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NOMENCLATURE

a ' Ambient speed of sound

0
a Radius of the circle in E-plane
C Chord of the Aerofoil
D Drag force on the aerofoil
F Field point in the far field
g Forcing function defined by Eq. (2.4.7)
i. Coordinate along the imaginary axis and = -1
K Vortex strength
L Lift force on the aerofoil
M, Mach numbeg‘
n Exponent = 3 in Eq. (3.3.16)
p pressure in the flow field
a perturbed velocity vector
R Distance from the field point to the source point in xy plane
b o radial coordinate
s source point location
t Time
% Stress tensor
u x component of the perturbation velocity
Uo Velocity of the vortex
v y component of the perturbation velocity
? Velocity vector in the flow field
W Complex potential in E-plane
X. x coordinate in the physical plane
y ¥y coordinate in the physical plane
2.‘ Complex coordinate

c Pressure coefficient-defined by Eq. (3.4.3)



Greek Symbols

o = K/U_a WNondimensional vortex stremgth

B Circulation imposed around the aerofoil
Y Strength of trailing vortex sheet per unit length
6 Delta fu#ction -

£ Coordinate in the complex plane

1! Coordinate in the complex plane

7] Angular coordinate

r Circulation around the aerofoil

' Complex coordinate = E+ i7]

% . Total velocity potential for the flow
@ Perturbation velocitf potential -

¥ " Stream function for the flow

v Kinematic viscosity

p Density of the fluid

Subscripts

i,j— Coordinate indices
0 - Initial conditions
o Infinity conditions
Superscripts

! Perturbed quantities

~

Nondimensional. quantities

- Refers to complex conjugates
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I. INTRODUCTION

This report is concerned with the acoustic field analysis asso-
ciated with a vortex of modified strength interacting with an airfoil.
The general theory of aerodynamic sound has been dealt with in detail
in Ref,l. The basic procedure followed here to determine the sound
field for the vortex-airfoil interaction has been that due to Light-
h1112, Lighthill's method of determining the aerodynamic sound field
is to first determine the flow field from fluid mechanical principles
and then to analyze, independantly of density in the complete flow
field, the propagation according to the principles of acoustics.

In a second paper, Lighthill3 applied his general theory to con-
sider sound generated by turbulence and in particular carried out a
detailed theoretical examination of the sound field of a turbulemnt jet
at low subsonic speeds. From the analytical treatment of the aero-
dynamic sound problem by Lighthill, it was pointed out that solid sur-
faces even when they are rigid, might well play an important role in
the phenomena of sound generation., But a detailed study of the influ-
ence of solids boundaries on the mechanism of sound generation was
presented by Cur1e4. He extended Lighthill's theory to study the effects
of fixed solid boundaries present in a given flow on the sound that is
generated aerodynamically and his results distinctly show that the far
field sound generated is now due to (i) the quadrupole field distributed
in the region where all the fluid fluctuations are dominant, and (ii) to
the surface distribution of dipoles, which represents a fluctuating force
exerted by the solid boundaries on the flow. This second contribution is

due to the presence of the solid boundaries and as pointed out by Curlea,



the intensity of sound due to the dipoles on the surface becomes increas-
ingly important zt low Mach Numbers.

It is clear from the studies of Lighthill and Curle that conventional
aerodynamics becomes the starting point for the study of sound field, A
particular case of some practical interest is the noise produced by heli-
copter blades.

The generation of Lift by a helicopter in forward flight is accompa-
nied by the development of an aerodynamic flow field of great complexity.
Associated with the flight of the helicopter is the characteristic noise
called the blade slap or bang, One of the mechanisms generating this
noise is explained to be caused by the fluctuating force on the blade due
to the interaction with the vortex from another blade. In this particular
case of the blade-vortex interaction, the blade interacts with the velocity
field of the vortex but does not cut through it. This problem of the blade-
vortex interaction has been studied by Searss, among other people. Sears
has based his analysis on the classical, incompressible, two-dimensional
unsteady airfoil theory and further assumed that the part of the blade
that produces the noise is many blade-chords in length and that it passes
through the field of the vortex lying parallel to and below it. According
to this model, the 1ift on the blade is determined from the gust-entry 1lift
Function of Karman and Sear36 and the fluctuating lift is what is employed
to determine the sound generated aerodynamically. A fluctuating force, like
the 1ift on the blade, can be represented according to acoustic terminology
as a concentrated dipole, of appropriate strength, at the origin and thus
the associated sound field determined.

. 7 . . . . .
Widnall has also studied the blade-vortex interaction in commection



with the helicopter nois®, by assuming a long blade passing obliquely
over a vortex; that is, the interaction being modeled as a two-
dimensional airfoil in 4an oblique gust.

The unsteady 1lift on the blade due to the blade-vortex interaction
has been calculated using linear unsteady aerodynamicé in a manner
analogous to the the theory of Sear58 developed purely for two-dimensional
interactions. This fluctuating lift force is then employed to calculate
the associated sound field.

In the above mentioned studies of Sears5 and Widha117, the far field
sound due to the vortex-airfoil interaction is calculated just by deter-
mining the fluctmating lift force on the airfoil. The perturbed flow-
field around the airfoil, which would constitute the quadrupoles of
Lighthill's theory, have been completely ignored. To what extent this is
justifiable can only be understood after undertaking a systematic and
thorough study of all the individual contributions to the far field sound.
Secondly in the model employed by Sears to study the vortex-airfoil
interaction, it is assumed that the vortex is held stationary while the
airfoil is in uniform rectilinear motion. This is a restriction on the
motion of the vortex, A Vortex free to move while interacting with the
airfoil seems to be a more appropriate model to postulate for the vortex-
airfoil interaction. Again, the importance of the free vortex-airfoil
interaction can be established after a detailed analysis of the problem
from the fluid mechanical principles.

Therefore, with a view to clearly understand the varicus mechanisms
that enter into the determination of the sound field due to the vortex- .
blade interaction, a free vortex interacting with an airfoil in uniform

motion is modeled and amalyzed, 1In Ref,l classical, incompressible,



inviscid and two~dimensional unsteady flow has been employed for the
analysis of the vortex-blade interaction. In that report is presented
a complete and detailed analysis of (i) the motion of the free vortex,
(ii) the forces acting on the airfoil, (iii) the extent of the perturbed
flow field around the airfoil. The‘determination of the sound field due
to all the acoﬁstic sources, not only on the airfoil surface (dipoles)
but also due to the ones distributed in the perturbed flow field (quadru-
poles) due to the vortex-airfoil interaction, has been presented here.
It is important to point out that since inviscid flow assumption has
been employed for the study of the vortex-blade interaction, the quadru-
poles that have been mentioned above in the perturbed flow field are
entirely due to unsteady flow field.

The effects of thickness of the airfoil on the sound radiation are
studied by employing a symmetric Joukowski airfoil for the vortex-airfoil

interaction,



I1. ACOUSTIC FIELD ANALYSIS

2.1 Bound radiation in a Plane

To determine the density fluctuation at any point ;; , at any
time "t" due to a fluctuating fluid flow within volume Vo bounded
by the airfoil surface S and the outer boundary X (Sketch No.2)
one requires a detailed knowledge of the pressure and velocity fields
both on the airfoil surface and the surrounding region VO . Such
information has been obtained in Ref.l for a two-dimensional, unsteady,
motion of vortex interacting with a flat plate airfoil in an incompres-
sible, inviscid potential £flow, Hence before the details of the flow
field are used to calculate the deusity fluctuation p’ at the field
point F external to VO s

to the two-dimensional case. From the assumption that in region V

Eq. (2.4.16) in Ref.l, needs to be simplified

0 >
the fluid is incompressible, Eq. (2.4.16) in Ref.,l simplifies to (See

Appendix A)

N 1 [Ty -
p'(rF;t) = ~3 div div./r — dVO_

bt a T
(8] . *VO _
1 n + [pIl]
+ 5 div f .
by » S T _
> e
po n . Um[aV/BX]
- - ds
Yy a2 r
0 S
N ->
fo © 1 - [U4)
- div —— d§ (k.1.1)
Lgr a2 r
8] S



The last two integrals refer to the contribution from the dipoles
distributed on the surface of any arbitrary aerofoil held stationary ina

medium where the fluid is in uniform motion with a wvelocity U . But
- w
specifically, for a flat-plate aerofoil they are identically zero
- - +
because of the surface boundary condition, namely, V=0 on S .

Therefore, for the flat-plate aerofoil in an incompressible £low,

Eq. (2.1.1) further reduces to,

1 P
N = _ . . T
p (rF,t) = { > div div f -[;]; dVO

b a

1 fﬁ-[p'f]
di — " as .1.
+1ma2 " r ' (2.1.2)
0 s,

where any function [G] is defined as

. { Mx -+ }
[} = ¢t - —mm——
ao(l - Mi)

and

N ){(yF-y> - (o - 2

From Eq. (2.1.2), we observe that the far-field demsity perturbation

p'(;F,t) is due to both the volume distribution of quadrupoles and

surface dipoles, similar to that expressed by curle,lL in his paper ,



except that the present results indicate the effect of acousticrdipoles
and quadrupoles present in a uniformly moving medium.

In Eq. (2.1.2), the integrands are all three dimensional quantities.,
They are functioms of all the three coordinates (x,y,z). But the fluid
mechanics problem of the vortex-aerofoil interaction, from where the
above.integrands have to be expressed, is solved as a two-dimensional

problem. Therefore Eq. (2.1.2) has to be integrated with respect to

Z and expressed as a function of x and y only. This is done below.
The field point ¥ is chosen to be in the zp = 0 plane (see

sketch below).
/[
. . F
i S{:::‘
IK _jﬁaﬁwﬁﬁﬁrﬂ..

. / .ZF = 0 Plane

Sketch No. 1 Region of influence of vortex-aercfoil configuration.




A1l the flow quantities like the perturbed velocity E .and the- pressure
p are all only varying in the xy plane and are all independent of
z . Hence the density fluctuation p’ at F which is now a func-

tion of x,y and t , is obtained by integrating Eq. (2.1.2) with

respect to z, , from - to +w . Consider the integral

]
- ) . - .
T] _ T . ..
f -[?— dVO = ff f -(;]- sz de dys
VO - RO - e .
where
r = Ja - x P R ._ o 2
- XF XS + (1 m) {(YF YS) + ZS
Denoting
(xp - %2+ (1 =)y -7 = B (2.1.5)
. it vield - . _ /2 M2 2
yields for r = '\ R+ (1 -M) Zg

- Therefore the integral now becomes,

vO . 0

. f [T] av, . f" [T] dr - (2.1.1)
— = 2 o , %X, dy 1.
* fRfR e /2 @) e

In the above equation, the integral in the parenthesis, on the right

hand side, is defined as



~ T + me
o 4o T(R,T) Hltay = ——————

f [T] dr a (1 - i)
v r‘ - R2 ) ./ f dr dx
R o VE.Z

= "‘IJ(R,T) dt
e = (2.1.5)

- \/{ao(l - Mi)(t - 1) - me}'f-' - B

Note that the above integral exists only for
{ R+ Mx }

£ - ——
T = -
ao(l - Mi)

because the signal that the observer at "F1 peceives at time "t"

is only that originated at

{ R+ Mx }

- t [«3]

T = - —
21 - )

and for all other 7 , T(R,t)=0 .

Hence the iategral in Eq. (2.1.5) becomes

o : wa + R
T(R,7) log § 27 - 2 [t - ———
a(l-M
- O ®
{ me 2 R 2* }
IR S AN S A
ao(l - M) a0(1 -M )
1 _ .
= [T(R,T)] ‘log ‘{-ER/ao(l-I‘é}
ao(l -M_ ‘ (2.1.6)



where

N N ( Mx+R
[T(R,T)] = T (Rt =t ~ = (2.1.7)
ag(l - Mi))

Hence from Eqs. (2.1.6) and (2.1.7), we have

~ [T v, 2 5 A
f "'-""‘"';'—*‘ = . (l — M2)5/2 ff [T(}CS,YS)] log Rl dXS dys
o o R

v .
0 0 (2.1.8)

where

R =\/(xF - xg)? 4 (1 - )G - v

and
Ry = 2R/a (1 -1f)

Similarly in Eq. (L4.1.2), the surface integral becomes

f n - [pi} 1
-————mdsz———————-——fﬁ-['f]l R, dx 2.1.
S r ay(1 - 1) prifos Ty o (2:19)

Therefore, the density fluctuation p’(xF,yF,t) is given by

1 .
’ t = div div re
p (XF;YF, ) o ag(l i Mi)‘5/2' iv div ./Rf [T] log Rlldxs dys
- . O

+ div'/}l - [p1] log R; dxg (2.1.10)

- 10 -



where

% = pd+ E -+ pf - &g o] T
( Mx+R >
G] = 6 {t -
(e o )
R o= [ - w5l (g - 3P0 - 1)

and

R = oR/a (1~ 1)

Furthermore since the fluid fluctuations responsible for the aero-

dynamic sound generation are solved assuming the flow in regiom Ry to

be incompressible, it would seem reasonable to identify the sound

propagation region, that is the region external to RO

in the xy-plane, also as one of low Mach number. Therefore the retarded

quantities now become

6] =z ¢ & -—
. 2,
- R =y [0c, = x )% + (v - v )F (2.1.11) -
whera = Xp = X )" ' Yp = Vg . .l.

In the region external to RO in the =y plane, (Sketch No.1 ), sound

is propagating in a uniformly moving medium. In this region the pressure

and density are related by

P’(xF:YF:t) = 33 D’(%F,YF,t) (2.1.12)

- 11 -



Thus the pressure fluctuation at point F is given by,

1. .
P,(xE,yF,t) = div div ff [T] log Ry dxg dyS
am ag YR :
0
1

+ divfi’{ - [p1] log Ry dxg} (2.1.13)

21Ta0

where assuming that M 1s small, we c_:btain

] = T(t - R/ao)
R o= [ - x5l (g - vg)®  (218)
and - R, = 2R/a . .

2.2 Far Field Simplification

Any quantity [G] is defined to be a quantity G referred to

jits value at the retarded time (t - R/ao }.. Thus

3 . 1 aRl ‘log Ry aG 1 3R
~— { [6] log Rif = j=—— [c1 - _ | — (2.2.1)
3xi _ Rlaxi - af; axi
Hence for low Mach number flows,
) 6] log Ry 3¢ 1) 3R
— ) [61log Ry - — —— (2.2.2)
. R a ot Ox,
i . (] i

Out of the two terms in the curly brackets in the above equation, for
large distances away from the origin, that is, for large R , the
first term becomes smaller as compared to the second term. 1In fact,

this is what defines a "radiation field". Thus in the far field,

(2.2.3)

a

log Rl[ac ] oR

3
—— {G] 10g ~ = —_— —_—
Ax ’ E ot Ax,
i i

(0]



where

.. -Fi st (2.2.%)
ox, R
i N
’ 2
and R = \[KF - XS)Q + (yF - ys) .
Therefore we obtain ’
) (R, ~-R_.) log R [3C '
—— 1 {G] log R;t = + Fi 81 [-—- (2.2.5)
axi aOR at

Simllarly we have,

F (R_-R_)R‘ .- Rg.) log R Xo .
{[Gij] Log Pli =1 ; Sl(FJa 2 - l[ 13]
J }

axiax a, R

ot

2R

Thus Eq. {2.1.13) can now be written as

( )(RF - R) [,
P (%p,¥p,t) = ﬂ 3 [ atej] log R,
- R R ;- R_.y[ar..
] R Sl)[ 11]}% i,
_ 2, R ot

1 ®R..-R.)[op
+ fn. Fr_ 54 [ ]log R dxg (2.2.7)
- 27Tao S 1 aOR ot

- 13 -



Note that all the quantities in the above equation are referred
to the "retarded time'". The pressure perturbations measured at the
field point F (coordinates ﬁE‘ ) at the instant of time £! are

actually the ones emitted by the source at S (coordinates ﬁs ) at

an earlier time

where a, is the uniform speed of sound propagation. The definition
of the term "far field" always refers to points, whose distance from

the source, lﬁF - ﬁSI is much greater than the lawgest wavelength of

the propagating sound wave.

. J = 5
. ; - e T . - . i 2 = IrF-r_Sel

SKEICH No. 2

- 14 -



Referring to the sketch above, let L

characteristic dimension of the region VO e

the far field F vwhere the observer is located and the distance

,1:}[ is much greater than L

1 L]

S1 and 82 within region Vb . Retarded time for the source §

is
% - g
Ty =gt 2
o : : Y %
and for the source 82 is : —
Iz, - Tl
F s2
T = £t =
2 a
0
Hence
1 > -
&t = TP TTy =T IrF'rsal"‘
a
0
_ 55
2
§.5 L
Therefore At = £1 < L .
- a, ag

}

Consider two source points at

1 refer to some maximum

Consider a point in

1

(2.2.8)

Thigs means that the time difference in the two signals resaching the

observer is at best equal to the time taken for the signals to travel

the maximum characteristic distance in the region

- 15 -

VO -



Consider now the time scale of the fluid fluctuations in the

flow field in VO . The flow velocity is v

mated to be the free stream veloecity, 'ﬁm

. This can be approxi-

for discussion here. Hence

the time scale of fluid fluctuations is of the order LI/U

Tg = Time scale of fluid fluctuations
in vy = Ll/Um . (2.2.9)
Thus
AT L./a
- _1 ° - M (2.2.10)
g L, /v, |

Therefore, if the Mach number of the flow is low (M_ << 1) , all the

fluctuations in region Vo will more or less reach the observer at

the same time. Thus for low Mach nuwber flows it seems reasonable to

ignore the retarded time. Hence Eq. (227) now becomes

L GRE RCREY )10“1(“)
P’ (xp,7p,t) = —_— ff{ 22 52

0
} 2(Rgy - RSi)(RFj ~ RSJ‘) arij G d
a R ot s Vs
0
1 (R, -R__)logR, [ '
+ fni L - 1 ( dmg b (2.2.11)
2'Il'ao 5 - aR ot

- 16 -



Defining the following non-dimensional quantities

;f — P . ~ . = __.__ii.. ; El = 2 MR 3
1 U2 ? ij 2 o U2 w
2 po @ 2 0 o
- U t
g -2 , t = —> and a = ¢/ .
a
a
- ~ i~ ~ N’ .2‘2.123.)
and expressing (xF,yF, ) = pg * pé (
we have , after substituting in Eq. (2.2.11), the following;

(RFl-'ﬁ )(R. -R )log R ag'fij
PV(;;F’;F’t) = ‘_ff{M 5?:2

-1 .} ’f{ -ﬁ .
B )( )(all)}dxs 5,

R t

(2.2,12b)

and

I

R a0

fn. (Res = Byy) 108 &y (ap )d;s (2..2.12¢)

LT ™ ~ -

S

From Eq. (2.2.12), tl;e term p; refers to the pressure propagated
into the far field due to the unsi:eac‘ly fluid fluctuations rfij within
the region R, . Then this is what Lighthill? iden_tifies'as the
guadrupole effect. Similarly pé is due to the distribution of
the singularities on the surface. As Ct.u:leIL points out, these are

surface distribution of dipoles and thus pé is then the dipole

effect.

- 17 -



Furthermore consider the term pé in Eq. (2.2.12). It is

e By -Rgy o [
~, o
P (XF Yest) = — n, — log R — dxs .
) S ? F 271_ 4 1 B 1 at .

Considering the maximum characteristic dimension of the aerofoil

and comparing it with the location of F , the field point, it is

in order to assume RSi <K:R?i: . Therefore, now

-t

RE‘ log RFl ai;\
n, “‘:—} dxs
RF s ot

1

¥ Is%

R, log Rp, OF,

(2.2.13)}

|
¥ S

where

fni';‘; dxg (2.2.1L)

total resultant force exerted upon the

)
[

Py
e
p —
1

fluid by the solid boundaries

R 2 M;ﬁF , §§ = §§ + §§ (2.2.15)

o

and n. the surface normal is independent of time.

Therefore OP /3f dis the time rate of change of the resultant force,
which from acoustics represents an equivalent dipole . As mentioned
in the earlier chapters, the study of sound field just by the knowledge
of the time varying force alone, completely ignores the effect of the
quadrupoles in the region R. . The validity or otherwise of such

0

an assumption can be established by computing the sound field from

Eq. (2.2.12).
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4,3 Computation of the Sound Field

(a) In-Ref.l, where the analysis of the flow field is described, the
forces acting on the airfoil, namely, the 1lift and drag forces, due

to the motion of the vortex, have been calculated and shown in Figs. 1
and 2, As is pointed out in the preceding section, from an acoustic
standpoint, the time varying forces can be easily represented as dipoles
of appropriately varying strength. Hence the pressure fluctuation pro-
pagated to the field point F due to these fluctuating forces, is given
from Eq. (2.2.13) as

EFi log ﬁFl B?i

R 3t

1

where Pi(t) = time varying force. Hence the pressure signal, due to

pé (%};F)rg) =

R %

the fluctuating lift and drag forces, is

. G 3 3 - Mﬁ iog Egl N 3D . T
Pelxp,yp,t) = — — ki A . 2.5.1
s\¥psYpo o K {XFat Fa'g} (2.3.1)
1

From Fig. 3, it is easily observed that

oD oL
':<<_'_' e
ot ot ~
Therefore neglecting dD/dt with respect to -— , we obtain from Eq. (2.3.1)
ot : ‘
the following simpler form ,
~ M? y. log ﬁ il
Y el F F1
Pg(xp,¥pst) = — (——
S }{F’ F’ - ~ ~ (2 '5'2
er Ry ot )
Tl

Expressing in polar coordinates,

. i o &
Pg(Rp,0.,t) =~ “2; sin 6, log RFl g,';;:) (2.3.3)
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The 1ift force 1L has beeq computed for the non-dimensional vortex
streggth, a = 1.0, for a flow velocity of U_ = 200 ft [sec past

the flat-plate aerofoil of chord C = 2 £t. At sea level conditions,
this corresponds to a Mach number flow of M_ = .18. The field point

F is chosen 25 chord lengths away so that ﬁ% = 100. From Eq. (2.3.3)
it can be seen that 5; is a maximum at BF = ﬂ/? . The time wvariation
of ;; for the above situation is shown.in Fig. 4 ., It is observed
that a peak value of this Eg at g, = wf2 occurs at t = 50 ,

that is, at a time when the vortex has moved right above the aerofoil.
The jmportant result to be noticed is that the free vortex motion predicts
nearly twicé as much peak value for Sg as the constrained vortex
thereby emphasizing the importance of the;vortex~aerofoil matual
interactions.

(b) Prom the details of the flow field computation shown in Fig. 5 ,

for the given value of « = 1.0, it is found that all the fluid fluctu-
ations, have decayed to the so called acoustic level at a distance of
appro%imately 15 chord lengths away from the origin. In fact the value
of C, at 6 =7/2 and R, = 60 (15 C) is sbout 0.05. Therefore for
sound field computational purposes, the region RO is taken to be a
circle of radius equal to 15 chord lengths (ﬁ% = 60). Thus, shown in
Fig. 6 , is a detail of the flow configuration adopted for computational
purposes.

One important thing to mention here is, that our analysis, the
vortex considered, is a point vortex. It is well known that a point
vortex gives rise to a singularity at its center. Therefore, in our
problem, the vortex has to be isolated from the rest of:the flow .field
by a small circle of‘radius €

O L]
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The effect of the vortex on the flow field is felt strongly when
it is closest to the aerofoil. From the trajectory analysis, it is
observed athat at ¢t = 50 , the vortex is at its closest location to
the aerofoil. The absolute value of the fluid velocity V , around
the neighborhood of the vortex, has been computea from Eq. (3.3.28)

for various values of €0 and shown in Fig. 7 . From these results,

a choice of gO -0 = 1.0 was made for computational purposes:,

(¢} From Eq. (2.2.312), the pressure contributions ;{; and 35,’, are
evaluated numerically in the compex { plane as follows. The integrands

are expressed in terms of the flow field details in Appendix D. At

-

time T = 0, the vortex of strength ¢ = 1;0, is at EO = = 5(5 and
HO =+ 2, All the flow quantities like the velocity and pressure
are evaluate'd > a5 explained in the earlier chapt-er. These quantities
are then employed to evaluate the double integral ;“} and the line
integral ;."5 . First of all the field point F is taken to be at

GF =0 and EF = 100. The double integral E\’r is first evaluated

for a given R_ and 6, varying from 0° to 360°, the value of R

S 3

ranging from '}i’s = 1.0 to ﬁs = 60. Then the value of 'ﬁs is changed

and integration performed with respect to @ The quadrature sub-

S L]
routine is employed to perform the integration with respect to ss

whereas the “trapezoidal rule" is used to evaluate the integral with

respect to 'ﬁS « Similarly ;g is evaluated for ﬁs = 1.0. There-

fore we now have 'f)'{r and 'ﬁé‘ evaluated at € = 0 , for Op = 0 and

~

Ry = 100. At time t = 1.0, the vortex advances to a new location and

again the above integrals are all evaluated and the procedure repeated
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until T = 100 is reached. ‘Now for the same ?% = 100; but with QF
changed to QF = 500, the integrals are evaluated for t=0 to
t = 100. Thus a detailed computation of the time variation of the
pressure fluctuation at &ifferent angular locations of the field point
F , at a radius Eﬁ = 100 is performed and presented in Figs. 8 (a)
and 8 (b).
{(d) The pressure signal due to both the éuadrupole distributions in
the region R.0 and the surfa;e distribution of dipoles on the aeroc-
foil, which has been computed in the previous section, should be expressed
in the more faimiliar terms in acoustics, namely the intensity of sound
I at the field point F and its directional pattern for varying
locations of F . From a physical point of view, energy is being
continuously propagated by a traveling wave and therefore intemsity I
of a traveling wave is then the "time average rate at which energy is
transported by the wave per unit area," across a surface normal to the
direction of propagation. More briefly, intensity is the average power
transported per unit area normal to the direction of propagatiomn.

To recapitulate, it is our aim to compute the intensity of the

sound field due to the vortex-aerofoil interaction in the space fixed

coordinate system (Sketch No. 1) in Ref.l where the airfoil is in motion

in a fluid at rest. From acoustics it is known that the intensity vector
I and its relation to the fluid flow quantities is given by
2
> {p’ ) >
I(RF) = n . (2.3.4)

Po?o
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where

5 1 t
(") = £t — f p'a(RF,t) dt (2. 3.5)
(te-'tl) — (te-tl) tl .

P’ = pressure fluctuation in the flow
a. = constant speed of sound

constant density of the fluid

(]

-’ ’
and n = unit vector normal to the wave front.

Equation {2.3.4t) can now be written as,

T(R) - T3 watts/cm (2.3.6)

- where

TER) - GAR)) . (2.3.7)

The pressure signal E’ in the far-field, which is
P = 3; + ;é , has been computed earlier for differgnt locations
of the field point F , for t =0 tof = 100. These results are used
to determine the non-dimensional intensity T .
Intensity T in the far field for ﬁ% = 100 and different angular
locations 6; is calculated and shown in Fig. 10.
Because of the large range of intensities over which the ear is

sensitive, a logrithmic rather than an arithmetic scale is chosen to

define the “intensity level", Therefore the intensity level, "IL" of
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a sound wave is defined by the relation

IL = 10 log, (1/10) (2.3.8)

where I0 is a reference intensity. This is taken to be 10-16 watts/bm?

corresponding to the faintest sound wave that can be heard. In;gnsity‘

levels are expressed in decibels abbreviated as "dB" and shown in Fig. 10a.
From FTigs. 8 to 10, where the pressure in the far field and the

corresponding intensities have been shown for the vortex-flat plate

- aerofoil interaction, it is seen that the maxiﬁum sound intensity in

the far field occurs at Op = /2 , that is, right when the vortex

has moved on top of the aerofoil, The details of the pressure signals

at Q% = m/2 are seen in Fig. 9 . The volume distribution of quadru-

poles contributes nearly 18% of the pressure from that due to the sur-

face distribution of dipoles; this corresponds to a 25% increase in

the associated sound i;tensity, as shown in Fig. 10. The sound inten-

sity with only the concentrated dipole at the origin representing the

total forces acting on the aerofoil agrees with the results obtained

considering only the distribution of dipoles on the surface. These

results can be seen from Figs., 9 and 10. The effect of the quadrupoles

is significant in the sense that it has altered the directivity pattein

of the sound intensity in the far-field (Fig.10a}. In terms of intensit&

1evéls, from Fig. 10b, the dipole distribution og the surface corresponds to

112.3 dg,jhereas the cumulative effects of both quadrupoles in R, and the

dipoles on the aerofoil surface correspond to 113.25 dB at GF = /2

for ﬁF = 100 and M_ = .18.



Once again all the results were obtained numerically with the
IBM 360 coﬁputer. It took a total of 5.5 minutes of execution time
for the computer to evaluate the sound intensity in the far field due

to both the surface dipole and volume quadrupole effects.
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ITI, THICKNESS EFFECTIS ON THE FAR FIELD SOUND

3.1 Filow Field Study

Up till now, the fluid mechanics of the interaction of a vortex
with a flat-plate airfoil and the associated sound field have been
analyzed. The thickness of the body gives rise to additional mass
fluctuations in the fluid flow. As is familiar to all aerodynamicists,
such types of mass fluctuations in fluid flow are represented by simple
sources and sinks, TFor closed bodies such as aercofoils, the net source
strength representing them in the fluid f£flow is zero, Hence the source
and sink distribution replacing the finite, closed body appear like di-
poles to an observer in the far field and therefore the far field sound
radiation is dipole-like, As before, the flow field analysis from fluid
mechanical principles, is conducted first,

In order to specifically illustrate the effect of thickness on the
far field sound and with a view to utilize the complex variable technique
that has been employed to study the interaction of the vortex with a
flat=plate aerofoil, (Ref.l) a symmetric Joukowski airfoil is employed.
The configuration of a vortex of strength K in a uniform stream U_ s
flowing past a symmetric Joukowski airfoil of maximum thickness ratio
¢ = h/C , where h = maximum thickness of the airfoil and € is the
airfoil chord, is shown in Fig. 11. From the Joukowski transformation
defined by Eq. (3.3.2) in Ref.l, the symmetric airfoil in the z-plane
is transformed to a circle of radius a ; from Fig. 11 it is seen that
the center 01 of the circle M in the complex {-plane,is on the

axis but displaced by a distance € from the origin of the
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coordinates. The radius al

than the fundamental length "a"™ and the circle M , represents the

of the ecircle M 1is slightly greater

symmetrical aerofoil in the complex f-plane. Writing ay = a(l + €),

vhere € 1is a small quantity,we obtain for the chord of the aerofoil

ha(l + 62) . As e 1is a small quant.ity P <«<1 and thus, to a

close approximation, the chord of the aerofoil is C = la and the

trailing edge in the complex plane is represented by € = +a or

§1 =a; . It is also known that the maximum thickness is at the

quarter chord point and the maximum thickness ratip_ is h/C = 1 .29%¢ .
| . - .

The complex potential W(gl) , for the symmetric aerofoil-vortex =~

configuration in a wniform stream of G_ , is given by

2

- a
W(tst010K0,) = jU, (§1 + "1')+ iK log(ty - ¢op)
L1
2
21
- il{log(gl —:—)+ iK log £
' Co1
s if 7(g;) Toglt, - &) dg;
4

a 2
1 25

- if 7(51) log ¢, = —Jdg, . (3.1.1)
0 51

The complex velocity V(gl) is then given by




Now the Kutta condition at the trailing edge,' t =+a or §1 =+a; o,
demands that the velocity V(g1 = +a1) be zero, at every instant of time.

Defining the following expression for the strength of the trailing vortex sheet

7(§:t)

- a
Y&, t) = Al ()| ——=
o ey
or
(€, ~ a,)
£)= Alr . ()] L 1 : - £+ (3.1.3)
o) Mea || e

and satisfying the Kutta condition at £ = +a or § = +a; , one

obtains for

- 1 - t. -2a
AL{Loy(E)] = -hax - 5 fo * gof L (3.1.%)
(Lre)” (6o - 20t = )
so that
(1 - ¢) t +E - 2a (g4 = 2a;)
SORE -hafx _ or * o1~ %% 1724 .
(e (g - 2y - a) [g + 2t - &)
(3.1.5)

where {_;01 = gol(t) .
Substituting for 7(@1, t), in Eqs. (3.1.2) and (3.1.2) one obtains for

the nondimensional complex potential ﬁ(zl) and the complex velocity

F\}'(Zl) the following expressions:

o e 1y L a
v g1"§0].)CL]. = (g]_ * E’) + iallog (gl - gOI) - iOtllog (51 - .?__._.)
1 01

N 1-e ¢ +? -2
+ 10, log T; - ila o1 ~ol (I.-I¢)

: Lave)® (1)t 2




where

+ L log (1L + €)

2(f, + ) 2, + &F

I =

1 € -1+2¢
5

(T, ~ 1)° Log I, - 1
oot L } (3.1.7)
2(1 + e)((;l + €)
~ @, - 1P g |7 -1 TE-1)+2E o
I, = — 5 - -~ 5 log (€/1 + €)
2(1 + e)(egl + 1) 2((-:§‘1 + 1)
t € -1 o1
+ + —== log (1 + ¢e) - _:5} 5 (3.1.8)
2»5(:—:;1 + 1) 2¢ . 2¢
and
1 -6 o
T = s and @ = . (3.1.9)
1+ € 1+e¢
Also
' 1 ior fat
o o~ 1 1501
Vhl’ﬁol’al]: [( '?32") T
€1 €1 o1 b1 fm
i 1-c¢ Tooat ~2
e ST i ~§o1 Qo; (17-18)}
§1 (1 + €) (§01 - 1)(201 - 1)
(3.1.10)
where
T, -1 1 (t, - 1) T.-1
I, = g},.w ~2 " o~ ~2+f:1 ~\2 1 ‘ (3.1.11)
7 2(1+ €)Y, + 8 2@, +9° (& +9) 1+¢
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X, - 1) 1 N(EEY 2(31-1)1(
18 = - ~ ~——— + i ~
2(1 + e)(€§1 + 1)2 2e(e;1 + 1) (Eg1 + 1)3
(3.1.12)
and as before E = i _; J .

The velocity of the vortex, at El = Ebl ; is calculated as

before (Eq. (3.3.25)) in Ref,1l, and it is given by

o 1 ia, t io
U9 = ( 'E) Tz == s ~1
o1 torbor ~F Co1
. 1-e Z01 + zbl -2
U Gs e @ - DE, - 1) 9 ™ T1o)
01 o1
(3.1.13)
. where
I =! Tor = 1 ) ! . Z':01'110ng01'11
P20+ )@y + 9 2, + 7 (Fy + €Y 1+%
(3.1.14)
and
[ 1 [ E(§01 l)l
o= " w1 e 2" Ty 3t
(€g01+1) (e + 1) 2e(egol + 1) (egol+1) 1+%
(3.1.15)



The circulation developed around the aerofoil is given by

=]

) - - f ey

2

Substituting for r(gl,t)from Eq. (3.1.3), it yields

—~ 1+ ¢ Z +-? -2
FE) = %= ( ){ 0L 203 } (3.1.16)
- e/ Uy - Dy - 1)
With the velocity field thus being determined, the trajectory of

-3

the vortex and the lift force acting on the aerofoil are calculated for

a typicai case of € = 0.10 . As before the strength of the vortex is

;= 1.0 and the vortex is located at T'=0 at (g = (-50 + i2)
The trajectory of the vortex and the-lift force experienced by the
aerofoil are éhown-in Fig.13 . A comparison of the 1ift force experi-
enced by the symmetric“aérofoil with that acting on the £lat plate
aerofoil is shown im Fig.1l4 . Also the-circulation around the aero-
foil for tﬁe twe different cases is shown in Fig. 12.

It has been noted earlier that the thickness effect or finite-
ness of the body can be represented by suitable distribution of sources
in the flow. It was also observed that the net effect of such sources
replacing the body is dipole-like at large distances. From Eq. (2.1.1)

far field pressure is given by

(x =L laiv a 1] ; n - [pI]
P (rF,t) =T ’dlv div f = AV, + div f = ds
Vb 5

-

- [U_(34/3x)] 7 - [0 4]
"pof dS-podivf——-———‘——dS
S

T s . r
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Upon reducing the above equation to the two-dimensional case of sound radia-
tion in a plane, and by integrating with respectto z {as in the flat-

plate case) it yields for the pressure p’” the following expression;

1

p’(R,,t) = div div [T] log R, dR
ﬁr_ oma (1 - M§)5[2 ]R' 1 =0
: 0

3

+ divf o - [p'f] log Rl ds
S

- Py div 7 - [04] log R, dS
S

(3.1.17)

where, as defined earlier,

t

R = \/(XF - xs)2 + (1 - Ffi)(YF - y5)2 3 Ry = 2R/ao(1-Mi)

and

( Mx +R )
;1 = ¢ t»——: .
1 1 ao(l'Mi)

For low Mach number flows, Eq. (3.1.17) ‘simplifies to
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p’(ﬁF,t) = div div/ [T} log R, dR
0
Eﬂao R
0
+ divf % - [pI] log R, dS
g .
> 39 .
- pof n - [Uw ax] log R, d8
S -
. -> ->
-pydivf @ 10 4] 1og R dS (3.1.18)
i s .
where
- 2 2
R ~ \/("F -x)" + (5p -~ ¥5)" 3 Ry =2R/aj
‘-~ and

M_+R
6,1 = ¢ t--—-a— .
0

From the above equation, the pressure in the far field and thus the

sound intensity can be determined, as before.

3.2 FPar Field Sound Radiation

In the preceding chapter for the case of the vortex interacting
with the flat~plate aerofoil , the amalysis of the acoustic field

clearly illustrated the significant role played by the quadrupoles
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distributed ia the volume VO enclosing the perturbed flow field. It
is our purpose now to study specifically the effect of thickness omn the
radiated sound to the far field. Therefore we direct our attention only
to the surface integrals in Eq. (3.1.18). The first of the three sur-
face integrals, as seen from the earlier chapters, is the effect of

the dipoles digtributed on the surface of the aerofeil. Even though
'this integral gives different contribution from that for the flat-
plate aerofoil, one can specifically identify the other two surface
integralg as definitely due to the thickness of the aerofoil. There-

fore, grouping these three surface integrals together and writing them

in their nondimensional form it yields

W TR R ‘ai;
Sé(ﬁF,?{) n — f (RF1 o S’“) (a?;) log (2 M_K)de

en 0 R

- Ry - Rgy 39 ~
+ 2 - — cos 8 log (2 M R) d@
o ot

Cad

271‘ o~ ~ Cd . i~
RF - RS qu EEX
+ 2 "‘j:“*-(cos & —= + sin @ == ) log (2 M R)de
o R ot ot

(3.2.1)
The velocity field components Ex s Ey and the pressure distribution

E have all been known from the flow field analysis in the earlier

section. As in the flat plate case, the above integral is evaluated

\
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for the initial location of  the vortex Eb = (-50 + 12) at £ =0

and for all the subsequent locations of the vortex, as it moves along.
The results for the pressure in the far field for ﬁ% = 100 and for
different angular locations GF of the field point are all shown in
Figs. 15(a) and 15 (b) for the specific vortex stremgth «a = 1.0 .
Once again the maximum contribution to the pressure history with time
occurs just when the vortex is above the aerofoil. The pressuré is a
maximum for the field point location of &, = m/2 for K, = 100 .

In Fig. 16 is shown a comparison of the pressure variatiom with
time, for the field point location of Op = ﬂf? and §% = 100 com-
puté& from a single concentrated dipole model with the one computed
from the surface distribution of dipoles. There is a slight difference
in the results unlike for the case of the flat-plate aerofoil., This
difference can be easily explained from Eq. (3.2.1). The first integral
represents the concentrated dipole whereas the effect of thickness
is comming from the other two integrals.

In Fig. 17 _is shown the comparison of the pressures determined for
both the symmetric and flat-plate aerofoil cases, as predicted by the
llift force action on the aerofoils, The effect of thickness on the
far field is quite evident. It is clearly seen that a 10% thick symmetric
aerofoil has increased the peak pressure in the far field by mnearly 50%
over that predicted for the flat-plate aerofoil. The sound intensity,
being proportional to the square of the pressure perturbation, is nearly
twice as much for the 10% thick symmetric aerofoil as is for the flat-
plate aerofoil. This is shown in Fig. 18. The corresponding intenstity

levels are shown in Fig. 19.



VI. SUMMARY AND CONCLUSIONS

A study of the aerodynamic sound produced by a vortex passing
past an airfoil in uniform motion is studied.

Following theprocedure proposed by Lighthill to study how
aerodynamic flows produce noise, the complete flow field is broadly
divided into two separate regions, namely (i) a region of sound
generation in the neighborhood of the airfoil, and (ii) a uniform
madium at rest where sound is propagated due to the fluid fluctua-
tions in the region around the airfoil.

The vortex-airfoil interaction problem is formulated as a
vortex of strength X being released ahead of a flat-plate of chord C
at a specific location, at time = 0 . Classical two~dimensional
incompressible, inviscid, unsteady potential airfoil theory has been
employed to determine (i) the trejectory of the vortex, (ii) the
forces acting on the airfoil, and (iii) the complete flow field
around the airfoil. This analysis is presented in Ref.l.

The computation of the sound f£field due to such a fluid mechanics
problem is done in two ways: (i) the fowces acting on the airfoil,
specifically the 1ift force, from acoustics, is represented as a di-
pole at the origin and its far-field sound radiation determined; (ii)
not only the forces acting on the airfoil but also the fluid fluctu~
ations in the flow around the airfoil are taken inte account to com-
pute the far-field sound. The analysis does indicate that the fluid
fluctuations in the neighborhood of the airfoil contribute nearly 25
to 307 to the intensity of sound in the far-field,

The effects of thickness of the airfoil on the sound radiation

are studied by employing a symmetric Joukowski airfoil interacting
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with the free vortex. The increase in the sound intensity in the
far-fielq is nearly twice as much for a 10% thick symmetric airfoil
as it is for tﬁe flat plate case.

All the numerical computations were performed on IBM-360. It
took less than a minute of comuter time to compute the trajectory
of the vortex and the free forces acting on the airfoil,Awhereas-the
computation of the directivity pattern of the sound intensity in the
farfield due to both the surface dipoles and volume distribution of

quadrupeles took a total of 5.5 minutes of execution time,

Conclusions

From the results of the acoustic field analysis of the vortex-~
airfoil interaction, the following conclusions can be drawn; {(a) the
estimation of the sound generated just by the knowledge of the 1lift
force acting on the airfoil, underestimates the intensity in the far-
field. The distribution of quadrupoles in the region around the air-
foil makes significant contributions to the sound intensity in the
far-field and thus cannot be neglected. Qur earlier statements that
the far-field sound is due to the cumulative effect of, not only the
dipoles distributed on the surface of the airfoil, but also the qua-
drupoles distributed iq the perturbed flow region around the airfoil
is well borne out by the results; (b) The effects of thickness on
the sound intensity in the far field is illustrated by considering
only the dipoles distributed on the airfoil surface. It is observed
from the results that a 10% thick symmetric airfoil nearly doubles
the sound intensity in the far-field over its value “for .a .flat plate

airfoil.
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APPENDIX A

Consgider div(p::; :1’+ pY) in Eq. (2.4.16) in Ref.l,. From the continuity
and momentum equations, Eqs. (2.4.4) and (2.4.5) in Ref.,l, the momentum

equation can be written as

(a% + ﬁm ) V) (p-&‘) + div p‘ﬁ a = = Vp ', so that
: X fa) > e
d:.v(p-c’;. q+pi) = - (-SE + U - \7) (pa)
But V = Gntd 3 y_ = constant (a.1.1)

Hence for the incompressible flow considered,

div(p-ﬁ-ﬁ+p'f) = - po(-éaz-i—ﬁm . V)v
I SO AP }
= {po 3t + Po Um W (5.1.2‘)

Therefore n - div(p-caf -cai + p'f)

SR N1 N DA )

Po 3t
3 > P
= =po (- V) - ey (3 - U -é;;) (4.1.3)
But n - V=0 on the body surface.

N >

[E e (oo 2
o ds = - o A (A.1.L)
> > s > -+ :

8 |7 - %] s |5 -zl
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—

"A.2 Consider the term pV V

Now -\’T=§+3

=]

Hence p V v = pv(ﬁm + -C,l’)
= pv .ﬁco -+ pﬁ '31'
= pﬁ ﬁm+ pﬁma'!' p-a?i

>

Therefore p-(?i E = p? v - p'\? ﬁw - pﬁmq (A.2.1)

-> -
n+pq
Hence ——— d5
S r

o

f RPN A S A RS
= ds
s - by
. G-VW-G@ -V -G -0)3
S T
. G -1 )% ,
= -p, —— ds (A.2.2)
S T :
because n + V = 0 on s .
FI PR . A )
. div ————— d§ = - g, div —— - ds (A.2.3)
T s r s 1% - Tl
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B.l

APPENDIX .B

From Eq. (3.5.4) in i?-lef.l, the non-dimensional perturbation is given by

e 'i 2
P’ = (p-p)/5e0)
&b
~2
= 1~V -2 -
ot
I~ Al
= 1 -VV -2 Real | —
13
Hence the time derivative of P’ 1is given by
op” Na\"r ae'ﬁ'f
- = - 2 Re v — ~ 2 Re 5
=} ot ot
v 3V SF, oV 2t
and — = EO.;. — go
ot | a"fo At df, ot
. W
= U, —+ U, =
0 o .z
o %o
where
UO = uy - 1.vo = complex vortex velocity at [ = go
and
ﬁO = Complex conjugate of 'ﬁO
Similarly we obtain for,
W o W
- = U, — 4+ U, —
A A

0
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(8.1.3)
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and

' B.2 Again from earlier Eq. (B.l.2), we have

55 3 35\
= «-—(VV)-2Re | —
St 3T 5T
Therefore

aep ‘ - 82 « ,b,) BZW
— = - — (VV) -2Re [ —
A Nt A

3® % w12 . 2
— (VV) = 2{—| +2Re —
3?2 3t 8?2
3 e
e~ = conjugate | —3
3t2 32

But from Eq. (B.l.3), we obtain
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(B.1.5)

(B.2.1)

(B.2.2)

(B.2.3)



3% L 3. .\ W, AW
— = |0, 2% 2) =+ =
ot _Bgo : _Bgo ago ago
A M\ & 2 W
+ UO — * @6 ﬁ:—) -+ UO N
ago aEO ato ato
+ 20,0, —— B.2.
. 0 "0 on -
a, a-go
Also
W l o SRl %
— = {A — 1+ A + A
3t3 3¢, 9%, 2 agg
oW 35 a}ﬁ‘
+ B, — + B, —=+ B_ ~— (B.2.5)
1 2 2
3%, 3L, 7 3g
where
. 3 6—5 - %& “3250 ~2 az[:]Jo
Al = Uo —— + UO 2+ UO =0
oF, oF, of
) 0 0
o > =y ~
~ OU v, t~ dU, _ 3T, __ U
+2'ii'0fro~0,§-+—;9 I—IO_,..,O+U0 ,.,,O+U0‘-—O;
ago ago a'go ago 3o ) _
| (B.2.6)
i,._., &
A, = 30 {06, — + = (B.2.7)
2 o} o 0
azo 3%,
By = ﬁo3 (8.2.8)
and
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B.3 Consider

32

—

2

ot

where

02

3\ S
= |V {—= ] +T ==+ U
%) to ~ 9%
PV AR - A A
+ 20U, T Uy =+ Uy T (8.2.9)
3¢q 3y a’go ot 3ty
- 3T, '
= ﬁo UO —:Ug'+ ’ﬁo'—:Q (3.2.10) '
Bgo Bgo
= T2
= Us (B.2.11)
the term
(&9, 9, +p,,) in Eq. (2.3.6)
(2qx ap ¥ pxx)
aNx ° ~ aaqx aerﬁxx
M) M T2 (8.3.1)
ot ot ot
= Real part of the complex perturbation velocity
v7(¢)
= Imaginary (V/(¢)

Hence we have,

o9,

St

(B.3.2)

12
Re | —
ot
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and

Alsg’ note that,

20 w~
3% 3%
XX
—5 = X component of 5
ot [

Similarly we obtain for

a ~~
'E'Q(qqu)

3% AV AN
= 2?1' .._._Z h(_’%)(—q’%)-z- 2’c‘fy
a ot ot .

- A5 -

(B.3.3)

(B.3.4)

"(8.3.5)
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Fig. 1 -Lift force variation with time on the flat plate aerofoil,
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Fig. 4 --Pressure in the far field due to the lift force alone
for the case of constrained and free vortex motion.
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Fig.' 5 ~Veloclty and pressure fields in the flow due to vortex-aerofoil

ihteraction.



F(field point)

Region of Uniform
Sound Propagation

o5¢

Fig. 6 -Schematic of the regions of the flow field RO and the
coordinates of the field point TF. :
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¥ig.10(a}Directivity pattern for the sound intensity in the far
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Fig, 10(b)--Intensity level in deciBels in the far field.

for the vortex-flat plate ‘interacation.
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Fig. 11 ~A schematic of the vortex-symmetric Jukowski
aerofoil configuration.
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Fig. 12 -Circulation around the symmetric aerofoil as a function of time.
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Fig. 13 -Lift variation on the symmetric aerofolil with respect

to time.
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Fig. 14 .-A comparison of the lift forces for the vortex-flat
plate aerofoil and the vortex-symm, aerofoil,
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