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SIGNATURE EXTENSION IN REMOTE SENSING*

C. B. CHITTINENI

Lockheed Electronics Company, Inc.

Systems and Services Division

Houston, Texas

ABSTRACT

This paper considers the problem of signature extension in remote sensing.

Signature extension is a process of increasing the spatial-temporal range

over which a set of training statistics can be used to classify data without

significant loss of recognition accuracy.

Methods are developed for the selection of segments for obtaining the training

data. Selection of the number of segments is treated as the problem of expan-

sion of rectangular matrix with basis matrices. Computational algorithms

based on mean minimum square estimation error are developed for the selection

of best segments.	 Furthermore, a combinatorial algorithm for generating all

possible r combinations of S in Sc r steps with a single change at each step

is presented.

Key words:

Blocks
Combinatorial algorithm
Mean minimum square

estimation error
Remote sensing
Segment selection
Signature extension
Spectral classes

,'The materialTor this paper was developed and prepared under Contract
NAS 9-15800 for the NASA/JSC Earth Observations Division, Houston, Texas.
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1.	 INTRODUCTION

In the application of remote sensing for large-area crop inventories and

other, the multispectral Land Satellite data are processed in units called

segments (a segment is an area 5 by 6 nautical miles). The processing of a

segment necessitates the acquisition of labels of picture elements (pixels)

to train the classifier. Obtaining the labels is costly, and training the

classifier for every segment is time consuming.

To overcome the cost and time constraints, attempts have been made to solve

the problem of signature extension; i..e., to train the classifier for classi-

fying data acquired over large areas or many seoments without significant

loss of recognition accuracy. The goal of signature extension is then to

min i mize the requirements for obtaining the labels and extracting the training

statistics.

Many current signature extension techniques (refs. 1 to 3) are based on a

transformation of training statistics to compensate for changes in Sun angle,

atmospheric and viewin5 conditions, etc., between the training area and the

recognition area. The signature extension transformation of these techniques

is both multiplicative and additive. Minter (ref. 4) reviews the techniques

proposed for si gnature extension in the literature.

This pa per considers an approach for signature extension (ref. 5) based on

the assumptions that the data variations due to changes in Sun angle,

atmospheric and viewing conditions, etc., can be significantly reduced by pre-

processin g and that the data are governed by a few inherent spectral

classes related to the ground covers. With these assumptions, the training

samples can be drawn from a few representative segments, and the classifier

can be used to classify data acquired over large areas.

t Let S be the total number of segments. Suppo; ĉ  that clustering these seg-

ments produces T spectral classes with a total cf J blocks. The situation

is illustrated in figure 1.
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Figure 1.-- Spectral classes and blocks in measurement space.
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The number of spectral points counted in each block result in a matrix of

segment versus count number for each block:

Blocks

1	 2_	 J

	

S O O	 O Segments

Based on matrix A. computational algorithms for the selection of training

segments are developed. The segments selected are representative; i.e.,

all the blocks associated with the T spectral classes are present in the

selected segments. Section 2 describes an orthonormal expansion for rectanu-

lar matrices. Section 3 describes methods for the selection of best segments.

Section 4 develops computational algorithms for the se l ection of individual

segments. Section 5 presents a combinatorial algorithm for generating all

possible r combinations out of S in Sc r steps with a single change at each

step. Appendix A presents a statistical description of the siqnature

extension model, and appendix B derives matrix relations used in the paper.

2. EXPANSION OF RECTANGULAR MATRIX WITH BASIS MATRICES

In this section, the S X J rectang ular matrix A is expanded in terms of

basis matrices, and the basis matrices are obtained. From equation (1),

form an S + J . S + J synnnetric matrix B.

0 A
B =

A T 0
 l

Let C and D be the eigenvector and eigenvalue matrices of B. It can easily

be verified that

BC =	 CD
	

(3)

3

(L;



where

C =	 (4a)

and	

2

A 0
D =	 (4b)

0

I is an S x S orthonormal matrix, 	 is a J x S matrix with orthonormal

columns, and A is an S x S diagonal matrix; that is,

DT I) = 's(D T = I	 ( 5 )

T`i' = I

Since C is an eigenvector matrix of a symmetric matrix,

C 
T 
C = I	 (6)

equation (6) can easily be verified using equations (4a) and (5). 	 Inner-

multiplying both sides of equation (3) by matrix B of equation (2),

BBC = BCD

or

B 
2 
C = CD 	 (7)

is obtained. Using equations (2), (4a), and (4b) in equation (7),

AA 	 0  	 1 - 4,	
1	

4.,
	

41 A 2	0

=	 8

0	 AIA`Yf2	 0	 A2

is obtained. Expanding equation (8) yields

AATI = ?A2	(9)

and

ATA,	
A2	

(10)

4
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Let S < J. ,ince the maximum rank of A 
T 
A is S, it will have at most S non-

zero eigenvalues. Multiplying equation (9) on the left by A T and on the

right by A -1 gives

	

ATA(AT0-1 ) = ( AT0 -1 ) A 2	 (11 )

On the comparison of equation (10) and (11), the following is obtained.

	

^ = AT(^A -1
	

(12)

Taking the transpose of 4, and innermultipl_ving the result by A and ^ yields

	

A = -AWT 	(13)

Expanding equation (13), matrix A can now be represented as

S

A	
i41 q)T	

(14)

i=1

The following work shows that the relative importance of each term in equG-

tion (14) is proportional to a i . Let A be the approximation of A using

R(<S) terms in equation (14). Define the squared error as

e2 = tr[(A - A)(A - A)T]

S	 S	

(Itr
^ I TE E  X j (P IPj1

S	 S	 J

tr	
E^iXj(^iij(Dj

i = R+l j=^+1

S

^i	 (15)

I'

L	 - --



Equation (15) shows that if a term is dropped in equation (14), the representa-

tion error in the mean square error sense is equal to the square of the

corresponding eigenvalue.

3. COMPUTATIONAL. ALGORITHMS FOR THE SELECTION OF INDIVIDUAL SEGMENTS

Based on the theory developed in the last section, a number m that gives an

acceptable representation error can be chosen. This section considers the

problem of choosing a particular set of m rows of matrix A or m seqments and

develops computational algorithms for their identification.

3.1 MEAN SQUARE ERROR IN ESTIMATION

Let the rows of matrix A be fi, i = 1, 2 ..., S. Arbitrarily let the

first Q segments be chosen. Let

F  = [f l , f 2 , ... , Y
	

(16)

Where F is a J x X rectangular matrix. Let the row fT+j be estimated as a

linear combination of the rows f^, i = 1, 2, ..., Q. That is,

fe+j = F ka	 (17)

where B is a vector of parameters. The estimation error between f, +j and

f R+j can be written as

eQ+j = (iZ+j - f Z+j
) T ( j q̂ +j
  - f q+jl

= RT FTF^a + fT+j f Q+j - 2( T FTf E+j	(18)

Differentiating equation (18) with respect to ! and equating to zero yields

the B, which minimizes c2 +j as

R = (FTF^) -
1FTfR +j 	 (19)

6
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The substitution of equation (19) into (18) results in the minirwm error as

2	 T

l

( T	 '-1 Tl
E Q+j = f t+j l - F Q F Q F R	FQ

tr I ( I - F Q (FQ; t'^-1 FQ] fQ+JfZ+j i	
(20)

The mean minimum square error in the estimation of last (S - Q,) rows in terms

of the first Q rows of matrix A can be written as

S

2	 1	 E2

S

T	 -1 T	 1	 T
	tr

)
 I - F Q (F k F Q ) F Q -^^	 fjfi	 (21}

f l	 j=Q+1	 1

3.2 SELECTI ON OF THE BEST m SEGMENTS

The quantity c 2 (R) derived in section 3.1 measures the effectiveness of the

selected Q. rows in estimatinq the remaininq S - Q rows. The computation can

be organized in two ways in findinq the best m rows.

3.2.1 FORWARD SEQUENTIAL SEARCH

The computation involves finding each additional row, one at a time. After

selection of the r rows, the r + 1th row is selected among the remaining

S - r rows (by checking one at a time). This is a suboptimal procedure; it

involves much less computation compared to an exhaustive search. Section 4

gives the recursive expressions for reducing the computation.

3.2.2 EXHAUSTIVE SEARCH

A method of selecting m optimal rows for mean minimum square estimation

error is accomplished by forming all possible Scm combinations and evalu-

ating L2 (m) for each combination and then selecting the best combination.

Section 4 gives recursive expressions for c 2 (m) for reducing the amount of

7



computation. These results, coupled with the results of section 5, provides

an efficient algorithm for the implementation of exhaustive search in

segment selection.

4. RECURSIVE EXPRESSIONS FOR COMPUTATION OF MEAN

M;NIM1 1M SQUARE ESTIMATION ERROR

In this section, recursive expressions are developed for the computation of

mean minimum square estimation error when a row is added to the selected

segment set and when a row is deleted from a selected segment set.

4.1 CHAI'GE I N THE CRITERION WHEN A PARTICULAR ROW IS ADDED

Let f i 	1 = 1, 2, ..., r be the rows of matrix A selected at the rth

step. From the rth step to the r + ith step, a row that reduces the esti-

mation error most is added. Let fr+1 be the row that is added. Then,

	

Fr = [ f i t f 2 , ... , fr]	 (22)

	F r+l = [f l , f2,	 fr, fr+l1	 [ F r f r+l 1 	(23)

In the rth step, the mean minimum square estimation error E 2 (r) is

expressed as

1	 5
r (r) = tr	 I - Fr(FrFr) Fr [^S	 r̂ . 2/ f j fj	 (24)

1	 L	
j=r+l

Similarly, r 2 (r + 1) at the r + lth step is

S

2	 +	 =	 _	 T	 -1 T	 1	 T^
E (r	 1)	 tr	 I	 F

r+l (F r+1 F r+1	 r+1 S) F	 - r 1 E f
j f j	 (25)

I	 L	 j=r+2

8
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br	 r
T	 (26)

r

(27)

is can be written as

(28)

(29)

(30)

(31)

(32)

9



Now consider

T
- 1	 rAr	 °r FrT	 T	 II

	

Fr+l(Fr+lFr+1! F r+l = Frfr+^	 aT	
ClfT1	 J	 r+l

F rA rFr + fr+larFr + F ra r fr+l + afr+lfr+l	 (33)

However,

FrArFr	 Fr (arl + drl brbrBrlu')Fr

FalFr	
r r+ FalFrfr+lfr+l rFBrl Fr

	

r r	 ^x

T	 (34)C 2 + C f	 f	 C2r+lr+l2^Y

T T	 T 1 T
	fr+l a F	 f

	

r 
	 = - r+lb B- Frr ra

	

-f	 T	 (35)_	 r+l f l C 2 nr+

I = fr+lfr+l - fr+lFrBrlFrfr+l

f T
	 _ T

	

r+l f r+l	 f r+l C f2r+1

	

tr'fr+lfr+ll - tr (
C 2 f r+l fr+ll	 (36)

From e quations (33) through (36),

1

F r+1lF r+l F r^l/ Fr+l = C
2 + C2fr+lfr+lC2a - fr+lfr+lC2a

- C2fr+lfr+la + af r+l fr+l	 (37)

10
P



is obtained, where

1a r 	
T	 Ttr(fr*lfr+l^tr C 2 f r

+l fr+1 k

T \-1 TC 2 = F r (F Frr) Fr

Consider

S	 S

1	 f .fj	
_	 S- r	 1

S - r -	 3 3	 S - r^S = r^	 fjfj
T

j = r+2	 j=r+1

(S --7r fr+lfr+l

With equations (31), (38), and (39) in equation (25), (25) can be recursively

computed fron Pquatirn (24).

4.2 CHANGE IN THE CRITERION WHEN A PARTICULAR ROW IS DELETED

Let fi, i = 1, 2, ..., r be the rows of matrix A selected at the rth step.

Let a row fF be deleted fr,^m this set. This section presents the exdressions

derived for the computaitiin of man minimum square estimation error with

this reduced set.

Let

1
F r 

= ['l , '2
	 , f

r-1 f rJ

^F r-l f r]	 (40)

The estimation error F 2 (r - 1), with the selected rows fT, i = I, 2, ..., r - 1,

can be written as

S
T ^	

-1 T	 1	 T 1
E 2 (r - 1} = tr [I - Fr- ,IFr

-I r-l) Fr-1	 S - r— + 1	
fjfj	 (41)

J
j=r	 1

(38)

(39)



Consider

	

F 
T 

I
	 fr-I	 F	 f i

r ► 	 r-1 rj
f r

T	 T

Fr-1Fr-1	
F r- lf ► 	 ftr, h ►^

t F
T	 T	 T
rr-1	 f tr , r ,	 br	 ► ;

Let

11 

T	 -	 r'	 ►

l I ► F r 1	
I , ► T	 <<
.	 r

The relationship between Ar. and 1 ; r, can be written as

A	 I^
- 1 + a r `j ► -

Consider

1

T	 - 1 T	 l A''	
a ► ,	

I r-1

F r 
(

F r F r)	 F r 	 [ Fr - 1 f r 1 , ► 1	 ,^

	

►	 ^ LrT

F r - I Ar F r • -1 + 
f r ,i ► . F r• - 1 + F r-1 `j r f r + frfr

From equation s, (44) and (45).

(42)

(43)

(44)

(45)

(	

/1 T► ^-1 1 I T► ^-1 F ► • - t	 Fr--1

T	 _l I 1	
(h	

T

	

1- r
F f )	r	 _ (Fr_lar̀ ,)r._lar.)

	

r` r r	 cl

is obtained.

f r, (F r,_l ,t r ,) T - F r,_ l a r f rT - frfrTI	 (46)

I"



Now consider

	

S	 S
tr S +T^ f.fT = tr	 1	 f.fT +	 1	 f fTJJ-r+-1 	JJ	 S-r+	 rr

	

J = r	 j_^,+1

	

tr S S .r + 1(S..l. —	 f.fT f	 1	 f fT 	(47)JJ	 ^S-r+	 r 
j'=r+1

With equations (43), (46), and (47) in equation (41), (41) can be recursively

computfd from equation (24).

5. A COMBINATORIAL ALGORITHM FOR GENERATING ALL POSSIBL_ COMBINATIONS

This section describes an algorithm for generatincl all possible r combinations

out of S in Sc r steps (ref. 6). At each step, a single change is made. i.e.,

one row is deleted and one is added. The recursive relations developed

in section 4, coupled with this algorithm, can be used to search for r best

segments out of all possible Sc r combinations.

The initial combination may be any combination in which all the r-selected

numbers are consecutive.	 In the binary representation, it means that al l

the r 1's are in one run in a vector of length S. For example, if r = 3 and

S = 5, it may be started with 11100 or ( 1 1110 or 00111. The binary vector

is denoted by A, and its ith component is A(i).	 Initially, all the components

of A, except those of the last run, are marked. For example, if A = 00111000

(for r = 3 and S = 8), then it is marked as 00111000.

II

13



If a is a symbol, then a 11 ' stands for as	 . a, m times. Let i be the

highest index so that A(i) is marked. 	 A vector T(1), T(2),	 T(S) of

integers that satisfy the condition jT(j)j < J for j = 1, 2,	 ., S is

defined.	 Initially, T(1) = 0.	 If the initial combination is (0)p(T)rOS
- r - p,

where S , r + p, then T(p + r) = -1 and all the rest are immaterial. If

the initial combination is (a) S-r I r , then T(S - r) = -1 and all the rest

are immaterial. The changes that T must undergo in each combination gen-

eration are described by subroutines ;x and ^ as follows:

a:	 (i)	 If T(k) = 0, then output A and halt.

(ii) If T(k) > 0, then i - T(k), output A, and go to step (i) of the

procedure.

(iii) i - k - 1.	 If T(k) > -(k - 1), then T(k - 1) - 'f(k).

(iv) Output A and go to step (i) of the procedure.

g:	 (i)	 T(i) - -(k + 1).	 If T(k) > 0, then T(k + 1)	 T(k), output A,

and go to step (i) of the procedure.

(ii) T(k + 1) 4- k - 1. 	 If T(k)	 -(k - 1), then T(k - 1) - T(k).

(iii) Output A and go to step (i) of the procedure.

Now the vector F(0), F(1), ..., F(S) is introduced as follows. 	 If A(m', = 1

and it is the rightmost element in a run of 1's, then F(m) is the index

of the first 1 of this run.	 If not, F(m) is immaterial. Let e be the index

of the rightmost 1; that is, Q. = max m

A(m)= 1

An algorithm for generating all possible combinations with a single change

at each step can now be described. The initial conditions of the algorithm

are illustrated as follows. Let r = 3, S = 8 with an initial A = 01110000.

Then i = 4.

(1) k	 i .	 If A(i) = 1, go to step (8).

(2) j « F(2).

(3) A(i)	 1, A(j) - 0.	 F(k)	 k.	 If A(k - 1) - 1 and k > 1, then

F(k)	 F(k - 1).	 F(Q) t- j + l; if j < R, go to step (5).

14
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(4) Z - i. Perform a.

(5) If R < S, go to step (1).

(6) i - j. Perform 6.

(7) i	 Z. Perform 6.

(8) F(i - 1) - F(i).	 If A > i, go to step (12).

(9) A(i)	 0, A(S) - 1, F(S) 	 S,	 S.	 If i < S - 1, go to step (11).

(10) Perform a.

(11) i	 S - 1 and perform ^.

(12) J	 F(R)

(13) A(i)	 0, A(j - 1) - 1, F(Q) - j - 1.	 If Z < S, go to step (17).

(14) If R + 1	 j - 1, qo to step (16).

(15) Perform cx.

(16) i	 j - 2.	 Perform S.

(17) i	 Z.	 Perform R.

15
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APPENDIX A

STATISTICAL INTERPRETATION OF THE SIGNATURE EXTENSION MODEL

In this appendix, a statistical interpretation of the signature extension

model considered in the paper is given. Let i, t, and i respectively be

the segment index, the spectral class index, and the block index.

Let h(xlL = t) be the density function of the patterns in the tth spectral

class. Let f(x1s = i) be the density function of the patterns in the seg-

ments. Let T be the total number of spectral classes, J the maximum number

of blocks, and S the total number of segments. Consider

T

f(x1s = i) _ E f(x, L = t1s = i)

t=1

_	 f(xjL = t, s = i)P(L = t1s = i)

T

E h(xjL = t)P(L = t1s = i) 	 (A-1)

t=1

where it is assumed that h(xjL = t) = f(xjL = t, s = i). 	 Let the euclidean

space be partitioned into a set of blocks B 1 , B 2 , ..., B  and let

P(xFB
i
IL = t) = f h(xlL = t)dx

B.
J

A-1



and

P(xcBiIs = 1) = ff(xls = i) dx
Q^

T

P(L = is = i)h(xlL = t)dx

t=1

P(L	 tjs = i)P(xcR
i
IL = t)	

(A-2)
t=1

Introducing a matrix notation, one can write equation (A-2) as

1, 2,	 -, J blocks	 1, 2,	 T spectral classes	 1. 2,	 J blocks

—i	 --► t	 J --
1	 1	 1

=	
2	 2	 I

S	 iL	 S	 iL	 J	 T	 t	 J
segments	 segments	 spectral

classes

P = AB	 (A-3)

where P is an S	 J matrix with elements p ig = P(xcB j ls = i), A is an S x T

matrix with elements a it = P(L = t;s = i), and B is an T x J matrix with

elements b tu = P(xE-Bj IL = t).	 Equation (A-3) describes the probabilistic

relationship among segments, spectral classes, and blocks.

A-2



APPENDIX B

MATRIX RELATIONSHIPS

This appendix derives the matrix relationships used in section 4. 	 Let A

and B be the inverse matrices of each other and are as shown below:

Ar	a r Br br

A =
T

and B =
T

( B -1)
a r	 a br i3

Since A is the	 inverse of B,	 BA =	 I.	 That is

B r 	b r A r ar

BA = =	 I (B-2)T
b r 	B

T
a^ n

Expansion of equation 	 (B-2)	 gives

B A	 + b ray
r r

=	 I (B-3)

B 
r 
a r +	 ^xb r = 0 (B-4)

brA r + Bar 0 (B-5)=

bra y + aB =	 1 (B-6)

From equation	 (B-3),

-1	
=	 Ar1Br l	 =	 (I

(8
rAr)

- bad
1

r

b	
T

rar —
=	 I +

1 b
(B-7)

- a
r 

is	 obtained.	 From equations	 (B-5),	 (B-6), and (B-7),

T

Br
-1 

= A r - 
a 

r	 (B-8)

B-1

r



is obtained. Equation (B-8) is used in section 4.2. From equation (B-4),

a r = -B
r

l bra	 (B-9)

is obtained. Substitution of equation (B-9) into (B-6) yields

a	
1-1	

(B-10)

B - bBr br	 r

From equations (B-3) and (B-9),

	

a r = B -1 + R -1 b r brB -1	(B-11)

is derived.	 Equations (B-9), B-10), and (B-11) are used in section 4.1.

B•-2
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