 2-1 PAUSE Statement 5-4-
Data Elements 2-1 STOP Statement 5-4

Constants 2-1 RETURN Statement 54
Variables 2-1 CALL Statement 5-4
Arrays 2-2 END Statement 5-5A

Subscripts and Array
Declarators 2-2
Subscript Interpretation 2-2 6. SPECIFICATION AND DATA
Substrings 2-3A INITIALIZATION STATEMENTS 6-1

Data Element Forms 2-3
Integer Elements 2-4 Type Statements 6-1
Real Elements 2-4 IMPLICIT Statement 6-1
Double Precision Elements 2-5 Explicit Typing 6-1
Half Precision Elements 2-SA DIMENSION Statement 6-2
Complex Elements 2-5 ROWWISE Statement 6-2
Logical Elements 2-5 COMMON Statement 6-2
Hollerith Elements 2-6 LEVEL Statement 6-3.1A
Character Elements 2-6 DYNAMIC 	Statement 6-3.2A
Hexadecimal Elements 2-6 EQUIVALENCE Statement 6-3
Bit Elements 2-6 EXTERNAL Statement 64.IA

INTRINSIC Statement 6-4.4A
SAVE Statement 6-4.5A

3. 	 SCALAR EXPRESSIONS 3-1 DATA Statement 6-4
Implied DO in Data Statement 6-5Arithmetic Expressions 3-1 	 Rules for Initializing Values 6-5

Exponentiation 3-2

Evaluation of Arithmetic

Expressions 3-2 7. DEFINING PROGRAM UNITS
 AND
Type of an Arithmetic Expression 3-2 STATEMENT FUNCTIONS 7-1

Character Expressions 3-3.1A
Relational Expressions 3-3 The Main Program 7-1.1A
Logical Expressions 3-3 The PROGRAM Statement 7-I.1A
Bit Expressions 3-4 File Declaration Specifier 7-1.1A.

Alternate Unit Specifier 7-1.2A
Main Program Restrictions 7-1.3A

4. 	 SCALAR ASSIGNMENT STATEMENTS 4-1 Statement Functions 7-3
Defining Statement Functions 7-3

Arithmetic Assignment Statement 4-1 Referencing Statement Functions 7-3
Character Assignment Statement 4-2 Subprograms 7-3
Logical Assignment Statement 4-2 Passing Arguments Between Subprograms 7-4
Bit Assignment Statement 4-2 Function Subprograms 7-5

iii

Subroutine Subprograms

Block Data Subprograms

Multiple Entry Subprograms

Function Subprogram Entry Point

Names

Secondary Entry Point Argument Lists
Referencing Secondary Entry Points

8. 	 CDC CYBER 200 FORTRAN 77

INPUT/OUTPUT STATEMENTS

Input/Output Statements

Records

Formatted Record

Unformatted Record

Unformatted Records Containing
Date of Type Bit
Endfile Record

Files

File Existence

File Properties

File Position

File Access

Sequential Access
Direct Access

Internal Files
Standard Internal File Properties
Standard Internal File Restrictions
Extended Internal File Properties
Extended Internal File Restrictions

Units
Unit Existence
Connection of a Unit

Format Specifier and Identifier
Record Specifier
Error and End-of-File Conditions
Input/Output Status, Error, and End-of-File
Specifiers

Error 	 Specifier
End-of-File Specifier

READ, WRITE, PRINT, and PUNCH
Statements

Control Information List
Input/Output List

Input List Items

Output List Items

Implied-DO List

Execution of a Data Transfer Input/Output
Statement

Direction of Data Transfer
Identifying a Unit
Establishing a Format
File Position Prior to Data Transfer

Sequential Access
Direct Access

Data 	 Transfer
Unformatted Data Transfer
Formatted Data Transfer

Using a Format Specification

List-Directed Formatting

Printing of Formatted Records

7-5
7-6
7-6

7-6
7-7
7-7

8-IA

8-lA
8-A
8-2A
8-2A

8-2A
8-2A
8-2A
8-3A
8-3A
8-4A
8-4A
8-4A
8-5A
8-5A
8-5A
8-6A
8-6A
8-7A
8-7A
8-7A
8-8A
8-9A
8-10A.
8-10A

8-11A
8-11A
8-12A

8-12A
8-13A
8-14A
8-14A
8-14A
8-15A

8-16A
8-16A
8-16A
8-17A
8-17A
8-17A
8-18A
8-18A
8-18A
8-19A
8-19A
8-20A
8-20A

File Position After Data Transfer 8-20A
Input/Output Status Specifier Definition 8-21A

Auxiliary Input/Output Statements 8-21A
OPEN Statement 8-21A

Open of a Connected Unit 8-23A
CLOSE Statement 8-24A

Implicit Close at Termination
of Execution: 8-25A

INQUIRE Statement 8-25A
INQUIRE By File 8-25A
INQUIRE By Unit 8-26A
Inquiry Specifiers 8-26A

File Positioning Statements 8-30A
BACKSPACE Statement 8-30A
ENDFILE Statement 8-31A
REWIND Statement 8-31A

Restrictions on Input/Output Statements 8-31A
NAMELIST Input/Output 8-31A
NAMELIST Statement 8-32A
NAMELIST Data Transfer 8-32A

ENCODE and DECODE Statements 8-33A
Concurrent Input/Output Statements 8-33A

9. 	 CDC CYBER 200 FORTRAN 77
FORMAT SPECIFICATION 9-4A

Format Specification Methods 9-4A
Character Format Specification 9-A
Non-Character Array Format
Specification 9-2A

Form of a Format Specification 9-2A
Edit Descriptors 9-3A

Interaction Between Input/Output
List and Format 9-3A
Positioning By Format Control 9-5A
Editing 9-5A

Apostrophe Editing 9-5A
H Editing 9-5A
Positioning Editing 9-6A
T, TL, and TR Editing 9-6A
X Editing 9-6A
Slash Editing 9-7A
Colon Editing 9-7A
S, SP, and SS Editing 9-7A
P Editing 9-7A

Scale Factor 9-SA
BN and BZ Editing 9-8A
Numeric Editing 9-8A

Integer Editing 9-9A
Half Precision, Real, and Double
Precision Editing 9-10A

F Editing 9-1OA
E and D editing 9-10A
G Editing 9-11A
Complex Editing 9-12A
L Editing 9-12A
A Editing 9-12A
Processor Independent Editing 9-13A

R Editing 9-13A
Z Editing 9-13A
B Editing 9-14A

List-Directed Formatting 9-14A

iv

List-Directed Input 9-15A - MDUMP 14-9

List-Directed Output 9-16A System Error Processor (SEP) 14-10

NAMELIST Formatting 9-17A Concurrent 1/0 Subroutines 14-11

NAMELIST Input 9-18A Array Alignment Considerations 14-11

NAMELIST Output 9-19A Subroutine Calls 14-11

Q7BUFIN 14-12

Q7BUFOUT 14-12
10. ARRAY ASSIGNMENT 	 10-1 Q7WAIT 14-12

Q7SEEK 14-13
Subarray References 10-1 Q8WIDTH Subroutine 14-13

Conformable Subarrays 10-2 Supplied Subroutines 14-13

Array Expressions 10-2 STACKLIB Routines 14-14

Array Assignment Statement 10-2

DEFINE Statement 10-3.1A

15. 	 STAR FORTRAN INTRINSIC
FUNCTIONS 15-1A

11. Deleted
Function Usage 	 15-1A
Scalar Intrinsic Functions 	 15-2A

12. Deleted 	 Vector Intrinsic Functions 15-11A

13. - Deleted 	 16. PROGRAM COMPILATION 16-1

FORTRAN Statement 	 16-1

14. 	 STAR FORTRAN-SUPPLIED A - Assembly Listing 16-1

SUBROUTINES AND SPECIAL B - Build Object File 16-1

CALLS 14-1 C - Cross Reference Listing 16-1

E - Extended Basic Block Optimization 16-1

Data Flag Branch Manager 14-2 1 - Instruction Scheduling 16-2

Data Flag Branch Hardware 14-3 K - 64-Bit Compare 16-2

Default Conditions 14-3 L - Source Listing Suppression 16-2

Branches 14-4 M - Map of Register File and

Data Flag Branch Software 14-5 Storage Assignments 16-2

Interrupt Classes 14-5 O - Optimization 16-2

Multiple Interrupts 14-5 R - Redundant Code Elimination 16-2

Default Interrupt Processing 14-5 S - Create Debug Symbol Tables 16-2

Class III Interrupts 14-6 U - Unsafe Vectorization 16-2

Interrupt-Handling Routines 14-7 V - Vectorization 16-2

Q7DFSET 14-7 Y - Syntax Check 16-2

Q7DFLAGS 14-8 Z - DO Loop Optimization 16-2

Q7DFOFF 14-8 1 - STAR-100 Optimization 16-2

Class I Interrupts 14-8 2 - STAR-100A Optimization 16-2

Interrupt-Handling Routines 14-9

Q7DFCL1 14-9

APPENDIXES

D Special Call Statements D-I

F STAR FORTRAN '77 Statement List F-lA

G Compatability Features G-1

v

STAR FORTRAN '77

External Reference Specification

PREFACE

This document is the STAR FORTRAN '77 External Reference Specification. It comprises Chapters 1-11
and 14-16 and Appendices D, F, and G of Revision G of the STAR FORTRAN Reference Manual,
modified to reflect language changes which will be made as part of the implementation of FORTRAN '77
on STAR.

This document takes the form of the original reference manual material, plus change pages. The changes
have not been integrated in order that the differences between current STAR FORTRAN and FORTRAN
'77 will be clearer.

The usual format will be the reference manual -page on the reader's left, followed by the changed passages
which appear on the reader's right. The changes and additions are page numbered with an A following the
page number.

ix

1 INTRODUCTION

The FORTRAN programming language for the STAR-100
computer contains both CDC and.unique STAR extensions to
the stanaard FORTRAN (as defined by American National
Standards X3.9-1966, FORTRAN). Throughout this manual,
shading is used to distinguish these extensions from the
standard FORTRAN language features,

A
Several of the STAR FORTRAN extensions to standard
FORTRAN allow the FORTRAN user to exploit the vector
processing capabilities of the STAR computer. In STAR
FORTRAN, vectors can be expressed with an explicit
notation, functions are provided that return vector results,
and special call statements enable access to any machine
instruction.

PROGRAM FORM

A FORTRAN program consists of one or more separately
defined program units. A program unit, which is either a
main program or a subprogram, consists of a series of source
lines that contain statements, optional comment lines, and

H tone and only one END line. An executable FORTRAN
program must contain one main program; it can also contain
any-number of subprograms.

_________ 'RR COLLO 'OiU

._____-..............
L 0
4A~hr

If the executable program consisting of source lines aggre­
gated as program units is accepted by the STAR FORTRAN
compiler, the program is changed into a form that can be
loaded and executed by the STAR operating system. The
compiler executes in response to the FORTRAN system
control statement. Once the program has been compiled, it
can be loaded and executed in response to further system
control statements.

Execution of the compiled program proceeds with one

program unit having control until it relinquishes it to
another program unit or stops. Values can be passed at the
time that control is passed from one program unit to
another. During execution, the compiled program can make
use of execution-time routines that are part of the system

library. Files referenced in the program are read and
written by STAR Record Manager. Depending on the source
program statements, other system-defined or compiler­
defined procedures such as conditional interrupt routines and
error processing routines might also be invoked during
execution.

An example of a complete STAR FORTRAN program is
provided in figure 1-1.

. . ,....0.,. , , . . . , ,

L . *t FI
1~'ZLl I1 :P;seg ALMAf~A . - -- - . L- - _______--_____-__-______-_____I. I4 ______________ ,____.I I .I AL'ZI" ul

. ..Att. 2tJL if i,.. r.Q'rRA.- I r I iL [T AL . ILFF1. IL I n tL!LLL T IF I I'n I

I I I___ P I . -.. ~ - 2c - ._.-- , ,,' ,,,,' ! ,, ,, ,... , , , .. ,L, ,, ,
I' II I N.I III IF M . I t I I IFi t I A PIi I I P I IEI I I

T AIn

, I. E., I IFI AiI . . IF FI PI, I I I .

LI I I I I I ,

'mr-F~m f F i , I, , , i ImI -FiIF~I

....... .I li
 I I I P_ A _ _ I It IJI i 1 l _ I I I r A A . I . II

F
lFIIIFII AI IFIFE I I I I I IIII I I A I I,I I I P II I I

. , , , , .F.I , ,iI I I , ,f I I I II,,. I II. , ,,I,

Figure 1-1. Sample Coded FORTRAN Program

60385200 E REPRODUCIBILITY OF THE 1-
ORIGINAL PAGE IS POOR

A: 	 END STATEMENT

The END statement must be the last statement of each main program
or subprogram. If executed in a main program, the END statement
acts like

STOP 'END'

If 	executed in a subroutine or function subprogram, END acts like

RETURN

5-5A

6 SPECIFICATION AND DATA INITIALIZATION STATEMENTS

Specification statements are nonexecutable statenments
whose purpose is to define storage requirements of
variables, arrays, and function results. They define the type,
of a symbolic name, specify the dimensions of an array,
stipulate the length of a character variable, and define how
storage is to be shared,

If specification statements are used, they must appear
before the first executable statement of the program unit in
which they occur. Any program that refers to an array must
have at least -one specification statement. Otherwise,
specification statements may or may not be required.

The. nonexecutable data initialization statement is also
described in this section.

TYPE STATEMENTS

A 	 Variables, arrays, and function names that appear in a STAR
FORTRAN program must each be associated with a data
type. Explicit type statements and implicit typing are the
two ways to make this association.

B(The appearance of a symbolic name in a type statement
informs the compiler that the name is of the specified data
type in the program unit. In the absence of a type

C {statement, the type of a symbolic name is implied by the
first letter of the name; unless IMPLICIT statements alter
the correspondences of first letters to data types, the
letters I, J, K, L, M and N imply type integer and all other
letters imply type real. (This default type association is
referred to as the first-letter rule.)

(The predefined FORTRAN function names possess pre-
fdetermined data types. Implicit typing of any of these

D names has no effect. If the name of a FORTRAN-supplied
|function is explicitly associated with a type other than its
predefined type, the name ceases to reference the
(FORTRAN-supplied function.

IMPLICIT STATEMENT

The IMPLICIT statement alters the default correspondences
between first letters and data types for symbolic names.
The statement can also specify length for type character.

EIMPLICIT statements must precede all other specification

Form:

IMPLICIT typ,(ist,) typm(listm)

typi 	 The name of a data type: INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL,
BIT, or CHARACTER. The character variable
names are assumed to be of length one unless
the word CHARACTER is followed by *n,
where n is an integer constant that specifies
the character variable length in bytes.

list. 	 A list of the form:

V1v2... ,vn

where v. is a range of first letters of variables
to be considered of type typ. v. is either a
single.alphabetic character, or two such char­
aers separated by a minus-sign to denote the
first and last harae trs of a range. The
second character in a range speeifieationmust
follow the first i alphabetic sequence.

A character must not be associated with more than one data IF

type or byte length by IMPLICIT statements. I

An IMPLICIT statement in a function or subroutine subpro­
grain affects the data type associated with dummy argu­
ments and the function nane, as well as with other variables
in the subprogram.

Explicit typing of a variable, array, or function name in an
explicit type statement or FUNCTION statement overrides
any,implicit type specification.

EXPLICIT TYPING

An explicit type statement is used to declare one or more
entities to be of the specified data type. It overrides' or
confirms any implicit typing and can supply dimension and
byte length information.

Forms:

INTEGER vl/d1 /,v 2 /d 2 / Vn/d /

REAL v 1 /d 1 /,V 2 /d 2 / ... IVn/dn/

DOUBLE PRECISION v1 /d 1 /,v 2/d 2 / vn/dn/

COMPLEX v/d/,v 2/d 2 / ... Vn/dn/

LOGICAL v 1 /d1 /,V 2 /d 2 /..Vn/dnl

CHARACTER *Kv 1*k/dl/,v2*k2 /d 2/1... n*kndn/ G
.. Vn/n/

BIT v,/d 1 /,v 2 /d 2 / vn/dn/

vI 	 A variable, array, array declarator, or functionK
name. K

di 	 Optional. Represents the initial value for vi. if}.
omitted, the surrounding slashes must also be
omitted, (Rules for initializing within a type
statement are given under the heading DATA
Statement later in this section.)

*K 	 Optional. An integer constant specifying the
element length in bytes of every v. This specifica- H
tion is overridden by the individual *k length
specifications. If *K is omitted, a length of one
byte is implied for every v not accompanied) I
by a *k.

60386200 D
 6-1

A: There are two nearly identical FORTRAN languages for the Control Data
STAR-100 and CYBER 200 series computers. One, FTN66, is
based on American National Standard X3.9-1966 FORTRAN and
includes that language as a subset. The other, FTN77, is
based on, and includes, ANS X3.9-1978 FORTRAN.

FTN66 is composed of ANS X3.9-1966 FORTRAN together with

three 	 kinds of extensions:

1. 	 Those which are common in FORTRAN dialects used on
other Control Data- computers,

2. 	 Those designed to provide access to the vector processing
capabilities of the CDC STAR-100 and CYBER 200 series
computers, and

3. 	 Those derived from ANS X3.9-1978. FTN66 includes all
the features of the 1978 standard except those which are
incompatible with the 1966 standard.

FTN77 is composed of ANS X3.9-1978 FORTRAN together with the
first two kinds of extensions mentioned above.

This 	 manual describes FTN77 plus extensions for FMP FORTRAN

B: 	 . . . one and only one END statement. An executable
FORTRAN . . .

IA

A statement is written as one or more source lines, and a
comment, as one source line. The first line of a statement
is called an initial line and the succeeding ones are called
continuation lines. Each line is a string of any characters in
the 64-character ASCII subset listed in appendix A. The
character positions in a line are called columns and are
consecutively numbered left to right.

A FORTRAN program can be written on a coding form such
as the one illustrated in figure 1-1. Each line on the coding
form represents a source line that can be either keypunched
on a card or typed in at a terminal. No more than one
statement is permitted on a single line. The conventional
significance of each column of a source line is shown in
table 1-1.

TABLE 1-1. COLUMN CONVENTIONS

Columns 	 Significance

i The letter C indicates that this is a
A comment line, and that the remainder of

the line is to be ignored by the FORTRAN
compiler.

1 thru 5 	 One to five numeric characters in this
field are interpreted as a statement label.

6 	 Any ASCII character other than a blank or
zero indicates that this is a continuation
line.

7 thrn 72 	 STAR FORTRAN statement, with blank
characters ignored except in character and
Hollerith constants, can appear anywhere
within this field,

73 thru end Identification field, the contents of which
of source are always ignored by the FORTRAN

line compiler, can contain any characters.

END
jEND40.LNIS

B A END line indicates to the FORTRAN compiler the end of
aproram Unit.nt eEvery program unt must have an END line

its last line.

Form:

END

Program units are described in section 7.

COMMENTS

Comment lines are used for purposes of in-line documenta-
tion. They are not statements. Except for being printed in
Ithe output file, comment lines have no effect. The letter C
[in column I 	of a line indicates that this is a comment line;C the comments themselves can be written anywhere after
column 1. If a comment requires more than one line, each

Ilbne must have a C in column 1.

STATEMENTS

The statements in the STAR FORTRAN language fall into
two classes: executable and nonexecutable (see table 1-2).
in general, a FORTRAN program unit consists of nonexecut-
able statements followed by executable statements; how-
ever, there are a few significant exceptions to this
separation,

1-2

TABLE 1-2. TYPES OF STATEMENTS

Executable Nonexecutable

Input statements Procedure definition state­
(section 8) ments (sections 7 and 11)

Assignment statements Specification statements
(sections 4, 10, and 11) (sections 6 and 11)

Flow control statements Data initialization state­
(section 5) ments (sections 6 and 11)

Output statements FORMAT statements
(section 8) (section 9)

NAMELIST statements
(section 8)

Executable statements specify actions to be taken during
program execution. Executable statements are usedtypically 	in the course of a program to request that data be
input, that data be operated upon and stored, and sub­
sequently that results are to be output.

Nonexecutable statements describe characteristics, arrange­
ment, and format of data, as well as entry points and file
requirements of the program. The first statement in a main
program is, generally, the nonexecutable PROGRAM state­
meat. A nonexecutable statement (such as a FORMAT or
DATA statement) that appears in the executable portion of
a program is processed once by the compiler and does not
affect the flow of execution.

Statement Labels

Within a program unit, a statement label - any one- to five­
digit integer - uniquely identifies a statement so that it can
be identified by another statement. Labels on statement
continuation lines are ignored, as are blanks and leading
zeros in. a label. Statements that are not referred to by
other statements need not be labeled. Labels need not occur
in numerical order. A statement label can be referred to as
frequently as necessary, but it must not be used more than
once in the same program unit to label a statement. Also,
no statement can refer to the label of a statement that is
contained in aother program unit.

Continuation of Statements

If a statement is longer than 66 columns, it can be continued
on as many as 19 continuation lines. Unless a line is a
comment line, a character other than blank or zero in
column 6 indicates a continuation line. Columns 2 through 5
can contain 	 any characters in the FORTRAN character set
(they are ignored), and column 1 can contain any character
in the set except C. A continuation line can follow onlyl D
another continuation line or the initial line of a statement.

Ordering of Statements

The following table shows the general form of a FORTRAN
program unit. Statements within a group can appear in any
order (with one exception), but groups (indicated byt
1,2 .	 5... must ordered as shown figure 1-2.!6) be 	 in
Comment lines can appear anywhere within the programl
before the END line, except before statement continuation F
lines.

60386200'E

A: 	 1 The letter C or an asterisk indicates that this is a
comment line, and that the remainder of the line is
ignored by the FORTRAN compiler. (In FTN66, an
asterisk in column 1 does not indicate a comment
line.)

B: END 	 STATEMENT

An END statement indicates the end of a program unit to the
FORTRAN compiler. Every program unit must have an END
statement as its last line. The END statement may be
labeled but must not be continued.

C: 	 . . . the output file, comment lines have no effect. Any line

with the letter C or an asterisk in column 1 is a comment
line; a blank line is also a comment line. (In FTN66, any
line with the letter C in column 1 is a comment line; any
blank line is also a comment line. A line with an asterisk

in column 1 is not a comment line.)

D: 	 . . . in the set except C or asterisk. (In FTN66, a
continuation line may have an asterisk in column 1.) A

continuation line may follow an initial line, a continuation

line, or a comment line which follows an initial line or a

continuation line.

E: 	 . . . order (with one exception), but groups must be ordered
as shown in Figure 1-2.

F: 	 Comment lines may appear anywhere at all within the program

unit, including before its first non-comment line.

1-2A

ROGRAM

PROGRAM
UBROUTINE

BLOCK DATA

2 IMPLICIT

NAMELIST

Type tt

COMMON

3 DIMENSIONRO WIS 0

EQUIVALENCE
tXTERNALC

4 Statement function definitions
S un5oz

A 43

5 Executable statements

6 END line

tExcept within ranges of DO loops; must not appear
immediately before an END line.

ttAn INTEGER type statement that is being used to type
a variable that is an adjustable dimension or adjustable
length in the program unit must appear before any of
the other statements in group 3.

Figure 1-2. Ordering of Statements

COLUMNS 73 THROUGH END OF SOURCE LINE

Any information can appear in any columns that follow
column 72. The characters in these columns are copied to
the output file but have no other effect. These columns

might be used, for example, to order the cards in a punched
deck.

PROGRAM DATA
No restrictions other than those implied in sections 8 and 9
are imposed on the format of data input to the program.
Input data can appear in any of the columns of an input line
and use as many input lines as required. Except on initiation
of a read, or interpretation of a slash separator in the
FORMAT statement associated with a READ statement, the
input line boundary is not significant. Input data is not part
of the source program record.

60386200 E 1-3

A:

Comment PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA
Lines]

Q FORMAT, PARAMETER 2 IMPLICIT 2

ENTRY 1 	 Other 2 ,3

Specification
Statements

DATA Statement
Function
Definitions

Executable
Statements

END

1. 	 May not appear within block IFs or DO-loops

2. 	 If the type of a constant is defined by an IMPLICIT or
type statement,- the IMPLICIT or type statement must
precede the PARAMETER statement which defines its value.

3. 	 If the type of integer variable used in a dimension

bound expression is defined by an IMPLICIT or type

statement, the IMPLICIT or type statement must precede

the statement which contains the array declarator in

which the variable is referenced.

1-3A

2 STATEMENT ELEMENTS

The elements of a syntactically correct STAR FORTRAN
statement could include any of the following:

Identifiers

Keywords

Special characters

An identifier is a name or a number. For example, a number'
(the statement label) is used for identifying a statement.
Input and output units are also numbered- Names are used
to identify data elements-such as variables and_arrays-and
for identifying procedures and blocks. A symbolic name
consists of alphanumeric characters, the first of which must
be alphabetic. STAR FORTRAN allows-a symbolie name to
have a lenth of eight characters.

In. the appropriate contexts, keywords and some of the
special characters (the plus sign, for example) mean that
specific actions are to be taken with respect to the
identified data. Other special characters, (the comma, for
example) serve to punctuate statements. FORTRAN does
not containreserved words, which-means that a keyword out
of the appropriate context is interpreted to be an identifier.

CHARACTER SET
Except fo- character and Hollerith constants, and character
and Hollerith editing specifications in FORMAT statements,
STAR FORTRAN statements are written with the 52
characters listed in table 2-1. Character and Hollerith
constants and editing specifications can contain any of the
64 characters in the ASCII subset that is given in
appendix A.

TABLE 2-1. FORTRAN CHARACTER SET

Character Class Characters

Alphabetic Letters A thru Z

Numeric Digits 0 thru 9

Special Blank

= Equals sign

+ Plus sign
- Minus sign or hyphen
* 	 Multiply sign or asterisk
/ 	 Divide sign or slash
(Left parenthesis
) 	Right parenthesis

Comma
Decimal point or period

& 	 Ampersand
Apostrophe or single quote
Colon
Semicolon

] 	 Right bracket
Left bracket

Other than within character and Hollerith constants-and in

editing-specifications, the blank character is not significant

within FORTRAN statements. Consequently, the user can

insert blanks within a statement, even within identifiers and

numeric constants, to make the program readable. The

symbol 0 is used in this manual to denote a blank character

that is not optional.

DATA ELEMENTS-
Data. can be represented in a STAR FORTRAN program as

constants, variables, and arrays.

CONSTANTS
A constant is a quantity identified by its value. The value of) A

a constant cannot be changed at any time during execution

of a program.

A constant has one of-nine data types:

Integer

Real

Double precision
Complex B

Logical

Hollerith

Character

Hexadecimal

Bit

Each type of constant has its own source program form andcomputer internal representation. For example, if the
constant 1061 appears in a source program, it represents the
decimal value 1061 and has the data type integer. The full
word the number occupies in memory has the 64-bit binary
representation 0,. . . 010000100101.

VARIABLES

A variable is a quantity whose value can be changed during
program- execution. A variable is identified by a symbolic
name. A variable name is generally associated by the
FORTRAN compiler with a storage location; whenever the
variable is referenced in a source program, the value
currently in that location is accessed.

A 	 variable can be a simple (that is, scalar) variable, a
descriptor, or a double descriptor. Descriptors and double C
descriptors are discussed-in the vector programming section.

Some of the ways that the value of a variable, can be
changed during program execution are:

Executing an assignment statement in which the
variable name occurs to the left of an equals sign

Executing an ASSIGN statement

60386200,E 2-1

A: A constant is a quantity identified by its value or by a symbolic name.
Constants which have symbolic names are those defined in PARAMETER
statements. Named constants must be defined before use and must not
be-redefined. A constant name has an associated type; if it is other
than the ;default implied type, the name must be typed by an IMPLICIT
or type statement before the value is assigned in a PARAMETER state­
ment.

The value of . . .

B: A constant has one of ten data types. Named constants are restricted
to the first seven types; that is, there are no named Hollerith, hexadecimal,
or bit constants. The constant types are:

Integer

Real

Double Precision

Half Precision

Complex

Logical

Character

Hexadecimal

Bit

Hollerith

C: Deleted

2-A

Reading a new value into it

Using it as an argument to a subprogram that changes
the argument value

Changing the value of a variable to which it has been
equivalenced

The data type of a variable name is determined implicitly by
the name's first letter (this is referred to as the first-letter
rule) unless the name is explicitly typed by an explicit type
statement. The correspondence of first letters to types is as
follows, except as altered by IMPLICIT. statements:

Letters Data Type

A through H, and 0 through Z Real

I through N Integer

ARRAYS

An array is a totally ordered set of variably valued elements
identified by a single symbolic name. A single element of
the array can be named by suffixing the array name with a
subscript that specifies the element's position within the
array. Except in an EQUIVALENCE statement, when the
unsubseripted array name occurs in a source program, it
refers to the entire array (see Subarray References in
section 10). An unsubscripted array name in an EQUIVA-
LENCE statement or namelist input references only the first
element of the array.

IAn array can be a simple array, descriptor array, or double

E 	 descriptor array. An array containing scalar elements is a
simple array.

For each array, a DIMENSION, ROWWISE, COMMON, or
type declaration statement must be used to declare the
array's size. Thisarse'adeclarationdelaraionmustbeize.Thi must be madeadeonceInonce in eachach
program unit that referenes or defines the array; if more
than one program unit uses the array, the delaration must
bthsa ne programuetharelseunitalofthe s.
be the same in all of the program units.

An array declarator is used to declare the size of an array,
and has the following form:

aid)

a The array name.

d A list of the form:

where n is the number of dimensions the array is to
have; and where d. is an integer constant or simple
integer variable 'whose magnitude indicates the
maximum value that a subscript expression for the
iA dimension may attain in any array element
name.

A ThemaximumAhe dimensiorj d. can be a variable only when a is a dummy
argument in a'sukiprogram. Also, an augmented form of the
array declarator, in which an element length specification of
the form t k appears between the array name and the left
parenthesis, can appear in the CHARACTER type state-
ment. Type statements and dummy arguments are discussed
later in sections 6 and 7.

The data type of an array is determined by the same explicit
and implicit rules that determine the data type of a variable
name. The data type of an array element is that of the

array, It is possible (but not necessary) to declare the size
and data type for an array with the use of a single array
declarator. For example, the explicit type statement
COMPLEX A(50) declares the array A to have 50 elements
all of which are of type complex. In this example, no
additional statement would be required (or allowed) for
assigning a data type to the array.

The amount of storage reserved for an array is determined
by the array's size and data type. For any array, the number
of words, bytes, or bits reserved is the number required for a
single element of the particular data type, times the number
of elements. For example, COMPLEX A(50) reserves 100
words of storage for A, because any data element of type
complex requires 2 words for its internal representation, and
the array A consists of 50 of such complex data elements.

Arrays can have one to seven dimensions. A one-dimen­
sional array can be thought of as a list or series; a two­
dimensional array, as a matrix. The product of the
dimension sizes equals the number of elements in the array.

Subscripts and Array Declarators

A subscript consists of a pair of parentheses enclosing one to
seven subscript expressions separated by commas. Sub­
scripted array names must rotbe confused with array
declarators: an array declarator declares the dimensions of
an array, and a subscripted array name identifies a single
array element. A subscript appears in an array element
name,ara elmente a tae array Elentimmediately after the array name. Except in an
EQUIVALENCE statement, the number of subscript

expresins must always equal the number of dimensions for
the array.
Each dimension in an array declarator can be an integerl

constant or, in a subprogram, a single integer variable. An
integer variable dimension, permitted only when the array is B
a dummyelse argument,common.must either also usedbe a dummy argumentas anjor be in A variable in this wayo leb ncmo.Avral sdi hswya n
adjustable dimension must either be implicitly integer, or

must appear in an INTEGER type statement before it
appears in any other declaration statement.

Each subscript expression in an array element name can be
any scalar arithmetic expression of type integer, real, or
double precision, and must never assume a value less than 1 C
or larger than the maximum length specified in theJ
declarator (the value is not checked at run time). When the
value of the expression is not integer, it is truncated to
integer.

Subscript Interpretation
A subscript can identify an element in the array in either of
two ways, depending on whether the array declarator
occurred in a ROWWISE statement or occurred in a
DIMENSION, COMMON, or type declaration statement. The
conventional succession of elements in an array is defined by
a succession of subscripts in which the value of the leftmost
subscript expression varies through its range (from 1 to thelD

value of that dimension), then the value of the/
subscript expression to its right is increased by 1 and the
first goes through its range again, and so on, until each
subscript expression has gone throughout its entire range at
least once. The subscript significance is just the reverse for
an array that has been declared in a ROWWISE statement:
the succession of elements is .defined by a succession of
subscripts in which the value of the rightmost subscript
expression varies through its range, then the value of the
subscript expression to its left increases by I and the last
goes through its range again, and so on, until each subscript
expression has gone through its entire range at least once.

60386200 E
 2-2

A: 	 . . . have; and where di is a dimension bound declarator. A dimension bound
declarator. A dimension bound declarator for an array which is not a dummy
argument is an integer constant expression or two integer constant expressions
separated by a colon. A dimension bound declarator for an array which is a
dummy argument is an integer expression or two linteger expressions separated
by a colon, except that dn (dI if the array declarator appears in a ROWWISE
statement) may be an asterisk, or else an integer expression followed by a
colon and an asterisk in that order. Nonconstant references in a dimension
bound declarator for an array which is a dummy argument are restricted to
simple integer variables which are in common or else appear in every dummy
argument list in which the array name appears.

If di consists of a single integer expression, the dimension size of the ith
dimension is just the value of that expression; if di consists of two integer
,expressions separated by a colon, the dimension size of the ith dimension is
1 plus the value of the second expression minus the value of the first. If the
nth dimension bound declarator (1st if the array declarator appears in a ROW-
WISE statement) has an upper bound of asterisk, the dimension size of the nth
(1st if ROWWISE) dimension is unknown.

If the array declarator appears in a CHARACTER type statement, it may be
optionally followed by an asterisk and a length specification k, or, as a non­
standard alternative, the asterisk and length specification may be inserted between
the array name a, and the following left parenthesis:

.character array declarator. : = a .std-declarator.
: a .non-std-declarator.

.std declarator. = .dimension.

= .dimension. length-spec.

.non-std-declarator. : = .length-spec. .dimension.

.dimension. : =(dll dn)

length-spec. : =k

The length specification, k, is a nonzero unsigned integer constant, an integer
constant expression enclosed in parentheses. If it is an asterisk enclosed in
parentheses, the array must be a dummy argument: in that case, the elements
of the dummy array are of the same length as those of the associated actual
array (8.4.2).

2-2.IA

This page left blank intentionally

2-2.2A

B: Each dimension of an array is defined by one or two dimension bound
,expressions (except the last of an assumed size array or the first of a
ROW2WISE assumed size array). A dimension bound expression must be
an integer constant expression except when a dummy array is being
declared, in which case it may involve references to integer variables in
common and to integer dummy arguments which appear in every dummy
argument list in which the dummy array name also appears. A variable
used in this way as an . . .

C: . . . any scalar arithmetic expression of type integer, real, double precision,
or half precision, and must never assume a value less than the lower or
greater than the upper dimension bound specified in the . . .

D: . . . subscript expression varies through its range (from
bound to upper), then the value of the . . .

lower dimension

E: An array can be a simple array or a dynamic array.

2-2.3A

To find the location of an array element in the linear
sequence in which the elements are stored given its
identifying subscript, the formulas listed in table 2-2 can be

A used. In the table, capital letters are dimension sizes and
lower case letters are the subscript expression values of a
particular subscript.

A comparison is made of the ordering for conventional and
rowwise subscripts for a-3-dimensional array of 24 elements
in table 2-3. Interpreted geometrically, the conventional
ordering is 2 rows, 3columns, and 4 planes, as shown in
figure 2-1. The rowwise ordering interpreted geometrically
is 4 rows, 3columns, and 2 planes, shown in figure 2-2.

B

DATA ELEMENT FORMS
A data element or function name must be associated
implicitly or explicitly with a data type. The association
applies to every occurrence of the name throughout the
program unit in which the association is defined.

The data type of a variable, array, or function name is
implied by the first letter of the name or else must be

Jspecified explicitly (the data type of a FORTRAN-supplied
C 	function is predefined). The data type of a constant is

implied by its form. The internal representation of a value
of a particular data type is the same whether It is the value
of a variable, of an array element, or of a constant.

ROWWISE
Subscript
Succession

A(1,1,1)
A(1,1.2)
A(1,1,3)
A(1,1,4)
A(1,2,1)
A(1,2,2)
A(1,2,a)

A(1,2,4)
A(I,3,)
A(1,3,2)
A(1,3,2)
A(1,3.4)
A(2,1,1)
A(2,1r2)
A(2,1,3)
A(2,1,4)
A(2,2,1)
A(2,2,2)
A(2,2,3)
A(2,2;4)
A(2;3,1)
A(2,3,2)
A(2;3,3)
A(2,3;4)

TABLE 2-2. ARRAY ELEMENT SUCCESSION FORMULAS

Dimensionality Declarator Dimensions

1 (A)

2 (A,B)
(B,A)t

3 (A,B,C)
(C,B,A)t

4 (A,B,C,D)(D;C,B ,A) t

5 (A,B,C,D,E)

D,(E.DC,13,A) t

6 (A,B,d,D,E,F)

(F,E,D,C,B,A)t

7 (A,B,C,D,E,F,G)

(G,F,E,D,CB,A) t

Instance of Subscript

(a)

(ab)
(b,a)t

(a,b,c)
(c,b,a)t

(a,b,c,d)

(d,e,ba)t

(a,b,c,d,e)

(e~d,e,b~a)t

(a,b,c,d,e,f)

(f,e,d,o,b,a) t

(a,b,c,d,e,f,g)

(g,f,e,d,c,b,a) t

TABLE 2-S. SUBSCRIPTING ORDER FOR A

THREE-DIMENSIONAL ARRAY A(2,3,4)

Conventional
Ordinality Subscript

Succession

1 A(1,1,1)
2 A(2,1,1)
3 A(1,2,1)
4 A(2,2,1)
5 A(1,3,1)
6 A(2,3,1)
7 A(1,1,2)
8 A(2,1,2)
9 A(1,2,2)
1 A(2,2,2)
11 A(1,3,2)
12 A(2,3,2)
13 A(1,1,3)
14 A(2,1,3)
15 A(1,2,3)
16 A(2,2.3)
17 A(1,3,3)
18 A(2,3,3)
19 A(1,1,4)
20 A(2,1,4)
21 A(1,2,4)
22 A(2,2,4)
23 A(1,3,4)
24 A(2,3,4)

Location of Array Element

a

a+A*(b-1)

a+A*(b-1)

+A*B*(c-1)

a+A*(b,-)+A*B*(c-1)
+A*B*C*(d-1)

a+A*(b-1)

+A*B*(c-1)
+A*B*C*(d-1)
+A*B*C*D*(e-1)

a+A*(b-1)
+A*B*(L-I)
+A*B*C*(d-1)
+A*B*C*D *(e-l)
+A*B*C*D*E*(f-1)

a+A*(b-1)
+A*B*(c-1)
+A*B*C*(d-1)
+A*B*C*D*(e-1)
+A*B-C'D*E-(f-1)
+A*B*C*D*E*F*(g-1)

tThis is a subscript for an array declared in a ROWWISE statement. ­

60386200 E
 2-3

A: . . . used. In the table, capital letters are dimension bounds and . . .

B: SUBSTRINGS

A substring reference is a character variable name or character array element
name followed by a left parenthesis, an integer expression, a colon, an integer
expression, and a right parenthesis. Both integer expressions are optional;
they default to 1 and the length of the character substring references datum
respectively.

C: . . . specified explicitly.

The type of a specific intrinsic function name is predefined. The type of
a generic intrinsic name depends upon the type of its argument or else is
predefined. See section 6 for the effect of explicitly typing an intrinsic
function name.

D:

The data type of a constant is

Dimensionality Declarator

1 (AL:Au)

2 (AL:AUBL:BU)

. . .

Subscript

(a)

(a,b)

Displacement of
Array Element

a-AL

a-AL+(Au-AL+ 1}*(b-BL)1
b-BL+(BuBL+I)(a-AL)

Note 1: This is the
statement.

displacement for an array declared in a ROWWISE

2-3A

19 	 21 23

20 	 22 24

13The

14116 18 -Integers

P 1 1111
[8j*J,,[12

Figure 2-1. Conventional Ordering of Elements in a

Three-Dimensional Array, A(2,3,4)

3 i 21.

- 14 13- 22

15 19 23:

16 20 24'

1 5 9

2 61 10

3 7 11

4 	 8 12

Figure 2-2. ROWWISE-Declared Array, A(2,3,4)

INTEGER ELEMENTS

An integer constant has the following form:

dld2 • * * dm

decimal digit (0 through 9); 1 < m 4real

It is written without a decimal point and without embedded
commas.

A signed Integer constant is an integer constant prefixed by
a plus or minus sign. If an integer is positive, the plus sign
can be omitted. If an integer is negative, a minus sign must
be present. An optionally signed integer constant is an
integer constant or a signed integer constant. Integer zero
is neither positive nor negative but can be signed (with no
significance).

value range for an integer is -247 through 247-1.
used in addition, subtraction, multiplication,division, or exponentiation, as well as the results of such

operations, must be within this range.

Integer data occupies one word of storage in the following
format:

0 16 	 63

liazero. . integrirepresentationw'scmlmn

A variable or array can be associated with the integer data} A
type implicitly or explicitly, as described under Variables in
this section.

Examples of integer constants:

237 0 13593569

Examples of signed integer constants:

-237 +13593569

REAL ELEMENTS

A real constant can have one of the following forms:

n
nEx
mEx

n 	 A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m 	 An integer constant.

x 	 An optionally signed integer constant in the range
-8617 through 8645.

The Ex in the real constant form expresses the exponent.
Intergreted arithmetically, nEx means n*10 and mEx means
m*10 . An exponent of E+o is assumed if a real constant
contains no exponent. A signed real constant is a real
constant prefixed by a plus sign or minus sign. The constant
must be preceded by a minus sign if the real number
represented is negative, but the plus sign is optional if the
number is positive. An optionally signed real constant is a
real constant or a signed real constant.

The absolute value range for a real number is approximately
0 through .953 708 115 431 8713+8645. The smallest positive

number that can be represented is approximately
.519 211 284 565 73E-8617. The precision retained in
calculations involving real numbers is approximately 14
significant decimal digits.

60386200 E
 2-4

tk-	 A variable, arrmy, or named constant can be associated with the integer
data - --

REPRODuCIBmn OP T
ORIGINAL PAM IS POOR

2-4A

Real data occupies one word of storage in the following
format:

0 16 	 63
exponent,a" ap mantissa,faltwo's complement
two's comple- integer
ment integer

Examples of real constants:

2.5 .25E+1 .25E1 2500E-3 0E0

Examples of signed real constants:

+2.5 -. 25E+1 +.25E1 -250E-3 +OEO

in 	that
Real data is always represented in normalized form

the most significant bit of the mantissa appears in bit 17,
with the value of the exponent adjusted appropriately. The
STAR-100 Computer Hardware Reference Manual contains
more detailed descriptions of the hardware representations,
for numeric data.

A(A variable or array can be associated with the real data type
either implicitly or explicitly, as described under Variables
in this section.

DOUBLE PRECISION ELEMENTS

A double precision constant has one of the following forms:

nDx

mDx

n 	 A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m 	 An integer constant.

x 	 An optionally signed integer constant in the range
-8617 through 8645.

The Dx in the form expresses the exponent.

is written and interpreted in
A double precision constant
exactly the same way as a real constant, except that the
exponent must always be used and the letter D is used in the
exponent instead of an E.

The value range for double precision numbers is the same as
for real numbers; however, the precision retained is approxi­
mately 28 significant digits instead of 14. The largest
double precision number that can be represented is .561 194
593 766 944 619 962 041 407 3D-8645. The smallest positive
double precision number that can be represented is approxi-
mately .519 211 284 565 733 055 700 413 533 9D-8617.

Double precision data occupies two contiguous words of
storage. The first word is in the same format as for type
real data and expresses the most significant digits. The
second word is in the same format as the first, except that
the exponent value is 47 less than the exponent of the first
and the mantissa has not been normalized. The second word
is always nonnegative (zero or positive),

B(A variable or array can be associated with the double
precision data type by means of the DOUBLE PRECISION or

* the IMPLICIT type declaration statement.

Examples of double precision constants:

.25D+1 	 .25D1 2500D-3

3.141 592 653 589 793 238 462 643 3D+0'
Examples of signed double precision constants:

+.25D+1 -. 25D1 +2500D-3

)\

COMPLEX ELEMENTS

A complex constant must have the following form:
(rl r2)

1' 2
r. 	 An optionally signed real constant.

A complex constant is written as an ordered pair of
optionally signed real constants separated by a comma and
enclosed in parentheses. The parentheses are part of the
constant and must always appear. The value range for
either r1 or r2 is the same as for type real data.

Complex data occupies two contiguous words of storage,
each of which is in the format for type real data. The first
word (r1 in the form), represents the real part of the
complex number. The second word (r2 in the form),
represents the imaginary part.
A variable or array can be associated with the complex data) C
type only by means of the IMPLICIT or the COMPLEX type
declaration statement.

Examples of complex constants:

(4.0, 5.0), 	 which has the value of the complex
number 4.0 + 5.0i, where i = F-1

(0., -1)

(+.4El, 5.0)

(-4., -5.)

LOGICAL ELEMENTS

A logical constant has one of the following forms:

.TRUE.

.FALSE.

The periods are part of the constants and must appear.

Logical data occupies one word of storage in the following
format:

0 	 63

7-	 d0000 	 ...

where d is a 1 bit or 0 bit for .TRUE. and .FALSE.
respectively.

A variable or array is associated with the logical data type) D
by means of the IMPLICIT or the LOGICAL type declaration
statement.

60386200 G 	 2-5

A: A variable, array, or named constant can be associated with the real data type

B: A variable, array, or named constant can be associated with the double .. .

C: A variable,

data . . .

array, or named constant can be associated with the complex

D: A variable,

type . . .
array, or named constant is associated with the logical data

E: HALF PRECISION ELEMENTS

A half precision constant has the following form:

.half-precision-constant. : n S x
+ n S x
n S + x
+ n S + x

where n is a string of decimal digits including an
and x is a string of decimal digits.

optional decimal point

A half precision constant is interpreted as

+ n * 10 ** (jx)

Examples of half precision constants:

6.23S23 1.05-06

-.IS6 3.14159S0

The largest normalized half precision datum which can be internally repre­
sented is #6F 7F FF FE (approximately 2.177807x10 4 0); the smallest
is #6F 80 00 00 (approximately -2.177807x10 4 0. The smallest normalized
half precision datum which is greater than zero is #90 40 00 00 (approxi­
mately 8.077936x10 28); the largest less than zero is #90 BF FF FF (approxi­

mately -8.077938x10"2 8).

Half precision data occupy halfwords of storage in the following format:

07

exponent, a
two's comple-
mert integer

8

I
[[,_

mantissa,
integer

a two's complement

31

(The internally stored exponent is a power of two, not ten.)

A variable, array, or named constant of type HALF PRECISION may
declared with the HALF PRECISION or IMPLICIT type statements.

be

2-5A

HOLLERITH ELEMENTS

A 	 Hollerith constant is a string composed of an (unsigned)
A (integer constant followed by the letter H and a nonempty

string of any m of the 64 characters in the ASCII subset,
The blank character is an acceptable and significant
character in a Hollerith constant.

Form:

mHs

m 	 An (followeda (unsigned) integer constant less than or
equal to 265 and nonzero,

s 	 A string of exactly m characters included in
the 64-character ASCII subset (see
appendix A).

Hollerith data uses m contiguous bytes (a byte is eight bits)
to represent m characters. Eight characters fill one
machine word. The word boundary generally does not effect
how Hollerith data is stored; however, when used as an
actual argument in a subroutine call or function reference, a

CiHollerith constant is aligned on a word boundary and
extended with blanks on the right so that it occupies a whole
number of words,

Examples of Hollerith constants:

19HRESULT NUMBER THREE 5H12345

517IN515b IIH,

(A Hollerith constant can be used as an actual argument, or
I 	for data initialization in a DATA or type statement. For

compatibility with FORTRAN Extended, other uses of
Holerith constants are supported as described in

I appendix G.

It is not possible to declare a variable or array to be type
Hollerith.

CHARACTER ELEMENTS
charactersA character constant is a nonempty string of

enclosed in single quotes. If a single quote (1)is required
within the string as one of the characters, it must be
prefixed with another single quote. The character blank is a
significant character in a character constant.

Form:

'c e 2 ... 	cm'

a 	 A character selected from the 64-character
ASCII subset; m is less than or equal to 255.

Character data uses m contiguous bytes of storage to
represent m characters: eight characters fill one machine
word.

Examples of character constants:

'RESULT NUMBER THREE' '12345' '1]W' ','

In contrast to the Hoflerith data type, the character data
type can be associated with a variable or array, in which
case the variable or array must have length as well as type
specified in an IMPLICIT or CHARACTER type declaration
statement.

HEXADECIMAL ELEMENTS

A hexadecimal constant is a string composed of the letter X

by a nonempty string of m hexadecimal digitsenclosed in single quotes. The 16 hexadecimal digits are the j
digits 0 through 9 and the letters A through P.

Form:
Xihlh2 ... hm ,

hi A hexadecimal (base 16) digit; m is less than or

equalto 255.

Hexadecimal data uses as many contiguous bits of storage as
are required to represent m digits: the digits 0 through F
(interpreted as the hexadecimal equivalents of the decimal
digits 0 through 15) each take four bits. The word boundary
is not sigificant for hexadecimal data.
Examples of hexadecimal constants;

X1331 X'IAS' X'FFFFFFFFFFFFF'

Hexadecimal constants are restricted to use in data initiali­
zation and special CALL statement argument lists.

It is not possible to declare a variable or array to be type} E
hexadecimal.

BIT ELEMENTS

A bit constant is a string composed of the letter B followed
by a nonempty string of m binary digits (bits) enclosed in
single qotes.

Form:

Bib b.. . bi,

bi A bit (0 or 1); m is less than or equal to 255.

Bit data uses m contiguous bits; the word boundary is not
significant. The digits 0 and 1 each correspond to one bit in
storage.

Examples of bit constants:

B'0' 	 B'I0101111' B1000000000000001'

Bit constants are restricted to use in subprogram references,

scalar and vector bit assignment statements, and data

initialization.

A bit variable is associated with the bit data type by means
 F
of the BIT or the IMPLICIT type declaration statement.

2-6 	 60386200 G

A: . . . integer constant

nonempty . . .

m followed by the letter H or the letter R and a

B: .hollerith-constant. : m H s

m R s

m An unsigned integer constant less than 256.

C:

D:

machine word. H constants (R constants) are stored aligned to a word

boundary on the left (right) and blank (zero) filled to a word boundary

on the right (left).

Hollerith constants are arithmetic constants and may be used wherever

other arithmetic constants are legal. In particular, they may appear in
arithmetic expressions, where they are typeless (that is, they assume the
type of the operand with which they are combined), except that they
are of type INTEGER when the arithmetic expression consists of a single
Hollerith constant and no operators.

Hollerith

character

constants are

expressions.

not character constants; they may not appear in

Truncation of H (R) constants to their leftmost (rightmost) eight characters
occurs whenever long H (R) constants appear in contexts other than actual
argument lists. In particular, long H (R) constants in constant lists of DATA

statements are truncated and initialize only a single word.

It is not

Hollerith

possible to declare a variable or array to be

constants are not permitted in PARAMETER

type Hollerith.

statements.

E: It is not possible to declare a variable

Hexadecimal constants may not appear

or

in

array to be type hexadecimal.

PARAMETER statements.

F: A bit variable is associated with the bit data type by means of the BIT

or the IMPLICIT type declaration statements. Bit constants may not appear
in PARAMETER statements. There are no named constants of type bit.

2-6A

3 SCALAR EXPRESSIONS

A FORTRAN expression is a string of one or more operands
and zero or more operators that is evaluated duringoprogram
execution to -yield -a 'value. The conventional precedences
for the FORTRAN arithmetic and logical operators are
given later in this section.

An expression generally specifies a computation or a
comparison between operands. However, in its simplest
form an expression consists of a single data element (a

A{single constant, variable, or array element) or a function
reference. This section gives the formation and evaluation
rules for the following kinds of scalar exprdssions:

Arithmetic 	 Yields numeric values; appears in
arithmetic assignment statements and in
relational expressions

Bf Character 	 Contains no operators; is used in charac­
ter assignment statementsand relational
expressions

Relational Yields logical values; appears in logical
expressions

Logical Yields logical values;, appears in logical
expressions and logical assignment
statements

Bit 	 Yields bit values; appears in bit
assignment statements

When an expression is evaluated during program execution,
the result is retained in a variable, is used immediately as an
operand for another operation, or is passed as an argument
to a function or subroutine. An expression-whose evaluation
yields a result of a certain type is called an expression of
that type; for example, an expression whose evaluation
yields an integer result is called an integer expression,

Examples of expressions:

Expression 	 Value

X 	 Current value of the variable X

3.5 	 Constant real number 3.5

'CHARACTERS' 	 Character constant, 10 ASCII
characters

DBI/DB2**2 	 Value of DB1 divided by the square
of the value of D82

A(C/B) 	 Array element A(l), where I is the

value of the expression C/B

SQRT (TRUNK) 	 Function reference

(A+B+3*C)/2.56 	 The sum of the expressions A, B, and
30, divided by 2.56

X.LT.Y-1.0 	 .TRUE.ifthe value of X isless than

the value of Y-1.0, .FALSE. other-
wise

.NOT. FNLOG(B) 	 .TRUE. if the value of-the expression
FNLOG(B) is .FALSE., .FALSE.
otherwise

60386200 E

If the value of an expression can be established without

evaluating a certain part of the expression, then that part

might never be evaluated. For this reason the user cannot

rely on any side effects an expression might be able to

produce;

Example:

During evaluation of the.logical expression

Y .OR.F(X) .OR.Z

if Y has the value .TRUE., the expression has the value
.TRUE. whatever the values of F(X) and Z may be. In
this situation the-execution of F might or might not
occur as a result of the expression evaluation.

Another consideration 	for the user is compatibility between
operand types during,evaluation: The operand types that can

be combined in the same arithmetic or relational expression

are the following, in order of decreasing dominance:

Complex (cannot occur in relational expressions) }C

Double precision

Real

Integer 	 D

In general, when two operands that are to be operated upon

have different types, the value of the dominated operand is

converted to the type of the dominant operand before the

operation is performed. For example, if the operand types

of an expression (consisting of two operands and a dyadic

operator) were real and integer, the effect would be
 as
though the integer had been converted to type real data
before a real operation (an operation involving only type real
operands) was performed.

ARITHMETIC EXPRESSIONS

The FORTRAN arithmetic operators are:

+ Addition; unary plus

- Subtraction; unary minus

Multiplication

/ Division

Exponentiation
Unary plus and minus are conceptually like dyadic addition

and subtraction using an implied zero operand of the same
type as the given unary operand.

An arithmeiic expression can be a single constant, simple
variable, array element, or function reference. If X is an
arithmetic expression, then (X)is an arithmetic expression.
Each left parenthesis must have a corresponding right

3-1

http:A+B+3*C)/2.56

A: . . .single constant, variable, substring, or array element) or a function

B: Character Is used in charac-

C: Complex

D: Half Precision

3-1A

parenthesis in the same expression; Furthermore, if X and Y
are arithmetic expressions, then the following, are also
arithmetic expressions:

X+Y

X-y
X-Y

X/Y
XV*Y

All operations must be specified explicitly. For example, to
multiply two variables X and Y, the expression X*Y must be
used; XY, (W) (Y); or X.Y does not result in multiplication.
Also, operators in an expression must not be contiguous. A
unary plus or unary minus can be separated from another
operator in an expression by using parentheses around the
signed element.

Examples of arithmetic expressions:

3.5

3.5 + N

-(3.5+N)/2**M

(XBAR+(B(IJ+I,K)/3.0))

-(C+DELTA*AERO)

(-B-SQRT(B**2-(4*A*C)))/(2.0*A)

GROSS - (TAX*0.04)

TEMP + V(MAMAX(A,B))*Y**C/(H-FACT(K+3))

EXPONENTIATION
The following types of base and exponent are permitted in
exponentiation:

Type of Base Type of Exponent

Integer Integer, real, double precision

A Real Integer, real, double precision

Double precision Integer, real, double precision

Complex Integer, real

Also, a negative-valued base can have an exponent of type
integer only and a zero-valued base can be raised to a
positive exponent only.

An expression (or a subexpression delimited by parentheses)
that contains only operands and the exponentiation'operator
is evaluated from- right to left. That is, A**B**C means
(A**(B**C)). This interpretation can be changed with
appropriate use of parentheses, for example, (A**B)**C.

_-EVALUATION OF ARITHMETIC EXPRESSIONS

Thevalue of an arithmetic expression is a close approxima-
tion to the mathematical interpretation. The sequence in

which the elements of an expression are evaluated is
governed by the following rules listed in descending prece-,
dence:

1. 	 Subexpressions delimited by parentheses are evaluated
beginning with the innermost subexpressions.

2. 	 Subexpressions defined by arithmetic operators are
-evaluated:

3. 	 Subexpressions containing operators of equal prece­
dence are evaluated in effect from left to right, except
for exponentiation which is evaluated from right to left
(the exponent's value is calculated before the base's
value).

For example, the expression

A/B/C-D*E**F

might be evaluated as follows:

1. 	 E is raised to the power of F.

2. 	 A is divided by B.

3. 	 Quotient in step 2 is divided by C.

4. 	 Result of step I is multiplied by D.

5. 	 Product in step 4 is subtracted from result of step 3.

If the result of an integer division is not integral, then the
fractional part is discarded. The result of an integer
division is the nearest integer whose absolute value does not
exceed the absolute value of the magnitude of the mathe­
matical ratio. For example, 3/2"4 has the value 4, -3/2"4
has the value -4, and 3/(-2)*4 has the value -4.

Operators that are mathematically associative or commuta­
tive 	 might be reordered during compilation. The user can
force a definite ordering of mathematically associative
operators of equal precedence by appropriate use of paren­
theses. Subexpressions containing integer divisions are not
reordered within the division/multiplication precedence
level, however, because the truncation resulting from an
integer division renders these operations nonassociative.

The evaluation-of an array element or function reference in
an expression requires the evaluation of the subscript or
actual arguments. The evaluation of the subscript or actual
arguments does not affect the type of the value of the
expression in which the subscript or argument list appears;
neither does the expression type affect subscript or actual
argument evaluation. Evaluation of a function must not
alter the value of any other element within the statement in
which the function reference appears.

No 	 element can be evaluated whose value is not mathe­
matically defined. For example, division by zero or the
square root of a negative number cannot be evaluated.

TYPE OF AN ARITHMETIC EXPRESSION

The arithmetic operators +, -, , and/ can be used to
combine any elements of the same numeric data type into an
expression; the resultant value has the same data type as
that of the operands. For example, when two real numbers
are added, the data type of the result is real, and the
operation is referred to as a real operation. Furthermore, a

60386200 E
 3-2

http:TAX*0.04

I

A: 	 The base and exponent may be any arithmetic types. The dominance of
types is the same as for other arithmetic operators.

However. if the value of the base is negative, the exponent must be type
integer unless one or both ;operands are type complex. If the value of
the base is zero, the expotient must be type integer and the exponent's

value 	 must be greater than zero.

3-2A

A(complex, double precision, real, or integer element can be Evaluation of a relat:onal expression consisting of srith­
combined with one of these operators into an expression metic expressions proceeds as follows: each aritnmnetic
with an element of any of the types complex, double expression is evaluated; type conversion to the dominant

B({precision, real, or integer, with the resultant value having type takes place if the types of the arithmetic expressions
the type possessed oy the dominant operand, differ; then the compare is made. Tee relatuonI expression

has the logical result .TRUE. or .FALSE. as ne 'eiat~on is
true or false, respectiveiy.CNARACTER EXPRESSIONS,
Arithmetic expressions in relational expressions cannot be of 1

A character expression consists of exactly one data element
and no operators. This element can be any one of the
following:

type complex; they can be integer, real, or double precision,
however. For example, (2.0,l.0)*N is syntactically correct,
but ((2.Ol.0)*N).GE.M is not.

E

A character constant When a relational expression consists of character expres­
sions, the corresponding characters in the values of the two

C A Hollerith constant

A character array element

expressions are compared one character at a time from left
-to right. A character is considered greater than another
character, for example, if its hexadecimal equivalent as
shown in appendix A is greater than that of the other. If the

A character variable two character expressions have different lengths, com­
parison proceeds as though the shorter had been padded on

A character function reference the right with blank characters until the expressions were of
equal length (the hexadecimal equivalent of the blank

The value of a character expression is the value of the character is less than that of any other character in the
element. The type of a character expression is character. ASCII subset).

RELATIONAL EXPRESSIONS LOGICAL EXPRESSIONS
The FORTRAN relational operators are: The FORTRAN logical operatorsare:

.LT. Less than .AND. Logical and

.LE. Less than or equal to .OR. Logical or

.EQ. Equal to .XOR. Logical exclusive or,

.NE. Not equal to .NOT. Logical negation

.GT. Greater than The periods must appear in any occurrence of a logical

.GE. Greater than or equal to operator. The mathematicaloperators are given in table 3-1. definitions of the logical

The periods are part of the operators and must appear. TABLE 3-1. LOGICAL OPERATOR TRUTH TABLES

A relational expression is a relational operator bracketed by
two operands: p g p.AND.g p.OR.g p.XORg .NOT.p

aexpr1 op aexpr2

cexprj op cexpr 2

T T T
T

T
T

F
F

F
F

T F F T T F G
op A relational operator.

F T F T T T
cexpr i A character expression. -F FF FF FF FF TT

aexpr. An arithmetic expression.

The operands can be either two arithmetic expressions or
two character expressions. As the forms above show, a
relational expression cannot contain two relational opera-

A logical expression can be a single relational expression,
logical constant, logical variable, logical array element,
logical function reference, or a logical expression enclosed

tors.

Examples of relational expressions:

in parentheses. Also, if X and Y are logical expressions,
then .NOT.X, and X followed by a binary logical operator
followed by Y, are logical expressions.

D SHASTER .LT. C Examples of logical expressions;

'ANEMONE' .EQ. FNCHAR (X).AND..NOT.Y

X+Y/3.*Z .NE. X X*2.114 .NE.(B*22.114).AND. Zl .AND. Z2 .AND. Z3

A(U).GE. SQRT(R) .NOT. (X.AND..NOT.Y) .OR.(Z.EQ.98.6)

AMRYL .LT.1.5D4 B-C .LE. A .AND. A .LE. B+C

60386200 E REPRODUy
f A , IL y O TlORIPOD
ORIGINL 'FAGE IS POOR

3-3

A: 	 . . . complex, double precision, real, half precision, or integer element can
be . . .

B" 	 . . . precision, real, half precision, or integer, with the resultant value

having . . .

C: 	 CHARACTER EXPRESSIONS

The 	 FORTRAN character operator is:

[[Concatenation

A character expression may be any of the following:

A character constant

A character variable

A character array element

A character function reference

" A character substring

cexprI I cexpr,­(cexpr)

where cexpr, cexprl, and cexpr 2 are character expressions. The concatena­
tion operator forms a character string whose initial characters are the first
operand and whose final characters are the second operand. For example,
if the character variable VERB has the value 'LOOK', then the expression
VERB / / 'ING' has the value 'LOOKING'.

Examples of character expressions;

'ING'
VERB

VERBS(K)

W(X+Y)

VERB(1:2)

VERBS(K)(L:L+l)

VERB / / 'ING'

where VERB is a character variable, VERBS is a character array, and W is
a character function.

Character expressions may not exceed 65,535 characters.

A character substring is a character variable or character array element
followed by a substring designator of one of the following forms:

0:k)

(:k) meaning (1:k)

0: meaning (J:n)

(. meaning (l:n)

where j is greater than or equal to one and less than or equal to k and k
is less than or equal to n and n is the number of characters in the character
- riable or array element. The character substring consists of the jth through

ie kth characters (inclusive) of the character variable or array element.

3-3.1A

This page left blank intentionally

3-3.2A

D: delete

E: Complex expressions are allowed as

when the operator is .EQ. or NE.

operands in relational expressions only

F: .EQV.

.NEQV.

Logical equivalence

Logical nonequivalence

G: Table. 3-1. LOGICAL BINARY OPERATOR TRUTH TABLES

p q p.AND.q p.ORq p.EQV.q p.NEQV.q

T
T
F
F

T
F
T
F

T
F
F
F

T
T
T
F

T
F
F
T

F
T
T
F

'XOR. is the same as .NEQV.

Table 3-2. LOGICAL UNARY OPERATOR TRUTH TABLE

p

T
F

NOT.

F
T

p

PRECEING PAGE BLANK NOT FILMED

3-3.3 A

.NOT. can appear adjacent to -itself only with intervening
parentheses as in the following types of constructs:

.NOT. (.NOT.p)

.NOT. (.40T. (.NOT.p))

.NOT. can appear adjacent to any other logical operator only
as the operator on the right, as in the following constructs:I

p.AND..NOT.q

A p.OR..OTA

p.XOR..NOT.q

The operators .AND., .OR., and .XOR. cannot appear
adjacent to each other; they are always flanked by relational
expressions, logical elements, or any such logical expres­
sions. (This corresponds to the mathematical usage of
logical conjunction and disjunction.)

Whenever precedence is not established explicitly by paren-
theses, the logical, relational, and arithmetic operations
that might appear in a logical expression are evaluated
according- to the precedences shown in table 3-2. The
unparenthesized expression X.OR.Y.AND.Z.OR.W, for
example, means (X.OR.((Y.AND.Z).OR.W)), and if the user
had intended (X.OR.Y).AND.(Z.OR.W), then the parentheses
would need to be explicit. The plus/minus category in the
table applies to both unary and dyadic additive operations.
The value of a logical expression is always of type logical.

BIT EXPRESSIONS
A -bit expression is formed with bit data elements and the
logical operators used in logical expressions. A bit
expression can be a single bit constant, bit variable, bit

_ array element, or bit expression enclosed in parentheses.
Also, if B and C are bit expressions, then .NOT.B, and B
followed by a binary logical operator followed by C, are bit
expressions.

The operators used in bit expressions are the logical
operators interpreted so that truth is the bit value 1 and
falsity is the bit value 0. The mathematical definitions of
the logical operators are given in table 3-1; the precedences

of the operators are the same as for logical operators in
logical expressions.

Bit expressions might be used to define a bit variable or bit
array element, or as a more efficient use of storage for
logical operations (bits instead of words).

Examples of bit expressions:
B'F

(B).AND..NOT.C

B1.AND.B2.ANDf.B3.AND.B4

.NOT.(BOG.AND..NOT.BOH).OR.CO2

CI(N).XOR.C2(N)

TABLE 3-2. OPERATOR PRECEDENCES

Operator Precedence Category

** first

second Arithmetic
*
* third

.EQ.

.NE.

.GE.LT. fourth Relational

LT.

GT. I
NOT. fifth

AND. sixth Logical

OR.
.XOR. seventh

3-4 60386200 E

http:NOT.(BOG.AND..NOT.BOH).OR
http:B1.AND.B2.ANDf.B3.AND.B4

A: 	 p.AND..NOT.q
p.OR..NOT.q
p.X XR.-NOT.q

p.FQV..NOT.q

p.NEQV..NOT.q

The binary operators .AND., .OR., .XOR., .EQV., and .NEQV.

B. 	 Table 3.3 OPERATOR PRECEDENCES

Precedence 	 Operators Category

1st ** 	 Arithmetic
2nd 	 Arithmetic
3rd 	 Arithmetic
4th / / 	 Character
5th 	 .EQ.,.NE.,.LT.,.LE.,.GT.,.GE. Relational
6th .NOT. 	 Logical
7th .AND. 	 Logical
8th .OR 	 Logical
9th 	 .XOR.,.EQV.,.NEQV. Logical

3-4A

http:EQ.,.NE.,.LT.,.LE.,.GT.,.GE

4 SCALAR ASSIGNMENT STATEMENTS

A scalar assignment statement initiates evaluation of the
expression on the right side- of-the equals sign. When
evaluatinf is complete, the variable to the left of the equals
sign is assigned the value of the expression.

This section gives the formation rules for the following
types of sealer assignment statements:

Arithmetic

Character.

Logical

Bit

The terms left hand side and right hand side of an
assignment statement refer in this manual to everything in
the statement that lies to the left of and to the right of the
equals sign, respectively.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statkment has the following
form:

var-expr

expr An arithmetic expression.

A var 	 A simple variable or array element, of type
integer, real, double precision, or complex.

If the type of the element to the left of the equals sign
differs from that of the expression on the right, type
conversioh takes place during assignment. The value of the
expression, converted to the type of the variable on, the left
side, replces the value of the variable.

Exailes:

Statement Meaning

A = A + I Replacethe value of A with the
value of A + 1

K(4) = K(1) + K(2) Replace the value of K(4) with the

sum of the array elements W(1)and
K(2)

I = (-2.3, 1.5) Replace the value of I with the trun­
cated real part of the complex
constant, -2

A = 3 Replace the value of A with 3.0

The rules for conversion during arithmetic assignment are
given in table 4-1. Terms used in the table are defined as
follows:

Contract Convert double precision to real.

Extend Convert real to double precision, filling
the new mantissa with zeros.

Float Convert integer to real.

Fix Convert real to integer, truncating the
fractional part.

Real part Real part of a complex value.

Imaginary Imaginary part of a complex value.

part

TABLE 4-1. CONVERSION FOR ARITHMETIC ASSIGNMENT

Variable Type
(Left Side) Integer

integer No conversion

B
Real Float .

Double Precision Float and extend

Complex Float and use for real
part; zero imaginary
part

60386200'6

Expression Type

Real

Fix

No conversion

Extend

Use for real part; zero
imaginary part

Double Precision

Contract and fix

Contract

No conversion

Contract and use for
real part; zero in­
aginary part

Complex

Fix real partand
discard imaginary
part

Use real part and
discard imaginary
part

Extend real part and
discard imaginary
part

No conversion

C

4-1

A. 	 var A simple variable or array element of type integer,
real, double or half precision, or complex.

B: Left 	 Right Side (R)Side I
(W) _ Integer Real Double Half Complex

Integer L=R L=NT(R) L.INT(R) L=INT(R) L=INT(R)

Real L-REAL(R) L=R L=REAL(R) L=REAL(R) L=REAL(R)

Double L=DBLE(R) L=DBLE(R) L=R L=DBLE(R) L=DBLE(R)

HALF L=HALF(R) L=HALF(R) L=HALF(R) L=R IIsHALF(R)
Complex [_L=CMPLX(R) L=CMPLX(R) LDMPLX(R) L=CMPLX(R) L=R

C: . . . given in Table 4-1. In the table, L stands for the left hand side of an
assignment statement; R stands for the right. The functions referenced (INT,
REAL, DBLE, HALF, and CM4PLX) are just the generic intrinsic functions for
type conversi6n; their behavior is described in Chapter 15 of this manual.

4-1A

CHARACTER ASSIGNMENT STATEMENT

The character assignment statement has the following form:

var=expr

expr 	 A character expression.

var 	 A character variable or a character array
element.

When the length of the entity var and the length of the
character value of the expression expr are the same,
execution of the character assignment statement causes the
value of the character expression to be assigned to the
character entity to the left of the equals sign.

The elements var and expr can have different lengths. When
var is longer than expr, expr is extended to the right with
blank characters until it matches the length of var, and then
is assigned. If vex is shorter than expr, expr is truncated
from the right until it matches the length of var, and then is
assigned.

Examples:

Given the declarations

CHARACTER*10 C
CHARACTER*5 VOWELS, CARRAY (50)

Statement 	 meaning

VOWELS = 'AEIOU' 	 Replace the value of VOWELS .ith
the value of 'AEIOU'

C = CARRAY (N) 	 Replace the value of C with the
value of CARRAY (N) left-justified
in C and padded on the right with
five blank characters

LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement has the following form:

var=expr

expr 	 A logical expression.

-var 	 A logical variable or a logical array element,

Execution of the logical assignment statement causes the
value of the logical expression to be assigned to the logicalentity specified to the left of the equals sign.

Examples:

LOGICAL LOG2 LOG2 is assigned the value .FALSE.

I=1 because I does not equal 0.

LOG2 = L.EQ. 0

LOGICAL NSUM, VAR

BIG = 200. NSUM is assigned
VAR = .TRUE. the value .TRUE.

NSUM = BIG .GT. 200. .XOR. VAR

LOGICAL A,BC,D,E,LGA,LGB,LGC

REAL F,G,H

LGB=B.AND.C.AND.D

A=F.GT.G.OR.F.GT.H
A=.NOT.(A.AND..NOT.B).AND.(C.OR.D)
LGA=.NOT.LGB
LGC=E.OR.LC.OR.LGB.OR.LGA.OR.(A.AND.B)

BIT ASSIGNMENT STATEMENT
The bit assignment statement has the following form:

var=expr

expr 	 A bit expression

var 	 A bit variable or bit array element

Execution of the bit assignment statement causes, the bit
value of the bit expression to be assigned to the bit entity to
the left of the equals sign.

Examples:

Given the declaration

BIT BZ, AI(3000)

Statement,Menn

B2 =AI(N).OR.B'0' 	 Assign to B2 the value I if AI(N) is a
1 bit, the value 0 otherwise.

B2 = B'1' 	 Replace the value of B2 with a value
of 1.

60386200 E

4-2

http:A=.NOT.(A.AND..NOT.B).AND.(C.OR

A: var A character variable or a character array element, or a substring of

either of these. (No part of var may be part of expr -- that is,

may be part of any operand of expr.)

4-2A

5 FLOW CONTROL STATEMENTS

The statements of a STAR FORTRAN program are in effect
executed consecutively except when flow is altered by a
control statement or by an exceptional condition (for
example, end-of-file on input, or a data flag branch
interrupt). The execution of a control statement alters,
interrupts, terminates, or otherwise modifies the normal
sequential flow of program execution,

Some control statements indicate where control is to be
transferred by referring to a statement label. The transfer
of control must not be made to-a nonexecutable statement
such as a FORMAT statement. It can be made to the
dummy executable statement CONTINUE (which is used for
no other purpose than to be labeled) or to any other labeled
executable statement.

Besides the CONTINUE statement, STAR FORTRAN con-
taias four kinds of control statements:

Unconditional branch (GO TO statement; assigned GO
TO statement)

A 	 Conditional branch (computed GO TO; arithmetic and
logical IF)

Loop (DO statement)

Program 	control (PAUSE; STOP; CALL; RETURN)

Only the fourth kind does not involve labels.

GO TO STATEMENT.
The three types of GO TO statements are unconditional,
assigned, and computed.

UNCONDITIONAL GO TO
The unconditional GO TO statement has the following form:

GO TO n

a 	 The statement label of an executable state-
ment.

Control is transferred on execution of the GO TO so that the
statement labeled n is the next statement to be executed.
The statement labeled n must be in the same program unit.

ASSIGNEDin

An ASSIGN statement is used in conjunction with the
assigned GO TO statement. This ASSIGN statement is not
related to the descriptor and double descriptor ASSIGN
statements described in the vector programming section.

ASSIGN 	Statement

The ASSIGN statement initializes a variable for subsequent
use in an assigned GO TO statement. It has the following
form:

ASSIGN n TO var

n 	 The statement label of an executable state­
ment.

var 	 A simple integer variable.

n is the label of the executable statement to which control
is transferred by an assigned GO TO statement that contains
the variable var. The statement labeled n must be in the
same program unit in which the ASSIGN statement appears.

Use of the ASSIGN statement does not have the same effect
as use of an assignment statement; for instance, an
arithmetic assignment cannot be used interchangeably with
an ASSIGN. Once a variable var is associated with a labeled
statement by means of an ASSIGN, it. must be used
exclusively in ASSIGN statements and in assigned GO TO
statements until it is defined by means of an assignment
statement. Similarly, onrie it has beeh defined by an
assignment statement, it must be used exclusively in
statements other than the assigned GO TO statement until it
is associated with a labeled statement by means of an
ASSIGN. That is, results are unpredictable in either of the
following cases:

use of the variable var in an assigned GO TO statement
when vars current value was defined by other than an
ASSIGN statement

use of the variable var in an arithmetic expression when
var is currently associated with a labeled statement as
a result of an ASSIGN

Assigned GO TO Statement

The assigned GO TO statement has the following form:

GO TO var,(nl,n 2.... nm)

GO TO var

var 	 A simple integer variable.

n. 	 The statement label of an executabie
statement.

The comma separating var from the label list is optional.
Control is transferred so that the labeled statement
associated with var is the next statement to be executed.
The statement labeled n. must be in the same program unit

which the GO TO statement referencing it appears.

At the time of execution of an assigned GO TO, the variable
var must have been associated with a labeled statement by
prior execution of an ASSIGN statement. In the first form
of the statement, var must be associated with one of the
labels in the parenthesized list, while in the second form var
must be associated with a label in the program unit.

Examples:

ASSIGN 100 TO LSWICH
GO TO LSWICH (500,100,150,200)

Control transfers to statement 100 upon execution
of the GO TO statement.

60386200 E 	 5-1

A: The following statements are classified as control statements:

Unconditional GO TO

Cemputed GO TO

Assigned GO

Arithmetic IF

Logical IF

Block IF

ELSE IF

ELSE

END IF

DO

CONTINUE

STOP

PAUSE

END

CALL

RETURN

TO

54lA

ASSIGN 110 TO LSWICH
GO TO LSWICH (500,100,150,200)

D 	 Results of executing the GO TO statement are
unpredictable because 110 is not one of the labels
in the list.

COMPUTED GO TO

The computed GO TO statement has the following form:

GO TO(nn n)lSis

E sel A simple integer variable.

The statement label of an executable
statement.

ni

The comma separating sl from the label list is optional
The statement labeled n. must be in the same program unit.
The computed GO TO Istatement transfers contror to a
statement whose label is in the parenthesized list. If the

F(selecting variable sel has the value 1, then the statement
labeled n1 is the next statement to be executed; if sel has
the value i, the statement labeled n. is the next statement
to be executed. If the value of sel i not in the range 1 to
m, the first executable statement following- the computed
GO TO is executed next.

Example:

Given the statements:

GO TO (200,100,400,200),LCAT =FUR + GRIN

the label of the next statement executed is:

200 if L = 1

100 if L= 2

400 if L = 3

200 if L = 4

If L > 5 or if L < 0, control falls through to the
staterTent immediately following the GO TO statement,
in-this case CAT = FUR +GRIN.

IFSTATEMENT

G 	 The two types of IF statements provide for transfer of
control on sign and on truth value conditions.

ARITHMETIC IF

The arithmetic IF statement has the following form:

IF (expr) n,n 2 ,n3

expr Any arithmetic expression of type integer,
Ht real, or double precision,

The statement label of an executable
statement.

ni

The statement labeled n. must be in the same program
unit. On execution of he IF statement, the arithmetic
expression expr is evaluated and control transfers to one of
the statement labels n1, n2, or n3 according to whether the

value of expr is-less than zero, zero, or greater than zero,
respectively.

LOGICAL IF
The logical IF statement has the following form:

IFi(expr) s

expr 	 Any logical expression.

a 	 Any executable statement, except a DO A
statement or logical IF statement.

Upon execution of this statement, the logical expression

expr is evaluated. Then, if the value of expr is false,
statement s is not executed and control passes to the next
executable statement following the logical IF statement. If
the value of expr is true, statement s is executed; then
the next executable statement following the IF statement is
executed, unless s caused a transfer of control.

The K compile option controls how .EQ. and .NE.-compares
are performed in evaluation of the logical expression in this
statement. If the K option has not been selected, only the
bits 16-63 are compared. Selection of the K option causes a
full word compare to take place during evaluation of the
expression.

DO STATEMENT'

Execution of a group of statements can be repeated a
specified number of times through use of the DO statement.
The range of a DO statement is the set of executable
statements beginning with the first executable statement

following the DO and ending with the terminal statementassociated with the DO. A DO statement along with its

range is referred to as a DO loop.

DEFINING A DO LOOP

The DO statement has the following form:

DO n = ml,m 2 ,n 3

n 	 The label of the terminal statement.

i 	 The control variable, asimple integer variable.

The initial value parameter of i, an integermI
I constant or a simple integer variable with avalue greater than zero.

m2 	 The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

m3 	 Optional. The incrementation value parameter
for i, an integer constant or a simple integer
variable with a value greater than zero.
Default value is 1.

The terminal statement of a DO loop can be any assignment
statement and almost any input or output statement.
However, any control statement other than a CONTINUE is
either highly restricted or must not appear as the terminal
statement of a DO. The terminal statement must not be any
of the following:

A RETURN, STOP, or PAUSE statement

A GO TO statement of any form

60386200 E

C

5-2

A: s Any executable statement except DO, logical IF, block IF,
ELSE IF, 	 ELSE, END IF, or END.

B: 	 Block IF, ELSE IF, ELSE, and END IF as described in ANSI X3.9-1978
sections 11.6-11.9.

C: 	 DO n, i = el, e2 , e3

n 	 The label of the terminal statement.

The comma after n is optional.

i 	 The control variable. The type of i

may be any arithmetic type except

complex.

el 	 The initial value. e1 may be any

non-complex arithmetic expression.

e2 	 The terminal value. e2 may be any

non-complex arithmetic expression.

e3 	 Optional incrementation value. If e3

is omitted, the incrementation value

is 1. e3 may be any non-complex

arithmetic expression.

D: 	 delete

E: 	 sel An integer expression

F: 	 . . . selecting expression sel has the value 1, then the statement . . .

G: 	 The IF statements provide for transfer of . . .

H: 	 expr An arithmetic expression of any type
other than complex.

I: 	 A RETURN or STOP statement
An unconditional GO TO or assigned GO TO
A block IF. ELSE IF, ELSE, or END IF

An END statement

5-2A

A special call statement

A DO statement

'A READ statement containing an ERR or END branch

A CALL statement that passes a return label

An arithmetic IF statement

F 	 A logical IF statement containing any of these
restricted forms

The terminal statement must physically follow and be in the
same program unit as the DO statement that refers to it.

Example:

DO 10 1=1,11,3
IF(ALIST(1)-ALIST(I+I))15,10,10

15 1TEMP=ALIST(1)

10 ALIST(I)=ALIST(l+1)

300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, 10.
Statement 300 is then executed,

A DO loop can be initially entered only through the DO
statement. That is,the group of statements infigure,5-1
arione
control into the range of the DO before the DO statementhas been executed.

GO TO 100

GODO 100=1statement

C(10 	1-1.50any
100 A(IWI

Figure 5-1. Incorrect: Entering Range
of DO Before DO Execution

Execution of a DO statement causes the following sequence
of operations:

1. i is assigned the value of in1.

2. The range of the DO statement is executed.

3. iis incremented by the value of in3.

A 4. i is compared with in . If the value of i is less than
or equal to the vaic of in2 , the sequence of
operations starting at step 2 is repeated. If the
value of i is greater than the value of m then the
DO is said to have been satisfied, tIa control
variable becomes undefined (has an unpredictable
value), and control passes to the statement follow­
ing the statement labeled n. If mI is greater than
in2, the range of the DO is still executed once.

Aitransfer out of the range of a DO loop is allowable at any
time. When such a transfer occurs, the control varIble
remains defined at its most recent value in the loop. If
control eventually i returned to the same range without
entering at the DO statement, the statements executed
while control is out of the range are said to define theextended range of the DO. The extended range of a DO

must not contain a DO that has its own extended range.

The control variable, initial parameter, terminal parameter,
and incrementation parameter of a DO must not be
redefined during the execution of the range of that DO.
However, the-group of statements-in figure 5-2 are correct.
If ever an element of the array RA is zero or negative, it is
set to 1 and the DO statement is reentered, which
reintializes the control variable I

K=O

GO TO 300

200 RA()=I.

300 DO 100 1=1,50

K=K+1
IF(RA(1).LE.0.)GO TO 200

100 RA(I)=K

Figure 5-2. DO Control Variable Reinitiaizaion

NESTING DO LOOPS

When a DO loop contains another DO statement, the
grouping is called a DO nest. DO loops can be nested to any
number of levels. The range of a DO statement can include
other DO statements only if the range of each inner DO is
entirely within the range of the containing DO statement.
When DO loops are nested, each must have a different
control variable.

The terminal statement of an inner DO loop must be either
the same statement as the terminal statement of the
containing DO loop or must occur before it. If more than

DO loop has the same terminal statement, a branch toThatDstatoentacanhecan be aemade onlonly fofrom thinth rane othat statement 	 within the range or
extended range of the innermost DO. Figure 5-3 gives an
example of an incorrect transfer into the range-of an Inner
DO. Since statement 500 in figure 5-3 is the terminal

for more than one DO loop, if the first element of
row in array A is less than or equal to zero, the

consequent branch to the CONTINUE' statement will be an
entrance into the range of the inner DO.

If the nested loops in figure 5-3 did not share a terminal
statement, or if the outer loop did not reference the

terminal statement, the loops would be correctly nested.

DO 500 1=1,5
IF (A(I,1).LE,0.) GOTO 500
DO 500 K=1,10
AIK):SQRT(A(IK))500 CONTINUE

Figure 5-3. Example of Incorrect Sharing
of Terminal Statement

CONTINUE STATEMENT
The CONTINUE statement has the following form:

CONTINUE

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere n a
program without interrupting the flow of control. The
CONTINUE statement is generally used to carry a statement
label. For example, it can provide DO loop terminationwhen a GO TO or IF would otherwise be the last statement

of the range of the DO.

D

60386200'E 	 5-3

C

A: 	 1. The initial, terminal, and incrementation values mi, m2, m3

are determined by evaluating the expressions el, e2), e3 and
converting them to the type of i.

2. The 	 DO-variable i is initialized to the value of mi1 .

3. The 	 iteration count is determined as

k = MAX 	 (0, INT ((i 2 + m3 - m1)/m 3)).
m3 may not be zero. The iteration count is zero
if mi1 	> m2 and m3 > 0, or if in, < m2 and m3

40.

4. 	 The range of the DO is executed k (possibly 0) times.
After each execution of the range, i is incremented by m3.

5. 	 Execution then continues at the first executable statement
after the statement labeled n (unless that statement is also
the terminal statement, of another DO containing this one).
Unlike ANSI 66 FORTRAN, the DO-variable i remains
defined; its value is now in1 + k * m3.

B: 	 NESTING OF DO loops AND BLOCKS

A DO loop range, IF block, ELSE IF block, or ELSE block which
contains a DO statement must contain all statements in the range of
that DO. Likewise, a range or block which contains a block IF,
ELSE IF, or ELSE statement must contain all statements in the IF
block, ELSE IF block, or ELSE block.

Note that the last statement in the range of a DO may not be a
block IF, ELSE IF, ELSE, or END IF statement.

C: 	 NO ZERO TRIP OPTION

The compiler may generate more efficient object code for a DO
loop if the No-Zero-Trip option is selected on the FORTRAN
control statement. In this case, the test for loop termination
will 	 be made at the bottom of the loop rather than the top.
Thus 	 a loop will always be executed at least once. This is the
way the STAR FORTRAN system functioned prior to the upgrade
to ANSI 77.

The 	 66 option implies the No-Zero-Tip option.

D. 	 The control variable may not be redefined in the range or
extended range of the DO. However, variables which appear
in the expressions e1 , e2 , e3 may be redefined without any
effect on the DO.

E: 	 delete

F: 	 delete
5-3A

PAUSE STATEMENT returns is given by the actual argument corresponding to the
Xnth asterisk dummy argument in the SUBROUTINE or

The PAUSE statement has the following forni: 	 ENTRY statement of the called subroutine. If there are
fewer than n such statement label arguments or if n < 0. the
return is as if n had not been specified (that is, -controlPAUSE n
returns to the first executable statement following the

Cl n Optional. A string of one to five decimal digits, or appropriate CALL statement).
a character constant.

If a string is given, it is displayed in the job dayfile or at the

terminal. The string is also placed in the output file for the

job. Program execution then continues with the next

executable statement following the PAUSE statement. u CALL STATEMENT

no string is given, instead of n being displayed and output,

the string PAUSE is displayed and output before program The CALL statement is used to transfer control to a

execution continues. subroutine subprogram, STAR Record Manager module,

META subroutine, or any other external subroutine. The
execution of a CALL statement is not complete until the

STOP STATEMENT subroutine designated in the statement completes execution
and returns control to the calling program unit.

The STOP statement has the following form:

Form:

STOP n CALL s (a1,a 2,... an)
n Optional. A string of one to five decimal digits, or

a character constant. s The symbolic name of a subroutine, or an entry

point name in a subroutine.
Upon execution of the STOP statement, program execution
unconditionally terminates and control is returned to the a, Optional. An actual argumen which can be an
operating system, if a string is given, it is displayed in the expression, vector, descriptor, double descrip­
job dayfile or at the terminal. The string is also placed in tor, array, external procedure name, or the
the output file for the job. If no string is given, instead of n label of an executable statement in the same
being displayed and output, the string STOP is displayed and program unit (the label is prefixed by an A
output. 	 ampersand). When the argument list is omit­

ted, the parentheses and commas must also be
omitted. n must equal the number of dummy
arguments in the SUBROUTINE or ENTRY

RETURN STATEMENT 	 statement for s.

Subroutine and function subprograms contain one or more

RETURN statements that when executed cause immediate
return of control to the referencing program unit. The Execution of the CALL statement transfers control to entry
RETURN statement must not appear in a main program. point name s. See the heading Passing Arguments BetweenSubprograms in section 7 for a further description of actual

arguments in CALL statements.
Form:

RETURN n 	 Control normally returns to the first executable statement

n Optional in subroutine subprograms, prohibited following the CALL statement. However, control can be
made to return to some other statement in the program unitD in function subprograms. An integer constant

or simple integer variable that specifies the by appropriate selection of the CALL statement's actual
arteguen ar a dummy theot simy iskle i the arguments. If the argument list in called

ntN dumorment ster nt he Ssubroutine contains at least n asterisks, and if the calledROUTINE or ENTRY statement, 	 subroutine contains a RETURN n statement, then upon

execution of the RETURN n statement, control returns to
In a function subprogram, execution of a RETURN causes the statement having the nth statement label in the CALL
the function value to be returned to the referencing program statement actual argument list.
unit and to be substituted for the most recently executed
function reference in that program unit. Evaluation of the
expression that contained the function reference continues. For example, the program in figure 5-4 uses both the
The integer n must not appear after a RETURN statement in RETURN n and the RETURN statement formats. If the data
a function subprogram, read with the READ statement in the subroutine is less than

1.0 or greater than 10.0, then control transfers back to the
main program statement having the label 100. A message is

in a subroutine subprogram, when n is not given, execution printed out and the program terminates. On the other hand,
of a RETURN returns control to the first executable if the data is withm the appropriate range, then the
statement following the CALL statement last executed in subroutine continues executing until the RETURN statement
the calling program unit. When n is given, control returns is reached, at which time control transfers back to the main
instead to a statement indicated in the argument list of the program statement that immediately follows the call to the
CALL statement. The statement label to which control subprogram.

5-4 	 60386200 E

A: 	 ai An actual argument. Each actual argument may be an
expression, array, external function, intrinsic function.
dummy procedure, SHADE subroutine, dynamic
variable, dynamic array, dynamic array element,
or alternate return specifier. An alternate return
specifier is a statement label prefixed by an asterisk
or an ampersand.

If there are no actual arguments, the parentheses in the
CALL statement are optional.

B: 	 n is displayed in the job dayfile or at the terminal. If n is omitted,
PAUSE is displayed. The same x is also displayed at the operator
console, and the program waits for operator response. When the
operator responds, the response is displayed in the job dayfile or at
the terminal. The program execution continues.

C: 	 n One to five decimal digits or . . .

D: 	 . . . in function subprograms. An integer that specifies the . . .

5-4A

PROGRAM P(INPUT)

CALL S(A, &100,B)

STOP
100 PRINT 2

2 	FORMAT (IX,'BAD DATA')

STOP

END

SUBROUTINE S (D1;,*D2) -

READ -3,X­
3-FORMATAF4At -

IF (X.LT;zLO .ORL X.GE;10.O):RETURN 1

RETURN­
- END 	 ­

-E.te:$4; Exam plbf-'IRETURNStatements

60386200 E 	 5-5

DPROD(a1 ,a,)

This computes the double precision product of two real numbers. Valid arguments for DPROD lie in the
interval -0.476 854 057 715 93E + 8645 S x 5__+ 0.476 854 057 715 93E + 8645 (the largest allowable
argument value is half of the largest allowable real number). The double precision equivalents of the real
numbers are multiplied and a double precision result obtained that is accurate to 94 bits.

DSIGN(a1 a2)

.This combines the absolute value of one double precision number with the sign of another double precision
number; DSIGN(xy) = 1 x I if y 0; DSIGN(x,y) = -1 x 1 if y'C 0.

DSIN(a) and DCOS(a)

These compute the sine and cosine of a double precision number expressed in radians. The double precision
number modulo 2 pi is used by the functions. The results are double precision numbers in the range -1 to
I, inclusive, and are accurate to approximately 90 bits.

DSINH(a)

This computes the hyperbolic sine of a double precision number and produces a double precision result that
is accurate to approximately 90 bits.

DSQRT(a)

This computes the square root of a double precision number greater than or equal to zero and returns a
double precision result that is accurate to approximately 90 bits.

DTAN(a)

This computes the tangent of a double precision number expressed in radians. The double precision number
modulo 2 pi is used by DTAN. The result is a double precision number that is accurate to approximately
90 bits. Allowable arguments for the-DTAN function are in the range -.110 534 964 875 444 D+I5<x'<
.110 534 964 875 444 D+15.

DTANH(a)

This computes the hyperbolic tangent of a double precision number and returns a double precision result
that is accurate to 90 bits.

EXP(a)

This function computes the exponential of a half precision, real, or double precision argument. It is the
specific name for computing the exponential of a real argument. The other functions for computing the
exponential and CEXP, DEXP, and HEXP. The specific function EXP computes the exponential of a real
number. The result, accurate to approximately 45 bits, is .a real number greater than or equal to zero.

15-23A

DSINH(a)

This computes the hyperbolic sine of a double precision number and produces a double precision result

that is accurate, to approximately 90 bits.

DSQRT(a)

This computes the square root of a double precision number greater than or equal to zero and returns a

double precision result that is accurate to approximately 90 bits.

DTAN(a)

This computes the tangent of a double precision number expressed in radians. The double precision number

modulo 2 pi is used by DTAN. The result is a double precision number that is accurate to approximately

90 bits. Allowable arguments for the DTAN function are in the range -.110 534 964 875 444 D+15Cx<

.110 534 964 875 444 D+15.

DTANH(a) -

This computes the hyperbolic tangent of a double precision number and returns a double precision result

that is accurate to 90 bits. -

EXTEND(a)

This function converts the half precision argument a into a real result.

FLOAT(a)

This converts an integer number to. a real number by normalizing the integer' number.

HABS(a)

For a half precision argument a, HABS(a) computes the absolute value /a/.

HACOS(a)

This function computes the arccosine of a half precision argument.

HACOS(a) = HALF(ACOS(EXTEND(A)))

HALF(a)

For a -of type half precision HALF(a) = a. For a of type integer, real, or double precision this function
produces a half precision result equal to a. For a of type complex

HALF(a) = HALF(REAL(a))

There are no specific functions for forming a half precision result.

15-24A

HASIN(a)

This function computes the aresine of a half precision argument.

HASIN(a) = HALF(ASIN(EXTEND(a)))

HATAN(a)

This function computes, the arctangent of a half precision argument.

HATAN(a) = HALF(ATAN(EXTEND(a)))

HATAN2(a1 ,a2)

This function computes the arctangent of the ratio of two half precision arguments.

HATAN2(al,a 2) = HALF(ATAN2(EXTEND(al),EXTEND(a2)))

HCoS(a)

This function computes the cosine of a half -precision argument.

HCOS(a) = HALF(COS(EXTEND(a)))

HCOSH(a)

This function computes the hyperbolic cosine of a half precision argument.

HCOSH(a) = HALF(COSH(EXTEND(a)))

HCOTAN(a)

This function- computes the cotangent of a half precision argument.

HCOTAN(a) = HALF(COTAN(EXTEND(a)))

HDIM(al,a 2)

This function computes the positive excess of one half precision number over another half precision number.

HDIN(al,a2) is a1 - a2 if a1 > a2, otherwise it is zero.

HE)X(a)

This function computes the exponential of a half precision argument.

HEXP(a) = HALF(EXP(EXTEND(a)))

HINT(a)

This function computes [a], where
 [al is the sigu of a times the largest integer less than or equal to /a/.,

15-25A

HLOG(a)

This function computes the natural logarithm of a half precision argument.

HLOG(a) = HALF(ALOG(EXTEND(a)))

-RLOGI Oa)

This function computes the common logarithm of a half precision argument.

HLOG10(a) = HALF(ALOG1O(EXTEND(a)))

HMAXI(a1 ,a2 ,...)

This function searches the -list of half precision arguments for the element having the maximum value and

returns this value.

HMINI(al,a 2 ,...)

This function searches the list of half precision arguments for the element having the minimum value and

returns this value.

HMOD(al,a 1)

This function computes one half precision number modulo a second half precision number. For a, and a2

of type half precision.

HMOD(al,a 2) = a, - a2 'HINT(al/a 2)

HNINT(a)

This function computes the nearest whole number to a. Both the. argument and result are of type. half
precision. Note that for a half precision argument a

HNINT(a) = ANINT(a)

HPROD(a1 ,a2)

This computes the single precision product of two half precision numbers.

HSIGN(a1 .a2)

This function combines the absolute value of one half precision number with the sign of another half
precision number.

HSIGN(al,a 2) = /a,/ if a,) 0,

HSIGN(al,a 2) = -/a 1 / if a, < 0.

HSIN(a)

This function computes the sine of a half precision argument.

HS N(a) = HALF(SIN(EXTEND(a)))

15-26A

HSINH(a)

This function computes "the hyperbolic sign of a half precision argument.

HSINH(a) = HALF(SINH(EXTEND(a)))

- HSORT(a)

This function computes the square root of a half precision number using the machine instruction QSSORT.

HTAN(a)

This function computes the tangent of a half precision argument.

HTAN(a) = HALF(TAN(EXTEND(a)))

HTANH(a)

This function computes the hyperbolic tangent of a half precision argument.

HTANH(a) = HALF(TANH(EXTEND(a)))

IABS(a)

For an integer number x, IABS(x) computes the absolute value /x/.

ICHAR(a)

For a of type character, this function returns the integer corresponding to the ASCII code for a. For
example

ICHAR(1 A1) = X1 411

IDIM(a1 ,a2)

This computes the positive excess of one integer number over another integer number. IDIM(x,y) returns
the value x-y if x is greater than or equal to y, and returns a value of 0 otherwise.

BINT(a)

For a double precision number x, IDINf(x) computes [x], where [A] is the sign of A times the largest

integer less than or equal to /A/.

IDNINT(a),

This function computes the integer nearest to the double precision argument a. For example

IDNINT(4-1D+00) = 4
and
IDNINT(-41D+00) = -4

15-27A

IFIX(a)

This function converts the real argument a into an integer and is an alternative name for the specific

function usage of INT.

IHIN(a)

For a half precision number a, IHINT(a) computes [a], where [a] is the sign of a times the largest

integer less than or equal to /a/.

IHNINT(a)

This function computes the integer nearest to the half precision argument a.

INDEX(a 1 ,a2)

This function returns an integer value indicating the starting position within the character string a, of a
substring identical to a2 . If a2 occurs more than once in a1 , the starting position of the first occurrence
is returned. -

If a2 does not occur in a,, the value zero is returned. Note that zero is -returned if LEN(a1) <C LEN(a 2).

11ff(a)

For a of type integer INT(a) = a. For a of type half precision, real, or double precision, there are two
possible results. If /a/ < 1 then INT(a) = 0. If fa/- 1, INT(a) is the integer whose magnitude does
not exceed the magnitude of a and whose sign is the same as the sign of a. For example

1INT(-3"7)- = -3

For a of type complex, INT(a) is, the value obtained by applying the above rule to the real part of a.

IMT is the specific name for converting a real argument to an integer. The other specific functions which

convert their argument to an integer are IDINT, IFIX, and IHINT.

ISIGN(a ! ,a2)

This combines the absolute value of one integer number with the sign of another integer number.

ISIGN(al,a2) = /a,/ if a2 0

ISIGN(a1 ,a2) = -/a,/ if a2 < 0

LEN(a)

This function returns the number of characters in the character argument a.

LGE(s1 ,s,)

This function returns the result .TRUE. or .FALSE. depending 'on the relation between the character entities

s, and s2 . If a1 and a2 are corresponding characters in s1 and s,2 then

LGE(s 1 ,s2) = TRUE. if ICHAR(al) 2t ICHAR(a2) for all aI and a2

15-28A

LGT(s1 ,s2)

This function returns the result .TRUE. or .FALSE. depending on the relation between the character entities

s1 and s2 . if a, and a2 are corresponding characters in s 1 and s2 then

LGT(sl,s 2) = .TRUE. if ICHAR(al) :> ICHAR(a 2) for all and a2a1

LLE(s1 ,s2)

This function returns the result .TRUE. or .FALSE. depending on the relationship between the character,
entities si and s2 . If a, and a2 are corresponding characters in a1 and a2 then

LLE(sl,s2) = .TRUE. if ICHAR(al) :S ICHAR(a 2) for all anda1 a2

LLT(sl,s 2)

This function returns the result .TRUE. or .EALSE. depending on the relationship between the character
entities s1 and S2 . If a1 and a2 are corresponding characters in s 1 and s2 then

LLT(sl,s2) = .TRUE. if ICHAR(a1) < ICHAR (a2) for all anda1 a2

LOG(a)

This, function computes the natural logarithm for a half precision, real, double precision -or complex argument.

The specific function names are ALOG, CLOG, DLOG, and HLOG.

LOGI0(a)

This function computes the common logarithm of a half precision, real, or double precision argument. The
specific function names are ALOGIO, DLOG1O, and HLOG10.

MAX(al,a 2 ,...)

This function searches the list of integer, half precision, real, or double precision numbers for the list element

having the maximum value and returns this value. The type of the result is the same as the type of the

arguments. The specific function names are AMAXI, DMAXI, HMAXI, and MAXO.

MAXO(a 1,a2 ,...)

This searches a list of integer numbers for the list element having the maximum value and returns that

value.

iMXIa ,a,
This searches a list of real numbers for the list element having the maximum value. The selected real number

is converted with IFIX before being returned.

MIN(a1 ,a2 ,..-)

This function searches the list of integer, half precision, real, or double precision numbers for the list element

having the minimum value and returns this value the type of the result is the same as the type of the argu­
ments. The specific function names are AMIN1, DMIN1, HMIN1, and MINO.

15-29A

MINO(al.a 2 ,...)

This searches a list of integer numbers for the list element having the minimum value and returns the integer
when found.

- MIN1(al,a 2 ,...)

This searches a list of real numbers for the list element having the minimum value. The selected real number
is converted with IFIX before being returned.

MOD(a 1 ,a2)

This function computes one number modulo a second number. Both numbers must must be of the same

type which may be integer, half precision, real, or double precision. It is the specific function name for

compiling one integer modulo another integer. The other specific names for this function are AMOD, DMOD,

and BMOD.

NIrNT(a)

This function compiles the nearest integer to the specified half precision, real, or double precision argument.

It is the specific function name for computing the nearest integer to a real number. Examples:

NINT(3-5) = INT(3"5 + 0-5) = 4

NINT(-0"I) = INT(-0"I -0"5) = 0

The other specific function names for computing the nearest integer are IDNINT and IHNINT.

Q8SCNT(v)

This counts the number of 1 bits in a bit vector. The result returned is an integer

Q8SDFB(a,b)

This tests the bits in the data flag branch register, given a pair of integer constants (xy), where x indicates

the bit to be tested, and y is an indicator that can assume one of the following values:

0 means the bit tested is not to be altered.

1 means the bit tested is to be set to 0.

2 means the bit tested is to be set to 1.

3 means the bit tested is to be toggfd (that is, if 1, set to 0, and if 0, set to 1).

Bit x in the data flag branch register is tested and a logical result of .TRUE. or .FALSE. returned, depending
on whether bit x is I or 0. Action is also taken according to the indicator y.

Example:

Given

the 10th bit in the DFB register is 1

x= 9

y=

the value of Q8SDFB(x,y) is .TRUE., and the 10th bit in the DFB register, since it is I,

is set to 0.

15-30A

3

Q8SDOT(v 1 ,v2)

This calculates the dot product of two vectors having the same length and data type. Q8SDOT produces
a scalar result that has the same data type as its arguments.

For given vectors x and y, the procedure for calculating the dot product is as follows. Corresponding

elements in x and y are multiplied together, and the sum of the resulting products is taken.

Example:
Given

x = 0 1 3 200

y 2220
the value of QSSDOT(x,y) is

(0 * 2) + (1 * 2) + (3 * 2) + (200 0O) = 8

QSSEQ(v 1 ,v2)

From among the pairs of corresponding elements in two real, half precision, or integer vectors, Q8SEQ selects
the first pair of elements that are equal. (A vector and a scalar is an alternative to the two vectors.)

The result is an integer scalar.

QSSEQ(x,y) compares the corresponding elements of vectors x and y, beginning with the first element of

x and the first element of y, until a pair is found that has -equal elements, or until all elements in the
vectors have been compared. The value returned is the number of unsuccessful compares that were made.
A scalar x or y is considered to be a vector of the appropriate length with every element being the scalar

value.

Example:
Given

x=01454
y= 10354

the value of QSSEQ(x,y) is 3.

QSSEXTB(a,m,n)

This extracts m bits, beginning with bit n of a. The result if right-justified in a 64-bit word with zero

fill. The in and n values are integer. Bits in the word are numbered from left to right, beginning with

zero.

QSSGE(v 1 ,v2)

This is identical to Q8SEQ, except that Q8SGE searches for an element in x that is greater than or equal

to the corresponding element in y.

15-31A

Q8SINSB(a,m,n,b)

This produces a word into which bits have been inserted. The result is equal to b, except that m bits,

beginning with bit n, are replaced by the m rightmost bits of a. The argument b is not altered. The

m and n values are integer. Bits in the word are numbered from left to right, beginning with zero.

Q8SLEN(v)

This counts the number of elements in a half precision, real, integer, or complex vector, or the number of elements

in the value vector part of a real or integer sparse vector. The result returned is an integer. For a

complex vector, the number of elements is half the number of words.

Q8SLT(vl,v 2)

This is identical to Q8SEQ, except that Q8SLT searches for an element in x that is less than the corres­

ponding element in y.

QSMAX(v) or Q8SMAX(v,c)

This selects the maximum from among the elements in a half precision, real or integer vector, or only those elements

selected by an optional bit control vector. The result is a scalar that has the same data type as the

function argument.

For a given vector x and a bit control vector c, the procedure for selecting the element having the maxi­
mum value is the same as for QSSMIN, except that the maximum rather than the minimum is selected.

Example:
The elements in x, as presented to QSSMAX, might be:

x = 2 3 19 6 -1

When. only x is presented to QSSMAX for evaluation, the function selects the element from among

all of the elements of x:
Q8SMAX = 19

A bit mask presented as argument c might appear as:

c=01 011

When a bit in c is zero, it inhibits the inclusion of the corresponding element of x in the

evaluation of the function. Therefore, if the argument list for Q8SMAX includes c, the function
result would be:

Q8SMAX = 6

QSSMAX(v) or Q8SMAXI(v,c)

Like QSSMAX, this finds the maximum from among the elements in a half precision or real vector or only those
elements selected by an optional bit, control vector. However Q8SMAXI returns not the value itself but,
instead, a count of the number of elements preceding, but not including, the element having the maximum
value.

15-32A

The procedure for selecting the element having the maximum value is the same for Q8SMAXI as for
QSSMAX. The control vector bits that are set to zero (when the control vector is present) have no
effects on the count returned by QSSMAXI. The action of the control vector is the same for both
functions in all other respects.

Example:
The example given for Q8SMAX is an example for Q8SMAXI' as well, except that where
Q8SMAX equals 19 or 6, depending on the presence of the bit control vector argument,
QSSMA-XI would return 2 and 3 respectively.

QSSMIN(v) or Q8SMIN(v,c)

This selects the minimum from among the elements in a half precision, real or integer vector, or from among only
those elements selected by an optional bit control vector. The result is a scalar that has the same data
type as the vector.

For a given vector x and a bit control vector c, the procedure for selecting the element having the mini­
mum value is as follows. When c is not present, the minimum value in x is selected, If c is present, it
acts as a binary mask; each element in c that is set to 1 permits the corresponding element in x to be
included in the function evaluation, whereas each element in c that is set to 0 causes the corresponding
element in x to be excluded from the evaluation.

Example:
The elements in x, as presented to Q8SMIN, might be:

x = 2 3 19 6 -1
When only x is presented to Q8SMIN for evaluation, the function selects the element from
among all of the elements of x:

QSSMIN = -1
A bit mask presented as argument c might appear as:

c=1 0110
When a bit in c is zero, it inhibits the inclusion of the corresponding element of x in the
evaluation of the function. Therefore, if the argument list for Q8SMIN includes c, the function
result would be:

Q8SMIN = 2

Q8SMINI(v) or Q8SMINI(v,c)

Like Q8SMIN, this finds the minimum from among the elements in a real vector or only those elements
selected by an optional bit control vector. However, Q8SMINI returns not the value itself but, instead,
a count of the number of elements preceding, but not including, the element having the minimum value.

The procedure for selecting the element having the minimum value is the same for Q8SMINI as for Q8SMIN.
The control vector bits that are set to zero (when the control vector is present) have r o effect on the count
returned by Q8SMIN[. Otherwise, the action of the control vector is the same for both functions

15-33A

Example:

The example given for QSSMIN is an example for Q8SMINI as well, except that where

Q8SMIN equals -1 or 2, depending on the presence of the bit control vector argument,

Q8SMINI would return 4 and 0 respectively.

QSSNE(vl,v 2)

This is identical to Q8SEQ, except that Q8SNE searches for an element in x that is not equal to the
corresponding element in y.

Q8SPROD(v) or Q8SPROD(vc)

This calculates the product of the elements in a half precision or real or integer vector, or only those elements selected
by an optional bit control vector. A scalar result is produced that has the same data type as the vector.

For a given vector x and a bit control vector c, the procedure for calculating the product is as follows.
When c is not present, the product of all of the elements in x is computed. If c is present, it acts as a
binary mask; each element in c that is set to 1 permits the corresponding element in x to be included in
the product, while each element in c that is set to 0 causes the corresponding element in x to be excluded
from the computation. If c is all zero, the result of QSSPROD is one.

Example:
The elements in x, as presented to Q8SPROD, might be:

x=2143
When only x is given to Q8SPROD for evaluation, the function calculates the product of all

the elements to obtain the evaluation:

Q8SPROD = 2 * 1 * 4 * 3 = 24

A bit mask presented as argument c might appear as:

c=001 1

When a bit in c is zero, it inhibits the inclusion of the corresponding element of x in the

function evaluation. Therefore, the function result if c is present would be:

QSSPROD = 4 - 3 = 12

Q8SSUM(v) or Q8SSUM(v,c)

This sums the elements in a half precision, real or integer vector, or only those elements selected by an optional bit
control vector. A scalar result is produced that has the same data type as the vector.

For a given vector x and a bit control vector c, the procedure for calculating the sum is as follows. When
c is not present, the arithmetic sum of all of the elements in x is taken. If c is present, it acts as a
binary mask; each element in c that is set to I permits the corresponding element in x to be included
in the sum, while each element in c that is set to 0 causes the- corresponding element in x to be excluded
from the summation. If c is all zero. the result of Q8SSUM(x,c) is zero.

Example:
The elements in x, as presented to Q8SSUM, might be:

x=2143

15-34A

When only x is presented to Q8SSUM. for evaluation, the function sums all of the elements
to obtain the evaluation:

QSSSUM = 2 + 1 + 4 + 3 = 10
A bit mask presented as argument c might appear as:

c=1 011
When a bit in e is zero, it inhibits the inclusion of the corresponding element of x in the
evaluation of the function. Therefore, the function' result, if c is present, would' be:

Q8SSUM = 2 + 4 + 3 = 9

QSVADJM(v)

This computes-the averages of adjacent elements of the half precision or real input vector. For a given real vector x,

Q8VADJM(x;r) forms, the nth element of the result vector r by adding the nth and (n+l)th elements of

and dividing the sum by 2. That is, rn = (xn + xn+)/2, where the result vector r
is one element sh6rter
than the input, vector x.

Example:
Given

x = 5. 3. 5. 3. 5. 4. 5. 3
the result vector r for Q8VADJM(x) is

r = 4. 4. 4.4.4.5 4.5 4.

Q8VARCMP(v 1 ,v2)

This deletes from a half precision, real or integer vector any element having a value below the threshold value provided
by the corresponding element of another vector. The lengths and data types of the real or integer vector
and the threshold vector must be the same. The result is a sparse vector.

Q8VARCMP(x,t;r) creates the result sparse vector as follows. For each element of x, if the element value
is less than the value of the corresponding element in the threshold vector 5, a 0 bit is placed in the order
vector of the result sparse vector. If the element value is greater than or equal to the value of the corres­
ponding element in the threshold vector, the element is placed in the result value vector and a I bit is
placed in the result order vector. Evaluation proceeds from first to last element of the vector 'x.

The length of x governs the operation. If t is shorter than x, t is in effect extended with zeros. If t is
longer than x, the excess elements are ignored.

The initial lengths of the value vector and order vector components of r are ignored.- Upon completion of
the operation, the length of the order vector component of r is that of x. and the length of the value vector
component of r is that if the number of 1 bits in the order vector.

Example:
Given

x = 10 11 44 11 9 -1 0 50
t = 10 10 10 8 10 10 10 10

15-35A

x

the value of Q8VARCMP(x,t) is the sparse vector

r = value vector: 10 11 44 11 50

order vector: 1 1 1 1 0 0 0 1

Q8vSAVG(vlv 2)

This computes the averages of corresponding elements of two half precision or real input vectors. A vector and a

scalar is an alternative to a pair of vector arguments.

For given real vectors x and y, Q8VAVG(x,y;r) forms the nth element of the result vector r by adding the

nth element of x and the nth element of y, then dividing the sum by 2 (that is rn = (xn. + yn)/2). The

vectors x, y, and r all have the same length. A scalar x, or y is considered to be a vector of the appropriate

length with every element being the scalar value.

Example:
Given

x=1.

y = 9.3 10.4 18. 8.91 0.1

the value of Q8VAVG(xy) is the vector

f = 5.15 5.7 9.5 4.955 0.55

QSVAVGD(v1 ,v2)

This computes the average differences of corresponding elements of the two input vectors. A vector and a

scalar is the alternative to the two input vectors.

For given real vectors x and y, Q8VAVGD(x,y;r) forms the nth element of the result vector r by subtracting

the n element of y from the nth element of x, then dividing the difference by 2 (that is, rn = (xn - Yn(1 2).

The vectors x, y, and r all have the same length. A scalar x or y is considered to be a vector, of the

appropriate length with every element being the scalar value.

Example:
Given

x = 100. 100. 100. 100. 100.

y = 4. 9. 9. 15. 14.

the value of Q8VAVGD(x,y) is the vector

r = 48. 45.5 45.5 42.5 43.

Q8VCMPRS(v,c)

This-deletes selected elements from a half precision or real or integer vector under control of a bit control vector.

For a given real vector x and control vector c, the deletion procedure is as follows: every value in the

vector x whose position corresponds to that of a 0 in the bit vector c is deleted, leaving for the result vector

only those values in the vector x whose positions correspond to those of Is in the bit vector c. The length

of the result vector will be the number of Is in c.

15-36A

Example:

Given
x=455440
c 01 1000

the value of Q8VCMPRS(x,c) is the vector
r =55

Q8VCTRL(v,c)

This changes the values of only selected elements in a half precision or real or integer result vector, using the elements

in another vector of the same data type to provide the new values. Selection of values, is performed with a

bit control vector.

For a given real or integer vector y (the result vector), a vector x of the same data type as y, and a

control vector c, the procedure for modifying y is as follows. Any element in the vector x that corresponds

to a 1 in the control vector c is directly assigned to the corresponding element in the result vector y. All

other elements in y (the elements that correspond to Os in c) retain whatever values they had before.

Example:

Given

x = 5 55 19 9 40

c0001 0

y =9 9 9 10 9

the value of Q8VCrRL(x,e) is the vector

y=9 9999

Q8VDELT(v)

This computes the differences between the adjacent elements of the input vector. For a given real vector x,

Q8VDELT(x) computes the nth element of the result vector r by subtracting the nth element of x from

the (n+l)th element of x. That is, rn = (Xn+ 1 - Xn), where the result vector r is one element shorter than

the input vector x.

Example:

Given
x = 5. 3. 5. 3. 5. 4. 5. 3.

the result vector r for Q8VDELT(x) is'
r = 2. 2. -2. 2. -1. 1. -2.

Q8VEQI(v 1 ,v2)

The effect of a call to Q8VEQI is identical to that of issuing a series of Q8SEQ calls in which one of the
arguments for Q8SEQ isa half precision or real scalar. For given real vectors xand y, QSVEQI(x.y) performs a

search iteration for each element of x, beginning with the first element of x. A search iteration consists of

15-37A

comparisons of the element of x with successive elements of y, beginning with the first element of y,

until an element of y is found which is equal to the element of x or until the element of x has been

compared with every element of y. The result of the nth iteration, which is performed using the nth

element of x and which is a count of the number of unsuccessful compares that were made on this

iteration, is placed in the nth element of r.

Example:
Given

x 0. 1. 4. 5. 4.
y =-1. 0. 3. 5. 4.

the value of Q8VEQI(x,y) is the vector

r=1 5434

Q8VGATHR(v,i)

This creates a half precision or real or integer vector, using the elements in another vector of the same data type to

provide the values. Selection of values is performed with an integer index vector.

For a given real or integer vector x and an index vector i, the procedure for constructing the result vector
is as follows. A I in i indicates that the corresponding element in the result vector is to be assigned the
value of the first element in x, a 2 in i indicates that the corresponding element in the result vector is to

be assigned the value of the second element in x, and so on. The value of any one element in x can be

assigned to more than one element in the result vector, and not every element in x need be used. The
index vector and the result vector must be the same length.

Example:

Given
x = 1019 11 15 0 9 3

i=76563 11

the value of Q8VGATHR(xi) is the vector

r = 3 9 0 9 11 10 10

Q8VGEI(vl,v 2)

This is identical to QSVEQI, except that Q8VGEI searches for an element in y that is greater than or equal

to the element in x which is of concern for the current iteration.

QSVINTL(a1 ,a2)

This forms a half precision or real or integer vector whose adjacent elements have values differing by a specified inten al.
For given constant scalars x and y, both integer or both real, Q8VINTL(x,y) creates the vector r as follows.

The first element of r is assigned the value x. Each succeeding element of r is assigned a value arrived at

by adding the constant y to the preceding element's value (that is, rn = rn I + y). When r is filled the
calculations cease.

15-38A

Example:
Given

x= 0.0

y = 6.7

length of r = 12

the value of Q8VINTL(x,y) is the vector
r = 0.0 6.7 13.4 20.1 26.8 33.5 40.2 46.9 53.6 60.3 67.0 73.7

Q8VLTI(v1 ,v2)

This is identical to QSVEQI, except that QSVGEI searches for an element in y that is less than the

element in x which is of concern for the current iteration.

QSVMASK(v 1 ,v2 ,c)

Q8VMASK(x,y,c) creates a result vector, each element of which is the corresponding element of one of

the vectors x and y (one or both of x and y can alternatively be scalar). The arguments (x and y only)

and the result vector must all have the same data type.

For given vectors x and y, and a bit control vector c, the result vector is created as follows. If an element

is c is 1, then the corresponding element in vector x is placed in the corresponding position in the result

vector. If an element in c is 0, then the corresponding element in vector y is placed in the corresponding

position in the result vector. A scalar x or y is considered to be a vector of the appropriate length with

every element being the scalar value.

The length of c governs the operation; the lengths of x and y are ignored and the length of r is set to that

of c.

Example:

Given
x 123 123 123
y =19

c1 101 101 10

the result vector r for Q8VMASK(x,y,c) is

r = 1 2 19 1 2 19 1 2 19

Q8VMERG(v 1 ,v2 ,c)

This merges the elements in two half precision, two real or two integer vectors, under control of a bit control vector,
into a single result vector. Q8VMERG(x,yc) merges x and y as follows. If an element in c is 1, then
the corresponding position in the result vector is assigned the first element from x that has not already been
selected. If an element in c, is 0, then the corresponding position in the result vector is assigned the first
element from x that has not already been selected. If an element in c is 0, then the corresponding position
in the result Nector is assigned the first element from y that has not already been selected. Control vector
c is scanned in this way from first to last element. The merge stops when the result vector is full, even
when there are uninerged elements remaining in x and y.

15-39A

The length of c governs the operation; the lengths of x and y are ignored and the length of r is set to

that of c.

Example:
Given

x = 10 11 12 14 13
y=54321

c=l 1001

the value of Q8VMERG(xy,c) is the vector

r = 10 11 5 4 12

QSVMKO(a ,a2)

This forms a bit vector whose elements are either all zeros or else a repeated pattern of ones and zeros,
beginning with a one. For given integer constants x and y, QSVMKO(xy;r) creates the elements of the
vector r as follows. The pattern, which consists of a string of x ones followed by a string of y-x zeros,

is repeated until the result vector r has been filled. The length of r need not be divisible by y.

Example:
Given

x 3

y= 6

length of r = 10

the value of Q8VMKO(x,y) is the bit vector

r = 1110001110

Q8VMKZ(al,a 2)

This forms a bit vector whose elements are either all ones or else a repeated pattern of ones and zeros,

beginning with a zero. For given integer constants x and y, Q8VMKZ(x,y) creates the elements of the

vector r as follows. The pattern, which consists of a string of x zeros followed by a string of y-x ones,

is repeated until the result vector r has been filled. The length of the result vector r need not be divisible

by y.

Example:
Given

x=7

y =25

length of r = 10

the value of Q8VMKZ(x,y) is the bit vector

r = 0000000111

Q8VNEI(v1 ,v2)

This is-identical to QSVEQI, except that Q8VNEI searches for an element in y that is not equal to the

elemlent in x vhich is of concern for the current iteration.

15-40A

Q8VPOLY(v 1 ,v2)

This computes a polynomial at several values. For given half precision or real vectors x and y, Q8VPOLY(xy) is
evaluated as follows (x can also be a scalar). The input vector y contains the coefficients of the poly­
nomial: the first element of the vector y contains the coefficient of the highest order term of the poly­
nomial and the last element of the vector y contains the lowest order term of the polynomial (the constant).
The length of the vector y determines the order of the polynomial: if n -is the length of y, the order of the
polynomial is n-1. The polynomial is evaluated for each element of x and the result is placed in the corres­
ponding element in the result vector r. If y is a scalar rather than a vector, the result r must be referenced
as a vector with length equal to 1, not as a scaler.

Example:
Given

x = -2 -1 1 2 3

y =10 3 2
the value of Q8VPOLY(x,y) is the vector

r = 36 9 15 48 101
The elements of r are computed as follows:

r(1) = 10(-22) + 3(-2) + 2 = 36

r(2) = 10(_42) + 3(-1) + 2 = 9
r(3) = 10(12) + 3(1) + 2 = 15
r(4) 1 + 2(2) 2 = 4810(22) +

r(5) = 10(32) + 3(3) + 2 101

QSVREV(v)

This reverses the order of the elements in a half precision or real or integer vector, by transmitting the elements of
the input vector in reverse order to the result vector.

Example:
Given

x = 4 3 5 6 9 10

the value of Q8VREV(x} is -the vector
r = 10 9 6 5 3 4

Q8VSCATR(vj)

This changes the values of only selected elements in a half precision, real or integer result vector, using the elements
in another vector of the same data type to provide the new values. Selection of values is performed with
an integer index vector.

For a given real or integer vector y (the result vector), a vector x of the same data type as y, arid an
index vector i, the procedure for modifying y is as follows. A 1 in i indicates that the corresponding
element in x is to be assigned to the first position in y, a 2 in i indicates that the corresponding element
in x is to be assigned to the second position in y, and so on. More than one value assignment can be
made to be so defined. Elements in y that are not given a value retain the values they already had.

15-41A

x

If x is shorter than i, then x is extended with zeros to match the length of i.

Example:

Given
0 50-1 60 70

i=12155

y= 99999

the vector y passes through the following five stages during the computation of

Q8VSCATR(xi)

y=09999

y =0 50 9 9 9

y =-1 50 9 9 9

y =-1 50 9 9 60

y =-1 50 9 9 70

and the result is the vector

y = -1 50 9 9 70

QSVXPND(v,c)

This inserts additional elements having the value 0 (or 0.0) into a half precision or real or integer vector, under control

of a bit control vector. The effect of the procedure is as though a Q8VMERG(x,nc) had been performed,

where n is a vector of zeros, and x, c, and y are the real or integer vector, the control vector, and the

result vector respectively.

The length of c governs the operation; the length of x is ignored and the length of y is set to that of c.

Example:
Given

x=55

c 01 1000

the value of Q8VXPND(x,c) is the vector

r=0 55000

RANF

This returns a random number. It has no argument. The multiplicative congruential method modulo 2 <*47
is used to generate the next random number in the sequence.

Xn+1 = (a xn) mod 2*47

The value of the multiplier a is X'0000 4(265 DA2C 866D'. The seed can be obtained and reset with the

subroutines RANGET and RANSET, respectively. The default value of the seed is X'0000 54F4 A3B9
33BD'. A vector of random numbers can be returned with the subroutine VRANF.

15-42A

REAL(a)

For a of type real REAL(a) = a. For a of type integer, half or double precision, REAL(a) is as much
precision of the significant part of a as a real number can obtain. For a of type complex, REAL(a) is
the real part of a. This function is the specific name for conversion of an integer to real and for an integer
argument REAL(a) = FLOAT(a). the other specific functions for conversion to real are EXTEND and SNGL.

SECOND

This queries the system as to how much CPU time in seconds has elapsed since the job started. The result
is a real number expressing the- time in seconds, accurate to within one microsecond. This function has no
argument.

SIGN(al,a 2)

This function, combines the sign of one argument with the absolute value of the other. Both arguments
must be of the same type which may be integer, half precision, real, or double precision. It is the specific
function name for transferring the sign between two real numbers.

Examples:

SIGN(-2.0,2.5) = 2.0

SIGN(-10.0,0.0) = 10.0

SIGN(3.4,-7.0) = -3.4

The other specific function names for transferring sign are DSIGN, HSIGN, and ISIGN.

SIN(a)

This computes the sine of a half precision, real, double precision or complex argument. It is the specific

function name for computing the sine of a real argument. The other specific functions which compute

sines are CSIN, DSIN and HSIN.

The specific functions SIN and COS calculate the sine and cosine of a real argument.

SINH(a)

This function computes the hyperbolic sine of a half precision, real, or double precision argument. It is

the specific name for computing the hyperbolic sine of a real argument. The other specific functions which

compute hyperbolic sines are DSINH and HSINH.

The specific function SINH computes the hyperbolic sine of a real number and produces a real result that

is accurate to 47 bits.

SNGL(a)

This converts a double precision number to a real number by retaining only the most significant part (the

first word) of the double precision number.

15-43A

SORT(a)

This function computes the square root of a half precision, real, double precision or complex argument.

It is the specific name for computing the square root of a real argument and the machine instruction SQRT,

is used in this case. The other specific functions which compute square roots are CSQRT, DSQRT, and

HSQRT.

TAN(a)

This function computes the tangent of a half precision, real, or double precision number. It is the specific

name for computing the tangent of a real argument The other specific functions which compute tangents

are DTAN and HTAN.

The specific function TAN computes the tangent of a real number expressed in radians. The function first

reduces its argument modulo 2 pi. The result is a real number that is accurate to approximately 45 bits.

The valid arguments for TAN lie in the interval

-0.276 334 121 886E + 14sx's+ 0.276 334 121 886E + 14

Note that

(246.1) * pi/8 = 0.276 334 121 886E + 14

TANH(a)

This function computes the hyperbolic tangent of a half precision, real, or double precision argument. It

is the specific function name for computing the hyperbolic tangent of a real argument. The other specific

functions which compute hyperbolic tangents are DTANH and HTANH.

The specific function TANH computes the hyperbolic tangent of a real number expressed in radians. It

produces a result that is- in the range -1 through 1, inclusive, and which is accurate to approximately 45

bits.

TIME

This queries the system as to the time of day, and returns a result of type CHARACTER *8 in the following

format:

hh:mm:ss
hh Pair of decimal digits expressing the hour.

mm Pair of decimal digits expressing the minute.

ss Pair of decimal digits expressing the second.

This function has, no argument.

15-44A

VABS(v)

For each element x in a real vector, VABS computes the absolute value (x). The real result is accurate

to 47 bits.

VACOS(v)

This computes the arccosine of each element in a real vector. The result real vector contains elements that

are accurate to approximately 45 bits.

VAIMAG(v)

This constructs a.real vector from the imaginary parts of a complex vector. For each element of the

complex vector, if x+iy is the complex eleifent, y is assigned to the result vector. Accuracy of the result

is 47 bits.

VAINT(v)

For each element x in a real vector, VAINT computes (x) and converts it to real before assigning it to a

real vector. (A) is the sign of A times the largest integer less than or equal to (A). The real results are

accurate to 47 bits. The effect of VAINT on each x is that of the expression AINT(x).

VALOG(v)

This computes the natural logarithm of each element in a real vector. VALOG returns a result vector of

real numbers that are each accurate to approximately 45 bits.

For a given real number x, VALOG(x) is computed as described for the function ALOG.

VALOG10(v)

This computes the logarithm of each element in a real vector, returning a result vector of real numbers

accurate to approximately 45 bits.

VAMOD(v 1 ,v2)

For each pair of corresponding elements in two real vectors, this computes one real number modulo the

second real number to produce a real result that is assigned to the real result vector. For each pair of

elements (x,y),x-(x/y) y is computed, where (A) is the sign of A times the largest integer less than or

equal to (A).

VANINT(v)

For each element x of the real vector v, VANINT computes ANINT(x).

VASIN(v)

This computes the arcsine of each element in a real vector. The magnitude of the error that is intro­
duced into the results because. a- table lookup technique is used for fast computation of VASIN is approxi­
mately 2"4 5.

15-45A

VATAN(v)

This computes the arctangent of each element in a real vector. The magnitude of the error that is intro­
duced into the results because a table lookup technique is used for fast computation of VATAN is approxi­

2.4 5mately .

VATAN2(v 1 , '2)

This computes the arctangent of the ratio of two real elements in corresponding positions in two real vec­
tors. The result is a real vector having elements that are accurate to approximately 45 bits.

VCABS(v)

This computes the modulus of each element in a complex vector, and places the results in a real result

vector. Each result is accurate to approximately 45 bits.

VCCOS(v)

See VCSIN for a description of the VCCOS function.

VCEXP(v)

This computes the exponential of each element in a complex vector, and produces- a complex vector of

results.

VCLOG(v)

This computes the natural logarithm of each element in a complex vector, returning a complex result vector.

VCMPLX(v1 ,v2)

This constructs a complex vector from two real vectors. For each pair of corresponding elements (x,y) in
the two real vectors, x is assigned to the real part and y is assigned to the imaginary part of the corres­
ponding element in the complex result vector. Accuracy of the result is 47 bits for each part of the com­
plex value.

VCONJG(v)

This constructs a vector of conjugates from a complex vector: For each element x+iy 'of the complex

vector, x-iy is assigned to the result vector. The function sets up a control vector of ones and zeros.

copies the real parts of the complex vector and negates the imaginary parts before assigning them.

VCOS(v)

See VSIN for a description of the VCOS function.

- VCSIN(v) and VCCOS(v)

These compute the sine and cosine of each element in a complex vector. Each complex result is accurate
to approximately 45 bits.

15-46A

VCSQRT(v)

This computes the square root of each element in a complex vector, and places
 the results in a complex
result vector. For a given complex vector x, VCSQRT(x) is computed exactly as for the function CSQRT.

VDBLE(v)

This constructs a double precision vector from a real vector. For each element of the
 real vector, the
element value is assigned to the most significant part (the first word) in the double precision result vector;
the least significant parts are real zero. Accuracy of the result is 94 bits.

VDIM(vl,v2)

For each pair of corresponding elements in two real vectors, this computes the positive excess of one real

number over the other real number; for a pair (xy), the value x-y is assigned to the result vector if-x is

greater than or equal to y, and the value 0.0 is assigned otherwise. Accuracy of the result is 47 bits.

VEXP(v)

This computes the exponential of each element in a real vector. VEXP returns a result vector of real

numbers.

VEXTEND(v)

For each element of the half precision vector v, VEXTEND computes EXTEND(x). The result is a real

vector.

VFLOAT(v)

This constructs a real vector from an
 integer vector. Each integer vector element is normalized and
assigned to the real vector.

VHABS(v)

For each element x of the half precision vector v, VHABS computes HABS(x). The result is a half -preci­
sion vector.

VHACOS(v)

For each element of the half precision vector v, VHACOS computes HACOS(x). The result is a half

precision vector.

VHALF(v)

For each element x of the input vector v, VHALF computes HALF(x). The input vector may be of type

integer, real, double precision or complex. The result is a half precision vector.

15-47A

VHASIN(v)

For each element x of the half precision vector, VHASIN computes HASIN(x). The result is a half

precision vector.

VHATAN(v)

For each element x of the half precision vector v, VHATAN computes HATAN(x). The result is a half

precision vector.

VHATAN2(vj .v2)

For each corresponding pair of elements x, and x2 of the input vectors v, and v2 , VHATAN2 computes

HATAN2(x1 ,x2). The arguments and result are half precision vectors.

VHCOS(v)

For each element x of the half precision vector v, V.HCOS computes HCOS(x). The result is a half

precision vector.

VHDIM(vl,v 2)

For each corresponding pair of elements x, and x2 . of the input vectors v1, and, v-,. VHDIM computes

HDIM(xl,x2). The arguments and result are half precision vectors.

VHEXv(v)

For each element x of the half precision vector v, VHEXP computes HEXP(x). The result is a half

precision vector.

wllNr(v)

For each element x of the half precision vector v, VHINT computes BINT(x). The result is a half

precision vector.

VHLOG(v)

For each element x of the half precision vector v, VHLOG computes HLOG(x). The result is a half

precision vector.

VHLOGIO(v)

For each element x of: the half precision vector v, VHLOG10 computes HLOG1a(x). The result is a

half precision vector.

VHiNMOD(vl.,v2)

For each, corresponding pair of elements x, and x2 the input vectors v1 and v2 . VEPMOD computes

lHlOD(xl.x2). The arguments and result are half precision vectors.

15-48A

http:lHlOD(xl.x2

VHNINT(v)

For each element x of the half precision vector v, VHNINT computes HNINr(x). The result is a half

precision vector.

- VHSIGN(vl,v 2)

For each corresponding pair of elements- x, and x2 of the input vectors v, and v2 , VHSIGN computes
HSIGN(xl,x 2). The arguments and result are half precision vectors.

VHSIN(v)

For each element x of the half precision vector v, VHSIN computes HSIN(v). The result is a half preci­
sion vector.

VHSQRT(v)

For each element x of the half precision vector v, VHSQRT computes HSQRT(x). The result is a half

precision vector.

VHTAN(v)

For. each element x of the half precision vector v, VHTAN computes HTAN(x). The result is a half

precision" vector.

VTABS(v)

For each element x in an integer vector, VIABS computes the absolute value (x).

VIDIM(v 1 ,v2)

For each pair of corresponding elements in two integer vectors, this gives the positive excess of one integer

number over the other integer number;
 for a pair (xy), the value x-y is assigned to the result vector if x

is greater than or equal to y, and the value 0 is assigned otherwise.

VIFIX(v)

This constructs an integer vector from
a real vector. VIFIX, which is an alternative name for VINT. com­
putes (x) for each element x in a real vector. (A) is the sign of A times the largest integer less than or
equal to (A).

VIHINT(v)

For each element x of the half precision vector v, VIHINT computes IHINT(x). The result is an integer

vector.

VIHNINT(v)

For each element x of the half precision vector v, VIENINT computes IHNINT(x). The result is an integer ,

vector.

15-49A

VINT(v)

For each element x in a real vector, VINT computes (x) and assigns the resulting value to an integer
vector. (A) is the sign of A times the largest integer less than or equal to (A).

VISIGN(vl.v 2)

For each pair (x,y) of corresponding elements in two integer vectors, this combines the sign of x with the
absolute value of y; the effect of VISIGN on each pair (xy) is that of the expression ISIGN(x,y).

VMOD(v 1 ,v2)

For each pair of corresponding elements in two real vectors, this computes one integer number modulo the
second integer number to produce, an integer result that is assigned to the integer result vector. For each
pair of elements (xy), x-(x/y) * y is computed, where (A) is the sign of A times the largest integer less
than or equal to (A).

VNINT(v)

For each element x of the real vector v, VNINT computes NhNT(x). The result is an integer vector.

VREAL(v)

This constructs a real vector from the real parts of a complex vector. For each element of the complex
vector, if x+iy is the complex element, x is assigned to the result-vector. Accuracy of the result is
47 bits.

VSIGN(v1 ,v2)

For each pair (xy) of corresponding elements in two real vectors, this combines the sign of x with the
absolute value of y; the effect of VSIGN on each pair (x,y) is' that of the expression SIGN(x,y).
Accuracy of each result is 47 bits.

VSIN(v) and VCOS(v)

These compute the sine and cosine of each element in a real vector. The magnitude of the error that is
introduced into the results by use of the table lookup technique for fast computation of VSIN and VCOS

2-4 5 is approximately .

VSNGL(v)

This converts a double precision vector to a real vector. The- most significant part (the first word) of each
double precision element is assigned,to the result vector. Accuracy of each result is 47 bits.

15-50A

VSQRT(v)

This computes the
that are accurate to

square
appro

root
ximately

of each
47

element
bits.

in a real vector. The real result vector contains elements

el is indefi­ement of the result vectorFor a given real element x of the vector argument, the appropriate

nite if x < 0.0. For each x 0.0, a result is computed.

VTAN(v)

This computes the tangent of each element in a real vector. A table lookup technique is used for fast

2 4 5 .

computation of VTAN; consequently, the error for small results has a magnitude of approximately

15-51A

16 PROGRAM COMPILATION

The system control statements accompanying a STAR
FORTRAN program must include a call to the FORTRAN
compiler. The parameters for this call optionally declare
files for input and output, and optionally include instructions
to the compiler to (for example) output storage maps.
Additional control statements are required to load and to
execute the compiled program, and can be used to change at
run time the file declarations made in a PROGRAM
statement.

FORTRAN STATE ME NT

The FORTRAN system control statement is used to execute
the STAR FORTRAN compiler. In the statement parameter
descriptions that follow, underlining indicates the minimum
number of characters can used in specifying theparamtermaythat be

parameter.

Forms:

FORTRAN.

FORTRAN(INPUT=fl,BINARY=f 2 /I2 ,LIST=f 3 /13 /d3 ,OPTIONS=olist)

INPUTf 1 	 Optional. f is the name of the file
containing tAe FORTRAN source pro-
gram to be compiled. When the
parameter is omitted, the default file
name INPUT is used.

-INARY=f 2/I 2 	 Optional. f2 is the name of the file
that is to receive the compiler-
generated object modules. 1 is a
specification of the length of P. and
can be either an integer constan or a
hexadecimal number prefixed with
a #. 1 can be omitted along with
the slas%. When the entire param-
eter is omitted, the default file name
BINARY is used. When I or the
entire parameter is omitied, the
default file length of 16 small pages
is used.

LIST=f 3/13/d 3 	 Optional. f 3 is the name of the file
that is to receive the compiler­
generated listings and program
output. 1 is a specification of the
length of ?S. Like 12.13 can be either
an integer constant or a hexadecimal
number prefixed with a #. d is the
routing disposition of f and lust be
PR (the line printer
omitted (in which case no routing is
performed) * I and d3 can occur in
either order. *hen 1 is omitted, the
default file size of 396 small pages is
used. When the entire parameter is
omitted, the default is OUTPUT.

OPTIONS=olist 	 Optional. olist is some logical combi-
nation of the compile option letters
ABCEIKLMORSUVYZl2, with the
restriction that Y must not occur
with any other option except L.
Default olst is B.

60386200 G

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis along with a period
replacing the right parenthesis. When communicating
interactively with the system, the user can replace a period
with a carriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default values used for the omitted
parameters. The first form of the FORTRAN statement =selects all defaults for the parameters. The I=,B , and L=

parameters can be interchanged without consequence; the

O= parameter must occur last.

The object and output files (specified by the B= and L=

parametersor of not FORTRANwhen statementstatement)
may the exist system controlcontrol is-the

executed. If the file does not exist, it is automatically
created on a unit assigned by the operating system and with
the length specified in the control statement. If the file
does exist and has write access, it is automatically
destroyed and recreated on the same unit with the length
specified in the control statement. If the file does exist but
does not have write access, a request is made to interactive
users for permission to destroy the file. If permission is
granted, the procedure followed is the same as for files that
exist with write access. If permission is not granted,'or if
the user is in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, certain actions are performed during compilation
that would not be performed otherwise. The L option is an
exception in that the listing of the source program is
inhibited rather than initiated by its appearance in olist.

When O=olist is omitted, or when B is included in olist, the
object file for the program is built. The only time when the
object file is not built is when the O=olist parameter, with B
not in olist, appears in the parameter list for the FORTRAN
system control statement.

A - ASSEMBLY LISTING
An assembly listing of the object code can be placed in the

output file by selecting the A option.

B - BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be built is
made by selecting the B option.

C - CROSS REFERENCE LISTING

All mentions in the source program to labels and symbolic
names are listed i tabular form in the output file by
selecting the C option.

E - EXTENDED 	 BASIC BLOCK
OPTIMIZATION

The E option selects optimization of extended basic blocks.
Optimization involves redundant code elimination and
instruction scheduling. The B option is included in the 0
option. The E option effectively selects options R and I.

16-1

I - INSTRUCTION SCHEDUUNG

The I option selects optimization of object instructions
according to the results of a critical path analysis. The I
option is included in the 0 and E options.

K - 64-BIT COMPARE

This option enables full word (64-bit) integer compares for
.EQ. and NE. operators in logical IF statements. Otherwise,
48-bit compares are performed for the .EQ, and .NE.
operations (integers are 48 bits).

L - SOURCE LISTING SUPPRESSION

The first part of the output file for a STAR FORTRAN
program is normally the source program listing. This can be
omitted from the file by selecting the I option.

M - MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and descriptors, along with a map of the
contents of the register file, is produced when the M option
is selected,

0 - OPTIMIZATION

The 0 option selects all available optimization of scalar
object code. More efficient object code is produced at the
expense of increased compilation time. The 0 option
effectively selects options Z, B, R, and .

R - REDUNDANT CODE ELIMINATION

IThe R option selects elimination of redundant code. The R
option is included in the 0 and R options.

S - CREATE DEBUG SYMBOL TABLES

The effect of this option is to generate in the binary output
a debug symbol table for each program unit, The symbol
table makes it possible for the system-provided debugging
utility DEBUG to recognize names in the FORTRAN
program. The user must select this option if DEBUG is
going to have to interpret variables, names, and symbolic
addresses; if only absolute addresses will be used in
commands to DEBUG, the S option need not be selected.

U - USAFE VECTORIZATION

The U option enables unsafe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and the
loop contains any references to dummy arrays, then the
compiler cannot determine the number of iterations of. the

loop. Vectorization of such loops is considered unbafe
because the loop count might exceed 65 535, which is'the
maximum length of a vector.

V - VECTORIZATION

Vectorization of certain STAR FORTRAN language con-
structs is requested with the V compile option. The
language constructs that produce vector machine instrue-

htions in the object code are described in section 11.

16-2

Y - SYNTAX CHECK

A partial compilation can be performed to check the syntax
of a FORTRAN program, and output any resulting
diagnostics, by selecting the Y compile option. The Y option
can appear alone or with the L option only (as LY or YL); all
other option combinations using Y, such as CMY or SY, are
invalid compile option lists and produce an error
accompanied by a dayfile message.

Z - DO LOOP OPTIMIZATION
The Z option selects optimizations of DO loops and loop

nests. Optimization involves invariant code removal and
strength reduction of subscript calculations. The Z option is
included in the 0 option.

I - STAR-i 00 OPTIMIZATION
The I option selects optimization for the STAR-100. The 1
option conflicts with the 2 option. When I or 2 is not
selected, optimization is for the mainframe on which
compilation is performed.

2 - STAR-100A OPTIMIZATION
The 2 option selects optimization for the STAR-100A. The 2
option conflicts with the 1 option. When 1 or 2 is not

selected, optimization is for the mainframe on which

compilation is performed.

COMPILER-GENERATED LISTINGS
As' a result of requesting compilation of a FORTRAN
program with a FORTRAN system control statement, a
variety of information is placed in the output file. The
compile options A, C, and M directly request such

information.

A header line at the top of each page of printed compiler
output contains the compiler version, the compile options
selected, the type of listing, and the time, date, and page
number.

Unless the L compile option has been selected, the source
program (including comments) is the first item to be placed
on the file. The source program is listed 58 lines per printed
page (excluding headers); the output lines are numbered on
the right and the FORTRAN statements are numbered on
the left. The statement numbers are used in the cross­
reference maps.

Diagnostics are collected and listed at the end of each
program unit. When no compile options have been selected,
any error diagnostics immediately follow the source listing;
or, if the syntax of the program is acceptable to the
compiler, the message NO ERRORS appears instead. Listed
with each diagnostic is the line number of the source line
during the processing of which the error was detected, as
well as the error number (see appendixB) and the severity
level of the eror.

The order in which the assembly listing, cross-reference
maps, and storage maps appear on the output file following
the source listing is:

Crosa-reference map
Assembly listing

Storage map and register map

This order can be seen in the sample output in figure 16-1.
Any diagnostics follow the storage and register maps.

60386200 G

CROSS-REFERENCE TABLES

When the C 	 compile option is selected, either one or two
cross-reference tables appear in the output for the program
compilation. These tables appear immediately following the
source program listing or, when the L compile option was
also selected, as the first listings in the output.

Any statement labels in the source program are itemized in
the first cross-reference table. For each statement label,
the statement where the label was defined is given, followed
by any statements that reference the label. Statements are
indicated by source listing statement line numbers.

The cross-reference table itemizing all symbolic names in
the source program appears after the statement label cross-
reference table. For each symbolic name, the source listing
statement numbers of any statements containing the name
are listed.

ASSEMBLY LISTING

EXECUTION-TIME FILE
REASSIGNMENT
The PROGRAM statement declarations for files can be
entirely or partially overridden at program execution time
(run time). The alternative to having the files opened as
declared in the PROGRAM statement is to call the
controllee file (default controllee file is GO) followed by one
of the following forms:

(**message)
(message)

message 	 File declarations in the same forms as for
the PROGRAM statement (described in
section 7).

With use of 	 the first form, the file declarations in the
PROGRAM statement are ignored and the file declarations
in the message are used. With use of the second form, any
logical unit assignment in the message overrides the
assignment made to the same logical unit in the PROGRAM

thn tstatement. If a unit was given in the message but was not
When the A compile option is selected, a listing of the
assembly representation of the FORTRAN program appears
after any cross-reference tables. Given are the location
counter (the offset from the code area base address), the
machine instruction in hexadecimal (either half- or full-word
instruction), the source listing line number of the associated
source program statement, the instruction mnemonic,
instruction qualifiers, and operands. Refer to the Assembler
Reference Manual for an interpretation-of META assembler
language.

REGISTER MAP ANDSTORAGE MAPS

When the M compile option is selected, a listing of the
256-register register file is produced,contentsappearing ofaftertheany assembly listing. The STAR FORTRAN

register usage conforms to standard STAR operating systemregister conventions, which are described involume 2 of the
registeranetinSysmwc rencbedn. vom 2rofed
STAR Operating System Reference Manual. Also produced

under this option is a storage map, giving the following
information:

Start address and size of data area copy of the register
file

Name, location, class, and data type of all scalars,
constants, and externals assigned to registers

Name, location, and class of descriptors assigned to
registers
Length and start address of the object code

Length and start address of character constants,
literals, and format segments

Length and start address of argument vectors

Length and start address of constants, externals,
descriptors, variables (not in COMMON), namelist
groups, and character scalars not assigned to registers

Quantity of temporary storage

Common blocks

Entry points

Externals

60386200 G

given in the PROGRAM statement, it is opened in addition
to those declared in the statement

All file delaratins in the message must be presented in
exactLy the same form as used for file information
parameters in a PROGRAM statement, I files are partially
reassigned, the original PROGRAM statement declaration
string is still processed. Therefore, it is not possible to get
around syntax, file name, or parameter errors in the
PROGRAM statement by attempting partial run-time
reassignment.

The effect of partial run-time reassignment is the same as if
the run-time declaration of a particular unit had appeared in

the PROGRAM statement declaration instead of the original
declaration. After the original PROGRAM statement is
processed, the original data for a unit is overwritten with
run-time data taken from the file tables. However, the usermust consider the effect of run-time changes on other
declarations. For example, if the original unit declarationsin the PROGRAM statement were:

TAPEG(7,800,1]=DATAI,TAPE7=DATAI

and the run-time reassignment specified was:

TAPES=MYFILE
then the explicit parameters for TAPES in the PROGRAM
statement would be lost, and DATAI would become an
implicit disk file.

When a program is executed interactively under DEBUG, the
user is prompted for file reassignment. As the prompt
indicates, the user must then either enter a period for no
file reassignment or a file reassignment enclosed in
parentheses.

CONTROL OF DROP FILE SIZE
If a DROP FILE OVERFLOW run-time error message is
issued, the user can increase the size of the drop file and
rerun the program. The CDF parameter of the LOAD
system control statement or the D parameter of the
SWITCH system control statement can be used to make the
drop file size larger. Increasing the size of the drop file
can usually solve the overflow problem, but a program error
(especially an infinite loop) might be the cause.

16-3

STAR FORTRAN Z.0 CYCLE j1s SOURCE LISTING 13149 tiRs. 0ART

00001 PROGRAM PASCAL (OUTPUTI
00002 INTEGER Lill)

00003 DATA Lill) /1
O

00004 PRINT 4, tI.It1,it1

0O005 4 FORHATI44HICOHfINATTONS OF H THINGS TAIEM N AT A TIHE.i/20XWH-N-/

11175)00006 O 200 1~1.i O
0000? 0201- .

00008 tK)1j
00008 L()=
00010 100 L(JIZLIJ)+LJfI)

ootI Z00 PRINT SdtL(J).JNI<,t)
00012 3 FORNAT 4i51

c
01113 .STOP
0n1 'ENO

PAGE 0001
0DD1/00001
000L/00002
0001/00003
n t/6000
000t/00005
0001/00006

QOQL/00007000/o0000i
0001/00009

Gaoioooio
0001/00010
0O0O1/00012

0001/00013
0001100014
0001100015
OOL/00016
0001/00017

STAR FORTRAN 2.0 CYCLE 115 CROSS REF LISTING 131 .HRSc 15AR77 PASCAL PAGE 0002

CROSS REFERENCE TABLE

10)
206

3
&

LABEL DEFINEO

000010 00000Q
000011 000006

066012 000011
00005 000004

REFERENCES

STAR FORTRAN 2.0 CYCLE 115 CROSS REF LISTING 1314t1HRS. 15HAR77 PASCAL PAGE 0003

1

J
X
L
PASCAL

CROSS REFERENCE TABLE

SYMOOL REFERENCES
000004 000004 000006

000009 800010 000010
000007 000007 000004
000002 00000l 000008
000001

000007

000010
00000
000008

000010
000009
000010

000011

000010

000011

000010 000010 0000 1

0)

vigure 16-1. Sample output (Sheet I of 5)

STAR 'FORTRAN 2.0 CYCLE 115

LOCATION MACHINE

COUNTER INSTRUCTION

0000000 7000iSIC

000000 7610001C0
00000 7t18bolC

0000060 3F1400

00600080 zlC000

O0000A0 3ED40580

000000 63EO 4O

00O00E0 OA04004A

0000100 700'4 00

000012a 3o2lFPOo

0000140 2A20D4000

0000160 78660003

0000180 786i0oE

0000140 361A0060

OaOico 78100040C

000010E 78670004

0000200
 7850001E

000023 SIA05C
0000220 31S0059

0000260 70546059

0000260 785o90003

00002A0 7aSFOO±F

0000280 361A005E

00002c0 0406595400035559

0000300 7058001E

0000 78940BS9
0000340 781D005

0000360 67555957

0000380 7F655754

00003AO 78570058

00003 0 7E6550p3

00003E0 7E645604

0000400 63030405

0000420 7F55805

0000480 0706804000.5654

03004O0 7806004E

000480 785&jiE

00004C0 361A005C

00004E0 78570050

0000500 7E655803

0000540 76F001

0000540 361AOO5E

0000560 0406585400035558

00005A0 7808OOE

000asco SGLA005A

6O00SEO 8406595400145659

0000620 3E030000

0000660 7063'06E

0000660 361A0062

ASSEMBLY LISTING 1349 flRS. 15MAR77 PASCAL ..PAGE @004

LINE SOURCE ASSEMBLY REPRESENTATION
NUMBER LABEL

PASCAL IENT

00001 PASCAL ENrRySWAP
RTOR

PASCAL0,CIA.,CURSTAC
K

CURSTACXPREV-STACK
RTOR OYM-SPACECURSTACK
iS
ELEN

DYN-SPACE,#.41
0

CURSTAC<,050
ES PR4,0SEO
ADOX CALLEOATAPR4,PR4
ELEN PR_'O44A
SWAP
SHIFT!
ELTF

PRJ_,C..4z0.
OOEAOR8.ePBCOOEADRN
COOE4A0R.e#5400 '

-RIOR L003004-DOESCRPR_3
RTOR FTINIT-00.CALLEATA
9SAE RETURNFr-TNIT-AOR
RT0R DYN-SPACEP.OYNSP

00004 RTOR L-F4.oSCRPR_4
RTOFTORFTNTIPR.08
USAVE

,CALLEOA A
RETURNFTWTIP&_AOR

Boom
RTOR
RTOR

CI
IPR_3 - -

RTOR
BSAVE
I9)LEBRB
RTOR

FTWTIE_'),CALLXDATA
RETURNFT-RTE-aOq
Ir,_0j, 00Q0ozC_#e
FTWTTPROO.CALLEDATA

08046 BSAVERTOR RETURNFT-TTPR-AORC-01 'I -

00007 000003 SUaX
00006
00009

STO CLi8.OESCRK2,Cl
KORKJ

000004
00010 G00 100

LO IL_.2LOES,1,JlPR_4
AO9X PP_3,PR_,R_5

00011 S200

TO
IOXLEBRB
RYOR

CL_OOESCRJ),PR5
JCJ± OBoo4,C_#AJ
LF3_ESCRPR_4

RTOR FT_.HTIPRBCALLEOATA
8SAVE
TOR

RETURNFTHTIPRAOR
KJ­

000005 LO0 CL--8OESCR,J3,PR_3
TO' Fr_.NrE_O3,CALLEOArA

OSAVE
TAXLEBRB

RETURNFTHTIE-AOR .
JC_ 000005,C_0BJ

R'TOR FTWTTPtOBCALLEOATA-
OSAVE RETURN.Pt-_TTPRADR

00013
IBXLE.ORS ICt,000003.AA,

CPR_,00

ROR
SAVE

FTSTOPI), CALLEDATA
RETURN,fT_STOPADR'

Figure 16-1. Sample Output (Sheet 2 of 5)

STAR FORTRAN 2.0 CYCLE 115 REGISTER HAP 13149 tlRS.,,SAR7 PASCAL PAGE 0005

RE'. NAME REG. WANE REG. NAME REG. NAME PEG. NAME
NO NO NO No NO

00
01
D2
03
04

0 (MACIINE ZERO)
OA TA-FLAGRE TURN
TH INTERUPT-ENTRY
PR3
PR_4

33
34
35
36
37

TFR-.33
TFR-34
TFR_35
TFR-36
TFR -3?

66
67
68
69
6 A

L_C000OO0eSCR
LF4_DESCR
LFtOESCR
F*-69
FR ,6A

99
9A
98
9,9 0

FR-99
FR_9A
FR98
FRS9OPR.30

CC
CO
CE
OFO

Fp-Ca
FRCO
FR_.E
FROPF q00

05
DL
07
08
09
OA
0n
o

00

PR_5
PR_6
PR_7
PR_8
PR_9
PRA
PR_8
POC
PQO

38 TFR-38
39 TFR-39
3A TFR-36
38 TFR_39
3C TFR3C
31) TFR-30
3E TFR_3E
3F TFR_3F
4D TFR-4O

68
60
60
6E
6F
70
7L
72
73

FP_6R
FP_6C
FP6D
FP_6E
F%.6F
FR-70
Fa_71
FR_.?
P_73

9E FR.3E
9F FR-9F
A0 FRAO
At FRAj
A2 FRA2
A3 FR_A3
A4. FR.A
45 F.A5
A6 FR_A6

Ot
02
03
04
05
06
07
08
09

FR_01
FR-02
FR-03
FR-04
FR-05
FR-06
FR-O?
FRC
FR-09

OE
oF
10
it
12
t3
14
15
±6
t7
18

PR E
PR4F
PR.IO
Pp.._1 1
TN..CRATCN
THRCECUEST-ENTRY
C-020
C-d ,S
0.4
C_PARM-OESCR
F-?Eri

At
2

43
44
45
46
47

49
4A
40

TFRi
TFR-42
TFR-43
TFR44
TFP_4S
rFR_46
TFR-4?
TFR_.B
TFR_.49
TFR'.4A
TFR_4B

7.
75
76
77
78
79
TA
7B
70
70

E

FR_74
FPP_75
FO-76
FO?77
FR-78
FP79
FR_7A
FR_.74
FP-70
FP_-70
F EZE

A? FRAT
AD FRA8
A9 FRA9
AA FRAA
AD FRAB
AC FR AG
AD FRAO
AE FRAE
AF FRAF
00 FR_.8081 FR Q e

0A FROA
OB FR-O

C FR_OC
00 FRa_
IDE PR_E
OF FROF
E0 FREO
El FREt
EZ FR_EZ

P&_E3E3E3 FR_E

19
1£
IS
IC
10
1E

F_ET2
RETUR4
CYN SPACE
CU0 STACK
PREV-STACK
CALLEOD TA

4C
40
4E
4?F
50
50

PT._oYNSP
POYNBAS
LTARVEC
LFNTARG
V-UTPi
VTE P2

TF
80

82
83
84

FP 7F
FP- 0
FPl
FPR82F
FR .84

O283
04

85DL
07

FR_BZFP_B3I,
F .)'.

FRI5FRBL
FR-.,86

-'

C'

ESEL
EtE7

ESED
EA

FRESFR_ES
FR.E?

FRE8'_E9
FREA

jF
.?0
21
Z2
23
24
25

0tUNIT
COqEA0DH
CODEAORO
P

0 M_OESCR
DATABASE
TFPZ4
TFP5

52
53
54
55
56
57
5sn

VTEHP3
VTENPA
C#1
C_#8
CPA
K
J

85 FP-85
86 "FR-_86
87 Ft87
88 FPPM8
89C 8
BA FR A
5B FQ_R

88 FtB8
89 F.RSBA FR_8A

PBFR.8
DC FR-80
81 PRB0
BED FR_E

,
EES
ECED
ED
EF
PF
Fl

FR_E
FR_..ECFR_ED
FREE
FREF
FRFo
FR_F0

26
27
?q

TF026
TFR l'
TFR

59
SA
58

1
FTJITrPRAOR
FB.JJTTPROR

BC
80
SE

FO..RO
F_8a

SFcBF
CO
Ct

FR.BF
FR.Ca
FR-CL

d it
00.

F2
F3
F4

FRPF
FR_F3
FR_F

20
2A
2C
20
2')
?F
?r

TFR ?9
TFR_2A
TFPR_2
TF- -?C
TF 0

:0
T 9__E-.
T R_ F

SC
50
SE
5F
60
6t
62

FT.WTIPRAOR
FTNTIPR OR
FT_-WTIEAOR
FTWTIED9
FTJNTT_..AnR
FT _INIT_LI
FT _STOP AOR

8F
90
91
92
Y3
94
95

FaPF
FR 90
F._9L
FP-92
FQ_93
FP-94
FR 95

C2
C3
C4
CS
C6
C
C0

FR_.C2
FRC3
FR-C4
FRC5
PR C6FRC6
P 7COS

i- FS
F6
F
F8

FA
FA

FRFS
FFRJ
FtFT
FR_F8
FRJOFEFA
FR _FO

30
31
32

TFR_3o
TFR31
TFP-3

63
64
6

FT_STOP_Dr
LzODESCR
.I 18-OESCR

96
97
98

FP-96
FT_qT
FR-98

C9
CA
C

FR_C
FRCA
FR_CB

FC
FD
FE
Fr

FRFC
FR_FO
F&_FE
FRFF

Figure 16-1. Sample Output (Sheet 3 of 5)

CC

STAR FORTRAN 2.0 CYCLE 115
 STORAGE HAP 13249:HRS. 15MAR77
 PASCAL PAGE 0O6

to

PROGRAM NAME $S PASCAL TOTAL LENGTH IS 5E HEX HALF WORDS

DATA AREA COPY OF ALL REGISTERS USED BY THIS FORTRAN PROGRAM

START ADDRESS = 580 (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS-

SCALARS,CONSTANTS AND EXTERNALS ASSIGNED To
REGISTERS (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)
LOCATION REG.NO NAME
 CLASS TYPE

logo 4C PI_0YNSP
 SIMPLE VARIAILE INTGR
100G 40 P-OYNRAS
 SIMPLE VARIABLE INTGR

1100 4E LTARVEC
 SIMPLE VARIABLE INT$R

1140 4F LENTARG
 SIMPLE VARIA9LE IkTGR
1180 50 VTEMPj SIMPLE VARIABLE 1NTGR
110 1 VTEMP*
 SIMPLE VARIABLE ,INTCR
1200 52 V.TEHPj SIMPLE VARIA3LE INTGR
1240 53 VTFHP4
 SIMPLE VARIABLE INTGR

120 54 C_#l
 CONSTANT INTGR
1200 55 .08.
 CONSTANT INTGR

1300 56 CIA CONSTANT INTGR

1340 57 K
 SIMPLE'VARIA'hLE INTGR1380 58 J SIMPLE VARIABLE INTGR
13CO 59 I
 SIMPLE VARIABLE INTGR
1400 5A.5B FTUTTPRAR ,FT-NTTPR-OB REF.EXTERNAL SUBPR UNKNW
1480 5.5so FTNTIPR_ADR ,FT-HTIPR-0B REF.EXTERNAL SUBPR INTGR
1500 5E,SF FTWTIEAOR ,FT-HTIE-06 REF.EXTERNAL SURPR UNKHI

15RO 66.1 FTINIT-AOR ,FT-INIT-Df REF.EXTERNAL SUBPR UNKNN

1600 62,63 FTSTOP-AOR ,FT-STOP-DB REF.EXTERNAL SUBPR INTGR'

DESCRIPTORS ASSIGNED 'TO REGISTERS
 (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

LOCATION REG.NO NAME
 CLASS

1680 64 L_20_nESCR
 ARRAY NAME

16C0 65 L-14-DESCR
 ARRAY NAME
1700 66 LCOOOOOESCR
 CIAR.CONST,/FORAT

1740 67 LF4-OESCR
 CMAR.CONST./F3RAT
1700 68 LF3_DESCR
 'CHAR.CONST./FORMAT

MOTEt TOTAL NUMBER OF REGISTERS TO BE FETCHED INTO REG.FILE STARTING WITH REG.ZO HEX IS 49 HEX

GENERATED OBJECT CODE

START ADDRESS - 5 LENGTH S 34 HEX HALF WORDS
 (START ADDRESS IS RELATIVE TO CODE AREA BASE ADDRESSI

CHARACTER CONSTANTSLITFRALS AND FORMAT SEGMENTS
START AnDRESS - 0 LENGTH = 14 HrX HALF WORDS (START ADDRESS IS, RELATIVE TO DATA AREA BASE ADDRESS)

ARGUMENTSTART VECTOOS
ADDRESS - 000000000280 LENGTH - ? HEX HALF WORDS (START ADDRESS IS RELATIVE'TO DATA AREA BASEADORESSI

CnNSTANTSFXTERNALS.nE SCRIPTORS ANh WflN-COMHOLARTARLES NOT ASSIGNED TGRFGIST;Rq. .NAMFI TSTS.CKARIATFR tlALAAS

TFigure 16-1. Sample Output (Sheet 4 of 5)

http:CnNSTANTSFXTERNALS.nE

STAR FORTRAN 2.0 CYCLE 115 STORAGE MAP 1384HRS. 15HARTT PASCAL PAGE 0007

START ADDRESS - 000000000280 LENGTH * 16 HEX HALF WORDS (START ADDRESS IS RELATIVE TO DATA AREA, BASE ADDRESS

LOCATION SYMBOLIC AMIE OR HEX VALUE CLASS TYPE (LOCATIONS ARE RELATIVE To DATA AREA BASE AODRESS)

z80 L ARAY VARIABLE IIGR

TEMPORARY STORAGE
LENGTH W 1 HEX HALF WORDS (STORAGE I SCATTERED THROUGHOUT DATA AREA)

COMMON BLOCKS

NO COMNON BLOCK IS SPECIFIrD

LIST Or ALL ENTRY POINTS

LOCATION SYHBOLIC HAME CLOCATIHS ARE, RELATIVE TO CODE AREA *ASE-ADORESS

PASCAL

LIST OF ALL EXTERNALS

SYMBOLTC NAME

FT-NTTPR
FTWTIPR

FTITIE
FT-NIT

FT STOP

NO ERRORS

Figure 16-1. Sample Output (Sheet S of 5)

krj

cc

ISPECIAL CALL STATEMENTS 	 D

This appendix describes the available special call d Indicates a fullword register containing a

statements. Each specialcall--statemeht directly generates descriptor.

-a-machinI nstructon. Special calls ard described in general

terms in 	section 14. Each special call name is a mnemonic e Indicates a fullword register with an exponent

preceded by Q8. The mnemonics are identical to the STAR field that contains a length operand.

Assembler mnemonics in most eases. Certain special calls

use an abbreviated mnemonic because the name is limited to eh Indicates a-halfword.register with an exponent

6 characters following the Q8. field'that contains a length operahd..

The first field of each machine instruction is the op code FP Is an abbreviatiqn'for floating point.

(F), indicating which function is to be performed. The

special call name supplies the op code (F) in the generated OV Is an abbreviation for order vector.

instruction. Other operands ae specified as arguments in RJ Is an abbreviation for right-justified.

the special call. The operand designators are explained in

table D-1.
 SE 	 Is an abbreviation for sign extended.

The special call formats are shown in table D-2. The G bits .OP. Indicates one of the logical operators .EQ.,

that can be set either to 0 or I are indicated with the .NE., .GE. or LT.

marking x. In -the table, the following additional notations

are used: U Indicates upper result.

Indicates a fullword register containing an L Indicates lower result.
operand.

N Indicates normalizedupper result.

h Indicates a halfword register containing an

operand. S Indicates significant result.

a 	 Indicates a fullword register containing an The instruction format is one of the twelve possible
address; length field is ignored. instruction formats shown in figure D-1. Additional

information about any machine instruction, including the G
Indicates a fullword register containing an bit settings, can be found in the STAR-100 Computer
index. Hardware Reference Manual.

TABLE D-1. OPERAND DESIGNATORS

Designator Format Type 	 Definition

A 1 and 3 	 Specifiese: register that contains a field length and.base address for the corresponoing
source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector field.

C 	 Specifies a register that contains, based on bit 12 of the instruction (G-bit-4), either a two's
complement or unsigned integer in the rightmost 48 bits.

B I and 3 	 Specifies a register tfiat contains a field length and base address-for the corresponding
source vector or string field.

2 Specifies a register that contains the base addrebs for a source sparse vertor lield

C 	 Specifies a register that contains the branch base address in the rightmost 48 bits

C 1,2. and 3 	 Specifies a register that contains the fieldilength and base adaress for storing te result
vector, sparse vector, or string field.

C Specifies the register that will contain, based on bt,12 ol the instr'Ution (G-oit-4. either
a two's complement or unsigned sum of (A) - (X) ir rhe rightino-i 48 hits. The leftmost
16 bits are cleared.

"CI Specifies a register containing the offset for c ana Z vector fields, it the C - I designator

is used, the C designator must specify an even-nu,,ioered register,

60386200 0 	 D-I *

Designator Format Type

G 1, 2, 3, 9,
Band C

5

6

B

R 4

5 and 6

7, 8, and A

S 4

7, 8, and 9

T 4

7, 8, 9, and B

A

X 1 and 3

2

C

Y 1 and 3

2

C

Z I

2

3

C

O-D-2PRODU

TABLE D-1. OPERAND DESIGNATORS (Contd)

Definition

8-bit designator specifies certain subfunction conditions. Subfunctions include length of
operands (32- or 64-bit), normal or broadcast source vectors, etc. The number of bits used
in the G designator varies with instructions.
48-bit index used to form the branch address in a B6 branch instruction. In BE and BF index

instructions, I is a 48-bit operand.

In 3E and 3F index instructions, I is a 16-bit operand.

In the 33 branch'instruction, the a-bit I is the number of the DFB object bits used in the
branching operation.

In the register and 3D instructions, R is the register containing an operand-to be used in an
arithmetic operation.

In the 3E, 3F, BE, and BF index instructions,-R is a destination register for the transfer of
an operand or operand sum. In.the B6 branch instruction, this register contains an item.
count used to form the branch address.

R specifies registers and branching conditions given in the individual instruction
descriptions.

In the register and 3D instructions, S is a register containing an operand to be used in an
arithmetic operation.

S specifies registers and branching conditions given in the individual instruction
descriptions.

T specifies a destination register for the transfer of the arithmetic results.

T specifies a register that contains the base address and, in some cases, the field length of
the corresponding result field or branch address.

T specifies a register containing the old state of a register, DFB register, etc.; in an index,
branch, or inter-register transfer operation.

Specifies a register that contains the offset or index for vector or string source field A.

Specifies a register that contains length and base address for order vector corresponding to
source sparse vector field A.

In the B0-B5 Branch instructions; this register contains, based on bit 12 of the instruction
(G-bit-4), either a two's complement or unsigned integer in the rightmost 48 bits us6d as an
operand in the branching operation.

Specifies a register that contains the offset or index for vector or string field B.

Specifies a register that contains the length and base address for the order vector corre­
sponding to source sparse vector field B.

In the B-B5 Branch instructions, Y specifies a register that contains an index used to form
the branch address.

Z specifies a register that contains the base address for the order vector used to control the
result vector in-field C.

Z specifies a register that contains the length and base address for the order vector corre­
sponding to result sparse vector field C.

Z specifies a register that contains the index for result field C.

In the B0-B5 Branch instructions, Z specifies a register that contains, based on'bit 12 of
the instruction (G-bit-4), either a two's complement or unsigned integer in the rightmost
48-bits. It is used as the comparison operand in determining whether the branch condition
is met.

I%]RODcIBtLITY OF T E

60386200
ORIGNNL~A~~E pOOR1

TABLE D-2. SPECIAL CALL FORMATS-

Instrue-
Special Call 0C(He(Hx tionFormat Description G Bits

CALL Q8ABS(Rf. .Tf) 79 A Absolute, fullwordFP: ABS(Rf)-->Tf

CALL Q8ABSH(Rh, ,Th) 59 A Absolute, halfword FP: ABS(Rh)->Th

CALL Q8ASV(G,X,A,, ,Z,C) 99 1 Absolute, vector: ABS(A)--C xxxx oooo

CALL QSACPS(G,XA,YB,ZC) CF I AnGE.En-Cn,set Zan'OV length-Z0 15 xooo xxxx

CALL Q8ADDB(,X,A,Y,B,Z,C) EO 3 Add binary: A+B--C

CALL Q8ADDD(,X,A,Y,B,Z,C) E4 3 Add decimal: A+B->C

CALL Q8ADDL(RfSf,Tf) 61 4 Add lower, fullword FP: ((Rf)+(Sf))L -T f

CALL Q8ADDLEN(RelSfiTe) 2B 4 Add to length,

R0- 1 5+S4 8 _63 ->T0- 1 5,R6- 63->T 1 6 ­63

CALL Q8ADDLH(Rh,ShTh) 41 4 Add lower, halfword FP:

((Rh)+(Sh))L->Tb

CALL Q8ADDLS(G,X,A,Y,B,Z,C) Al 2 Add lower, sparse vector: (A+B)L->C xoox Xxxx

CALL Q8ADDLV(G,X,A,Y,B,Z,C) 81 1 Add lower, vector: (A+B)L->C xxxx xxxx

CALL Q8ADDMOD(G,X,A,Y,B,Z,C) EC 3 Add modulo bytes: (A n+Bn) mod (18)--C n

CALL Q8ADDN(Rf,Sf,Tf) 62 4 Add normalized, fullword FP:
((Rf)+(Sf))N-T

f

CALL Q8ADDNH(RhSbTh) 42 4 Add normalized, halfword FP:

((Rh)+(Sh))N ->Th

CALL QSADDNS(G,X,A,Y,B,Z,C) A2 2 Add normalized, sparse vector: (A+B)N--C xooX xxxx

CALL Q8ADDNV(G,X,A,Y,B,Z,C) 82 1 Add normalized, vector: (A+B)N-->C xxxx xxxx

CALL Q8ADDU(RfSfTf) 60 4 Add upper, fuflword FP: ((Rf)+(Sf))u-T f

CALL Q8ADDUH(Rh.Sh,Th) 40 4 Add upper, halfword FP: ((Rb)+(Sh))U--Th

CALL QBADDUS(G,X,A,Y,B,Z,C) AO 2 Add uoper, sparse vector: (A+B)u->C xoox xxxx

CALL QSADDUV(G,X,A,Y,B,Z,C) 80 1 Add upper, vector: (A+B)u--C xxxx xxxx

CALL Q8ADDX(RfPS .Tf) 63 4 Add index, fullword:

R6 663+S16_63-T 16_63D
S-15--To-15

60386200 G D-3 0

CALL QSADDXV(G,X,A,Y,B,Z,C)

CALL QSADJE(RfSfTf)

CALL Q8ADJEH(RhISh,Th)

CALL Q8ADJEV(G,X,A,Y,B,Z,C)

CALL Q8ADJM(G,X,A, , ,Z,C)

CALL Q8ADJS(RfSf,Tf)

CALL QSADJSH(Rh.ShTh)

CALL QSADJSV(G,X,A,Y,B,Z,C)

CALL QSAND(,X,A,Y,B,Z,C)

CALL Q8ANDN(,X,A,Y,B,ZC)

CALL QSAVG(G,X,A,, ,ZC)

CALL-QSAVCD(G,X,A, , ,Z,C)

CALL QSBAB(G, SaiTa)

CALL QSBADF(G,16,Ta)

CALL Q8BARB(G,S,T)

CALL Q8BEQ(RfSf,Ta)

CALL Q8BGE(RfSfTa)

CALL QSBHEQ(Rh Sha')

0 D-4

TABLE D-2.

O-CallOCode(Hex)

83

75

55

95

D1

74

54

94

F1

F6

DO

D4

32

33

2F

24

26

20

SPECIAL CALL FORMATS (Contd)

Instrue-
tion DescriptionFormat

I
C Bits

1 Add index, vector:

A I6 63 B16 63 C16 63 A0 15 -- _15 oxxx xooo

4 Adjust exponent, fullword FP:
(Re) per S-Tf

4 Adjust exponent, halfword FP:

(Rh) per S-T h

1 Adjust exponent,vector: A per B-aC xxxx xooo

I Adjacent mean: (A,+ 1+An)/2-eCn xxxo 0000

4 Adjust significance, fullword FP:
(f) per S->Tf

4 Adjust significance, halfword FP:
(Rh) per S->Th

1 Adjust significance, vector: A per B--C xXXX Xooo

3 Logical AND: AB--C

3 Logical AND NOT: AeB->C

I Vector average: (An+Bn)/2--C xxxx xooo

1 Vector average difference: (An-Bn)/2->C n xxxx xooo

9 Branch and alter bit:

(Sa) is bit to be altered,
(Ta) is branch address xxxx oxxo

B D.F. reg. bit branch and alter:
I6 is bit altered, (Ta) is branch address xxxx oXxo

9 Branch to [S]

register T

on condition of bit 63 of

XXXX 0000

3 Branch to (Ta) if (Rf).EQ.(Sf), fullword FP

compare

8 Branch to (Ta) if (Rf).GE.(Sf),

fullword.FP compare

8 Branch to (Ta) if (Rh).EQ.(Sh),

halfword PP compare

REPRODIICIBILITY OFoTi

OIGIsAL pop" 60386200 G

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Special Call

CALL Q8BHGE(RhShTa)

CALL Q8BHLT(Rh,Sh,Ta)

CALL QSBHNE(RhShTa)

CALL Q8BIM(Ri,148)

CALL Q8BKPT(Ra)

CALL Q8BLT(RfSfTa)

CALL Q8BNE(RfSI,T a)

CALL Q8BSAVE(RfS i Ta)

CALL Q8BTOD(Rf, ,Tf)

CALL QSCLG(Rf, .Tf)

CALL Q8CLGH(Rh. ,Th)

CALL QSCLGV(G,X,A, , Z,C)

CALL Q8CLOCK(, ,Tf)

CALL Q8CMPB(,X,A,Y,B)

CALL Q8CMPD(,X,A,Y,B)

Op Code
(Hex) (e)

22

23

21

B6

04

27

25

36

11

72

52

92

39

E8

ES

Instru-i
tionFormat

8

8

8

5

4

8

8

7

A

A

A

1

A

3

3

Description G Bits

Branch to (Ta) if (Rh).GE.(Sh) ,

halfword FP compare

Branch to (Ta) if (Rh).LT.(Sh),

halfword FP compare

Branch to (Ta) if (Rh).NE.(Sh),

halfword FP compare

Branch immediate to (R4)+148

Breakpoint: R 1 6 3 -- 'breakpoint register

Branch to (Ta) if (Rf).LT.(Sf),

fullword FP compare

Branch to (Ta) if (Rf).NE.(Sf),
fulword FP compare

Set (Rf) to next instruction address,

branch to (T +Sd

Convert binary R to packed BCD T,

fixed length

Ceiling, fullword FP:

nearest integer .GE.(Rf)--Tf

Ceiling, halfword FP:

nearest integer .GE.(Rh)->Th

Ceiling, vector: nearest integer .GE.A->C XXxx 0000

Transmit (real time clock)--T16_630->T0_ 1

Compare binaryset:

DFB 53 operands equal
DFB 54 1st operand high
DFB 55 1st operand low

Compare decimal, set:

DFB 53 operands equal
DFB 54 Ist operand high -

DFB 55 1st operand low

60386200 G 'D-5 0

al
Spe~
Special Call

CALL QSCMPEQ(G,X,A,Y,B,Z)
CALL Q8CMPGE(G,X,A,Y,BZ)
CALL QaCMPLT(G,X,A,Y,B,Z)
CALL QSCMPNE(G,X,AYB,Z)

CALL QSCNTEQ(Rd'SiTf)

CALL Q8CNTO(RdSiT f)

CALL QSCON(R, 'Th)

CALL Q8CONV(G,X,A., ,Z.C)

CALL Q8CPSB(Rd.Se.Td)

CALL QSCPSV(G, ,A,, ,Z,C)

CALL Q8lD8NZ(RrSiTa)

CALL QSDELTA(G,X,A. ,Z,C)

CALL QDfVB(,X,A,Y,BZ,C)

CALL QSDIVD(,X,A,Y,B,Z,C)

CALL QSDIVS(RfSfITfd

CALL QSDIVSH(Rh.Sh.Th)

CALL QSDIVSS(G,X,A,Y,B,Z,C)

CALL QSDIVSV(GX,A,Y,B,ZC)

CALL QSDIVU(Rf,SfTf)

CALL QSDIVUH(Rh,.Sh-T h)

TABLE D-2.

a
He)

C4
C6
C7
C5

lE

IF

76

96

14

BC

35

D5

- E3

E7

6F

4F

AF

81

6C

4C

SPECIAL CALL FORMATS (Contd)

Irstrue- I ,-­
tionFormatI Descripton j Bits

xoox XOO0
I Vector compare, form order vector:
1 xoox xoOO
1 if (A).OP(B n), set bit Zn in order vector xoox xooo

xoox xoo1

7 Count: # of leading bits equal to bit at

[R+S]--T 4863

7 Count l's in field R: # of l's in field

(R+S1-T 48 -63

A Contract, fullword FP: R64--T 2

oxxx 0o001 Contract, vector: A64 -- C3 2

7 Compress bit string: every Rn substring

from Rn+Sn pattern-T

2 Compress vector: vector A->sparse C,
xxoe ooo

7 (Rf)-I -(R), if (Rf) 00 branch to [Ta+5i]

controlled by OV Z

1 Vector delta: (An- 1-An)->C xxxo woco

3 Divide binary: A/B->C

3 Divide decimal: A/B--C

4 Divide significant, fullword FP:

((Rf)/Sf))-T f

4 Divide significant, half word FP:

((lRh)/(Sh))S -- Th

2 Divide significant, sparse vector:
(A/B)s-C xoox X=CC

1 Divide significant, vector:
Qxx OOx(A/B)S__C

4 Divide upper, fullword FP:
((Rf)/(Sf))U -- Tf

4 Divide upper, halfword FP:

((Rhb)/(Sh)) U "-Th

REPRODUCIBILTV OF THE
O(RIGINAL PAGE -IS POOR

REPRODUCIBI ITY OF T5
60386200 G

http:QSDIVSH(Rh.Sh.Th
http:Q8CPSB(Rd.Se.Td

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Special Call Op Code(He
(Hex)

Instruc­
tion

Format
Description G Bits

CALL QSDIVUS(GX,A,YB,ZC) AC 2 Divide upper, sparse vector: (A/B)u->C xoox mxxx

CALL Q8DIVUV(G,XA,Y,B,Z,C) 8C 1 Divide upper, vector: (A/B)u-4C xxx xxxx

CALL Q8DOTS(G,X,A,Y,B, ,C) DD 2 Sparse vector dot product: AeB--C,C+I xooo xxxx

CALL QSDOTV(G,X,AY,B,Z,C) DC 1 Dot product vector: A.H->C, C+1 xxoo 0000

CALL Q8DTOB(Rf, ITf) 10 A Convert packed BCD to binary T, fixed length

CALL QODTOZ(G,X,A, , ,Z,C) PC 3 Unpack BCD to zoned: A--C xxoo 0000

CALL QSELEN(R W116) 2A 6 Enter length: I16-R0- 15,R 16 -63 unchanged

CALL QSEMARK(G,X,A,Y,B,Z,C) EB 3 Edit and mark: A per pattern B->C,

G=Ist significant result address

CALL Q8ES(Rf,116) 3E 6 Enter short, fullword:

I16 -R 1 6 _63,R J,SE,0-->R 0 15

CALL QSESH(Rh,II6) 4D 6 Enter short, halfword:

116--R 8 -31 ,RJ,SE, ->R 0 7

CALL Q8EX(Rf,148) BE 5 Enter index, fullword:
148 --R1663'0 -R 015

CALL QSEXH(Rh,124) CD 5 Enter index, halfword:
l24->R _10->R_

12 8-31' OR0-7

CALL QSEXIT 09 4 Exit force, job mode to monitor mode

CALL QSEXP(Re, ,Tf) 7A A Exponent, fullword:

R0-15 ->T16_63,SE,->T0_15

CALL QSEXPH(R eh.Th)

CALL QSEXPV(G,X,A, ,Z,C)

SA

9A

A

1

Exponent, halfword:

R0-7 8->T8-31'SE,0- 0-7

Exponent vector:

A0 -15 -­ >C 4 8 -6 3 ,SE,0--C 0 _15 xxxx 0000

CALL QSEXTB(RfSTf) 6E 4 Extract bits from Rf to Tf per Sd

CALL QSEXTH(RPh' .T-f) 5C A Extend halfword FP. R32->T64

CALL QSEXTV(G.X,A.. ,ZC) 9C 1 Extend vector: A3 2 ->C 6 4 oxxx 0000

60386200 G
 D-7 4

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Specal Call)PCode(He)
lstrue&­

tionFormat Description G Bits

CALL QEXTXH(Rh , .Tf) 5D A Extend index, halfword FF:
R 831 -TIS_63,SERG-7->T 0-15 , SE

CALL QSFAULT(G)

CALL QSFILLC(18,SiTd)

06

IA

7

7

Simulate fault

Fill field T with byte:

field fT+S]

repeat I8 for

0000 xxxx

CALL Q8FILLR(Rf,SI,Td) 1B 7 Fill field T with byte:

field [T+S]

repeat (R5 6 6 3) for

CALL QSFLR(RI, .Tf) 71 A Floor, fuliword FP:

nearest integer .LE.Rf)-Tf

CALL QSFLRH(Rh , ,Th) 51 A Floor, halfword FP:

nearest integer .LE. (Rh)->Th

CALL QSFLRV(G,XA, , ,Z,C) 91 1 Floor, vector: nearest integer .LE.A-->C xxxx 0000

CALL QSIBNZ(Rf,SiT a) 31 7 (Rf)+l--(R 1) if (Rf) -O branch to [TaS i]

CALL QSIBXEQ(G,X,AY,B,Z,C)
CALL QBIBXGE(G.XA,Y,B,Z,C)
CALL QSIBXGT(G,X,A,Y,DZ,C)
CALL Q81BXLEG,XA,Y,BZ.C)
CALL QSIBXLT(G,X,A,Y,B,Z,C)
CALL QSIBXNE(G,XA,Y,H,Z,C)

BD
B2
B6
B4
B3
B1

C
C
C
C
C
C

Increment and branch index:

AI6003+X16630C66300A_-->C0_15,

1

then branch to Vor relative from current
location

0000 xxxx
0000 XX)XO
o6oo XXX
0066300 xxxx
0000 0xxx
woo xxxx

CALL QSIDLE

CALL Q81NSB(RfSd.Tf)

CALL Q8INTVAL(G, ,A,, B,Z,C)

CALL QSIOR(,X,A,Y,B,Z,C)

00

6D

DF

F2

4

4

1

3

Idle: enable external interrupts and idle

Insert bits from Rf to Tf per Sd

Interval vector: A+((n-2)*B)-- C

Logical inclusive OR: A+B->C

xxxo 0000

CALL QSIS(Rf1,I16) 3F 6 Increase short, fullword:
R 16-63 +i16-R1_63, R0_15 unchanged

CALL Q81SH(Rh-16) 4E 6 Increase short, halfword:
R831+II$-->RE_31,R_7 unchanged

CALL QSIX(RfI48)

CALL QIXH(Rh'.1 2 4)

BF

CE

5

5

Increase index, fuliword:

Increase index, halfword:

148+R->R

I24+R- 'R

:-60386200 G
SD-8

TABLE D-2. SPECIAL CALL FORMATS (Contd)

cial Call S iC(Hex)

CALL Q8LOD(RaSiTf)

CALL QOLODAR

CALL Q8LODC(Ra'SiTf)

CALL QSLODH(RaSiTh)

CALL QBLODKEY(Rf'SaTa)

CALL Q8LSDFR(Rf, ,Tf)

CALL Q8LTOL(Re, ITe)

CALL Q8LTOR(Re, ,Tf)

CALL Q8MASKB(Rd,SdTd)

CALL Q8MASKO(Re SeTd)

CALL QSMASKV(G, ,A, ,BZ,C)

CALL Q8MASKZ(RelSeTd)

CALL Q8MAX(G,X,A, ,B,Z,C)

CALL Q8MCMPC(G,X,A,Y,B,Z,C)

CALL QSMIN(G,X,A, ,B,Z,C)

CALL QTMMRGC(I8,X,A,Y,B,Z,C)

CALL Q8MOVL(G,X,A, ,B,Z,C)

I
Code

7E

OD

12

5E

OF

3B

38

7C

16

ID

BB

1C

D8

FD

D9

EA

F8

Instruc­

tion
Format

7

4

7

7

4

A

A

A

7

7

2

7

I

3

1

3

3

Description G Bits

Load-fullword: load [Ra+S.]->f

Load associative registers:

beginning at 400xx8-->AR

Load byte: [Ra+Si]-T 56 -63, O->T 0 55

Load halfword: load [Ra+Si]JTh

Load key from (R), translate virtual (S.) to
absolute Ta

Load and store data flag register:
(D)FR)---Tf,(R)--DFR

Transmit length R 0 15 to length T,, 15,
T16_6 3 unchanged

Length to register, fullword FP:
R 0_15-T 4863, 0-_47

Mask bit strings: alternate (Rd) string and

(Sd) string -> T string

Formbit mask: repeat (R n) ones and
(Sn)-(Rn) zeros -> T string

If Zn-l, An-->Cn; if Zn=O Bn-->Cn;

result length->C0 15 xoox xooo

Form mask: repeat (Rn) zeros and

(Sn)-(Rn) ones-> T string

Vector maximum:
Amax -C, item count--B xxoo oxoo

Find An=Bn per mask C, A and Bindex

incremented by :# of bytes xxoo oxxo

Vector minimum:

Amin->C, item count ->B xoo oxoo

Merge bits per byte mask:

A or B per 18=0 or 1->C xxxx xxx

Move bytes left: A->C (left to right) xxxx oxox

60386200 G D-9 0

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Specil Call (He(Hex)
Instruc-

tionFormat Description Bit

CALL Q8MCVLC(G,X,A. ,B,Z,C) F9 3 Move bytes left, ones complement:
A-C (left to right) :oxxx oxox

CALL QSMOVR(RiSiTd)

CALL QSMOVS(,X,A. B,Z,C)

18

FA

7

3

Move bytes right: (Td)+(Ri)'-(Td)+(Ri)+(s.)

Move and scale: A-C, scale (B) decimal

places

CALL Q8MPYB(,X,A,Y,B,Z,C) E2 3 Multiply binary- A*B-C

CALL QSMPY(,X,A,YB,Z,C) Es 3 Multiply decimal: A*B--C

CALL QSMPYL(RfSfTf) 69 4 Multiply lower, fullword FP:

CALL QSMPYLH(RhShTh) 49 4 Multiply lower, halfword FP:

((Rh)*(Sh))L-Th

CALL QSMPYLS(GX,A,Y,B,Z,C) A9 2 Multiply lower, sparse vector:
(AB)L -> C

xOOx xxxx

CALL QSMPYLV(G,X,A,Y,B,Z,C)

CALL QSMPYS(R1 ,SfIT f)

89

6B

1

4

Multiply lower, vector: (A*B)L--C

Multiply significant, fuflword FP:
((Rf)*(Sf))s-T f

xocx mX

CALL QSMPYSH(RhShTh) 4B 4 Multiply significant, balfword FP:

((Rh)*(Sh))s-Th

CALL QSMPYSS(G,X,'A,Y,B,Z,C) AB 2 Multiply significant, sparse vector:

(A*B)S>C xoox xxxx

CALL Q8MPYSV(G,X,A,Y,BZ,C)

CALL Q8MPYU(Rf,SfTf)

8B

68

1

4

Multiply significant, vector: (A*B)3s--C

Multiply upper, fullword FP:

((Rf)*(Sf))U -Tf

xxxx oXXo

CALL Q8MPYUH(Rh,Sh,Th) 48 4 Multiply upper, halfword FP:
((h)*(Sh))U-T h

CALL Q8MPYUS(G,X,A,Y,B,Z,C) A8 2 Multiply upper, sparse vector:

(A*B)u __C xoox xXX

CALL QSMPYUV(G,X,A,Y,B,Z,C) - 88 1 Multiply upper, vector: (A*B)u-C xnxx xXX

CALL QSMPYX(RfSfTf) 3D 4 Multiply index, fullword:

R1 6-63 *S 153 -T 1 6 -63' O -0--5

Y-lo Y QF '-OpB- pT- 603862a00QporUjMALMG1T 0R TT0 ­

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Special CallSpecalall(Hex) Code
Instruc­

tionFormat Description G-Bits

CALL QSMPYXH(Rh.ShTh) 3C 4 Multiply index, halfword:
R 831"$8_31--T831,0-->T0-7

CALL Q8MRGB(Rd,Sd.Td) 15 7 Merge bit strings: interleave (Rd) string

with (Sd) string -Td string

CALL Q8MRGC(Rd.SdTd) 17 7 Merge byte strings: (Rd):(Sd),lesser -­>Td

CALL Q8MRGV(G, ,A, ,B.Z,C) ED 2 Merge vector: ifZn=l, An--Cn;
if Zn=O >n-Cn; result length -­ 15 ,coox xoox

CALL Q8MTlME(Rf)

CALL QSNAND(,X,A,Y,B,Z.C)

CALL QSNOR(,XAYB,ZC)

CALL Q8ORN(,XA,Y,B.Z,C)

CALL Q8PACK(Rf.SfTf)

OA

F3

F4

P5

7B

4

3

3

3

4

Transmit (R) -> monitor interval timer

Logical NAND: ZF-0-C

Logical NOR: A+>C

Logical OR NOT: A+B-->C

Pack fullword FP:

R48-63 and S16-63 Tf

CALL Q8PACKH(Rh,ShTh) 5B 4 Pack, half word FP:
R24_31 and S_ 31 ->Th

CALL Q8PACKV(G.X,AY,B,ZC) 9B I Pack, vector:

A4 8 63 and B16 63->C xxxx Xooo

CALL Q8POLYEV(G,X,AY,B,Z,C)

CALL Q8PRODCT(G,X,A, , ,Z,C)

CALL QSRAND(Rf,Sf.Tf)

DE

DB

2D

I

1

4

Polynomial evaluation: An per B->C,

Vector product: Product(A0Al ...An)-C

Logical AND: R,S->T

xxxx 0oc0

xxoo 0000

CALL QSRCON(Rf, ,Th) 77 A Rounded contract, fullword FP: R64--T32

CALL QSRCONV(G,X.A, I ,Z,C)

CALL QSRIOR(Rf,sfTf)

CALL QSRJTIME(, ,T)

CALL Q8RTOR(R. Tf)

97

2E

37

78

1

4

A

A

Rounded contract, vector:
A64 rounded ->32

Logical inclusive OR: R,S->T

Read job interval-timer to (T)

Register to register fullword transmit:
(Rf)--Tf

cxxx 0000

CALL QBRTORH(Rh. Th) 58 A Register to register halfword transmit:
(Rh)--Th

D-11 0
60386200 G

Special Call

CALL QSRXOR(RfSf.Ti)

CALL Q8SCNLEQ(l8,ST)

CALL QSSCNLNE(l8,SiT d)

CALL Q8SCNRNE (T8.Si.Td)

CALL QSELEQ(G,XA,Y.B,ZC)
CALL QSSELGE(G,X,A,Y.BZ,C)
CALL QSSBLLT(G,XA,Y,BZ,C)
CALL Q8SELNB(G,X,A,Y,B,Z,C)

CALL Q8SETCF(Rf

CALL QSSHIFT (Rf,Sf,Tf)

CALL QSHIFTl(RfISTf)

bALL Q8SKEYB(G,X.A,Y,B,Z,C)

CALL QSSKEYC(G;X,A,Y,B,Z,)

CALL QSSKEYW(G,XA,Y,B,ZC)

CALL Q8SQRT(Rf, ,Tf)

CALL Q8SQRTH(Rh , -Th)

CALL QSSQRTV(G,X,A, , Z,C)

QSSRCHEQ(g, ,A,,A, ,B,Z,C)CALLCALL QBSRCHGECC, B,ZC)
CALL Q8SRCHLT(G, ,A, ,B,Z,C)

CALL QSSRCHNE(G, ,A, ,B,Z,C)

CALL QSTO(Ra*SiTf)

TABLE D-2.

Op Code(Hex)

2C

28

29

19

Co
C2
C3
C1

08

34

30

D6

FE

FF

73

53

93

CACA
CB
C9

IF

SPECIAL CALL FORMATS (Contd)

Instruc- DFormation Description

4

7

Logical exclusive OR: R,S--T

Seen left to right from ITdS i3 for byte­

equal to 18, index S,

7 -Scan left to right from [TdSiJ for byte

not equal to 18. index S,

7 Scan right-to left from [Td'Si] for byte

not equal to I8, decrement Si

1 Vector select: if A .OP.B ,n01
1 then count up to the condition met ->C
1

4 Input/output: set channel (Rf) Channel flag

4 Shift Rf by (Sf) -- Tf

7 Shift Rf by IS--Tf

3 Search A for B per C,
Aindex= #no match (bits)

3 Search A for B per C,

Aindex= # no match (bytes)

3 Search A for B per C,

match (words)Aindex= #no

A Significant square root, fulIword FP:

(SQRT(Rf))s-T f

A Significant square root, half word FP:

(SQRT(Rh))S -T)

1 Significant square root, vector:

SQRT(A) 5 >C

I Vector search from indexed list:1-
I each (An).OP.(Bn), count ->C

J-n

7 Store, fulword: store (Tf)--'addres [Ra+Si]

Bits

xxx xooo

xxox xooo

xxox xooo
xxox xooo

XXXX oxxo

xxxo 0000

xzao ooo
xxxo 0000
xxxo o000

S1RODUCIILITY
0 D-12 ORIGINAL PAGE IS POOR

0386200

http:T8.Si.Td
http:QSRXOR(RfSf.Ti

Special Call

TABLE D-2. SPECIAL CALL FORMATS (Contd)
Instruc-

On Code tion Description

(e) Format

I GBits

CALL QSSTOAR 0C 4 Store associative registers:

AR--400xx8 and higher addresses

CALL Q8STOC(RaSiT f)

CALL QSSTOH(Ra' SiTh)

13

5F

7

7

Store byte (character):
T5 6 63 -­ address (Ra+Si]

Store, halfword: (Th)->address ER +S.]

CALL QSSUBB(,X,A,Y,B,Z,C) El 3 Subtract-binary: A-B-->C

CALL Q8SUBD(,X,A,Y,B,Z,C) E5 3 Subtract decimal: A-B--C

CALL QSSUBL(Rf,SfTf) 65 4 Subtract lower, fullword FP:
((R)-(Sf))L-Tf

CALL Q8SUBLH(Rh'Sh,Th) 45 4 Subtract lower, halfword FP:
((Rh)(Sh))L--Tf .

CALL QSSUBLS(GX,A,YB,Z,C) A5 2 Subtract lower, sparse vector: (A-B)L->C xoox xxxx

CALL Q8SUBLV(GX,A,Y,B,Z,C) 85 1 Subtract lower, vector: (A-B)L--*C XXXX XXXX

CALL QSSUBMOD(18,X,A,Y,B,Z,C) ED 3 Modulo subtract bytes:
(An-B n)mOd(18)-C

n

CALL Q8SUBN(RfSfTf) 66 4 Subtract normalized, fuliword FP:

((RI) - (Sf N -Tf

CALL Q8SUBNH(Rh,ShTh) 46 4 Subtract normalized, halfword FP:
((Rh)- (Sh))N -- T f

CALL QSSUBNS(G,X,A,Y,B,Z,C) A6 2 Subtract normalized, sparse vector:

(A-B)N-->C xoox xxxx

CALL Q8SUBNV(G,X,A,Y,B,Z,C) 86 1 Subtract normalized, vector: (A-B)N->C xxxx xxxx

CALL Q8SUBU(Rf,SfTf) 64 4 Subtract upper, fullword FP:

((Rf)-(Sf))U->Tf

CALL Q8SUBUH(Rh,ShTh) 44 4 Subtract upper, halfword FP:
((Rb)- (Sh))u -Th

CALL QSSUBUS(G,X,A,Y,B,Z,C) A4 2 Subtract upper, sparse vector: (A-B)u->C xoox XXXX

CALL QSSUBUV(G,X,A,Y,B,Z,C) 84 1 Subtract upper, vector: (A-B)u>C xxxx nxx

CALL Q8SUBX(Rf.SfTf) 67 4 Subtract index:

R16-63 -S16-63 -T16-63' R0-15 -T0-15

60386200 G D-13 *

TABLE D-2. SPECIAL CALL FORMATS (Cohtd)

G Bitse-
SFormatSpcaalOp (Code tion Description G Bits

CALL QSSUBXV(G,X,A,Y,B,Z,C) 87 1 Subtract index, vector:

A16_63-1316_63 -O 16_63,A 0_15 -C 0x15 oXXX XOOO

CALL QSSUM(GX,A, , ,Z,C) DA I Vector sum: Sum(A 0 ,AI,...An)-->CC+1 xxoo oo

CALL Q8SWAP(Rd.SfTd) 7D 7 Swap registers: start with Sf, storing at Td

and loading from Rd

CALL Q8TL(G,X,A,Y,B,Z,C) EE 3 Translate bytes: Bn--C n xxxx oxox

CALL QSTLMARK(G,X,A,Y,B,Z,C) D7 3 Translate and mark: A per B-vector C xxoc xxo

CALL Q8TLTEST(G,X,A,Y,B,Z,C)

CALL Q8TLXI(RaS iT f)

EF

OE

3

4

Translate and test:

B--C,A ->Z if B NE.O a ii n

Translate external interrupt:
(Tf)=priority, branch to R [S

xxoo oxoo

CALL QSTPMOV(G;X,A,Y,B,Z,C) B9 1 Transpose and move 8 by 8 matrix xoXX Xooo

CALL QSTRU(Rf, ,Tf) 70 A Truncate, fullword FP:

nearest integer .LE.(Rf)->Tf

CALL QSTRUH(Rh' .Th) 50 A Truncate, halfword FP:

nearest integer .LE..(Rh)->Th

CALL QSTRUV(G,X,A, , ,Z,C) 90 1 Truncate, vector:

nearest integer .LE.(A)->C xxxx o

CALL Q8VREVV(G,X,A, , ,Z,C) B8 i Transmitvector reversed to vector:

A r >Crev xxxo 000

CALL QSVTOV(G,X,A ,Z,C) 98 1 Vector to vector transmit: A->C Xxxx 0000

CALL QSVTOVX(G, ,A ,B, ,C) B7 1 Vector to vector indexed transmit:

B->C indexed by A xoco xoxx

CALL QSVXTOV(G, ,A, ,B, ,C) BA 1 Vector to vector indexed transmit:

B indexed by A->C xooo ooxx

CALL QSWJTIME(Rf) 3A A Transmit (Rf)-> job interval timer

CALL QSXOR(,X,A,Y,B,Z,C) F0 3 Logical exclusive OR: A-B-C

CALL Q8XORN(,X,A,Y,B,Z,C) F7 3 Logical equivalence (exclusive OR NOT):

A-B-->C

CALL Q8ZTOD(G,X,A, , ,Z,C) FB 3 Pack zoned to BCD: A->C xxoo oo

* D-14 60386200 G

p i 24 32 40 48 63

N Y,0 (ILENGTh AND (CONTROL VCTOR (LENGTH A40

(FUNCTON) (SUBFUNCTION) (OFFSET FOR A) L E AD (OFFSET FOR 31 BASE ADDRESS) CONRRES)BASE ADDRESS) BASE

S(UN O I§ ;4BASEADDRESS)I)
X W y B S BASE ADDRESS) B S kDC S

C-1

Foratr I - Usedlfor veotte. veateacro And tasse noateal tnltrrttons
 IO"S"FORC)

o 	 1. 24 32 44 4 t0

F (ORDER VctoR A (ORDER VECTOR B (ORDER VECTOR RESULT
(FUNCON) (SUBFUNCTONI LE(OT ASE) (EADORESS) I LENT AND (ASE ADDRESS LENGTH AND LENGTH AND

BAIE ADDRESS) BASE ADDRESS) BAS ADDRESS

FoemmE2- Usedforsrse vetor and soe notypicat Istertlons,

2 40 a 4S 1 5NAN3
81 C 'B 24 A

F 0 I (LENGTd AND a U AND (LENGTH ANDW(LE X
(FUNCTION) (SUBFUNCTON) UNDER FOR A) BASE ADORESS) (INDEX YFOR BI BASE ADDRES) UNDE FOR C) BASE ADDRESS)

(FUJCTION) (SOURCE 1) (SOURCE 2) (DESTINATION)

Fwet 4 - Used fr some reNster batrjetko. ta all/ [tIr t and for the 3D " 04 rOttYWM tuueIorLs

(TUN.CMON) (DEFSNATEON) 	 (46 BIE)

Fceat 6 - Used for the 3E. 3F. 4D aed4E bdxinstruel as eAnd ter u st[ofor the 2A ranh

F R S T

UNCTION) I'(BASE ADDRESS)

Format T - Used Iee soe brnch and n.tyiat trcrt.to

R ST

(FUNCTION) (REGET) (REGTER) ASEADDRESS)

Fcwmat 8 - Used for ome branch =strue loi

B 16 24 31

F 	 (B[TTEST T
(CTION) DESIGNATOR ADDRESS)

Format 9- Usedfr the 32bMch ms oftio

B a ti 2\\\\\\\\.?4 II

F R T
(FOCION) (OLD STATE (NEWSTATE)

UNDEFINED

(MUST BE ZEROS)

Fort A - Used fee some inex. BAh, and re stcortter
E D

_ UND FINE (MUST BE ZEROS)

F- C I T

(FUNCTION) DESIGNATOR (SIlS) (BASE ADDRE)

Format B - fsedtar the 31 branch nstnict

G ,ESIGNATOR

1 r ~ t 24 22 Q0 As Se 53

(FUNCTION) 	 (REGTEt) (REGISTER) (INDEX) (BASE ADDRESS) (REGITER) (REG]STER

UNDEFINED L-BMNCH CONTROL BITS
(MUST BE ZEROS)

Foert C - Used for ihe 80-R5 beinch m t..

Figure D-1. Instruction Formats

60386200 G 	 D-15 0

As a convenience for the user of special calls, the special

calls are listed by op code intable D-3.

TABLE D-3. SPECIAL CALLS LISTED BY OP CODE

Op code SpecialCall Op code Special
call

Op code Special
Call

Op code Special
call

Op code Special
Call

00 QSIDLE 34 Q8SHIFT 67 QSSUBX 99 Q8ABSV DO Q8AVG
04
06
08

QSBKPT
QSFAULT
QSSETCF

35
36
37

Q8DBNZ
Q8BSAVE
QSRJTIME

68
69
6B

Q8MPYU
Q8MPYL
Q8MPYS

9A
9B
9C

Q8EXPV
Q8PACKV
QSEXTV

DI
D4
D5

QSADJM
Q8AVGD
Q8DELTA

09
OA
Cc

OD

QSEXIT
QSMTIME
QSSTOAR
QSLODAR

38
39
3A
3B

QSLTOL
Q8CLOCK
QSWJTIME
Q8LSDFR

6C
6D
6E
6F

QSDIVU
Q8INSB
QSEXTB
Q8DIVS

AO
Al
A2
A4

QSADDUS
QSADDLS
Q8ADDNS
QSSUBUS

D6
D7
DS
D9

QSSKEYB
Q8TLMARK
Q8MAX
Q8MIN

GE
OF

QSTLXI
Q8LODKEY

3C
3D

Q8MPYXH
Q8MRYX

70
71

Q8TRU
Q8FLR

A5
AS

QSSUBLS
Q8SUBNS

DA
DB

Q8SUM -
Q8PRODCT

10
11
12

QSDTOB
QSBTOD
QSLODC

3E
3F
40

Q8ES
Q81S
Q8ADDUH

72
73
74

Q8CLG
Q8SQRT
QBADJS

AS
AS
AB

Q8MPYUS
QSMPYLS
QSMPYSS

DC
DD
DE

Q8DOTV
Q8DOTS
Q8POLYEV

13
14

Q8STOC
Q8CPSB

41
42

Q8ADDLH
Q8ADDNH

75
76

QSADJE
Q8CON

AC
AF

Q8DIVUS
Q8DIVSS

DF
EO

Q8INTVAL
Q8ADDB

15
16

Q8MROB
Q8MASKB

44
45

Q8SUBUH
Q8SUBLE

77
78

QSRCON.
Q8RTOR

BO
B1

Q8LBXEQ
Q81BXNE

El
E2

Q8SUBB
QSMPYB

17
is

QSMRGC
Q8MOVR

46
48

Q8SUBNH
Q8MPYUH

79
7A

Q8ABS
Q8EXP

B2
B3

Q8IBXGE
Q8IBXLT

E3
E4

Q8DIVB
QSADDD

19
1A
lB
iC
ID

QSSCNRNE
Q8FILLC
QSFILLR
Q8MASKZ
QSMASKO

49
4B
4C
4D
4E

Q8MPYLH
QSMPYSH
Q8DIVUH
QSESH
Q8ISH

7B
7C
7D
7E
7F

Q8PACK
Q8LTOR
Q8SWAP
Q8LOD
QSSTO

B4
B5
B6
B7
B8

Q81BXLE
Q8IBXGT
Q8BIM
QSVTOVX
Q8VREVV

'ES
E6
E7
E8
E9

Q8SUBD
QSMPYD
Q8DIVD
Q8CMPB
Q8CMPD

1E
IF

Q8CNTEQ
Q8CNTO

4F.
50

Q8DIVSH
Q8TRUH

80
81

Q8ADDUV
QSADDLV

B9
BA

QSTPMOV
Q8VXTOV

EA
EB

QSMMRGC
QSEMARK

20
21

QSBHEQ
QSBHNE

51
52

QSFLRH
Q8CLGH

82
83

Q8ADDNV
QSADDXV

BE
BC

Q8MASKV
Q8CPSV

EC
ED

Q8ADDMOD
QSSUBMOD

22 QSBHGE 53 QSSQRTH 84 QSSUBUV ED - Q8MRGV EE Q8TL
23
24

QSBHLT
QSBEQ

54
.55

QSADJSH
Q8ADJEH

85 -
86

Q8SUBLV
Q8SUBNV

BE
BF

Q8EX
Q81X

EF
F0

Q8TLTEST
QSXOR

25
26

Q8BNE
QSBGE

58
59

QSRTORH
Q8ABSH

87
88

Q8SUBXV
Q8MPYUV

CO
Cl

Q8SELEQ
Q8SELNE

F1
F2

Q8AND
QSIOR

27 Q8BLT 5A Q8EXPH 89 QSMPYLV C2 Q8SELGE F3 Q8NAND
28
29

Q8SCNLEQ
Q8SCNLNE

5B
5C

Q8PACKH
Q8EXTH

SB
8C

Q8MPYSV
Q8DIVUV

C3
C4

Q8SELLT
QSCMPEQ

F4
F5

Q8NOR
QSORN

2A
2B

Q8ELEN
QSADDLEN

5D
SE

Q8EXTXH
Q8LODH

8F
90

Q8DIVSV
Q8TRUV

C5
C6

Q8CMPNE
Q8CMPGE

F6
F7

Q8ANDN
QSXORN

2C
2D

QSRXOR
Q8RAND

5F
60

QSSTOH
QSADDU

91
92

Q8FLRV
Q8CLGV

C7
C8

Q8CMPLT
Q8SRCHEQ

F8
F9

QSMOVL
Q8MOVLC

2E QSRIOR 61 QSADDL 93 QSSQRTV C9 Q8SRCHNE FA Q8MOVS
2F QSBARB 62 QSADDN 94 Q8ADJSV CA Q8SRCHGE FB Q8ZTOD
30
31

QSSHIFTI
QSIBNZ

63
64

Q8ADDX
Q8SUBU

95
96

QSADJEV
QSCONV

CB
CD

QSSRCHLT
QSEXH

PC
FD

Q8DTOZ
Q8MCMPC

32 QSBAB 65 QSSUBL 97 Q8RCONV CE QSTXH FE Q8SKEYC
33 QSBADF 66 Q8SUBN 98 Q8VTOV CF Q8ACPS FF QSSKEYW

SOpUCIThBIY OF THE

-6I3A PAGE IS POOR

*Df-16 60386200 G

Appendix F

Replaced with the following page

F-i

,Appendix F

STAR FORTRAN '77

STATEMENT LIST

The following statement isis intended only to suggest the scope of the STAR dialect of FORTRAN '77.
See the body of the manual for details concerning the correct construction and-use of the various
statements.

Statement function definition statement • OFB

Assignment statements: R pIoD1OC *j t OO '

arithmetic scalar - arithmetic, expression

character entity - character expression

logical entity - logical expression

array or dynamic variable - arithmetic expression or vector arithmetic expression
bit scalar or bit vector - bit scalar or bit vector

Keyword statements:

ASSIGN (descriptor) ENDFILE PAUSE

ASSIGN (statement label) END IF PRINT

BACKSPACE ENTRY PROGRAM

BIT EQUIVALENCE PUNCH

BLOCK DATA EXTERNAL READ

BUFFER IN FORMAT REAL
BUFFER OUT FREE
 RETURN
CALL FUNCTION REWIND
CHARACTER GO TO (assigned) ROWWISE
CLOSE GO TO (computed) SAVE
COMMON GO TO (simple) STOP
COMPLEX HALF PRECISION SUBROUTINE
CONTINUE IF (arithmetic) WRITE
DATA IF (block)

DECODE IF (logical)

DIMENSION IMPLICIT

DO INQUIRE

DOUBLE PRECISION INTEGER

DYNAMIC INTRINSIC

ELSE LOGICAL

ELSE IF NAMELIST
ENCODE OPEN

END PARAMETER

ENF

F-lA

COMPATIBILITY FEATURES 	 G

Certain features of STAR FORTRAN are provided only for
compatibility-with FORTRAN Extended. The compatibility
features are described in this appendix.

NOTE

The features described in this- appendix
should not be, used for-new programs and
are intended only for the conversion of'
existing 	programs.

HOLLERITH CONSTANT COMPATIBILITY

Hollerith elements are described in section 2, Statement
Elements. For compatibility, Hollerith constants are
supported in relational and arithmetic expressions.

A Hollerith constant used in an arithmetic or relational
|expression is limited to 8 characters. A Hollerith constant

Al is left-justified with blaik fill in a full word. A Hollerith
| constant thatis too long is truncated on the right hand side,

and a warning diagnostic is issued.

The Hollerith constant is considered typeless. A typeless
constant is not converted for use as an argument or for
assignment. If Hollerith -constants are the only operands in
an arithmetic expression, the result is type integer.,

BUFFER IN AND BUFFER OUT
COMPATIBILITY
Input, output, and memory transfer statements are described
in section 8. The BUFFER IN and BUFFER OUT statements
are provided for compatibility with FORTRAN Extended.
The UNIT and LENGTH functions are also provided for
compatibility.

The BUFFER IN and BUFFER OUT statements are used to
Bf transmit binary data between SRM-struotured files and main

"memory. The length of the buffer area in which the data is
contained should be an even number of bytes for tape files,
or a multiple of pages for disk files. Ordering the data in
this manner provides for the most economical use of
storage.

A file referenced in a BUFFER statement must be declared
in the PROGRAM statement to be an explicit file. The file
cannot be referenced in any other input or output statement;
however, it can be referenced in the unit positioning
statements BACKSPACE, REWIND, and ENDFILE. Once
buffered input/output is established for a logical unit in a
FORTRAN program, all input and output for that unit must
be buffered.

After a BUFFER IN or BUFFER OUT, the error status of the
logical unit involved should be checked using the UNIT
function before another operation with the unit is initiated.
The unit status should also be checked before the buffered
data is used. After the unit cheek, the number of bytes read
by a BUFFER IN can be obtained with the LENGTH
function,

60386200 G

BUFFER 	 IN STATEMENT

Execution of the BUFFER IN statement causes transfer of
data from the logical unit specified, in the mode given. to
the buffer defined in this statement as storage locations
first to last. Only one record is read for each BUFFER IN
statement.

Form:
BUFFER IN(u,modeXfirst,last)

III The logical unit number.
mode An integer-constant or simple integer variable

that specifies the recording mode of the data
being read. The permitted values are:

0 = 7-track tape, BCD mode, even parity

I = 7-track or 9-track tape, binary mode,
odd parity

2 = 7-track tape, CDC 64-charater
ASCII subset, odd parity

4 = Disk

first 	 A variable or array element name that can be
type character, integer, real, double precision,
complex, or logical, and which defines the first
location in the buffer into which data is to be
transmitted.

last A variable or array element name that can be
type character, integer, real, double precision,
complex, or logical, and which defines the
location in the buffer into which the last data
item is to be transmitted.

The location of last cannot precede first in memory. The
quantity (last-first+l) must be less than or equal to 24 small
pages.

BUFFER 	OUT STATEMENT

The execution of the BUFFER OUT statement transfers data
to the logical unit specified m the mode given, from the
buffer defined in this statement-as storage locations first to
last.

Form:

'BUFFER OUT(umode)(first,last)

u 	 The logical unit number.

mode 	 An integer constant or simple integer variable
that specifies the mode in which the data
record is to be written:

E
0 = 7-track tape. BCD mode, even parity

1 = 7-track or 9-track tape, binary mode,
odd parity

G-I 0

A: A Hollerith -constant used in an arithmetic or relational expression is
limited to 8 characters. An H-constant is left justified with blank
fill in a full word. An R-constant is right justified with zero fill in
a full word. An H-constant that is too long is truncated on the right
hand side and a warning diagnositic is issued.. An R-constant that is
too long is truncated on the left hand side and a warning diagnostic
is issued.

C: A file referenced in a BUFFER I/O statement must be preconnected
or connected for sequential access. The specified unit must not be
referenced in any other data transfer input/output statement while
connected. However, the unit may be closed and opened again. The
unit may be referenced in the file positioning statements BACKSPACE,
ENDFILE, and REWIND. The unit may also be referenced in an
INQUIRE by unit statement and the file in an INQUIRE by file
statement.

B: . . . transmit binary

and internal storage.

is .. .

data between files connected for sequential access

The length of the buffer area in which the data

D: u An external unit identifier.
mode Ignored.

E: u An external unit identifier.

mode Ignored.

G-IA

2 =7-track tape, CDC 64-character
A ASCII subset, odd parity

4 =Disk

first 	 A variable or array element name that can be
type character, real, integer, double precision,
complex, or logical, and which defines the first
location in the buffer from: which data isto be
transmitted;,

last 	 A variable or, array elementname that can be
type-character, real, integer, double precsion,.
Complex, or logical,, and which defines the
location In the.buffer from which the-iastdata'
item is to be-transmitted.

One logical- record is written for each- BUFFER OUT
statement. The parameters first and last must refer'to-the
same array, and last cannot-precedefirst.in memory.

UNIT FUNCTIO

The UNIT function checks to- se whether or iAot data
transmission-was completed without enor. After a BUFFER
IN or BUFFER OUT, the:UNITshould-be referenced before
any furtheroperations are:performed:on the file;

The UNIT function is suitable for-evaluationin anarithmeti&,
IF statement that bausesz branching- to%appropriate
statements, as directed b'.thervalue returned.. .

Form:

UNIT(u),
The function returns one of the following real values:

-1.0 = Unit ready-

0.0- = Unit ready; end-of-file encountered

1.0 = Unit ready; parity error encountered'

B-	 T

LENGTH FUNCTION-.ovrin

The length of the physical record read from the logical ufit
by the previous BUFFER IN statement can be determined by
the LENGTH function.

Form:

LENGTH(u)

C U The logical unit number.

The function returns an integer value that represents the
number of bytes actually read. If the buffer area is larger
than the physical record, the excess buffer space is
undefined. If the physical record is larger than the buffer,
the remainder of the record is lost.

* SPECIFICATION COMPATIBILITY

Input/output lists and data formatting is described in
section 9. For compatibility with FORTRAN Extended, the
* specification is supported; the * specification is identical
to the ' specification, except that asterisks replace the
apostrophes.

G
6-2

SUPPLIED FUNCTION COMPATIBILITY

Supplied functions are described in section 15, STAR
FORTRAN-Supplied Functions. For compatibility, a number
of additional functions are supplied. The functions are
shown in table G-1.

TABLE G-1. FUNCTIONS SUPPLIED
FOR COMPATIBILITY

Function Type of

Function Reference. Tpe o

Rencents Result

Masking MASK(n) Integer Typeless

Functions,

SHIFT(an) Real or

Integer Typeless

COMPL(a) Real or
U"Integer Typeless

AND(a,a ...) Real or2 integer Typles

OR(a 1 a 2 Real or
Integer Typales

XOR(al,a....) Real or

., Integer Typeless
 }D

A typeless function generates a result that is typeless. A
typeless result is not converted for use as an argument or
for assignment. For example, the statement

X = Y +,SHFT(I,5)

does not involve conversion of the SHIFT result from integer

t6 real. The result is typeless and is used without

AND (al,a2 ,.

This computes the bit-by-bit logical product of a 1
through an. -

COMPL (a)

This computes the bit-by-bit Boolean complement of a.

MASK (n)

This forms a mask of n bits set to I starting at the left of
the word. The n value must be in the range 0<n<64. Theresult is undefined for an argument outside the rnge.

OR (a1,a 2. ...)

This computes the bit-by-bit logical OR of aI through an

60386200 G

http:cannot-precedefirst.in

A: delete

B: Note that the significance of the signs of the values returned by the

UNIT function is different from that for the input/output status
specifiers described in Chapter 8.

C: u An external unit identifier.

D: Type Conversion DFLOAT(i) Integer Double
Precision

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

G-2A

SHIFT (a.n) TABLE G-2, COMPATIBILITY FUNCTIONS LIST

This produces a shift of n bit positions in a. If n is positive,
the shift is left circular. If n is negative, the-shift is right
end-off with sign extension from bit zero. The n value must
be in the range -64<n<64. The result is undefined if n is
outside the range. Tgei value is integer.

Function

AND

COMPL

ategory

N

N

T Fast Call Name.

-

MASK N -

XOR (al,a2)
OR
SHIFT

N
N

-
-

A

This computes the bit-by-bit exclusive OR of a, through an. -
KOR NN -

The supplied-function listin appendix E indicatesthe typeof
code generated by the function and the fast call name, if
any. The information about functions described in, this
appendix is shown in table G-2.

N
X
NX

= In-line
= External
= In-line and external

60386200 G G-3 0

A: DFLOAT(i)

This function. converts an integer number to a double precision number.
The result is accurate to 94 bits.

G-3A

