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ABSTRACT 

The limited word size proposed for the GPS navigation computers could precipi- 
tate the problem of filter divergence in a standard sequential estimation algorithm. 
To insure filter reliability during the periods when the GPS observations are being 
processed, a square-root filter algorithm has been adopted for the GPS navigation 
computer. Several formulations of square-root filtering algorithms have been de- 
veloped kring the past fifteen years. In implementing the filters, the covariance 
matrix can be propagated by either integrating the state transition matrix or by 
integrating a differential equation for the square root of the covariance matrix. 
The various approaches have different characteristics with regard to computer 
execution time, accuracy of the estimate, computer storage requirements, and 
the effort required to code and validate the algorithm. In this investigation the 
Potter, Carlson-Cholesky, and UDU square-root filters are compared with the 
standard extended Kalman filter. The characteristics of the algorithms are com- 
pared by simulating the application of a phase one GPS system to the determi- 
nation of a LANDSAT-D Satellite. 
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INTRODUCTION 

The limited word size used in contemporary microprocessor design 

may lead to problems in autonomous satellite navigation applications. 

The numerical error introduced when the navigation computatiuns are 

performed with a short wordlength computer can lead to divergence of 

a standard extended sequential estimation algorithm. 

reliability for applications where GPS observations are being processed, 

a square root filter algorithm has been adopted for the GPS navigation 

computer. Several formulations of square root filtering algorithms 

have been developed during the past fifteen years. This investigation 

describes a preliminary comparison of three square root filter formulations 

with the standard extended Kalman filter. Initial results are obtained 

To insure filter 

regarding the relative computation speed and accuracy of these algorithms 

in a simulation of LANDSAT-D navigating with a Phase I GPS constellation. 

This summary is an overview of results obtained in the study. A 

complete discussion of the simulation procedure and numerical results can 

be found in [l]. 
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ALGORITHMS CONSIDERED 

The algorithms compared in this initial study are listed in Table 1. 

They are classified according to one of four ways of representing the state 

error covariance matrix and one of two methods of time propagation of this 

covariance matrix. 

The four methods of covariance representation are, briefly: 

1. standard Kalman formulation { Z ] ,  

2. the UDU algorithm [ 5 ] ,  which decomposes the state error 
covariance into an upper unitary matrix, U, a diagonal 
matrix, D, and UT, 

3. the Carlson-Cholesky algorithm [4], in which the covariance 
is decomposed into an upper or  lower triangular matrix, W, 
and its transpose WT; and, 

4. the Potter algorithm [3] which decomposes the covariance 
into a general nxn square root covariance S and its trans- 
pose, ST. 

The two methods of performing time updates of the covariance are 

referred to as the transition matrix method and the direct integration 

method. 

is integrated from one measurement epoch to the next, to obtain a 

transition matrix. 

the proper multiplication of the covariance by the transition matrix 

and by the addition of process noise. The process noise matrix is 

obtained in this study by an approximate analytic integration of a 

diagonal spectral level density matrix. 

involve the numerical integration of the state error covariance matrix 

directly- Direct integration is often considered for time propagation 

because, in general, fewer equations must be integrated between obser- 

In the former technique, a system of variational equations 

The time update of the covariance is performed by 

The direct integration methods 

vation epochs (n(n+l)/2 versus nxn for transition matrix methods). For 
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square root algorithms which use a transition matrix method, the in- 

clusion of process noise at each measurement epoch requires a retriangu- 

larizatfon of the square root covariance matrix. This extra computatiParl 

burden is avoided in the direct integration methods as the process noise 

effects are included directly in the integration of the differential 

equations. 

The direct integration algorithm for the Potter filter requires 

an nxn matrix inversion at each integration step. 

extreme numerical penalty resulting from the inversion operation, a 

directly integrated Potter algorithm is not considered. 

As a resuit of the 

OBSERVATION SIMULATION PROCEDURE 

The filter algorithms were tested using a series of simulated range 

and range-rate observations made from the LANDSAT-D satellite to navi- 

gatfon satellites of a Phase I GPS constellation. The structure of the 

dynamic models used in the simulation of the observations is outlined in 

Table 2. 

geopcrtential effects of a non-spherical earth and the effects of 

atmospheric drag. The geopotential model used is GEM7 truncated to 

order and degree 8 .  The drag on the satellite is modeled as the function 

of a ballistic coefficient, the atmospheric density and the square of 

the user's velocity relative to the atmosphere. 

is determined from an exponential density model. 

The dynamic model of the motion of LANDSAT-D includes the 

The atmospheric density 

In the observation simulation model, the G P S  satellites are assumed 

to be in two-body circular orbits about a point mass earth. No other 

perturbations are assumed to affect them. 
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RED 

Transition Matrix Methods : 

EKF(4) 

e VDU(6) 

 POTTER(^) 
CARLSON-CHOLESKY (6 )  

Direct Integration Methods: 

EKF& 

UDU(%) 

0 CARLSON-CHOLESKY (6) 

TABLE 2 

OBSERVATION SIMULATION MODEL 

User Model: 

8 x 8 Geopotential (GEM71 

- Atmospheric Drag 
Errors 

GPS Satellites Model: 

- Two-Body Propagation Model 
- Clock Errors 
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The performance of t he  u s e r ' s  clock and the  GPS satell i tes '  clocks 

are important factors i n  determining p o t e n t i a l  navigation accuracy. The 

phase error f o r  each of the  clocks i s  modeled i n  t h e  simulation as the 

sum of t h r e e  terms: 
at 

1. a d e t e r m i n i s t i c  phase e r r o r  modeled as a f i r s t -o rde r  

polynomial, 

2. t h e  i n t e g r a l  of an exponentially co r re l a t ed  frequency 

e r r o r ,  and 

3.  a random walk phase e r r o r .  

The frequency e r r o r  of each clock is the  sum of de r iva t ives  of t he  f i r s t  

two terms of the  phase e r r o r .  

I n i t i a l  condi t ions  f o r  t h e  Phase I GPS and f o r  LANDSAT-D are shown 

i n  Table 3 and Table 4 ,  respec t ive ly .  The t r u e  anomaly of LANDSAT-D and 

the  d i f f e rence  i n  the epoch t i m e s  of t h e  o r b i t a l  elements can be var ied  

t o  alter t h e  p a t t e r n  of GPS satell i tes v i s i b l e  from LANDSAT-D. The 

LANDSAT-D epoch elements are spec i f i ed  a t  a GPS system t h e  of t = 0. 

The GPS epoch elements are spec i f i ed  a t  a GPS system t i m e  of -7200 seconds. 

Given these  i n i t i a l  condi t ions ,  and given t h e  dynamic models described 

previously,  t h e  h i s t o r y  of GPS sa te l l i t e  v i s i b i l i t y  shown i n  Figure 1 was 

generated. Over t h e  21,500 sec. simulation period, t he  number of GPS 

satell i tes v i s i b l e  to LANDSAT-D v a r i e s  from zero t o  s i x .  From t h i s  

v i s i b i l i t y  h i s t o r y ,  a set of simulated range and range-rate observations 

w a s  determined f o r  processing by t h e  navigation simulation program. The 

observations w e r e  generated on the  CDC6600/6400 system a t  t h e  University of 

Texas at Austin. 
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TABLE 3 

PHASE I GPS CONFIGURATION 

Long. of Asc. Mean 
Satellite Node (Des.) Anomaly (Deg . ) 

1 -130. 0. 

-130. 40. 

-130. 80. 

110. 40 

110. 80. 

110. 120. 

Inclination: 63" 

Eccentricity : 0.0 

LANDSAT-D EPOCH ORBITAL ELEMENTS 

6 a 7.086901 x 10 rn 

e E 0.001 

i E 98'1181 

$2 E 354'1878 

w f 180: 

f(true anomaly) E -185: 
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FIGURE 1 
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FILTER STR26CTURE 

The limited size of satellite on-board computer necessitates the 

use of simplified dynamic models in the navigation filter. 

the dynamic model structure assumed by the filter for the user satellite 

and for the GPS satellites. 

Table 5 s h m  

The geopotential affecting the user satellite is of lower degree 

The and order than that used to generate the simulated observations. 

drag acceleration calculation uses an exponential model of atmospheric 

densfty, as does the observation generation program, but the ballistic 

coefficient of the user satellite is estimated. The bias of the user's 

clock at a gfven time is predicted by a linear equation. 

of this equation, the clock bias and drift at an epoch, ate estimated. 

The estimation of the ballistic coefficient and of the clock parameters 

The Coefficients- 

attempts to account: for modeling errors caused by the reduced size of 

the filter's geopotential. 

The filter prescribes a two-body point mass geopotential as the dynadr 

model for the GPS satellites. Each GPS satellite's clock bias is predicrtd 

between observation epochs by a linear equation whose coefficients are pm- 

determined to fit the clock's error behavior. 

clock coefficients have been set to zem. This implies that the filter 

assumes perfect GPS clocks. Therefore, timing errors from all sources 

For these simulations, the 

are atcounted for in the estimation of the user's clock coefficients. 

Preliminary simulations have been performed with an eleven-state 

navigaeion fplter. 

Table 6. The eleven states are: position (1-31, velocity (4-6) ,  ballistk 

coefficient (7), drag correlation parameter ( 8 ) ,  user clock bias (9),  user 

clock drf f t  (IO), and clock drift correlation narameter (11). Important 

The differential equations of the states are shown in 
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TABLE 5 

FILTER SIMULATION MODEL 

User Model: 

* 4 x 4 Geopotential (GEM71 

* Atmospheric Drag (Ballistic Coefficient Estimated) 

* Clock Error Polynomial (Coefficients Estimated) 

GPS Satellites Model: 

Two-Body Propagation Model 

Clock Errors (Predetermined Coefficients) 

TABLE 6 

FILTER DIFFERENTIAL EQUATIONS 

11-STATE FILTER: 

= -Bd d + 6, 

'd 
Bd = 5 

(posit ion) 

(velocity) 

(ballistic coefficient) 

(drag correlation parameter) 

b = bb P (user clock bias) 

(user clock d r i f t )  

(drift correlation parameter) 
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assumptions in the form of the differential equations are that the bal- 

l i s th  coefficient and user clock drift are first-order Gauss-Markov 

processes and that the correlation parameters of the Markov processes 

are random walks. 

Integral of its drift. 

Additionally, the user clock's bias is modeled as the 

Parameters in  the'forcing functions of the equations in Table 6 are 

the €ollouLng: 
- 
a Z gravitational acceleration 

g 

ad 
- 

Z drag acceleration. 

The E, are white noise forcing functions with statistics 

E[.<i] = 0 ; E[E.ETl = Qi 
1 1  

FILTER PERFORMANCE 

Figures 2 and 3 are plots of position error magnitude and velocity 

err= magnitude of the estimates versus time. Two trends in the error 

history are evident from the examination of the plots. Catastrophic 

incxeases in the error magnitudes occur during periods of poor satellite 

visiibility (less than four satellites in view). A comparison of Figures 

1, 2.and 3 reveals the correlation between satellite visibility and 

errTim: magnitude. The peaks of these errors reach over one kilometer 

i n  pasition, and over 1 meter per second in velocity. 

The second trend is observable by studying the long-term history 

of the errors. 

satellite visibility is recovered, there is a long-term growth in the 

naviigation error recorded during the periods of good visibility. As 

Although the errors decrease significantly when good 
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FIGURE 3 
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an example, the position error before the first period of poor satellite 

visibility is at or below the 20 meter level. After the third period of 

poor visibility (approximately 16,000 sec.) position error has grown to 

approximately 100 meters. 

in the position error. 

This indicates a secular or long period trend 

A similar trend exists in the history of the velocity 

error magnitude. 

Although both error trends are sign'ificant and are deserving of 

further study, the goal of this investigation has been to consider relative 

efficiencies of different algorithms. Therefore, current simulations have 

not been directed toward the removal of the error problems. This is to be 

the topic of follow-on studies. 

INITIAL NUMERICAL RESULTS 

The time propagation and measurement update algorithms described in 

the previous sections were tested on the 21,500 sec. arc of observations, 

using four different numerical integration schemes. The four schemes are: 

I) a variable step RK(7)8 with integration tolerances: 

absolute error = LO , relative error = 10 , 

a variable step RK(2)4 with integration tolerances: 

absolute error = 10 , relative error = 10 , 
a fixed step RK8 with a step size of 6 seconds, and 

-6 -10 

2) 
-2 -6 

3) 

4) a fixed step RK4 with a step size of 6 seconds. 

Simulations with these integration algorithms are intended t o  establish 

bounds on errors for navigation computations performed on the CDC6600 

system. 

proposed 

The results of further studies using the lower order integrators 

for the actual GPS computer can be compared to the results 
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shesirbere to determine the loss in navigation accuracy caused by using 

1- -der integration methods. 

&&rial navigation simulations, using the different filter algorithms 

over tke entire 21,500 see. observation arc, produced position error 

histaries nearly identical to that in Figure '2. 

redwad &he catastrophic position error growth during the third data drop- 

out 

Thedore, for the purpose of reducing computer use, the simulations for 

perfmmance comparisons were run over the first 10,000 seconds of obser- 

vat- only. 

Specifically, no algorithm 

oximately l2,OOO sec.), or removed the long term error growth. 

The results of the initial set of simulations appear in Tables 7 

thrmgb 10. The pertinent values tabulated are: the total computation 

time €or time update, the total computation time for measurement update, 

the tatal computation time (the sum of time update and measurement update 

computation times), the total computation time normalized by the fastest 

total time, and the RMS error of the position estimate for the 10,000 

seeds of data. All computation times are tabulated in milliseconds, and 

RMS errors are written in meters. The algorithms are listed in the order 

of hereasing computation time. 

The results for the different filtering algorithms can be compared 

on tbe basis of computation time, estimation accuracy, and algorithm 

stabflity. Briefly, a comparison of the algorithms reveals the following 

trends, 

Computation Time 

The computation times of the algorithms display the followiag general 

charaeteristics : 
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TABLE 7 

RELATIVE ALGORITHM PERFORMANCE 
RK(7)8 TOL: lom6- lo-'' 

COW. TIME (msec) 

TIME MEAS TOTAL 
UPDATE - UPDATE UPDATE 

160 -601 9.435 170.036 

172.119 17.621 189.740 

179 -924 17.585 197.509 

173,760 24.968 198.728 

357.728 9.442 366.720 

390,763 24.772 415.535 

530,734 '18.286 549.020 

ACC (m) 
NORMED 
UPDATE 

1.000 

1.116 

1.162 

1.169 

2.157 

2.444 

3.229 

RMS 
POS ERR 

128.4 

128.7 

95 .O 

95.0 

129.0 

128.9 

128.4 
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TABLE 8 

RELATIVE ALGORITHM PERFORMANCE 
FX(2)4 TOL: 10”- 

COMB. TIBE (msec) 

TIME 
UPDATE 

67.310 

77.234 

85.569 

78.683 

92.598 

144.782 

e---- 

MEAS 
UPDATE 

10.215 

17.629 

18.308 

25.256 

24.560 

19.499 

---- 

TOTAL 
UPDATE 

77.525 

94.863 

103.894 

103.939 

113.158 

164.281 

----- 

NORMED 
UPDATE 

1.000 

1.224 

1.340 

1.341 

1.550 

2.119 

---- 

ACC (m) 
RMS 

POS ERR 

128.4 

128.7 

95.0 

95 .o 

128.3 

140.1 

_--- 
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TABLE 9 

RELATIVE ALGORITHM PERFORMANCE 

RK 8,6 SEC F I X E D  S T E P  

C O W .  TIME (msec) 

ALG 

EKF( 6) 
UDU ( 6) 
POTT (6 )  
CARL ( 6)  
CARL (6) 
U D U ( G )  

E a ?  ( i )  

TIME 
UPDATE 

231.178 

243.286 

252.709 

245.504 

444.624 

479.770 

523.195 

MEAS 
UPDATE 

8.957 

18.493 

17.675 

26.009 

26.329 

18 .191 

8 .801 

TOTAL 
UPDATE 

240.135 

261.779 

270.384 

271.513 

470.953 

497.961 

531.996 

NORMED 
UPDATE 

1.000 

1.090 

1.126 

1.131 

1 .961  

2.074 

2.215 

ACC (m) 

RMS 
POS ERR 

128.4 

128.7 

95 .O 

95 .O 

129.0 

128.8 

128.8 
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TABLE 10 

RELATIVE ALGORITHM PERFORMANCE 
Rx 4,6-SEC FIXED STEP. 

COMP. TIME (msec) , ACC(m) 

ALG UPDATE UPDATE UPDATE UPDATE POS ERR 

EKF(b 83.881 8.408 92.289 1.000 128.4 

TIME MF?AS TOTAL NOREED RMS 

UDtJ(41 95 .. 613 17.553 113.146 1.229 128.7 

POTT& 103.956 17.884 121.840 1.320 95 .O 

CAlIL(6) 96.959 25.574 122.533 1.328 95 .O 

CARL&) 130.971 25.632 155.703 1.€87 128.6 

E K F ( i )  153.496 9.887 163.383 1.770 128.9 

--- -e-- ----- ---- -- U D U ( S )  
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1) transition matrix algorithms consistently have lower computa- 

tion times €or time update than do the direct integration 

methods , 
the relative performance of computatfon times of the direct 2)  

integration algorithms is not predictable from one set of 

integration parameters to the next, contrary to the predicta- 

bility of the transition matrix methods, 

3) for this computer system, the transition matrix square root 

methods do not suffer large computation time penalties relative 

t o  the EKF(6) algorithm, 

fixed step algorithms have larger computation times €or time 

update and total computation time than do their variable-step 

counterparts. 

4 )  

Accuracy 

Each algorithm generates an RMS position error of 128-129 meters, 

with tvo exceptions: 

an I@& error of 140 meters and the earlson($) and Potter(+) algorithms each 

record 95 meter RMS errors. 

from the integratfon tolerances (lo-* and 

maintaPn the error at the 128 meter level. The integrator exceeds 

the error limit set for each step by the tolerances. 

of the Carlson(6) and Potter(6) algorithms are thought to result from an 

assumptim in the coding of the noise update sections o f  these two algoritk 

the 66 simulation with the RK(2)4 integrator records 

The increased error of the 6fi simulation results 
not being strict enough to 

The 95 meter RMS err- 

Currently, the reason for such a large drop in the position RPlS is not knm 

and, therefore, the error improvement offered by these algorithms should be 

viewed wir-h caution. 
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With the exception of the two cases just mentioned, no algorithm 

pays a penalty in estimation error by decreasing the order of the 

numerical integrator. 

Xarmerical Stability 

Xo algorithm appears to offer any clear cut advantage in stability 

in the problem conditions tested and for this computer system. However, 

the transition matrix equations do appear to be smoother and are, therefore, 

easier to integrate than are equations of the direct integration methods. 

This is evidenced by the generally lower integration times of the transitia 

matrix codes and by the failure of two of the direct methods to SuccessfuJI'P 

finish simulations. 

valued diagonal element in the covariance matrix brought about, it is beXksed, 

Both vailures resulted from the discovery of a negaee 

by an inability of the integrator to maintain an adequate single-step errsr 

thus causing a fatal global error growth. 

Additional Results 

In the previously discussed set of navigation simulations, the inte- 

gration of the state and state-error covariance matrix through data 

dropout periods is performed with one call to the numerical integrator. 

When only one integration call is made to span the entire data dropout, 

position error magnitudes during the dropout are not included in the navi- 

gation program's calculation of the total RMS position error. As these 

errors should be included in the RMS calculation, the navigation program 

has been modified to integrate in six-second intervals during dropouts 

and to calculate the position error at the end of each six-second inten& 

This means that numerical integration and process noise accumulation are 
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performed in six-second increments until observations are obtained at 

the end of the dropout. As well as correcting the RMS position error 

calculation, this modification creates a better model of the operation of 

the actual GPS data processing system. 

A plot of the RSS position error, as generated by the modified 

navigation program, is shown in Figure 4. Tables 11 and 12 contain the 

results of a set of navigation simulations in which the first 10,000 

seconds of observations only were processed. The simulations were per- 

formed with each of the algorithms tested previously and with the RK(2)4 

and RK4 integrators. The results given in Tables 11 and 12 are analogous 

to those contained in Tables 8 and 10, respectively, but were generated 

by the modif led navigation program. 

A comparison of the data in Tables 11 and 12 with those of Tables 8 

and 10 shows no significant changes in the relative performance of the 

algorithms. The RMS position errors for most of the algorithms have grown 

from approximately 128 meters to approximately 166.5 meters because the 

position errors occurring during the data dropouts have been included in 

the calculation of the RWS error. The Carlson(6) and Potter(6) methods 

still have the lowest errors, but the values of the errors have experienced 

a growth roughly proportional to that experienced by the other algorithms. 

For the same reasons mentioned in the previous section, the lower RMS errors 

of these algorithms should be viewed with caution. Integration times 

and total computation times have increased as well. The increases 

result because the newly imposed six-second integration interval. in the 

data dropouts forces a step size limit on the variable step integrator, 

causes more matrix retriangularizations for the transition matrix methods, 
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FIGURE 4 
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TABLE 11 

RELATIVE ALGORITHM PERFORMANCE 

RK(2)4, TOL: - 

C O W .  TIME (msec) ACC (m) 
TIME MEAS TOTAL NORMED RMS 

ALG . UPDATE UPDATE UPDATE UPDATE POS ERR 

EKF(6) 79.296 9.618 88.914 1.000 166.5 

vDU(&) 91.916 19.536 111.452 1.253 166.5 

CARLSON(6) 95.750 26.607 122.357 1.376 109.6 

POTTER( 6)  104.488 19.361 123.849 1.393 109.6 

09 119.353 8.575 127.928 1.439 166.9 

UDU(I3)  225.471 19.697 244.968 2.755 166.9 

CARLSON(fi) 274.643 26.735 301.378 3.390 166.6 
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ALG. 

EIcF(4) 

UDU (4) 

POTTER (6)  
CARLSON (6 )  

CARLSON(;) 

EKF ($1 

UDU(C6) 

TABLE 12 

RELATIVE ALGORITHM PERFORMANCE 

RK4, 6-SEC FIXED STEP 

COW. TIME (msec) 
TIME MEAS TOTAL 

UPDATE UPDATE UPDATE 

91.196 9.040 100.236 

104.366 19.316 123.682 

107.833 26.065 133.898 

116.608 19.320 135.928 

136.829 27.048 163.319 

163.799 8.652 172.451 

NORMED 
UPDATE 

1,000 

1.234 

1.336 

1.356 

1.635 

1.720 

- 

ACC (m) 
RMS 

POS ERR 

166.5 

166.5 

109.6 

109.6 

166.5 

166 .O 

- 
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and generally creates a higher computation overhead due to a greater 

number of integrator calls. 

The unexpected results in this new set of simulations are the improved 

performances of the 

integrator, 

consistent with the errors of the other algorithms (approximately 166.5 

meters). 

the P method failed to complete its simulation run and the 66 code had a 
higher &S error than did the other algorithms. 

are believed to occur because the step size limit' imposed by the six-second 

integration interval insures an accuracy in the integration of the P and 

and 66 algorithms in conjunction with the RK(2)4 
In this set of simulations, both methods have RMS errors 

Yet in the original simulatio.ns, those recorded fn Table 8, 

The error improvements 

* 

equations that the integration tolerances cannot insure. 

SUMMARY 

It is reemphasized that these results apply to simulations on the 

CDC6600 system only. Although it is believed that these-results do 

establish important trends in the relative performance of these algorithms, 

additional simulations on other eomuter systems, particularly those with 

small wordleagths, are essential. Such simulations are currently being 

carried out. 

This article is intended as a general overview of the simulation 

method and initial results. 

as well as detai1e.d descriptions of .the simulation models and filter 

algorithms can be found in El]. 

A more exhaustive analysis of these results, 
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