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ABSTRACT

The interaction of modeling errors with the tracking and orbit determination of
TDRS satellites is studied. For orbit determination instead of long-term orbit
prediction and station-keeping, it is convenient to express TDRS orbital errors
as radial, along-track and cross-track deviations from a nominally circular orbit.
Simple analytical results are given for the perturbation of TDRS orbits as a re-
sult of GM uncertainty; as a result of changes in epochal elements; as a result
of solar radiation uncertainty, with the TDRS modeled as a combination of a
sun-pointing solar panel and an earth-pointing plate. Based on this simplified
model, explanations are given for the following orbit determination error char-
acteristics: inherent limits in orbital accuracy, the variation of solar pressure
induced orbital error with time of the day of epoch, the insensitivity of range-
rate orbits to GM error, and optimum bilateration baseline. The result should
also shed some light on the general subject of the interaction of modeling error
with orbit determination.
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I. INTRODUCTION

It is known (Ref. 1,2) that uncertainties in GM and
solar radiation pressure force are two‘méjor sources of error
for the orbit determination accuracies of the geosynchronous
Tracking and Data Relay Satellities (TDRS). The magnitudes
of the resulting orbit errors depend on the configuration
of tracking baseline and the time of the'day chosen as epoch.
These and other perplexing phenomena observed in the course
of error analysis results from a'complex interplay between
modeling error induced orbit perturbations and compensations
provided by tracking and orbital computations. The present
study is undertaken to seek a better physical understanding
of modeling error and its interaction with tracking and orbit
determination. Analytical derivations are pursued, together
with a digestion of available numerical results. Although
the impetus of the present study concerns TDRS orbital accuracy,
it is hoped the results will shed some light on the subject
in general.

Sections II and III below give simple analytical results
for the perturbation of TDRS orbits in the presence of solar
radiation pressure and GM uncertéinty. From these results,
the inherent 1limit of orbit determination accuracy in the
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presence of modeling errors is derived in Section IV. The
information éonveyed by range and range-rate measurements

is studied. Based on the information content of measurements
and the orbital perturbations resulting from modeling errors,
certain idiosyncrasies in orbit determination errors and
characteristics are explained. e PR

IT. SHORT-TERM SOLAR RADIATION PERTURBATION OF TDRS ORBITS

~ Perturbation of artificial satellites by solar radia-
tion pressure has been studied extensively (Ref.3). However,
with very few exceptiohs, these studies are mainly concerned
with the long-term perturbations of the Keplérian elements
of a spherical satellite, and with the shadow effect.

For the present purpose, the following model shall be

adopted:
1. The unperturbed TDRS orbit is a circular orbit
about a homogeneous spherical earth.
2. The sun-to-TDRS vector may be considered a con-

stant in inertial space during the Short period
(several days) of interest.

3. The TDRS satellites may be modeled as the com-
bination of a sun—pointing solar panel and an
earth-pointing perfectly reflecting flat disk.
Any shadowing by the earth or by part of the
satellite itself is neglectéd.

The relative geometry of the TDRS, the Sun, and the unperturbed

TDRS orbit is shown in Fig. 1. The equations of motion govern-
ing the 'cross-track', "radial" and "along-track' perturbations
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from a nominally circular orbit may be expréssed in the fol-
lowing convenient forms (Ref. 4,5):

tvzo=g, (1
8p - 36p - 2R86 = £ (2)
R8O + 28p = £, | (3)

where a superposed dot denotes differentiation with a normal-
ized time 71, which represents the nominal angular position of
TDRS. R is the nominal orbital radius of TDRS. The f's

are components of the solar radiation force per unit TDRS mass.
For our model fZ is a small constant quantity. The cross-
track perturbation as given by the solution of Eq. (1)
represents small oscillations uncoupled to the other pertur-
bations and shall not be considered further. Eq. (2) and (3)

may be rearranged as
" ¥ = + 2 2
§p + 8p fp J/%edr (2a)
R0 = -28p + f¥ de, (3a)

which show that solar radiation force components at the orb-
ital frequency, as well as any constant tangential component,
will cause secular perturbations and are of primary importance.
Eq. (3a), with the term -28p moved to the left-hand side of
the equality sign, relates the tangential force to the change
in orbital angular momentum.

Let us consider the Sun-pointing solar panel first. For this
case one may write

£f = f._ Cos{¢-1)

£, = £ __ Sin(¢-1)
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where fxy is the component of the solar radiation for;e on
the solar panel in the TDRS orbital plane and (¢-t) is the
angle between his force component and the TDRS orbital
radius. It is straight-forward to show Eq. (2) and (3)
admit the following general solution under these forces:

8o (1) 6p (0)

SOl RHZE ISeted BRI ¢es I (4 DR )
RS?(T) R6?(0) ,
Ré66 (1) R66 (0)

4-3cost sint 0 2(1-cosT)

[A] = 3S?nT COST 0 2?1n1 (5)
6(sint-1) 2(cost-1) 1 4sint-31
6(cost-1) -2sint 0 4cost-3

- ]
% sin¢sint- 2cos¢(l-cost)
—% cosésint

[B] = (6)
-cos¢sint - 5sin¢ - S5sin(t-¢)
3cos$ - 3cos¢ cost - 2sin¢g sint

- "
% sin(t-9)
3

cos(t-¢)

- |? (7)
3 cos¢ + 3cos(1-9)

-3sin(t-¢)
b -
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Notice the first term on the right-hand side of Eq. (4) is

the homogeneous solution which represents orbit perturbations
resulting from changes in the initial conditions. The '"state
transition matrix" [A] is well-known, see for instance Ref. 6.

The solution as given in Eq. (7) indicates the more
imporfant effect of solar radiation is to cause a linearly
diverging oscillatory (at the orbital rate) perturbation in
radial and along-track motion. In addition, the perturbation
in the along-track orbital position depends on the initial
sun angel ¢ as illustrated in Figures 2 and 3. The least
perturbation occurs when the sun vector is parallel to the
satellite velocity vector in the beginning. The worst per-
turbation doubles that of the least perturbation and occurs
when the sun is overhead or underfoot in the beginning. This
dependence on- initial sun angle may seem a bit perplexing.
The explanation lies in that starting from the time the sun
is overhead there is a duration of one-half orbit for the
building-up of angular momentum. On the other hand, starting
from the time when the sun is directly behind the satellite
velocity vector there is only one-quarter of an orbit for the
orbital angular momentum to build-up before the satellite
turns around and is opposed by the solar radiation force.
Similar situations occur when the sun is underfoot or directly
opposed to the satellite velocity vector.

The non-homogeneous part of the above solution, represt-
ing perturbations of a sun-pointing or spherical satellite,
in various equivalent forms, are well-known, although the
dependence of the solution on initial sun angle has not been
empasized.

For the earth-pointing part of TDRS, the solar
radiation force may be expressed as
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[as}
]

K]cos(¢-1)|cos(¢-T)

fe = o0,
the latter vanishes because this part of TDRS is modeled as a
perfectly-reflecting disk. The term |cos(t-¢)| represents
the projected area which intercepts the incoming radiation.
The absolute sign presents a minor complication and can be
handled by the standard Fourier expansion technique. The
particular solution of Eq (2) and (3) describing the perturba-

tion of an earth-pointing perfectly-reflecting flat disk can
then be written as

4K 4K
8p = — 1sin (t-¢) - — sin¢ sinT
3m 3n

8K $cos 3(1-¢)-éos 3¢ cos S5(t-¢)-cos 59¢ )
+ 2 - 2 + ... (8)
x| (1-3%) (@ 3-5) (1-5%) (3+5-7) f

8K ) l
—_— {rcos (t-¢) - sint coscps
37

R&O

16K

%[sinS'(T-¢)+Sin3¢]‘ cos3¢ ~
T { (1-3%) (1+3+5)

(9

%[sin5(1—¢)+sin5¢]— cos5¢ .
(1-5%)(3-57)

¢ o »

305



It is seen the primary perturbations are still diverging
oscillations at the orbital rate. As compared with that of
a sun-pointing surface, the solar pressure perturbation of a
perfectly reflecting earth-pointing surface is:

1. About % as large.
2. Less dependent on the initial sun angle.
3. Also characterized by small oscillations at

multiples of the orbital rate.

These conclusions are predicated on the assumption of
a perfectly reflecting and perfectly earth-pointing thin-plate
satellite model. Perhaps the weakest aspect of the model is
its implication that the along-track component of the solar
radiation force does not exist. Real surfaces are bound to
absorb and irradiate some incoming radiation and a non-infinite-
simally-thin plate will experiencé along-track push of solar
radiation. Although complicated satellite surface geometry
and optical property make a realistic modeling difficult,
perhéps a first step in the refinement of our model is to assume
a certain percentage of the incoming photon tangential momentum
is absorded; i.e., there exists a tangential component of the
solar radiation force

F. « sin(t-¢) | cos(t-¢)|

Additional refinements can also be made, although much more
spohisticated modeling is probably unjustified in the presence

of uncertainties in the satellite surface geometry and optical
property.

As long as the solar radiation force on the satellite
may be considered periodic from one orbit to another, the
Fourier series method may be used to determine the orbital
perturbations. As discussed before, the primary perturbations
would come from force components at the orbital frequency and
any constant along-track comonent.
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III. EFFECT OF GM UNCERTAINTY ON TDRS ORBITS

On account of spherical symmetry, uncertainty in GM
is quivalent to the following set of perturbative forces:

SGM 6GM

f:f =of=A..__._. — = 3 3
6 2 » £ R o 2 ( vy fractlonal GM uncertainty)

Accordingly Eq. (2) and (3) admit the following solution
representing perturbations due to uncertainties in our
knowledge of GM

sp (1) -R(1-cost)

éé(r) SGM -R sint
R66 (1) | © oy | 2R(z-sint) (10)
Ré6 (1) 2R(1-cosT)

The homogeneous part of the solution representing the free
motion is of course still described by the matrix [A] in
Eq. (5). It is seen from Eq. (10) that in addition to sin-
usoidal oscillations of the radial and along-track motion
at the orbital rate, there is also an along-track position
deviation which increases linearly with time.

The effect of GM uncertainty may be easily explained.
At an orbital radius and with a circular velocity that cor-
responds to a slightly erroneous GM, the actual orbit is
slightly elliptical with a slightly different orbital period.:
This is reflected in a sinusoidal variation in the radial
motion plus an along-track position deviation which not only
oscillates but also increases linearly with time. As expected,
GM uncertainty does not cause croés-track perturbations or
changes in orbital inclinations.
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Iv. LIMITS IN ORBIT DETERMINATION ACCURACY IN THE PRESENCE
OF MODELING ERRORS

The perturbation of TDRS orbits resulting from uncer-
tainties in our knowledge of the solar radiation force and
GM was studied in the preceding sections. These perturbations
represent prediction errors in the absence”df tracking meas-
urements. Measurements generally temper, but may occasionally
aggravate, these errors. The ways and the extent that track-
ing and orbit determination strategy affect orbit accuracies
in the presence of modeling errors are studied in this and
the following sections.

It is usual to represent a satellite orbit by six
epochal brbital elements, which, together with the dynamic
model, generate a fictitious trajectory over some time span of
interest. It is the role of orbit determination to pick these
orbital elements such that the fictitious trajectory fits
tracking measurements in some way. Thus orbit determination,
as it is commonly practiced, is in essence a representation
or approximation problem: 1i.e., seeking the representation
of a real-world trajectory by a fictitious trajectory gen-
erated by six epochal elements which are to be determined.

The fictitius trajectory governed by the imperfect model

has a particular time characteristic which may be entirely
different from that of a real-world trajectory. For instance,
it maybe seen from Eq. (4) through (7) in Section II that

the '"real-world trajectory in the presence of solar radiation
has a diverging sinusoidal variation, while a fictitious tra-
jectory neglecting solar radiation is characterized by a
linear time variation modulated by constant-amplitude sin-
usoidal variations. Unless the time characteristics are
similar, it is obviously impossible to determine a set of
six orbital elements which fit hundreds of measurement data
perfectly. Thus there is an inherent limit to "orbit deter-
mination accuracy'" in the presence of modeling errors.
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. " For precision orbit determination which we are concerned
with, the trajectories may be represented by small deviations
from some nominal trajectory. The "true" and the "fictitions"
trajectory deviations may be expressed as

[6x(t)] = % a; [G;(1)] (11)
i
a£d
[Ax(t)] = [6(t,t )]1[ax(t,)] (12)

respectively. In Eq. (11) a; Tepresent the uncertain para-
meters in the model and [Gi(t)] characterizes the time history
of the trajectory perturbations caused by the uncertainties.
The expression [¢(t,to)] in Eq. (12) is the state transition
matrix of our imperfect t:ajectory model and [Ax(to)] are
epochal orbital elements. The state transition matrix
[¢(t,to)] and the trajectory perturbation matrix,[Gi(t)] may
be readily computed from any error analysis or orbit deter-
mination program. Section II and IIT illustrate the simpler
situation where analytical eXpressions for these matrices may
be found.

Ideally the orbital elements [Ax(to)] should be chosen
such that some measure of the trajectory error ([&x(t)-[ax(t)])
is minimized. A reasonable and convenient measure may be tak-
en to be the weighted mean-square trajectory error defined as

% :
For simplicity we use the term orbital elements and their
deviations interchangeably.
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where

T
([8x(t)1-[8x(£)1 T [W(E)] ([8x(t) - [Ax(t)])dt

e B
ok‘-\

| T
jf ([sx(t)1- o (t,t )] (ax(t )T [W(t)]
(o]

| ke

(13)
(lox(t)]-[o(t,t )] [x(r ) ])dt

[ax(t )17 [P)Iax(r )1 -2[ax(t )17 [Q]*[R]
(Iax (e )1-1P1 M QD T PT (Lax () 1-[P17 1 {aD)

- T e1 Qi+ R

>
e B

T
./'([¢(t,to>1T[W(t)1[¢(t,t03])at

O

[P]

>
=R

T
Q] Jf (Lo Ct,t )1  [W(t) I [6x(t)])dt
; |

T

[R] 2 (Lsx(£)1T[W ()] [6x(t)])dt

w3y |

o

W(t)] & a non-negative weighting matrix
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Since [P] is positive-definite, it is obvious from Eq. (13)

that the mean-square trajectory error has the minimum value

R1- Q17 P17 Q] (14)

which is achieved if the epochal orbital elements are taken as

[ax(t)1=[P17 " [Q]

T -1
= {Jf ([¢(t,to)T[w(t)]l¢(t,t0)]dt

(15)
o
T
T
§%/' [6(t,t )] [W(E)][6;(t)]dt
0
The corresponding trajectory error in time becomes

[8x(t)1-16 (t,t )1 [ax(t,)] (16)

T
= I ([G (t)1-[¢(t,t )] { f [o(t,t )] [(w(t)]
i o

-1 T
[¢(t,to)1dt} [ [¢(t,t°)T[wct)1{Gi(t)ldt)
(o)
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.obviously the trajectory error vanishes if

z oy [6;(£)1=[6(t,t )1IKI,
1

i.e., if the time characteristics of the actual trajectory
perturbations are similar to these of the fictitious trajectory.
As mentioned above, the trajectory perturbation matrices [Gi(t)]
and the state transition matrix [¢(t,to)] are readily avaibable
from most orbit error analysis programs. Thus, once the expect-
ed levels of model uncertainties a; are specified, Eq. (13)

and (16) may be readily integrated to give the time history

of the expected limiting orbital accuracy as well as the mini-
mum weighted mean-square trajectory error.

Although not a prescription for the optimum tracking
and orbit determination strategy, the limiting accuracy thus
computed plays a very useful role, i.e., as a yardstick for
measuring the performance of any tracking and orbit determin-
ation strategy. Once a particular tracking and orbit deter-
mination procedure is proposed, the expected trajectory error
may be computed from an orbital error analysis program such
as ORAN (Ref. 7). A comparison of this error with the limit-
ing accuracy tells us whether that particular strategy is
already close to the optimum, or whether there is considerable
room for improvement and other strategies should be tried.

To illustrate the result of this section we shall make
use of the state-transition matrix and the solar rzdiation
perturbation matrix derived in Section II to study the limit-
ing orbital accuracy in the presence of uncertainties in solar
radiation pressure. In essence, solar radiation perturbation
appear as diverging sinusoids tsint (sun overhead initially) and
tcost (sun behind velocity vector initially). The orbit
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determination process may compensate for this perturbation

by linear variations in time plus simple sinusoids, i.e.,
a+Bt+ysint+8cost. The optimum approximations are shown in
Fig. 4 and 5 and indicate the approximation for tcosT is quite
good while that for tsint is less satisfactory. One sees that,
ideally, with tracking and orbit determination, it may be
possible to reduce the along-track orbital error to approxi-
mately 0.512/27 ~ 0.08 of its maximum perturbations for the
case when the sun is initially over-head. On the other hand,
for the case when the sun is initially behind the satellite
velocity véctér, tracking and orbit determination is much

less effective, and can only reduce the along-track error

to approximately 1.5/(37/2) =~ 0.3 of its maximum perturba-
tions. This is the explanation for the seemingly perplexing
phenomenan that although perturbations caused by solar

radiation are much more serious starting from the position
when the sun is directly over-head, yet the use of tracking
may reduce the error considerable so that the orbit deter-

mination error may only be one-third as large as the cor-
responding error starting from the epoch that the sun is be-
hind the satellite velocity vector. The latter case was shown
to be tomparatively less sensitive to solar radiation perturba-
tions in the absence of tracking.

V. INFORMATION CONVEYED BY RANGE MEASUREMENTS AND VARIATION
OF TDRS ORBITAL ERROR WITH TRACKING BASELINE

Since the modeling uncertainties are unknown, it is
not possible to compute the optimum orbital elements according
to Eq. (15) in the preceeding section. In practice, the
orbital elements are computed such that the resulting fictitious
trajectory fits the measurements. Different kinds of measure-
ments convey information about different aspects of the tra-
jectory. If the measurements contain more information about
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the orbital height, then the computed orbit would tend to fit
the correct height at the expense of, say, along-track
accuracies. Thus it is important to know the information con-
tent of the measurements in order to understand orbit deter-
mination accuracies in the presence of modeling errors.

Tracking of TDRS consist of bilateration from two
ground stations (Fig. 6). - Expressed in terms of deviations
from the nominal, the range measurements may be written as

> -+
Gpl = §R il

> >
sz = R iz

>
where SE is the satellite position deviation and the i's are
unit vectors in station-to-TDRS directions. One may consider
these equations as describing the resolution of the unknbwn
position deviition Sg along the directions defined by the
unit vectors il and iz. For the high altitude TDRS, these

are close to the orbital radius direction. In other words,

. individial measurements convey mostly orbital height informa-
tion Along-track and cross-track information is contained
in an equation obtainable by mﬁltiplying the above equations
by the range P1 and P respectively and thgn subtracting one
from the other, i.e.,

-> >
> > > >
91601'92602 = 4R (91'92) = §R- (1‘1"1‘2),

where (?1-;2) is the tracking baseline, i.e., the vector con-
necting the two tracking stations. To increase the sensitivity
and thefefore the information content one should select the
tracking stations such that

1. |?1-¥2l is as large as possible.
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2. ?1—¥2 should have a large component in the import-

‘ant along-track direction. However it should also
have some component in the cross-track direction to
sense cross-track errors.

Error analysis results on TDRS orbital accuracy for a
series of different ground transponder locations are given in
Ref. 2. The central ground terminal is considered fixed at
White Sands, New Mexico (254° Longitude, 32° Latitude). Track-
ing baseline geometry changes with ground transponder location
which varies at certain increments of longitude and latitude.
To bring out the connection between orbital errors and bilatera-
tion baseline, the orbital errors given in Ref. 2 were correla-
lated with parametefs defining the tracking baseline such as
the baseline great circle length and inclination, along-track
and cross-track baseline length, and latitude and longitude
separation of the two stations. Representative results show-
ing the close correlation between the along-track and cross-
track orbital errors and the corresponding tracking baseline
components are presented in Table 1 and Fig. 7, from which the
following information may be extracted: i

1. For the error model considered, orbital errors

vary from approximately 110 meters to 350 meters.
The latter occurs when the transponder location
is unfavorable.

2. There is good correlation between cross-track
orbital error and the component of tracking base-
line in the cross-track direction. When the cross-
track error is less than 50 meters, it has a neg-
ligible contribution to the RSS total error. 1In
general this requires the tracking baseline to
have a component in the cross-track direction
greater than 0.7 of the earth's radius.
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3. There is also good correlation between along-track
orbital error and the component of tracking base-
line in the along track direction. To limit the
along-track error below 140 meters, a baseline
component length of 1.2 earth radius is required.

A baseline component lenght of 1.5 earth radius
is required to keep the along-track error under
120 meters. |

4, Since the TDRS's considered have 7° inclination,
they are not quite geo-stationary. The along-
track and cross-track components of the bilatera-
tion baseline used in the preceeding paragraphs
are somewhat arbitrarily computed assuming the
TDRS's are at the ascending node. More convenient
but less precise characterizations of the along-
track and cross-track baseline components are the
longitude and latitude separations of the two
stations. For the central terminal fixed at 254°
Longitude and 32° Latitude, the transponder should
preferably be located in the southern hemisphere
with a longitude separation as large as practicable.

VI. RANGE-RATE MEASUREMENTS AND INSENSITIVITY OF RANGE-RATE
ORBIT SOLUTIONS TO GM ERROR

The range-rate from a tracking station to a satellite
may be expressed as

where Vv is the velocity of the satellite relative to the rotating
earth. Thus the deviations are,

.-»'—r + >
Sp=vedi +8v-i
p p
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The unit VCCtQi ip is close to the radial direction. 6ip is
orthogoqal to ip and is primarily the result of the along-track
and cross-track position deviations. Thus the range-rate
measurement convey radial velocity ihformation together with
some positional information. For the geosynchronous TDRS_?

is primarily in the cross-track direction. Thus the along-
track positional information content is weak in the range-

rate measurements.

Since the TDRS is nearly geo-stationary, range tracking
contains much more information than range-rate tracking, and
the TDRS orbits are computed essentially from range measure-
ments. However it 1is known from error analysis studies that
orbits of TDRS or other high altitude satellites such as the
GPS spacecraft are much less sensitive to GM errors if the
orbit solutions are based on range-rate rather than range
trackings. This may be explained as follows. It was shown in
Section III that GM uncertainty causes a perturbation which

as the following time characteristics

Height cos 1-1
Radial Velocity o -sin T
Along-Track Position 2(t-sinT)

On the other hand, trajectory error propagated from initial
height error has the fOllowing characteristics

Height % - COST
Radial Velocity | oC sint
Along-Track Position] 2(sint-1)
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Since range-rate measurements convey mostly radial velocity
information, the computed orbit tends to fit the radial velocity
perturbation by attributing it to an initial height deviations.
The above equations show this also gives a correct along-track
position while there would be a constant height error. Indeed
this is what error analysis result tells us. Physically this
is also obvious. With a correct orbital period, an incorrect
GM would result in an incorrect semi-major axis or height. On
the other hand, an orbital solution based on range tracking
would tend to fit the height and as the above equations show,
must result in along track errors. Along-track errors are
usually larger than height errors, thus range tracking orbital
solutions are more susceptible to GM errors.

In general, perturbation due to GM uncertainty has a
time characteristic quite similar to the time characteristic
of a trajectory propagated from some initial conditions. Thus
tracking can compensate for GM uncertainty much more than, say
the solar radiation uncertainfy.

VII. ORBIT DETERMINATION ERROR CHARACTERISTICS

Much of the orbit determination error characteristics
may be illustrated or explained based‘on the simplified orbit
model derived in Section II. It is shown there that by ad-
justing the epochal elements [&p(0) 8§p(0) R&88(0) Réé(O)],
trajectorv deviations of the following form may be obtained.

poomcee
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The following characteristics of the trajectory time
history as described by the above equations may be emphasized:

1. Along-track position may have constant deviations,
linear growth, as well as sinusoidal variations
at orbital frequency.

2. Other orbital position and velocity deviations
may exhibit constant biases plus sinusoidal
variations at orbital frequency.

3. The trajectory may be shifted by a constant amount
in along-track position without affecting other
aspects of the trajectory.

In contrast, "real perturbations', governed by the equations
of motion (2a) and (3a), may consist of linearly diverging
oscillations, constant amplitude high frequency oscillations,
as well as linear and quadratic growth in the along-track
position. Thus orbits computed cannot account for the high
frequency components, nor any secular growth in the orbital
height, nor any diverging oscillations or any "super-linear"
growth in along track position.

® Large Errors Near Beginning - And End of Tracking
Arc, Oscillatory Behavior of Orbital Errors, and
Deterioration of Accuracy With Length of Tracking
Arc

The phenomena described by the above statement are frequently
observed in the course of orbital error analysis studies. The
explanation for the occurrence of these phenomena is almost
obvious from the preceding discussions. Generally, along-
track orbital errors are the most serious, as any perturbations
in orbital rate will propagate into large along-track position
errors. Fig. 8 illustrates that the along-track position
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perturbations generally consist of "super-linear" growth
with diverging oscillations at the orbital rate together

with possible constant-amplitude high frequency oscillations
characteristics of some perturbation forces. On the other
hand, computed orbits tend to approximate this perturbation
by linear gorwths plus constant amplitude sinusoidal oscil-
lations (not shown) at the orbital rate. Line A represents
perhaps the best approximation'one may hope for. Line B and
C represent progressively worse orbits. In any case, orbital
accuracies are going to deteriorate as tracking arc lenghtens.
If tracking measurements convey along-track position informa-
tion, most commonly one has the situation represented by the
line B, which is characterized by larger and opposite errors
at the beginning and the end of the tracking arc, and reduced
errors in the middle. It is also obvious that high frequency
excitations contained in the perturbative force will persist
as high frequency orbital errors although the amplitudes may
be somewhat attenuated because, as shown before, the satellite
radial motion behaves as a simple harmonic oscillator tuned
at the orbital frequency and that there exists coupling be-
tween the radial and along-track motions.

The above theory has since been validated and found
fruitful applications in the study of the effect of drag
on low altitude satellite orbit determination (Ref. 8).
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Z, unperturbed angular
momentum vector

Unperturbed TDRS

/——"" Circular Orbit

P

- = - F FZ , component of solar radiation force

/ P Xy, normal to orhital plane
o7 -~ component of

- solar radiation force
- in orbital plane

FIGURE 1. COORDINATE AXES AND RELATIVE GEOMETRY OF TDRS AND SUN
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fxy component of solar radiation force (normalized) in TDRS orbital plane

©
]

angle between fxy and orbital radius vectorat7=0

Along—Track
Position

Perturbation,
R&60

re0 =3 ‘yffsf@-f//

4n Normalized
Time 71

r©r— 1 Orbital Period —l

FIGURE 2. VARIATIONS OF ALONG—-TRACK ORBITAL POSITION PERTURBATION R&90
WITH NORMALIZED TIME 7 AND INITIAL SUN ANGLE ¢
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FIGURE 6. INFORMATION CONTENT OF RANGE MEASUREMENTS

INDIVIDUAL MEASUREMENTS GIVE HEIGHT INFORMATION

Il
o
X
.
N

BILATERATION GIVES INFORMATION ALONG TRACKING
BASELINE

p18pq=pgbpg = 5R * (ry— )

TDRS = Actual —

Nominal “d
TR
P2
P1
-79
—p I2
i
1 Station No. 2
Station No. 1
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Table 1. Corrclation of TDRS-W Orbital Error
With Bilatcration Bascline Geometry

BILATERATION
BASELINE COMPONENT
(earth rad.)

ORBITAL ERROR
(m.)

ALONG-TRACK | CROSS-TRACK| ALONG-TRACK | CROSS-TRACK{ RADIAL | RSS TOTAL
1.78 0.58 104 67 16 111
1.71 0.82 109 51 16 113
1.53 0.71 111 49 17 115
1.58 0.35 104 81 16 116
1.78 0.32 103 91 15 122
1.58 1.03 119 41 17 122
1.24 0.39 128 64 18 134
1.40 1.21 136 35 18 139
1.29 1.04 137 32 19 139
1.21 0.57 135 47 19 139
1.17 0.22 136 88 18 147
1.71 0.68 108 132 18 159
1.09 0.77 168 35 21 161
1.44 0.00 115 138 18 166
1.18 1.33 165 34 21 169
1.20 0.45 154 96 20 178
1.13 0.26 155 105 22 179
1.42 0.32 136 124 20 184
1.00 0.06 168 122 21 188
1.59 0.15 115 166 22 192
0.96 0.52 181 108 21 205
0.87 0.86 205 32 25 208
0.82 0.44 205 38 25 209
0.92 1.20 206 30 25 209
0.94 1.40 215 37 26 219
0.73 0.32 227 95 28 237
6.77 0.02 222 129 27 241
0.71 0.52 226 106 24 245
'0.66 0.82 273 35 31 275
0.69 1.40 283 41 32 287
0.57 0.11 287 109 31 303
0.14 0.56 298 42 36 304
0.07 0.81 303 30 37 307
0.46 0.58 289 114 30 308
0.53 1.14 319 36 36 321
0.50 0.65 320 37 35 323
0..05 1.02 320 32 38 323
0.14 0.30 309 100 35 326
0.06 0.53 326 42 37 331
0.40 0.50 325 63 34 333
0.45 1.33 333 37 37 335
0.40 0.49 333 42 36 337
0.21 0.87 337 32 39 340
0.23 1.20 338 32 39 341
0.37 0.17 343 138 38 361
0.24 0.34 351 118 37 368
0.12 0.16 350 142 37 377
0.07 0.06 334 198 39 385
0.06 0.16 357 184 40 396
1. TDRS-W is located at 189° Longitude.

2. Orbital ¢rrors are taken from Table 38 of Ref. 2.
3. One of the bilateration stations is White Sands at 254°

Longitude and 32° Latitude.

The other station (transponder)

location varies, giving risec to different bascline gecometry.
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