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ABSTRACT

New results are given on the relationships between closed loop
elgenstructures, state feedback gain matrices of the linear state feed-
back problem, and quadratic weights of the linear quadratic regulator.
Previous results are presented and gaps in current knowledge .are pointed
out. Equations are derived for the angles of general multivariable
root loci and linear quadratic optimal root loci, including angles of
departure and approach. The generalized eigenvalue problem is used
for the first time to compute angles of approach. Eguations are alsc
derived to find the sensitivity of closed loop eigenvalues and the
directional derivatives of closed loop eigenvectors (with respect to a
scalar multiplying the feedback gain matrix or the guadratic control
weight).

An equivalence class of guadratic weights that produce the same
asymptotic eigenstructure is defined, sufficient conditions to be in
it are given, a canonical element is defined, and an algorithm to f£ind
it is given. The behavior of the optimal root locus in the nonasymp-
totic region is shown to be different for gquadratic weights with the
same asymptotic properties.

An algorithm is presented that can be used to select a feedback
gain matrix for the linear state feedback problem which produces a
specified asymptotic eigenstructure. Another algorithm is given to
compute the asympitotic eigenstructure properties inherent in a given
set of gquadratic weights. Thisg is inherently a structurally unstable
problem, unless the system is "generic". Finally, it is shown that
optimal root loci for nongeneric problems can be approximated by gen-
-eric .ones in the nonasymptotic region.
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CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The iinear staté feedback problem [1] is an important tool used
for control system design. While any practical design must fake many
Factors into consideration, a very common design cbjective is to
achieve a specified closed loop eigenstructure. By "eigenstructure”
we mean both the eigenwvalues and the-eigenvectors of the closed loop
syséem. Hence, an important relationship in design is between the
state feedback gain matrixz and the resulting closed loop eigenstructure.

A version of the lineér state feedback problem that has recently
efterged as an important design is the Xinear quadratic regulator [2].

It was first studied by théoreticians because of its optimal properties,

but it is primarily due to several other properties that design engineers

have begqun to use it. The linéar quadratic regulator is simple to
implement provided a full state or at least a reconstructed state is
available, it has inherent multivariable capability, and the design
algorithms ave fully computerized. Desirable closed loop properties
gxist such as guaranteed stability, guaranteed géin and phase margins -
[31, and reasoﬁablé eigenstructures. Here we are primarily concerned
with the relationship between tﬁe quadratic weights and the closed loop
eigepstiucture.

iﬁ Chapfer IT the linear cohﬁrol-probléms of interest are defined;
and‘then‘thé'relétionshipsvbetween the feedﬁéck gain matrix, the

quadraiic weights, and the closed loop eigenstructure gre discussed in
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terms of maps between parameter spaces. Previous results are presented
in a tutorial style, references are given, and it is noted where the
new results fit in. Some previous results on transmission zerces are
presented, also in tutorial style, in the Appendix.

The new results are now summarized, first for the linear state
feedback problem and then for the linear guadratic regulator. In the
first problem the feedback gain matrix and the closed loop eigenstruc~
ture are points in parameter spaces, and under certain conditions-the
map between them is one-to-ome. In the forward direction this map is
an analysis problem and in the reverse direction it is a synthesis
problem (selecting a feedback gain matrix to achieve a specified closed
loop eigenstructure).

If the state feedback matrix is multiplied by a scalar and this
scalar ig varied, a curve ig traced out in each of the two paramenter
spaces. Also, the closed loop eigenvalues trace cut a multivariable
root locug on the complex s plane. Chapter III derives eguations for
the angles of the root locus, for the sensitivity of the closed loop
- eigenvalues {(how much they change with respect to a change in the
parameter), and for the directional derivatives of the closed loop
eigenvectors.

As the feedback gain matrix becomes very large the closed loop
eigenstructure‘épproaches certain ésymptotic properties. These proper-
ties can be parameterized and a map deéined baetween the parameters and
the feedback gain matrix. Using this map to find a feedback gain matrix
is_ a synthesis problem that is solved. in Chapter V. It is one of many
ways to sele;t a feedbac& galn matrix, but has not to-our knowledge
appeared in the literature.

A similar procedure is used for the linear quadratic regulator.



The quadratic weights and the closed loop eigenstructure are points
in parameter spaces but the map between them is not one-to-one. Many
different quadratic weights produce the same closed loop eigenstruco-
ture. As an analysis problem this map has received a lot of attention,
but as a synthesis problem it has not been used extensively (selecting
quadratic weights to achieve a specified closed loop eigenstructure
and then computing the feedback gain matrix).

If the weichts on the control are multiplied by a scalar and this
scalar is varied, a curve is #raced out in the parameter spaces of
quadratic weights and the c¢losed loop eigenstructures. Also, the closed
loop eigenvalues trace out a multivariablé optimal root locus on the
complex s plane. In Chapter III the behavior of the closed loop
eigenstructure is analyzed and equations are derived for angles, sensi=-
tivitieé, and directional derivatives. The same is done when the
quadratic weights are dependent in a more general way on a single para-
meter, and the particular case of analyzing the inverse square method
of selecting quadratic weights is treated. BAlso, in Chapter V it is
shown that optimal root loci for so-called "non-generic" problems can
be approximated with loci of "generic" ones.

As the control weights become very small the closed loop eigen—
structure approaches certain asymptotic proﬁerties. Some of the elgen-~
‘values remain finite and others approach infinity. 2n algorithm is
presented in Chapter V that determines how many of each there are and
in what maﬁner they approach their limit. The associated eigenvectors
are also described.

The asymptotic properties can be parameterized and a map defined

between the parameters and the quadratic weights. Using this map to
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select quadratic weights in a synthesis problemhthat was first studied
by Harvey and Stein [4] and later generalized by Stein [5]. It turns
out that many different quadratic weights-produce the same asymptotic
properties, and in Chapter IV an eguivalence class of these quadratic
weights isg defined. Sufficient conditions are given to be in a parti-
-cular equivalence class, a canonical element is defined, and an
algorithm is presented which computes the canonical element. Finally,
the behavior of the optimal root locus for different members of this

eguivalence class is discussed.
1.2 pNotation

Matrices are indicated by capital letters. Scalars and vectors
are indicated by small letters. No underlines are used and whether the
varigble is a scalar or wvector is clear from the context. Subspaces
are indicated by script letters, with the exception of the RF, the nth
order real vector space. "Im A" and "ker A" are the image and kernel
of A. The symbols E® and E indicated equivalence classes ds defined

in Chapter IV. AT is the transpose of &4, and xiH is the Hermitian

transpose of the vector xi. A indicates (A‘l)T or equivalently (AT)—i.

Equations, examples, lemmas; and theorems are numbered starting
from one at the beginnihg ?f each chapter. When referenced from within
- the same chapter only the number is used, otherwise (4.1) means the
first occurence in Chapter IV.

A permutation matrix P is a zero matrix with & one in each row and |
column. PA. rearranges the rows of A and AP rearranges the columns of A.

A1l of the root locus diagrams are in the complex S plane. The x's

are the open loop poles and the ('s are the transmission zeroes.
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CHAPTER IX
Background

2.1 Introduction

The linear control problems studied din this thesis are defined;
and then the relationships between the state feedback gains, the
guadratic weights, ahd the closed loop eigenstructure are discussed
in terms of maps between parameter spaces. Emphasis is placed on both
the general case of the linear state feedback problem and the special

case of the linear quadratic regulator.

2.2 Linear Control Problems

2.2.1 Linear State Feedback

Consider the following linear, time invariant system with full

state feedback:

(1)

¥
I
B
+
w
&

(2}

c
It
!
Wi
e

n
where ¥ € R

m
ueR.

We will always assume that B is full rank. The matrices (A,Bf will be
either controllable, stabilizable, or neither. The closed loop

. system matrix is

1
A = A -

el X BF. (3)

As 'k is varied from infinity down to zerc the closed-loop eigenvalues

trace out a root locus.
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2.2.2 Linear. OQutput Feedback

The outputs and not the full state are used for feedback. Only
the case of the same number of inputs and ocutputs is considered. The

equations are

x = BX + Bu {4)
y =&
a = Zki Ry (6)

where ¥ & Rp.

We make the same assumptions about (A,B) as for the linear state feed-
back problem. C will always be full rank and (C,A) will be either

observable, detectable, or néeither. The closed loop system matrix is

A, =Aa- %-BKC, (7)
and k again sweeps out a root locus.
Important quantities associated with the system S{A,B,C) are the
transmission- zeroes. Here we use the definition of transmission
zeroes due to Rosenbrock [6], which is egquivalent to the following def=-
inition when the number of inputs and outputs are equal [7]. The trans-

mission zeroes are those values of s, not including uncontrollable or

uncbservable modes, which reduce the rank of

A~sI B
-C 0,

See Appendix A for further discussion.

2.2.3 ILinear Quadratic Regulator

This is an important c¢lass of linear state feedbagk controllers.
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The gain matrix F is chosen so that x and u minimize the cost function

o«
J =f {xTQx + .puTRu)dt (8)
d O .
T
where Q = Q° > 0
R=R >0

and 0 <p <=,

The state weighting matrix can be factored into

0 = uM
where Rank{Q) = Rank(M) = p and M is p x m. The matrix is arbitrary
to within a premultiplicatibnm by a p x p Gnitary matrix (W such that

WW = I). When Rank(Q) = m then we will use

0= HH,
where H is m ¥ n. Assume that (A,B) is stabilizable and (M,A) is de-
tectable. The assumptions on Q ﬁill sometimes be downgraded to
symmetric and not necessarily non-negative definite.

The optimal gain matrix is found by first solving the algebraic

Riccati equation [2]
y

0=0+AaP + PA - %PBR-]'BTP (9)

+o obtain

'F=ER B P (10).

The closed loop System matrix is

-Aclgp) = A - BF. (12)
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The parameter p is included to emphasize the dependence of Ac1 on it.

As p varies from infinity down to zero the closed loop eigenvalues

trace out an optimal root locus.

2.2.4 Hamiltonian System

The Hamiltonian system is defined to be

z = 2z (13)
a - Lar7ipT
where 3 = (14}
-—Q -.-AT
-
and z = .
£

It is of interest because it describes sclutions of the linear guadratic
regulator problem [8]. The eigenvalues of 2 are symmetric about the

imaginary axis. Therefore if S is an eigenvalue so is -8, . Those in

the left half plane (ILHP) are the same as the closed loop eigenvalues

of the linear guadratic regulator. If (xiT, EiT)T is an eigenvector

of Z associated with a LHP eigenvalue then the ;ortion X, is an eigen-
vector of the linear quadratic regulator. Furthermore, Ei = Pxi.'

The following trick_is a useful way of applyving root locus methods
derived for linear output feedback systems to the optimal root locus.

We define a linear output feedback system that has a closed loop system

matrix egqual to the Hamiltonian system matrix. Let

. A 0 - B
A = B =

[ ~Q —AT_ o
c=1]o0 B % =R T,
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then

N
I
g
|
O |
[ve
R
ok}

s p is varied from infinity down to zero the eigenvalues of Z in the
IHP tract out an optimal root locus. This track is similar to one

used by Shaked [9].
2.3 Maps

It is convenient to discuss the linear control problems in terms
of maps between parameter spaces. This helps to organize the presen-
tation of previocus results and to show where the new results £it in.
For quick reference the maps are listed in Table 2.1. In the following

sections each map is defined and discussed.
2.3.1 LEF Map

This is a map associated with the linear state feedback problem
as described in section 2.2.1. Here we think of the control prcblem
as a map between the space of m x n matrices and the space of closed

loop eigenvalues and eigenvectors. The notation used is

ISF: F = s,, X,.
i i
Given an F matrix it Is always possible to compute Acl and then to

compute the eigenstructure of Ac ¥or the examples in this thesis

1
EISPACK [10] subroutines were used to do this. We note here that non-

trivial numerical problems arise when the elgenvalues get too close

together or too far apart.



Forward

Inverse

Forward,
dependent on
a parameter

Inverse
Asymptotic

16

Table 2.1
Maps
Linear State Linear Quadratic
Feedback Regulator
L8F: F =+ si,xi LOR: Q,R =+ si”xi
ILSF: S, 1%y -+ F ILOR: S;rXs + Q,R
1
LsF (k) : E‘ F+Si (k) 'xi k) LOR( ): Q,pR+ Si(P) rxi (p)
0 <k € = 0 < p <

. . 1 .
IALSF: lim s, (k),lim x,(k)»ZF IALOR: lim s, (p),
© k0 T k+0 T k P20 *
lim x, {p) +Q,pR
i
p~+0
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2.3.2 ILSF Map

This is the inverse of the linear state feedback problem and the

notation used is
- a2 .
IT.SF: si,xi F

The ILSF map represents a synthesis probleq: given a desired eigenstruc-
ture £ind F such that the closed locp system has this desired eigen-
structure.

System controllability is an important issue in the ILSF map.
Here we think of contreollability as the ability to move eigenvalues
with state feedback. (For a diffe;ent type of definition see Willems
and Mitter [11]). One way to test for controllability is to pick an
F matrix by picking at random each element of F from a dense subset of
the real number line, and then uging this F to compute the closed loop
eigenvalues. Those eigenvalues that do not move are almost surely
uncontrollable. If all move then the system is controllable.

A simplified version of the ILSF map is the modal control problem.
An F matrix is sought which will result in a desired set of eigenvalues,
called modes. The eigenvectors are not specified. A good treatment
of this problem. is given by‘anham'[12]. The main results are giveh
in the form of a lemma. The mﬁltiple input results are éue to Wonham.

Lemma 1 (A,B) is controllable if and only if ;heie exist F

. matrices (many in general) which place the eigenvalues in

arbitrary locations. If the system is not controllable then

only the controllable modeg can be moved. In the 'single input’

case F is unique.

Many papers have been written about what to do with the extra

design freedom available when F is not unique.. One significant paper
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is by Moore [13]. He shows that the extra freedom can be used to

select eigenvectors. His main result is:
Lemma 2 For the case of distinct closed loop eigenvalues
a unigue F exists which places the eigenvalues and eigen-

vectors at specified locations if and only if the system
is controllable and for each x5 there exists a vy such that

[A—sil B} x,]=0

Vi

So we see that the closed loop eigenvectors must lie in certain m
dimensional subspacés determined by the si’s. If some of the modes
are uncontrollable then they must be included in the specified set of
eigenvalues, but.some freedom still exists in selectihg the associdted
eigenvectors.

Moore's proof is .constructive and he.gives the following algorithm
for finding F. Select the desired S {distinct) and the desired eigen-

vectors These eigenvectors may or may not lie in the permissible

*ia-
subspace, so compute Xy and vy by projecting X onto the permissible

subspace (using, for instance, singular value decomposition}. Then

form the matrices

"
I

[xl,...,xn]

2
I

[vl,...,vm]

If X0 X, are complex conjugates replace them by Re(xi):

and v,
i+l Vyr V

idl
Im(x,), and Re(v;), Im(v,). The gain matrix is then given by

F=-Nx L.
In the single input case no. extra freedom-exists to select the.xi's

because they are each constrained to.a one dimensional subspace.



19

2.3.3 ILsSF(k) Map

When k is varied from infinity down to zero a family of linear
state feedback problems is produced, which will be denoted by

ISF(): £ F > s, (k), x,(k) foxr 0 <k < = .

As k approaches zero the closed loop eigenstructure approaches certain
asymptotic properties. B&as k varies over its range the si's trace out
a root locus, which in the single input case is the classical root
locus. The multiple input case is more involved and is still an area
of current research. As k varies over its range the xi's rotate in R

(if X, and x are complex conjugates then use instead Re(xi) and

141
Im(xi)). Historically very little attention has been given to the
behavior of the xi's.

In Chapter III some new results are derived about the behavior of
the closed loop eigenstructure as a function of k. Angles on the root
locus are defined, and by using the generalized eigenwvalue problem
equations are derived to compute the angles. See Appendix A for a
brief explanation of the generalized eigenvalue problem. The advantage
of using i£ is that angles can be computed when k=0, even though 1/k

is not defined. Also in Chapter III, equations are derived to compute

directiocnal derivatives of the xi's.
2.3.4 Root TLocus

In the single input case the root locus methods of classical con-
trol can be used to describe the behavior of the closed loop eigenvalues.
These methods were first developed by Evans in 1948 [14]. They are

described in Eveleigh [15], Melsa and Schwartz [16], and most other
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classical control textbocks. Descriptions of computer aided plotting
routines have appeared in literature as recently as 1978 [17]. .

For the purpose of analyzing the root locus it is always possible
to rephrase the state feedback problem (1-3) as an output feedback
problem (4-7). Simply let RC = F.

The starting point for the classical xroot locus is the output
‘feedback problem with a single input and output. The time domain des-
cription (4-6) is Laplace Transformed in order to get the following

transfer function, which is the ratio of two polynomials:

¥(s) _ ol M)
ais) - c(sI A) "b=ua D(s)
P
where N{(s) = I (s-zi)
i=1
n

and D(s) = II (s~pi).
i=1

The zi's are transmission zerces and the pi's are cpen loop poles. The

feaedback loop is closed by letting
1 —_
u(s) = - X v(s) + u(s),

where u(s) is an external input. The closed loop transfer function is

vis) _ o N{s) (15)
uls)  pg +%N(a)

The closed loop eigenvalues are those values of s which make the denomin-
ator equal to zero, and may be plotted as a function of k.

Generalizing the classical root locus methods to the multiple
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input case has proven to be a difficult task. Kouraritakas, Shaked,

and Postlethwaite [18-22] have addressed various aspects of the problem.
Progress was slow at first due to a debate over the definition of multi-
variable transmission zéroes. That debate is beginning to subside and
attention is shifting to the behavior of modes that agymptotically
approach infinity.

As 1is often the case in control theorv, root locus problems can
be attacked ‘with either time or frequency domain technigues. 1In the'
frequency domain, the closed'loop transfer function must be replaced
by a transfer function matrix. Then the-closed loop poles are no
longer characterized by the denominator in (15) but by an algebraic
function (a polfnomial in s with coefficients that are polynomials in
k). 1In order to discuss solutions of this algebraic equation concepts
such as Riemann surfaces must be introduced. Asymptotic results can

be found by using a Newton chart. These complications are sidestepped

here by stéying in the time domain whenever possible.

Of particular interest is the case when Rank(CB) = m. Why this
case is of interest. is motivated by Wonham [12], and alsoc [18-22].
This is called the generic case, and it is thé only one that will be
reviewed in depth. The(word "generic" will be used to describe a pro-
perty which holds everywhere on a set of points except those belonging
to a mathematical variety. &4 "variety" is a locus of ﬁoints which satisfy
-a finite number-gf polynomials [12]. In this case the property is Fhat
hank(CB) = m. The dnly points for which £his propérty does no£ hold

ig’ when the'polynomial det(CB) = 0. In the following example Rank (CB)<m:

~[o o0 1]f1 o] To o
.cB=10 1 o0jfJo 1}|=|0 1].
Lo o
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This is the nongeneric case. However, if the 1,1 element of C is per-
turbed an arbitrarily small amount € then Rank(CB) = m, which is the
generic case.

The following facts are known about the multivariable root locus
for the generic case. We assume that (A,B) is controllable and that
XCB has no Jordan blocks of size greater than 1 x 1. Then

1) The root locus has n branches, and these are symmetric about
the real axis.

2) For large k the branches originate at the open loop poles.

3) For m=1 and >0 (<0), where o is defined in (15}, the real
axis to the left (right) of an odd number of singularities lies
on the locus. Thisg rule does not apply when m>1.

4} As k = 0, {(n-m) of the branches stay finite. These are
characterized by

o _ .. 0 o

5 = dlag(sl ""’sn—m)
0 0 0

X = [x1 ,...,xn_m],

. o o, ; . .
where each pair s. , xX; 1s a solution of the generalized eigen-
value problem

The (n-m) finite branches approach the transmission zeroas s,
and the eigenvectors approach the zero directions x

5) &As k =+ 0, m branches tend to infinity. These are characterized
by
Sco ai ( o eo)
= i ey
ag(s, . s,
=) o’ o
N = [vl reee sV 1,

oo [+

where each pair si 1 Ky is a solution of the eigenvalue problem

0o )
{s. I - KCB)v, = O.
1 1
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The m branches approach infinity along asymptotes that have angles
with respect to the positive real axis given by arq(*s ), where
"arg(x)" means the argument of the complex number x=. The asymptotlc
radius is [si |/k. The assocliated eigenvectors approach.Bvl If
the sico are not distinct then the eigenvectors are arbitrary to
within a subspace.
Some results are available for the root locus in the nongeneric

case [18,22]. The final answers are not in yet and the state of the

art is best described as messy. As k - 0, fewer than (n-m) modes re-

main finite, and these are characterized by the same generalized eigen-

value problem. The rest of the modes group into m patterns that

approach infinity. The asymptotes of each pattern meet a piveot point.

2.3.5 Definition of Angles

There are n values of s, on the root locus for each value of k.
If k is perturbed an amount Ak then each N will be perturbed by a
(possibly very large} amount Asi. As Ak » 0 then Asi/Ak will approach

the constant dsi/dk, and the angle on the root locus is defined to be

arg(dsi).
The angles at the open loop poles (k + =) will be called "angles of
departure”, and the angles at the transmission zeroes (k -+ 0) will be
called Jangles of arrival”. An example oﬁ angles on the root locus
is shown in Figure 2.1.

For the single input case standard root locus formulas are available
to f£ind the anglés of‘departﬁre and approach. Postlethwaite [21] extends
these resul%s to the multiple input case using frequency domain methods.
Shaked {19] does so using time domain methods. Here we use new time
domain methods (the generalized eigenwvalue probiem) to extend Shaked's

"results.
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2.3.6 TIALSF Map

This ig called the inverse asymptotic linear state feedback map.

Tt is the inverse of the LSF(k) map as k -+ 0 and is denoted by

TALSF: 1im s, (), lim x, (k) > Lp.

k=0 k=0 k
The TALSF map represents a synthesis problem: given the desired
aéymptotic propexties of the LSF{k) map characterized by
s®, x°, s¥, ana ¥ ;
find F such that the closed loop system has these desired asymptotic
properties. This problem is solved for the first time in Chapter V.

It is similar to synthesis problems solved by Moore [13], Harvey and

Stein [4], and Stein [5].
2.3.7 LOR Map

This map is associated with the linear quadratic regulator as
described in section 2.2.3. Here we think of the regulator as a map
between the matrices ¢ and R and the closed loop eigenstructure. The

notation used is
LQR: Q,R > s, ,X,.

The LOR map is one of the cornerstones of modern.control theory. Major
"credit is due to Kalman {23]2

The steps used to compute the closed loop eigenstructure are
symbolically shown by

> - -+ A = . . .
Q,R P ¥ - sl,xl

1

The most important step is first finding the Riccati solution. Wonham
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[24] gives the necessary and sufficient conditions on A, B, Q, R for
the existence of a stable closed loop solution.

An active area of research is developing algorithms to compute
Riccati solutions. One standard way is to use the eigenvectors of the
Hamiltonian system matrix [8]. This methed is usually referred to in
the control literature as Potter's.method but it predates him, (see
the references of [25]). The method is symbolically shown by

QR > 2+ 2z, *P.
A variation of this method with improved mumerical properties is by
Laub [25] and uses the Schur vectors of Z.

For the example calculéticns used here we were not interested in
P or F, so the following shortcut was used to find the closed loop
eigenstructure:

QR > 2 > si,xi.

A simple example shows that the Q and R matrices that produce an
optimal gain matrix (and hence a closed- loop eigenstructure) are not
unique. Multiply Q and R by the same positive constant ¢. Then the
Riccati solution changes from P to oP but F stays the same. Therefore
we can define a mathematical egquivalence class [26] of QO and R matrices
in terms of the property that they produce the same optimal gain matrix.

Perhaps not so well known is that any Q with Q > 0 and Rank(Q) > m
is equivalent (in'the sense used abowve) to a é With‘Rank(é) = m. This
result is used and discussed by Molinari [27] and Harvey and Stein [4],
and is due to Popov [28]. BAs a consegquence it is always possible to
define a respoﬁse vector

r = Hx

TEL
where ¥ € R
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= T
0 =HH,

and such that é is equivalent to any specified Q. The system S(A,B,H)
is important to this thesis.

Necessary and sufficient conditions for (Q,R) and (é,ﬁ) to be in
the same equivalence class have been developed by Molinari [27] and
Jameson and Kriendler {29]. Molinari constrains R so that R=I and
presents . the following result (which is also valid for any R = RT > 0):

Lemma 3 Assume (A,B) is controllable and F is optimal for some

(Q,R). Then (Q,R} is in the same equivalence class if and only
if thére exists a real symmetric Y satisfying

(i) O =5a-a'y - ¥a
(ii) ¥B = 0.

lBT(P+Y) remains

The Riccati solution changes from P to P+Y, but F = -R
constant becuase BTY = 0. There is no guarantee that P+Y¥ > 0 or Q > O.
When R is not constrained to be constant then a similar result can be

extracted (with some difficulty) from the paper by Jameson and Kriendler.
2.3.8 ILOR Map

This map describes the inverse of the linear quadratic regulator

and is denoted by

IILOR: si,xi-+_Q,R.

The TLOR map represents a synthesis problem and can, in principle, be
used to select guadratic weights. This turns out not to be very prac-
tical, as Wwe will show in the following discussion. The asymptotic
version of this map, presented later, ;s muqh more convenient.

The first step is to find the feedback gain matrix which produces

the desired eigenstructure. To do this use the ILSF map discussed in
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section 2.3.2 (specifically the algorithm due to Moore [13]). If (A,B)
is: controllable then the si can be located anywhere, and the xi mast
lie in certain m dimensional subspaces.

If the fgedback gain matrix exists then a check can be made that
it is optimal for some (Q,R). Kalman [30] solved this problem for
the single input case. Anderson and Moore [13] generalized this result
to the multiple input case. The version of this result presented here
is due to Molinari [27].

Lemma 4 Assume  (A,B) is controllable and R=I. Then ¥ is optimal

for some Q = Q" > 0 if and only if s, < 0 and T (jo)T(Gw) > I,
where T(s)

I + F(Is-A)"L B.

Unfortunately this result.is difficult to implement because it must be
true for all w. If Q is only required to be symmetric then we have the
following result, also due to Melinari.

Lemma 5 Assume (A,B) is controllable and R=I. Then F is optimal
for some @ = QT if and only if S5 < 0 and .FB is symmetric.

Jameson and XKriendler [29] extend this result to amore general class of
A, B, and R matrices, again only reégg;ing that Q be symmetric.

If the check on F succeeds then F is optimal for some (Q,R).
Jameson and Kriendler give an algorithm that can reach every (Q,R) in
the equivalence class of matrices that produce the same F (there is no
guarantee that Q > 0). However, if the check on F fails then no hint
is given as to how F, S+ Or X, should be changed. This is the main
problem with using the IALQR map as a way to select quadratic weights.

We note here that T(s) defined in lemma 4 is the return difference
eguation for the gystem S(A,B,F), and as such it plays a fundamental
role in control system design. It is used to measure the"disturbance

rejection properties of the éystem,the ability of the system .to follow

commands, and the robustness of the system.
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2.3.9 LOR{p) Map

When p is varied from infinity down to zero a family of linear

quadratic regulators is produced, which will be dencted by
LOR(p): Q, PR+ s.{p), x,(p) fFoxr 0 <p < .

Only the case where R is linearly dependent on p is considered. Similar
results, especially for eigenvectors, do not necessarily hoid when Q
and R are dependent on p in an arbitrary way. The c¢losed loop eigen-
values trace out an optimal root locus. Its behavior is studied, as
described in section 2.2.4, by using the Hamiltonian system. Of special
interest is the asymptotic behavior of the si(p) and xi(p) as p + O.
Several new results are derived that concern the LOR({p) map. In
Chapter IIY equations are derived tha£ compute angles on the optimal
root locus and directional derivatives of the xi(p). In Chapter V an
algorithm is presented that computes the asymptotically infinite be-

havicr of the optimal root locus, and a result is presented that

shows how an optimal root locus can be approximated by another.

2.3.10 Optimal Root Locus

In the single input case the optimal root locus can be described
using classical root locus technigues. The trick is to recognize
that the optimal closed loop poles are the left half plane eigenvalues
of det(sI-Z) = 0. Assume that Q = hTh, where h is 1 % n, and that

R =1x > 0. Then by using determinant identities it can be shown that

(8]

det(s1-7) = (-D7[0(8)9(-8) + 5 Bis)h(-9)] (16)
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n
where ¢{sg) = det(sIi~A) = I (s-piJ
i=1
T -1 p
and a(s) = ¢(s)h"(sI-a) b =all (s—zi).
i=1

The pi's are the open loop poles and the zi's are the transmission
zeroes of the system S(&,b,h). Equation {16) is analogous to the
denominator of (15).

Before the heyday of Kalman, state space technigues, and Riccati
equations it was recognized by Chang [32] that (16) can be used to
plot the single input optimal root locus. He suggested using the
root square locusg, which is done by rewriting (16) as a polynomial in
st = sz, and then plotting the classical root locus on the s' plane.
Kalman [30] and Kwakernaak and éivan [8} give rules for plotting the
single input optimal root locus on the s plane. These rules involve
plotting (16) on the s plane using classical root locus technigues and
then only keeping the left half side.

Now we move on to the multiple input case of the optimal root locus.
Rynaski [33] developed a multivariable version of the root square locus,
but it is very cumbersome even for the case of two inputs. The proce-
dure used here is to use the Hamiltonian system S(i,ﬁ,i&) and apply
the multivariable root locus results [34]. The generic case is when MB
iz full rank (where Q = MTM). Both this and the nongeneric case will
be reviewed. The symmetry about the imaginary axis of the elgenvalues
of the Hamiltonian system makes the analysis easier. The notation used

here is the same as used by Stein [5].
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1) The optimal root locus has n branches, which stay entirely in the
LHP, and are symmetric about the real axis.

2) FPor p large the branches originate at —IRe i | + j Im P, -
{This is equal to p, if p1 is in the LHP, otherw1se to the mirror
image of Py about tﬁe imaginary axis).

3) For m=1 and (n~p) even (odd} the negative real axis to the left
of an odd (even) number of singularities lies on the locus. This
rule does not apply when m > 1.

4} As p - 0, p of the branches stay finite. These are characterized
by

0
Il

r3.:i.a.<_:;(si0 foon ,sPO)

’ o]
X = {xl ,...,xpo],

. o . . . .
where each pair sf ¢ %5 1S a solution of the generalized eigen-—
value prcblem

i - s, I ﬁ z;
-~ o = 0'
-C 0 v,
1
0
x.
1
o
where =z, = .
. i o
&

If H is available then a lower dimensional generalized eigenvalue
problem can be sclved using ‘;:he system S(A,B,H). If s, argi x; are
the finite solutions then s; = ~|re sll + 3j Im S5 bu% X =X,
only if the corresponding s, is in the LHP. The p branches tha%
stay finite approach the s.Y, and the associated eigenvectors
approach the x.°. In the generic case p = n - m, in the non-
generic case 0'< p<n - m

5) In the generic case the asymptotically infinite behavior is
characterized by

=4
f
~
<
H.
N
<
[
-

- * o« o2 > - 2
where each pair S, + vy 1s a solution of the eigenvalue problem
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o 2 =1 .7 ®
[(s; )" I-R" B oBlv, = 0.

The. m branches which approach infinity stay-on the negative
.real axis with an asymptotic radius of siw/p% . {These are first
order Butterworth patterns, contrary to Womham [12] p. 318). The
associated eigenvectors approach Bvi“.

6) In the nongeneric case the infinite behavior is characterized
by the same S* and N~ and also by a multi-index y. The (n-p)
branches that approach-infinity group into m Butterworth patterns.
The ith pattern is nith order, with asymptotic radii equal to

w l/ni
. - i
i p%

8

Properties of Butterworth patterns are summarized in Table 2.2.
There are n, vectors which form a basis for the subspace associated.
with each pattern. These are

1

-]

n-— o
Bv.”, BBy, ,...,A 1 R
i’ Vi ot ! . Bvl

The multi-index y lists the ni's in the following way:
vy = (01, 11, 21,...,[nl—1]1, 02,...,[n2-1]2,...,[nm—l]m).

If we define the controllability matrix

1

=
U= [BN®,...,ABN",...,A BN®],

which is an n x (nm) matrix, then each term (i,j) of the multi-
index defines the column A'Bv.® of U. The collection of all
columns defined by v we call 8 s therefore

ni—-1 oo -1
g! = §: N 1 By, ,...,A'm Bvﬁm].

The columns of U' form a basis for the subspaces spanned by all m
Butterworth patterns. In the generic case uY = BN®.

Computing s, N, and ¥ in the nongeneric case is mumerically
an ill-posed problem because arbitrarily small changes in B or H
cause the problem to become generic with only first order patterns.
The s,”'s and vim's associated with first order patterns are the
.nonzero solutionhs of the eigenvalue problem given in step 5.



Table 2.2

Butterworth Patterns

Order Angles that the asymptotes make with the negative
real axis

i 0° i
2 x45°
3 0°, x60°
n (odd) £*180° 2=0,1, ..., 2L

n 2

1. a n
n {even) + H-(2+%)180 f =0, 1, ..., 5 - 1

l
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The results for the multiple input case have been established
over the last several years. The attraction of the finite branches to
the transmission zeroes of $(A,B,H) is stated in Kwakernaak and Sivan
[8]. Both Kouvaritakas [34] and shaked [19] use the Hamiltonian
system to find the transmission zerces. WNeither use the generalizgd
eigenvalue problem, as done here, which can easily be used to compute
the transmission zeroes and angles of arrival. Xwakernaak and Sivan
[8] conjecture that the infinite modes group into Butterworth patterns,
and Xwakernaak [35] later used some algebraic function theory to prove
this. Wonham [12] gives a theorem which describes the behavior of the
optimal rcot locus in the generic case. The asymptotic behavior of the
eigenvectors was established by Harvéy and Stein {4] in the generic
case and by Stein [5] in the nongeneric case. BAlgorithms to find g~
and Y are given by Shaked [19] and Postlethwaite [36], but neither
addresses the inherent numerical instability of their solutions. An

algorithm to f£ind $*, N™, and y is given here in Chapter V.

2.3.11 The IALQOR Map

The last of the maps to be defined is the inverse of the LOR(p)

map as p > 0, and it is denoted by

IALQR: lim s, (p), lim x,(p) + Q,0R.
p>0 p+0

This again represents a synthesis problem: given the desired asymptotic
properties of the LQOR(p) map characterized by

o
S?, XO, Sm, N, and ¥;
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find Q and R such that the optimal regulator has these desired properties.
This synthesis problem is posed and solved by Harvey and Stein {4] in
the generic case and by Stein [5] in the nongeneric case.

The algorithm presented by Stein starts with the following assump-
tions:; The SO matrix has p stable diagonal elements. The p columns
of x° are linearly independent and for each there exists a vio such: that

CA—siolxio + Bvio = 0. Furthermore, the xio do not lie in the image of

ul . {(To avoid complex arithmetic s° can be made block diagonal and

the complex conjugate columns X, and x,

j41 C2D be replaced by Re X, and

Im xil. The S°° matrix has m nonzero and positive diagonal elements.
(=]
The N matrix in invertible, and the multi-index ¥y is such that

n, o+ o... ¥ n =n-p.

Let P be a permutation matrix that switches around the columns of

¥

U' in an arbitrary manner except that the last m columns of UYp are

o T © -
al L By, reo. Al 1 vam. Then we have

Lemma 6 The quadratic weighting matrices (not unique) that preduce
the desired asymptotic properties are given by

m = [0,1] [x°, u¥p]"t

w =T o ~2

R= ) (s 2™yt

T
Q0 =H H.

The last step in the synthesis problem is to solve the linear
quadratic regulator problem for several values of p and “trade off"

control energy with eigenvalue and eigenvector placement.

2.3.12 selecting Quadratic Weights

The following quote from Athans [2] in 1971 is still true today.
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The selection of weighting matrices in the quadratic

criterion is not a simple matter. Usually they are

selected by the designer on the basis of engineering

experience coupled with alternate simulation runs for

different trial values. There is no universal agree-

ment on precisely how these are to be selected for any

given application.

At the heart of the problem is that many different and scmetimes
contradictory specifications have to be lumped into a single cost
function. Over the years several ad hoc methods have been developed,
the best known being the inverse square method due to Bryson. A few
remarks are made in Chapter III about this method. See the references
in Harvey and Stein [4] for other methods.. None can be considered
uniquely satisfactory.

Some encouraging progress has been made on the problem of selecting
quadratic weights to produce a desired asymptotic eigenstructure. The
algorithm due to Stein [5] presented in the previous section is an
example of this. There remain, however, other types of specifications
which cannot adeguately be described using a closed loop eigenstructure.
For example, constraints may exist on Ffeedback gain levels, or adequate
stability margins may have to be assured. The relationship between

quadratic weights and these types of specifications needs further

rasearch.
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CHAPTER III

Angles

3.1 Introduction

Equations are derived for the angles on the root locus of the out-
put feedback problem. The angles can be computed at any point-including -
the points of .departure and approach. By using the generalized eigen-—
value problem the angles of approach can easily be computed. These
results dre then applied to the optimal root locus of the linear
quadratic regulator by using the Hamiltonianfsystem. Equations are
also derived to find the sensitivity of the closed loop eigenvalues and
the directional derivatives of the closed lcoop eigenvectors. Finally,
a more general dependence of Q and R on p is considered and equations
for angles and sensitivities are used to analyze the inverse square
method of selecting gquadratic weights.

Only the case of distinct closed loop eigenvalues is considered.
The equations derived in this chapter are not valid at the points

where there are multiple closed loop eigenvalues, and the equations

cannot easily be extended to handle these cases.

3.2 The Ouput Feedback Problem

3.2.1 ¥inding the Closed Loop Eigenstructure Using the Generalized
Eigenvalue Problem

The closed loop system matrix for the output feedback problem is

_ 1
Acl = A % BKC. (1)

The closed loop eigenvalues, elgenvectors, and left eigehvectors are
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defined in the usual way by

Il
(=]

(Acl - siI)xi (2)

H
¥y (Acl

It
o

- 557 (3)

Now we state a lemma which we shall use in the remainder of this
chapter.

Lerma 1 The Sir Xyr and ¥ H are solutions of the generalized
eigenvalue prcblems

A~ s.I B X,

h
-1 =0 (4)

-C -kK v,

i 1

H H
[yi ni ]‘ A - siI B
= Q, {5)
-C —kx T

Remark k=0 is now allowed, in which case (4) and (5} can be used
to find the transmission zeroes,—zero directions, and left zero
directions.

Remark When k > O there are exactly n finite solutions to (4)
and (5), and when k=0 there are anywhere from 0 to n~-m finite

solutions.

To prove lemma 1, from (4} we see that

(A—siI)xi + Bvi =0
= _1
vl = m K C xl
(A-s,T)X., - “BKCx, =0 (6)
i i k i !

and then (2) follows immediately from (6). Therefore the s, and x,

that are solutions of the generalized eigenvalue problem are the closed
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loop eigenvalues and eigenvectors. In a similar way (5) can be reduced
to (3), and the proof is complete.

Lemma 1 is not a new result, but it is not well known. Its proof
is simple and direct,and_it provides valuable insight into the feedback
control problem. For example, Laub used this result to show the
relationship of two methods of computing transmission zerces (see
Appendix A). It turns out that the vi's and ni‘s can be used to com—
pute angles of arrival to the transmission zeroes.

3.2.2 Finding dsi/dk Using the Eigenvalue and Generalized Eigenvalue
Problems

In the eigenvalue problems (2) and (3) the first derivative of Acl
with respect to k exists everywhere in the open interval {0,«). We use
this fact to find dsi/dk, the derivative of the closed loop eigenvalue
with respect to k.

Lemma 2 For any kX in the interval (0,«), and for any distinct s+

dsl 1 ¥4 BKC X
& -5 H : (7
k2 V. X

To prove lemma 2 differentiate (2) to get

E"(A

d _
% cl—siI) X, + (Acl—siI) — x., = 0. (8)

dk "1 N

\ . H R
Multiply on the left by the left eigenwvector Yy o which cancels the
second term and 1eéves

da
yiH E—I; (Acl-SiI) Xi = Q.
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Rearrange to get

Differentiate Ac to get (7). It is always possible to normalize the

1
eigenvectors so that yini = 1, in which case the denominator in- (7)
can be removed. This completes the proof.

Iemma 2 is a standard result that can be extracted from the
higher mathematics of Kato [37]. wWilkinson [38] gives a more readable

derivation of a similar result - the sensitivity of S5 to changes in

A

o1” Shaked [19] derives and uses (7).

In the generalized eigenvalue problems (4) and (5) the first
derivative of the large matrices with respect to k exist everywhere in
the semi-~open interval [0,»). We use this fact to again find dsi/dk.

Lemma 3 For any k in the interval [0,«) and for any distinct S

H -1
ds; -my Ky

ak " : )

To prove lemma 3 use obvious substitution of (4) to get
[Lk) - s,M]v, = O.
i i

bifferentiate to get

a avy
EE-(L - siM) v + (L - SiM):ﬁ;.= 0.

Multiply on the left by the left eigenvector, call it uiH, which will

cancel the second term and leave
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Rearrange to get

Differentiate L and substitute back the original terms to get (9).

This completes the proof. Stewart [39] has worked on a problem similar

to this -~ the sensitivity of S, to changes in L and M.

3.2.3 Angles on the Root lLocus

Theorem 1 The angles on the root locus, for any value of k in the
interval [0,«] and for any distinct s;r are found -by

"
( Y, BKCx,

arg (ds,) = arg O0<k <« w (1.0)
i H =
\ ¥y %
( niH K v, \
arg @dsi) = arg - 0 <k <e. (11)
\ Y *i

Remark The angles of departure are found using (10) with k = «
(to be more precise, let 2 = 1/k and use £ = 0). The angles of
approach are found using (11) with k = 0.

Remark (10) is due to Shaked [19], (11) is new.

We prove theorem 1 bé showing {(10) and then {11) are correct. To

derive (10) start with (7) of lemma 2, the formula for the derivative

of an eigenvalue. We have that
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and then the angle is

Ly
arg(ds.) = arg(dk) + arg(—~)+ arg(~1)
i %2
i
-yi BKC xi
+ arg .

. X,
Yl 1

Now arg(-1) = 180°, and because k is positive and varies negatively
from infinity to zero it-follows that arg(l/kz) = 0° and arg{dk) = 180°.
Therefore (10) is true.

We cannct use k=0 in (10) becuase Ac1.is not defined for k=0. It
is very awkward to use a limiting argument as k » 0 (as dces Shaked
[19]) because Cxi + 0 and yiHB + 0, as seen from (4) and (5).

To derive (11) start with (9) of lemma 3, the formula for the
derivative of & generalized eigenvalue. We note that (9) is well
defined for k=0. The formula for the angle is

— H L
arg(dsi) = arg(dk) + arg(-l) + arg —EL—EF-————.

Since arg(dk) = 180° and arg(-1) = 180°, (11) follows. This completes
the proof.
When k-is' in the interval (0,«) either (10) or (1l1l) can be used

to find angles. To show this we note from (4) and (5) of lemma 1 that

Cx, = -k K Ty,
x 1
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Substitute these into (10}, and the result by inspection is (11).
Except for k very close to or equal to zero, (10) is better to use for
computing angles because it involves solving an eigenvalue problem of
lower dimension than the corresponding generalized eigenvalue problem.
When k is very close to zero, however, (11) is a more reliable eguation.
The tradeoffs when k is very close to zero are the same as those for
solving transmission zeroes using (2), an eigenvalue problem with high
gain feedback; or (4), a generalized eigenvalue problem. Lauk [20]
gives a good discussion of these tradeoffs and concludes that the
generalized eigenvalue problem is better (for computing transmission

zeroes).

32.2.4 Sengitivity of the Clesed Loop Eigenvalues

For each eigenvaliler on the root locus we can write the approxima-~

tion
dsi Asl
= N __=
ak v Ak
Therefore
dsi
las. 1 % |5 - 1oxl -

The term ldsi/dk[ is defined as the sensitivity of s;. One use of the
sensitivity is that to a fixst order approximation a change ]Ak] will
move the closed loop .eigenvalue s; a distance |Asi| in the direction

arg(dsi). It is immediate from lemmas 2 and 3 that
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Lemma 4 For any k in the interval [0,x] and for any distinct Ssr

ds, ¥v. BKC=x,
S D S 0<k < = (12)
dk X2 H}‘I -

73 ¥
dsi niH Kfl vi
— = 0 <k < o, 13
ak H . = ® (13)

i X

Wilkinson [38] discusses. in detail the sensitivity of eigenvalues
and eigenvectors, including the case of multiple eigenvalues. It
turns out to be much easier to derive bounds on |dsi/dk| for the multi-
ple eiéenvalue case than to derive an expression for dsi/dk. For our

purposes we will continue to assume that the eigenvalues are distinct.
Example

Several root loci are plotted for an ocutput feedback problem, and
the angles are computed in order to verify the preceding results. The

same system S(A,B,XC) is used s .by Shaked [19].

(-4 7 -1 13 [0 1
aolo 3 o 2 a1 o0 oo -5 2 -2
4 7 -4 8 0 8-14 0 2

0-1 0 0 -2 0

L. -d e -

Phree different output feedback matrices are used, Shaked used K = I.

Case # 1 Case # 2 Case # 3
10 0O 1 0
K = K=1I K =

0 1 o s0
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86945AW004

o

Case #2

Figure 3.1

Root Loci of a Linear System with Output Feedback



Angles of Departure and Approach for Example 3.1

Table 3.1

46

Case Angles of Departure Angles of Approach
-4 + 2i 1 2 1+4i

1 + 173° 0° 180° ¥ 170°

2 + 149 0- 180 F 121

3 + 135 0 180 +. 114
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Table 3.2

Points and Angles on the Root Loci of Example 3.1

Angles are in parentheses

Case k Left half plane Right half plane
1 100 | - 4.45%2.02i (+ 177°) 1.14 (0°)  1.94 (180°)
10 | -11.4 (180) -5.16 (0) 1.65%0.42i (% 81)
1| -84.1 (180) -6.69 (180) 1.53£0.85i  (t 137)
1078 -sx10% (s0) -3x10° (180) 1.00£1.00i  (+ 170)
2 100 | - 4.10£2.06i (* 151) 1.15%(0) 1,93 (180)
10 | - 4.86%2.40i (¢ 161) 1.81+0.651i (* 57)
1| -10.34%0.71i (+ 113) 2.34%1.331  (+ 85)
107°| -8x10° (180) -3x10% (180 1.00£1.00i (¥ 121)
3 100 | - 5.85%3.18i (¢ 161) 2.57+1.161 (£ 15)
10 { -20.5 (180) -8.7 (0) 4.2020.481  (+ 62)
-37 (180) -8.6 (180) 4.01 (0) 5.00 (0)
1 |-159 (180) -12.0 (180) 3.84%1,75 (+ 140)
1078 -1.5x10% (180) -8x10° (180) | 1.00%1.00i (¥ 114)
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Numerical results are given in Tables 3.1 and 3.2, and the root loci
are plotted in Figure 3.1.

As expected in all three cases the branches of the locus depart
from the open loop poles. Two of the branches stay entirely in the LHP
with different angles of departure in all three cases. The branches
meet on the negative real axis and then continue in opposite directions
as might be expected in the single input case. However, the branch
that goes to the right eventually turns around, and then both branches
approach infinity on the negative real axis with different asymptotic
radii in each case. The other two branches stay entirely in the RHP,
so the system is always unstable. These branches eventually arrive at
the transmission zeroes at 1 * i with different angles of arrival in
each case. The path taken in the third case is unusual, :to say- the
least.

Shaked's paper from which this example is taken contains some
errors which will be pointed out here. His calculation for the angles
of aeparture contains numerical errors. More importantly, his formula
for the angles of arrival (3.16b) is incorrect due to an error in
the derivation after (3.15). This leads to the incorrect conclusion

that angles of arrival are independent of the output feedback matrix K.

3.3 The Linear Quadratic Regulator

Theorem 2 The angles on the optimal root locus, for any value of p
in the interval [0,«], and for any distinct s, are found by

0 BR 8%
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arg(dsi) = arg 0<p <o (15}

Remark The angles of departure are found using (14) with p =,
and the angles of arrival by using (15) with p = 0.

Theorem 2 is proved hy applying (10) and (11) of theorem 1 to the
Hamiltonian system S(i,é,%&). The wvectors z; and wiH are the right and
left eigenvectors of %, the Hamiltonian system matrix; and the vectors

vy and niH are found by solving generalized eigenvalue problems analogous

to (4) and (5). Note that

This completes the proof. An example of an optimal root locus is

given in Chapter Iv'éfter a discussion of asymptotic equivalence classes.
The sensitivity of the optimal closed locop eigenvalues is found

by applying (12) and (13) of lemma 4 to the Hamiltonian system.
The number of computations neceded to compute (14) aqd (15) can

be reduced by using the following identities. First, using (4) and (5)

it can be shown that

Now let z, = (xiH, EiH)H be the eigenvector associated with s in the

. . — — H —H
IHP, let s, be the mirror of s; in the RHP, and let s; = (xi ' Ei )H

be the associated eigenvector. Then
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3.4 Directional Derivatives of the Closed Loop Eigenvectors

We found dsi/dk for the eligenvalue problem in section 3.2.2.
Now we continue that discussion and £ind dxi/dk. The references are
again Kato [37] and Wilkinson [38]}. The results are

Lemma 5 For any value of k in the interval (0,«), and for any
.distinct S, -

dsi
ak Bil (16)
" dxi
—_—— = +
e v b X {17}
y H(dAcl)x
where f.., = 2 dke
Ji H
Yj Xl
n -B..
$. = % J=
i S.-5 |
=1 i 7j
J#l
H
—x VS
bi == (18)
X, X,
i i

Equation (16) is derived in section 3.2.2 and is included here for
convenience. To derive (17) we will need the following:

dx,

_H i _ ;
T 0. (19)

This can be explained as follows: xi(kJ and xi(k+Ak) can be normalized
to lie on the same hypersphere,as Ak + O then [xi(k+Ak) - xi(k)]/Ak >
dxi/dk, which is tangent to the hypersphere, and therefore is orthoganol
to xi.

. . . n .
Now, since the eigenvectors Xi form a basis for R we can write
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d
~[——dk o, - siI)] x, = ¥o (20)
dx., !
i
@ o (21

where b and ¢ are vectors and bi and ¢, are components of these

vectors. Substitute (20) and (21) into (8} to get
(Acl-— siI)Xb = Xeo. . {22)

Multiply (20) on the left by yjH, note that Yiji = 0 for i # j,

and then after some algebra

3 o j =i

i

By manipulating (22} we see that (sj-si)bj cj for j=1,...,n. Solve

foxr bj to get

- B.. S
ji . .
S.-s, J#3
b, ={ . (23)
3 undetermined j=1

Substitute (23) into (21) to get (17). The only thing not determined

is bi’ which we can find by multiplying (17) on the left by xiH to get

H i H . H
xi ak —-xi vi + bixi Xi -
By (19) the left hand side is zero, and therefore (18) follows. This
completes the proof of lemma 5.

The directional derivatives for the optimal eigenvectors can be

found in a similar way. Use (17) with the Hamiltonian system to get
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ndx.
—t
dax
dz,
_1.=
dk
&
dk

and then extract dxi/dk.

3.5 Inverse Sguare Quadratic Weights

One common ad hoc method for selecting quadratic weights is the
inverse square method. Here we give a brief explanation of the method
and show one way to analyze it if the first gquess of quadratic weights
is not satisfactory.

Start with the quadratic cost function

oo
J = (ETQx + uTRu)dt.
0
Require that ¢ and R be diagonal, .and then the cost function can be

rewritten

Decide on a maximum allowable deviation for each state and control and

call these x, and u, . Then select the weights so that each
imax imax

term has equal contribution to the cost function at maximum deviation,

i.e.

953 2 ’ ii 2 :
imax Yimax

With Q and R chosen in this manner, compute the optimal gain matrix.
If the system behaves well with this controller then do not make any

changes in ¢ and R.
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If the system does not behave well with thig controller then Q
and R must be changed. Suppose the state xi(t) is sluggish and needs
to be speeded up. It may suffice to increase qii or to decrease the
weighting on fhe control that predominantly controls X, . This scheme,
however, may not work. Suppose the predominant mode of Xy is si,-in
other words xi(t) % ¢ e“sit, where ¢ is a constant. If $; is near a
transmission zero then decreasing the control weight will cause S; to
move ¢loser to the transmission zero, and this may even "slow down" Sy

Now we give-a method to determine how the modes change with respect
to a change in one or more of the diagpnal elements of Q or R. Simply
use the following lemma which follows easily from the previous results
of this chapter.

Lemma 6 Let Q(p) and R{p) be dependent on p, and let

A --BR(p)—lBT

[y
Il
.

~Q(p) -A

Then for any p such that 4%Z/dp is well defined, and for any dis-
tinct S,

’ H{dZ
‘ Vi \dp /%1
arg(ds;) = arg(dp) + arg — (24)
w, =z,
i “i
ds, W.H QE_Z.
i i dp i
—_—) = —_ ] (25)
dap w H z
i i

' suppose R is. constant and

Q = diag(Qyq e /Py ren-rd ).
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Then dZ/dp will have all zerces except for qii“ Each of the modes si

will move an approximate distance
dsi
las; | % |57l el

in the direction arg(dsi).
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CHAPTER IV

Equivalence Classes of Quadratic Weights

4.] Introduction

As noted in Chapter II, quadratic weighting matrices are not unique.
Rather, many choices produce the same controller gains. This chapter
provides a characterization of two classes of equivalent weights, and
for one of them defines a unique canonical element. These characteri-
zations may prove useful in design.

Both E° and E equivalence classes are defined. Then sufficient
conditions are given for different guadratic weights to be in the same
E. equivalence class (in other words to have the same asymptotic pro-
pertieg). A canconical element of the EGo class is defined, and an
algorithm is given to find it. Finally,it is shown by example that
the closed loop eigenstructure (and hence the optimal root locus) in
the nonasymptotic region can be different for members of the same E

equivalence class.

4.2 Definitions of the EC and & Equivalence Classes

{(0,R) and (é,ﬁ} are members of an equivalence class if they

produce the same optimal gain matrix. We use the following notation:
o -
(Q,R} E (Q,R),

where E° has the meaning "produces the same optimal gain matrix as."
This is not the only type of equivalence class that can be defined.
(Q,pR) and (é,pﬁ) are members of an equivalence class if they produce

[+] (=]
the same asymptotic properties (which are So, Xo, S, N, and v). We
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use the following notation:

0
(Q,pR) E (Q,0R),
where E°° has the meaning "produces the same asymptotic properties as."

The p is'included in the parenthesis to emphasize the dependence on the

control weight.

4.3 sufficient Conditions to be in the E Equivalence {lass

In the form of two lemmas we present sufficient conditions for
(Q,pR) and (é,pﬁ) to be in the same Eeo equivalence class.

Lemma 1 Assume (A,B) is controllable and F is optimal for some
(Q,R). Then

(0,pR) E” (Q,0R)

1f there existsann x n real symmetric ¥ such that
(1) §=g-a"y -
(i1} ¥B = O.

To.prove this we first show that for any p > 0 the closed lcop
eigenvalues of the optimal regulator are the same when either 0O or é
is used (the R is the same in both cases). The closed loop eigen-
values are the eigenvalues of Z, the Hamiltonian matrix, and the

eigenvalues are invariant under the following similarity transformation:

-1 T ofla -EerBT{[ 1 0
uzu = P .
r T2 -A Y I
a - L pr7 1T
~o+aTviya ~at

Using the same transformation the eigenvectors of Z change from

T T
2, = (X.T, X, Pﬁjto zZ, = (x.
i i i i

i ’ xiT(P+Y))T. The X, portions are the
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closed .locp eigenvectors of the optimal regulator and these do not change.
Since for any p > O the closed loocp eigenstructure is invariant, the
asymptotic properties as p <+ 0 are invariant. This completes the proof.

To show that the closed loop eigenstructure is the same for any
p > 0 we could alternatively have used a result due to Molinari [27]
that was reviewed in section 2.3.8. We note that it is not necessarily
true that é > 0 or p+Y¥ > 0. The conditions given here are only suffi-
cient. We were not able to prove (and not able to find a counterexample)
for the converse.

For the next lemma let D and E be diagonal matrices with positive
diagonal elements di and e; such that

DE = S .

All of the other terms are defined in sections 2.3.10 and 2.3.11.

Lemma 2 Assume that (A,B) is controllable; that F is optgmalmfor

some (Q,R); that the asymptotic properties are So, X,858, ¥,
and v; and that

v v, =1 for i=1,...m
Then
(Q,pR) E (Q,0R)

if there exists a D and ¥ such that

g = [0, o] x°, u¥ P2 (1)
R= ) T2 @t (2)
0=1wuwH-2aly - va ' (3)

Before proving this we note that equations (1-3) are similar to
those used by Stein [5] in his algorithm for selecting quadratic weights,

o
as reviewed in section 2.3.11. He sets D=I, B=S , and Y=0; and he
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Places no restriction on the magnitudes of the vim's.

The proof of lemma 2is in two parts. The first part is to show .
that subtracting ATY + YA in (3) does not change the asymptotic proper-
ties,but this was established in lemma 1. The second part is to show
that 8 ean be split into D and E without changing the asymptotic
properties. The proof that Stein uses to prove his algorithm is only
trivially changed when S°° is split inte D and E, so we will not repeat
it here. " This completes the proof.

Only sufficient conditions are given in lemma 2 for gquadratic
weighting matrices to be in the same E equivalence class. We do not
yet know if these conditions are necessary, in other words if by chang-
ing D and Y every member of the Eoo equivalence class can be reached.

The assumptions about the magnitudes of the viw's are made without
loss of generality. These vectors are used to specify .directions, and
their magnitudes do not change the asymptotic properties. If the vim's
are not of unit magnitude then it is always possible to find a diagonal
matrix G such that the columns of N = N G are of unit magnitude.

Then in (1) and (2) we can replace N by N, E by EG_l, and D by DG
without changing H and R.

Several other changes can be made in (1-3) without affecting R and
é. The H in (1) can be premultiplied by an m x m unitary matrix (W
such that WWT = I). Then in (3) when Q is formed the influence of W
is lost. In (1) the magnitudes and the order of the columns of Xo and
all but the last m columns of UYp can be changed without changing H.

In (l)'the order of the last m columns of UYp, and in (2) the order of
the vim's can be changed without changing either H or R, as long as the

corresponding di's and ei's are changed.
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4.4 A Canonical Element of the Em'Equivalence Class

We define the canonical element of the E. equivalence class to be
the (Q,0R) reached by (1-3) when D=I, E=S , and Y=0. By "canonical”
we mean unigue, but by changing ﬁ and Y many other canonical'elements
could be defined. The choice used here has an uncomplicated struc-
ture and agrees with Stein's algorithm [5] when the vim's are unit
magnitude.

Given any (Q,pR) it is always possible te find the canonical
elemerit. Use a generalized eigenvalue problem to find s° and Xo, as
.described in section 2.3.10. Use the algorithm in section 5.2 to find
s, N°, and y. Then use (1-3) with D=I, E=S", and Y=O (and with

vi vim = 1} to find the canonical element (é,pﬁ).

4.5 Behavior of the Optimal Root Locus in the Nonasymptotic Region

Members of the Em equivalence class have the same asymptotic pro-
perties. They may or may not, however, have the same closed loop eigen-
structure for p > 0. As a consequence the optimal root loci may look
very different in the nonasymptotic region. This is important because
when selecting a Q and R using (1-3) the final choice of pR uses a p>0.

Suppoge a (Q,pR) is computed using eguations (1-3). If D and E
are kept the same and Y is changed to get a different Q then the closed
loop eigenstructure will be the same for any p>0. This we know is true
by the proof of lemma 1 (and also due to Molinari [27]). For any
scalar ¢« > 0 1f D is_changed to oD and E to (i/a)E then (Q,pR) will
change to (azg,pazR), and it is easy to see that the closed loop eigen-
structure is the same for any p > ‘0. However, if D and £ are changed

.in a more complicated way (change di to aidi and e, to (l/ai)ei, where
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the ai's are all positive and not all equal) then the closed loop eigen-
structure will not be the same for any p > 0. Example 4.1 shows how

the optimal root locus can change in the nonasymptotic region.
Example 4,1

We consider a linear system with the following A and B matrices..

. - - -
Q 1 0 0 0 0
-5 -4 0.1 1 0 0
A= B =
0.1. 0 -1~ 0 1 0
0 0 0] -5 o 1

The asymptotic properties of an optimal linear gquadratic regulator are
specified, and equations (1-3) are used to compute_the quadratic weighting
matrices. Six different values of D and E are chosen. The purpose of
this example is to show that the choice of D and E does not change the
asymptotic properties but aramaticali§46hanges the behavior of the op-
timal root loci in the finite region.

The linear system has four states and two inputs. The first input
drives a first order subsystem with a pole at -1.0. The second input
drives a third order subsystem which can be broken down into a damped
oscillator with poles at -2 *i and a first order "actuator" with a pole
at ~5. The 0.1 terms in the A matrix couple the two subsystems.

The asymptotically finite properties are specified by

1 1

o o 1 1
5 = 0.5 % 3.04 X = + i

lF2 1,26_ 0 0

VJ v
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The "d" means that the eigenvectors are desired and not necessarily
obtainable. The "v" means that the element is not specified. The

result of projecting the complex eigenvectors onto the obtainable sub-

spaces is
i g B T
.341 -.244
R .561 1.146
b4 = * 1.
1.2 0 0
‘232J 4.476

The asymptotically infinite properties are specified by

fe-) [+~3

5 = f N =1I, vy= (01, 02).

In each of the six cases there are two first order Butterworth patterns.

The D, E, R, and H matrices are shown in T;ble 3.1. The optimai
root loci are in Figure 3.1. We see that the behavior of the loci in
the finite region is depgndent on the choice of D and E. The angles
of departure and approach are different in each of the six cases and
are listed in Table 3.2. Points on the loci for different values of p
are listed in Table 3.3.

In the first case the 2,2 element of R is bigger than the 1,1
element by a factor of 3200, and for p "not too small" this causes the
subsystems to decouple. Since the second input is heavily weighted
the pole at -1 does not move much. On the other hand the branches of
the locus associated with the third order subsystem (driven by the
first input) start to behave like‘the optimal root docus of a‘single
input system. Two of the branches form a second order Butterworth

pattern and the third branch approaches a transmission zero somewhere
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to the left of -5. Finally, as p gets "very small" the subsystems
couple together and the specified asymptotic properties are achieved.
The branches that start at -2 * i eventually meet on the real axis and
form two first order Butterworth patterns.

ITh the second case the decoupling of the two subsystems is less
apparent. The branches of the locus that start at -2 = i meet on the
negative real axis at about -4.8. One of the branches goes to the left
and forms a first order pattern. The other goes to "the right, joins
the branch that starts at ~1, and then they approach the transmission
zeroes.

In cases 3 through 6 the branches that leave the open loop poles
at -2 * i eventually make it to the transmission zeroes at -.5 & 3i.
Given just the locations of the open loop poles and the transmission,
the locus in case 4 is probably the most "desirable" pattern. This
case allows a meaningful tradeoff between control weight and asymptotic
properties. It happens to correspond to the canonical member of the
B equivalence class, as defined in the previous section. For a wide
range of values of D and E the locus does in fact look like the one
in case 4. MNot until the 2,2 element of R ig smaller than the 1,1
element by a facﬁor of one million does the behavior of the locus in
the finite region change significantly. The behavior in cases 5 and 6
cannot easily be explained. The subsystems do not appear to decouple
as in cases 1 and 2.

From the above example it is not cbvious how to choose the D and
E matrices. Since only the ratios of the diagonal elements of the D
and E matrices are important there are m-1 degrees of freedom available
to the designer. (In éhe single input case there are no extra degrees

of freedom). It may be true that the extra degrees of freedom can be
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used up by specifying angles of apprecach and departure, but we do not
know 6f any algorithms that allow you to do this, nor do we know of a

check to determine which angles are valid.
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Matrices Used in Example 4.1

Table 4.1

{where Q = HTH)
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Case D E R H
1 7 T o 0 1 o |
56.6 .0353 00| | 240 -170 0 56.6
2 1 0 0 1 o ]
46.0 ©.0435 528 {195 ~138 0 46.0
3 ] HE 1o 0 1 0o
40 .05 00| l170 -120 0 40
4 i HE 17 e 0 1 0o
1 2 .25|14.25 -3 0 1
5 T 0 0 1 0
3 -6
.002 w0’ || 10°°|1.0085 -.006 o©  .002
6 1 1T o 0 1 0
4 -8
.0002 10 10°8!{.00085 -.0006 0  .0002




Table 4.2

Angles of Departure and Approach for Example 4.1

Case Angles of Departure. Angles of Approach
-2+ 1 -5 -1 -.5%31
1 +.100.8° 180° 184Q° * 11.7°
2 + 99.3 180 180 + 11.9
3 + 98.1 180 180 + 12.1
4 + 70.5 180 180 + 21.5
5 + 4.9 180 180 i 1.4
6 + 10.2 0 180 + 9.3
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Table 4.3

Points on the Qptimal Root Loci of Example 4.1

Cage p Closed Loop- Eigenvalues
10 -2.20+1.53i -5.08 -1.28
1 -3.03 + 2,661 -5.55 -1.42
L1 -5.16 £3.321 -6.93 ~1.67
.01 | ~18.5 -2.17 + 2.01i
107186 -2x108 ~0.50 + 3.00i
10 -2.13+1.413 -5.09 -1.24
1 -2.77 £ 2.423% ~5.60 -1.42
a0 -4.30+2.94i ~7.68 -1.79
.01 | -19.7 -12.2 -1.90+ 2.28i
10”16 -2x108 -108 -0.50 % 3.00i
3 10 -2.09 + 1.34i -5.09 -1.21
1 -2.61 % 2.281 -5.63 -1.42
.1 -3.84 + 2.76i. -8.01 -1.91
.01 -1.73 +2.421 -20.1 -11.6
10-16 -0.50 % 3.004 -2x108 ~108
4 10 ~2.00 +1.071 -5.09 -1.04
1 -1.82+1.47i. -5.72 -1.41
.1 -1.33#2.33i -8.85 -3.32
.01 -0.74 +2.88i -21.1 -1.01
10~16 -0.50 + 3.00i -2x108 -108
5 10 -1.73 £ 1.181. -5.08 -1.87
1 -1.65+ 2.06% -5.69 -2.77
.1 -1.66 + 2.89i -8.84 -3.88
.01 ~1.04 + 2,991 ~21.1 ~10.1
10716 -0.50 + 3.00i -2%x108 -108
6 10 -1.89+3.11i -4.81 + 0.89i
1 -2.36%£4.521 -5.99+ 2.89i
.1 -3.05+ 5,911 -8.31 +1.58i
.01 -3.72+5.501 -21.1 -10.9
1016 -0.50 + 3.00i ~2x108 -108
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CHAPTER V

Related Results

The three sections in this chapter contain new results concerning
the relationships between linear state feedback, quadratic weights,

and the closed lbopreigenstruecture.

5.1 An Algorithm for Selecting F to Produce Desired Asymptotic Properties

In this section an algorithm is given to implement the IALSF map.
Given the asymptotic properties of the linear state feedback problem
characterized by SO, XO, sw, and Nm; we find a feedback gain matrix
(1/k)F that produces these properties as k - 0. Only the generic case
is considered, when Rank(CB) = m; and (A,B) is assumed to be controllable.

The algorithm presented here is analogous to Harvey and Stein's
algorithm [4] for selecting quadratic weights (the IALOR map). The
TAIQR map gives a way to trade off eigenvalﬁe and elgenvector placement
with contxol energy, and indirectly this affects the feedback gains.

The IALSF map gives a way to directly trade off gigenvalue and eigen-
vector placement with feedback gains, and indirectly this affects con-
trol energy.

So, XO, Sm, and N are assumed to satisfy'fhe following conditions:
The So matrix has (n-m) distinct diagonal elements. The columns of Xo,
as is always the c%se for closed loop éigenvectors, must be linearly .
independent and.for each there must a vio such that (A -‘sioI)xio+Bvio=O.
Furthermore, it is assuméd that the xi0 are not in the image of B.

(To stay in real arithmetic, let S0 ke block diggonaliand replace com~

plex conjugates xio and x.

0, o} o © .
141 with Re(xi ) and Im(xi }). The S matrix
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o
is assumed to have m nonzerc diagonal elements and N is assumed to be

invertible.

Theorem 1 The unigque F matrix which produces the specified
asymptotic properties is

-1 o] -1
F=Ns (N) [0,710x°,B] . (1)
To prove this we first show that F has the desired asymptotically
finite eigenstructure. It suffices to show that the sio and xio satisfy

the generalized eigenvalue problem

.. . . o}
This is true because by assumption there exists a Vs such that
o o 0 . o
(a - S5 I)xi + Bvi = 0, and by the way F is constructed in = 0.
Since FB is full rank there are n-m solutions to- this generalized eigen~
. 0 o}
value problem =~ namely the n-m specified values of s, and X, -

Next we must show that F has the desired asymptotically infinite
eigenstructure. It suffices to show that the S: and vim satisfy the .
eigenvalue problem

<0
(s1 - FB)vi =0

0

i

W, =
here s M

The parameter s is the ith infinite mode as a function of s; and k.
The si°° and vim satisfy the eigenvalue problem because by the way that
F is constructed
FB = NS (N°) -
The last thing to show is that F is unigue. We know that FB is

-
uniquely defined by 3 and Nm. (If some of the sim's are equal then
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the vim's are arbitrary within a subspace but FB remains unchanged).
From the way that F is constructed we see that no extra freedom exists
to choose F. (If P is multiplied by a scalar o then each sicn changes
to usim, and the asymptotic properties are not the same.) The proof.
is complete.

Example 5.1 The same A and B matrices are used as in. example 4.1,

namely that
0 i O 1} 0O O
-5. =4 0.1 1 c O
A= _ B = .
0.1 0 -1 1 i 0
0 0 0 =5 0 1

The asymptotic properties of this system are specified for three cases,
and for each the F matrix is computed using (1). The root loci are
shown in Figure 5.1.

The asymptotically fimite behavior for each case is specified by

0 -.286
R o, 0= 05|yl 859l 4
’ ’ 0 0
~1.14 <573

The infinite behavior is different for each case. The specifications
and the resulting F matrices are shown in Table 5.1.

In the first case we have that sl°° =1 and 52co = 2. ‘here are two

infinite modes that stay on the negative real axis. In the second case

o

5 =12 /3 i. s8ince arg (-a
1,2

3 2@) = %+ 120°, the two infinite modes

approach infinity along asymptotes that make angles of * 120° with the

o=

positive real axis. In the third case Sy 5 = ~¥3 % i, and therefore
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Figure 5.1

Root Loci of a Linear System with State Feedback
86945AW007
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Table 5.1

Matrices Used in Example 5.1

73

@ @ Loy
Case NS (W) F
1 B 1 0 T B 0 0 1 0
0 2 16 4 0 2
o e = =1
2 0 1 8 2 0 1
-4 2 16 Y . | 2
3 0 1 8 2 0 1
-4 -2/3 | -277713 -6.928 -4 31464
Table 5.2
Angles of Departure and Approach for BExample 5.1
Case Angles of Departure Angles of Approach.
~2+1 -5 -1 -3+ 2i
1 + 98.1° 180° 180° + 161.7°
2 + 92.8 180 180 + 34.3
3 + 79.1 0 180 + 32.5
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the two infinite modes approach infinity along asymptotes that make

Q
angles of + 30 with the positive real axis. For high enough gain this
closed loop system goes unstable. The angles of departure and approach

are different for each case and are listed in Table 5.2.

5.2 An Algorithm for Pinding the Asymptotically Infinite Behavior of

the Optimal Root Locus

Given the A, B, @, and R matrices the cbjective is to find sw, Nm,
and y; which are used to characterize the asymptotically infinite be-
havior of the optimal root locus. We assume that (A,B) is controllabile
and (M,A) is observable (where Q = M'M, Rank(Q) = Rank(M) = p, and M
is p 2 n).

The algorithm described here is a variation of Shaked's [9], which
can be used to find S and y. The changes made to N simplify the
algorithm, the main reason for that being the use of subspaces of R
spanned by the wectors vim. After some definitions the algoritim is
presented in the form of a theoreq. The theorem is proved, the Ui

matrices are discussed, and then an example is given.

Define the matrices

. _ T

G, =B QB
T
G, = (AB) "OAB
G, = i te) Toal ly,
and

G, = g, %7,

i i 1
7. = ma* 1B,

1

Define the subspaces of R
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U = g"
o
Ul = Uon ker Jl
= U
uz ln ker J2
d

i
i-l{\ ker Ji'
with the dimensions such that
dim¥, | - dimUi=p.,

i-1 1

Finally, define the matyices

=
i

matrix whose columns form a basis forfli,

without loss of generality let UD = TI.

=
Il

m X p, matrix whose columns are the vi's

corresponding to the Py ith order Butterworth

patterns. If p; = 0 then Ni°° is missing and

there are no 1ith order Butterworth patterns.

wn
Il

pi x pi diagonal matrix whose elements are the

sjm‘s corresponding to the P; ith order Butter-
o

worth patterns. 1If p; = 0 then Si is missing.

Using the above definitions we see that

Z
n

[Nl ,...,Nk 1

s = dia.g{sl e eS8y )

where k <n -m + 1 is the highest order Butterworth

pattern.
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In the generic case k = 1 and ul = 0,

Theorem 2 For i = 1,...,k consider the Jordan canonical forms

w,”, ®o, )Mot

_ ~1
1-1 ®im 18 Ui = [ Wzl[A 0] el = @

A is a diagonal matrix with real eigenvalues > 0, and

3 - 9i9M

Remark If there are ne ith order Butterworth patterns then Wy and
A will be missing.

The proof is by induction and uses the fact that all Sy and Vi

(including those describing the asymptotically infinite behavior)} must

satisfy
T
[pR + &7 (~s)®(s)]v = 0 {3)
where &(s)} = M(sI - A)"lB
—MEI1+2a+...)8.
5 52

Equation (3) is derived by Harvey and Stein [4]. It can also be found
by plugging A, B, G, and K of the Hamiltonian sysfem (defined in section
2.2.4) into (3.4) and manipulating the result. 2An expanded version of
@T(—S)Q(s) is shown below.

6T (=)o (s) = ~ —12~ G

=]

1
JL-(-J TJ + J.°J )
53

172 271

—J"—(-JJ-l-G - J.J )
St
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1 T T T T
+ — (- -
, s ( Jl 34 + J2 J3 J3 J2 + J4 Jl )
1 T by T T
+ e { Jl Je + 3,0, - G3 + 3,79, Ts Jl)
. i1 .
L R

The first step is to show that the theorem is valid for i = 1.
Assume without loss of generality that first order patterns exist.

Rewrite (3) as

[DR + L pT0p + O(A) v = 0.
52 52

As p + 0 the j; term dominates and this becomes
s

[AI -yt BTQB]V =0

where A = psz.

The eigenvalues of RleTQB are real and > 0. (This is because the
% T )

eigenvalues are the same as those of R " B QBR— ;, which is a matrix of

the form XTX, whigh is known to have real eigenvalues > 0). From the

=]

Jordan canonical form {2) of RleTQB we see immediately that Nl = Wl'
. 2 .

For each nonzero eigenvalue we have that s° = -A/p, and the scolutions of s
are ;A%/p%. aAs p -+~ @ the branch of s in the LHP is a first order Butter-
worth pattern with sim = A%. The vjm not associated with first oxder

- o«
patterns lie in the kernel of R lBTQB, which is equal toL&.These vj 's

" 1 -1.T

are not "trapped" by R B QB.

=] (x5
The next step in the induction is to assume that Ni—l and Sa—l
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are valid. and. then show that Nim and Sim are valid. The vj?'s

corresponding to ith order patterns must lie in Ui_ therefore

ll
NiDD = Ui—lwl for some Wl. The case where there are no ith order patterns

is trivial, because the W, is missing. Therefore assume that there

i

exists at least one ith order pattern. The next step is crucial. Fac-
=]

tor out of (3) the influence of the vi 's corresponding to lower order

patterns. Do so by multiplying (3) on the left and right as shown be-

low:

w = 0.

T T
U;_; (R +¢7(-s)o(s)]U, _;

After some work this reduces to

T i-1 1 T 1 _
pU;_,RU; , + (~1) 21 U, 16;U;1 t©° ( .)w = 0.

As p > 0 the first term dominates and this can be written

- (. T T
(AT = (U; ) "RU; (0, _

1 6010 =0

where ) = (-1)lpszl.

The eigenvalues are real and > 0. From the Jordan canonical form (2)
we see that Niw = Ui—lwl' The solutions of s in the left half plane
form an ith order Butterworth pattern with sjm = A%. The vjm not
corresponding to lSt through ith order patterns must lie in Ui. This
completes the proof.

The Ui subsgpaces are shown in Figure 5.2. The following properties

of the Ui are simple consequences of the definitions and the above

theorem.

L o=l el  c...al =xr"

o]



Figure 5.2

The Ui Subspaces

86945AW001
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® 4 + TN
ImN, ... .

it

(1) U,

Ui-l if there are no ith order patterns.

(iii) Ui

Use the following algorithm to find the Ui matrices. In simple
examples this can be done by hand. In more difficult examples use the
software described below.

1) Pind a basis for Ul = ker Jl, call it Ul.

2) If dim Ul = 0 then let k=1 and stop.

3) Let i=2.

4) Find a basis for ker Ji'

5) Pind a basis for Ui =Ui_lf1 ker J;» call it u, .

6) If dim Ui = 0 then let k=i and stop.

7) Go to 4.

Singular value decomposition (SVD) can be used to find an orthonormal basis
for the ker Ji. Since ker Ji = ker Gi and Gi is symmetric, another way

to find a basis for ker Ji is to use the eigenvectors associated with

the zero eigenvalues of Gi‘ SVD can also be used to find an orthonormal
basis for the intersection of two subspaces, see section 3 of

Laub's report [41l] for more details. 2an orthonormal basis is not necessary
for our purposes. FORTRAN subroutines exist in EISPACK [10] to compute

the SVD.and the eigenvalue decomposition.

The problem of finding Butterworth patterns of order greater than
one is numerically an ill-posed problem because an arbitrarily small
change in A, B, or Q can cause a change in the order of the Butterworth
patterns. By using proven software we have tried to minimize the
numerical problems, but we cannot get rid of them.

Example 2 Use the same A and B matrices as in example 1. Given
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o]

H and R the problem is to find s® s X, Sm, Nm, and v for .the optimal

root locus. Let

-65 0 01 .0L -.01

106 10 o6 O -.01 L1211

Using a computer program that finds the transmission zerces of S(A,B,H)

by using a generalized eigenvalue problem we see that

" -.0897]
.891.

0

-5.79

s -

We now implement the algorithm described in this section for finding

" o
S, N, and v.

@
o
i
I
< o
o K
—_—

o
i
5
—

5,

]
Il

HAB = U2 = Ulnker GZ

"
r

The number of 1°C order patterns is dim U 0 " dimUl

i
=)
+

The number of 2nd order patterns is dim Ul - dim U2

The Jordan canonical forms are

(UlTRUl)"l UlTqul = 100

Therefore
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11
s -] = 3 Nco= [\) m\’ m] -
1 172 1 o
[» ] N
s, =10 v = (01, 02, 12)

5.3 BApproximating the Optimal Root locus

In this section we are concerned with optimal root loci that have
Butterworth patterns of order greater than one., What we will show is
that any optimal root loci can be approximated by another that has only
first order Butterworth patterns, and this approximation can be made
arbitrarily precise for an arbitrary distance out along the asymptotes.
This result is significant because it allows any optimal root locus
problem to be treated as é generic problem, and the generic problem is
numerically better conditioned than the nongeneric problem.

The basic idea will first be presented in words. Then a more for-
mal proof will be given using two lemmas and a theorem. Finally, an
example will be given.

Start with the well known fact that if Rank(HB)} = m then the optimal
root locus will have m first order Butterworth patterns. (If Q cannot
‘be factored into HTH then use M instead of H). In the first lemma it
is proved that if Rank(HB) < m then H can always be perturbed an arbi-
trarily small amount such that the new H times B is full rank. 'In the
second lemma an old result is guoted that essentially says that the
eigenvalues of a matrix are continuous with respect to the elements of
the matrix. Then in the theorem the Hamiltonian system mat;ix, for
some fixed value of p, is perturbed a small amount so that the eigen-—

values move less than a prespecified amount and the rank condition on
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HE is changed. For p smaller than this the infinite modes of the
optimal root locus will fall into first order patterns.

Lenmma 1 Iet H be a real m X n matrix and B a real n X m matrix.
If B is full rank then there exists a AH such that for all o # 0
Rank (H+AH)B = m.

Proof ILet AH = Wm, where Im(W) = Im(B) - Im(HT)fl Im(B).

The next lemma is copied from Wilkinson [38] and is due to
Ostrowski. The bound given is not computationally useful due to the
1/

n
o term.

Lemma 2 Let A and B be n x n matrices with elements that satisfy
the relationships

| <1 [bi|<l

|a. . .
1] 3

Then if X is an eigenvalue of A + 0B, there is an eigenvalue A of
A such that

A -2] < (a+2) (a2 /7.

Now we consider two optimal root loci. Let A be an eigenvalue on
the root locus generated by &, B, H, and R. For some p = po specify
a ball of radius e centered around each A. Let Al be an eigenvalue

generated by A, B, H + cAH, and R. We have the following result.

Theorem 3 For every Py 0 and £ > 0 there exists an o > 0 and
AH such that

{i}) Rank(H + dAH)B =m
and for every p in the interval p < p < «
(i) A" - A| < e
The proof for the case Rank(HB) = m is tgivial because we can
let AH = 0. wWhen Rank(HB) < m choose a AH such that Rank(H + cdH)B = m
for all a > 0, which is always possible from lemma 1. Next, use the
fact that the optimal root loci corresponds to the LHP eigenvalues of
F = %BR-]'BT

T
—HTH -4
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Let p = Por When H is changed to H + oAH then Z changes to

0 0
2+ gAZ =2 + ¢ .

HHAH + AH'H + oAH AR 0
The aAHTAH term can be dropped because for o« sufficiently small the
largest element o% aAHTAH will be less than the largest of HTAH +AHTH
Choose B such that the largest element of (1/8)%Z is less than one
in absolute magnitude. Without loss of generality assume also that
the largest element of (1/ B)AZ is less than one in absolute magnitude,

which will be true for o sufficiently small. Apply lemma 2 to get

|A' = A] < B(2n + 2) (4n%e) V2

where 2n is used instead of n because Z is 2n x 2n. The B term is
included because if A is an eigenvalue of Z then A/B is an eigenvalue

of (1/B8)%. MNow choose ¢ such that

- Al < B2 + 2) (0% < ¢,

1

A

this can always be done, even though o may be very small. The theorem
has been proved for p = po.

For p > Py recompute Z and call it Z'. Let B8' be its largest
element and note that B' < B. Then using the same o in (4) we see
that the distance between the eigenvalues of Z' and Z' + oAZ is also
less than s. This completes the proof.

Example 3 Use the same A and B matrices as in examples 1 and 2,
and let

o 0 1 o

1 0 o 0
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The optimal root locus has no finite modes. The four infinite modes
group into a first and third order Butterworth pattern with N = I,
s = I, and v = (0%, 02, 12, 22). Now suppose H is perturbed in such
a way that Rank(H + cAH)B = m. Let

0O o ¢ a 1 0

AF = r (H+ cAH)B = .

0 0 0 1 0 a
The optimal root locus is plotted for o =0, .01, and .001. The results
are in Table 5.1 and Figure 5,3. We see that when o > 0 the third
order pattern shifts into a first order pattern and two new trans—
mission zerces appear. For the case when o = .01 the two optimal root
loci are within € = .1 until p is less than .00l. For the case when

. . PN . . =5,
¢ = .001 the approximation is within ¢ = .13 until p is less than 10 .
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A Third Order Butterworth Pattern Shifting to First Order
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Table 5.3

Approximations of an Optimal Root Locus

P Closed Loop Eigenvalues

Case #1: =0

10 -3.31 -5.00 -2.00+i 1.01

1073 ~-31.6 ~5.17 -2.23+4i 1.68

1075 -316 -7.61 -3.75+1i 5.25
-16 8

10 =10 ~-464 -232 £1i 402

Case #2: a=10"3

1071 -3.31 -5.00 -2,00%i 1.01
1073 -31.6 -5.18 -2.22%3i 1.69
1070 -316 -7.74 -3.66+ i 5.27
10718 -10° -10° -2.00%1 31.6

-2
Case #3: o=10

107t -3.31 -5.00 -2.00+3i 1.01

1072 -31.6 -5.27 ~2.19+14 1.76

1073 ~316 -8.97 -2.96%+i 5.33
-16 8 6

10 ~10 -10 -2.00+1i 10.0
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CHAPTER VI

Conclusion

The linear state feedback problem was studied in this thesis, and
as a special case- the linear quadratic regulator was studied. Of
primary interest was the relationship between the state feedback gain
matrix and the closed loop eigenstructure of the linear state feed-
back problem, and the relationship between the quadratic weights and
the closed loop eigenstructure of the linear guadratic regulator.
Several new results were derived which will help both the analysis. and
the design of multivariable linear control systems.

The relationships were discussed in terms of maps between parameter
spaces. The names of the maps used here are not standard and not
important, but this seems to be a natural way to discuss the relation-
ships. The similarities between the linear state feedback problem and
the linear quadratic regulat;r gecome clear-when using these maps, and
these similarities were exploited in this thesis.

In Chapter IXT equations were derived to coﬁpute angles on the
root locus and the optimal root locus, including angles of departure
and approach. Fsr the first time the generalizeéaeigenvalue pr;blem
was used to compute the angles of approach. Then the quadratic weights
were defined to be continucusly dependent on p and equations were given
for the direction and rate of change of the closed loop eigenvalues
with respect to p. These eguations were used to analyze the inverse
square method of selecting gquadratic weights. All of the above results
are valid only at the points where eigenvalues are distinct. Extending

~ these results to multiple eiéenvalue points appears to be a nontrivial
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problem.

In Chapter IV two different kinds of equivalence classes of
quadratic weighting matrices were defined. Most of the’ attention was
given to the E equivalence class - those guadratic weighting matrices
that produce the same asymptotic eigenstructure. Sufficient conditions
were given for matrices to be in the B equivalence class, a canonical
element was defined, and an algorithm given to find the canonical ele-
ment. Then it was shown by example that the closed loop eigenstructures
can be different in the nonasymptotic region for members of the same
E equiYalence class.

More research needs to be done concerning the E° and E equivalence
classes. WNecessary conditions need to be derived for matrices to be in
the same E equi%alence class, and these conditions are probably not
much more complicated than the sufficient conditions already derived.

It would also be beneficial to divide up the B equivalence class
according to the equivalence relation that the closed loop eigenstruc-
ture be the same in the nonasymptotic region. ﬁaving the same angles
of departure and approach may be a way to do this, having the same D
and E may be another. Similar guestions apply to the E® equivalence
class. We do not yet know if all members of the E® equivalence

class (those quadratic weighting matrices that produce the same optimal
gain matrix) have the same asymptotic properties. If not then the E®
equivalence class can be further split up.- Within this (possibly)
smaller set of quadratic weighting matrices a canonical element can be
defined that has the following properties (and possibly others in order to

. . T
assure unigueness): +the 0 is of rank m and $(a,B,H) (where Q = H'H)
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has transmission zeroes in the left half plane. To find this canonical
element the asymptotic properties of the original (Q,R) can be found,
appropriate D, E, and Y matrices can be chosen, and then using eguations
(4.1-4.3) the canonical {Q,R) can be computed.

Three related results were derived in Chapter V. The first was
a synthesis solution for the linear state feedback problem. 2an
algorithm was given that finds a feedback gain matrix %-F that produces
specified asymptotic properties as k -+ 0. Only the generic case was
considered, so the obvious next thing to do is to extend this algorithm
to handle nongeneric cases. Also, this technique may yield insight
into selecting a feedback gain matrix K for the output feedback problem.
In the generic case K can be chosen to arbitrarily select S  and N ,
but K has no effect on So, xo,\or Yo

The next result was ah algorithm to compute Sw, Ng: and "y -
implicit in a set of qguadratic weights. With this algorithm and previous
results for §° and_Xo - all of the implicit asymptotic regulator pro-
perties can now be found. With obvious similarity to the output feed-
back problem, the asymptotic properties So, XO, and -y can be found from
2, B, and Q; and s” and N can be found from A, B, Q, and R. The next
thing to do is to modify this algorithm to find Sm, Nm, and a multi-
index similar to y for the output feedback problem. This will be
more difficlut because the closed loop eigenvalués are no longer guaran-
teed to be symmetric about the imaginary axis. The elements of s~ are
found by solving various eigenvalue problems, and because symmetry is
not gu%ranteed the eigenvalue problems may have Jordan blocks of size

2 X 2 or greater.
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The final result shows that an optimal root locus with Butterworth
patterns of order greater than one can be approximated by -an ophimal root
locus with all first order Butterworth patterns, and this approximation
can be made arbitrarily precise for an arbitrary distance out along
the asymptotes. This result may help to analyze optimal root loci. -
Determining the order of Butterworth patterns is numerically a badly
conditioned problem, so by restricting our attention to a finite region
of the complex s plane we can use the better conditioned problem of

analyzing first order patterns.
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APPENDIX A

Transmission Zeroes

Definition
Several definitions of transmission zerces exist in the literature
and all have some wvalidity. Common sense dictates that :the definition
reduces to the usual one in the SISO case {the roots of the numerator
polynomial of the transfer function) and that the transmission zeroces
have some physical meaning. One definition that meets these require-
ments is due to Rosenbrock [6}, which is the one used here. Though it
is too early to know for sure, the control community appears to be
settling down to this definition.
Rosenbrock defines the system matrix
A - 8T B
P(S) = (1)
-C 0
and his definition of transmission zeroces is given in terms of the
minors of P(s). An equivalent definition uses the Smith McMillan form
of P(s) [42]. since for our purposes we have the same number of inputs
and outputs we use the following equivalent definition [7,43]: The..
transmission zerces are those values of s, including multiplicities but
not including uncentrollable or unobservable modes, that reduce the
rank of P(g). We note that this definition allows the degenerate case
where the whole .complex plane reduces the rank of P(s]; this can happen
even if B and C are full rank and the system is controllable and cbser-
vable, We note also in the square case that thg determinant of P(s) is
equal to

det (A~sI)det(C (A—sI)*lB] . (2)
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and another equivalent definition of transmission zeroes is the roots
of (2). This definition is used by Kwakernaak and Sivan [8].

To demonstrate that Rosenbrock's definition has physical meaning
[42] we consider the linear output feedback system of section 2.2.2.
Assume that it is controllable and cobservable and then Laplace transform
(2.4, 2.5) to get

A —- s8I B X 0

Transmission through the system is blocked (the ocutput will be =zero)
for certain values of s, %, and u. Those values of s for which this is
true are transmission zeroes, and the corresponding values of x are called

gero directions.

el

The Generalized ﬁigenvalue Problem

-

The problem is to find all finite A and their associated eigenvectors

v which satisfy

I = \Mv, (3)
where I, and M are real p x p matrices not necessarily full rank. There
will be from O to p finite solutions. If M is invertible then premulti-
plication by M_l changes the generalized eigenvalue problem into an
eigenvalue problem and there will be exactly p solutions. Stable and
reliable FORTRAN subroutines exist in EISPACK [10] to solve the generalized

"~ eigenvalue problem.

Computing Transmission Zeroes

Three different methods for computing transmission zerces are dis-

(o
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cussed. The relationship between the first two methods is an unpublished
éesult due to Laub. Only the special case of an egual number of inputs
and cutputs and no feedforward term is discussed.

Laub and Moore [40] discuss in detail using the generalized eigen-
value problem as a way to compute transmission zeroes. In place of (3}

use

The finite solutions A reduce the rank of Rosenbrock's system matrix (1)
and therefore are transmission zeroces. There are anywhere from 0 to

(n~m) transmission zerces, and in the generic case when Rank(CB) = m
there are exactly (n-m) solutions. The portion x of the associated eigen-
vector is the zero direction.

Davison and Wang [44] use high gain feedback and an eigenvalue
problem to compute transmission zerces. First they prove that as k > 0
the finite closed loop eigenvalues of

1

Acl = A - E-BKC {5}

approach the transmission zeroes. Their method is to f£find a "suitably
small” value of k, compute the eigenvalues of Acl’ and then determine
which are finite. The eigenvectors associated with the finite eigen-
values are the zerc directions.

These two methods are closely related. The connection is the result
derived in section 3.2.1 that the closed lopp eigenvalues and eigenvectors

are solutions of the generalized eigenvalue problem
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= 0. (6)

Equations {5) and (6) give the same answers for k > 0 and in the. limit as
k - 0. The only difference is that in (6) k can be set exactly to zero.
Equation (6), incidentally, is an obvious way of proving that as k + 0

the closed locp eigenvalues approach the transmission zeroes.

A third approach is found in various papers by MacFarlane, Karcanias,
Kouvaritakas, and Shaked [for instance 42,18]. They define N and M
such that the rows of the (n-m) x n matrix N form a basis for thé ker
(BT) and the columns of thenx (n-m) matrix M form a basis for the ker(C).
Then the transmission zerocoes are the roots of the polynomial .

det (NAM - ANM) = 0. {(7)
This result can be derived using similarity transformations on the
matrices in (4), see [42,18] for details. In tbe generic case when
Rank (CB) = m then Rank(NM) = (n-m) and (7) is an eigenvalue problem, ie
the (n-m) eigenvalues of (NM)_lNAM are-the transmission zerceg. In the
nongeneric case when Rank(CB) < m then it is not clear how to continue,
other than to treat (7) as a generalized eigenvalue problem.

The first method, by Laub and Moore, has the best numerical proper-
ties and is the one to use. While all three methods give excellent
results in some cases, Laub and Moore give examples where the other two
methods break down. In Davison and Wang's method it is not obvious
how to choose a suitably small k, and in some cases the accuracy of the
answer is critically dependent on this choice. Furthermore, Davison and
Wang's method gives no indication when the answers are in error; and

therefore their method is unreliable. The method by MacFarlane et al.
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unnecessarily requires rank deterxrmination, which numerically is a vexy

difficult thing to do, and can introduce errors intoc the computations.



