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PREFACE
 

This MDC report entitled "Investigation of the Free Flow Electrophoretic Processf
' 

is submitted under NASA Contract Number NAS 8-32200. It consists of two volumes 

as specified below: 

Volume I - Executive Summary 

Volume II - Technical Analysis 

Prepared as the final report of a seven-month study, with the same title, per­

formed by McDonnell Douglas Astronautics Company - St. Louis Division, this docu­

ment summarizes the results of a study that focused on demonstrating the effects
 

of gravity on the process and comparing the demonstrated effects with predictions
 

made by mathematical models. This contract was administered by the NASA Marshall
 

Space Flight Center, Huntsville, Alabama.
 

This report was written by:
 

Ronald A. Weiss, PhD Charles D. Walker
 

Principal investigator Design Engineer
 

James W. Lanham, PhD David W. Richman
 

Technical Specialist-Microbiology Lead Engineer-Technology
 

Other contributors to the study effort included S. J. Blaisdell, C. E. Cleveland,
 

C. E. Roth and A. L. Hitt. This report was reviewed by A. V. Montgomery, MD, PhD-


Director of Life Sciences and J. T. Rose-Space Processing Program Manager.
 

Questions regarding this study should be directed to:
 

Ronald A. Weiss, PhD Robert S. Snyder, PhD
 

McDonnell Douglas Astronautics Code: ES73
 

Company - St. Louis Division NASA Marshall Space Flight Center
 

P.O. Box 516 Huntsville, Alabama 35812
 

St. Louis, Missouri 63166 Telephone: (205) 453-3537
 

Telephone: (314) 232-2008
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1.0 SUMMARY
 

The microgravity environment of space may provide advantages to the production and
 
purification of biological materials in terms of greater availability and higher
 
purity of therapeutic, research, and diagnostic materials. 
 Experiments conducted
 
in space have already demonstrated the advantages of using static (1) and free-flow
 

(2) electrophoresis to separate biological materials in a microgravity environment.
 
Cells separated using static electrophoresis showed increased production of uroki­
nase and erythropoietin when subsequently subcultured in earth based laboratories
 
(3). The previously noted experiments demonstrated the positive results that the
 
space environment has on materials processing, but they were not intended to focus
 
on process parameters. A necessary step toward NASA's goal 
of space industrializa­
tion is an in-depth study of the effects of gravity on the process. 
 Understanding
 

these effects will facilitate quantification of the advantages of space processing,
 
allowing ground-space economic trade-off analyses to be made. 
The purpose of
 
this study is to demonstrate the effects of gravity on the free-flow electrophore­
tic process and to compare the demonstrated effects with predictions made by
 
mathematical models.
 

The free flow electrophoresis chamber used to demonstrate the effects of gravity
 
on the process is of a proprietary design developed by McDonnell Douglas Astronau­
tics Company - St. Louis Division. This chamber is 120 cm long, 8.25 cm wide, and
 
0.3 cm thick. The chamber and its supporting hardware are shown in Figure 1-1,
 
AN Electrophoresis Test Setup. 
Flow in this chamber is in the upward direction
 
and exits through 105 outlets at the top of the chamber. During electrophoresis
 
a stream of sample is injected into the flow near the bottom of the chamber and
 
an electrical field is applied across 
the width of the chamber. The field causes
 
a lateral force on particles in the sample proportional to the inherent charge of
 
the particle and the electrical field strength. Particle lateral velocity is
 

then dependent on the force due to viscous drag which is proportional to particle
 
size. 
 The characteristic that describes particle motion is electrophoretic mobi­
lity, which is the lateral velocity divided by electrical field strength.
 

The free flow electrophoretic process depends on maintenance of a steady laminar
 
flow of the carrier fluid. Time variant velocity fluctuations will cause corres­
ponding fluctuatiorsin the particle paths spoiling the intended separation. 
 On
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earth the primary source of velocity variations in the carrier fluid is convection
 

currents. Free convection in turn is caused by density variations due to tempera­

ture differences in the fluid. These temperature differences are caused by Joule
 

heating of the fluid by the electrical field. This problem is aggravated by the
 

requirement that the carrier fluid must have sufficient ionic strength to insure
 

stability of the biological materials being separated. This carrier fluid, or
 

buffer is therefore an electrically conductive medium.
 

1.1 EFFECTS OF GRAVITY ON CARRIER BUFFER
 

The purpose to Task 1.0 was to determine the effects of gravity induced thermal
 

convection on the carrier buffer flow. Tests were performed to measure vertical
 

centerline velocity as gauged by the motion of dye fronts in the carrier buffer
 

flow. A dye front near the entrance of the chamber with no field applied is shown
 

in Figure 1-2 and one at a field strength of 10 volts/cm near the outlet is shown
 

in Figure 1-3. The results for the zero voltage case are what would be expected
 

for flow between closely spaced parallel plates i.e. a nearly flat profile that
 

falls off only near the sides of the chamber. With voltage however, peaks develop
 

in the profile near the sides of the chamber. These peaks were found to be caused
 

by heating of the fluid at the membranes, this conclusion was based on correlation
 

with velocity predictions from a three dimensional mathematical model of the chamber
 

flow velocities, pressures, and temperatures developed by McDonnell Douglas Astro­

nautics Company - St. Louis Division.
 

Good correlation of test results with the mathematical model with no field applied
 

may be demonstrated by comparing the observed data of Figure 1-4 with the model
 

predictions of Figure 1-5. The mean of observed data (0.1890 cm/sec) is approxi­

mately one standard deviation (0.0135 cm/sec) less than the predicted mean velocity
 

(0.2066 cm/sec).
 

When power was applied to the chamber the centerline velocities were significantly
 

reduced by the return flow of the gravity induced convective cells evidenced by


5'thevelocity peaks seen in Figure 1-3. 
 In this case the mathematical model center­

line velocities were predicted to be significantly higher than the observed test
 

data. This indicates that the mathematical model may have underestimated the re­

turn flow for the upward convection currents at the membranes. Therefore, the
 

model predictions for sample residence times during test separations were less
 

than the actual case.
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Correlation of test results with the mathematical model requires reduction of the
 

velocity profile data at the same locations within the chamber. This was accomp­

lished by first measuring the profile coordinates for input to a data reduction
 

program. These profile coordinates as a function of time were curve fitted and
 

interpolated by computer at the analytical coordinate values. Velocities were in­

terpolated at approximately one centimeter increments across the width of the chamber
 

and 20 centimeter increments along the length of the chamber. The velocities are
 

close to being constant, as would be expected from the flatness of the velocity
 

profile. Analytical predictions were made for 1463 locations in a half thickness
 

chamber model.
 

Tests were also conducted to determine horizontal centerline velocity. In these
 

tests seven dye streams were injected into the carrier buffer flow at equal incre­

ments across the width of the chamber as shown in Figure 1-6. The tangent of the
 

angle of the stream away from the vertical and the vertical velocity were used to
 

calculate the horizontal velocity. It should be noted that in order to avoid the
 

introduction of error due to the scatter in the vertical velocity test data, a con­

stant analyzed vertical velocity was used for the calculation. Figure 1-6 shows
 

that the dye streams are vertical with no applied electrical field indicating neg­

lible horizontal velocity. The corresponding data reduction is shown in Figure 1-8.
 

The horizontal velocities from the reduced test data are generally about l0-4 cm/sec
 

in magnitude and either positive or negative in sign, indicating the limiting accur­

acy of the test method. The corresponding analytical predictions of velocity showed
 

even lower values indicating residuals in the iterated solution. Figure 1-7 shows
 

the dye streams near mid-chamber with an applied electrical field of 10 volts/cm.
 

The corresponding data reduction is shown in Figure 1-9 where the test velocities
 

approximate the predicted value of 0.002 cm/sec. Discrepancies are due to the
 

values being almost of the same order of magnitude as the accuracy of the test
 

method, as illustrated by the zero voltage case.
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1.2 EFFECTS OF GRAVITY ON SAMPLE
 

The purpose of Task 2.0 was to determine the effects of gravity on the
 

particle streams during electrophoresis. The limiting effects of gravity on
 
sample streams in upward flow are illustrated by Figure 1-10. For a sample that
 
is heavier than the carrier buffer, the sample falls back around the sample input
 

tube. A sample stream that is lighter than the carrier buffer, however, is buoyed
 

SAMPLE GRAVITY EFFECTS 

SAMPLE SAMPLE
 
HEAVIER THAN CARRIER LIGHTER THAN CARRIER 

Figure 1-10 

up in the flow and breaks up into beads. To assure realism and applicability of
 

the results, biological materials, both proteins and cells, were used for these
 

experiments. The selected materials had specific gravities greater than unity, as
 

do most biological materials. This meant that fall back limited, for example,
 

sample protein concentrations, to about 0.15% by weight per unit volume. To obtain
 

good laminar sample streams, the protein samples were diluted to 0.12% maximum pro­

tein by weight.
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The effects of gravity persist, however, even after the sample is diluted. The
 

effect of gravity on sample streams that are heavier than the surrounding buffer in
 

upward flow is to increase residence time and to widen the particle streams. Widen­

ing of the particle streams can cause overlapping so that the desired separation
 

can not be obtained.
 

The mechanism involved in these gravity effects is that a negative buoyant force
 

results on the particle when the buffer is displaced by a particle with a higher
 

specific gravity. For equilibrium, this force must be balanced by the viscous
 

shear due to a particle velocity that is less than that of the surrounding buffer.
 

For particles the size of proteins and to some extent for cells, the velocity
 

difference is negligible. However, for equilibrium of the particle stream with
 

the surrounding buffer the force of viscous shear on the outside of the stream
 

must be equal and opposite to the sum of the buoyant forces on the particles within
 

the stream. For particle specific gravities higher than buffer specific gravity
 

in upward flow, the particle stream velocity will be less than that of the sur­

rounding buffer. Particle stream widening occurs under these conditions, because
 

the particles with lower velocities will have longer residence times and greater
 

lateral movement than particles with higher velocities near the edges of the part­

icle stream. in upward flow therefore, the middle of the sample continuously over­

takes the leading edge, while the trailing edge falls farther and farther behind
 

in the lateral direction. The expected result is that the apparent mobility of
 

the particle stream will increase with both increasing concentration and decreas­

ing buffer flow rate.
 

Two proteins were separated at various concentrations and flow rates to demonstrate
 

the gravity effects. The two proteins used were human albumin and human fibrino­

gen. In preparation for the separation of a mixture of fibrinoqen and albumin.
 

electrophoresis was performed on each of the proteins using a range of field strength
 

and buffer flow rates. The test data was correlated with the mathematical model
 

by using the apparent electrophoretic mobility at the maximum flow and minimum con­

centration as a constant input. The three dimensional mathematical model used for
 

this correlation is similar to the buffer flow model except that it calculates con­

ditions at 1001 points in the vicinity of the particle stream and it includes both
 

particle diffusion and gravity effects. Test versus predicted outlet concentration
 

distribution for human albumin and human fibrinogen are shown in Figure 1-11.
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In general, the predicted spreading of the samples is less than for
 

the test data, both with and without applied electrical field, indicating that this
 

spreading is a characteristic of the MDAC-St. Louis chamber. In addition, the
 

smaller predicted movement of the proteins with the field'applied is caused by
 

actual residence times being greater than predicted, as evidenced by the buffer
 

gravity effects data correlation.
 

Predicted gravity effects on electrophoresis of mixed proteins are shown in
 

Figure 1-12. The greater movement under electrophoresis in one-g is caused by the
 

increased residence times due to the particle streams slipping with respect to
 

the buffer. -Widening of the particle streams is not evident, however, because each
 

of the separating streams was only at a fraction of the limiting concentration.
 

The effects of gravity on cell samples at varying concentrations and flow rates
 

were demonstrated using lymphocytes. Test versus predicted outlet concentration
 

distributions for 33H human lymphocytes are shown in Figure 1-13. Again, the
 

predicted spreading of the sample is less than the test data, both with and without
 

electrical field, indicating that the spreading is characteristic of the chamber.
 

And as in the case of proteins, the predicted movement is less than the measured
 

movement due to the actual residence time being greater than predicted.
 

Predicted gravity effects on electrophoresis of cells are shown in Figure 1-14.
 

The greater movement under electrophoresis in one-g is caused by the increased
 

residence time due to the particle streams slipping with respect to the buffer. As in
 

the case of proteins, widening of the particle streams would probably become evi­

dent at higher concentrations or at greater electrophoretic movement.
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FIGURE I-I 
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ELECTROPHORESIS OF MIXED PROTEINS 

300 
HUMAN ALBUMIN & HUMAN FIBRINOGEN 

0. 12% CONCENTRATION MIXED 
20 ML/MIN BUFFER FLOW 

250 
ZERO-G 

. . ONE-6 

z
0 

H 200 
, 

Z N 
Lzc 
Z (D 

150 
10 

RUN NO. 37 
1 O V/CM 

RUN NO. 29 
19.94 V/CM 

0 
u 

,
0 

FIBRINOGEN ALBUMIN 

Lii Hx 

1o00 

0 o I 
I 

50­

/.... ..... . . 

20 30 40 50 60 70 8o 
SAMPLE TUBE NUMBER 

FIGURE 1-12 

1-15 

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY- S. LOUIS DIVISION 



REPORT MDC E2000INVESTIGATION OF THE VOLUME 11 
FREE FLOWELECTROPHORETIC PROCESS MAY 1979, 

CELL ELECTROPHORESIS RUNS
 TEST VS PREDICTED
 
A 33H LYMPHOCYTES I X 107 CELLS/ML
A N20 ML/MIN BUFFER FLOW 

II RUN NO. 49 RNNO. 5 
1 0 V/CM j\ 9.88 V/Cm 

I/ 
J / 

L.- /
/ 

z- 0" Ii I 

J. 1 M TEST DATA,4,-4-


I--. . PREDICTED
L.)I 

II 
tO-%31 20 30 40 50 50 70 

SAMPLE TUBE NUMBER
 

FIGURE 1-13 

1-16 

MCDONNELL DOUGLAS ASrRONAUTICS COMPANY ST LOUIS DIVISION 



REPORT MDC E2000INVESTIGATION OF THE 
VOLUME I 

FREE FLOW ELECTROPHORETIC PROCESS MAY 1979 

PREDICTED GRAVITY EFFECTS ON
ELECTROPHORESIS OF CELLS 

33H LYMPHOCYTES I X I07 CELLS/ML 
Z0 ML/MIN BUFFER FLOW 

RUN NO. 49 RUN NO. 50 

0 V/cM 9.88 v/cM 

-

Z J 

-­
-J 
Ld 

I I 

I---
ZERO-G 

CtNc- a 

II a 5 

0 20 30 40- 50 

SAMPLE TUBE NUMBER 

s0 70 

FIGUR 1-14 

MrCDONNELL DOUGLAS 

1-17 

ASTRONAUTICS COnAPANV-ST. LOUIS DIVISION 



REPORT MDC E2000INVESTIGA TION OF THE VOLUMEII
FREE FLOWELECTROPHORETIC PROCESS MAY 1979 

1.3 EFFECTS OF SAMPLE CONCENTRATION ON ELECTROPHORETIC MOBILITY
 

The purpose of Task 3.0 of this study was to determine if sample concentration has
 

a significant effect on the electrophoretic mobility of the individual protein com­

ponents of the sample. This is of interest because previous MDAC-St. Louis studies
 

showed that only very dilute samples can be processed in a one-g environment by free
 

flow electrophoresis, and that throughput in the microgravity environment could be
 

increased substantially by processing more highly concentrated samples. Instead
 

of diluting human plasma 70 times with water, for example, it may be possible to
 

process concentrated plasma samples thus increasing the sample concentration from
 

about 0.1% on Earth to 28% or even higher in the micro-gravity space environment.
 

Questions have arisen, however, concerning protein-protein interaction at concen­

trations above 0.1% which may change the electrophoretic mobility of individual
 

proteins or in some other way interfere with their electrophoretic separation. If
 

interfering interactions do occur, then the benefits of purity, attainable in
 

space, would be offset by poor resolution as a result of these protein interactions.
 

In order to detect the possible effects of sample concentration on electrophoretic
 

mobility three common ground based electrophoretic procedures were employed and
 

the mobilities of various proteins in human plasma at several concentrations rang­

ing from 0.109% to 28% total protein were studied.
 

Two of these methods, agar gel plate and polyacrylimide disc gel electrophoresis,
 

gave consistent reliable test results and were used to evaluate mobilities
 

of the various proteins. A third method, using cellulose acetate strip electrophor­

esis provided erratic data from day to day and was not used for evaluation.
 

Test results obtained using agar gel plate electrophoresis are summarized in
 

Figure 1-15 and 1-16. No significant differences in protein mobilities were noted
 

at any of th6 concentrations tested over a range of 0.875% to 28%.
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MIGRATION OF PLASMA PROTEINS ON CORNING AGAR GEL PLATES 
RUN 1 

PROTEIN MEASURED 

% PLASMA - a-2 /3-1 F 
CONCENTRATION ALBUMIN GLOBULIN GLOBULIN GLOBULIN FIBRINOGEN GLOBULIN 

DISTANCE MOVED (cm) AT 85 VOLTS; FIELD STRENGTH 15 VOLTS/cm 

7.0 1.8 1.5 1.0 0.60 0.25 -025 

35 18 1.5 1.0 0.60 0.25 -0.25 

1.75 1.8 N.V. 1.0 0.60 0.25 N.V. 

0.875 18 N.V. N.V 0.55 0.25 N.V. 

N.V. - BANDS WERE NOT VISIBLE DUE TO DILUTION 

Figure 1-15 

MIGRATION OF PLASMA PROTEINS ON CORNING AGAR GEL PLATES 
RUN 2 

PROTEIN MEASURED 

% PLASMA - a-2 /P-1 I y 
CONCENTRATION ALBUMIN GLOBULIN GLOBULIN GLOBULIN FIBRINOGEN GLOBULIN 

DISTANCE MOVED (cm) AT 85 VOLTS; FIELD STRENGTH 15 VOLTS/cm 

7.0 1.9 1.55 1.0 0.65 0.25 -0.25 

28.0 19 1.55 1.0 0.65 0.25 -0.25 

7.0 1.9 1.55 1.0 0.65 0.25 -0.25 
(REDILUTED) 

Figure 1-16. 
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Results obtained using polyacrylamide gel electrophoresis are shown in Figure 1-17.
 

In this procedure one anomaly occured. Albumin appeared to have increased mobility
 

in the higher concentrated samples. However, this apparent increased mobility is
 

probably the result of an overloading of the gel capacity and resultant exclusion
 

of a portion of the albumin molecules from the molecular sieve action of the gel.
 

MIGRATION OF PLASMA PROTEINS
 
INPOLYACRYLAMIDE DISC GEL ELECTROPHORESIS
 

PROTEIN MEASURED 

P- 1 GLOBULINS 

% PLASMA PRE- IL-1 (HEMOGLOBIN a-2 I 
AND GLOBULIN GLOBULINCONCENTRATION ALBUMIN ALBUMIN GLOBULIN 

TRANSFERRIN)DISTANCE MOVED (cm) AT 150 VOLTS, FIELD STRENGTH, 12 VOLTS/cm 

7 5.8 4.4 33 2.1 1.4 0 

3.5 5.8 44 3.3 2.2 1.4 0 

175 N.V. 43 3.4 2.3 1.4 0 

0.875 N.V. 4.2 3 3 2.3 1.4 0 

0.437 N.V. 4.2 N.V. 2.2 N.V. 0 

0.218 N.V. 4.2 N.V. 2.2 N.V. 0 

0.109 N V. 4.1 N.V. 2.1 N.V. 0 

N V - NOT VISIBLE DUE TO DILUTION 

Figure 1-17 
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1.4 CONCLUSIONS AND RECOMMENDATIONS
 

Principal conclusions of this investigation are that the carrier buffer flow is
 

affected by gravity induced thermal convection and that the movement of the sepat­

ating particle streams is affected by gravity induced buoyant forces. Although
 

much has been written about the fluid convection effects, the gravity effect on
 

the particle streams is probably more important. It is this effect that limits
 

the allowable density difference between the particle stream and the surrounding
 

buffer to a fraction of a percent. And even within this allowable range of den­

sity difference, velocity variations within the stream cause widening of the par­

ticle streams during electrophoresis. Widening of the particle streams can cause
 

the streams to overlap, limiting separation capability.
 

One finding of this investigation is that mathematical models, if they include the
 

gravity induced buoyancy forces, should be able to effectively predict electro­

phoresis chamber separation performance. Additional work is recommended in the
 

areas of correlation with the upward flow velocities with field applied and in
 

testing to reliably determine wall electroosmotic flow velocities using micro­

electrophoresis for the tested combinations of wall material and buffers.
 

Another finding of this investigation is that sample concentration, using ground
 

based electrophoresis procedures does not affect protein electrophoretic mobility
 

over the range of 0.1% to 28%.
 

This investigation should provide a starting point for meaningful comparisons of
 

free-flow electrophoresis chamber performance, i.e. output and separation capabil­

ity, on the earth and under microgravity conditions and additional work in this
 

area is planned.
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2.0 CHARACTERIZATION METHOD
 

Investigation of the free flow electrophoretic process required a method of demon­

strating gravity effects on both the buffer and the sample and correlating the
 

results with mathematical model predictions. The method selected for the buffer
 

gravity effects demonstration was photographic recording of either horizontal dye
 

front or vertical dye stream coordinates versus time and numerical differentiation
 

to determine velocity distributions. The method selected for sample gravity
 

effects demonstration was more straight forward, consisti-ng of assaying the out­

let tube concentration distributions for comparison with analytical predictions.
 

In this section background information on the process is presented and details of
 

the characterization method are discussed.
 

2.1 FREE FLOW ELECTROPHORETIC PROCESS
 

The free flow electrophretic process as shown in Figure 2-1 is a combination of
 

several phenomena. In free flow electrophoresis the sample and a carrier buffer
 

are continuously admitted to a chamber. An electric field is applied perpendicu­

lar to the direction of flow. The force of the field on charged particles of the
 

ELECTROPHORESIS PROCESS 

Figure 2-1 

2-1
 

ACDONNELL DOUGLAS ASTRONAUTICS COMPANY S LOUIS DIVISION 



REPORT MDC E2000IVESTIGA TION OFTHE 
VOLUMEII
 

FREE FLOW ELECTROPHORETIC PROCESS MAY1979 

sample rapidly accelerates them to the terminal velocity for equilibrium with the
 

viscous drag force. The distance particles travel in the direction of the elec­

trical field is proportional to their residence time within the chamber. The
 

increased residence time for particles near the wall due to fluid friction as il­

lustrated in Figure 2-2 results in increased deflection near the wall. This dis­

tortjon was described by Strickler and Sacks (4 ) as the crescent phenomenon.
 

ELECTROPHORESIS CRESCENT DISTORTION 

BUFFER VELOCITY 
WALL 

WALL 

DEFLECTION 

CRESCENT 

SAMPLE PORT 

Figure 2-2 

Electroosmosis is an effect of chamber wall material and can either reduce or
 

exaggerate crescent phenomenon (distortion) as shown in Figure 2-3. Electroosmosis
 

is dependent on the potential difference between the wall and the buffer. Since
 

the wall is negatively charged, positive ions in the buffer are attracted by Coulomb
 

forces. This causes the buffer very near the wall to have a positive charge dif­

ferential relative to the bulk charge of the buffer and a force differential in
 

favor of migration toward the negatively charged electrode. The force differential
 

is proportional to the zeta potential (wall material characteristic) which is the
 

potential difference between the surface of the double layer and the bulk of the
 

buffer solution. The force is in equilibrium with the shear force due to the
 

large velocity gradient at the wall. Because the chamber ends are closed, the
 

buffer migrating toward the negatively charged electrode must circulate back along
 

2-2
 

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-ST. LOUIS DIVISION 



REPORT MDC E2000INVESTIGATION OF THE 
VOLUME 11 

FREE FLOW ELECTROPHORETIC PROCESS MAY 1979 

the chamber centerline. The resulting velocity profile is parabolic, because the
 

boundary conditions are the same as Poiseuille flow, i.e. constant wall velocity
 

and constant pressure across the chamber. In this case, however, the velocity
 

near the wall is not zero and the integral of velocity across the "Chamber is zero
 

to satify conservation of mass. For these boundary conditions the chamber center­

line electroosmotic velocity is the product of - 0.5 times the wall electroosmotic
 

velocity, while the velocity is zero at a distance about 20% of chamber thickness
 

from the walls.
 

ELECTROOSMOSIS CAN REDUCE CRESCENT DISTORTION 

Figure 2-3
 

The other principal distortions are band - spreading effects. Recognized band ­

spreading effects are thermal diffusion, microheterogeneity, electrodiffusion, 

eddy migration and electrosorptive spreading (5). Of these, electrodiffusion 

is negligible for even moderate residence times and eddy migration does not occur 

because of lack of a supporting medium in free flow electrophoresis. 

For operation on Earth, gravity affects the electrophoretic process as a result of
 

buoyancy forces. These forces limit, (1) the allowable Joule heating in the buffer,
 

because of convection currents, (2) the concentration of soluble species in
 

samples because of large sample/buffer velocity differences, and (3) the move­

ment of insoluble particles in samples because of sedimentation.
 

2.2 BUFFER GRAVITY EFFECTS
 

The method selected for the buffer gravity effects demonstration was photographic
 

recording of either horizontal dye front or vertical dye stream coordinates versus
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time and numerical differentiation to determine velocity differences. Advantages
 

of this method include both the straight forward method of implementation and
 

visibility of data in the raw integral form of position versus time. Such visible
 

data was later to prove invaluable in providing evidence of velocity variations
 

that were not evident in the reduced data. Another advantage of using horizontal
 

dye fronts and vertical dye streams is that they facilitate obtaining the
 

horizontal and vertical components of velocity. Obtaining the vertical component
 

of velocity is important because the forces of gravity on the carrier buffer
 

fluid, which are caused by temperature dependent density differences, manifest
 

themselves as additive convective velocity increments. These vertical velocity
 

increments in the three dimensional case also result in convection cells which
 

have horizontal velocity components. Disadvantages of using dye fronts to
 

visualize fluid motion include the fact that most dyes are not neutrally buoyant.
 

This means that dyes that are heavier than the buffer, like the Coomassive
 

Brilliant Blue R250 used in these tests, will increase the local density of the
 

carrier fluid and induce downward slippage and attendant error in velocity
 

determination. Another disadvantage is that most dyes including the dye used in
 

these tests have significant electrophoretic mobility which must be accounted for
 

in reducing the data.
 

Vertical velocity distribution was determined by photographically recording the
 

coordinates of a horizontal dye front versus time. The front was created by
 

tieing into the buffer inlet plane and injecting dye dissolved in buffer over an
 

interval of a few seconds. This resulted in a well defined front' as shown in
 

Figure 1-2 for an applied field of zero volts. The results are what would be
 

expected for Poiseuille flow, that is flow between parallel plates. To calculate
 

vertical velocity in this case, the vertical position as a function of time is
 

approximated by a second order polynomial fit. This polynomial is then
 

numerically differentiated to find velocity. Data typical of the results are
 

shown in Figure 1-4. Here velocities were calculated at about one centimeter
 

increments across the chamber and at'five increments along its length. When a
 

field is applied to the chamber, the mobility of the dye requires that the
 

calculation procedure be modified. Here the velocity profiles are not interpolated
 

along a vertical line, but along a line inclined at an angle whose tangent is the
 

electrophoretic velocity divided by the vertical velocity. This, of course,
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results in an iterative procedure to calculate vertical velocity. Electrophoretic
 

mobility of the R250 Brilliant Blue dye was determined from its movement in our
 

chamber after the movement due to electroosmosis was subtracted. The reference
 

data for determining electroosmotic movement was the work that Vanderhoff performed
 

for NASA's Marshall Space Flight Center (MSFC) that gave an apparent electroosmotic
 
-4 2!
cm
mobility for a borate buffer/Lexan wall combination at the wall of -10.7 x 10


volt-sec (6). In comparative testing the motion of R250 Coomassie Brilliant Blue
 

dye was determined to be essentially the same in barbital and borate buffer. It
 

was then assumed that both the electrophoretic movement and the electroosmotic
 

movement for the R250 Coomassie. Brilliant Blue were proportional to the total
 

movement in each buffer and based on this, the electrophoretic mobility of R250
 

Coomassie Brilliant Blue dye and the wall electroosmotic mobility for the barbital
 

buffer/Lexan wall combination were calculated to be 6.5 x 10-4 cm2/volt-sec and
 
-4
-10.2 x 10 cm2/volt-sec, respectively.
 

Horizontal velocity distribution, which is primarily due to osmotic flow, was
 

determined by photographically recording the coordinates of vertical dye streams.
 

These dye streams were injected into the buffer flow through seven capillary
 

sample tubes near the bottom of the chamber and equally spaced across its width.
 

A typical pattern with no field applied is as shown in Figure 1-6. The tangent
 

of the stream angle away from the vertical to the right is equal to the horizontal
 

velocity divided by the vertical velocity. It was at first anticipated that the
 

vertical velocity used to calculate the horizontal velocity would be determined
 

from the corresponding horizontal dye front test; however, noise in the data
 

required that an assumed analytical value be substituted. With voltage, a typical
 

pattern is as shown in Figure 1-8. To reduce this data it is necessary to
 

subtract the effect of dye electrophoretic mobility, in this case the electro­

phoretic velocity must be subtracted from the apparent horizontal velocity.
 

The results of the horizontal and vertical velocity data reduction were compared
 

with analytical resultsfrom an MDAC-STL developed three dimensional mathematical
 

model of chamber flow. This model is based on finite difference approximations
 

to the equations of motion and the continuity equation as presented in Figure 2-4.
 

The equations of.motion were solved subject to the simplifying assumptions given
 

in Figure 2-5. The principal assumption is that density is assumed to be
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constant with respect to satisfying the continuity equation and is only assumed
 

to be temperature dependent with respect to calculating the buoyant force terms'
 

in the equations of motion. As is apparent in the simplified equations the
 

variation in viscosity with location has been retained, so that the effect of
 

temperature on viscosity is included. This model was used to calculate the three
 

components of velocity and the pressure at 1463 locations within the chamber
 

including the locations at which the data was reduced. Additional points were
 

required near the walls to effectively model the flow, so the calculation grid
 

used is as shown in Figure 2-6.
 

Boundary conditions for the model were buffer flow into and out of the model at
 

average vertical velocity and no flow through the membranes. A no slip, zero
 

velocity condition was assumed at the chamber walls, except for the cases with
 

an applied field where the wall electroosmotic velocity was assumed at the wall.
 

The pressure boundary condition was zero pressure gage at the geometric center
 

of the chamber. Temperature boundary conditions were calculated in the MDAC-STL
 

mathematical model composed of 1583 nodes. This portion of the model solved
 

finite difference approximations to the energy equation given in Figure 2-7.
 

Boundary conditions for the solution of the energy equation were the input
 

temperatures of fluid entering the chamber and the ambient environmental
 

temperature.
 

2.3 SAMPLE GRAVITY EFFECTS
 

The method selected to demonstrate the effect of gravity on the separation of
 

samples was to assay the outlet tube concentration distributions for comparison
 

with analytical predictions. In these demonstrations the samples, including
 

both proteins and cells, were heavier than the carrier buffers. The proteins used
 

were human fibrinogen and human albumin, and the cells used were 33H human lymph­

ocytes.
 

The predicted effect of gravity on sample streams heavier than the buffer is
 

to widen the sample stream. This widening is a result of the sample column slip­

ping relative to the surrounding buffer. The slip causes the force of viscous
 

shear on the column to be equal and opposite to the net buoyant force, for equil­

ibrium. This means that the vertical velocity decreases toward the middle of the
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sample, increasing residence time and therefore lateral motion under electrophor­

esis. For a sample heavier than the carrier buffer in upward flow, this phenomena
 

causes greater lateral motion of the middle of the sample, relative to the trail­

ing edge, resulting in widening of the sample stream.
 

Of course, there are other factors that influence outlet concentration distribu­

tion. Included among these factors are crescent distortion, which causes widen­

ing of the distribution in the direction of the electrophoretic movements. Also
 

included are electroosomotic flow which, depending on its magnitude and direction,
 

can cause widening of the sample that can either increase, decrease, or compensate
 

for the widening due to crescent distortion, as described by Strickler and Sacks (4).
 

In addition to these effects, diffusion widens the streams by a continuous level­

ing of the concentration distribution. These effects are all well described in
 

theory, but in addition there are the effects of the apparatus on the separation:
 

that is, the stability and repeatability of electrophoresis chamber used.
 

Because of these variables the albumin and human fibrinogen samples were run sep­

arately before separation of mixtures was attempted. These tests were performed
 

varying voltage and flowrate. Voltage was varied to identify any non-linearities
 

in deflection with voltage. Flowrate was varied to identify the effects of grav­

ity, which would be expected to increase with decreasing flowrate because the vel­

ocity variations due to slip in the column become more significant as velocity
 

decreases.
 

After the single protein tests were completed mixtures of proteins were separated
 

varying both concentration and flowrate. Here again, gravity effects, that is
 

widening of the sample streams is expected to increase at decreasing flowrate. In
 

addition, since the amount of slip in the sample column is proportional to con­

centration, gravity induced widening is expected to increase at increasing con­

centration.
 

Gravity effects were also demonstrated using a single cell type, 33H human lympho­

cytes. The resulting concentration distributions of cells and proteins were com­

pared with analytical results from a three dimensional model of the flow and concen­

tration in the vicinity of the sample. The area modeled was bounded by the front
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wall and the chamber centerline and included enough of the flow on either side of
 

the separating stream to minimize sample effects at the edges. Using this model
 

the flow characteristics and sample concentration were calculated at 1001 locations
 

within the chamber. Boundary conditions for this model were buffer flow into and
 

out of all surfaces of the model and a known equilibri6m pressure distribution at
 

the inlet of the model where the sample was injected at carrier flow velocity.
 

Temperature boundary conditions were calculated by an additional heat transfer
 

model of 1274 nodes, which used input fluid temperatures and ambient temperature
 

as boundary conditions.
 

In reduction of the protein separation outlet concentration data it appeared that
 

the calculated wall electroosmotic mobility calculated for the buffer gravity
 

effects tests as described in Section 2.2 was large enough that the mobility of
 

human fibrinogen would be negative. This seemed unlikely, so tests were run to
 

compare total movement of human albumin, the more mobile of the two proteins
 

used, in both borate and barbital buffers. Again, it was assumed that both the
 

electrophoretic movement and the electroosmotic movement for the human albumin
 

were proportional to the total movement in each buffer, and based on this, the
 

electroosmotic mobility for the barbital buffer/Lexan wall combination was
 
- 4
calculated to be -7.9 x 10 cm2/volt-sec and the analytical predictions of
 

protein outlet concentration distributions were made using this value. It should
 

be noted that the wall electroosmotic mobility calculated from the albumin data of
 

-7.9 x 10-4 cm2/volt-sec did not agree with one calculated from R250 Coomassie
 
-4
Brilliant Blue dye data of -10.2 x 10 cm2/volt-sec. Because of the importance
 

of the wall electroosmotic mobility, it is recommended that wall electroosmotic
 

mobility measurements be made using a micro-electrophoresis device for the
 

buffer/wall material combinations tested. Also because of the lack of agreement,
 

further comparison tests were not attempted and the same wall electroosmotic
 

mobility was used for the analytical prediction of cell outlet concentration
 

distribution, although a different buffer had to be used to maintain cell
 

viability.
 

For the protein and cell separations the mobilities used for the analytical
 

predictions were the observed mobilities for those cases where gravity effects
 

-4
were at a minimum. The albumin mobility from Run 26 was 3.6 x 10 cm2/volt-sec,
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the fibrinogen mobility from Run 35 was 0.66 x 10-4 cm2/volt-sec, and lymphocyte
 
-4
mobility from Run 59 was 6.5 x 10 cm2/volt-sec.
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3.0 TEST HARDWARE
 

A balanced investigation of the electrophoretic process requires that theoretical
 

analysis be correlated with actual test data. The testing under this contract was
 

intended to verify and quantify the influence of gravity-dependent factors upon the
 

process. These factors include convection due to Joule heating of the buffer and
 

the effects of sample stream buoyancy.
 

Tests necessary to demonstrate gravity effects in the free-flow electrophoretic
 

process were performed with McDonnell Douglas Astronautics Company - St. Louis
 

developed hardware. The test hardware was setup around a free flow electrophoresis
 

chamber of 120 cm length as shown in Figure 1-1. Calibrated instrumentation was
 

installed to measure internal temperatures, pressure, and electrical field strength.
 

A detailed discussion of the hardware is provided in the following paragraphs.
 

3.1 FREE FLOW CHAMBER DESIGN 

The basic functional characteristics of the McDonnell Douglas Astronautics Company -

St. Louis chamber are as follows: 

o Upward carrier buffer flow
 

o Parallel upward flow coolant jackets
 

o Upward electrolyte buffer flow
 

Basic design features of the chamber are:
 

o 120 cm flow length in electrical field
 

o 0.3 cm separation chamber depth
 

o 8.25 cm separation chamber width
 

o Platinum electrodes
 

o Reconstituted cellulose membrane material
 

Upward carrier buffer flow was chosen over downward flow because chamber buffer
 

temperatures were above the temperature for maximum buffer density (4°C). There­

fore, upward carrier buffer flow was compatible with the temperature gradient that
 

was positive in the upward flow direction.
 

Parallel flow coolant jackets control the magnitude of this buffer temperature gra­

dient. The coolant jackets' (one on each face of the chamber, front and back) flow
 

covers the width and length (7.3 cm x 119.0 cm) of the carrier buffer chamber.
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a wall of Lexan
Separating each cooling jacket from the carrier buffer chamber is 


polycarbonate resin the primary structural material of the chamber.
 

Upward electrolyte buffer flow allowed the same upward increasing temperature grad­

ient at the membranes separating the electrolyte flow from the carrier buffer flow.
 

Upward flow also aided the buoyant forces on the bubbles (electrolysis products) in
 

freeing them from the electrodes.
 

Chamber design was based upon several previous evolutionary models developed by
 

McDonnell Douglas Astronautics Company - St. Louis. Incorporation of the practical
 

lessons learned with previous units produced a chamber which can consistently pro­

vide sample residence times greater than ten minutes.
 

The 120 cm flow chamber length, a dimension considered most practical for
 

Spacelab integration, allowed long sample residence times. The full 120 cm flow
 

length was within the applied electric field. The field across the 8.25 cm wide
 

0.3 cm deep separation chamber was created between two platinum electrodes.
 

Each electrode was surrounded by flowing electrolyte buffer. A membrane of recon­

stituted cellulose material segregated the carrier buffer flow from the electrolyte
 

flow. The membrane porosity was picked to allow compounds of <14,000 molecular
 

weight to move between flows.
 

3.2 ADDITIONAL CHAMBER FEATURES
 

Supplemental design features of the flow chamber were a manifolded carrier buffer
 

inlet and a 105 tube outlet. The inlet provided uniform introduction of the carrier
 

buffer across the separation chamber width through eight (8) channels. The maniz
 

fold had provision for nearly homogeneous mixing of buffered dyes with the carrier
 

buffer prior to introduction into the separation chamber. This feature was util­

ized in the first nine (9)Task 1 Buffer Gravity Effects test runs. The manifold
 

also allowed sample introduction into the carrier buffer flow through any one or
 

all of seven (7) glass capillary tubes (0.07 cm inside diameter) positioned verti­

cally on the chamber centerline. Spacing between the sample.inlet tubes was 1.06 cm.
 

The tubes extended into the flow chamber 3.7 cm. This feature with all seven (7)
 

tubes in place was utilized in the second set of nine (9) Task 1 test runs. All
 

Task.2 test runs had the manifold configured with only one (1) inlet tube for sample.
 

The single inlet tube was located 2.01 cm from the cathode side membrane.
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At the separation chamber outlet, the flow exited through one-hundred five (105)
 

capillary (0.066 cm nominal inside diameter) tubes across the separation chamber
 

width.
 

3.3 INSTRUMENTATION
 

The flow chamber itself was instrumented for measurement of temperatures, pressures,
 

and electrical field strength. Support equipment such as refrigerated-reservoirs
 

were also monitored for temperature.
 

Temperature instrumentation within the flow chamber consisted of seventeen (17)
 

individual thermocouples located as shown in Figure 3-1. The thermocouples were
 

Type T teflon sheathed copper-constantan. The nominal outside diameter of each
 

sheath was 0.064 cm. At mid-chamber height (60 cm) and at the upper chamber (120 cm)
 

two (2) thermocouples measured centerline carrier buffer temperatures. The remain­

7.93 cm CHAMBER 
665 cm 

THERMOCOUPLE LOCATIONS5.39c 
-- 4 125 cm
 

286 cm
 

0.32 cmi_.F160 c. 1 I 

O 0 UPPER CHAMBER (OUTLET) CROSS SECTION 

CATHODE SIDE ANODE SIDE 
MEMBRANE MEMBRANE
 

o 0 MIDCHAMBER CROSS SECTION 

INLET CROSS SECTION 

FRONT
 

Figure 3-1 
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ing six (6) thermocouples at each location measured buffer flow chamber wall temp­

eratures. Additional measurements of chamber inlet and outlet temperatures were
 

gathered from thermocouples located at the coolant jacket inlet, electrode chamber
 

inlet and both electrode chamber outlets. The thermocouples measured center stream
 

temperatures, and were of the same teflon sheathed copper-constantan type as those
 

installed within the chamber.
 

Pressure measurement was performed with one Bourdon direct pressure gage and two
 

(2) differential pressure transducers. The direct pressure gage monitored the flow
 

chamber static pressure at the inlet height. One each mechanical type differential
 

transducer was utilized to measure the pressure drop across the cathode side mem­

brane (i.e. between electrolyte and carrier buffer flow chambers) at the chamber
 

inlet and 120 cm heights. Pressure measurement was not intended to provide data
 

for correlation with analytically predicted chamber pressures but rather as an op­

erational monitor against over-stressing the electrode membranes.
 

Electrical field strength instrumentation within the carrier buffer flow chamber
 

consisted of seven (7) pairs of 0.1 cm diameter gold pins at chamber heights of
 

3.4 cm, 22.4 cm, 41.7 cm, 63.6 cm, 79.8 cm, 98.7 cm and 118.0 cm. Each pair of
 

pins were 7.65 cm apart, with each pin approximately 0.3 cm from the adjacent
 

membrane. Penetration of each pin into the buffer solution was approximately 0.1
 

cm. Flow chamber electrical field strength (volts) at each reference height was
 

then measured between the two pins of each pair and reduced to volts per centi­

meter (v/cm).
 

3.4 CALIBRATION
 

All test hardware instrumentation was calibrated immediately preceeding the
 

start of contract work. All twenty-two (22) thermocouples, cables and the digital
 

readout were calibrated as a system. Thermocouple error was +0.55 C and gage pres­

sure accuracies were +0.15 psi. Pressure transducers were calibrated to an accur­

acy of +0.075 psi, Chart record pressure readings were evaluated with accuracies
 

of +0.25 psi. The digital voltmeter readout of electrical field strength values
 

was calibrated to an accuracy of +1.02 volt over the range of chamber potentials
 

measured.
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In addition to test instrumentation installed on the flow chamber, fluid flow meter­

ing devices in the support setup were calibrated. Each fluid flowing through the
 

chamber and cooling jackets, i.e. carrier buffer, electrolyte buffer, and jacket
 

coolant, was metered prior to introduction at the chamber. The flowmeters were
 

the spherical float type. Calibration curves were generated for each flowmeter
 

at the conditions of flow while installed in the test setup. Carrier buffer flow
 

measurement accuracy was the most critical from the standpoint of test-to-test
 

flow rate control. The resulting instrument accuracy was +4.0% under steady flow
 

conditions, over the range of test operation (20 - 40.milliliters/minute (ml/min)).
 

With regard to potential sources of error in the test run data the fluid flow rates,
 

most importantly carrier buffer, were the greatest hardware related errors.
 

Support equipment included two (2) sample syringe pumps that were calibrated at the
 

discreet sample flow rate settings utilized during all runs. The pumps were in­

dividually calibrated for the particular syringe size used with each run. Cali­

brated sample flow rates were. accurate to +5.0%.
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4.0 BUFFER GRAVITY EFFECTS
 

Assessment of sample gravity effects in free-flow electrophoresis first requires
 

definition of the carrier buffer gravity effects. Buffer gravity effects result
 

from buoyancy forces due to temperature differences in the buffer through Joule
 

heating. Joule heating of the buffer causes distortions of-the parabolic velocity
 

profile described for Poiseuille flow. This section presents test methodology,
 

test results and correlation with the analytical predictions.
 

4.1 TEST DATA COLLECTION
 

Measurement of dye stream patterns was used to quantify the buffer flow profile.
 

These measurements plus flow chamber temperatures and flow rates comprised the
 

useful test data.
 

Preliminary to data gathering, test procedures and criteria were established. Car­

rier buffer flow rates of 20, 30 and 40 millilitersperminute (ml/min) provided a
 

useful range of flow rates with the 120 cm length flow chamber utilized. A range
 

of electrical field strengths across the chamber (0, 10 and 20 volts D.C. per centi­

meters (V/cm))was chosen rather than applied voltage. This choice was made prior to
 

the initiation of testing and was deemed necessary in order to simplify data gather­

ing and presentation during the sample protein and cell studies. Sample movement
 

can be considered a constant function of electrical field strength, but a variable
 

function of applied voltage, because of flow chamber membrane day-to-day electrical
 

resistance changes. For experimental control, electrical field strength was more
 

appropriate and so used throughout the data collection.
 

Uniform coolant,,electrolyte buffer and carrier buffer temperatures at the chamber
 

inlets are desirable initial conditions for an optimum thermal balance when estab­

lishing laminar buffer flow. Therefore, as part of the test protocol, uniform
 

temperature conditions were established at the mid-chamber and upper-chamber
 

(Figure 4-1).
 

Fluid pressure differentials across one membrane were monitored during chamber oper­

ation. This was done in order to prevent over-pressures from occurring during filling
 

of the electrode and buffer chambers which would damage the membrane material or
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seals. Differential pressures of up to 1.0 psid are normal and do not substantially
 

reduce the functional life of the membrane material..
 

Carrier buffer flow stability criteriavwere established to define laminar flow.
 

Steady state laminar flow was defined as a lack of time variant visible fluctua­

tions of continuous dye stream (or streams) over a five-minute period. Conversely,
 

laminar flow disturbance was defined as visible fluctuations or discontinuities of
 

a dye stream (or streams).
 

Flow profile visualization was necessary to allow measurement of the buffer velo­

city, specifically the centerline velocity. Measurement of velocities without
 

physically disturbing the flow itself was achieved by making it visible with
 

Coomassie Brilliant Blue R250 dye. An instantaneous record of the velocity profile
 

was then possible by photographing the visible flow pattern. Neutrally buoyant
 

particles of size, consistency and coloration necessary for photographic recording
 

flow profiles were not readily available. Laser velocimetry was available, but
 

programmatic conflicts, cost and questions of the laser's interference with flow
 

chamber structure decided against this approach. Standard electrophoretic dyes
 

were the simplest means. Coomassie Brilliant Blue R250 was chosen because of its
 

visibility, mobility, and availability. Flow trials were performed to determine
 

a minimum concentration of dye dissolved in buffer, which would flow well over the
 

test range of buffer flow rates while remaining visible the length of the chamber.
 

A concentration range of 1-2 milligram dye per milliliter buffer (1-2 mg/ml) was
 

chosen. At test temperatures (approximately 8°C) the dye stream specific gravity
 

was 0.0006-0.0008 greater than the surrounding buffer.
 

Buffer centerline velocity had to be measured in two parts, the vertical component
 

and the horizontal component, which conformed with the analytical output. Two
 

different dye flow patterns were necessary to visualize buffer movement due to
 

each of these two velocity components. The vertical component had to be visualized
 

at any instant across the entire width of the flow chamber. This meant a relatively
 

uniform front of dye the width of the chamber moving with the flow. To do this
 

dye-was intermittently injected into the carrier buffer previous to the flow chamber
 

inlet manifold. This allowed a homogeneous mix of dye and buffer to enter the
 

chamber. The leading edge of the visible dye front would flow with the highest
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velocity buffer, i.e. the centerline flow. Photographically recording the advance
 

of the front at intervals allowed positional definition of any point on the front.
 

Position or location information was referenced from metric unit scale markings
 

on the flow chamber face. The horizontal velocity component was best visualized
 

using streams of dye. Seven discrete vertical dye streams were formed simultan­

eously by dye injection into the buffer flow chamber through sample ports with equal
 

spacings of 1.06 cm. In established laminar flow any differential horizontal move­

ment of the continuous dye streams was photographically recorded in reference to
 

the scaled chamber face. The crescent distortion phenomena would tend to spread
 

each stream. Therefore centerline buffer movement was correlated with movement of
 

the densest (darkest) visible portion of each dye stream.
 

Tests were performed in accordance with the two matrices of Figures 4-2 and 4-3.
 

(The tests were not necessarily performed in order numerically, however). The
 

first tests were the nine (9) vertical velocity component runs (Figure 4-2). Cham­

ber inlet configuration for these tests provided the uniform mix of dye and carrier
 

buffer across the separation chamber width as described in Section 3.2. Carrier
 

and electrolyte buffer solutions sufficient for up to eight (8) hours of operation
 

were prepared daily as described in Section 5.1. An electrolyte buffer solution
 

concentration (and ionic strength) five (5) times that of the carrier buffer was
 

used in order to reduce electrical resistance across the membrane.
 

Preliminary runs with photography evaluation of dye front visibility resulted in
 

selection of a 1.5 mg dye per ml carrier buffer solution to mark the flow stream.
 

A stock of this dye solution was stored at 4°C and kept for five (5) days before
 

being discarded and new stock prepared. For each run the dye solution was injected
 

at room temperature from a syringe into the carrier buffer.
 

The first run conducted each day was a zero-voltage case. This allowed confirma­

tion that a steady state laminar flow condition was present in the separation
 

chamber. Flow stability was determined by two means. First, a consistent stream
 

pattern as visualized by short period (5 second) dye solution injection, at 5
 

minute intervals. Second, by even separation chamber wall temperatures at mid­

chamber height and upper chamber. Here even was defined as temperatures falling
 

within +0.4°C of the average at each chariber height4(Figures 4-1(A) and 4-1(B)).
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The first daily run was commenced after steady laminar flow was established.
 

Dye was injected into the carrier buffer flow for mixing immediately preceeding
 

the inlet manifold. Dye injection for the 20 ml/min buffer flow cases was 8 ml/min
 

over a 15 second period. For the 30 ml/min and 40 ml/min buffer flow cases it
 

was 12 ml/min over 12 seconds and 15 ml/min over 12 seconds, respectively.
 

Timing of the run started at the first visible incursion of dye into the separation
 

chamber at 0 cm chamber level. This inlet plane was viewed directly perpendicular
 

to the flow. Timing was initiated manually. The advance of the dye front up the
 

120 cm chamber length was photographically recorded at regular intervals with the
 

elapsed time of each photograph noted. Figure 1-2 shows a typical photograph.
 

The number of photographs per run taken during the 20 ml/min buffer flow cases and
 

used for data reduction averaged thirteen (13). The 30 ml/min and 40 ml/min buffer
 

flow cases averaged ten (10) photographs each run for both cases.
 

Following the zero-voltage run voltage was applied to the electrophoresis chamber
 

for the 10 volt/cm field strength case, then the 20 volt/cm case at the control
 

buffer flow rate. Carrier buffer and coolant flow rates remained the same as for
 

the zero-voltage case. The electrolyte buffer flow rates remained essentially
 

the same with only minor (_15%) electrolyte buffer flow rate increases in order
 

to maintain electrode chamber inlet temperatures at the same value set in the zero­

voltage cases. Electrical field strength at pairs of pins on either side of the
 

field was monitored regularly. Readings from seven pairs of pins along the ver­

tical were averaged. For the appliedvoltage runs,flow stability was determined
 

by first, a consistent stream pattern visualized as during zero-voltage cases,
 

second, steady flow chamber temperatures, and third, an average chamber field
 

strength varying not more than 0.35 v/cm over a 5 minute period. Typically,
 

temperatures and field strengths were recorded immediately preceeding dye front
 

introduction for photography.
 

The second set of tests were the nine (9) horizontal velocity component runs
 

(Figure 4-3). For these tests the chamber inlet configuration was changed to
 

inject seven (7) continuous and parallel dye streams into the carrier buffer flow.
 

The inlet for this set of runs is described in Section 3.2. Buffer and sample dye
 

preparations were as described for the vertical velocity component runs.
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Preliminary run evaluations selected a dye solution of 1.0 mg/ml. Total dye sample
 

injection rate was set at 0.15 ml/min, 0.20 ml/min and 0.30 ml/min for the 20 ml/min,
 

30 ml/min and 40 ml/min carrier buffer flow cases, respectively.
 

Zero-voltage run flow stability was confirmed by two means. First, steady dye
 

streams as defined by lack of lateral movement or waivering over a 5minute period 

and, second by the same even separation chamberwall temperature as defined for the 
vertical component runs. Carrier buffer, electrolyte buffer and coolant flow rates
 

were the same as set for the zero-voltage vertical velocity component runs.
 

Timing during stream photography was not necessary with the continuous dye streams.
 

Photographs of the flow chamber were taken at 20 cm intervals from 20 cm to 100-cm
 

in height. Data reduction was later done by finding the lateral coordinate of
 

each dye stream as it crossed the 20, 40, 60, 80 and 100 cm vertical level.
 

Conditions for the horizontal component runs with voltage applied, were established
 

essentially as they were for the vertical component runs. Temperatures and field
 

strengths were monitored and recorded in the same manner as discussed previously.
 

4.2 DATA REDUCTION AND CORRELATION
 

Effects of gravity on the buffer flow were evaluated by the tests given in the
 

matrices of Figures 4-2 and 4-3. The first nine tests used horizontal dye fronts
 

to determine vertical centerline velocity. The results of the test data reductions
 

and the corresponding analytical predictions are presented in Figures 4-4 through
 

4-21. The reduced data for vertical centerline velocity at 0 volts/cm and 20 ml/min
 

buffer flow is presented in Figure 4-4. Here the velocity varies little from side to
 

side, as would be expected, particularly near the inlet. The expected profile
 

is illustrated by the analytical predictions shown in Figure 4-5; that is, a
 

constant velocity except in the vicinity of the membranes. It should be noted
 

that the reduced test data, as well as the photographic data, show some rounding
 

of the velocity profile with length in the chamber as shown in Figurel- 2 for a
 

flow rate of 40 ml/min. This is probably the result of non-uniform heating of the
 

buffer and coolant by conduction through the faces of the unit. These effects do
 

not show up in the predictions, because a constant ambient temperature was used
 

as a boundary condition. Similar results are shown in the 0 volt/cm data presented
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in Figures 4-10 and 4-11 for a buffer flow rate of 30 ml/min and in Figures 4-16
 

and 4-17 for a buffer flow rate of 40 ml/min.
 

The reduced data for vertical centerline velocity at 10 volts/cm and 20 ml/min
 

buffer flowrate is presented in Figure 4-6. Here the vertical centerline
 

velocities appear to be constant across the chamber at the one centimeter incre­

ments where the data was reduced. The original photographs show additional
 

peaks in the velocity profile near the membranes not evidenced by the reduced
 

data. These peaks are illustrated by Figure 1-3 at a flowrate of 40 ml/min.
 

The data reduction does not indicate the presence of these peaks, because it
 

proved impossible to reliably measure the vertical height coordinates of the
 

profiles in the area near the membranes, where the slope of the profiles was
 

almost vertical. In addition to this, the electrophoretic mobility of the dye
 

shifted the dye fronts away from the cathode in the direction of increasing width
 

in the chamber. This caused all the points at 1.031 cm width to be beyond the
 

velocity profiles as indicated by the "R's" in the reduced data. Calculation
 

at these points would have required extrapolation instead of interpolation of
 

the data; a risky procedure at best. The corresponding analytical predictions,
 

as presented in Figure 4-7, do indicate the presence of velocity peaks within
 

about 0.2 cm of both membranes. The velocity peaks near the outlet are about 5%
 

greater than the velocity at mid chamber. Similar comparisons are indicated by
 

Figures 4-12 and 4-13 for a buffer flow rate of 30 ml/min and by Figures 4-18 and
 

4-19 for a buffer flow rate of 40 ml/min.
 

The reduced data for vertical centerline velocity at 20 volts/cm and 20 ml/min
 

buffer flow rate is presented in Figure 4-8 and the corresponding analytical pre­

diction in Figure 4-9. Here the analytical predictions show even higher velocity
 

peaks near the membranes, as would be expected at the higher voltage level. Similar
 

results are indicated by Figures 4-14 and 4-15 for a buffer flow rate of 30 ml/min
 

and by Figures 4-20 and 4-21 for a buffer flow rate of 40 ml/min.
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.2372+00 .1507E+00 .1618E 00 .1494F400 .1444E+00 

.1347E+00 .2177E#00 .2336E+00 .216E+00 .ZI00E00 

.13%7E+00 *2220EO0 .2331E+00 .2261E#00 .2217;+00 

.1347E440 .207IE*00 .2110E+00 .2096E00 .zOB9E+30 

.1347E+03 .231E+00 .20SSE.U3 .zasoroo .2048E400 

.1347E+00 .2023C+00 .a042E*JO .203f1FVO .2037E+00 

.134?7E+00 .2023E+00 .2042E4)0 .2038E+00 .2037E+,O 

.13472+00 .20232+00 .204?240& .20385400 .2037E+00 

.13472+00 .2023E+00 .2Z04E+00 .2038E400 .?0372+00 

.1347E403 .2023E+00 .20423+0 .2036E+00 .2037F400 

.1347E+) a331E00 .2054E#00 .2349E00 .2047E00 

.1347E03 .2369E00 .21.BE400 .2094E+00 .2187E+00 

.1347E00 .2219Eo*0 .23352.00 .2271E+00 .220EEE00 

.1347E+00 .227ET:O .219iE00 .2316E+00 .2249E00 

.1347E+00 .19172400 .1729E+0 .1675P+00 

.1347E+00 .1010E+00 .1130E+00 .10326+00 .1010E+00 

.1347E+00 0, 0. 0. 0. 
0.00 5.00 10.30 20.00 40.00 

o. 0. o. 0. a. 0. 
.6519E-01 .8795E-01 .9009E-01 .9891E-0I .1207E400 *1347F400 

.24622+00 .1508E00 .1S436+00 .2703E+00 * B2108EO.2347F+00 

.2117E00 .2173E+00 .2214E430 .2419E00 .2950E 00 .1347E400 

.2243F400 .22eO 30 .2209E.OC .2430E+13 .2ZF4O0 .1347E CC 

.2(96E+00 .2108E00 .2119F+00 .?154E+00 *2229E+10 .1347E 0C 

.2052E430 .25'8C+00 .2064C+00 .20P1E00 .2114E+00 .1347[+00 

.204OE403 .2345E430 .20500E+0 .2 6?E+OO .OF0+OC .2347r4o 

.20E00 .2CZ454J0 .2&5E+E+20t .2062E+00 .2089E00 .1347F+00 

.2040E+00 .20432,20 .20502400, .2062r.00 .2089E400 .1347F+00 

.2043E400 .205E+O0 .205E+00 .20625+00 .2089E 00 .1347(400 

.2040F400 .2045E+30 .250EIC .206?F*00 .2089240C .1347E-00 

.2050E400 .2057E+0 .206?ECC *2079F400 .2112E+00 *1347ECG

.2J34E430 .2106E400 .2117E+00 .2152E+02 .222E00 .13 7E+00 

.2267E400 .2314E 00 .2355E+00 .24972+01 .Z603e+00 *1347E-OO 

.2332E+00 .2406E00 .2491E+00 .2819E+00 03T285+00 .1347E+00 

.1736E+03 .145E+00 .1931E400 .2268E200 .3161S+00 .1341E+00 

.10552+00 .1127E+00 .1105E+00 .1399E+00 .1947E*00 .1347E+00 
0. 0. 0. 0. 0. 0. 

60.00 60.00 100.00 110.00 115.00 120.00 

r 

C 

~m00 

7,22 
S1.031 

FIGURE 4-9 
> 

< 
r 0 
*(m 

I0 



PDAC-STL CLECtRLPHOPFSIS nATA RpUcTInN -

ORIGINATORS 0.Id. RICHMIAN 12/79 Y r 
RUt Nfl. 4. TCST IN(rNFF't c.r. WALKFP 

BUFFER FLnW 30.0 PM!IN, WPL T TCMP 6.3 1 

C 
FIELD STRENGTH 
BUFFER VERTICAL 

O. V/CMf 
CFNTFRLUIF VFInrITY 

WIDTH 

ib 8.250 

0.2?5 

kh 6.200 

8.150 

o 8.050 

7.050 
7.219 ,26irC0 .?194E#00 .?$17h*00 .?774Fr01 .26IF+00 

S6.18 ,?795ftCu .Z9bF.00 .2636E#00 .2qFFln0 .?6pq9 oo 

5.156 .2929F+GU .2b23EO .2874L+30 .?0TF+ O .2858F+00 
4.125 ,?OR3EtCO .2031E1O0 .2912L+00 .'qa8F+l .?8?5E+00 

o 3.094 .1 2QE00 .2785E+O0 .2876F-00 .315qF00 .2829F+00 
2.063 
I.G31 

,347FP*00 
.2774E+00 

.2756E100 

.2747E+00 
.2769E*00 
.2731E00 

.?9QOF+00 

.? 7EDo0 
.28119400 
.2816E+00 

.400 

.20 

4 .100 

r .050 
C .025 

0.000 
LENGTH 0.00 5,0r. I0.00 20.00 40.00 60.00 80.00 100.00 110.00 113.00) 120.00 
HEIGHTS CATA * 

Logh 
D 

4­

F.2± n FIGURE 4-10< 

L11F 
(LENGTH 



;fli 

C MDAC-STL ELECROPhoRESIS ANALYSIS P~qGRAN 

ORICINArOP 0.W. RICHMAN q¢7s 
RUN NO. 4, TFST (NGI lF~f C.D. WAIKFP 
BUFFER FLOW 15.0 MLIM1N, INLFT TFMP 6.3 C 

FIELO SrRFNGTH 0.0 VICM 

BUFFER VERTICAL CFNTERLI4F VrtOCITY 

r WIDTH 

6.250 *2020F*O 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

8.2P5 .?0?OI*O0 *tO53F*00 *lO.1F403 .1054E+00 .iCSBE4O .1062+00 .1065F+1O .106qt.O0 .1072E+00 .1076E+00 .OZOE00 C 

I 6.200 *20?00 .1801E+00 .1833E+00 .1806E+00 .1011E+00 .1816E+00 .a18IF10 .1826F+00 .1831E+00 .1837E*00 POZOF+00 
8.150 .2O29F+00 .2656E00 .?(60r.00 .?663E+00 .2667E,00 .2671F400 .7675E#00 .2679E#00 .2663F*00 .2691E+00 .2020r400 
8,050 .2020F00 .303hE400 3050F400 .3052E'00 .3054E+00 .3056E+00 .305it*00 .306lP*00 .3064E+00 .3075E400 .2020E-00 
7.850 .2070*+0 .307?Fl00 .317SF*00 *30q7F+00 .3099L000 .31005*00 .310?F+0o .3105 F00 .3IC8FO0 .3120E+00 .?020E+00 

N 7.219 .2020*00 .308E*+0 .309'.F400 .3090E+00 .3100E+00 .3101f+00 .3101F*00 .3104F+00 .310'4.00 .31215.00 .2020E+00 
*0 6.188 

5.156 

.20?09'00 

.2020OO0 

.3079f*00 

.3077F*00 

.3)5P#00 

.30q1E400 

.3096F*0o 

.10'16E400 

.3098F+00 

.3098E+00 

.3099I0O0 

.3099f+iO 

.101F.00 

.11OF*Tl 

.3103F+00 

.3103F+00 

.31C6E+O0 

.3106E+00 

.3117E+00 

.3117r.00 

.?020f+00 

.20?+00 
4.125 .2025* 0 .3071E+00 .3095E-00 .3096E+00 .3098+00 .3099E+00 .3101F+90 .3103E+00 .3106E400 .3117F+00 .2G20E00 
3.094 .2020E+00 .307;E+O0 .3095E+00 .30965*00 .3098E00 .3099E+00 3101E00 .3103E+00 .31C6E0o0 .3117E+00 *2C2CE00 
2.063 .2020O+0 .3071E*00 .3095F+00 .3096F.00 .309@E+00 .3099E+00 .0101F+00 .3101'+00 *30fE+00 .3117E#00 .70205+00 
1.031 .ZOZOF*00 .3079E*00 .3076E400 .30QE400 .3099E+00 .31015*00 .3103E+00 .3105E+00 .31fF+00 .3120t.00 .20206E.O 
.400 .2020E+00 .3073F+00 .30955O0 .3096E+00 .3098E+00 .3100E+00 .I102E*0 .310F+00 .3107E*00 .3118E+00 .2020E.00 
.200 ZOZOE+00 .30345+00 .3050E00 .3053E*00 .3055E400 .3057E+00 .1061E+00 3062F+00 .30C6E600 .3078E+00 .ZC20E+00 
.100 .2070?+00 .2655F+00 .2662E*00 .2667E+00 .2673E+00 .2679E+00 .2695F+00 .2691F+00 .269,E400 .2705E+00 .2020E+00 

..050 .20ZOE00 .lSOtE+00 .1806E400 .1813F+00 .1822E*00 .I30E*00 .1S37F+00 .1844E+00 .18505+00 .1857?+00 .2020E00 

.025 .2020E+00 .105)F#00 .1054E+00 .1059E+00 .1066E00 .1073E400 .107F+00 .IO3F+00 .108?E00 .1092E+00 *2020E00 
0.000 .2020E+o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

LENGtH 0.00 5.00 10.00 20.00 40.00 60.00 60.00 100.00 110.00 115.00 120.00 

4--G 

07.219LIL.Ot<hO I1.031 Fl LMTH 
FIGURE 4-11 

goo
> ro0 

m0 



MOAC-STL £LECVRLPHOUdSIS DATA PFnUCTION -

hin 
ORIGINArORS D.1. AICJ':A 1,/7l rn 

PUN NC 5p TCST r NPiFrF C.D. WALVER 

BUFFtR FLOW 10.C PLINTN, IlNFT r''p 6.? C 

FIELD SIPFNCTH 10.1 V/CM 

BUFFER VFRTICAL CENTFPL14F VFLOCTTY 
kIDTH 

8.225 

8.200 

8.150 

8.050 

7.R" 

7.214 *P853FfUO .2636E#00 -.1175E+01 .4041F400 .Vg7;E+00 

46.IBB .2910E#GO .2659L+30 .2591E+00 .1?7QF4O .34q8r0 

5.156 .3026900 .267CE900 .2615E.00 .31qilE*D0 .3752F00 

4.125 *3013E*00 .2647C*00 .Z6OE+00 .3080E+O0 .3680E900 

3,0'4 .2945E+C0 .2615E400 .24980+0 .3014FflO .3690+00 

2.063 .288CE000 .2503E-00 .2*92(00 3?00F+00 .4105E+00 

1.031 R R R 4 R 

.400 

.200 

IlqO 

S 
C5 

.025 
0.000 

LENGTH .00 5.00 10.00 ?0.00 40.00 60.00 RO.0 100.00 120,00 115.00 120.00 

HEIGHTS ' DATA R 

4"--G m 

20.0 100.0 
-7 

LiI.031 7.19FIGURE 4-12 < 9 

>cm 
LflDN
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MOAC-SIL ILECrPuIPH(IRES1S ANALYSITS PVqGRAi 

URIGINATOR: O.W. RICHMAN 9lT7 :rr 

RUN NO. 5, TEST FNG!rrr C.0. VAL(EP
 
BUFFER FLOW 15.0 MLIMJN, ILrT TEKMP 6.7 C
 

FIEL0 STRENGTH 10.1 V/CM
 

BUFFER VERTICAL CFNTFRL14F VILPCITY
 
WIDTH 	 Q)
 

8.250 .20)F+00 0. 0. 0. 0. 0. fl. 0. 0. 0. 0. 
 r
 
0.225 .2020F00 .107SF*00 ioi5r+o0 .10AIF400 .1083E+00 .1089E+00 .IOQRE+nQ .1104F+00 .1119EfO0 .1148E+0 .2020E+00
 
6.200 .202OF+00 .1851F+O0 .18696+03 .1858F+00 .1857E+00 .18656400 .1877F*0 .116E+00 .191E+00 .1965E+00 .2020E+00
 

B.150 .20?Ot.00 .273OF400 .?756F+00 .2ARE400 Z731E00 *2738E+00 .7751F+00 .2761P400 .2794F#00 2167+00 .20200E+0
 
8.050 .20POE400 .3074F+00 .3107E*00 .30q8t+00 .3094F+00 .3099E400 .3101F+00 .1115F400 .3132F400 .3190f*00 .2020t.00
 
7.850 .20ZO4O0 .308'F+0 .3106F+00 .3105E#00 .3105E*O0 .310OE*00 .3112E+00 .3117E+00 .3127C400 .3153E+00 .2020E+00
 
7.219 .20 20 +00 .307;F+00 .10951I00 .1096E#00 .30972*00 .3099F+00 .310'F*00 .1106E+00 .3112E+00 .313CE+00 .2020*00
 
6.188 .202o+00 .107F+00 .30q1600 .30Q1F#00 .3092E00 .30Q4E+00 .3097F+00 .31006+00 .3105E+00 .3121E+00 .2020L*00
 

S5.156 .20?OF+00 .3077E00 .309IF400 .3091E00 .3092(+00 .3094E+00 .107F4310 .31OOE0 .31050E+0 .3171*E00 .2020F00
 
4.125 .20OE00 .307?F#00 .30912400 .309IF*00 .309E200 .3094E*00 .3097F+00 .IIOOE+00 .31l5E+O0 .3121F+00 .2020E#00
 

3.094 .2070P*00 .3077F#00 .109IF-l0 .3091E#00 .309?E*00 .3Oq4F*00 .3097F*00 .3100F00 .3105E-00 .3121(-00 .2020E.00
 
2.063 .20?02+00 .3072F+Or .309 *00 .3091E+00 .3092[+00 .3094E*00 .30972f0 .31000F+0 .3105E+00 .3121F+00 .2020E100
 

1.031 	 .2020F00 .3074F00 .3095E*00 .30q5f*00 .3096F400 .309E800 .I01F+00 .3105F*00 .3111E+00 .3129E+00 .2L20OF0O
 
.400 .2020E+00 .308|E+00 .3t052400 .3104E+00 .3104E+00 .31C71+00 .3111E+30 .t116E+00 .3125E+00 .3150E*00 .2020E100
 
.200 .2020F+00 .3072E+00 .3106F+00 .3008E+00 .3095E+00 .3102E+00 0112F00 .3122F*00 .314eE+00 .3204E*00 .20201*00
 
.100 *2020E+00 P?738F400 .2773F+00 .2756E+00 .27531*00 .27672+00 .2789F400 .Z805F+0 .2852E*00 .2944E00 .2020E00
 
.050 .2020*.00 .1878E00 .966F*0 .1R94000 .1897E#00 .19146+00 .1936E+00 .1054E+00 .19986400 .2082E600 .2020E400
 

.025 .7020c00 .1096F+00 .1115E+00 .11100E+0 .1115E+00 .1128E*00 .114?F*0O .1155E00 .11020E+0 .1236E400 .2020E+00
 
0.000 .20200E 0 0. 0. 0. 0. 0. 0. 3. 0. 0. 0.
 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 80.00 100.00 110.00 115.00 
 120.00
 

4--G	 m 

20.0 100.0 	 0 

7.210 	 FIGURE 4-13 < 
> r mI1.031 
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o 

PUN NEl. 6' TFST EN(;r\Irq* C.D. WALKFR 

BUFFER FLOW 33.0 MtIMN, rNtrT TPMP 

FIELD STPENGTH ?0.2 VICMi 

BUFFER VERTICAL CENTERLTNF VFIOCTTY 

6.3 C 

MDAC-STL LLECTRCPHOkESIS DATA RPDUCTInN 

ORIGINATORI D.W. RICHMAN 12178 

-
rr 

Ih 

WIDTH 

8.250 Frj 

8.200 
8.1508.050 

t7.050 

m 

O 

r 

0 

C 

7.219 
68i 

5.156 

4.125 

3.094 

Z.063 

1.031 

.400 

.200 

.100 

.050 

.025 
0.000 

LENGTH 

HEIGHTS 

0.00 

DOATA - P 

3.00 10.00 

:?341E00 
,7442F4L0 

.?516E+C0 

.2552E+00 

.2523E400 

.?466E+00 

R 

20.00 

.?472L:00 

.2432F#00 

.2433E+00 

.2469E+00 

.2534E+00 

.2604 #00 

R 

40.00 

.?7OE00 

.2166E+00 

.Z331E00 

.2349E*00 

.2359E+00 

.3uOIE+00 

R 

60.0c 

.1657400 .i852 00 

.??Q4F+O0 .3110F+00 

2.0ZF O0 .271Oq,0 

.2431rF00 .3121F+00 

.2139F+00 .32701+00 

.1233F+01 -.37901F00 

R R 

40.00 100.00 110.00 115.00 120.00 

20.0 100.0 

FIGURE 4-14 < 9 
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MDAC-SIL tLECrRUPURfSIS ANALYSIS PR0GRAM 


ORIGINATORS D.W, RICHMAN 9F7q
 

PUN NO. 6, TFT ENGINFrIs C.D. WALKFR
 
BUFFER FLOW 15.0 MLIspt TNLET TEMP 6.3 C
 

FIELD STRfhGTH 70.2 VICM 

BUFFER VERTICAL CENTFQI1F VFLOCITY 

8250 .2020F.#00 0. 0. 0. 0. 
 0. 0. 0. 0. 0. 0.
 
8.225 .20?or0 .1195F,00 .1255F400 .12049+00 .1166E-00 
 .1200FI00 .1226F-00 .t246c+00 .1321E+00 .153E4100 .2020E+00
 
8.200 .2020P400 .20RF00 .2196F.00 .?083E00 .2038F 0 .2056E400 .2100E+00 .?133F400 .2284000 .2661E00 .2020E+00
 
8150 .20?OFO0 .3029F+00 *15E+00 .30IME*00 .2969E*00 .2987t4O .3041F+00 .3079E00 .3273E+00 .3774E400 .2020F400
 

8.050 .0OO 00 .3?05F+00 .3315F400 .3755E'00 .3?2E00 .3239E+00 .1274F 00 .1302E+00 .34141E00 
 .36q9F0 .2020E+00
 
7.850 
 .20OF00 .30OtF+O0 .3134F+00 .3177F400 .3116E*00 
 .3123E+00 .3131f00 .3144 +00 .31761#00 .324RE+00 .2020E00
 
7.219 .20?OC.OO .305910 .30856400 .30A?E*00 .30)OE*00 .3084k00 .3090F00 .309AE+00 .3111E+00 .3146E+00 
 .2020E00
6.188 .20?OF+O0 .305?E 00 .3076F*00 .3073F400 .3072E00 .3075F+00 .3080FO0 .3085F00 .30q7E+OO .31*70000 .?0?OF-00
 

5.156 .20201*00 .305?F-0 .3076E.00 .3073F+00 *3072E'00 .3075E400 .30501.00 .3095F*00 .3097E400 .3127E(00 .202OL00
 

4.125 .2070F.00 .30521+00 .3076F400 .3073F00 .30?E*OO .3075E+00 .300F+)O .308qE4O .3097E+00 .3126E00 .2O?0OE00
 

3.094 .2070F,00 .3057F+00 .3076E00 .3073F+00 .30721*00 .3075E+00 .30OF10 
.30P5E00 .3097E 00 .3126E+00 .20201400
 

2.063 .2070F+00 .305FO0 .3076F+00 .l073E#00 .3072E+00 .3075E+00 . OAO+00 .3085F+00 .3097E+00 .3127E00 .20?OE+00
 
1.031 	 .20201+00 .3057F+00 .3085F+00 .30A8E100 .3079E+00 .3083E*00 .301qE10 .3094F0 .3109F 00 .3144E+00 .202CE400
 
.400 .2020*E00 .3093F+00 
 .3132E*00 .3120E+00 .3114E100 .3121E*00 .3137E+00 .3143F+00 .3174E.00 .3246E#00 .2C2GE+00
 
.200 .202OF+00 .3201+00 .3322E+00 .3265E*00 .3240E400 
.3263E00 .3307F+00 .3345F400 .3476F100 .3804(400 .2020F 00
 

.100 .2020-400 .3125F*0 .3341E00 .3175E+00 .3110E 00 .3161E+00 .3261F00 
.3344E+00 .3655E00 .4492E+00 .2020E+00
 

.050 .2020E100 .2303E+00 .2500E+00 .23171.00 
 .2264E00 .2323E00 .2429F+00 .2514E+00 .2838E*00 .3683E+00 .2020F+00
 

.025 .20?OE00 .1359E 00 .1484E#00 .13?9t00 .1351E+00 
 .1401E+00 .1471?+00 .1529E*00 .1737E+00 .2264E+00 .?0206+00

0.000 .2020E+00 0. 0. 0. 0. 0. 
 0. 0. 0. 0. 0.
 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 
 80.10 100.00 110.00 115.00 120.00
 

20020.0 	 m
0, 

1l7.212 FIGURE 4-15 	 goo<
-i 
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DOAC-STL ELECTROPHORESIS 0&TA REOUCTION 

RUN NO. 7, TEST ENGIMEEql C.O. WALKER 
ORIGUMATORt 0.W. RICH'IAW 1217q 

BSUFFER FLOW 0.O MLfMh1, INLFT TEMP 6.9 C 

FIELD STRENGTH 0.0 VIC1 

BUFFER VERTICAL CETELME vELICITY 

C) WIDTH 
9.250 

.223 
ra, 

(0 8.200 
8.150 

o .050 

t 7.850 

0 

S7.219 
6.188 
5.156 

-. IT2E*00 
*155DE400 
.3669F+00 

.4239E+00 

.3708+O0 

.3791E00 

.3788E+O0 
*3966E*00 
*3 0 0 

.3012E1O 
IOQQFt00 

.3q?TF+09 

.3943E00 

.3899E+00 
?oS96E00 

4.125 *3699E#00 .3843E+00 .3954E+00 .4171E+00 .3939E+00 
3.3" *368OF+00 .3799E*00 .3868E+00 .*10SE+OO .3961E+00 
2.063 .357E+00 .36046E00 .3904E400 .19146E00 .3951E00 
1.031 .34626E+00 .3540E00 .4032E#00 .318RE+00 .4033E400 

t .490 

.200 

.100 

P .050 

S.025 
(0.000 

LENGTH 0.00 5.00 10.00 20.00 40.00 6000 80.00 100.00 110.00 115.00 120.00 
HEIGHTS b DATA ft 

200100.0 

S7.219 FIGURE 4-16 goo 
1.031>r 

- " 
[-# LETH w m0 



rrq 

t' 

O MDAC-SrtL ELECTROPHOREITS ANALYSIS PROGRAM 

ORIGINATORI 0.g. RICHMAN 9178 
RUh NO. 7, TEST ENGI'haRt C.D. WALKER 

BUFFEP FLO 20.0 PLIMIN, INLET TEMP 6.9 C F3 

FIELD STRElqTH 0.0 VICM 

SWFER VERTICAL CEN7RLINE VELOCITY 

WIDTH 
.250 d694E400 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 

8.?25 .7694E+00 .1398F400 .i117F+O0 .1401E+00 .1405E400 .1409E+OD .1414E00 .1418E00 .142E1+00 .142?E00 .2694F*00 

l.700 2694E+00 :?398E400 o?4006400 .2402E*00 .2408O00 .2414E 00 .2419E*00 .2425E+00 .2430E00 .Z438E+00 .2694E*00 
8.150 .2i94E O0 .1"IE+O .354?E 0 .354qE 0l .3553E 00 .3557E+00 .3561E00 .3566E00 .35?0E+00 .3561E00 .26946*OO 
8.050 .?694F4O0 .4047E400 .4070E400 .4073F+00 .4075E00 .4077E+00 .4079E+00 .406E00 .4 086E4C0O .4106E+00 .694E00 
7.450 .2694E+0f .410?6400 .4130E00 .4133E+00 .4135E6+00 .4137E+00 .4139EO0 .4143E:00 .414RE+00 .4169E+00 .2694E+00 
7.?t9 .7694E400 .4104 +O0 .4132E+00 .4134E+00 .4136E+00 .413RE*00 .4141E00 .4144E+00 .4149E+00 .41OE+00 .2694E+00 

OD 6.191 .2694E400 .4101E+00 .4128E00 .4130E00 .4131E400 .4133E+00 .41356+00 .4138E+00 .4141E00 .,161C+00 .269iE+00 
5.156 .2b64E00 .4101F+00 .41?9E*OO .4130E00 .4131E#00 .4132E600 .4135E00 .4137:00o.4141E+00 .4161E+00 .26946E00 
4.125 .2644E400 .4101E+00 .4l2E+O0 .4130E+00 .4131E00 .4132E+00 .4135F400 .4147E400 .41416+00 .4161+00 .7694E+00 
3.04 .Z694E+00 .4101F+0O .4123F00 .4130E:O .4131E00 .4132E+00 .4135E400 .4137F+00 .41416+00 .4161E00 .2694E+00 
2.O63 .?6QE+00 .4101OE40 .4lZbE+00 .4130E+00 .4131E*00 .4133E600 .41356*00 .4134E0O .4141E00 .4161+00 .2694E+00 
1.041 .76946F+00 .4t03E*00 .413E03 .4114E+03 .4136F.00 .413?E+OO .4140E+00 .4143E600 .4148F*O .4186E+00 .2694E400 
.400 .?6q6E+00 .416*DO .4129F+O .4132E+00 .4133E+00 .4135400 .4138F400 .4141E+07 .4146E00 .4166E+00 .2694E+00 
.203 ~2694E+03 .4046E+00 .40106+00 .4073F+00 .4075E:00 .4077E+00 .4080F+00 .4084E+00 .4088E*00 .4106+00 .Z6946E+00 
.1n0 .2694E00 .3541E+00 .3544E+00 .3554E+00 03561E00 .356qf 00 .3574 +00 .3581C+00 .35876+OO .36OOE400 .2694E00 

a .030 .2694E400 .Z398E+00 .2403E+00 .2410E00 .2421E+00 .2431E+00 .244OE00 .Z448E00 .2455E400 .2465E+00 .2694E00 
.0?9 .26946E00 .1397E+00 .140IE+00 .1407E+00 .1415E+00 .1423E00 .1430E+00 .1435E*00 .1440E+00 .1448E+00 .2694E00 

0.000 .2694E+00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
LENGTTO 0.00 5.00 10.00 20.00 40.00 60.00 8O.00 100.00 110.00 115.00 120.00 

7.210 FIGURE 4-17 < 9 
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§ lMIAC-STL ELECTROPHORESIS ANALYSIS PROGRAM 

ORIGINATOR: 0.14. RICHMAN 9178 l 
RUN 4. 8. TEST ENG1NCERI C.D. WALKER
 

I. BUFFER FLO4 0.0 $L/I IN INLET TEMP 6.9 C
 

FIELD STRENGTH 10.2 V/CM
 

eBUFFER VERTICAL CENTEILtNE VELOCITY
 
Qr* WDT4 

b8.250 .'594E+13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. rri 

8.275 .?6Q4EO00 , .1 E*00 .1440E+00 .1436 +00 .144q-00 .1448F*00 .1457?F+3 .1466E+00 .1483E400 15t7E+00 .26946E+00
 
8.?03 .604E*+O0 .?460F400 .74POE*00 Z468E+00 .2464E+00 .247?E+00 .Z493E+O0 .2506E+00 .2536E400 .2596E*00 .26946*00
 

0.150 .7644E400 .3626 00 .3651E400 .36396+00 .3631E+00 .36409#00 .1655F+00 .36686600 .3706E+00 .3766 +00 .2694E*00
 

8.050 .2694E*00 .4988E600 .4134E00 .4125G400 .4120C+00 .4125E+00 .4136 +00 .41456E+00 .4172E+00 .4239E+00 .2694E(0
 
7.450 .?694E+00 *410iE+C0 .4140E+00 .4140 00 .4139 +00 .4143E+00 .4148E+00 .4154E+00 .4167E+00 .4203E+00 .2694E6+0
 

Si7.2L9 .2 .6;400 .417?3+00 .4130E+00 .4136E+00 .4149E+00 .2694E+00
.4096E00 .4114E+00 .4133E*00 ql41lE+00 .4177E#00 

6.11l .604E*0) .4042F+00 .4173E430 .*1?3EO0 
 .4174E+00 .412?F.00 .4130E00 .134E+00 .4141E+00 .41666E+00 .26946+0
 

5.154 .2674E400 .4392E+00 .41?'F+t0 .41?3E*00 .4t'4E400 .4126E+00 .4tlOF+00 .4134E+00 .4141E+00 .4166E+00 .2694E+00
 

4.125 0.6;4E+00 .4092E00 .4173E+00 .4LZ3E+00 q'tZ4E O0 .4126E*00 .4130EOf) .4134E+00 .4141E+00 .4166E+00 2694E+00
 

3.094 .Z694+E0 .4092F*00 .4173E#00 .4123E00 .414E+00 .41264E0 .4110E+00 .4134E 00 .4141E+00 .4166E+00 .2694E+00
 

2.36.3 .?694E-00 .4092400 .4123E+00 .4123E,00 .41 4 +00 .412TE+00 .4130E+00 .4134E*00 .4141E+00 .4166U+00 .2694F600
 

1.031 .?604E+00 i395E+00 .4117E+00 .41E8+00 .4129E+00 .4132E600 .4135F+00 .4140E*00 .4146E400 .4175E+00 .2694E+00
 

.400 .2694E+O3 .4103E+00 .4130E+00 .4138E+00 *4139'+00 .4141E+00 .4146E+00 .4152E+00 .4164E+00 .42006+00 .2694E00
 

.?00 .26)4E+00 .4055E+00 .4137E+00 .4124E*00 .4121C+00 .4128E+00 .4141E+00 .415E+00 .418ZE+00 .4754E*00 .Z694E+00
 

.100 .2694F+00 .34156+00 .3679E+00 .3650E00 .3659E+00 .3675E+00 .3699E+00 .3719E+00 .377ZE+00 .3679E+00 .2694E+00
 r
 
.2-200 .?513E*00 .7.18E00 


.0?5 .2694F+00 .145iE+00 .147E+00 .1472 +00 .14OEOO0 .149$E+00 ;1t2E+0 .1526E+00 .1558E 0 .1620E+00 .2694C+00
 

o .050 .?694E400 00 Z5Z91E .2539E+00 .Z563E+O0 .256E+00 .2635C-00 Z73ZE+O0 .294E+00 

0.000 .?694F+00 0. 0. 0. 0. O. 0. 0. 0. 0. 0.
 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 80.00 100.00 110.00 115.00 120.00
 

20.0 100.0 0
 

7.210 FIGURE 4-19 <00 
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CI 

SUN NO. q),TmT ri(jNorPg i:.r. WALKSP 

S'JFF&R FLOW 41.0 MLIl4,p T4LCT TIMP 

FIELD STRENGTH 20.0 VIC" 

AUFFfR VERTICAL CENTFfLr VFtOCITY 

WIDTH 
1250 

6.8 C 

DAC-SIL ELECTPCPIIDAESIS DATA RFOUCTflN 
aRIoINArTwI Doa. ezCHsA IP/4zt 

ri, 

r 

6.2?5 
8.200 
9.150 

C 

8.053 
7.50 

7.219 

6.108 

S0.16 

4.125 

.GQ04 

2.0b3 

I.*01 

.316E*00 

.1701E*C0 

.38f.PF*LJ 

.3861E+00 

.3803F400 

.18336*00 

.18f*00 

*370OE40 

3556E400 

.3626E400 

*3624E+00 

.3512E+00 

.3544Et00 

a 

.3347E+00 

.3536E+00 

.3670E*400 

.3655E*00 

.346?k400 

.3441E400 

1 

.3611rt30 .2361EF+00 

.1590E#90 .3191F#00 

.1478401) .344?E00 

.35 4F*00 .3i84a400 

.s5804 00 .31415,00 

.*tl6F*00 .3l00E*00 

1 

.200 

.100 

.050 

.025 

0.000 
LEITH 
folle"TS 

4-
20.0 

0.00 
• ATA . i 

G 

100.0 

5,00 10.00 20.00 40.00 60.00 80.00 100.00 110.00 115.00 1*0.00 

0 

H# 
7.2= 
1.031 
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NOAC-STL ELECTROPHORESIS ANALYSIS PROGRAMN 
. ORIGINAVORI ODW. RICHNAN 9178 

c 
t 

rJRUN 140. 9, 
BUFFER FLO 

TEsr ENGP*"ER, C.O. VAL(6ft
10.0 rLiIIN, INLET TFP 6.8 C 

FIELD STAE4GIH ZO.2 V/C1 

BUFFER VERTICAL CENTeRLINE VELOCITY 
IDT4 

i 8.250 .?6q4E+0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Ci 
6.7 5 .604E*00 .1557F*00 .162SE 00 .1573E+00 .1554E00 .1579E00 .1612E 00 .1638F+00 .1733E#00 .196E00 .2694E400 
8.?00 .?6946+O0 .?123F400 .?844E+00 .2?2E+0O0 .260GE*00 .?706E+00 .2760+00 .28016.00 .79756*00 .1402F+0 .2694600 
0.150 .694+E*00 .34724E00 .415E+0O0 .3991E+00 .3914E00 .3037E+00 .401E+00 .4047E+00 .4266 +00 .4"29F+00 .?694 00 
S.050 .76q4E O0 .4243E400 .4385E+00 .4315E#00 .420E+00 .479?E+00 .4338E*00 .4372F+00 .45046E+00 .4633E00 . *4 00 
7.851 . 604E*O0 .4115E00 .41756400 .4162+00 .4156E+00 .4163E00 .417TE00 .419IE+00 .4230E+00 .4324F#00 .2694F+00 e 7.?1 .2694F+00 .4075E400 .411?E+90 .4113E+00 .41tl*00 .4116E+00 .4123E+00 .4131E+00 .41SOCO00 . 2OOE+0 .26946400 
6.188 
5.215 

.21694E00 

.2694E+00 
.1067E*00 
.4067F400 

.4O;E*00 

.4104E+00 
.41OIE400 
iIO1E*00 

.4100E+00 

.410. 00 
.4104E+00 
.4104E+00 

.4110E+00 

.4110 + 0 
.4116E+00 
.4116E+00 

.4132*400 

.4131E+00 
.4113E00 

.4173E*00 
.2694F+00 

.2694E600 

o 

S203 

P 

4.17?5 
3.094 

2.063 
1.011 

.400 

.100 

.050 

.1694E+00 

.7694F+00 

.26946f+(0 

.?694E+O) 

.2694E+00 

.7694E600 

.7694E+00 

.?64E00 

.4367?*00 

.4067F+00 

.4067E400 

. 074E00 

.4113E+00 

.4744E+00 

.405S*ECO 

.?97SE400 

.4104E+00 

.4104E+00 

.4104E+00 

.41E400 

.NI7E*O0 

.4389E+00 

.4339E+00 

.321,E+00 

.4101E+00 

.41OE00 

.4101E+CO 

.41120+0 

.4160E+00 

.4329E+00 

.4165E+00 

.3030E*00 

.4100E400 

.4100E+00 

.4100E+00 

.4110E+00 

.4153E00 

.4300E+00 

.4096E+00 

.2979t600 

.4104F+00 

.4104E+00 

.4104E+00 

.4114E*00 

.4161E00 

.432?E+00 

.4159F.+00 

.3053F+00 

.4110E+00 

.41OE+00 

.4110E+00 

.4122E+00 

.4175E+00 

.4379E+00 

.4277600 

.3176E00 

.4116E+00 

.4116E00 

.4116E*0 

.4179E00 

.418BE+00 

.4425E00 

.4373E+00 

.327 E+00 

.4131E+00 

.4131E+00 

.4132E00 

.4146E00 

.4727F*00 

.4579E00 

.4728E#00 

.3650E400 

.4113E+00 .2694E00 

.4171E+00 .2694C+00 

.4173E+00 .2694E*00 

.4lqTE*o00 .2694+00 

.4320E+00 .2694 400 

.4964E"0, .2694E+00 

.56746+00 .2694E+00 

.4604E#00 *2694E+00 
.OZ5 .2694F+03 .1755E+00 .1909E+00 .1607E+00 .179E+00 1 43E*00 .19O66+00 .1992E00 .223S1400 .2840f#00 .2694E+00 

0.000 
LENGTH 

604E6+00 C. 
0.00 5.00 

0. 
10.00 

0. 
20.00 

0. 
40.00 

0. 
60.00 

0. 
80.00 

0. 
100.00 

0. 0. 
*10.00 115.00 

C. 
190.00 

20.0 *00.00 

7.2 0 FIGURE 4-21 < 900 
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The second nine tests given in the Figure 4-3 Task 1.0 Test Matrix used dye streams
 

to determine horizontal centerline velocity. The reduced data for horizontal
 

centerline velocity at 0 volts/cm and 20 ml/min is presented in Figure 4-22. The
 

expected value of horizontal centerline velocity with no field applied is 0.0 cm/sec.
 

From the reduced 'data, the predominant order of magnitude of the data is 10-
4
 

cm/sec. This is larger than the analytically predicted values found in Figure 4-23.
 

It is apparent from the test data that the magnitude of the values represent the
 

limit of accuracy foy the test method. Similar results are shown in the 0 volt/cm
 

data presented in Figures 4-28 and 4-29 for a buffer flowrate of 30 ml/min and in
 

Figures 4-34 and 4-35 for a buffer flowrate of 40 ml/min.
 

The reduced data for horizontal centerline velocity at 10 volts/cm and 20 ml/min
 

buffer flowrate is presented in Figure 4-24. Here the horizontal centerlineveloci­
-
ties appear to be grouped abouta value of about 2x10 3 cm/sec. With voltage
 

applied, the electrophoretic mobility and the electroosr;otic return flow cause
 

the dye streams to deflect toward the anode. This deflection is pictured at
 

a buffer flowrate of 40 ml/min in Figure 1-7. The deflection causes all of the
 

points at 1.031 cm and three of the points at 2.063 cm are outside of the first
 

dye stream near the cathode, as indicated by the "O.'s" in the reduced data.
 

The points were zeroed instead of extrapolating the test data, which would
 

have been unreliable. The corresponding analytical predictions are presented
 

in Figure 4-25. Here the horizontal centerline velocities within the reduced
 

data field are nearly constant about 2 X 10-3 cm/sec toward the anode and the
 

velocities decrease to zero at the membranes. Because of the magnitude of the
 

measurement errors, as indicated by the scatter with no applied field as shown
 

in Figure 4-22, no conclusions can be drawn with respect to trends of the data.
 

Similar results are shown in Figures 4-30 and 4-31 for a buffer flowrate of
 

30 ml/min and by Figures 4-36 and 4-37 for a buffer flowrate of 40 ml/min.
 

The reduced data for horizontal centerline velocity at 20 volts/cm and 20 ml/min
 

buffer flowrate is presented in Figure 4-26 and the corresponding analytical pre­

diction in Figure 4-27. Here the analytical predictions show increased horizontal
 

velocities, as would be expected at the higher voltage level. 'Similar results
 

are shown by Figures 4-32 and 4-33 for a buffer flowrate of 30 ml/min and by
 

Figures 4-38 and 4-39 for a buffer flowrate of 40 ml/.min.
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fO&C-StL DATI 'ErUCTIMn 

ORIGINATORa O.. RICHAN 12178 
RUN NO. I, TEST FNG1PFF-S C.D. WALKER 
SUfFER FLOW 70.0 L/IN. MKETTEMP 8.2 C 

FIELD STRENGTH 0.0 V/CM 

BUFFER HORIZONTAL CEHFER.INE VrtuCITY 

tMIOTH 

0.225 

8.200 
.150 

o.050 
7.850 

1.219 0. .4050E-03 0. 0. .II1OE-02 
6.180 .7763E-02 .4543E-03 34et-03 .lQ- .4056E-03 
5.156 .2632E-02 .40121-03 -.6554E-01 -. 4404F-03 -. 30111-03 

4.125 .2711E-02 .34501-03 -.6564E-03 -.9041E-03 -.5074E-03 

3.094 .114560Z *2571E-03 -.)3?E-03 -. 035-03 -. 3015-03 
2.063 .1471i-02 .3449E-03 -.1915E-03 *.3Q95E-01 -.8094E-03 
1.031 .7?57E03 0. G. 0. -. 15301-03 

.400 

.200 

.100 

.050 

.025 

0.000 
LENGTH 0.00 5.00 10.00 MOD 40.00 60.00 60.00 100.00 110.00 119.00 120.00 
WIOTH$ OUTSIO OtA 0 

0 4-S 
20.0fOO.O m 

K 0 a 



-n-­

oDAC-STL ELECTR3PHORESTS ANALYSIS PROGRAM
 
tR0GINATORI DdW. RICHMAN 9178
 

RUN 40. 10, TEST ENGI.4EERS C.0. WALKER 
BUFFER FLO 10.0 Nt/MIND INLET TEMP 8.2 C 

FIELD STREqdrH 0.0 V/CM
 

3UFFEP HORIZONTAL CENTFPLIHE VELOCITY
 o eOTd 

8.250 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
8.2'50. -. 496E-03 -.1056E-05 .5171c-06 .4446E-06 0. -. 32OE-05 .246ZE-04 .247ZE-04 .4716E-03 0. 
6.?00 0. -. 1920E-03 -. 3050E-05 .1031E-05 -. 7037E-07 0. .166T-04 .6797E-05 .7685E-04 .TOE03 O0. 
8.10 0. -. 1203E-02 -. 4478E-O5 .RL54E-06 .27806-05 0. .3212E-04 .3741E-04 .5993E-04 .1159E-O2 0. 

a.050 0. -. 29 8F-03 .2145E-05 .4916E-06 .368E-05 0. .6067E-04 .1683E-03 .2712E-03 .2820E-03 0. 
7.50 0. .1365E-03 .1569E-05 .1888E-06 .1i11E-05 0. -. 565RE-05 -. 1265E-04 -. 1573E-04 -. 1507E-03 0. 

7.214 0. 
 .9273E-04 .1000E-05 .11176-06 .9 30E-06 0. -. 6578E-05 -. 961E-05 -.18446E-04 -.9662E-04 0. 
6.1.i 0. .)fnl5E-04 .754E-06 .5416E-07 .41906-07 0. -.4367E-05 -. 9481E-05 -. 1524E-04 -. 940ZE-04 0. 

5.156 0. .9076E-O4 .8755E-06 .5349E-07 .4345E-OT0. -.4353E-05 -.9466E-05 -.1521E-04 -. 9472E-04 0. 

4.125 0. -. 311E-09 .6224E-08 -. 1143E-10 .1630E-10 0. .288OE-10 -. 694RE-10 .1006E-09 .1397E-09 0. 
3.014 0. -. 9.76E-04 -. 8755E-06 -.5349E-07 -.4345E-07 0. .4353E-05 .9466E-05 .ISZIE-04 .94?2-04 0. 
2.063 0. -. 9085t-04 -. 134E-06 -. 5409E-07 -. 4500E-07 0. .4366E-05 .94016-05 .1524E-04 .9482E-04 0. 

1.031 	0. -. 925OF-04 -.1902E-04 -.1286E-06 -. 9433E-06 0. .6576E-05 .9683E-05 .1044E-04 .965E-0 0. 

.400 0. -. lb2f-03 -.1735t-04 -.2229E-06 -. 1133E-05 0. .5668E-05 .1765E-04 I700E-04 .1508E-03 0. 

.200 0. .2637E-03 -. 3H86E-04 -. 1011E-05 -. ?672E-05 0. -. 60E8E-04 -. 1600E-03 -. 23916-03 -. ZT67E-03 0. 

.100 0. .1193F-02 .376?F-04 -. 30616-05 -.24?5E-05 0. -.32IOE-04 -.3573E-04 -. 1182E-03 -. 1124E-OZ 0. 

.05') 0. .7146E-03 .7473E-06 -.3422E-05 -. 9473E-06 0. -. 1889E-04 -. 5463E-05 -.46ZSE-04 -. 7547E-03 0. 

.025 0. .4523E-03 -. 1029E-05 -. 1683E-05 .12416-06 0. -.1048E-05 -.2433E-04 .3861E-06 -.4656E-03 0. 
0.003 0. .0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

LENGTA 0.00 5.00 10.00 20.00 40.00 60.00 ,80.00 100.00 110.00 115.00 12O.0 

4-0. 	 Z 

20.0 100.0 0 

7 219 FIGURE 4-23 	 9 
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C 

rBUF 

Q 

C, 
p 

t 

ER FLOW 2.0 I lP[ t. iNLET TEfP 

FIELD STQEHlGTH 9.9 VICN 

BUFFER HORIZONTAL CENTEPLINI YELOCITY 
UIDTH 

.Z. 

8.4 C 

flA -STL LECTRVPII RES135 DATA 

OISINATORI 0.*9. RICMAW 

E O TTDN 

12178 

rh 

$)6.220 

8.1L50 

8*0850 

I7.219 

U, 

o 
O 

'UO 

C8.0250 

6.1.48372E-c2 
.156,89 

3094 
2.063 

O.. 

8.0*0 

::3;l -:2 

E 2 

.4*6872-0? 
.4318P-02 
.39002-02 

.3452E-02 .4284F.-o2 .4f51E-0? 
*7 233-32 .1OQE-02 .1?702 
2 3 -O 1 O - ?O -

.2325E-O2 .17202O *13856-3? 
258#E 02 2005E-02 1533E-02 

.2872E-02 0. 0. 

"IITR IHMN127 :1:0PE:O; 

.1922-03 
1 2 -O 

.3127E-O3 
643 0O-08 

0. 

* 

1.0* 

.O00 

2.000. 
0.0.0.0.0 

2 
i 

(NQTH 0.00 

IDTHS OUTSIDE OATl 
200.T 

3.00 

* 0
m<C 

10.00 V.*00 40.00 60.00 80.00 100.00 110.00 115.00 120.00 

5.156 7.0 . 
FIGURE 4-24 I 

-I 



~MOAC-STL FLECTROPHORFST A44LYSIS PROGRA4 :30 

BUrf.4 FLO4 11).') I',L/iAI , lfJlT TiF P 
FlrLO Sl ENGTH 9,Q VIC. 

~8UPFFR HJklZUNtAL CIN:r~tlbr VLL3CITY 
Wl*lq 

8.liOa . 0. 0. 

P.4 C 

0 GI. 0. . . 0. 0. D. 0. 

y 

80?00 1. 

8.150 0. 

-.Pn' kL-04 

.7? F-O4 

.1,872f-03 

,llr-op 

.6T78AF-03 

,1113L-02 

.6- 3F.-03 

,}105 -Oz 

.7145E-01 

.111OE-07 

.7135E-03 

,ll1t.P-O2 

.7P16F.-03 

.11g E-O2 

.7540E-03 

,1?PIF-02 

.1374E-02 0. 

.?O5TF-O?.0. 

r, 7.851 . O F-02 .?0071-02 .19q E-O2 ,147QE-02 .1973E-02 M5 -02 .1979E-07. .1963F-02 IP43E-02 0. 

r. 

o 

S.1flld 

.. 

0. 

5.1-16 0. 

4.125 0. 

3.0?4 0. 

2.0613 0. 
1.111 J. 

.400,) 

.200 11. 

.103 .). 

.35) 0. 

325 0. 
0.000 O. 

LENGO0 
4---G 

0.0) 

0 19'F-Od 

.707[F-01 

o1916F-C? 

*|?24,-O? 

.14?5(-O2 

.1423E-07 

.14301-02 

L65GE-02 

.2OT?F-02 

.L437E-02 

.8140t-03 
0 . 

,.00 
. 

a 

.10171-07 

.?OIOE-)? 

0 O] F-O2 

001 7q-02 

.?OQIE-02 

.2007r-32 

.1965E-12 

M] 6F-12 

.1093E-02 

,FA93 -03 

.379TE-03 
0. 
10-00 

.2016F-01 

.ZuuqF-O, 

.1030L-07 

.2O00-OZ 

.7?qE-O7 

.?009E-02 

.lqblE-07 

,I43 L-O2 

.1097E-02 

.7t65E-03 

,3211E-03 
0. 
20.00 

.701?F-02 00PIE-O7Z 

.?G1op-O2 .7009E-02 

.201OF-O2 .7012E-02 

,?OItE-02 .2014E-02 

.?OItF-02 .2OIIE-O2 
,?OIIE-O0,2 | O 

.1974L-02 .1987C-07 

.1479E-02 .1411F-02 

.I[O/E-O? .1107E-O2 

.69"9E-03 .68805-03 

.3605F-03 .3659F-03 
0 J). 
40.00 . 60.0 

.2009F-02 

.ZOOTE-DZ 

.20LtE-O? 

,?Ol5E-n2 

,Z016E-OZ 
.2017F-OZ 

.1996F-02 

.1396E-OZ 

.1078E-02 

.6820E-03 

.3570E-03 
0; 

B0.00 

.199?E-02 

.ZO05E-02 

.2014E-07 

,2020OE-O? 

.?016E-02 

.?036E-02 

.1972E-02 

.1391,E-02 

.1002E-02 

.6622E-03 

.3534E-03 
0. 

100.00 

.10W -07 .1957E-02 0. 

.?0OSE-O2 .1944-OZ 0. 

.2076E-02 .20OC-O2 0. 

,ZO36F-O? PIOOE-02 0. 

.7017E-02 ,ZI04E-02 O. 

.2032E-02 .2114E-OZ 0. 

.ZOIE-02 .2129E-02 0. 

.131ZE-02 .1306E-0? 0. 

.941 E-03 .?44E-01 0. 

.648?E-03 .3Z31E-O4 0. 

032066-03 -.?406E-04 O. 
0. 0. 0. 

110.00 . l3.O0 120.00 

20.0 I00.0 

.?.F 
7 031 

.a, 
--­ .. 

FIGURE 4-25 
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fMOAC-STL ELECTROPHORESIS DATA REDUCTION c 

CFIELD 

CBUFFER 
r 

RUN NO. 12, TEST ENGINEEPR C.D. WALKER 
BUFFER FLOW 2C.0 II4N -INLET TEMP 

STRENGTH 20.0 ViCM 

HORIZONTAL CENTERLINE VELOCITY 
WIDTH 

8.2 C 

ORIGINATORI D.. RICHN&N 12179W 

Ql 

0.225 

8.23o 

8.150
o8.050 

7.R50 

m 
7.?19 
6.188 

5.156 

4.125 

3.094 

2..3 
1.031 

.400 

.200 
,luo 

.1315G-01 

.4833-C2 

.5204E-02 

.6652E-02 

.779E-02 

.66E1U-02 
0. 

.4475E-12 .4207E-02 

.4223E02 .3546E-02 

.4321E-02 .2664E-02 
.4343E-02 .31lVE-02 

.5083E-02 0. 

0. 0. 
0. 0. 

.4396E-02 

.40QE'-12 

.33T3E-12 

.455B-2 

0. 

0. 

0. 

.640E-OP 

.542-E12 

.5767E-02 

0. 

0. 

0. 

0. 

0 
S 

.050 

.025 
0.130 

LENGTH 0.00 

WIDTHS OUTSIDE DATA 00 

5.00 10.30 20.0f 40.00 60.00 M2.00 100.Ot 110.00 115.00 120.00 

.4i 

i .2i9 FIGURE 4-26 <o 

0 m 0 
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MC)6C-$5L ELFCTROPHOE6SIS AIALYSIS PROGRA41 

OIIGIArOI 0e. RICHMAN q17t 

FUIF9 FLOJ 10. i IN, IfLFT IAEP 

FIFLO STREv3TH ?J.0 V/CP 

8UFFFk qr.RLIONTAL CtNTk1IN VFlOCItY 

1.? C 

8.253 D. 

4.U), 0. 

8.200 0. 

84I.0'10. 

.3'IOE-03 

.9423E-03 

.1'4C5102 

0. 

.793J1-03 

.1?OE-02 

.27l.7i-02 

0. 

.1911E-Ul 

.15?OE-0 

.?8 

0. 

.75?iE-03 

.14qlE-O? 

.?3?F-02 

0. 

*75nof-03 

.1482E-O? 

.?390E-07 

0. 

.77571-03 

.1521S-02 

.7444E-02 

0. 

.?q95 -O3 

.1593E-02 

.?535E-02 

0. 

.8q54E-03 

.1781E-02 

.30?OE-02 

0. 

.1250E-02 

.?04E-02 

.253116-C? 

0. 

0. 

0. 

0. 

Im 

c. 

8.0oa 

7.95) 

?*.j.J 

6.1S4 

0. 

o. 

.)*1%j"r.02 

1. 

.3J4O Z- .216 -0Z 

.4t9C-r? .4077F-0Oe 

%7'0 

.117;-C? .4071;-0? 

.?967E-OZ 

.41fl9r-07 

.4 J7d1 --I' 

.407TE-02 

,3001S-02 

.431E-O2 

.40?5E-07 

,496qq-02 

.30?4f--0? 

.40WI-a! 

.4076F-01 

.4074E-0? 

.30 9E-02 

.403F-0? 

.4071F-02 

.4017F-02 

.3139E-02 

.4049-0? 

.405'IV-0? 

.4079E-02 

.3266E-02 

.4053F6O? 

.40A5t-02 

.4068E-02 

.2061E-02 

*36fE-O? 

.40?IE-OZ 

.4035E-02 

0. 

0. 

0. 

0. 

5.15'. 0. 
4.125 0. 
3.n4 . 

2.061 0. 

1.031 0. 
*400 0. 

.20.)0. 

j13 0. 

.5 0. 
V5 0. 

.'0-0(? 

.4034E-O? 

.3)7?t-0? 

,34hb5-C? 

.3963F-02 

.3$1E-C? 

.2698k-02 

.zWTI-0? 

*,17-0? 

.110f-02 

.404.16-02 

.407)-02 

*40713-02 

.407i-O2 

.4073E-02 

.3994L z-

.?804E-O? 

.?319E-02 

.1582E-02 

.8405-03 

.40712-0' 

.401E-0' 

.407PE-0? 

.4373E-0 

.4073F-V2 

.4033t-02 

.3075E-02 

626226-07 

*16806-02 
.965E-03 

,434,7E-0 

.4064E-O? 

.4069E-02 

.4075E--2 

.07L;-0? 

.404,i-0? 

.3030E-02 

Z24)9E-02 

1542E-02 
.4299E-03 

.406$6-02 

.4067F-02 

.406QE-02 

.4075F-02 

.O4077-O 

.4054E-07 

.3045E-02 

Z2514F-02 

.1585E-02 

.0306E-03 

.40716-Ga 

.4073E-OZ 

,4077E-02 

.4078E-02 

.4039'-02 

.4064E-02 

.3090E-02 

.2523E-02 

*161BE-02 

.8451E-03 

.4072E-02 

.407q6-0? 

*.086E-02 

.4095F-02 

.40 7602 

.4066E-O 

.311E-O 

.2381E-02 

.1612E-02 

.0320E-03 

.4074E-02 
i4O96F-02 

.410QE-02 

.4087E-02 

.4124E-0? 
*4120-02 

.29T6E-02 

.1974E-02 

*1391E-02 

.7813E-03 

.40406-02 0. 

.4121E-02 0. 

*420E-OZ 0. 

.47095-0? 0. 

.4234E-02 0. 

.4467E-02 0. 

.513E-02 0. 

.451ZE-02 0. 

*2396E-02 0. 
.103E-02 0. 

0.030 0. 

LENGTH 0.03 

0. 

5.00 

0. 

10.00 

0. 

20.00 

0. 

40.00 

0. 

60.00 

0. 

80.00 

0. 

100.00 

0. 

110.00 

0. 

115.00 

0. 

120.00 

4----m 

20.0 900.0 0 

0. 7-219

LI031 
FIGURE 4-27 
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r 
RUN NO. 13, TEST FNGINrFQI
BUFFER FLOW 30.0 NL/MI-, 

C.D. WALKER 
INLFT TEMP 

§BUFFER 

r8.250 

FIELD STRENGTH 0.0 VICM 

HORIZONrAL CENTERLINE VELOCITY 

WIOTH 

0.225 

(0 
18.150 

8.200 

t7.850 
8.050 

1 
7.219 
6.188 

5.156 

o 
4.125 

3.094 

2.063 

1.031 

.400 

.200 

r.050 
.100 

.025 
0.000 

WIDTHS OUTSIDE DATA QO . 

a 
20.0 

G 
100.0 

'.
2194.021 

LEGT 

MOAC-STL LLECTRCPHORESIS DATA REDUCTION Z i 
ORIGINATOR I DeW. RICHIMAN 17I79 bZ 

6.7 C
 

C) 

,
 

0. 	 .6922E-03 0. 0. O.
 
.5761E-02 .8343E-03 -.9036E-03 -.7416F-03 
-. 18746E-02
 

.5355E-02 .7588E-03 -.8342E-03 -. A2QSE-03 -.2167E-02 

.523BE-Of .8323E-03 -.8357E-03 -. 1O6IF-02 -.7568E-02 

.5001F-02 .7044E-03 -.9778E-03 -. 127F-02 -. Z198E-O2
 

.4705E-02 .3541E-03 -.6667E-03 -.5841E-03 -.
 2718F-02
 

.2958E-02 0. 
 0. 0. -.2581F-02 

FIGURE 4-28 	 900 
> Cm 



O I4DnAC-STL FLECTAOI'tORfSIS ANALYSTS *PV1ORAM

oZ ORJGINATnftI OaF. RICHNAN QuA
 

r 	 RJN tO , VF31 rTNl,rtrrF i %P. '4ALVFP 

BUIF PLUOW 15.0 PII IN, pitTr rrp 7.9 C 

FULLO STIUNGTR 0.0 V/CM 

RBUFFER
HflRZrNTIL CrFmtL TF VFLICTTY
 

WIOTH
 

d.250 0. 0,0. 0. 0. C. 0. 0. 0. 0. 0. 

8;225 0. -.A4771-03 -.1773r-0, ,4619F-G6 .5930C-06 C. ,1166F-.4 .6320F-05 .1034E-04 .6691E-03 0. 

8.200 0. -. 116)F-02 -.3855E-05 .909?-06 .1223L-05 G. .5021F-14 .3904E-04 .1322E-03 .1161E-02 0. 
8.150 0. -.tFq E-O? -. P907E-04 .f,892E-Go .IC96E-05 0. .?QI1F-O .R98BE-04 .2017E-03 .17306E-02 0. 

8.050 0. -. 5331F-01 .5536F-O5 .5044P-O .3h8bE-06 C. .606>F-94 .1570F-03 .421BE-03 .4338E-03 0. 
7.00 0. .2093F-03 .4171F-05 .2019E-06 .1033f-06 0. -.9836F-05 -.1009E-04 -. 256C8E-04 -.2207t-03 0.
 

7.219 0. .157E-03 .1217F-06 0. -. 7?41E-05 -.1110F-04 -. 337?E-04 -.1424E-03 0.,551E-OS 	 .50U9E-37 

6.188 0. .134'E-03 .74,8F-O .5591F-L7 .4357L-07 0. -.71619-15 -.1005-04 -. 3335 -04 -.1397[-03 0. 

5.156 0. .11.1 F-13 .?4'7F-05 ."5PF-0? .4320E-07 0. -.7151F-I5 -.1094F-04 -. 333(E-04 -.1396E-03 0.
 

4.125 0. -.201F-O9 .15qRa-09 .HflO2E-l -.1900L-LO C. '449F-10 -.1734E-10 .12CgE-09 .7267E-09 0. 

3.094 0. -11 t-03 -. 747-O5 -.5551E-07 -. 43706-37 0. .7151E-05 .1094F-04 .33306-04 .1396E-03 0. 
2.063 0. -.13270-03 -. E-05,-.5596F-G? -.4346E-07 0. .716F-15 .1095E-04 .3335E-04 .1397E-03 0. 

* 1.031 0. -.l3'$F-03 -. ,q'r-05 -.1?33E-06 -.596G0-07 0. ,7?7;r-)5 .111O-04 .3371E-04 .1423E-03 0. 

.400,0. -.2037F-03 -.470lE-15 -.2247F-06 -.1125E-O6 C. .9841F-05 .10089-04 .Z564L-04 .2213t-03 0. 

.Z0 0. .5331F-01 -.q193F-05 -. 1100C -0 -.h599E-06 C.. -. 55 E-4 -. 1567E-03 -. 4211-03 -.4071E-03 0. 
.100 0. .169'F-O? -.1465F-05 -.305AE-05 -. 23746E-05 0. -.7689F- 4 -. 4834E-04 -.198;E-03 -.1670E-02 0. 

.050 0. .1167F-02 .2143F-04 -.3397E-05 -.2574E-05 C. -.5009E-04 -. 3794E-04 -. 13C2E-03 -.1151E-02 0.
 

.025 0. .6P6E-03 .P844E-04 -. 1673F-05 -. 12606-05 0. " - -.3181F-04 -.5753E-05 -.8955E-05 -.7207E-03 0. 
0.000 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 

LENGTH 1.00 5.00 10.00 20.00 40.00 60.00 80.00 100.00 110.00 115.00 120.00 

20.0 200.00 

-294 
7.21 FIG 0 

.1 .031 <c:m 
~ LDN3Th 

2 



rrq 

a 
a 

RUN tN. 14, TFST ENGZtEER: 
BUFFER FLOW 30.0 ALINIKN 

C.D. WALKER-
INLET TEnP 6.8 C 

PDAC-STL ELECTROP4OQESIS DATA qEDUCTION 

ORIGItNTORS D.W. RCIMAN 12178 

aFIELD STRENGTH 10.1 VICM 
BUFFER HORIZONTAL CENTERLINE VELOCITY 

WIDTH 0 

8.250 

0~ 

o8.050~7.R50 

f.200 
8.1O0 

7.219 
6,leB 
5.156 

*4q3 -02 
.5540E-32 
.62186-02 

.29855-02 

.2713E-02 

.2463E-02 

IZ1lE-$Z 
.166OE-02 
.1375F-02 

.2692E-32 .1597F-02 

.1903E-P .5117E-05 

.6664E-03 -.6349E-03 

o 

a 

4.125 

3.094 
2.063 

1.031 

.493 

.4987E-32 

.6064E-32 

.56506-02 

0. 

.2625E-02 

.26845-02 

.28435-02 

0. 

.94B8E-33 .4930E-03 .1324E-04 

.1 GOF-02 .7186E-02 .!taqE-O0 

.2716F-02 0. 0. 
0. 0. 0. 

4 
P 

C:S 
In 

.100 

.100 

.050 
Z.025 

OCOO 
LENGTH 0.03 
WIDTHS OUTSIDE DATA 00 

5.00 10.00 20.00 40.00 60.00 80.0 100.00 110.00 115.00 1MC00 

20.0100.0 m 

7.210 

J .031 
FIGURE 4-30 

> 

cc 
Cm 

[LEMTH w m 



:,ORIGINATORS 

4flAC-STL tLECr9pPHURFSIS ANALYS1I P 0GRA4 

0.W. RICH'AN q/786 u 

IHUFF P FLO.l i1.0 MLIVI~t tPV T T;MP 5.0 c i 

0FIELD STRFNGTH 10.1 V/Cl 

BUFFEQ Ief1IZ0qTAL CFP'TFPL T'F VFLn[TY 

8.753 0. 

8.275 0. 

8.200 0. 
B,.150 0. 

0. 0. 

-. W3I'4F-S) ' 
.3192E-03 

-. W1nlF-03 .67134-03 
-,.1r-3 oO) -? 

0. 

.3?8RE-03 

.65?CF-03 
*10OF-02 

0. 

.3564E-03 

.6bE5E-33 

.114h[-02 

C. 

.3474E-03 

.6909E-03 

.1136E-02 

0. 

.1456F-)3 

.698 F-3 

.1141F-02 

0. 

.1954E-03 

.750?F-03' 

.? 1 -? 

0. 

.4138E-03 

.8158E-03 

.1353E-02 

0. 0. 

.1061E-02 0. 

.1764E-02 0. 

.2456F-02 0. 

8.050 0. 

7.850 0. 

7.21 C. 

6.10, 0. 
.156 0, 

4,125 0., 

.1099F-? 

?061p-o? 

cq 

.1441C-02 .13q6E-C2 

6193f-02 

.,05r-0, . lqtSF-02 

. C, 1--' .1960;-V2 

.?1,9-9,I)S(E-O?.196Fl -02 

,1954F-O' ,1971F-L2 

.137I]-2 

.1944E-92 

.1947t-.)? 

.lqTt-JZ 

.]'61E-02 

.1 53E-QZ 

.1426E-32 

.lq36E-O? 

.1955(-02 

.1973E-02 

.1957F-02 

.195IE-07 

.149R1F-372 

.19I9F-17 

.lQ6AF-1? 

.1963r-12 

.1957F-11 

.1q99-32 

;1457E-02 

.19?OF-0 

.196,0F-o? 

.19AOF-07 

.19bnF-O7 

,19?4E-OZ 

.163C-02 

.]qCCF-02 

.153E-02 

.1947V-02 
,19416-02 

.1l9t3E-0Z 

.15 ZE-02 0. 

.1763E-02 0. 

.186?E-02 0, 

.h61E-C2 0. 

.1871L-02 0. 

.1995E-O2 0. 

P 
0.025 

3.094 0. 

2.063 0, 

1.031 0. 

.400 0. 

.200 0. 

.100 0. 

.050 0, 
0. 

.l'-2F-P 

.1"S
0 

r-n? 

.11124IF-0? 

.1751E-07 

.1637F-02 

.P49F-O? 

.179)1-0? 
.1OIF-02 

lqS6r-n7 

.1164F-07 

*I6q'r-O? 

.IOO6F-02 

.116fF-O? 

.TO76E-02 

.456F-03 

.3537F-03 

l197?E-02 

.1957E-Oz 

.1q61E-02 

.lqftE-C2 

.139?'-02 

.1103E-02 

.67556-03 

.3790F-03 

.1957F-O2 

.19791-0? 

.1957E-32 

.1944 -12 

.1424E-J2 

.ICSIE-02 

.6852E-03 

.3804E-03 

.1957L-0? 

.1979E-02 

.1Q71E-O? 

.1Q38L-02 

.1393C-02 

.1085E-02 

.6917E-03 

.36266-03 

.IQ6&F-9 

.1974F-02 

.l0RIF-02 

.193 7-1 

.1347F-02 

l04P-01 

.698lF-03 

.1553-03 

.lqBIE-0? 

.197RF-02 

.1971E02 

.19501-02 

.133?E-02 

.9f9?F-O3 

.7075E-03 

.3188E-03 

.1989E-02 .2110-02 0. 

.l9qeF-02 .208QE-02 0. 

.1979E-02 .2121E-02 0. 

.19b3E-02 .2174F-02 0. 

.1230E-02 .1417F-02 0. 

.8433E-03 -. 5O706-04 0. 

.579CE-03 -. 25506-03 0. 

.3055E-03 -. 2428E-03 0. 

0.000 0. 

LENGTH 0.00 

0. 

5.00 

0. 

10.00 

0. 

20.0o 

0. 

40.00 

0. 

60.00 

0. 

80.00 

0. 

100.00 

0. 

110.00 

0. 

115.00 

0. 

120.00 

4< G m 

20.0 .0 

7219 FIGURE 4-31< 
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z MDAC-STL ELECTROPHORESIS DATA QFOUCtIOz 
ORIGINAIOPI D.W. RICHMAN 12179 

r RUN NO. 15, TEST ENGINEER: C.D. WALKER 
I BUFFER FLC 30.0 ML NfH, INLET TEMP 7.? C
0FIELO STRENGTH 23.3 ViCM 

eBUFFER HORTZONTAL CENTERLINE VELOCITY 
WIDTH rn 

9.250 

c., 

8.225 
P.200 

a7.850 
7.219 *41'RE-0P .4EA3F-3Z .63D16-02 .339Q-)2 
-."51E-32

6.IRP .5991e-02 .3522P-02 .33 3E-2Z .76q3F-03 -. ZZTE-02 
5.156 .6175E-O .3073E-O2 .2862E-O .1201E-17 -. 2263E-02 
4.125 .59CTE-02 .4293E-)2 .353AE-02 .2291E-02 -. 12lqE-0? 
3.19 .6141E-02 .4665E-)2 .447rT-O2 o*246E-02 0. 
2.063 .5472E-02 .4942E-02 0. 0. 0. 
1.031 0. 0. 0. 0. 0. 

a .400 

* .2)0 

(A .100
 

.050 

.025 
(A 0.0)0 

LENGTH 0.00 5.00 10.00 20.00 40.03 60.01 
 80.10 100.00 110.00 11%00 120.00 
WIOTHS OUTSIDE DATA * 0 

.4-
0G 


a20.0 100.00
­

fHnFIGURE 4-32 <i 
r-- - -7.2 19 9 r c,
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1DAC-SIL LECTROPHORESIS ANALYtIS PROGRAM
 

ORIGINATORI D.W. RICH$A1 91T8
 

RUN NO. 15, TFST FNG!NrFlI C.D. WAL"eR
 

BUFFER FLO 15.0 PHIMIN, 1N1 T TF'IP 7.7 C
 

FIELD STRENGTH ZO.O VICM
 

BUFFER IORIZONTAL CENTtRL!IN VFL CITY

C)u

WIDTH 	 C 

8.250 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.* 
,*225 0. .1004 F-03 *7962F-03 .7495E-03 .7493E-03 .7541E-03 *7666F-O3 .7894E-03 .0931E-03 *1413E-02 0. 

.24501-02 0.6.200 0. .5 121F-03 .1609E-02 .1496(-02 .1454E-02 .1478E-02 .1531F-07 .1579F-02 .1794E-02 

8.150 0. .13qE-02 .2703F-02 .231OE-O2 .2350E-02 .2379E-02 *2435F-12 .. 567F-O? Z2976F-02 .3109E-02 0. 

8050 0. ,Z869F-02 .3?04E-02 .2qO5E-O2 .2954E-02 .29BIE-02 *301F-OZ .30U9E-02 *3294E-OZ Z191E-02 0. 

7.850 0. .4122E-02 .3999E-02 .3qbE-02 .3950E-02 .3953E-02 *1961E-OP .3956F-OZ .39E?6-02 .3709E-02 0. 

I 	 7.219 0. .4064F-OZ .39'SF-OP .39Q96-o2 .3997E-02 ..OO45-O? .401 IF-a? .40tF-02 .3999E-02 .3942E-02 0. 

6.10B 0. ,4Q4qE-02 .401?E-02 *3932F-OZ .3998E-02 .39906-0? .3977F-OP .397F-0 .3996E-02 .3928E-02 0. 

5.156 0. .4055E-02 .400E-02 s3Q94E-02 .400E-02 .40OOE-02 .399?F-02 .3994E-O? .3994E-02 .3939E-02 0. 

4.125 0. .3951E-02 *397E-O .3998E-02 .4001E-OZ .4005E-02 .4009F-32 .4014E-02 .4017E-02 .4067F-02 0. 

3.094 0. .3R43E-OZ .308qF-02 .3q95E-02 .39986-02 .4003E-02 .401IF-OP .'023E-02 .404CE-02 .41GM-O 0. 

.4169E-02 0.2.063 0. .38139E-07 .3016E-02 ,39866-02 .3987E-02 .39936-0? .40 0F-0? .4007E-02 .4039E-02 

1.031 	0. .393SE-02 .3096E-02 .4010E-02 .3997E-02 .3999E-02 .4012F-'0? .40306-OP .4044E-02 .4225E-02 0. 

.400 0. .3717F-02 .3924E-02 *3976E-02 .3956E-02 .3963F-? .3QBoF-Q0 *3990F-02 .40536-02 .4449E-02 0. 

.200 0. .2774 -02 7696E-0? .2964E-02 .2993k-02 .3039E-02 .30709-12 .3053F-02 .286?E-02 .4863E-02 0. 

G1000. .33T7ErO? .?296F-O? .2648E-02 .2464E-O .242E-02 .?409E-02 .2296E-02 .1857E-02 .3952E02 0. 

.050 0. .2334-02 .1554E-02 .1665E-02 .1601k-a? .1602E-02 .1586F-02 .1479E-02 .1318E-02 .1966E-02 0. 

.025 0.. .i161E-02 .83OE-03 .M559E-03 .8191E-03 .8237E-03 '.9260F-03 .7820E-03 .7429E-03 .7244E-03 0. 

0.0000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 80.0 100.00 110.00 113.00 120.00 

1.0310 

E*- LENOTH + E	 m0 



MO0C-SrL ELECTRCPHORESIS DATA REDUCTION 

DRIGINATUR1 0.. RICHAN 12178 

RUN HO. 16, TEST ENCrNFEtS C.O. WALKER 
BUFFER FLOW 40.0 LIHIN INtfT TEMP 7.4 C Ni 

IrMi STRENGTH 0.0 ViCM 

BUFFER HORIZONTAL CENTERLINE VELOCITY 
WIDTH z 

8.750 

8.225 E2~ 

8.200 

0.150 

0.050 

7.850 
7.219 0. 0. ,2929E-01 O. 0. 

6.188 .2155E-02 .132?E-02 -.2967E-03 - .351E04-eStE-01 

5.156 .2550E-02 .IIIZE-02 -.2021E-03 -.119?F-02 -. 18q6E-02 

4.125 .1848E-02 .1312E-02 -.1247F-03 -.1704E-' -. 19?7E-02 

3.094 .4641E-02 .1365E-02 -.1047E-02 -. lq04E-02 -.2124F-02 
2.063 .444?E-02 *TBZLE-03 -.8932E-03 -.IOQIE-02 -.173?F-02 

1.031 0. 0. 0. 0. -.920SE-03 
.400 

.200 
.100 

.050 

.025 
0.000 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 80.00 100.00 110.00 115.00 120.00 

WIDTHS OUTSIE DATA 00 

mG 
20.0 100.00 

a7.212 
I.031 

FIGURE 4-34o 
-34-< 
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MAC-STL kLFCrRUPHCREStS ANALYSrS PROCQAM c 

ORIGINATOR: D.W. RIC1MAN 9/78 z 

PUN hJ, 16. T T INCINFM C.. WALI"1K 
BUFFER FLOW 73,0 MLFM., IhLFT TMP 7.4 C r1 

FILLC STRCNGT 0.0 V/CM 

SUFFLR HORIZnHiAL CFNTrqLTNF VrL1CITY 

WIDTH 

8.250 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 

8.275 0. -6174&F-O -.5310F-06 ,7435E-06 .7772C-06 0. *1903F-04 -.508OF-05 .6735E-05 .9441F-03 0. 

8.200 0. -. 150IF-0? -*454r-o5 .15?fF-05 .16?3E-05 0. .6117F-04 .9704F-04 .IbltE-03 .1517E-02 0. 
48.150 0. 41-417r-05 .142?E-O .,35E-)5 0. .1139E-14 .1?49E-03 .ZZ68E-03 .2272E-02 0. 

8.050 0. -.6201E-03 .1116E-01 .7419F-06 .5657-06 C. .1662F-03 ,a846F-01 .5747E-03 .6095[-03 0. 
7.8'. 0. .f674-03 .4'1 E-0'i .2??87-06 .1134E-06 0. -.7865r-05 -.2646F-04 -. 6215E-04 -.2876E-03 0. 

S7.21 ,0. .1771F-01 7941r-0 ,13hlE-0o .6313E-07 C. -. 791F-25 -. 45qF-0 -. 321E-04 -. 1q5BF-03 0. 
6.1Jd 0. .177FE-01 .''7E-C, .7965F-07 .52?2t-)7 0. -.751F-05 -0153F-04 -. 3?59[-04 -. 1935r-03 0. 

5.156 0. .17;'6F-01 *A415r-l ,791 r-07 .5?ISE-o? C. -.?R4r-15 -.?150F-04 -.3255E-04 -.1934E-03 0. 
4.175 0. -.F4?5r-O9 ,17, 7 -Q9' .1018-10 .?GU9C-11 G. ,27oBF-t Z699F-10 -,2 f9E -10 -22 5E-09 0. 

3.094 0. -. I72Br-01-, 5 F-u' -. 7qI1F-O? -.,215E-07 C. .704.r-05 ZIZ50E-04 .3255E-04 .1934E-03 0. 
2.063 0. -. 17.7F-03 -.?R 9r-05 -.,TIE-07 -.5?23E-07 C. .7q5C-05 .2151F-04 .3259E-04 *1935E-03 0. 

1.031 0. -. 176?7F-0' -1l1511-0( -1397F-06 -.b406(-07 0. .7955F-05 .?457E-04 .332CF-04 .1956E-03 0. 
.400 0. -. ?661r-03 -. 5501-O -. ?n 3F-06 -.1?40E-06 C. .7471F-05 .?63AF-O .6Z23E-0" .2B73E-03 0. 
.200 0. * 223F-03 -. Q764F-' -. 1?761E-05 -.7782E-36 0. -.161E-03 -. 287E-03 -. 5732E-03 -. 5986E-03 0. 

.100 0. .2327F-0? -.71?E-05 -. 3983E-05 -. 2813E-05 0. -.1849F-34 -.1374F-03 -.2263E-03 -.2233E-02 0. 

. 50 0, .1509F-0? -.363E-05 -. 42P2F-0 -.2982E-05 C. -. 5883F-04 -. 1079F-03 -.1367E-03 -.1460F-02 0. 

.025 0. .0241r-O -. ?95F-05 -.2091E-05 -. 1453E-05 0. -. 189IF-04 -. 3837E-05 .2477C-04 -.8856E-03 0. 
0.000 0. 0. 1l. 0. 0. 0. 0. 0. 0. 0. 0. 

LENGTH 0.00 5.00 10.00 20.00 40.00 60.00 R0.00 100.00 10.00 115,00 120.00 

m 

20.0 100.0 

7.219 FIGURE 4-35 
--I
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O ODAC-STL ELECTROPH1RESIS DATA REDUCTION 
ORIGINATORI DV*. RICIHMAN 22179 

p 
RUN NO, 17, TEST ENGINEERI C.D. WALKER
BUFFEP FLOW 40.0 MLMIN, INLET TEMP 6.9 C 

C FIELD STRENGTH 10.0 ViCN 

BUFFER 
WIDTH 

ORIZONTAL CENTERLINE VELOCITY 
y 

8.250 

0.200 

B*O130 

.4 8.050 

7.850 

e I 
7.219 0. 

.C6186.68F-02 
*3IQ6E-02 
.3603E-O2 

tIR77E-02 
.1473E-02 

.?7Q2E-32 

.1607E-02 
.4134E-12 
.?6Q 02 

5.156 .7117E-G2 .2964E-02 .8561E-03 .1?40F-02 0P1419-12 
4.175 *6525E-02 .2884F-02 *LO3ME-12 .9015E-03 A34'F-03 

3og *5587E-62 .2q62E-0z .1S51E-02 .q4i9E-33 .2644F-)3 
2.363 6000E-CZ *30?IE-02 .1654E-02 .108CE-02 *2P64F.-33 
1.031 0. 0. 0. 0. 0. 

a .433 
.230 
,.130 

P .05, 

S .025 
(A 0.000 

LENGTH 0.00 5.3) 10.33 20.00 40.00 60.00 80.50 100.00 110.00 115.00 120.00 
WIDTHS OUTSIDE DATA * 0 

0010.0 m 
0 

.FIGURE 4-36 
03 'y : > ro0<Ca 
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Pr 

hin 
RUN Nil. 17, TFST FNrINF" I C.P, L *F 
DUFFfR FLOW Il.0 nmiL ,MI*lJrs rrTt 'n S.0 

FIELD STRFNJGTI 10.0 VfCc 

c.,IAc-srL LLCCIROPHLIPtSIS ANALYSIS 

AIRIGINArORI DW. RICHMAN 9/79 
0GRA (z 

ZrI, 

ri, 

~WIDTH BUFFER HUPIZCINTAL CrNTFRLT'F VFLOCfTY 

I 

O,2O 0. 

8.225 0. 

8.2100 0. 

8.150 0. 

f,050 0. 

7,85 0. 

7.219 0. 
6 1 i Go°: 

5.156 0. 

0. 

-.h'11F-O' 

-. 7q55F-01 

-.00?1f-01 

.10l'F-O? 

,2107r-0? 

.?n(9r- ?~hJF-)? 
.?041F-np 

0. 

*.tl4P-03 

.6779F-03 

.lf'1?-70 

,14,7r-0? 

.167F-0' 

,111-30 
|rtl -O? 

.19111{-0? 

0. 

.4?1(F-03 

.hR04F-03 

.10?Q1-Oa 

.14IOF-02 

.190(r-02 

,tV1(,F-02
.]O OF-

,]l,3F-U2 

0. 0. 

.3725E-03 63409E-03 

.7105t-03 .7110E-03 

.1060E-02, .1097E-02 

.4J10E-02 .141bE:0? 

6191L-02 .9OOCE-0? 

.1940E-02 ,1q3GE-O7
1918E-02 ol9PlF-Op 

.1934f-02 .1q32F-0? 

0. 0. 

.3?OF,-."l3 .33'-03 

.7156E-01i .7581E-03 

.114E3-02 .1234E-02 

.1449F-02 .153?F-02 

.1Q05F-97 .1884E-02 

,IOOF-O? 1901117-0? 
*IP¢':. °9OAr-02 

.1911P-07 .19?7F-O? 

0. 0. 0. 

.4039E-03 .1244E-02 0. 

.e4t'1E-03 .Z131E-02 0. 

.1453E-02 .297017-02 0. 

.1680E-02 .1654E-02 0. 

.1874E-02 .1651E-02 0. 

.19141-0? .1813r-02 0. 

.1099E-02 °16LSGE-0? 0. 

.191 ,E-02 .1799E-02 0. 

'r1 

4.125 0. 

3.094 0. 

2.0o3 0. 

1,031 0. 
,.400 0. 

.I'Pn1F-1' 

.17 4r-0? 

.176F-02 

.7A IF-0? 

.1641E-02 

,1.1r-17-07 

.99E-0? 

,.1940E-02 

.,1F'.-02 
,1q91lF-02 

.. r-OZ 

.]1T17F-0Z 

.192?E-02 

.19 F-OZ 

.1919qE-02 

.IY3UE-02 

.1937E-02 

.1937F-02 

.1934E-02 
,1 1OE-02 

.1937E-02 .191IF-02 .iQ40F-02 

.1938E-0? *194?F-0? .LQ54F-02 

.L936E-0? .1937F-l? .1957F-02 

.1934E-,3? .191'6E-0Z .1949E-O? 

.1919E-02.93-7lOfFO 

.19,AE-02 .1957?E-02 0. 

.1983E-02 .2118F-0? 0. 

.1966E-02 .2120E-02 0. 

.1q7E-02 .2129E-02 0. 
15F02.25-20 

.2010 0. o176&F-07 .11"IF-02 ol4P3F-0Z .1347E-02 .1327E-07 .1311F-02 .1279F-02 .1153E-02 .1296E-02 0. 

rC 
.130 0. 

.0O 0. 

.,025 0. 

0.000 0. 

LENGTH 0.00 

.3001E-07 

.'132F-07 

.1?A?F-02 

a. 

3.00 

.1.0i0F--2 

, 9)6E-01 

,40?1E-0) 

0. 

10.00 

.100F-0! 

.1583F-03 

.3470F-03 

0. 

20.00 

.1110E-O 

.7126E-03 

.341Lk-03 

0. 

40,00 

.1102E-02 .1020F-02 

.6901E-03 .6395F-01 

.3263E-03 *3207F-13 

0. 0. 

60.00 00,00 

.Q120E-03 

.6055E-03 

.3421E-03 

0. 

100.00 

.7621E-03 -.4924E-03 0. 

.525"E-03 -.5943E-03 0. 

.79CIE-03 -64506E-03 0. 

0. O. a. 

110.00 115.00 120.00 

20.0 f00.0 

7 0FIGURE 4-37 < 
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NOAC-STL ELFCTPPPlnAeSIS DATA RSOUCTIrN 

RUN NO. 18, TST EN INEFRI C.O. WALKER
BUFFER FLOW 40.0 Mt/MIN, INLET TEMP 7.2 C 

nPIGINATORI 0.M, PICHMAN 12179 : 

FIELO STRENGTH 20.3 V/CM 

UFFER HORIZONTAL CENTERLINE VELOCITY 
WIDTH 

ra .230 

8.27 
A. 200) 

q150 
8.050 

ln 

I 

7.850 

7.219 
6.188 

.156 

4.125 

3.094 

2.053 
1.031 

.403 

.200 

-.1103E-01 ,90E-D2 .4577E-32 R0QE-13 -.41019-C2 
*8!9ZE-32 *5363E-02 *4MOE-3Z ,)754E-02 -.1AS3E-O? 

*1004E-01 .495142-02 *30ZZF-DZ .2037'-OZ .3746F-03 

.9963E-o2 *5125-O2 .2699E-12 .1834E-02 .1041F-02 
*BBOE-02 .53IOE-.02 .3R23E-O2 .2342E-2 .156E-02 

.85ZE-02 .6896E-O' U. 0. 0. 
0. 0. 0. 0. 0. 

.100 

.050 

.32f 

0.030 
LENGTH )*00 

WIDTHS OUTSIDE DATA * 0 

9.00 10.10 20.00 40.00 60.02 60.00 100.00 110.00 115.Co 12t.00 

zo.0 o.a 0 

a .29FIGURE 
1. 031 

4-38< 
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0 



a DAC-STL kLLCIRUPHURt SI AN LY SI PR rll: A 

OR14INArTR I 0.W. RICIMAN 0(78 r 

r 
putgNot. ina, rrsr INqr INrf 
BUIFEP FLtt ?000 ri/MP* 

C.O. 44LKEP 
WitFr TFMP 7,12 C 

z 

aFIEL) 5TRlNGTl 20.0 V/C1 

BUFFFR IIORIZnNrAL Crrrrot lr VFLOCtTY 

rWIDTD 
8.o r. no r, o, t. 0. 0. 0. 0. 0. 

0a 

B.22> 0. ",11316.03. ,773'q-03 .70)be-03 .76f?E-03 .7930E-03 .7965F-13 .7002F-01 .8823E-03 .1646E-02 0. 

".200 0. .1?7r-03 lSF-')? 610E--.4356-12 .1452F-0? .1493E-07 .1594F-O? .17*2E-02 .2?64F-02 0. 
4 .150 0. .7756-3 * 5 .P-027 .?302F-02 .23271-32 .2363F-0? .?4IF-02 *.' r-9o .30t'E-02 .3599E-O2 0. 

800 0. 
7.550 0. 

.'71C-n? 

.4107C-O? 
.31 15 -0 
3944E-07 

2 332 
.3909F-O? 

.??E-
.390r1 -02 

935r-O? 
.30(5E-07 

.?Q69F-Z 

.191!F-02 
.3077'-0? 
.3011F-2 

.3337F-02 

.391IF-02 
.2309E-02 0. 
.3625f-02 0. 

r i 7.z9 0. .4C01C-3? .1971F-O)? .I95q4-01 .3957L-32 .39t3t-0? .39I7r-7 .)94qE-02 .394AL-02 .3875[-02 0. 

0 
.. 6.I4d 0. 

5.156 0. 
.4(4'F-0? 
.4031P-O? 

,fl3 -c? 
.'1 ?F-C? 

.1941F-fZ 

.3q53r-02 
.39531-02 
.3941-02 

.3949F-0?0 

.39311-02 
34'6-1? 

*3936C-l) 
.394ZF-O? 
.3057 -0? 

.3939E-02 

.3949E-02 
.3863E-02 0. 
.3863F-O 0. 

O 
4.125 

3.09 

0. 

0. 

.3014F-0? 

.1741F-07 

,19%7F-02 

.349E-02 

.3956F-U2 

.Oq E-Oe 

.3941E-32 

.3939E-0Z 

.3938E-02 

.3947E-02 

.3949F-27 

.1065F-)2 

.19715-02 

.3q78-02 

.397b6-02 

.39q9F-02 

.4C19E-02 0. 

.4178E-02 0. 
2.061 0. .375'F-0? .191RE-O? .3942E-02 .395OL-02 .39606-0? .396q'- .3969E-0? .3998E-02 .4183E-02 0. 
1.U31 0. .3741F-3? .315 6-02 .3054P-3j .?QE-02 .3964E-02 .1977F-1 .39913-02 .40C26-02 .4223E-02 0. 
.400 0. .'5

0 
.F-fl ,I8TR-..3*32-62 39OZE-3Z .3925E-G? .3955F-12 *3052F-0? .4017E-02 .4449E-02 0. 

*200 0. ,'51 51F-2?-02 .?9-19E-02 .2963E-)2 * q2C-02 *M23OF-02 o293qv-07 .2765E-02 .4664E-02 0. 
.100 0. .3933r-?7 ,732-0 .?545F-02 .?424E-07 .2424E-OZ .2413F-02 .27559-02 1BZCE-02 .3252E-02 0. 

a .050 0, ,3713F-0) ,151[-0? .I6 15c-02 .1502E-02 .1520E-02 .1556F-02 .1475F-02 .1226E-02 .15575-02 0. 
.025 0. ,169F-0? .9716E-03 .1744E-03 .0294E-03 .8197E-03 .108F-03 .768OC-03 .7095E-03 .4172F-03 0. 

0.000 0. 0. , 0. 0. C. 0. 0. 0. 0. ". 

LENGTH 3.00 5,00 10.00 20.00 40.00 60.00 qO.)O 100.00 110.00 115.00 120.00 

4 s 
200100.0 

729FIGURE 4-39 -< 

1.3 go 
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5.0 PROTEIN GRAVITY EFFECTS
 

The purpose of the tests described in this section was to demonstrate the effects
 

of gravity on protein particle streams during electrophoresis. The two proteins
 

used for these tests, both s'ingly and as mixtures, were human fibrinogen and
 

human albumin. First, tests-were run on single proteins varying electrical field
 

strength and buffer flowrates The proteins were then mixed and processed at
 

varying flowrgtes and concentrations. Data collection is described in Section 5.1,
 

while the rationale for buffer selection and assay methods are described in
 

Sections 5.2 and 5.3, respectively. The data reduction and mathematical corre­

lations are discussed in Section 5.4.
 

5.1 TEST DATA COLLECTION
 

Electrophoresis chamber flow, electrical field and temperatureconditions during
 

the protein runs were established as closely as possible to the conditions during
 

the analaqous Task 1.0 runs with comparable time to reach stability. With the re­

peatability of the chamber proven during the Task 1.0 runs, dye streams were not used
 

to demonstrate laminar flow of the carrier buffer. Dye in very dilute form ( 0.01
 

mg/ml) was mixed with small samples of protein to demonstrate that a specific con­

centration would not "fall-back".
 

A fixed ratio of sample to carrier buffer flow rates was applied to all protein
 

runs. The intended ratio was 1-:200; however, due to inherent limitations of the
 

sample syringe pump utilized, it actually varied + 9%.
 

Protein runs 19 through 36 for albumin and fibrinogen separately (Figures 5-1 and
 

5-2), and 37 through 48 (Figure 5-3) for the mixture, were conducted in the same
 

general manner as the dye stream runs of Taskl.O. The main protocol differences
 

being control of sample handling. Protein stock was prepared and assayed to
 

assure proper concentration. Concentrations of 0.6 mg/ml were sought for the single
 

protein runs and actual assayed concentrations of the pre-run samples were 0.60
 

+ 0.03 mg/ml albumin and 0.64 + 0.03 mg/ml fibrinogen. Mixed protein concentrations 

were 1.2, 0.34 and 0.18 mg/ml. In the case of the mixed concentrations, the fewer 

scheduled runs allowed all runs at each concentration to be completed during one 

day from a single assayed stock. 

Sample injection into the chamber was from a syringe by means of a commercially
 

available syringe pump. Collection of sample and buffer at the chamber outlet
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tubes for assay and distribution determination was typically timed to collect
 

> 2ml at each tube. Assaying was generally done the same day as the run and 

included collected sample from tubes as far as fifteen (15) either side of the
 

expected protein peak or peaks. Protein samples not assayed on the same'day were
 

capped and stored at the 4°C for about 16 hours and assayed the following morning.
 

In order to prevent sample stream smearing in the chamber because of electrical
 

field variations immediately following voltage application or voltage setting
 

adjustment, the protein sample was not introduced into the chamber with field
 

until readings showed the field had stabilized. The sample was then allowed to
 

flow for at least 2.5 residence times before sample collection to allow the outlet
 

distributions to show any crescent distortion present in the sample stream.
 

5.2 BUFFER SELECTION
 

Sodium barbital buffer was used throughout the protein tests as the carrier and
 

electrolyte fluids and for dissolving the protein samples. This buffer has been
 

used widely for protein electrophoresis and at pH 8.3 provides a sufficient menstrum
 

for separation of fibrinogen from albumin. The basic difference in this buffer from
 

those used for traditional-electrophoresis (i.e., cellulose acetate, agar and poly­

acrylamide) studies is ionic strength. Traditionally the ionic strength ranges from
 

about 0.01 to 0.05 whereas for our studies the ionic strength was much lower (about
 

0.0025) to minimize Joule heating. It was prepared as follows: Two stock solutions,
 

one acidic and one alkaline,were prepared by dissolving 4.6 grams of diethylbarbit­

uric acid in 1000 ml of deionized water (acidic solution) and 103.0 grams of diethyl­

barbituric acid-sodium salt in a separate 1000 ml of deionized water (alkaline solu­

tion). These solutions were stored at 40C and were kept up to five days before
 

being discarded. Carrier buffer and buffer used to dissolve the protein test solu­

tions were prepared daily by mixing 409 ml of the acidic solution with 100 ml of
 

the alkaline solution and then diluting the resultant solution to 20 liters with
 

deionized, deaerated water. Deaeration was attained by exposing the water to about
 

0.001 ATM for 16 hours to obtain an oxygen partial pressure of 100 mm of mercury.
 

The 20 liter solution was tested for pH and adjusted to pH 8.3 with the required
 

amounts of either acidic or alkaline solution. The final pH of the buffer was 8.3
 

-
and its conductivity was 1.005 x 10 4 mho/cm to l.n20 x 10-4 mho/cm at 200C.
 
The ionic strength of the buffer was approximately 0.0025 and its specific gravity
 

was approximately 1.0012 gm/cc at 200 C. Variations in osmolarity and conductivity
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were due to slight variations in the day-to-day preparation of the buffer. We
 

chose to prepare buffers fresh daily to minimize the possibility of both microbial
 

and chemical deterioration and to avoid addition of preservatives which would
 

affect cell viability. Constant pH values were maintained from day to day by minor
 

additions to the fresh daily buffer of appropriate amounts of either acidic or al­

kaline solution.
 

Buffer used as the electrolyte solution was prepared similarly except that the
 

mixture of 409 ml acidic solution and 100 ml alkaline solution was diluted to four
 

liters to provide a concentration five times that of the carrier buffer. Similar
 

assure
day to day pH adjustments were made as with the carrier and sample buffer to 


constant pH values throughout the tests. The final PH of the electrolyte buffer
 

-
was 8.3 and its conductivity was 7.21 x 10 4 mho to 7.41 x 10-4 mho. The ionic
 

strength was approximately 0.0125. Both the diethylbarbituric acid and its sodium
 

salt were obtained from Sigma Chemical Company, St. Louis, Missouri.
 

5.3 ASSAY METHODS
 

The two proteins used during these tests, human albumin and fibrinogen, were
 

obtained from Sigma Chemical Company in St. Louis and are the most highly Purified
 

forms found commercially available. Both are reactive to the Folin and Ciocalteu
 

reagent described by Lowry (7), and a modification of his method was used to con­

duct all the protein assays during these tests. This modified procedure was
 

conducted as follows:
 

REAGENTS
 

Source of Reagents
 

Sodium carbonate, sodium hydroxide and cupric sulfate penthydrate were
 

obtained from Mallinkrodt Chemical Company in St. Louis. Sodium
 

potassium tartrate and the Folin and Ciocalteu Reagent (2N) were
 

obtained from Sigma Chemical Company in St. Louis.
 

Composition of Reagents
 

Reagent 1 - 20 grams of sodium carbonate and 4 grams of sodium
 

hydroxide dissolved in 1000 ml of deionized water.
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Reagent 2 - 20 grams of sodium potassium tartrate dissolved in
 

1000 ml of deionized water.
 

Reagent 3 - 10 grams of cupric sulfate pentahydrate dissolved in
 

1000 ml of deionized water.
 

Reagent 4 - Folin and Ciocalteu Reagent (2N).
 

Assay Procedure
 

1. 	Just prior to use, 50 ml of Reagent 1 was mixed with 0.5 ml of
 

Reagent 2. This solution was mixed thoroughly and then 0.5 ml
 

of Reagent 3 was added. After thorough mixing, this solution
 

was labeled Reagent A. This reagent was prepared fresh daily.
 

2. 	Samples to be assayed were pipetted into 16 x 100 mm plastic
 

test tubes in 1.0 ml aliquots. To the 1.0 ml of sample was added
 

2.0 ml of Reagent A. After mixing, these solutions were allowed
 

to stand at room temperature for 10 minutes.
 

3. 	After 10 minutes 0.1 ml of the Folin and Ciocalteu Reagent (2N) was
 

added and the solutions again mixed thoroughly. These final test
 

solutions were allowed to stand at room temperature for 30 minutes.
 

After this time their optical densities were determined at 700 nm
 

in a Coleman Spectronic 70 Colorimeter using as a blank the 0.0025
 

ionic strength diethylbarbituric acid buffer described in Section 4.1.
 

4. 	Standard curves were prepared daily using human albumin as the standard
 

at concentrations ranging from 400 to 3.125 wg/ml in the same 0.0025
 

ionic strength barbituric acid.
 

5.4 DATA REDUCTION AND CORRELATION
 

The results of the-single protein runs of human albumin at 0 volts/cm and buffer
 

flowrates of 20, 30 and 40 ml/min are shown in Figure 5-4. The dashed lines in
 

each case are for the corresponding analytical predictions. What is immediately
 

apparent from this comparison is that the test results show some widening of the
 

sample stream even with no voltage applied. Since the analytical predictions included
 

modeling of the effects of diffusion, some of this widening must be attributed
 

to the test hardware. The corresponding results and comparisons for the single
 

protein runs of fibrinogen at 0 volts/cm and buffer flowrates of 20, 30, and 40
 

ml/min are shown in Figure 5-7. Here again, the same widening of the sample
 

streams at zero applied voltage is evident.
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The results of the single protein runs of human albumin at 10 volts/cm and buffer
 

flowrates of 20, 30, and 40 ml/min are shown in Figure 5-5. The dashed lines in
 

each case are-for the corresponding analytical predictions. These runs, particu­

larly at the higher flowrates, show the effects of the widening of the sample
 

stream that was evident in the runs with no applied voltage. If it is assumed
 

that the zero voltage widening also applies to cases with voltage, as it would
 

if it were associated with the system, then the analytical predictions show very
 

good correlation with the test results. The corresponding distributions for
 

human albumin at 20 volts/cm and 40, 30 and 20 ml/min buffer flowrate are pre­

sented in Figure 5-6. Here again, the difference between the predicted distri­

butions and the test results can be explained in terms of the zero voltage
 

widening of the sample streams and is not attributable to the application of
 

voltage. The underprediction of sample movement in the analysis can be attri­

buted to the actual residence times being greater than the predicted residence
 

times as evidenced by the buffer flow gravity effects test data correlation.
 

The results of the single protein runs of human fibrinogen at field strengths
 

of 10 and 20 volts per cm are presented in Figures 5-8 and 5-9 respectively.
 

Here, both the general widening of the sample streams characteristic of the
 

zero voltage cases and the increased movement for the test peaks relative to
 

the predicted peaks at higher voltages is evident.
 

The output concentration distributions for the mixed protein separations are pre­

sented in Figures 5-10 through 5-16. The results for the highest concentration,
 

0.12% protein by weight per unit volume, and the lowest buffer flowrate, 20 ml/min
 

are presented in Figure 5-10. The results show generally good correlation, once
 

the widening of the sample stream for the no voltage case is accounted for. The
 

question in interpreting the results is how much of the widening of the sample
 

stream can be attributed to gravity. This was determined analytically by pre­

dicting the distribution with and without the gravity body force in the - direc­

tion (Figure 5-11). The peak shift, due to gravity, is about one tube of additional
 

movement. Of course, this widening would increase at higher concentration or lower
 

buffer flowrates. Corresponding data at lower concentrations 0.034% and 0.018% pro­

tein by weight per unit volume is presented in Figures 5-13 and 5-15.
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The results of mixed protein concentration distributions at a higher buffer
 

flowrate of 40 ml/min are presented in Figures 5-12, 5-14, and 5-16. These results
 

are consistent with those for the 20 ml/min buffer flowrate, except that the
 

peaks are sharper and the distance moved is less due to the shorter residence
 

time. Figure 5-16, which has the outlet concentration distribution for the
 

lowe~t concentration, .0.018%, and the highest buffer flowrate, 40 ml/min, should
 

have a minimum of gravity effects.
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6.0 CELL GRAVITY EFFECTS
 

The purpose of the tests described in this section was to demonstrate the effects
 

of gravity on sample streams of cells. The cells used for these tests shown in
 

Figure 6-1 were 33H human lymphocytes. The movement of the lymphocytes during
 

electrophoresis was experimentally found at flowrates of 20 and 40 ml/min and
 

concentrations of 1 9 107, 5 x 106, and 2.7 x 105 cells/ml. Test data collectionis
 

described in Section 6.1 and the data reduction and correlation in Section 6.2.
 

6.1 TEST DATA COLLECTION
 

Continuity of test conditions previously run with proteins was maintained by
 

establishing chamber conditions as close as possible to those of the Task 1.0 runs.
 

As with the protein test runs, dye was used only for initial verification that a
 

cell density would flow within the chamber. This method was used to determine
 

the upper limit for cell densities at the stated carrier buffer flow rates and
 

for the trypsinized buffer used. The lower density limit was set by the assay
 

technique. Sample to carrier buffer ratios of 1:200 + 9% were again maintained.
 

Cells were harvested, washed, counted and diluted as required on a daily basis.
 

Because of an expected tendency for cells in the sample syringe to settle with
 

time, thereby effecting outlet distribution, the syringe was slowly and con­

tinuously agitated to control settling. Because of some syringe and con­

nected feed tube movement due to the agitation, a slight, short period
 

( 1-2 CPS) pulse of the sample stream as it left the capillary tube in the
 

chamber was noted. This pulse caused some of the spread in the collected
 

sample distribution.
 

Only two cell runs, one at zero-voltage and one electrophoresis could be conducted
 

each day and this required a new sample of cells be counted the next test day. These
 

day-to-day harvestings, suspensions, and dilutions resulted only in about 3% devia­

tion in initial cell counts. Sample injection and collection procedures were gen­

erally the same as for the protein runs. In the assay,.cell counting was performed
 

on all collected samples and included sample from tubes as far as twenty (20) on
 

either side of the expected peak count.
 

Cell concentrations in units of g/ml were calculated from the cell counts and
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-
an experimentally determined mass of 1.235 x 10 9 g/cell and density of 1.060
 

g/cm 3 .
 

6.2 CELL SELECTION
 

Cells used for these tests were a continuous human lymphocyte line desiqnated 33H
 

by the American Type Tissue Culture Collection. They are a vigorously prolifer­

ating cell which grows in suspension culture, and range in diameter from 8.5 to
 

about 15 microns. Since lymphocytes produce a wide variety of materials which may
 

become candidates for space bioprocessing, these cells represented an ideal source
 

of material for the conduct of these tests.
 

6.3 CELL PREPARATION
 

Cells used for these tests were grown in RPMI medium (Grand Island Biological
 

Company (GIBCO), Buffalo, New York) which contained 0.03% glutamine and 0.2%
 

sodium carbonate. Prior to use the medium was supplemented with 20% fetal calf
 

serum, also obtained from GIBCO. Starter cultures consisted of 100 ml spinner
 

flasks containing 100 ml of medium inoculated with 3 x 107 cells to provide a
 

starter culture containing 3 x 105 cells/ml. During incubation, cells were exposed
 

to an atmosphere of 5% CO2, 95% air. After three to four days incubation at 370C,
 

the starter cultures were used to inoculate 500 ml spinner flasks at a concentration
 

of 3 x l05 cells/ml. After three to four days, the cultures were similarly inocu­

lated into 1000 ml flasks from which test samples were harvested. Cells for elec­

trophoretic tests were harvested by centrifugation at 200g for 20 minutes. Harvested
 

cells were washed once in approximately 100 volumes of buffer (described in Section
 

5.3), resuspended in the same buffer, enumerated for total and viable cells, adjus­

ted to the concentration desired for testing, and stored at 40C until ready for
 

processing.
 

Generally speaking, cells were harvested at 9:00 a.m., processing was initiated at
 

11:00 a.m. and completed by 3:00 p.m. Assays of the processed samples were gener­

ally completed by 4:00 p.m. In all cases, cells were harvested and prepared fresh
 

daily.
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6.4 BUFFER SELECTION
 

The buffer used for washing, resuspending and processing the human lymphocytes
 

in the electrophoresis unit was prepared as follows: Triethanolamine (2.4 gm),
 

glycine (20.7 gm), potassium acetate (0.4 gm), and glacial acetic acid (0.6 ml)
 

were dissolved in 100 ml of deionized water. When these materials were completely
 

dissolved, calcium chloride dihydrate (0.044gm) and magnesium chloride hexahydrate
 

(0.061 gm) were added. For use as the carrier buffer and for washinq and suspending
 

the test cells, the 1000 ml solution was diluted to2Oliters and l.Oml of 2.5% tryp­

sin in .85% sodium chloride (GIBCO) was added and mixed well. For use as electro­

lyte fluid, another 1000 ml solution was diluted to eight liters and no trypsin was
 

added.
 

The final pH of the buffer was 7.4, its osmolarity was 294 to 301 m OSM and its
 

conductivity was 1.21 x19 4 mho/cm to 1.45x10 -4 mho/cm. The specific gravity was
 

approximately 1.00982 gm/cc at 20'C. Variations in osmolarity and conductivity­

were due to slight variations in the day to day preparation of the buffer. We
 

chose to prepare buffers fresh daily to minimize the possibility of both microbial
 

and chemical deterioration of the buffer and to avoid addition of preservatives
 

which would affect cell viability. Constant pH values were maintained from day to
 

day by minor additions to the fresh daily buffer of appropriate amounts oF either
 

acetic acid or triethanolamine. This buffer provided viability recoveries of up
 

to 90% over the course of the day's testing and assaying, and prevented agglutina­

tion of the cells which would have interfered with the tests.
 

6.5 ASSAY METHOD
 

Lymphocytes were enumerated in a standard laboratory hemocytometer using Erythrosin
 

B (Fisher Scientific Company, St. Louis, Missouri) dissolved in saline to differen­

tiate viable from nonviable cells. Viable cells exclude the dye and appear clear,
 

while the nonviable cells take up the dye and stain pink.
 

Depending on the total cell population in the samples, either 0.05% Erythrosin B
 

or 0.4% Erythrosin B was used. If the cell population was between one million and
 

three million cells per ml (100 to 300 cells actually counted in the hemocytometer),
 

the sample was prepared by adding 0.1 ml of the sample to 0.9 ml of 0.05% Erythro­

sin B. If the cell population was between 40,000 and 100,000 cells per ml (48 to
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120 actually counted in the hemocytometer), the sample was prepared by adding 0.5
 

ml of sample to 0.1 ml of 0.4% Erythrosin B. After adding the dye, cells were
 

allowed to stand at room temperature for 5 minutes before placing them in the
 

hemocytometer for counting. In all cases, prior to dye addition, a preliminary
 

cell count was made to estimate the cell population and to make initial dilutions
 

to bring the total cell population into one of the proper ranges for counting.
 

6.6 DATA REDUCTION AND CORRELATION
 

Test versus predicted outlet concentration distributions for the electrophoresis of
 

33H human lymphocytes are shown in Figures 6-2 through 6-8. The concentration dis­

tributions shown in Figure 6-2 are for the lowest buffer flowrate, 20 ml/min and
 

the highest cell density, the case where gravity effects should be most apparent.
 

In general, the predicted spreading of the sample is less than for the test data,
 

both with and without applied electrical field, so some of this spreading isachar­

acteristic of the MDAC-.St. Louis test hardware.
 

In addition, the smaller predicted movement of the cells with the field applied is
 

caused by the actual residence times being greater than predicted, as evidenced by
 

the buffer gravity effects data correlation.
 

Predicted gravity effects on the electrophoresis of cells are shown in Figure 6-3.
 

The greater movement under electrophoresis in one-g is caused by the increased
 

residence times due to the particle streams slipping with respect to the surround­

ing buffer. Widening of the particle streams is not evident for this case, but
 

would probably become evident at higher concentrations or greater-electrophore­

tic movement. Test versus predicted concentration distributions for the lower cell
 

densities of 5 x 106 and 2.7 x 105cells/ml at a buffer flowrate of 20 ml/min are pre­

sented in Figures 6-5 and 6-7.
 

The results of cell electrophoresis at a higher buffer flowrate of 40 ml/min are
 

presented in Figures 6-4, 6-6, and 6-8. These results are consistent with those
 

for the 20 ml/min buffer flowrate, except that the peaks are sharper and the
 

distance moved is less due to the shorter residence times. Figure 6-8, which is
 

the outlet concentration distribution for the lowest cell density, 2.7 X 105 cells/
 

mland the hiqhest buffer flowrate, 40 ml/min, would have a minimum of gravity
 

effects.
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7.0 SAMPLE CONCENTRATION EFFECTS
 

Previous studies in the MDAC-St. Louis laboratories have shown that limited concen­

trations of proteins and cells can be processed by free flow electrophoresis in a
 

one-gravity environment (8,9). Basically, the limitations are caused by the in­

creasing specific gravity that occurs in a solution when increasing amounts of
 

protein solute are added. This increased specific gravity results in an increased
 

weight of the sample stream column flowing upward. When the sample stream column
 

reaches a critical specific gravity, it fails to flow and falls back. This "fall­

back" phenomenon can be avoided by increasing the carrier buffer flow rate, but
 

this results in shorter residence times and poorer resolution capabilities. Human
 

plasma must be diluted 1/50 to 1/70 times in distilled water in order to be pro­

cessed in our unit at a carrier buffer flow rate of 20 ml/min (with sample flow at
 

about 0.2 ml/min). If processed in zero gravity, it would flow without dilution
 

and thus provide the potential of increasing sample throughput by 70 times.
 

Basic questions have arisen, however, concerning protein-protein interactions
 

occurring in concentrated protein samples (but to a lesser degree in dilute samples)
 

which may alter their fundamental characteristics and affect their electrophoretic
 

mobility. If such were the case, utilizing the greater concentration possible in
 

space would result in a decrease in resolution of the separated protein mixtures.
 

It is not practical at this time to conduct a space experiment solely to determine
 

if concentration affects electrophoretic mobilities in the free flow process
 

although such an experiment should certainly be included as part of a space demon­

stration program.
 

In order to detect the possible effects of concentration on electrophoretic mobility,
 

we employed three common ground based electrophoretic procedures and studied the
 

mobilities of various proteins in human plasma at several concentration. Tests
 

with agar gel plates, and polyacrylamide disc gel electrophoresis showed that no
 

significant differences in the fundamental electrophoretic mobility of the major
 

protein components occurred over a concentration range of nearly two orders of
 

magnitude. Tests with cellulose acetate strips provided only inclusive results
 

because of erratic performance by the instrument employed.
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7.1 TEST METHODS
 

AGAR GEL PLATE ELECTROPHORESIS - Agar coated plastic plates (Corning No. 470100)
 

and a Corning Model No. 470130 electrophoresis chamber were used for this series
 

Gelman 51104 buffer, pH 8.6 and 0.03 ionic strength, was used as the
of tests. 


electrolyte and carrier fluid.
 

Samples were applied to the gel using the Corning Sample Dispenser Model No. 470152
 

in 1.0 pl aliquots and the plates placed in the electrophoresis chamber. After
 

positioning the plates, voltage (85 volts) was applied to provide a field strength
 

of about 15 volts/cm.
 

Samples were electrophoresed for 40 minutes after which time the plates were removed
 

They were then
and rinsed in deionized water and dried at 67°C for 60 minutes. 


stained in 0.5% Coomassie Brilliant Blue R250 (BIO-RAD No. 161-0400 dissolved in
 

45% methanol, 45% water, and 10% glacial acetic acid, V/V/V) for five minutes. The
 

plates were then rinsed in the above solution (but without added Coomassie Blue)
 

until the protein bands were visible. They were then dried in a 670 oven for one
 

hour. The distance each protein band moved during electrophoresis was then deter­

mined by direct measurement of the distance from the original starting position to
 

the center of each band.
 

POLYACRYLAMIDE DISC GEL ELECTROPHORESIS - For these tests, a BIO-RAD Model No. 150A
 

In this method, glass tubes, dimensions
electrophoresis apparatus was employed. 


5 mm diameter x 125 mm long, were filled with polyacrylamide gel and run according
 

to the standard procedure of the Miles Laboratories, Elkhart, Indiana. Test samples
 

were mixed with loading gel which was placed at the top of the column in 100 pl
 

aliquots and the column then placed in the electrophoresis chamber. Tris-glycine
 

buffer, pH 8.1 and ionic strength 0.2, was used for the electrolyte and carrier
 

fluid. Samples were electrophoresed for 75 minutes with 150 applied volts which
 

resulted in a field strength of approximately 12 volts/cm and 40 milliamps (5 mil­

liamps per column; 8 columns employed).
 

After electrophoresis, the polyacrylamide gel columns were removed from the glass
 

column, fixed in 2.5% trichloroacetic acid overnight, rinsed with water, then
 

stained in 1% Coomassie Blue G-250 in 7% acetic acid. They were then rinsed in
 

7% acetic acid 50% methanol and the gels preserved in 7% acetic acid in water.
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The distance each protein band moved during electrophoresis was determined by
 

direct measurement of the distance from the top of the separation gel to the center
 

of each band.
 

SAMPLE PREPARATION - Standard Normal Plasma (SNP) samples obtained in dried form
 

from Dade Diagnostics, Miami, Florida, were used as the protein samples for these
 

tests. Inall cases, the dried plasma was rehydrated prior to use with distilled
 

water. Each SNP vial contains premeasured plasma such that rehydration with 1.0 ml
 

of water will result in a solution representative of normal plasma, containing
 

about 7% total protein. Various sample concentrations were obtained by adding
 

0.25 ml of water (to obtain a sample containing 28% protein), 0.5 ml for a 14%
 

solution, and so on, to obtain samples containing from 0.109% (one vial in 64.0 ml
 

of water) to 28% (one vial in 0.25 ml of water).
 

7.2 TEST RESULTS
 

AGAR GEL PLATES - The results of these tests are shown in Figures 7-1 and 7-2 and 

are summarized in Figures 7-3 and 7-4. Inrun 1,samples containing7.0%, 3.5%, and 1.75%
 

protein were used. A photograph of the stained electrophoresis gel plate is shown
 

in Figure 7-1. The 7% sample clearly separated into six distinct bands representing
 

(from top to bottom) albumin, alpha-l-globulins, alpha-2-globulins, beta-l-globulins,
 

fibrinogen, and gamma globulins. The 2.5% sample also separated into six distinct
 

bands. In the 1.75% samplonly albumin, beta-l-globulins, and fibrinogen were
 

visible, and in the lowest concentration, 0.875%, only albumin, beta-l-globulins,
 

and fibrinogen were visible. This loss of visualization was a result of dilution
 

of the proteins bands beyond the point at which dye would bind sufficiently to be
 

visible to the naked eye.
 

In run 2 test samples consisted of duplicate samples containing 7% and 28% protein,
 

and a 7% sample which had been prepared originally at 28%, allowed to react at room
 

temperature for two hours and then rediluted to its original 7% protein concentra­

tion. A photograph of the stained electrophoresis gel is shown in Figure 7-2. In
 

all cases, the samples showed six distinct separated bands on the oriqinal gel plate.
 

Unfortunately, the photographic reproduction does not show the resolution obtained
 
with the 28% sample.
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Visual inspection of Figures 7-1 and 7-2 reveals that no significant differences in
 

mobil ity occurred as a result of the starting sample concentration. Mare precise measure ­

ments, made from the origin to the center of each band, are shown in Figures 7-3 and 7-4. 

In the first experiment (Figure 7-3) albumin moved a distance of 18 mm, regardless
 

of the concentration of the starting sample. Similarly, all of the other major
 

proteins moved consistently regardless of concentration. In this procedure, the
 

gamma-globulins migrated in the opposite direction to the other proteins and
 

their migration distance is indicated as such by the minus (-) sign. Where N.V.
 

appears in the table, no measurements were possible because the bands were not
 

visible. Measurements of the mobilities in the second experiment are shown in
 

Figure 7-4. As in the first set of data, all the protein bands showed consistent
 

mobilities regardless of the concentration of the starting sample. In addition,
 

the mobilities of most of the proteins were identical from one run to another.
 

Albumin mobility varied only from 18 mm in Run 1 to 19 mm in Run 2, or only
 

about 5.5%; the beta-l-globulins varied from 0.55 to 0.60 or only about 8.3%. 3
 
The other protein bands moved identically in both runs.
 

These data indicate that the agar gel electrophoresis provides consistent results
 

from day to day. Using this method, no differences in mobility of the major plasma
 

proteins as a function of the concentration of the starting sample could be detected. -


POLYACRYLAMIDE DISC GEL ELECTROPHORESIS - The results of these tests are shown in
 

Figure 7-5 and the data summarized in Figure 7-6. Although many details of the
 

separation were lost during photographic representation, sufficient details are
 

present to visually analyze the results.
 

Figure7-5is a photograph of plasma separations from samples ranging in protein
 

concentration from 0.109 to 7%. From this photograph we selected seven bands or
 

band groups for mobility comparison purposes. These bands were identified as
 

(from top to bottom) gamma-globulins, a group of alpha-2-globulins, a single
 

alpha-2-globulin, beta-l-globulins (hemoglobin and transferrin), an alpha-l-globulin, 3
 
albumin and prealbumin. These identifications were made by comparing our electro­

phoretic pattern to that of Clarke(lO), who identified all the various bands
 

obtainable by this procedure.
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The gamma-globulins were visible in all tubes and remained at the origin during
 

electroDhoresis. Although not visible in the photograph, seven distinct close­

moving alpha-2-globulins were visible to the naked eye in the freshly stained gels
 

down to a concentration of 0.875%, and showed no visible differences due to sample
 

concentration. The alpha-2-globulin band was visible in the photograph in all
 

tube§ down to 0.875% and visual inspection indicated that this material moved about
 

the same distance from the origin in each concentration. The beta-l-globulins,
 

hemoglobin and transferrin moved as a single band, were visible in all tubes and
 

also appeared to migrate the same distance regardless of concentration. Similar
 

results are apparent with the alpha-l-globulin band, visible down to 0.875%,
 

albumin, visible in all tubes, and prealbumin, visible only in the 7% and 3.5%
 

samples. In two tubes,those containing 3.5% and 1.75% samples, slight smearing
 

occurred in the area between the gamma-globulins and the group of alpha-2-globulins.
 

The smearing is'not visible in the photographic representation but was visible in
 

the freshly stained gels. Those same bands, although very faint, were not smeared
 

in the other tubes and all showed similar migration patterns. The reason for the
 

smearing in those tubes was likely due to improper sample placement on the column.
 

Visual inspection of the general pattern of band migration in the gel column indi­

cated that no significant differences in migration occurred from one test sample to
 

another. More precise measurements, made from the origin to the center of each
 

band are shown inFiqure 7-6. Where N.V. appears in the table it indicates that the
 

protein in that sample was too diluted to bind sufficient dye to be visible to the
 

naked eye.
 

In the case of all the proteins except albumin, no significant differences were
 

apparent as a function of protein concentration. The gamma-globulins all remained
 

at the origin, the alpha-2-globulin moved 1.4 cm in every case, the -beta-i-globulins
 

showed migrations of 2.1 to 2.3 cm with an apparent slight increase with the inter­

mediate concentrations, the alpha-l-globulin moved 3.3 to 3.4 cm with no apparent
 

trend toward differences as a function of concentration, and prealbumin, in the two
 

concentartions available for measurement, both migrated 5.8 cm.
 

Albumin, however, did appear to migrate slightly farther in the concentrated sample
 

than in the most dilute sample. The differences of 2'.1 and 2.3 noted for the beta­

2-globulins and of 3.3 and 3.4 noted for the alpha-l-globulin are probably not
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significant because of measuring error, slight deviations in gel thickness, or
 

possible small differences in field strength across the gel discs. With albumin,
 

however, a distinct trend is apparent indicating increased mobility of the albumin
 

in concentrated samples. One possible explanation is that the albumin has over­

saturated the gel disc molecular sieve pores and thus some of the albumin molecules
 

are no longer retarded in mobility by the gel pores. These excluded molecules would
 

be under the same electromotive force a all the other albumin molecules, but, not
 

being retarded by molecular sieve action, as are all the others, would migrate
 

farther giving the appearance of increased electroohoretic mobility.
 

Whatever the explanation of the increased albumin migration, the differences noted
 

were not significant (about 7.3%) and did not interfere with the migration of the
 

two species which move near albumin, i.e., prealbumin and the alpha-l-globulin.
 

In addition, whereas it might have been expected that proteins in higher concen­

trated samples would possess retarded mobilities, these data indicate that if
 

concentration does affect mobilities, even if only slightly, it does so with
 

opposite results.
 

CELLULOSE ACETATE STRIP ELECTROPHORESIS - Tests conducted with the Gelman Model
 

No. 51211 electrophoresis apparatus gave erratic and inconclusive results. It was
 

found that differences in field strength occurred across separate cellulose acetate
 

strips which caused erroneous interpretation of early test results. In effect,
 

samples placed at the top of the apparatus always showed greater migration dis­

tances, regardless of concentration, when compared to migration distances obtained
 

on strips placed at the bottom of the apparatus. Additionally, day to day varia­

tions in mobilities of up to 46% occurred, also reqardless .of samole concentratinn,
 

which discounted meaningful interpretation of the data. No simple means of control­

ling these erratic results were available and so this method was not investigated
 

further.
 

7.3 SUMMARY
 

Three conventional ground based electrophoretic procedures were employed to deter­

mine if sample concentration affected the electrophoretic mobility of the major
 

plasma proteins. One of these methods, using cellulose acetate strips gave erratic
 

and inconclusive results. These inconsistencies were shown to be a result of the
 

apparatus itself and not a function of protein concentration. Using Corning gel
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plates, consistent results were obtained from one experiment to another providing
 

reliable data which showed that no differences in separation occurred as a result
 

of protein concentration ovr-the range of 0.875% to 28%. The third method employed,
 

polyacrylamide gel electrophoresis, gave similar results over a concentration range
 

of 0.109% to 7.0% protein. A slight increase in the migration of albumin noted
 

during this procedure was probably not due to an increase of electrophoretic mobil­

ity but to overloading of the polyacrylamide gel by this major constituent of human
 

plasma.
 

These results indicate that no significant differences in electrophoretic mobility
 

are apparent, as a function of protein concentration, over the range of 0.109% to
 

28%.
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8.0 CONCLUSIONS AND RECOMMENDATIONS
 

The purpose of this study was to demonstrate the effects of gravity on the free
 

flow electrophoretic process and to compare the demonstrated effects with predic­

tions made using mathematical models. The effort included eighteen test runs to
 

investigate the effects of gravity on the carrier buffer flow and forty-two test
 

runs to investigate the effects of gravity on samples of biological materials,
 

both proteins and cells. During the runs, electrical field, buffer flowrate and
 

sample concentration were the independent variables. The dependent variables for the
 

buffer qravity effects investiqation were the vertical centerline velocity distributions
 

and the horizontal centerline velocity distributions, For the sample gravity effects in­

vestigations, the dependent variable was outlet concentration distribution.
 

From the results of the buffer gravity effects, tests and data correlation the
 

following conclusions can be drawn:
 

o Correlation between measured vertical centerline velocity distributions and
 

analytical predictions with no field applied was qenerally good, except that
 

test profiles are more.rounded.
 

OWith field applied to the chamber, the peaks in the velocity distribution-near
 

the membranes, with a larger peak on the cathode side, were predicted analyti­

cally and were evidenced by peaks in the horizontal dye fronts. These same
 

peaks could not be numerically differentiated reliably from dye front coordin­

ates, due to nearly vertical slopes in the dye fronts near the membranes.
 

OWith field applied to the chamber, the measured vertical centerline velocities
 

were generally less than those predicted by analysis. The analytical predic­

tions are strongly dominated by the axial flow and the solution may not have
 

converged sufficiently to accurately predict the additive velocities due to
 

convection cells. Further correlation effort in this area is recommended.
 

oCorrelation between measured horizontal centerline velocity distributions and
 

analytical predictions was good considerinq that the error in measuring these
 

velocities, which are about two orders of maqnitude less than the vertical
 

velocities, is almost as great as the velocities themselves.
 

From the results of the sample gravity effects tests and data correlation, the
 

following conclusions can be drawn:
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0	Widening of the sample stream to about plus or minus one outlet tube width
 

(±.08 cm) more than analytically predictedwas obtained even with no field
 

applied. Some of this widening is probably a characteristic of the test setup.
 

OCorrelation between the outlet concentration distribution of single proteins
 

during electrophoresis and the predicted distributions isgenerally good.
 

except at low buffer flowrates. The larger measured movement at 20 ml/min
 

buffer flowrate is a result of greater residence time for the sample than
 

was analytically predicted. This is evidenced by the buffer gravity effects
 

tests, where vertical velocity was less than predicted by analysis.
 

o Inconsistent results were obtained in estimating wall electroosmotic velocity
 

for the buffers used from data obtained in the literature for other buffers.
 

Further investigation of electroosmotic velocity for the buffers used is recom­

mended. For a given estimate of wall electroosmotic velocity, the experimental
 

results were consistent.
 

0 The effects of gravity on the samples at the highest protein concentrations and
 

lowest flowrate was about a 5% increase in movement inder electrophoresis.
 

Greater effect would have been noted at higher protein concentrations; however,
 

consistent results would have been more difficult to obtain.
 

0 	The outlet concentration distributions obtained for 33H human lymphocytes show
 

results similar to those obtained for proteins.
 

A general conclusion of this study is that three dimensional mathematical models,
 

if they include gravity induced buoyant forces, can be used to effectively predict
 

electrophoresis chamber separation performance.
 

The results of tests performed using various methods of electrophoresis using
 

supportive media show that the mobility and the ability to separate are essen­

tially independent of concentration, providing promise of being able to perform
 

electrophoresis with higher inlet concentrations in space.
 

This investigation provides astarting poiht for meaningful comparison of free flow
 

electrophoresis chamber performance, i.e. output and separation capability,
 

on earth and under microgravity conditions and additional work in this area
 

is recommended.
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