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NOMENCLATURE 

a0 Ambient speed of sound 

a Radius of the circle in -plane 

C Chord of the Aerofoil 

D Drag force on the aerofoil 

F Field point in the far field 

g Forcing function defined by Eq. (2.4.7) 

i. Coordinate along the imaginary axis and = -1 

K Vortex strength 

L Lift force on the aerofoil 

MW Mach number 

n Exponent = 3 in Eq. (3.3.16) 

p pressure in the flow field 

q perturbed velocity vector 

R Distance from the field point to the source point in xy plane 

r radial coordinate 

s source point location 

t Time 

k Stress tensor 
T 

u x component of the perturbation velocity 

U0 Velocity of the vortex 

v y component of the perturbation velocity 

V Velocity vector in the flow field 

W Complex potential in g-plane 

xi x coordinate in the physical plane 

y y coordinate in the physical plane 

Z Complex coordinate 

C Pressure coefficient-defined by Eq. (3.4.3) 

V 



Greek Symbols
 

a= K/Ua Nondimensional vortex strength 

Circulation imposed around the aerofoil 

V Strength of trailing vortex sheet per unit length 

6 Delta function 

Coordinate in the complex plane 

TCoordinate in the complex plane 

0 Angular coordinate 

r Circulation around the aerofoil 

C Complex coordinate = + iq 

- Total velocity potential for the flow 

CP Perturbation velocity potential 

P Stream function for the flow
 

v Kinematic viscosity
 

p Density of the fluid
 

Subscripts
 

i,j - Coordinate indices 

0 - Initial conditions 

WInfinity conditions 

Superscripts 

Perturbed quantities 

- Nondimensionalquantities 

- Refers to complex conjugates 
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I. INTRODUCTION
 

This report is concerned with the acoustic field analysis asso­

ciated with a vortex of modified strength interacting with an airfoil.
 

The general theory of aerodynamic sound has been dealt with in detail
 

in Ref01 The basic procedure followed here to determine the sound
 

field for the vortex-airfoil interaction has been that due to Light­

2
hill Lighthill's method of determining the aerodynamic sound field
 

is to first determine the flow field from fluid mechanical principles
 

and then to analyze independantly of density in the complete flow
 

field, the propagation according to the principles of acoustics.
 

In a second paper, Lighthill3 applied his general theory to con­

sider sound generated by turbulence and in particular carried out a
 

detailed theoretical examination of the sound field of a turbulent jet
 

at low subsonic speeds. From the analytical treatment of the aero­

dynamic sound problem by Lighthill, it was pointed out that solid sur­

faces even when they are rigid, might well play an important role in
 

the phenomena of sound generation. But a detailed study of the influ­

ence of solids boundaries on the mechanism of sound generation was
 

4
presented by Curle . He extended Lighthill's theory to study the effects 

of fixed solid boundaries present in a given flow on the sound that is 

generated aerodynamically and his results distinctly show that the far 

field sound generated is now due to (i) the quadrupole field distributed 

in the region where all the fluid fluctuations are dominant, and (ii) to 

the surface distribution of dipoles, which represents a fluctuating force
 

exerted by the solid boundaries on the flow. This second contribution is
 

due to the presence of the solid boundaries and as pointed out by Curle4
 



the intensity of sound due to the dipoles on the surface becomes increas­

ingly important at low Mach Numbers.
 

It is clear from the studies of Lighthill and Curle that conventional
 

aerodynamics becomes the starting point for the study of sound field. A
 

particular case of some practical interest is the noise produced by heli­

copter blades.
 

The generation of lift by a helicopter in forward flight is accompa­

nied by the development of an aerodynamic flow field of great complexity.
 

Associated with the flight of the helicopter is the characteristic noise
 

called the blade slap or bang. One of the mechanisms generating this
 

noise is explained to be caused by the fluctuating force on the blade due
 

to he interaction with the vortex from another blade, In this particular
 

case of the blade-vortex interaction, the blade interacts with the velocity
 

field of the vortex but does not cut through it. This problem of the blade­

vortex interaction has been studied by Sears5 , among other people. Sears
 

has based his analysis on the classical, incompressible, two-dimensional
 

unsteady airfoil theory and further assumed that the part of the blade
 

that produces the noise is many blade-chords in length and that it passes
 

through the field of the vortex lying parallel to and below it. According
 

to this model, the lift on the blade is determined from the gust-entry lift
 

6 
function of Karman and Sears and the fluctuating lift is what is employed
 

to determine the sound generated aerodynamically. A fluctuating force, like
 

the lift on the blade, can be represented according to acoustic termindlogy
 

as a concentrated dipole, of appropriate strength, at the origin and thus
 

the associated sound field determined.
 

Widnall7 has also studied the blade-vortex interaction in connection
 



e
with the helicopter noi~ , by assuming a long blade passing obliquely
 

over a vortex; that is, the interaction being modeled as a two­

dimensional airfoil in an oblique gust.
 

The unsteady lift On the blade due to the blade-vortex interaction
 

has been calculated using linear unsteady aerodynamics in a manner
 
8 

analogous to the the theory of Sears developed purely for two-dimensional
 

interactions. This fluctuating lift force is then employed to calculate
 

the associated sound field.
 

In the above mentioned studies of Sears5 and Widhall7 , the far field
 

sound due to the vortex-airfoil interaction is calculated just by deter­

mining the fluctuating lift force on the airfoil. The perturbed flow­

field around the airfoil, which would constitute the quadrupoles of 

Lighthill's theory, have been completely ignored. To what extent this is
 

justifiable can only be understood after undertaking a systematic and
 

thorough study of all the individual contributions to the far field sound.
 

Secondly in the model employed by Sears to study the vortex-airfoil
 

interaction, it is assumed that the vortex is held stationary while the
 

airfoil is in uniform rectilinear motion. This is a restriction on the
 

motion of the vortex. A vortex free to move while interacting with the
 

airfoil seems to be a more appropriate model to postulate for the vortex­

airfoil interaction. Again, the importance of the free vortex-airfoil 

interaction can be established after a detailed analysis of the problem 

from the fluid mechanical principles.
 

Therefore, iith a view to clearly understand the various mechanisms 

that enter into the determination of the sound field due to the vortex­

blade interaction, a free vortex interacting with an airfoil in uniform 

motion is modeled and analyzed. In Ref.l classical, incompressible,
 

-3­



inviscid and two-dimensional unsteady flow has been employed for the
 

In that report is presented
analysis of the vortex-blade interaction. 


a complete and detailed analysis of (i) the motion of the free vortex,
 

(ii) the forces acting on the airfoil, (iii) the extent of the perturbed
 

flow field around the airfoil. The determination of the sound field due
 

to all the acoustic sources, not only on the airfoil surface (dipoles)
 

but also due to the ones distributed in the perturbed flow field (quadru­

poles) due to the vortex-airfoil interaction, has been presented here.
 

It is important to point out that since inviscid flow assumption has
 

been employed for the study of the vortex-blade interaction, the quadru­

poles that have been mentioned above in the perturbed flow field are
 

entirely due to unsteady flow field.
 

The effects of thickness of the airfoil on the sound radiation are
 

studied by employing a symmetric Joukowski airfoil for the vortex-airfoil
 

interaction.
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II. ACOUSTIC FIELD ANALYSIS
 

2.1 Sound radiation in a Plane
 

To determine the density fluctuation at any point rF , at any 

time "t" due to a fluctuating fluid flow within volume V0 bounded 

by the airfoil surface S and the outer boundary Y (Sketch No.2) 

one requires a detailed knowledge of the pressure and velocity fields 

both on the airfoil surface and the surrounding region V0 . Such 

information has been obtained in Ref.l for a two-dimensional, unsteady, 

motion of vortex interacting with a flat plate airfoil in an incompres­

sible, inviscid potential flow. Hence before the details of the flow 

field are used to calculate the density fluctuation p' at the field 

point F external to VO , Eq. (2.4.16) in Ref.1, needs to be simplified 

to the two-dimensional case. From the assumption that in region VO 

the fluid is incompressible, Eq. (2.4.16) in Ref.l simplifies to (See 

Appendix A)
 

P(0F;t) = 1 div div - V

ii 'm 
I /"n • pl] 

+ 2 div dS 

_ o f " 

oa S 

- div dS (4.1.1) 

47 r4 


-5
 



The last two integrals refer to the contribution from the dipoles 

distributed on the surface of any arbitrary aerofoil held stationary in a 

medium where the fluid is in uniform motion with a velocity U . But 

specifically, for a flat-plate aerofoil they are identically zero
 

because of the surface boundary condition, namely, n • V = 0 on S
 

Therefore, for the flat-plate aerofoil in an incompressible flbw,
 

Eq. (2.1.1) further reduces to,
 

p (rFt) {r2 div div f dV0 

1n 1% * I] 
+ y2 div J dS (2.1.2) 

where any function [G] is defined as
 

[] = c t - 0ao(1 

and
 

r (x 2XlM%yy) +(F(z - 2)} - -l 

From Eq. (2.1.2), we observe that the far-field density perturbation
 

p'( 7 t) is due to both the volume distribution of quadrupoles and
 

surface dipoles, similar to that expressed by Curle in his paper
 

- 6
 



except that the present results indicate the effect,of acoustic-dipoles
 

and quadrupoles present in a uniformly moving medium.
 

In Eq. (2.1.2), the integrands are all three dimensional quantities.
 

They are functions of all the three coordinates (x:yz). But the fluid
 

mechanics problem of the vortex-aerofoil interaction, from where the
 

above integrands have to be expressed, is solved as a two-dimensional
 

problem. Therefore Eq. (2.1.2) has to be integrated with respect to
 

Z and expressed as a function of x and y only. This is done below.
 

The field point F is chosen to be in the zF 0 plane (see
 

sketch below).
 

yF
 

UM
 

St Ng o O"Plane
F 


Sketch No. I Region of influence of vortex-aerofoil configuration. 



All 'the flow quantities like the perturbed velocity q -and the-pressure
 

p are all only varying in tile xy plane and are all independent of
 

z . Hence the density fluctuation p' at F which is now a func­

tion of xy and t , is obtained by integrating Eq. (2.1.2) with 

respecf to z. , from -o to += Consider the integral 

r = ffj r .S s 

V0 "-
VO


where
 

rS x~x) 2 + 1 M)2 2
 

Denoting
 

2 2 (2.1.3)(xF -xS) 2 + (1- 2)(y s) = 

it yields for r =\R 2 + (1 -C) Z
 

Therefore the integral now becomes,
 

[T] dV [TI dr
Sr dxs dys (2.1.4) 
V0 V 

In the above equation, the integral in the parenthesis, on the right
 

hand side, is defined as
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,T) - r + M x 

*+od S dr d ­

drdT
 

) d (2.1.5) 

f1 { (1M2)( ~2-

JJFWJJ Tr 

%~M 


Note that the above integral exists only for 

= - aiM 

because the signal that the observer at "F" receives at time "t" 

is only that originated at 

R + Mox 

* 
 aM2)}a=(­

and for all other T , T(RT) 0 

Hence the integral in Eq. (2.1.5) becomes 

/M x+R / 

-a7. a(1 M
0 


0 0 

2 T(aR,)] 4los42R/a51l-M? 

ao(1 - N 2 )  (2.1.5) 

-9­



where
 

/ Mx+R[(R,-)] = -T ,R tTR. T a6M(1W. m )) 
Hence from Eqs. (2.1.6) and (2.1.7) , we have 

Vo ,~~d~( 2 2/fETcs YS)] log R 1 dx5 dy24f )32 RR0( (2.1.8) 

where
 

H=f(sXS)2 +- '-)(yF ys ) 2 

and 

R - 2R/a0(1 - 12H),
 

Similarly in Eq. (4.1.2), the surface integral becomes
 

j dS -
S r aol M2)f n•([pI] log RI dxS (2.1.9) 

Therefore, the density fluctuation p'(xF,YFt) is given by 

a'(xF'Y1t) div [T] log R dxS dyS3-1 diV f 

+ divj° [p] log R'I dxS (2.1.10) 

- 10'­



- -

where 

-- %qq+pI-aopl 

T[0O] 0P p
 

IG]= G
 

R (Xf!s), +(yF -ys2 I 

and
 

R 2R/a0 (l - 112)
 

Furthermore since the fluid fluctuations responsible for the aero­

dynamic sound generation are solved assuming the flow in region to
R0 


be incompressible, it would seem reasonable to identify the sound
 

propagation region, that is the region external to R0
 

in the xy-plane, also as one of low Mach number. Therefore the retarded
 

quantities now become
 

where R- Q/ " )2+ (Y- YS) 2 (2.1.11) 

In the region external to R0 in the "xy plane, (Sketch No. I ), sound 

In this region the pressureis propagating in a uniformly moving medium. 


and density are related by
 

p'(XFy ,) a0 p'(xF,YF,t) 

- 11 ­



Thus the pressure fluctuation at point F is given by,
 

P,(XFIYF t) = div div [T] log RI dxs dyS 

+-i a div f n [pI] log R1 dxSI (2o.113) 

27a 0 

where assuming that M. is small, we obtain
 

[I]T]t - R/aO ) 

R = xS)2 + (YF - 2 

and RI = 2R/a 0 

2.2 Far Field Simplification
 

Any quantity [G] is defined to be a quantity G referred to 

its value at the retarded time (t - R/a0 ).- Thus 

I l G[GI log R, 
... ~-lo R,a [X G aR~i
 

'X Rx 3-t
I i a0 

Hence for low Mach number flows,
 

6 1 1fI [G o R G 1) R 
[G] log R (2.2.2) 

Out of the two terms in the curly brackets in the above equation, for 

large distances away from the origin, that isj for large R . the 

first term becomes smaller as compared to the second term. In fact, 

this is what defines a "radiation field". Thus in the far field, 

i [0] log R = -] -- (2.2.3) 
i"a0 
 t axi
 



where
 

aR RFi - RS.- R(2.2.4) 

R1 

YS)2
 R
and 

Therefore we obtain 

lo = + ( R F i R S i) log R IG 
IG] R 


[c G) log loR.[~ (2.2.5)
aR
 

Similarly we hive,
 

[Glog"P 1{.RS)(RF, -R Si log RPG.3­
log 2= 2 

Ix I3 i 0 ['t*-

2(R. - R )(RF - RS) [Sil (2.2.6)
(2


I t
-
ao 


Thus Eq. (2.1.13) can now be written as
 

-R_ RSi)~(R. -RS r&T..1 
P'(x.Y 0 ft aat)iR2 t 2 ]log RI 

2(-F -RS)(RFi- RS,) r i 
It dTh dYs* a10*R 

In. 
) 

+ (RFi -RSi II LI1lo R1 dx5 (2.2.7) 
2i Sf 1 L 1R27a0 

a0R at S 
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Note that all the quantities in the above equation are 
referred 

to the "retarded time". The pressure perturbations measured at the 

field point F (coordinates 1f ) at the instant of time It' are 

S (coordinates S ) at 
actually the ones emitted by the source at 


an earlier time
 

t-L 

a 
0 

is the uniform speed of sound propagation. The definition

where a0 


of the term "far field" always refers to points, whose 
distance from
 

is much greater than the largest wavelength of
 the source, ­

the propagating sound wave. 

F
 

yrlr r 

rSlSl
 

L1
 

SKETCH No. 2 
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Referring to the sketch above, let L refer to some maximum 

characteristic dimension of the region V0 . Consider a point in 

the far field F where the observer is located and the distance 

r. is much greater than L . Consider two source points at 

SI and S2 within region V . Retarded time for the source S1 

Is 

ri = ft -­

and for the source S2 is 

2 = t I. t 2 1 
8 

Hence
 

[
Ar = -2 ="r,. 1Ti - 7 -2 r.1 

4a
0
 

a0 

SBS LI 

Therefore T - < L (2.2.8) 
a0 a0 

This means that the time difference in the two signals reaching the 

observer is at best equal to the time taken for the signals to travel 

the'maximum characteristic distance in the region V0 

- 15 ­



Consider now the time scale of the fluid fluctuations in the 

flow field in V0 The flow velocity is V This can be approxi­

nated to be the free stream velocity, % for discussion here. Hence 

the time scale of fluid fluctuations is of the order LI/U
 

= Time scale of fluid fluctuations
TF 


in V0 LIP . (2.2.9) 

Thus
 

AT Ll/a0
-- = XW (2.2.10) 

Therefore, if the Mach number of the flow is low (M. << i) , all the 

fluctuations in region V0 will more or less reach the observer at
 

the same time. Thus for low Mach number flows it seems reasonable to
 

ignore the retarded time. Hence Eq. (2.2.7) now becomes 

I (Fi - " Sd "' - R~ )10 a2 

P'(xFYF,t) ao 3t22
 

2(1?. 
Iff ao- RS)(RE - R ( i dY 
a 0 all 0 at I) 

1
1 r (R, -
11s* log R, a/ ) 

+ - a. x0RS (2.2.11)
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- -

Defining the following non-dimensional quantities
 

=
 
-ij = T RI =2biR
 
" I U2 i 


'p
PO L1 RI 2M
If Po0 

U t
 

R R= - and a c/4
 
a 
 a
 

and expressing p" F = + P 

we have, after substituting in Eq. (2.2.11), the following;
 

J - )(~ R og R I T 
= R fr. Si Fi Si f 

40
 

( % -I( i
 

R
 

(2.2.12b)
 

and 

fsi
NF
M2 - 109lg 1 (k d; (2..2.12c) 

S 

From Eq. (2.2.12), the term p' refers to the pressure propagated
 

ihto the far field due to the unsteady fluid fluctuations T.. within
3.]
 

the region Then this is what Lighthill2 identifies as the
k0 


quadrupole effect. Similarly pS is due to the distribution of
 
Sk 

the singularities on the surface. As Curlek points out, these are
 

surface distribution of dipoles and thus pS is then the dipole
 

effect.
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Furthermore consider the term pS in Eq. (2.2.12). It is
 

PS (X.FYF t) = ~ i Silog RI ( dxs 

S 

Considering the maximum characteristic dimension of the aerofoil 

and comparing it with the location of F ; the field point, it is 

in order to assume R . <<R - . Therefore, now 

f i.log
R R 
p (XFYFt) 


RFI S
 

M4 Ri logsRI
M2- RF '-
= lg 1 


(2.2.13)
 

where
 

Fi(Z) = f nSi dxS (2.2.14)
 

S 
= total resultant force exerted upon the
 

fluid by the solid boundaries
 
-2 = -2 
 - (2.2 15 ) 

R = 2 1 RF , = (22.+)YF
 

and n. the surface normal is independent of time.
 

Therefore P /2 is the time rate of change of the resultant force,
 

which from acoustics represents an equivalent dipole . As mentioned 

in the earlier chapters, the study of sound field just by the knowledge 

of the time varying force alone, completely ignores the effect of the 

quadrupoles in the region The validity or otherwise of such
R0 


an assumption can be established by computing the sound field from
 

Eq. (2.2.12).
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4.3 Computation of the Sound Field
 

(a) In Ref.l, where the analysis of the flow field is described, the
 

forces acting on the airfoil, namely, the lift and drag forces, due
 

to the motion of the vortex, have been calculated and shown in Figs. I
 

and 2. As is pointed out in the preceding section, from an acoustic
 

standpoint, the time varying forces can be easily represented as dipoles
 

of appropriately varying strength. Hence the pressure fluctuation pro­

pagated to the field point F due to these fluctuating forces, is given
 

from Eq. (2.2.13) as
 

Ps(xF'YF' t)= S Fi log RF1 rgi 

27r P 1 r 

where Pi(t) = time varying force. Hence the pressure signal, due to 

the fluctuating lift and drag forces, is 

-1~ -M 2 .logRl JrD 
P ( PYFst) =- pF-YF. (2.3.1) 

From Fig. 3, it is easily observed that 

Therefore neglecting AE with respect to - , we obtain from Eq. (2.31) 

the following simpler form 

Ps(XFYF~t) __ 

2 r 

"oR 

R F 

( ) (2.3.2) 

Expressing in polar coordinates, 

PS@~)=-
2 
-

sin %F log ~F()(2.3.3) 
log t 

"F 19 6L(-33 



The lift force L has been computed for the non-dimensional vortex
 

strength, a = 1.Oj for a flow velocity of U. = 200 ft/sec past 

the flat-plate aerofoil of chord C = 2 ft. At sea level conditions, 

this corresponds to a Mach number flow of M = .18. The field point 

F is chosen 25 chord lengths away so that R = 100. From Eq. (2.3.3) 

it can be seen that p' is a maximum at eF = 7/2 The time variation 

of s for the above situation is shown in Fig. 4 . It is observed 

that a peak value of this P at F 7/2 occurs at = 50
 

that is, at a time when the vortex has moved right above the aerofoil.
 

The important result to be noticed is that the free vortex motion predicts
 

nearly twice as much peak value for p5 as the constrained vortex
 

thereby emphasizing the importance of the vortex-aerofoil mutual
 

interactions.
 

(b) From the details of the flow field computation shown in Fig. 5 j 

for the given value of a = 1.0, it is found that all the fluid fluctu­

ations, have decayed to the so called acoustic level at a distance of 

approximately 15 chord lengths away from the origin. In fact the value 

of CP, at e0 = r/2 and R = 6o (15 C) is about 0.05. Therefore for 

sound field computational purposes, the region R0 is taken to be a 

circle of radius equal to 15 chord lengths ( = 60). Thus, shown in 

Fig. 6 , is a detail of the flow configuration adopted for computational 

purposes. 

One important thing to mention here is, that our analysis, the
 

vortex considered, is a point vortex. It is well known that a point
 

vortex gives rise to a singularity at its center. Therefore, in our
 

problem, the vortex has to be isolated from the rest ofthe flow field
 

by a small circle of radius e0
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The effect of the vortex on the flow field is felt strongly when 

it is closest to the aerofoil. From the trajectory analysis, it is­

observed athat at t = 50 , the vortex is at its closest location to 

the aerofoil. The absolute value of the fluid velocity V P around 

the neighborhood of the vortex, has been computed from Eq. (3.3.28) 

for various values of c and shown in Fig. 7 . From these results, 

choice of CO =- = 1.0 was made for computational purposes-. 
a 

(c) From Eq. (2.2.12), the pressure contributions pV and p are
 

evaluated numerically in the compex t plane as follows. The integrands
 

are expressed in terms of the flow field details in Appendix D. At
 

time t = 0, the vortex of strength a = 1.0, is at = - 50 and 

10= + 2. All the flow quantities like the velocity and pressure
 

are evaluated, as explained in the earlier chapter. These quantities
 

are then employed to evaluate the double integral pV and the line
 

integral . First of all the field point F is taken to be at 

F = 0 and =00. The double integral p' is first evaluated
FPF V 
for a given RS and S varying from 00 to 360°, the value of RS 

ranging from RS = 1.0 to RS = 60. Then the value of RS is changed 

and integration performed with respect to S The quadrature sub­

routine it employed to perform the integration with respect to S
 

whereas the "trapezoidal rule" is used to evaluate the integral with 

respect to R Similarly p' is evaluated for R = 1.0. There-S S S 
fore we now have P and j1 evaluated at t 0 , for F =0 and

V PS 

RF = 100. At time t = 1.0, the vortex advances to a new location and 

again the above integrals are all evaluated and the procedure repeated
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until t = 100 is reached. Now for the same RF = 100; but with eF
 

changed to 0F = 30 the integrals are evaluated for t = 0 to
 

t = 100. Thus a detailed computation of the time variation of the 

pressure fluctuation at different angular locations of the field point 

F . at a radius R = 100 is performed and presented in Figs. 8 (a)
 

and 8 (b).
 

(d) The pressure signal due to both the quadrupole distributions in
 

the region R0 and the surface distribution of dipoles on the aero­

foil, which has been computed in the previous section, should be expressed
 

in the more faimiliar terms in acoustics, namely the intensity of sound
 

I at the field point F and its directional pattern for varying
 

locations of F . From a physical point of view, energy is being
 

continuously propagated by a traveling wave and therefore intensity I
 

of a traveling wave is then the "time average rate at which energy is
 

transported by the wave per unit area,'t across a surface normal to the
 

direction of propagation. More briefly, intensity is the average power
 

transported per unit area normal to the direction of propagation.
 

To recapitulate, it is our aim to compute the intensity of the
 

sound field due to the vortex-aerofoil interaction in the space fixed
 

coordinate system (Sketch No. 1) in Ref.l where the airfoil is in motion
 

in a fluid at rest. From acoustics it is known that the intensity vector
 

and its relation to the fluid flow quantities is given by
 

(p'2) -* 

I(RF) n (23-4)
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where
 (p,2
e £t f p' 2 (RF,,t) dt (2. 55)
(t2tl) (t2tl) f 1
 

t1
 

p' = pressure fluctuation in the flow
 

a0 = constant speed of sound
 

pO = constant density of the fluid
 

and n unit vector normal to tAe wave front.
 

Equation (2.3.4) can now be written as,
 

(x)- n watts/cm(236 
'taO 

•here
 

1 = (.2(Ry) (2.3.7) 

The pressure signal p' in the far-field, which is 

S PV + 5 has been computed earlier for different locations 

of the field point F . for t 0 to t = 100. These results are used 

to determine the non-dimensional intensity I 

Intensity I in the far field for R = 100 and different angular 

locations eF is calculated and shown in Fig. 10. 

Because of the large range of intensities over which the ear is
 

sensitive, a logrithmic rather than an arithmetic scale is chosen to
 

define the "intensity level". Therefoie the intensity level, "IL" of
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a sound wave is defined by the relation
 

= 10 log 1o (i/i ) (2.3.8)
IL 0
 

where IO is a reference intensity. This is taken to be 10 watts/cm
 

corresponding to the faintest sound wave that can be heard. Intensity*
 

levels are expressed in decibels abbreviated as -dB,, and shown in Fig. 10a.
 

From Figs. 8 to 10, where the pressure in the far field and the 

corresponding intensities have been shown for the vortex-flat plate 

aerofoil interaction, it is seen that the maximum sound intensity in 

the far field occurs at 0F = 7r/2 , that is, right when the vortex 

has moved on top of the aerofoil. The details of the pressure signals 

at 0F = 7r/2 are seen in Fig. 9 . The volume distribution of quadru­

poles contributes nearly 18% of the pressure from that due to the sur­

face distribution of dipoles; this corresponds to a 25% increase in
 

the associated sound intensity, as shown in Fig. 10. The sound inten­

sity with only the concentrated dipole at the origin representing the
 

total forces acting on the aerofoil agrees with the results obtained
 

considering only the distribution of dipoles on the surface. These
 

results can be seen from Figs. 9 and 10. The effect of the quadrupoles
 

is significant in the sense that it has altered the directivity pattetn
 

of the sound intensity in the far-field (Fig. 10 a). In terms of intensity
 

levels, from Fig. 10b, the dipole distribution on the surface corresponds to
 

112.3 dB -thereas the cumulative effects of both quadrupoles in R and the 

dipoles on the aerofoil surface correspond to 113.25 dB at eF = 7/2 

for RL = 100 and M = .18. 
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Once again all the results were obtained numerically with the
 

IBM 360 computer. It took a total of 5.5 minutes of execution time
 

for the computer to evaluate the sound intensity in the far field due
 

to both the surface dipole and volume quadrupole effects.
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III. THICKNESS EFFECTS ON TIE FAR FIELD SOUND
 

3.1 Flow Field Study
 

Up till now, the fluid mechanics of the interaction of a vortex
 

with a flat-plate airfoil and the associated sound field have been
 

analyzed. The thickness of the body gives rise to additional mass
 

fluctuations in the fluid flow. As is familiar to all aerodynamicists,
 

such types of mass fluctuations in fluid flow are represented by simple
 

sources and sinks. For closed bodies such as aerofoils, the net source
 

strength representing them in the fluid flow is zero. Hence the source
 

and sink distribution replacing the finite, closed body appear like di­

poles to an observer in the far field and therefore the far field sound
 

radiation is dipole-like. As before, the flow field analysis from fluid
 

mechanical principles, is conducted first.
 

In order to specifically illustrate the effect of thickness on the
 

far field sound and with a view to utilize the complex variable technique
 

that has been employed to study the interaction of the vortex with a
 

flat=plate aerofoil, (Ref.l) a symmetric Joukowski airfoil is employed.
 

The configuration of a vortex of strength K in a uniform stream U.
 

flowing past a symmetric Joukowski airfoil of maximum thickness ratio
 

e = h/C , where h = maximum thickness of the airfoil and C is the
 

airfoil chord, is shown in Fig. 11. From the Joukowski transformation
 

defined by Eq. (3.3.2) in Ref.l, the symmetric airfoil in the z-plane
 

is transformed to a circle of radius a ; from Fig. 11 it is seen that
 

the center 01 of the circle X in the complex C-plane,is on the C
 

axis but displaced by a distance e from the origin of the
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coordinates. The radius aI of the circle M is slightly greater
 

than the fundamental length "a' and the circle M . represents the
 

symmetrical aerofoil in the complex t-plane. Writing = a(l + E),
aI 

where E is a small quantitywe obtain for the chord of the aerofoil 

1ia(l + C ) As c is a small quantity c2 << I and thusto a 

close approximation, the chord of the aerofoil is C = 4a and the 

trailing edge in the complex plane is represented by = +a or 

g, = a1 It is also known that the maximum thickness is at the 

quarter chord point and the maximum thickness ratio is h/C = 1.299C 

The complex potential W( 1 ) , for the symmetric aerofoilU-vo'rtex 

configuration in a uniform stream of U. is given by 

JwIM
W~l. M )+MIlog( 1 - to,) 

2 

iK log ti - + iK log 

ii f ( ) .1ig(yl - %) dqi 
a,
 

- .f 7tl) log - d~I (3.1.1) 

The complex velocity V( I) is then given by
 

a2I iK ix
 

V (t1 0 01 K ,Um ) = U_-(I _ -1
4O)lF (-i l 2l/1
 

iK MA( l)d I a (fddq 1 
+ -- + i 1 i a/y (3.1.2)

i a " ) ( - a 

where tI + aE.
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=
Now the Kutta condition at "the trailing edge, t = +a or bi +a, I 

demands that the velocity V(tI = +a,) be zero,at every instant of time. 

Defining the following expression for the strength of the trailing vortex sheet 

(t ,t)= A[t0 (t)][ +-a3] 

or
 

7 (-)t)=At t[ i l c = +ae (3.1.3) 

= 
and satisfying the Kutta condition at = +a or i +al one 

obtains for 

=I--a to, + ­10 
a)( - a) (3.1.1- 1A[o(t)](1 + )2 2al 


so that
 

7( 3 -4a K ) + " 2a1 "
,t)= ­
(1+ C)2 ol- al)(tOl - al) ['+ a(1 - E)J3 

(3.1.5)
 

=
where to t01(t )
 

Substituting for 7(y1, t), in Eqs. (3.1.2) and (3.1.2) one obtains for
 

the nondimensional complex potential w(,1 ) and the complex velocity
 

V(tl) the following expressions:
 

, + + a1log (l -to, ) - iallog 1 
70
 
+ ia 1 1og i 1 " ( 2 (0 1)-----15-16) 

(1+) .o.)
(3.1.6) 
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where
 

c - 2 

5-q+)log (1 + ) 

2(1 + 1 + )2 

.I t=1"12lgI t 11 tl( :- 1)+2tllg"Z1 Eq_ 1)2 log 1- 1 

2(l +z('i+l2 2 :l)1 2 (/i + )+ log 

+ log (1 + E) - (3.1.8) 

2c(cti + 1) 2c 

and
 

= ; and a'. - (3.1.9) 
E andl~
 

Also
 

1i ia 
 i Ito
 

t t1 t ol itol 2 ) 
t1 l(1 + E)2 t l )(to, - 1) 8
 

(3.1.10)
 

where
 

I log (3.1.11)
17 2(1 + )(t'.t e) 2(',i + Z)2 (Zi + .2 i+e I) 
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18 log
 

(2(1+ ~) + if 2eEt+)2~~ 

(3.1.12) 

and as before -I.-­+ 

The velocity of the vortex, at t, t , is calculated as 

before (Eq. (3.25)) in Ref.1, and it is given by 

o(ol~l) ol tool - tol
 
S01il 0 1 Q 

- -c ~o2-- (1-Ii) 

ia (1+ 6)2 (to1 1)(To - 1) 9 1° 

(3.1.13)
 

where
 

2
9 = 2(i + e)(Ol + 'e) 2(0 1 +Z) 2 (o+ log +o E 

(3.1.14)
 

and
 

+0 1) GSo) 1 + 
1°= (ioi+) (c+ 1) 2(-1 ++1 2 ('o+1) log 

(3.1.15)
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The circulation developed around the aerofoil is given by
 

1 t)dg1
r(t) = -/f 7(g

a1
 

Substituting for r(%,t) from Eq. (3.1.3), it yields
 

Vat) = r: - (1+E\ . 1oi+ i) (3.1.16) 

with = 

With the velocity field thus being determined, the trajectory of 

the vortex and the lift force acting on the aerofoil are calculated for 

a typical case of E = 0.10 As before the strength of the vortex is 

a,= 1.0 and the vortex is located at t'= 0 at 01 = (-50 + i2) 

The trajectory of the vortex and the lift force experienced by the 

aerofoil are shown-in Fig.13 . A comparison of the lift force experi­

enced by the synmetric'aerofoil with that acting on the flat plate 

aerofoil is shown in Fig. 14 . Also the-circulation around the aero­

foil for the two different cases is shown in Fig. 12. 

It has been noted earlier that the thickness effect or finite­

ness of the body can be represented by suitable distribution of sources 

in the flow. It was also observed that the net effect of such sources 

replacing the body is dipole-like at large distances. From Eq. (2.1.1) 

far field pressure is given by 

p'(rrt)z=P r')fj div div f j2r 0 + divff 92IJ.dSdV0 .r
 
VO
 

n q/ 
[U(/x dS - 0 div dS 

S0 r fS
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Upon reducing the above equation to the two-dimensional case of sound radia­

tion in a plane, and by integrating with respect to z (as in the flat­

plate case) it yields for the pressure p' the following expression;
 

1
 
p'( ,t) - 2a 0 (l _&)3 div div [T] log R1 dR0 

+ divf n• [p] log R dS 

S
 

n-'0 W bU I log RI1 dSx 

-R 0 df . n log R1 dS 

S 

(3.1.17) 

where, as defined earlier, 

R X - xS)2 + (1 - M2 )(yF - ys)2 ; R= 2R/ao(1-M2 ) 

and 

[G G(t/ MMx + R 
[G]t ao(l _ M) 

For low Mach number flows, Eq. (3.1.17) simplifies to
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p (Ft) = div divf [T] log RI dR0
 

+ 	divf • [pI] log RI dS 

S 

-- [u -& log R 

'S 

-P div 'n '] logRldS (3.1.18) 

S, 

where
 

Ys)2 
R v( -XS)+(YFY-) R = 2R/ao 

and
 

G (t M. +R)kC
[Ci] = Gi1 

a0 

From the above equation, the pressure in the far field and thus the
 

sound intensity can be determined, as before.
 

3.2 Far Field Sound Radiation
 

In the preceding chapter for the case of the vortex interacting 

with the flat-plate aerofoil . the analysis of the acoustic field 

clearly illustrated the significant role played by the quadrupoles 
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distributed in the volume V0 enclosing the perturbed flow field. It'
 

is our purpose now to study specifically the effect of thickness on the
 

radiated sound to the far field. Therefore we direct our attention only
 

to the surface integrals in Eq. (3.1.18). The first of the three sur­

face integrals, as seen from the earlier chapters, is the effect of
 

the dipoles distributed on the surface of the aerofoil. Even though
 

this integral gives different contribution from that for the flat­

plate aerofoil, one can specifically identify the other two surface
 

integrals as definitely due to the thickness of the aerofoil. There­

fore, grouping these three surface integrals together and writing them
 

in their nondimensional form it yields
 

2 7 RQIi '%Si P log (2N )de 

.+2T f.0 ( )y cos a log ( ) 

+2 (Cos e -- + sin e t llog (2 MW R)dO 

273T 

(3.2.1) 

The velocity field components q x . Y,.and the pressure distribution
 

p have all been known from the flow field analysis in the earlier
 

section. As in the flat plate case) the above integral is evaluated
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for the initial location of'the vortex 0 = (-50 + i2) at t = 0 

and for all the subsequent locations of the vortex, as it moves along.
 

The results for the pressure in the far field for R =100 and for
 

different angular locations eF of the field point are all shown in
 

Figs. 15(a) and 15 (b) for the specific vortex strength a = 1.0 

Once again the maximum contribution to the pressure history with time 

occurs just when the vortex is above the aerofoil. The pressure is a 

maximum for the field point location of eF = 7r/2 for R =100 . 

In Fig. 16 is shown a comparison of the pressure variation with
 

time, for the field point location of = ?r/2 and R = 100 com­

puted from a single concentrated dipole model with the one computed 

from the surface distribution of dipoles. There is a slight difference 

in the results unlike for the case of the flat-plate aerofoil. This
 

difference can be easily explained from Eq. (3.2.1). The first integral
 

represents the concentrated dipole whereas the effect of thickness
 

is coniming from the other two integrals.
 

In Fig. 17is shown the comparison of the pressures determined for
 

both the symmetric and flat-plate aerofoil cases, as predicted by the
 

lift force action on the aerofoils, The effect of thickness on the
 

far field is quite evident. It is clearly seen that a 10% thick symmetric
 

aerofoil has increased the peak pressure in the far field by nearly 50%
 

over that predicted for the flat-plate aerofoil. The sound intensity,
 

being proportional to the square of the pressure perturbation, is nearly
 

twice as much for the 10% thick symmetric aerofoil as is for the flat­

plate aerofoil. This is shown in Fig. 18. The corresponding intenstity
 

levels are shown in F~g. 19.
 

F 
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VI. SUMMARY AND CONCLUSIONS
 

A study of the aerodynamic sound produced by a vortex passing
 

past an airfoil in uniform motion is studied.
 

Following theprocedure proposed by Lighthill to study how
 

aerodynamic flows produce noise, the complete flow field is broadly
 

divided into two separate regions, namely (i) a region of sound
 

generation in the neighborhood of the airfoil, and (ii) a uniform
 

madium at rest where sound is propagated due to the fluid fluctua­

tions in the region around the airfoil.
 

The vortex-airfoil interaction problem is formulated as a
 

vortex of strength K being released ahead of a flat-plate of chord C
 

at a specific location, at time = 0 . Classical two-dimensional
 

incompressible, inviscid, unsteady potential airfoil theory has been
 

employed to determine (i) the trejectory of the vortex, (ii) the
 

forces acting on the airfoil, and (iii) the complete flow field
 

around the airfoil. This analysis is presented in Ref.l.
 

The computation of the sound field due to such a fluid mechanics
 

problem is done in two ways: (i) the forces acting on the airfoil,
 

specifically the lift force, from acoustics, is represented as a di­

pole at the origin and its far-field sound radiation determined; (ii)
 

not only the forces acting on the airfoil but also the fluid fluctu­

ations in the flow around the airfoil are taken into account to com­

pute the far-field sound. The analysis does indicate that the fluid
 

fluctuations in the neighborhood of the airfoil contribute nearly 25
 

to 30% to the intensity of sound in the far-field.
 

The effects of thickness of the airfoil on the sound radiation
 

are studied by employing a symmetric Joukowski airfoil interacting
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with the free vortex. The increase in the sound intensity in the
 

far-field is nearly twice as much for a 10% thick symmetric airfoil
 

as it is for the flat plate case.
 

All the numerical computations were performed on IBM-360. It
 

took less than a minute of comuter time to compute the trajectory
 

of the vortex and the free forces acting on the airfoil, whereas-the
 

computation of the directivity pattern of the sound intensity in the
 

farfield due to both the surface dipoles and volume distribution of
 

quadrupoles took a total of 5.5 minutes of execution time.
 

Conclusions
 

From the results of the acoustic field analysis of the vortex­

airfoil interaction, the following conclusions can be drawn; (a) the
 

estimation of the sound generated just by the knowledge of the lift
 

force acting on the airfoil, underestimates the intensity in the far­

field. The distribution of quadrupoles in the region around the air­

foil makes significant contributions to the sound intensity in the
 

far-field and thus cannot be neglected. Our earlier statements that
 

the far-field sound is due to the cumulative effect of, not only the
 

dipoles distributed on the surface of the airfoil, but also the qua­

drupoles distributed in the perturbed flow region around the airfoil
 

is well borne out by the results; (b) The effects of thickness on
 

the sound intensity in the far field is illustrated by considering
 

only the dipoles distributed on the airfoil surface. It is observed
 

from the results that a 10% thick symmetric airfoil nearly doubles
 

the sound intensity in the far-field over its value -for;a -flat plate
 

airfoil.
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APPENDIX A
 

A.1 	 Consider div(pq q + pZ) in Eq. (2.4.16) in Ref.l..'From the continuity
 

and momentum equations, Eqs. (2.4.4) and (2.4.5) in Ref.1, the momentum
 

equation can be written as
 

V ) (p') + div pq q - Vp ,so that 
at
 

div(p'q'q+pI1) = .j + UM v) (pz~ 

But = U + q ; U = constant 	 (A.1.1) 

Hence for the incompressible flow considered,
 

div(p'q+ p-1) po-L + V)
-= 

= - 0 • 	 (A.1.2) 

Therefore n • divp q + pI) 

O n-( t PO n •U 
- 4-

But 	n = 0 on the body surface. 

div(p 
 + pI) 
P 

____f 

•r"-IdSI 	 = fP to (A.1.k) 
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A.2 Consider the term pV V 

Now V +q 

Hence + q 

Therefore pq q 

pt 4 t 

p 

+ pq+pq' 

0 t -p (A.2.1) 

Hence 

n 

= 

-pqq 

dS 
r 
fsn "(p 

fS 

p? p ) 
dS 

Sr 

= "Po 
fS r 

ds (A.2.2) 

because i = 0 on S 

o. div J dS -Po div J 
rIrF 

n 
rS 

dS (A.2.3) 
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APPENDIX ,B
 

B.1 From Eq. (3.5.4) in Ref.l, the non-dimensional perturbation is given by
 

= 1 -V -2-­

= -V V-2 Real (B.1.1) 

Hence the time derivative of -" is giv.en by 

= 2-Re -- (B.1.2) 

and 

BV 
-

BV' io 
+ 

Z)V ZTo 

'where 

and 

0 

0-

0-

- + 

iv 

0­
-

complex vortex velocity at '­

(B .. 3) 

U = 

Similarly 

Complex conjugate of 

we obtain for, 

-- 4-+ -
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and
 

2 - o -oo
 

at 0r.- ba 0 /w a
 

+ +- 0C o/­

+ZKJ b: -go.­bo-o o 
0 0 .-.' 

+ W
-2 

n o ­

g0 0o 

B.2 Again from earlier Eq. (B.1.2), we have
 

-~ ( )-Re 2 

Therefore
 

2 
--

2 (V () - 2 Re ( 7) (B.2.2) 

0 = 2 -i-e (B.2.2 

(B .2.3)-F conjugate 


But from Eq. (B.1.3). we obtain
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--

• ..
 
+ 3 


U0 - +F2 


" o +°#o/wo w P° 

' -77 +UO o­

+ o%b%%]
 
+:In - - 1 -

Also
 

+ 2 o + A3 3
"'3IA -a~o t


- 00 -T2 

+ Bi1 2 Tt 0+ B 3 (B -2 5-.)Also] + 

where
 

2]
 

o ­+ -­

(B.2.6)
 

•I1W3%-'O (B.2.7)id Sri 


A 3 (B . 2.78) 

and 

-43­



BU+ 2 a+ 2 0 
1 +U -+U17~2 0 

2-

B (B.2.11) 

B.3 Consider the term 

2 

t:2 (2! x +p ..) in Eq. (2.3.6) 

2 

-
+ p(x) q -x 

qxPx 

where qx = Real part of the complex perturbation velocity 
V'(0 

qy = Imaginary (V'(O) 

Hence we have, 

- Re - (B.3.2) 
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and 

Re(-R ) (B .3.3) 

Also note that, 

2 x component of 

Similarly we obtain for 

-2 (B.3.4) 

;a (2; Z'~ 

r X2 t)( - ) .+ 2q I (B.35) 
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Trajectory 
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Fig. 1 -Lift force variation with time on the flat plate aerofoil.
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Fig. 2 -Drag on the plate vs vortex location.
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Fig. 3 --A comparison of t/&' and )WAZ for vortex­
flat plate interaction. 
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Fig. 4 --Pressure in the far field due to the lift force alone
 
for the case of constrained and free vortex motion.
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Fig.' 5 -Velocfity and pressure fields in the £1ow due to vortex-aerofoil
 
interaction.
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Fig. 6 -Schematic of the regions of the flow field 0 and the
 
coordinates of the field point F.
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Fig. 7 -Velocity field around the vortex
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for the vortex-flat plate interacation.
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