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SUM_RY

NEWSUMT is a computer program written in FORTRAN subroutine

form for the solution of linear and nonlinear constrained or un-

constrained function minimization problems. The basic algorithm

is the sequence of unconstrained minimizations (Ref. i) using

the modified Newton's method (Ref. 2) for unconstrained function

minimizations.

Problems must be formulated in the following form:

Minimize F(XI,X2,...Xn)

Subject to gq(Xl'X2''''Xn) Z 0 q = 1,2,...Q

The user must provide a main program which calls subroutine

NEWSUM and also subroutine ANALYS which computes the function

F(X)values
gq(X). If analytic gradients of these functions

and

are available, the gradients should also be computed by ANALYS;

otherwise the gradients will be computed by finite differences.

Even if constraint functions or the objective function are not

defined for certain values of the design variables, artificial

definitions must be specified so that all functions are defined

and differentiable over the entire design space.

This report describes the use of NEWSUMT and defines all

necessary parameters. Sufficient information is provided so

that the program can be used without special knowledge of non-

linear mathematical programming methods.
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I. INTRODUCTION

NEWSUMT is a computer program written in a FORTRAN sub-

routine form for the solution of linear and nonlinear inequality

constrained or unconstrained function minimization problems.

The purpose of NEWSUMT is to determine the values of a set of

variables X (a vector of real variables, Xl,X2,...XNDv) that

minimize a function F(X) subject to a set of inequality con-

straints gq(X) a 0, q = 1,2,...,Q. NEWSUMT
was originally

developed as an optimizer for sizing minimum weight finite

element structural systems in the ACCESS-2 computer program

(Ref. 3). However, it is a general purpose optimizer that can

be used for solving a wide variety of numerical optimization

problems. It treats inequality constraints in a way that is

especially well suited to engineering design applications. In

a structural design application, for example, X could represent

dimensions of structural members, F(X) could be the weight of

the structure, and the gq(X),q = 1,2,...Q, could express stress,

buckling, or other types of behavioral constraints.

When using NEWSUMT the optimization problem must be formu-

lated in the following form:

Minimize the objective function F(_)

Subject to inequality constraints

gq(_) _ 0, q = 1,2,...Q (i)

(L) _ X _ X. (U)
Xj - J - 3 ' j = 1,2,...NDV



where the functions F(X) and gq(X) are continuous and differ-

entiable real functions with respect to the design variables

Xj, j = 1,2,...,NDV. The user must supply a main program which

calls NEWSUMT and also a subroutine which is called by the

NEWSUMT program to evaluate functions F(X), gq(X) and, if avail-

able, the derivatives of F and/or gq with respect to the vari-

ables, Xj. The user specifies an initial design by assigning

certain numerical values to (XI,X2,...,XNDv); the NEWSUMT program

then systematically modifies these values generating a sequence

of vectors X such that F(X) decreases and none of the inequality

constraints are critical. This sequence of vectors X converges
+w

to a solution X where all the inequality constraints are satis-

fied and F(X*) is at least a local minimum.



II. MINIMIZATION ALGORITHM

In this section, the algorithms used in the NEWSUMT code

are explained. All of these computations are performed inter-

nally. They are described here for completeness.

The minimization algorithm used in NEWSUMT is a s_equence

of unconstrained minimizations t_echnique (SUMT), Ref. i. Major

features of NEWSUMT which distinguish it from the original

formulation (see Ref. i) include:

(a) A modified Newton's method is used in the direction

finding part of the unconstrained minimization. In

this method, second derivatives of the constraints

are approximated by expressions involving only the

first derivatives (Ref. 2)

(b) An extended interior penalty function formulation.

This type of penalty function combines the features

of interior and exterior penalty functions. That

is, although initial designs may violate the con-

straints, subsequent designs satisfy the constraints

and tend to be noncritical (Refs. 4,5). The trans-

sition point control parameter, which is a critical

factor for numerical stability when using extended

penalty functions, is selected so that the one

dimensional search problems generated usually have

their minimum points inside the feasible region

(Ref. 6).

Since the detailed mathematical aspects of the SUMT



algorithm and its variations are beyond the scope of this report,

only matters of critical importance to understanding the funda-

mental procedure used in the NEWSUMT program will be described

. in the following subsections.

2.1 SUMT Approach

The SUMT algorithm transforms the inequality constrained

problem defined by equations (i) into a sequence of unconstrained

problems. To accomplish this transformation, a compound func-

@(X,rp) is introduced. The compound function used in
tion

NEWSUMT is defined as

,(5,rp) = F(_) + rp 1 + 1 i
q=l gq(_) j=l Xj-X. (L) + X --3 j

(2)

In the transformed problem, _(X,rp) is minimized with respect

to X for a sequence of decreasing values of rp, which is called

the penalty multiplier. Because r is being decreased, theP

contribution of the penalty function is being reduced and the

solution to the transformed problem is converging toward the

solution of the initial problem defined by Equation (I). Fun-

damental theory, convergence characteristics and various methods

for solving SUMT-type problems are discussed in Ref. I.

Optimization technology developed during recent years

has greatly improved the computational efficiency and numerical

stability of SUMT-type formulations. NEWSUMT incorporates

many of these new features and they enhance its performance.
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2.2 Extended Penalty Function

It must be noted that the composite function given by

Eq. (2) is only defined for that portion of the design space

where all the inequality constraints are satisfied. This is

extremely inconvenient because it requires that an initial

design which satisfies all constraints with a reasonable margin

be available. Furthermore, since @(X,rp) is undefined in the

infeasible region, the one dimensional minimization algorithm

becomes complicated and inefficient. Using the extended pen-

alty function concept, Eq. (2) is modified as follows

$(_,rp) = F(X)+rp H (_)+ [ [L(Xj) + U(Xj) (3)q 1 q j=l

where

gq (_) gq (X)_=

H (X) = (4)

1 (_)
+ gq (X)< E7

0 X. (L)=_ (unbounded)
]

1 (L)

= (L) Xj = Xj (5)U(xj) xj - xj

3 (X.-X. )

] - + x. < x.
(L)

3 ]



0 x. (u)=+oo(unbounded)3

• 1
U(Xj) = (U) X. = X. (U)X. -X. ] 3

3 3 (6)

rX.(U)_x. 3(X. (U)_x.)
1 ] 3 _ J ] + X. > X. (U)

and € denotes the transition parameter ( Sec. 2.3). The advantage

of the extended penalty function concept becomes apparent upon

examining Fig. 3. The original penalty function defined by

Eq. (2) is shown as a broken line which approaches infinity as

gq(_) approaches zero from the positive side and it is not de-

fined in the infeasible region where gq(X) < 0. On the other

hand, the Penalty function Hq(X) given by Eq. (4) is defined for

negative values of gq(X) and it is a smooth function (continuous

up to the second derivatives) of gq(X). As a consequence,

Hq(X) is a well behaved smooth function within the region where

gq(X) is defined and it is also a smooth function of (5). An

interesting interpretation of quadratic extended penalty function

is given in Appendix A, where it is viewed as a combined interior-

exterior penalty function approach.

2.3 Transition Parameter

The transition parameter (£), introduced when defining ex-

tended penalty functions (Eqs. 4 through 6), is selected

initially by the user (default value is 0.i) and may be given

as input data. As soon as a design which satisfies all con-

straints is found after two or more unconstrained minimizations,



the value assigned to g is automatically estimated by the

method set forth in Ref. 6. This method guarantees that the

transition parameter is chosen as large as possible (to main-

tain numerical stability) while at the same time ensuring the

minimum remains inside the feasible region. Once g is deter-

mined automatically, the coefficient C which relates g with rP

E = C/_-- (7)
P

is computed; then Eq. (7) is used thereafter to compute g from

the response factor rP

2.4 Modified Newton's Method

Minimization of _(X, rp) with respect to X involves repeated

application of two basic steps;

Step 1. Find a direction vector S along which the design is

modified starting from the current design X0. A new

design X is given by

x = x0 + as (8)

where _ is a scalar variable that governs the move

distance in the design space•

Step 2. Find the value for a so that the composite function

_(X, rp) is minimized along the direction S.

The modified Newton's method discussed in this subsection deals

with the procedure used to find a direction vector S (Step 1).

In Newton's method, the direction vector S is given by

8
|



= _ [j]-i V%/II[J]"Iv%II (9)

where [J] is a NDV x NDV matrix with (i,j) element defined by

_2@ (5, (i0)Jl3 - 3X._X. rp)i ]

Equation (i0)may be evaluatedby differentiatingEq. (3).

[_gq _gq 22gq ] /gq332H 2 X_ _X-- gq 3X.3X. gq(X) > _I ] l ]
g (5) = (ii)

i
2L_Xi ] + (2gq - 3_) _ i j_/ 3 gq(X) < €

Following the suggestion in Ref. 2, H (5) is simplified byq

neglecting the terms involving _2gq(X)/_XigXj, hence

2 /gq3

_gx-_._X-_. gq(X) _ El 3
_2Hq (X) _- (12)

_Xi_Xj 2 3X._gq 3gq_x./ 3 gq(_) <l 3

This approximation is justified qualitatively in the following

manner. For critical constraints, gq(5) is small, therefore

2 >> gq 3X._X. (13)l 3 l 3

assuming that gq(X) is a smooth function of X. For noncritical

constraints, gq(X) is large, thus the entire term corresponding
3

to such constraint is small (due to gq in the denominator)

9



compared to those associated with critical or nearly critical

constraints.

The modified Newton's method uses these approximate con-

tributions to the Hessian matrix (see Eq. 10) in computing the

direction vector S. For optimization problems involving a

large number of complicated nonlinear constraints, experience

confirms that this approach is efficient and generates good

quality direction vectors so that only 4 - 6 one dimensional

minimizations are sufficient for each unconstrained minimization,

regardless of the number of design variables. If it is observed

that the direction vector S found by the modified Newton's

method does not decrease the composite function #, S is replaced

by the direction of the steepest descend, i.e. - V_/[]V_]I. This

is experienced occasionally due to numerical ill-conditioning

of the approximated Hessian matrix.

2.5 One Dimensional Minimization

As mentioned in the previous subsection, it is necessary

to find the value of e for Eq. (8) such that _(X,rp) is mini-

mized along the direction S. This is achieved by first trapping

a minimum in a finite interval and subsequently by applying

the golden section algorithm to determine emin with sufficient

precision. First the move distance implied by the modified

Newton method is determined. Then the distances to the hyper-

planes representing linear constraints are calculated. The

first trial stepsize is then taken as the smallest of the fore-

going move distances. If the first trial design gives a smaller

i0



value for _ than the initial design, then the step size is

increased by 2.6180 but it is not allowed to exceed the dis-

tance to the nearest linear constraint hyperplane. This process
i

is continued until _ becomes greater than the previous evalua-

tion, thus a minimum is trapped within a finite e interval.

For the example shown in Fig. 5, a minimum is trapped after

the third trial design is evaluated. Then the golden section

algorithm is activated to find a minimum between _2 and e3"

2.6 Convergence Criteria

The golden section algorithm used to calculate _ in one-

dimensional minimizations is terminated if the maximum relative

difference among the four function values used in the current

step of golden section is smaller than thespecified value

(EPSGSN).

An unconstrained minimization is judged to be converged

if two successive one-dimensional minimizations do not improve

the compound function more than the specified fraction (EPSODM).

Then, rp is reduced by rp+l=rpX RPCUT, and another unconstrained

minimization is initialized. The entire process is judged to

be converged if two successive unconstrained minimizations do

not improve the objective function more than the specified

fraction (EPSRSF).
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III. MAKING NEWSUMT OPERATIONAL

In order to become familiar with the NEWSUMT optimization

code, the following steps are recommended.

I) Obtain the source program deck and sample problem decks.

2) Read Sec. IV. of this manual for example problems.

3) Execute the two sample problems. Both problems are

self-contained and need no input data.

4) Read this entire manual.

5) Devise several two to five variables unconstrained

and constrained minimization problems and solve them

using NEWSUMT. If the correct optima can be deter-

mined analytically compare these with optima obtained

using NEWSUMT.

6) Experiment with the various options available.

12



IV. PROGRAMMER'S GUIDE

4.1 Main Program

The overall organization is shown schematically in Fig. i.

Usually, all data must be read in the main program (or at least

before NEWSUM is called). The primary subroutine of the NEWSUMT

optimizer is activated by:

CALL NEWSUM*(name

* ,B__LL,B_UU ,DDOBJ ,D_GG ,D_HH ,DOBJ

* ,FDCV ,FMIN ,G ,GB ,GI ,G2 ,G3=

* ,OBJ ,OBJMIN ,S ,SN ,X ,X@

* , ,ILIN ,ISIDE,N_!I ,N2 ,N_!3,N!
* ,RA__NN,NRANDM ,IAN ,NIANDM)

where

name : Name of main subroutine of the analysis

program which is called by NEWSUMT

program. 6 characteris or less.

BL(NI) : Lower bounds imposed on design variables.

BU(NI) : Upper bounds imposed on design variables.

DDOBJ(N3) : Second order derivative matrix of the

objective function. Only upper triangle

is stored in a vector form; from top to

the diagonal for each column.

DG(N4) : Gradient of constraints. Note that the

storage scheme is:

gl,ig2,I''''gNTCE,Igl,2"''gNTCE,NDV

*Variables with single underline should be assigned or initialized
in the main program. Variables with double underlines are eval-
uated in the analysis program.

13



where

_g
=

gq,i _X.1

DH(NI) : Internally necessary array (gradient of

the compound function).

DOBJ(NI) : Gradient of the objective function

FDCV(NI) : Stepsize of the forward finite difference

steps for each design variable.

FMIN : Minimum of the composite function.

G(N2) : Constraint values.

GB (n2)

GI(N2) Internally necessary array to store

G2(N2) constraint function values.

G3 (N2)

S (NI) : Internally necessary array to store the

direction vector.

X(NI) : Internally necessary array to store

: alternative design,

X0(NI) : Initial design variables

IIK(NI) : IIK(i)=i(i+l)/2

ILIN(N2) : Linear constraint indicator

=i for linear constraints

=0 for nonlinear constraints

ISIDE(NI) : side constraint identification code o

=+i for lower bound only

= 0 no side constraint

=+2 for upper bound only

=+3 for lower and upper bounds.

14



N1 : =NDV Number of design variables

N2 : =NCON Number of constraints

(=i, if NCON=O)

N3 : NDV (NDV+I)/2

N4 : NDV*NCON (=i, if NCON=O)

RAN(NRANDM) : Real array which may be used in the

analysis program written by the user.

NRANDM : Dimension of RAN

IAN(NIANDM) : Integer array which may be used in the

analysis program written by the user.

NIANDM : Dimension of IAN.

Note that all the variables or arrays with single underline

must have their values assigned in the main program before the

NEWSUM subroutine is called. Arrays with the double underlines

receive specific values in the analysis program written by the

user.

In addition to the variables transferred through the

argument list of the NEWSUM subroutine, a labeled common block

is used to transfer optimizer control parameters. The common

block /CONTRL/ must be declared in the main program as

COMMON/CONTRL/C, EPSGSN,EPSODM,EPSRSF,G_ ,p

* ,RA ,RACUT , RAMIN ,STEPMX,

,IFD ,JRPINT, JSIGNG,LOBJ ,MAXGSN,MAXODM,MAXRSF

,MFLAG,NDV , NTCE

where C : Not required to assign values.

J

15



EPSGSN : Convergence criteria of the golden

section algorithm. For the golden

section algorithm, there are always

four function values to be compared

to each other. If the sum of relative

difference of these four values is

smaller than EPSGSN, then the golden

section is terminated. Default=0.001.

EPSODM : Convergence criteria of the unconstrained

minimization. If 3 successive one-

dimensional minimizations do not achieve

relative improvements of the composite

function or more than EPSODM, then uncon-

strained minimization is judged to have

converged. Default=0.001.

EPSRSF : Convergence criteria for the overall

process. If three successive uncon-

strained minimizations do not achieve

relative improvements of the objective

function of more than EPSRSF, then the

NEWSUMT terminates the search process and

returns control to the main program.

Default = 0.005.

G@ : Initial value of the transition parameter.

Default=0.01

: =0.5. Default=0.5. Do not change

16



RA : Penalty multiplier rp. Required if MFLAG=I.
Default=l.0.

RACUT : Penalty multiplier decrease ratio.

rp+l=rp x RACUT. Default=0.1

RAMIN : Lower bound of the penalty multiplier. If

this is zero, numerical instability or

excessive number of iterations may take

place. Default=10-13.

STEPMX : Maximum bound imposed on the initial step

size of the one-dimensional minimization.

Default=2.0. Note that the direction

vector S is normalized so that _T._=I.0

prior to each one-dimensional minimization.

IF__DD : Flag for finite difference gradient control.

= 0 All gradient information must be com-

puted by the user's analysis program.

The analysis program should accept

INFO=3,4, and 5. Default.

> 0 Use default finite difference step-

size (0.01)

< 0 Use user supplied finite difference

stepsize.

FDCV(i), i=l, NDV must be specified in the

main program.

=i Gradient of objective function must be

computed by finite difference.

17



=2 Gradient of all constraints (including

linear constraints*) must be obtained

by finite difference.

=3 Gradient of nonlinear constraints must

be by finite difference.

=4 1 and 2 combined.

=5 l and 3 combined

JPRINT : Printout control parameter.

=0 Print initia! and final designs only

=i Print brief results of analysis for

initial and final designs together with

minimal intermediate information.

(the default option is i).

=2 Detailed printing.

=3 Debugging printing.

JSIGNG : Not used.

LOBJ : Flag for linear objective function.

=0 F(_) is nonlinear function of

(XlX2---XNDV)

=i F(X) is a linear function of

(XlX2---XNDV)

MAXGSN : Maximum allowable number of golden section

iterations. Default=20.

MAXODM : Maximum allowable number of one-dimensional

minimizations per unconstrained minimization.

Default=6.

18



MAXRSF : Maximum allowable number of unconstrained

minimizations. Default=15.

MFLAG : Flag for penalty multiplier initialization.

=0 ; initial rp is computed by NEWSUMT.

=i ; rp specified by the main program is

used as the initial value.

ND___V : Number of design variables.

NTCE : Number of constraints considered.

4.2 Analysis Program

The primary subroutine of the analysis program supplied by

the user should have the following arguments:

SUBROUTINE name (INFO, X, OBJ, DOBJ, G, GB, DG, NI, N2,

N3, N4, RAN, NRANDM, IAN, NIANDM)

name : Subroutine name which is identical to the

first argument of the CALL NEWSUM state-

ment issued in the main program.

INFO : Control parameter

=i ; evaluates objective function only.

=2 ; evaluates all constraint functions.

=3; evaluates gradient of objective

function.

=4 ; evaluates gradients of nonlinear

constraint functions.

=5 ; evaluates gradient of linear con-

straints only.

X(NI) _: current design variables.

19



OBJ : objective function value.

DOBJ(NI) : gradient of objective function•

DOBJ(N3) : second derivatives of objective

function.

G(N2) : constraint function values.

GB(N2) : usually not used.

DG(N4) : gradient of constraint functions stored

in a vector form.

DG (i)=3gl/_X1
\

DG (2)=_g2/_X1

DG (N2)=_gN2/_xl

DG (N2+I)=_gl/_X2

DG (N4)=_gN2/_XNI

N1 : maximum number of design Parameters

variables used for

N2 : maximum number of variable

constraints dimensioning

N3 : NI(NI+I)/2 of primary

N4 : NI*N2 arrays•

RAN(NRANDM) : real array allocated by the user.

NRANDM : dimension of RAN.

IAN(NIANDM) : integer array allocated by the user.

NIANDM : dimension of IAN.

2O



Fundamental structure of the analysis program which the

user must supply is shown in Fig. 2.

4.3 Description of NEWSUMT Subroutines

NEWSUM : Primary subroutine which is called by the

user's main program and supervises control

of the iteration process.

BLOCK DATA : Initialize the default values of control

parameters and internal variables residing

in the labeled COMMON blocks.

DIRCTN : Direction finding for unconstrained mini-

mization process by means of modified

Newton's method. If finite difference

gradient calculation is asked for, gradient

of objective and constraint functions are

computed in this subroutine. Also auto-

mated search for an appropriate transition

parameter is carried out whenever necessary.

FUNCTN : Called by ODM (one-dimensional minimization)

and evaluates the composite function value

for a given design. Quadratic extended

penalty function scheme is administered by

this subroutine.

ODM : One-dimensional minimization is carried

out along the direction provided by DIRCTN

by means of the golden section algorithm.

_ Linear constraints are treated separately

21



from nonlinear constraints, since the

distances to linear constraint boundaries

are readily calculated.

PRINTD : This routine prints debugging information

on a line printer. For users who wish to

use NEWSUMT as a black box optimizer, this

routine may be replaced by a dummary sub-

routine which does nothing.

RFACTR : Called only once at the beginning to compute

the initial penalty multiplier rp"

SAD@@7 : A part of the linear equation solver used

in DIRCTN. A positive definite symmetric

matrix stored in a vector form (upper tri-

angular only) is decomposed into a LDLT

form. If a matrix is almost singular or

non-positive definite, an error flag is

turned on, and the direction finding pro-

cess is switched to the direction of steep-

est descent.

SAD_8 : A part of the linear equation solver used

in DIRCTN. Upon successful decomposition

of the coefficient matrix of SAD_7, this

routine is called for back and forward

substitutions.

22



V. PRACTICAL CONSIDERATIONS

5.1 Formulation

The standard form given in Eq. (i) is sufficient theore-

tically, but for numerical stability and efficiency, it is

always beneficial to normalize or to scale design variables and

constraints. The optimization process tends to be stable when

all Max(_gq/_X_)_jhave similar orders of magnitude and all

gq (5)3,q=I,2,...NTCE, also have similar orders of magnitude.

The user should be aware that ill conditioning of the Hessian

matrix of ¢ will result in extremely poor performance of this

program. For example, consider a case where there is only one

active constraint. Without contribution from the objective

function, the rank of the matrix J of Eq. 9 is only i. Haftka

proposes to use diagonal perturbation (Ref. 2), but this also

fails if the magnitudes of some diagonals are extremely small.

Contributions from the objective function tend to alleviate this

difficulty, provided they are significant.

5.2 Choice of Control Parameters

The most important parameter which the user should con-

sider is the penalty multiplier decrease ratio (RACUT). If

RACUT is very small, then the penalty multiplier RA is decreased

very rapidly and experience shows that iterative search tends

to be terminated prematurely as the design gets very close to

a small number of constraints. If RACUT is large, then conver-

gence will be slow, but the optimal design will usually be of
o

better quality. For difficult problems, RACUT can be as large

23



as 0.5~0.6. For easy problems, RACUT may be taken as 0.1~0.5.

MAXRSF and RAMIN should be determined based on the assigned

value for RACUT.

The maximum allowable number of one-dimensional minimiza-

tion per unconstrained minimization should be specified inde-

pendent of the number of design variables. For most practical

problems, the modified Newton's method is very effective and

convergence will usually be achieved in three to five one-

dimensional minimizations. The maximum number of golden section

iterations (MAXGSN) is difficult to estimate, but the default

value (20) has been used extensively with satisfactory perfor-

mance.

5.3 Variable Transfer Strategy

The user may be uncomfortable to see a long list of argu-

ments in SUBROUTINE NEWSUM. For ordinary small applications

this looks awkward but when the problem size is large and

optimum usage of main memory is required, this transfer strat-

egy becomes beneficial since it allows dynamic array allocation.

There are a number of cases where the analysis programs pro-

vided by the user also require that certain arrays should be

allocated dynamically. The arrays RAN and IAN are available
~

for this purpose. Usually, all the arrays are packed in RAN

and IAN sequentially and addressing pointers should be stored

as a part of IAN.

24



VI. EXAMPLES

Two simple examples are included to illustrate the scheme

for writing computer programs to interface with NEWSUMT. They

may also serve as test cases when NEWSUMT is initially imple-

mented on a particular computer system. Both examples are self

contained and need no input data, therefore an executable module

created by linking each example program with the NEWSUMT pro-

gram should readily be processed. Lineprinter outputs are

abbreviated because of large volume of data from each iteration,

but they should be sufficient to check the results which the

user obtains. Even with single precision floating point vari-

ables, on a 32 bits/word machine, all results should agree to

at least three significant digits with the results given herein.

In the printed output, TOTAL FUNCTION stands for the composite

function _(X, rp) and OBJECTIVE FUNCTION refers to F(X).

(i) Minimize F(X) = 10X1 + X2

Subject to gl(X) = 2X1 - X2 - 1 _ 0

g2(3) = X1 - 2X2 + 1 _ 0

g3(3) = XI2 + 2X1 + 2X2 - 1 _ 0

This example is solved by a program given on p. 28. The

name of the subroutine for analysis is EXAMPI which must be

declared in the main program as an external parameter. All

gradient information is expressed analytically and computed in

the analysis program as represented by vectors, DOBJ, DDOBJ

and DG.

An initial design for this particular example is chosen
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as (2.0, 1.0), which satisfies all constraints and gives the

objective function equal to 21.0. The final result given on

page 20 indicates that an optimal design (0.5515, 0.1006) is

obtained with corresponding objective function equal to 5.5917

One can easily observe that critical constraints for this opti-

mal design are gl(X) and g3(X), since their values are

0.3745xi0-4 and 0.4768xi0-4 while g2(X)is
1.351.

This example is helpful in illustrating the iteration

characteristics of the NEWSUMT optimizer. Figure 4 shows the

design space and iteration paths using five different initial

designs (one feasible, one critical, three infeasible). A

conceptually attractive feature of the SUMT algorithm, namely

its tendency to "funnel down the middle of the feasible space,"

is graphically illustrated by this example. It is this tendency

of the NEWSUMT program, to generate a sequence of steadily

improving noncritical designs, that make it especially well

suited to engineering design applications.

(2) Minimize F (X)= (XI2-5XI)+ (X22-5X2)+ (2X32-21X3)

+ (X42+7X 4) +50

gl (_)= (-XI2-XI)+ (-X22+X2)+ (-X32-X3)

(-X42+X4)+8 _ 0
+

g2 (_)= (-Xl2+Xl)+ (-2X22)+ (-X32)

+(-2X42+X4)+lO _ 0

g3 (_)= (-2XI2-2Xl)+ (-X22+X2)+ (-X32)

+X4 + 5 £ 0
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The optimal point of this well known Rosen-Suzuki problem

is

F(0.0,1.0,2.0,-i.0)= 6.0

The main program and the analysis program to solve this problem

with NEWSUMT are given on pages 32 and 33, respectively. The

analysis subroutine is called EXAMP2, which is declared as an

external parameter in the main program. The subroutine EXAMP2

is written so that it can evaluate the analytic derivatives

of objective and constraint functions. But in the particular

run shown here, the capability to compute all gradients using

finite difference is activated by specifying IDF = 5 in the

main program, thus DOBJ, DDOBJ and DG are never computed in

EX_P2. The user is encouraged to test the same program using

analytic gradients, i.e. simply changing IDF to 0 in the main

program.

The initial design is selected as (I.0, 1.0, 1.0, 1.0)

which satisfies all constraints and the corresponding objective

function value is 31.0. The iteration process converges in

i0 stages, yielding an optimal design

F(0.0020, 1.000, 1.998, - 1.002) = 6.000427

which agrees satisfactorily with the theoretical optimal design.

Constraints gl(X) and g2(X) are active since they are respectively

0.1545xi0-3
and 0.1106x10-3 while g2(_) is 0,9983.
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C -

C MAIN PROGRAMFOR PROBLEMEXAMPLE I
C
C
C DECLARETHE NAME OF ANALYSISPROGRAMAS AN EXTERNALENTRY

EXTERNAL EXAMPI
C

DIMENSION X0(2) , X(2) , SN(2) , G(3) , DG(6) ,
DOBJ(2) , DDOBJ(3),S(2) , DH(2) , IIK(2) ,

* BU(2) , BL(2) , ISIDE(2),GB(3) , GI(3) ,
G2(3) , G3(3) , ILIN(3) ,
FDCV(2) , RAN(I) , IAN(1)

COMMON/CONTRL/C , EPSGSN,EPSODM,EPSRSF,GO , P ,
* RA , RACUT , RArIIN, STEPMX,

IFD , JPRINT,JSIGNG,LOBJ , MAXGSN,MAXODM,MAXRSF,
MFLAG , NDV , NTCE

C
N1 = 2
N2 = 3
N3 = 3
N4 = 6

_DV = Z / Objective function is linear.
NTCE= 3 /
nOBJ = I Only lower bounds of 0.0 are imposedDO i00 I = I, NDV

BL(I) = 0.0 _ to XI andx2.ILIN(I) - i100 ISIDE(I)2= 1
ILl11(3) gl and g2 are linear, g3 are nonlinear.NRANDM = 1
NIANDM = 1
MFLAG = 0
JPRINT = 1

C
C SPECIFYTHE INITIALDESIGN VARIABLES

XO(1) = 2.0
XO(2) = 1.0

C
CALL NE{4SUM(EXAtlPI,

BL , BU , DDOBJ , DG , DH , DOBJ ,
FDCV , FMIN , G , GB , G1 , G2 , G3 ,
OBJ , OBJMIN,S , SN , X , X0 ,
IIK , ILIN , ISIDE , N1 , N2 , N3 , N4 ,
RAN , NRANDM,IAN , NIANDM )

c
STOP
END
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C
C ANALYSISPROGRAMFOR EXAMPLEPROBLEM 1
C

SUBROUTINEEXAMPI(INFO , X , OBJ , DOBJ , DDOBJ , G ,
GB , DG , Nl , N2 , N5 , N6 ,

* RAN , NRANDM,IAN , NIANDM )
C

DIMENSIONX(NI) , DOBJ(NI) , DDOBJ(N3) G(N2)' &* DG(N6) , GB(N2) , RAN(HRAHDM),IAN(NIAND)C
A = X(1)
B = X(2)

C
GO TO (I00, 200, 300, 600, 500), INFO

C
C EVALUATE OBJECTIVEFUNCTION
I00 OBJ = 10.0wA+ B

RETURN
C
C EVALUATECONSTRAINTFUCTIONS

200 G(1) = 2.O_A - B - 1.0
G(2) = A - 2.0_B + 1.0
G(3) = -A_A + 2.0_(A+B) - 1.0
RETURN

C
C EVALUATETHE FIRST AND THE SECOND ORDER DERIVATIVESOF
C THE OBJECTIVEFUNCTION
300 DOBJ(1) = 10.0

DOBJ(2) = 1.0
DDOBJ(1)= 0.0
DDOBJ(2)= 0.0
DDOBJ(3)= 0.0
RETURN

C
C EVALUATEGRADIENTOF NONLINEARCONSTRAINTS
400 DG(3) = -2.0_A + 2.0

DG(6) = 2.0
RETURN

C
C EVALUATEGRADIENTOF LINEAR CONSTRAINTS
500 DG(1) = 2.0

DG(2) = 1.0
DG(6) = -I.0
DG(5) = -2.0
RETURN
END

Note: IFD=O, i.e. analytical derivatives for all functions
are computed in the u_er's analysis program, is
the default option.
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Example Problem I - Abridged output (JPRINT= I )

____ N E _ S U H T 0 P T I H I Z E R ____

CONTROL PARAMETERS
INITIAL TRANSITION POINT ......... GO = .1O00E+00
TRANSITION POINT EXPONENT ......... P = .5000E+00
INITIAL TRA_]SITIONPOINT COEFFICIENT . . . C = .2000E+00
GOLDEN SECTION CONVERGENCE ..... EPSGSN .I000E-02
UNCONSTRAINED MINIHIZATION CONVERGENCE EPSODH 0.1000E-02
CONVERGENCE AMONG RESPONSE SURFACES EPSRSF = 0.5000E-03
RESPOHSE FACTOR REDUCTION RATIO ...... RACUT = 0.1OOOE+00
MINIMUM ALLO5]ABLERESPONSE FACTOR ..... IRAHIN= 0.1000E-I2
MAXIMUM ALLOI_ABLESTEPSIZE ........... STEPMX = 0.1000E+II
MAXIMUM ALLOHABLE GOLDEN SECTIONS HAXGSN = 20
MAXIMUM NUrIBEROD O.D.H. PER SURFACE HAXODH = 6
MAXIMUM ALLO'AABLERESPONSE SURFACES MAXRSF = 30
PRINTOUT CONTROL .......................JPRINT = 1
FINITE DIFFERE_CE GRADIENT CONTROL ...... IFD= o Analyticalderivatives

SYSTEM PARAMETERS
NUMBER OF DESIGN VARIABLES .............. NDV = 2
_{UHBEROF EFFECTIVE CONSTRAINTS ........ NTCE = 3

INITIALDESIGN ANALYSISSUMMARY

I_ITIAL DESIGN VARIABLEVECTOR / X/ and x2
0.2000E+01 0.1000E+01 /

SIDECONSTRAINTS Lowerboundsideconstraintfor
-i [- -2 ]. x 2 is I 0000.2000E+01 0.1000E+01 " "

CONSTRAINTS ..................
0.2000E+01 0.I000E+01 0.1000E+01"_(Iftheoindex is positive, it

OBJECTIVEFUNCTION= 0.2100000E+02/ rna_c_es upper boundside
\ / 1

One dimensional search 2 is resta_ed \ L
using complete analyses, since the \ g1' g2 ana g3
usage of quadratic approzimc_ion for _-
each constraint resulted in f_gh_ _- F(X)
_(X,r ) than i_ value at the beginning
of t£_ Search.

f rl._
OPTIMIZATIONOF RESPONSESURFACENO. i PENALTYMULTIPLIER= 0.525000E+01

ONE DIMENSIONALSEARCH 1 TOTAL FUNCTION=0.3996_3E+02 OBJECTIVEFUNCTION=0.165580E+02
ONE DIHENSIONALSEARCH 2 TOTAL FUNCTION=0.598529E+82 OBJECTIVEFUNCTION=0.162391E+02

REPEAT ODH BY COMPLETEANALYSIS
ONE DIMEHSIOHALSEARCH 5 TOTAL FU_{CTION=0.398509E+02 OBJECTIVEFUNCTION=0.163712E+02
ONE DIHENSIONALSEARCH _ TOTAL FUNCTION=8.398347E+02 OBJECTIVEFUNCTION=0.163389E+02

\

RESULTSAT THE END OF THIS UNCONSTRA_ED MINIMIZATION \
INITIAL DESIGN VARIABLEVECTOR \ \0.1557E+01 0.7895E+00 \ _ -_

SIDE CONSTRAINTS_I-2 k.-@(X, rp) F(X)0.1557E+01 0.7895E+00
CONSTRAINTS

0.1322E+01 0.9786E+00 0.1269E+01
TOTAL FUNCTION = 0.3983470E+02
OBJECTIVEFUNCTION = 8.1633887E+02
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OPTIMIZATIONOF RESPONSESURFACENO. 2 PENALTYMULTIPLIER= 0.525080E+00

ONE DIMENSIONALSEARCH 1 TOTAL FUNCTION=0.139056E+02 OBJECTIVEFUNCTION=0.945919E+01
ONE DIMENSIONALSEARCH 2 TOTAL FUNCTION=0.136870E+02 OBJECTIVEFUNCTION= 0.887688E+01
REPEAT ODM BY COMPLETEANALYSIS
ONE DIMENSIONALSEARCH 3 TOTAL FUNCTION=0.136863E+02 OBJECTIVEFUNCTION=0.89143_E+01
ONE DIMENSIONALSEARCH 4 TOTAL FUNCTION=0.136863E+02 OBJECTIVEFUNCTION=0.891775E+01

RESULTS AT THE END OF THIS UNCONSTRAINEDMINIMIZATION
INITIALDESIGN VARIABLEVECTOR
0.8574E+00 0.3626E+00

SIDE CONSTRAINTS
-1 -2

0.8574E+00 0.3626E+00
CONSTRAINTS
0.3699E+00 0.I133E+01 0.7049E+00

TOTAL FUNCTION = 0.1368631E+02
OBJECTIVEFUNCTION= 0.BgI7752E+01

OPTIMIZATION OF RESPONSE SURFACE NO. I0 PENALTY MULTIPLIER = 0.525000E-08

ONE DIMENSIONAL SEARCH 1 TOTAL FUNCTION= 0.55964_E+01 OBJECTIVE FUNCTION= 0.559623E+01
ONE DIMENSIONAL SEARCH 2 TOTAL FUNCTION= 0.5596_3E+01 OBJECTIVE FUNCTION= 0.559616E+01
ONE DIMENSIONAL SEARCH 3 TOTAL FUNCTION= 0.559642E+01 OBJECTIVE FUNCTION= 0.559617E+01

RESULTS AT THE END OF THIS UNCONSTRAINED MINIMIZATION
INITIAL DESIGN VARIABLE VECTOR

0.5515E+00 0.1006E+00
SIDE CONSTRAINTS

-1 -2

0.5515E+00 0.I006E+00
CONSTRAINTS

0.3765E-0_ 0.1351E+01 0 Optimal d_6ign

TOTAL FUNCTION = 0.5596422E+01 _X I = 0.55;5 X2 = 0.I006
OBJECTIVE FUNCTION = 0.5596172E+01

FINAL RESULTS OF OPTIMIZATION F(xl,x2) = 5.59;672
CURRENT DESIGN VARIABLE VECTOR

0.5515E+00 0.1006E.00
SIDE CONSTRAINTS

-i -2 No side contents are critical.
0.5515E+00 0.1006E+00

CONSTRAINTS
0.3745E-040.1351E+010.4768E-04/gl and g5 are criticalco_£/u_t6

TOTAL FUNCTION = 0.559642ZE+01 w_i_e g3arenot.OBJECTIVE FUNCTION = 0.5596172E+01

FINAL STATISTICS

NUMBER OF RESPONSE SURFACE .... 10
NUMBER OF ONE DIMENSIONAL SEARCH 34
NUMBER OF ANALYSES

OBJECTIVE FUNCTION ............. 309
GRADIENT OF OBJECTIVE FUNCTION ....... 1
CONSTRAINT FUNCTIONS ............ llO ]
GRADIENT OF LINEAR CONSTRAINT FUNCTIONS 1 !GRADIENT OF NONLINEAR CONSTRAINT FUNCTIONS 54 _-110+199= 309
APPROXIMATE CONSTRAINT FUNCTIONS ...... 199 --_
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C MAIN PROGRAMFOR PROBLEMEXAMPLE2
C
C
C DECLARETHE NAME OF ANALYSISPROGRAMAS EXTERNALENTRY

EXTERNAL EXAHP2
C

DIMENSIONXO(_) , X(_) , SN(4) , G(3) ,
* DG(12) , DOBJ(4) , DDOBJ(10),S(4) ,

DH(4) , IIK(4) , BU(_) , BL(4) ,
* ISIDE(4) , GB(3) , ILIN(3) , FDCV(_) ,

GI(3) , G2(3) , G3(3) , XB(4) ,
RAN(I) , IAN(1)

C
COMMON/CONTRL/C , EPSGSN,EPSODM,EPSRSF,G0 , P
* , RA , RACUT , RAMIN , STEPMX
* , IFD , JPRINT , JSIGNG,LOBJ , MAXGSN, HAXODM,HAXRSF

, HFLAG , NDV , NTCE
C
C INITIALIZENON-DEFAULTCONTROLPARAMETERS

NRANDH = 1
NIANDM = 1
NI = 4
N2 = 3
N3 = ((N1+1) * N1)/2
1V_ = N1 * N2
NDV = 4
NTCE = 3 Af_ va_iabl_ are unbounded.
LOBJ = O _ (No side constraints)NFLAG = O

DOI00I = I, AfZcons n andoL:eA*:veujioo ISIDE(I) = o
DO ilO I = I, _ functions are nonlinear.I18 ILIN(!)= 8
IFD = 5 Finite difference scheme is
JPRINT = 2 activated to comp_te d_ivatives

c of alZ non[inea_ function.a INITIALIZE THE STARTING DESIGN
DO 120 I = I, NDV

120 X0(I) = i.0
C

CALL NEWSUM(EXANP2
* , BL , BU , DDOBJ , DG , DH , DOBJ

, FDCV , FHIN , G , GB , G1 , G2 , G3
, OBJ , OBJNIN,S , SN , X , X0

'* , IIK , ILIN , ISIDE , NI , N2 , N3 , N4
* , RAN , NRANDM,IAN , NIANDM)

C
STOP
END
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C
B

C ANALYSISPROGRAMFOR EXAMPLEPROBLEM2C
C

SUBROUTINEEXAMP2(INFO , X , OBJ , DOBJ , DDOBJ ,
G , GB , DG , N1 , N2 , N3 , N4 ,
RAN , NRANDM,IAN NIANDM)C

DIMENSIONX(4) , DOBJ(4) , DDOBJ(10),G(3)
w DG(12) , GB(3)

C , RAN(NRANDM),IAN(NIANDM)
T = X(1)
U = X(2)
v = x(3)
= X(4)

c
GO TO (I00, 200, 300, 400, 500), INFOC

C EVALUATE OBJECTIVE FUNCTION

I00 OBJ = T_T - 5.0_ T + U_U _ 5.0_U + 2.0_V_ V _21.0_ V + _+ 7.0_ + 50.0
RETURN

C
C EVALUATECONSTRAINTFUNCTIONS
200 CONTINUE

G(1) = -T_T - T - U_U + U - V_V - V - M_M + H + 8.0
G(2) = -T_T + T - 2.0_U_U- V_V - 2.0_M_W+ M + 10.0
G(3) = -2.0_T_T- 2.0_T _ U_U + U - V_V + W + 5.0RETURN

C

C EVALUATETHE FIRST AND THE SECOND ORDER DERIVATIVESOF OBJECTIVEC FUNCTION
300 CONTINUE

DOBJ(1) = 2.0_T - 5.0
DOBJ(2) = 2.0_U - 5.0
DOBJ(3) = 4.0_V - 21.0
DOBJ(4) = 2.0_H + 7.0

C

DO 310 I : I, lO > Note: Th_ part of the prog_m.310 DDOBJ(I)= 0.0

DDOBJ(1) = 2.0 _ not used, since IFD=5DDOBJ(3)= 2.0

DDOBJ(6) = 4.0 /6 spe_fied in the MAINDDOBJ(10)= 2.0

C RETURN prog_Irl.
C EVALUATEGRADIENTOF NONLINEARCO]ISTRAINTS
400 CONTINUE

DG(1) = -2.0_T - 1.0
DG(2) = -2.0_T + 1.0
DG(3) = -4.0_T - 2.0
DG(4) = -2.0_U + 1.0
DG(5) = -4.0_U
DG(6) = -2.0_U + 1.0
DG(7) = -2.0_V - 1.0
DG(8) = -2.0_V
DG(9) = -2.0_V
DG(10) = -2.0_W + 1.0
DG(II) = -4.0_H + 1.0
DG(12) = 1.0
RETURN

C

C EVALUATE GRADIENT OF LINEAR CONST]AINTS
500 CONTINUE

RETURN
END
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Example Problem 2 - Abridged Output (JPRINT=2)

____ N E _ S U M T .0 P T I M I Z E R ____

CONTROLPARAMETERS
INITIALTRANSITIONPOINT ......... G0 = 8.1888E+08
TRANSITIONPOINT EXPONENT ......... P = 8.5008E+08
INITIALTRANSITIONPOINT COEFFICIENT C = 0.2800E+08
GOLDESECTIONCONVERGENCE £P GSN= o.ZOOOE-O2
U  CONSTRAINEDMINIMIZATION EPSOD 0.I000E-02
CONVERGENCEAMONG RESPONSESURFACES EPSRSF = 0.5000E-03
RESPOHSEFACTOR REDUCTION RATIO ......RACUT = O.1O00E+00
MINIMUMALLOHABLERESPONSEFACTOR .....IR_MIN= O.100OE-12
MAXIMUMALLOHABLESTEPSIZE ...........STEPMX = O.1000E+II
MAXIMUM ALLO_ABLEGOLDEN SECTIONS MAXGSN = 20
MAXIMUM NUMBER OD O.D.M. PER SURFACE MAXODM = 6
MAXIMUM ALLO[_ABLERESPONSESURFACES MAXRSF = 30
PRINTOUTCONTROL.......................JPRINT = 2
FINITE DIFFERENCEGRADIENT CONTROL...... IFD = 5

SYSTEM PARAMETERS
NUMBER OF DESIGN VARIABLES.............. NDV =
NUMBER OF EFFECTIVECONSTRAINTS........NTCE = 3

INITIALDESIGN ANALYSISSUMMARY

INITIALDESIGN VARIABLEVECTOR
0.1000E+01 0.1000E+01 0.1000E+01 0.1000E+01

CONSTRAINTS
0.4000E+01 0.6000E+01 0.1000E+01

OBJECTIVEFUNCTION= 0.3100000E+02

OPTIMIZATIONOF RESPONSESURFACENO. I PENALTYMULTIPLIER= 0.218824E+02

..... DIRECTIONFINDING
TRANSITIONPOINT = 0.100000E+0O £

DIRECTIONCOMPUTEDBY MODIFIEDNEMTON'SMETHOD
SLOPE = -0.2264E+02 _T-__
NORMALIZEDDIRECTIONVECTOR

-0.2707E+00-0.2924E+00 0.3743E+00-0.8374E+00_ _
ONE DIMENSIONALMINIMIZATIONRUN NO. i / _f_
END OF O.D.M. DISTANCEFOR MIN. PT. = 0.9407793E+00

ONE DIMENSIONALSEARCH 1 TOTAL FUNCTION=0.513895E+02 OBJECTIVEFUNCTION=0.205227E+02

NOT CONVERGED- CHECK1=-0.1000E+01 CHECK2= 0.19_6E+19 EPSODM= 0.1000E-02
DIRECTIONFINDING

TRANSITIONPOINT = 0._25813E+00

DIRECTIONCOMPUTEDBY MODIFIEDNE[4TON'SMETHOD
SLOPE = -0.1841E+02
NORMALIZEDDIRECTIONVECTOR
-0.3202E+00 0.9768E-01 0.3788E-01-0.9_16E+00

ONE DIMENSIONALMINIMIZATIONRUN NO. 2
END OF O.D.M. DISTANCEFOR MIN. PT. = 0.BgBF_86E.00

ONE DIMENSIONALSEARCH 2 TOTAL FUNCTION=0._3_400E+02 OBJECTIVEFUNCTION=0.152161E+02

34



OPTIMIZATIONOF RESPONSESURFACENO. I0 PENALTYMULTIPLIER= 0.21882_E-07

DIRECTION FINDING
TRANSITION POINT = 0.912702E-05

DIRECTION COMPUTED BY MODIFIED NEHTON'S METHOD
SLOPE = -0.9156E+01
HOR_IALIZED DIRECTION VECTOR

0.4763E+00 0.7524E+00 0.30_6E+00 -0.3379E+00

ONE DIMENSIONALMINIMIZATIONRUN NO. 1
END OF O.D.M. DISTANCEFOR MIN. PT. = 0.6073422E-0_

ONE DIMENSIONALSEARCH 1 TOTAL FUNCTION=0.600079E+01 OBJECTIVEFUNCTION=0.600052E+01

ONE DIMENSIONALMINIMIZATIONRUN NO. 3

REPEAT ODM BY COMPLETEANALYSIS
END OF O.D.M. DISTANCEFOR MIN. PT. = 0.1752282E-05

ONE DIMENSIONALSEARCH 3 TOTAL FUNCTION=0.600077E+01 OBJECTIVEFUNCTION= 0.6000_3E+01

CONVERGED- CHECK1= 0.2861E-05 CHECK2= 0.9557E-06 EPSODM= 0.1000E-02

RESULTS AT THE END OF THIS UNCONSTRAINEDMINIMIZATION
INITIALDESIGN VARIABLEVECTOR

0.2004E-02 0.1000E+01 0.1998E+01-0 1002E+01 XI0CONSTRAINTS
0.1545E-03 0.9983E+00 0.I106E-03

TOTAL FUNCTION = 0.6000766E+01
OBJECTIVEFUNCTION= 0.6000427E+01

/ (F( 81-F(x II/F( il
CONVERGED - CHECK3= 0._368E-03 CIIECK_= 0.I163E-05 EPSRSF= 0.5000E-03

---.....
DOUBLE CONVERGENCE CRITERIA IS SATISFIED (F(XIO)- F(X9)) / F(X-_g)

FINAL RESULTSOF OPTIMIZATION _"_Both CHECK3and CHECK4are smaller
CURRENTDESIGN VARIABLEVECTOR than EPSRSF.
0.200qE-02 0.1000E+01 0.199BE+01-0.1002E+01

CONSTRAINTS
0.15_5E-03 0.9983E+00 0.1106E-03

TOTAL FUNCTION = 0.6000766E+01
OBJECTIVEFUNCTION= 0.6000427E+01

FINAL STATISTICS

NUMBER OF RESPONSESURFACE .... I0
NUMBER OF ONE DIMENSIONALSEARCH . 35
NUMBER OF ANALYSES

OBJECTIVE FUNCTION ............. 699
GRADIENT OF OBJECTIVE FUNCTION ....... 0
CONSTRAINT FUNCTIONS ............ 285
GRADIENT OF LINEAR CONSTRAINT FUNCTIONS 0
GRADIENT OF NONLINEAR CONSTRAINT FUNCTIONS 0
APPROXIMATE CONSTRAINT FUNCTIONS ...... 274
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MAIN PROGRAM

(written by users)

Initialize control parameters
and call NEWSUM subroutine.

I

NEWSUMT PROGRAM

Subroutine names

NEWSUM*

DIRCTN ANALYSIS PROGRAMFUNCTN

ODM X. (written by users)
PRINTD 3
RFACTR _ Evaluate objective and
SAD007 constraint functions
SAD008 for given designs.
CTIME Also evaluate their

F and gq derivatives if possible.

plus derivatives

of F and gq if possible

* Only this subroutine is called by the user's
main program to activate the NEWSUMT program.

Fig. 1 Basic Program Organization
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SUBROUTINEstatement [(16argumentvariables)

I
Declarationofarray dimensions

& labeledCOMMONs(if any)

I Check INFO

,_ INFO=1 _1 ObjectiveFunctionI-I I "_

INFO-2 =I All Constraint Functions I "3

\ INFO=3 .,._IFirst and SecondOrderDerivativesof Objectiveq Function -3

INFO=4 ! First Order DerivativesofNonlinear ConstraintI Functions

/

INFO= .5 / First Order Derivatives

"- =i of Linear ConstraintFunctions

I RETURNF "

Fig. 2 Structure of the Analysis Programto Evaluate
All Functions a_,dTheir Derivatives(if available)
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Hq and Kq

Hq(X)

]

Kq(X') _ gq(_)I
I

• I

I
I
1
\
\

-
0 "_-

gqlX)
Exterior

Penalty =_" Transition Region Interior Penalty
Region Region

Fig. 3 Integrationof Interior-Exterior PenaltyPhilosophy
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X2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiill
o_ Initial Design

• Endof UnconstrainedMinimization

OptimalDesign
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41



APPENDIX A

An Interpretation of Quadratic Extended Penalty Functions

The NEWSUMT program is written based on the philosophy of

interior penalty functions. However, implementation of the

quadratic extended penalty function has made it possible to

regard this program as an integration of interior and exterior

penalty function philosophy. Let the composite function of an

exterior penalty function be defined as

Q
[ K (AI)

_Ex(X,Rp) = F(X) + Rp q=l q
where

K (X) = I 0 if gq(X)__0 (A2)

q I [gq(_)]2 if gq(X)< 0

Now compare this with a simplified version of Eqs. (3) and (4)

. Q

_iN(X,rp) = F(X) + r [ H (X) (A3)
° P q=l q

I 1 .

. gq(X) gq (x)>_>0H (X) =q

s + 3 gq (X)<_ 4

If a constraint is violated significantly, the dominant term in

H (X) is clearly the first termq

Hq (X) ~ [gq (_) ]2/s3 (A5)
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Recalling Eq. (7) for the relation £=C/r--
P

Hq (X) a [gq (_) ]2/C3rp3/2 (A6)

Therefore, if Rp in Eq. (AI) is chosen as

R = i/(C3r 1/2) (A7)
P P

then the relation given by Eq. (A4) may be interpreted so that

it includes the basic ingredients of Eq. (A2). This is illus-

trated in Fig. 3. It is well recognized that both interior and

exterior penalty functions exhibit poor numerical behaviors at

or near the constraint boundaries where gq(X)=0. The quadratic

extended penalty function interpolates the penalty function

adequately in this critical region.
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APPENDIX B

CPU Timing Routine

The function CTIME(I) is used to measure CPU time spent

for various parts of data processing in the NEWSUMT program.

Timing routines are usually installation dependent and CTIME(I)

is available only on IBM 360/91 at UCLA. The function CTIME(I)

gives the remaining CPU time, which is the difference between

the estimated maximum CPU time specified in the JOB card and

the CPU time already spent on the particular job.

For most CDC computers, a function SECOND does a similar

job, but it gives the CPU time expended by the particular job.

Therefore, CDC users may add a simple function such as

FUNCTION CTIME(I)

CALL SECOND(T)

CTIME=-T

RETURN

END.
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