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I. INTRODUCTION

Directed ion beam sputtering is becoming a widely accepted

physical method for both the sputter etching and deposition of thin

films, not only in.specialized research laboratories but as an everyday

tool for industrial processes. The growth of this technique is evi-

denced by the number of commercial firms offering production ion beam

equipment either as a recent addition to existing product lines or in

the form of completely new ventures.

Three important parts of the complete directed ion beam sput-

tering process are: (1) the nature of the discharge chamber plasma

where the ions are formed, (2) properties of the ion beam itself, and

(3) the effects of ion bombardment on a solid substrate or target.

Present Investigation

The objective of the present investigation is to provide insight,

in terms of specific physical models, into certain aspects of the

processes that take place in the three areas listed above.

Plasma and Ion Beam Generation

Magnetic fields have been applied in electron bombardment ion

sources to enhance ionization by increasing the path lengths of ener-

getic or primary electrons. These fields have usually been applied in

such a way that they extend over and strongly influence the entire

region within which ion production takes place. Decoupling of the mag-

netic field from the ionization region through the use of the multipole

concept has allowed conceptual simplification in understanding and



modeling interaction of the field with the different electron popu-

lations in a discharge plasma, while at the same time, improving ion

beam uniformity and allowing source design and construction to proceed

without numerous iterations. The dual role of the magnetic field in,

(1) containing high energy or primary electrons to enhance ionization,

and (2) allowing the conduction of thermalized secondary or Maxwellian

electrons to anodes to sustain an arc discharge can be understood

through modeling a multipole field that is concentrated at the boun-

daries of the plasma volume. This modeling approach is used in the

plasma studies herein. ' • •

Ion Beam Propagation

Ion beams can undergo a variety of interactions with background

species present in the region a beam must traverse between the ion

source and a target or substrate. The cross sections for various

binary collision processes are investigated to determine the major

interactions through which the physical properties of an ion beam may

be altered. Resonance charge exchange and elastic collision cross

sections are studied in detail, providing a measure of the background

and pressure environments appropriate for ion beam sputtering.

Ion Beam Sputter Texturing

Ion beam texturing or coning ;of a solid substrate results when

a surface'is bombarded by an ion beam while an impurity is simul-

taneously deposited on the same surface. The texturing process, the

distribution of cones on a surfacey iand 'cone suppression can be under-

stood in terms of a surface diffusion and sputtering model involving



ion beam characteristics, substrate temperature, and the physical

properties of the substrate and impurity materials.

Background of Directed Ion Beam Sputtering

Research interest in ion beam sputtering has grown in recent

years. An entire technical session » » » » > » ' of the recent 25th

National Symposium of the American Vacuum Society, with the exception

9 10
of one paper, was devoted to ion beam sputtering. Sputter texturing '

and submicron structure fabrication using ion beams were also dis-

cussed at.that symposium. In contrast, the previous symposium, one

12 13
year before, had only two papers ' on the subject of ion beam sput-

tering. A chapter covering in detail the subject of ion beam sputter

14
deposition has recently been written by Harper.

Ion sources and ion beams have been in use for many years, applied

to a variety of tasks including providing charged particle beams for

input to high energy accelerators, surface composition analysis and ion

implantation in semiconductor devices. Sputtering has been exploited

in magnetron and RF and DC diode plasma devices for the deposition of

thin films.

The technique of directed ion beam sputtering involves some fairly

specific requirements and advantages that set it apart from other,

related processes. The energy range of interest is from a few hundred

eV to a few thousand eV, not approaching the several tens of thousands

and sometimes the hundreds of thousands of eV typical of ion implanta-

tion. Only marginal gains in sputter yield can be achieved by going

beyond several hundred eV but severe substrate damage and/or ion



implantation can result at high" ion energies. Typical sputter etch

2
rates for beams of a few mA/cm current density are of the order of

a few hundreds of Angstroms per minute. The pressure environment in

which ion beam sputtering can be done is limited only by the capacity

of the particular pumping system used and is not restricted to the

relatively high pressures (about 30 mTorr) of RF and DC sputtering.

-5 -3
Typical pressures range'from 10 Torr to 10 Torr. This is because

the plasma generation and sputtering environments can be almost com-

pletely decoupled in ion beam work. Perhaps the most significant

feature of ion beam sputtering, setting it apart, is the use of broad

beams created by bringing hundreds or thousands of individual beamlets

together into the configuration desired for a specific application

requiring high current densities. This is typically accomplished using

a set of multiaperture electrodes to extract ions from a plasma and to

accelerate and focus them through each set of apertures in the elec-

trode system. Virtually every other ion beam device utilizes a single
.( . •

aperture through which all of the ion beam current must be directed.

At low energies there are severe restrictions on .the total current that

12
can be extracted through a single aperture. Because the useful work

that can be done by an ion beam is often proportional to its current

output, low to moderate energy tasks will usually be accomplished best

using broad beam devices. Unlike alternative conventional sputtering

devices, the broad beam ion source allows the ion energy, beam current

density and angle of ion incidence to be controlled independently.

The unique features of ion beam sputtering are a direct result of

the recent transference of a highly developed technology from rocket

engines to ground-based processing. Ion rockets have been developed



by the National Aeronautics and Space Administration (NASA) for space

propulsion. Out of a variety of candidate systems an electron bom-

bardment ion source, using a magnetic field to enhance ionization and

a multiple aperture accelerator system to generate' a broad beam, has

emerged as the system of choice for electric propulsion or ion drive.

Electron bombardment ion sources have undergone an extensive and inten-

sive development program emphasizing reliability, long lifetimes, well-

collimated beams, high current densities at moderate energies, and high

propellent utilization efficiencies. Existing devices are highly

optimized but remain, however, objects of considerable research into

17 18 19 20 21 22 23
the basic physical principles of their operation. ' ' ' ' ' '

Materials processing applications of ion beam sputtering present

an array of differing specific requirements that encourage development

of ion beam systems along diverging lines while retaining the funda-

mental features that make these systems attractive. For example,

etching processes may require very uniform current density profiles

while deposition would demand very high current densities localized in

as small an area as possible to minimize both target size and contami-

nation. Associated with this development will be continued research

into the physical processes involved in materials processing and ion

beam sputtering including ion production; beam extraction, focusing,

and acceleration; beam propagation and interaction with the background

environment and, finally, interactions with targets and substrates. As

indicated, the study of these processes constitutes the subject matter

of this thesis.



II. PLASMA AND ION BEAM GENERATION*

Ion beams for sputtering applications are obtained by extracting

ions from a plasma and accelerating the ions to the desired energy

while focusing them electrostatically to form a beam. These ions are

customarily singly ionized, atomic ions bearing a positive charge. The

process of electron bombardment is generally used to produce the ions.

Electron bombardment may produce not only single ions but a small frac-

. tion of multiply ionized atoms as well. It is generally not important

in most considerations of these beams and plasmas to treat the multiple

ions in detail because they constitute only a very small fraction of

the beam. Negative ions may also be neglected in electron bombardment

devices because of the low particle densities used and because rare

gases are typically employed whose negative ions are not stable.

Plasma Generation

Ion source plasmas are generated by an electrical discharge

between a cathode and an anode inside of a suitable container into

which the working gas can be injected. Discharge currents of a few

-3 -4
Amperes are common along with pressures in the 10 to 10 Torr range.

Figure 2-1 is a schematic representation of a discharge chamber

showing a general layout of cathode, anode, magnetic field, and accel-

erator system. The purpose of the magnetic field was initially to

increase the path length and therefore the ionization efficiency of

ionizing electrons by constraining them to follow helical paths inside

the discharge chamber. Gas discharges have been commonly used to

supply ions for experimental use. Typically, single aperture beam

Some of'the work presented in this chapter was done under NASA
Grant NSG-3011.
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extraction techniques and relatively low beam currents have been

satisfactory. However, the ion source performance objectives for ion

milling or ion machining applications are high ion current density, a

uniform beam current density profile, and generally, a low ion energy

which is usually obtained by sacrificing current density. In. addition,

a large ion source with a uniform beam current density profile allows

consistent processing over large areas.' The beam should also be uni--

form and collimated so that 'a maximum ion current density can be used

at a large distance from the ion source. An increased distance from

the source to the target decreases mutual contamination of the target

and the 'ion source.

Magnetic Field Evolution

A considerable effort has gone into increasing the size, efficiency

and reliability of discharge plasma devices in conjunction with the

development of ion thrusters for space propulsion by NASA. This

lengthy development effort is described by Kaufman. The evolution of

the discharge chamber configuration over a long period has been pri-

marily in incremental alterations to the distribution of the magnetic

field inside the chamber. Beginning with the earliest designs having

an axial field, the direction that succeeding improvements have taken

is shown schematically in Fig. 2-2 along with the general shape of the

2 3
associated ion beam current density profile. Beattie ' describes the

impact of these improvements in magnetic field distribution on the

lifetime of space thruster accelerator systems through assessments of

the undesirable effects of highly non-uniform beam current density

profiles.
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As Fig. 2-2 clearly shows, the magnetic field has generally per-

meated the entire plasma inside the discharge ̂chamber in early designs.

This intimate coupling of.the plasma and the magnetic field has helped

to make theoretical analyses of discharge chamber processes extremely

difficult, resulting in a cut and try approach as the only fruitful

means of improving discharge configurations. A significant simplifi-

cation is possible using a low field multipole design that allows

almost a complete decoupling of the magnetic field from the bulk of

the discharge plasma. An ion source with a multipole magnetic field

4
is reported by Isaacson and Kaufman. As described therein, this

design is conceptually related to both the multipole approach of Moore

f O

and Ramsey, and the cusped field approach of Beattie and Wilbur. The

low field in a multipole design has specific performance objectives in

terms of interactions with the two dominant electron populations in a

discharge plasma and should not be confused with high magnetic field

approaches to plasma containment.

Discharge Chamber

This study involved the use of various multipole discharge cham-

bers. The largest multipole chamber to date (30 cm diameter) was

designed and constructed in connection with this work. This chamber

will be described to provide a concrete example of the multipole con-

cept.

A cylindrical discharge chamber was selected with an inside diam-

eter of 30 cm and a depth of 10 cm. A radial cross-section of the

30-cm discharge chamber showing construction details is shown in Fig.

2-3. A multipole discharge chamber will generally produce a more
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uniform ion beam current density profile as the chamber is decreased

in depth, however, the minimum working gas pressure inside the chamber

required for operation will increase as chamber depth is decreased.

Data obtained by Isaacson and Kaufman showed these trends down to a

chamber depth equal to about half of the 15 cm diameter used in their

investigations. The absence of any further improvement in uniformity

for smaller depths was felt due, in part, to the close proximity of the

central refractory cathode to the accelerator system. With the circum-

ferential cathode employed in the 30 cm source, a further decrease in

depth was expected to improve beam uniformity for the larger source.

A chamber depth equal to one third of the 30 cm diameter was therefore

selected.

The magnetic field in the source was provided by 139 Alnico V per-

manent magnets. The five side pole pieces are annular disks of 30.5

and 35.6 cm inside and outside diameters. The 1.5 mm thick low-carbon

steel pole pieces were spaced about 2.5 cm apart. There are twenty

permanent magnets between each pair of pole pieces on the sides for a

total of eighty magnets in these locations. The pole pieces on the

upstream end of the discharge chamber are rolled cylinders of 1.5 mm

thick, low-carbon steel. The center pole piece was a solid cylinder

that was required to have a diameter of 9.5 mm to avoid saturation.

All hardware at the upstream end is mounted on an aluminum plate 3.2 mm

thick and 35. 6 cm in diameter. On the upstream end, beginning at the

center, there are two, five, eight, twelve, fourteen, and eighteen

magnets between adjacent sets of pole pieces for a total of fifty-nine

magnets.
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The sense of the magnets surrounding the discharge chamber is

such that the magnetic polarity of adjacent pole pieces is opposite.

An example of the magnetic field lines in the fringe field between

pole pieces is shown schematically by dotted lines in Fig. 2-3. An

essential feature of this multipole design of alternating polarity is

that the fringe field decreases very rapidly with increasing distance

from the pole pieces, so that the magnetic field is negligible over

most of the discharge chamber volume. This results in relatively free

access to this volume by primary electrons which would, in turn, be

expected to give a more-uniform plasma density.

Ten 1.5 mm thick non-magnetic stainless steel anodes are located

at equal spacings along the side and upstream end of the discharge

chamber. Each anode is midway between the two neighboring pole pieces

(see Fig. 2-3). Like the pole pieces, the four side anodes are flat,

annular disks and the six upstream anodes were rolled cylinders, ranging

from about 2.5 cm to 28 cm in diameter. A cylindrical shroud of 0.25 mm

stainless steel seals the sides of the discharge chamber. The side and

upstream anodes are held by aluminum oxide isolating supports mounted

on this shroud and on the upstream aluminum end plate.

Refractory metal cathodes of 0.25 mm tantalum wire were used in

the discharge chamber. The periodic maintenance of thermionic emitters

is not a major problem in ground applications. On the other hand, the

extended emission surface of a wire discharge chamber cathode can be a

definite advantage in obtaining a more uniform beam profile. Tungsten

wire could have been used instead of tantalum, but tantalum was pre-

ferred because of its greater ductility.

The discharge chamber cathode was made in the shape of a square,

held at the corners by four insulated supports extending through the
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upstream end of the chamber' (see Fig. 2-3). The cathode supports

extended far enough into the discharge chamber to prevent thermionic

emission of electrons into the fringe magnetic field where they might

be lost directly to the anodes. Electrical connections were made to

the cathode corners 'so that the four side sections were effectively

in parallel. Cathode placement was selected to enhance beam uni-

formity. The circumferential cathode employed was near the side

(cylindrical) wall of the discharge chamber to help offset the decrease

in plasma density usually found in that location. It was also located

nearer the upstream end of the chamber to permit the use of a very

flat chamber without the sharp peaks in beam current density that are

often found when a cathode is close to the accelerator system.

Primary Electron Containment

The electrons in a discharge plasma of low density have been

found to consist of a fraction of roughly monoenergetic primary elec-

trons superimposed on a larger thermal distribution at lower energy.

The primary electrons have roughly the energy corresponding to the

potential difference between the cathode and the anode in the discharge

chamber. When primary electrons lose energy, such as in the process

of ionizing a neutral atom, both the primary electron and the secondary

electron ejected from the atom can more rapidly thermalize because of

their larger collision cross sections at lower energies. This, then,

is the mechanism leading to two distinct populations of electrons

termed primaries and Maxwellians. The validity of this description of

the electron distribution in the discharge chamber has been substan-

tiated by the successful analyses of numerous electrostatic probe
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characteristics based on such a distribution, a priori, and by the

8 9
detailed measurements of Medicus and Martin. These studies and the

work presented herein show the primaries to be a 5 or 10 percent frac-

tion of the total electron population.

In the multipole concept, a fringe magnetic field adjacent to the

anodes prevents the escape of primary electrons directly to the anodes,

before expending most of their energy in the production of ions, by deflecting

them in the field. In calculating the deflection of an electron in such a

fringe field, it is assumed that the radius of curvature of the anode is large

compared to the depth of the fringe field. It is further assumed that the

magnetic induction B is-parallel to the anode and that its magnitude

varies only as a function of the distance from the anode, and that a primary

electron will not suffer a collision while it is in the fringe field.

In passing through an infinitesimal region dx, an electron with a

component of velocity v normal to B is deflected through an angle d6,

as indicated in Fig. 2-4. The radius of curvature for the electron

trajectory in the region dx is

r = mv/q B(x) , (2-1)

where m and q are the mass and charge of an electron. In Fig. 2-4,

.x represents the penetration depth of the electron into the fringe

field from the field free region. The radius of curvature r can be

related to d9 and dx through geometrical considerations,

rd6 = dx/sine . (2-2)

Combining Eqns. (2-1) and (2-2) to eliminate r,

B(x)dx = — sinSde . (2-3)
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The integral of B(x)dx can be related to the electron deflection by

D 9f

/" B(x)dx = f — sin6de , (2-4)

0 6.

where 6. is the angle of incidence of the electron from the field

free region and 9,; is the trajectory angle after the electron

traverses a thickness D of magnetic induction. The maximum value

of the angular integral corresponds to the maximum possible electron

penetration toward the anode, and is obtained with 9. equal to zero

and 6 equal to ir. For these limits,

D

f B(x)dx = 2mv/q . (2-5)

0

In terms of electron kinetic energy E,

D

B(x)dx =

0

With the substitution for electron charge and mass, this becomes

D

/

, .
B(x)dx = 6.74 x 10~° E , (2-7)

•o
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where E is in electronrvolts <and the left-hand side is in SI units.

This expression provides a criterion for primary electron containment

by the integrated magnetic field. Charged particle containment where

both electrical and magnetic fields are present is considered in

Appendix A.

Primary electrons have long mean free paths, typically several

cm, and are not likely to undergo strong deflection from the indicated

trajectory while in the fringe field region. Low energy (a few eV)

Maxwellian electrons, however, have much shorter path lengths, usually

a few mm and are more likely to migrate across the fringe field region

(by collision) to be collected at the anode, thus sustaining the dis-

charge current.

Although this derivation did not specifically take into account

the strong curvature of the magnetic field lines along some of the

possible directions of approach to an anode, the criterion provided

for the integrated magnetic field is valid as an upper limit for this

case as well because circulating charged particles in regions where a

magnetic field exists enclose within their orbits a fixed magnetic flux

which depends on the charge and momentum of the particle. Thus,

there would be a critical magnetic field line beyond which an electron

would not penetrate toward the anode for a given electron energy,

regardless of the direction of approach.

Figure 2-5 shows a typical variation of magnetic field strength

midway between two pole pieces measured for the 30 cm source. The

plane of measurement is shown in the insert at the top of the figure.

The magnetic field integral of interest would be the area under the

curve from the inside field free region to the edge of the anode.
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A least squares curve fit was obtained for the interior fringe field:

B(y) = 106 e-u-^vy-rx.,,, ^ (2_g)

where y is the distance in cm from the anode edge and B(y) is in

Gauss. As an example of the deflecting properties of the fringe field,

using Eq. (2-8) for the field variation and integrating the equations

of motion for an electron using a fourth-order Runge-Kutta method, a

deepest penetration trajectory was obtained for a 45.5 eV electron.

This trajectory is shown in Fig. 2-6. The depth of penetration shown

is in agreement with the containment criterion, Eq. 2-6.

Plasma and Beam Uniformity

By restraining the primary electron population to a large field-

free volume in the center of the discharge chamber, it was expected

that the ion production and plasma density would be uniform over this

volume because of the electrons' unimpeded access to the entire volume.

This is in sharp contrast with earlier designs in which electrons were

in constant interaction with the magnetic field. Thus, the required

path lengths for primary electrons have been achieved using the fringe

magnetic field while, at the same time, alleviating some of the

problems of earlier designs by making the beam current density more

uniform. To investigate.the anticipated uniformity, Langmuir probe

surveys of the operating discharge chamber were undertaken to determine

plasma properties in both the nearly field-free volume of the dis-

charge chamber and near the magnetic field boundaries. These surveys

also permitted comparisons of the measured plasma density profiles

with the extracted ion current density profiles. The Langmuir probe



21

in
rd

O
ro

in

in
O

o
V*

Q>
•o
O
c
<
o>
c

CM °

in

Q>

cvi 2

co
•H
60
0)

(1)
•H

C
•H
t-i

O
0)
•i-|
ttf
V-i
4-1

co
1-1
4J
O
0)

TD
CU

a
cx

u

VO
i

CM

3
00

•H

in
Cd

Q
cJ

10 in
d

90UD|SIQ



22

consisted of a short, cylindrical segment of 0.64 mm diameter Ta wire.

The exposed portion of wire for current collection was 2.5 mm long.

The remaining length of wire was encased in alumina for insulation from

the plasma. The probe was designed to move in an arc parallel to the

accelerator system. The arc swept out by the probe was made to. pass

through the centerline of the discharge chamber. The probe could be

moved through its arc from one side of the chamber to- the other during

source operation. The distance between the probe plane and the screen

grid, however, could only be changed by adjusting the mechanical

assembly between pumpdowns.

The probe potential was variable from -90V to +135V relative to

the ion source body (cathode potential). The current' drawn to the

Langmuir probe was determined by monitoring the voltage drop across a

precision sensing resistor. The probe current was displayed on an X-Y.

recorder as a function of probe bias potential. A typical maximum

probe current for the voltages analyzed was about 10 mA or, at most,

one percent or less of the total discharge current.

Some 60 Hz interference was encountered while taking early Langmuir

probe data. The first attempt to solve this problem was with a filter

network at the input to the X-Y recorder. Although the quality of the

traces was somewhat improved with the addition of the filter, some

interference still remained. It was suspected that the cathode heater

was the source of this interference because the heater voltage was

about 17 V . This heater voltage was significant compared to the 50V
IT HIS

discharge, so that plasma fluctuations might be expected to follow the

heater voltage. The cathode supply was rebuilt to give DC with 1.8

percent ripple. Using this rebuilt heater supply, no significant level
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of noise was encountered with the high voltage off. When the ther-

mionic neutralizer was turned on, some noise was observed until the

-4
background pressure was reduced to 2.5 x 10 Torr.

The probe was located in a .plane about 1 cm upstream of the screen

grid for the'measurements shown in Fig. 2-7. Figure 2-7 shows measured

densities of the two dominant electron populations in the discharge

' • ' f •

chamber. The probe data were analyzed using a numerical method similar

to the one described by Beattie. The numerical method assumes two

electron populations, a priori, and finds the best fit .to the data by

adjusting the relative populations along with the primary energy and

the Maxwellian temperature. A curve fitting technique was developed

for reduction of Langmuir probe data obtained in these tests. This

technique is related to the standard least squares methods, but does

not suffer from the limitations in these standard methods that are

encountered when the dependent variable covers a very wide range of

magnitude. When the uncertainties in the data are independent of

measurement magnitude, the standard methods give the correct answers.

But the uncertainties in Langmuir probe data tend to be proportional

to the absolute value of the measurement over most of the measurement

range. The smaller values thus tend to have smaller uncertainties and

should be so weighted in a curve fit; this is achieved by using relative

errors scaled with respect to the dependent variable. The technique

provides much better curve fits at small currents with only a slightly

poorer fit at high currents in the same probe trace. A program has .

been written using this curve fitting" technique. Use of this program

appears to substantially reduce the "art" aspect of analyzing probe

traces when compared to either graphical methods or previous programs.
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The densities (Fig. 2-7) are fairly constant as the probe is

moved from the center of the chamber toward the wall. There is a very

sharp drop in plasma density as the fringe field is encountered, an

indication that the multipole field is adequate for the desired elec-

tron containment. Measured Maxwellian electron temperature was found

to be uniform at about 4 eV over .the entire source radius. Plasma

potential is uniform in the field-free region at about 56 V, with a

several volt drop across the fringe field to the anode potential at

about 50 V. . - - -

The current density in the ion beam was measured with Faraday

probes. The current-collecting surfaces were 6.4-mm-diameter disks of

molybdenum. These disks were located flush with a surrounding ground

shield and biased at -25 V relative to ground to reflect electrons.

The density profiles shown in Fig. 2-7 qualitatively agree with the

experimentally measured beam current density profiles of Fig. 2-8.

The profile of Fig. 2-8 were taken using dished molybdenum grids

and are interesting in that they show peaks near the outer edge of the

ion beam. If these peaks reflected actual variations in discharge-

chamber plasma density, then they should have also been evident when a

set of flat carbon grids was used but no peaks' were seen then.

The peaks are believed to result from the dished shape of the

molybdenum grids, although the specific process is not clear. For

example, the spacing between dished grids is known to vary across the

beam diameter at operating temperatures. Despite this variation, the

relative displacement of screen and accelerator holes to deflect the

beamlets in the axial direction was made a linear function of distance

from the beam center. This discrepancy would be expected to produce
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some ion-optic aberration. Another possible cause of the. peaks is in

the deceleration region downstream of the accelerator. The decelera-

ting electric field is nearly normal to the local dished grid surface,
s~

but the ion trajectories are at an appreciable angle to this normal

near the edge of the beam. The relative directions of electric field

and trajectories could therefore cause further deflections near the

edge of the beam; which could cause the observed peaks.

Multipole Discharge Limitation

Discharge chamber operation in the 30-cm multipole was found to

depend critically on the anode configuration used. While operating in

a large vacuum facility at low background pressure, the 30-cm source

was wired so that each of the ten anodes could be individually switched

from anode to screen potential. Thus, any combination of anodes could

be switched off to observe the effects of anode configuration on source

operating characteristics.

Switching any single anode, or any pair of anodes, to screen

potential changed the beam current extracted but allowed the source to

continue operating. Switching off all possible combinations of three

anodes allowed the source to continue operating with one exception,

when anodes #5, #7, and #9 were switched off together, the discharge

was extinguished at both 900 ma-equiv. flow and at 1500 ma-equiv. flow.

The anodes are numbered sequentially starting with //I as the smallest

center anode at the upstream end and with #10 closest to the grids.

With only a few exceptions turning off almost any four anodes together

would extinguish the discharge.
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Discharge losses were -'obsefved to increase as the number of anodes

in operation decreased. Figure 2-9 shows the increase in discharge

loss with anodes #1, #2',' and #3 off and "witlv- anodes #8, //9, 'and #10

off. The combined length of anodes #8,-#9, and #10 is much longer than

the combined length of #1, #2, and #3. The discharge loss is seen to

be much higher with the three longer anodes off than with the three

shorter anodes off. ' "

The only major change in source operating conditions that occurred,

as various anodes were turned off while maintaining a constant dis-

charge current, was a decrease in beam current. To illustrate the

correlation between these effects, the extracted beam current was

plotted as a function of the fraction of total available anode length

drawing current. Figure 2-10 shows reasonable correlation between

these two parameters.

The foregoing observations indicate possible limitations to the

scaling possibilities of multipole designs to much larger ion sources

or thrusters or to further simplification of the design by eliminating

some of the anode structure. To gain further understanding into the

limiting process the source was operated with various anode configura-

tions while probing the bulk plasma properties with a Langmuir probe.

The plasma was initially close to anode potential with all the anodes

connected. As a sufficient number of anodes were disconnected, the

plasma assumed a potential substantially negative of the anodes. This

effect is shown with minor differences in Figs. 2-ll(a) and 2-ll(b).

Figure 2-11(a) was obtained at close to the minimum discharge voltage

for each anode configuration, while Fig. 2-ll(b) was obtained about

10 V higher. The two working gas densities shown in each figure cover
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the usual range of interest for source or thruster operation. When

the effective anode area (proportional to active anode length) is

reduced below an approximate critical value, the plasma potential

apparently must become increasingly negative of the anodes to maintain

the desired electron current to the anodes. Because electron diffusion

can result from both potential and density gradients, the added con-

tribution of the potential gradient diffusion is the amount required to

compensate for the reduced anode area.

Thermal Electron Diffusion Model

The electron current to a discharge-chamber anode can be limited

by the diffusion of electrons through the magnetic field above the

anode. This condition can be thought of as either an anode area limi-

tation or a limitation on current (or current density) to that anode.

The current approach is more convenient for derivation of the effect,

while considering it as an area effect appears more useful in discussing

experimental performance. The effect is discussed in connection with

the multipole magnetic field. The effect, though, appears to be

involved wherever electrons must cross magnetic field lines to reach a

discharge-chamber anode. The development of this model for the multi-

pole magnetic-field configuration is facilitated by the ease with which

that configuration can be analyzed.

Before presenting the model, it should be emphasized that the

anode area involved may, or may not, be a physical area. The electron

mobility along magnetic "field lines is much greater, than the mobility

across field lines. The effective anode'area is therefore that area

from which electron can be drained -from the discharge plasma by moving

along field lines to reach the anode.
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Electrons emitted from the cathode, together with electrons liber-

ated in the ionization process, must diffuse to the anodes to sustain a

discharge current. In doing so, the electrons must cross magnetic

fields sufficient to contain electrons of primary energy. The basic

equation for electron diffusion in the presence of voltage and density

gradients is

= -u ng E - DVng (2-9)
'

where r represents the particle flux of electrons, n is the elec-

tron number density, and y and D are the electron mobility and

diffusion coefficients respectively. The mobility and diffusion coef-

12
ficients are related by the Einstein relations,

U = e D/kT (2-10)
e

where e is absolute magnitude of the electronic charge, k is

Boltztnann's constant and T is the electron temperature. The clas-

sical diffusion coefficient in the absence of (or parallel to) a mag-

netic field is12

D = kT /m v (2-11)
e e e

with m the electron mass and v the electron collision frequency.
: • • • : . • : • : • . . -

The classical diffusion coefficient normal to a magnetic field is

D = D/(l + a) 2x2) (2-12)
c .
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where u) is the electron cyclotron frequency and T is the mean time

between collisions (T = 1/v ). This reduces in the strong field limit

Of 0) T»l tO
c

D = D/u) 2i2 = kT m v /eV . (2-13)
c e e e

There is also a drift velocity at right angles to the applied field E.

For the last diffusion coefficient to be observed, this drift must take

place without generating an additional electric field. Anodes and pole

pieces that are closed loops meet this condition.

Experimental measurements of electron diffusion across a magnetic

field with w T»! usually correspond to larger diffusion coefficients

than given by Eq. (2-13), often by orders of magnitude. These larger

values are attributed to "anomalous" or "turbulent" diffusion. A

simple and well known semiempirical approach to turbulent electron dif-

• 13fusion was given by Bohm. The Bohm diffusion coefficient given in

14 15
later publications ' has a slightly different numerical coefficient

and is

DB = kTe/16 eB . (2-14)

Bohm diffusion varies as 1/B, while classical diffusion for the same

2
strong field condition varies as 1/B . In fact, the Bohm value of

diffusion is obtained if we assume that turbulence increases the effec-

tive collision frequency to 01 /16. Despite the simplicity of the Bohm

diffusion coefficient, it effectively correlates experimental observa-

tions over a wide range of conditions.
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It should be noted that the diffusion of interest herein is

primarily of Maxwellian or :thermal electrons. Whether we are concerned

with the coulomb collisions of classical' diffusion or the collective

collisions of turbulent diffusion, the lower energy electrons have

almost all of ;the collisions and diffus'e across a magnetic field more

readily than the higher energy primary electrons.

The diffusion condition for anodes of most interest is the maximum

diffusion that can be obtained without the assistance of a forward

electric field, which would result if the anodes were substantially

more positive than the discharge-chamber plasma. A reasonable assump-

tion for this limiting condition appears to be zero electric field in

the region of interest close to the anodes of a multipole discharge

chamber. This condition of nearly uniform potential in the diffusion

region has been observed experimentally, with the only nonuniform region

a jump of several volts at the anode. Using this uniform potential

assumption together with the Bohm diffusion coefficient, Eq. (2-9) can

be written in one dimension as

F = ,TDn dn /dx . . (2-15)
is e ;

In terms of current density, this, becomes

j = e DB dne/dx . (2-16)

With the substantiation of Eq. (2-14), we find

kT dn

id? IT • (2-17)
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Prior knowledge of 'the variation of !> n '..with.1'x is not assumed.

Instead, the near constancy of-current density in the diffusion region

is used, which results from the small. thickness. :of that.region compared

to chamber diameter and the small fraction of total,ionization therein.

Noting too that the electron temperature is also nearly constant in

the diffusion region, all the .constants of Eq. (2-17) are collected on

the left side to obtain . .

dn
e

kT
e

The detailed variation of n with x is not known, but the differ-

ential expressions may be replaced with expressions integrated over the

depth of the fringe field to the anode edge where the electron density

falls to zero.

dn n

Bdx /Bdx ' v

where /Bdx is the same integral that is involved in the containment

of high-energy primary electrons. With this substitution, the electron

current density becomes

kT n

In calculating this current density, the fringe field area above the

anodes is important, while the projected area of the anodes is not.
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As mentioned at the beginning of this section, this is because the

diffusion coefficient parallel to the magnetic field is so much greater

than that normal to the field. The absence of any significant effect

of anode projected area has also been established experimentally.

An additional correction can be made for the variation in area

normal to the electron current j. The magnetic field lines close to

the inner anode edges follow paths nearly parallel to the smoothed

outer surface of the discharge chamber (see dashed line in Fig. 2-12).

Farther away from the anodes, though, the field lines follow longer

looping paths. This variation in field line length results in a

similar variation in area normal to the diffusing electron current. A

numerical integration through increments of /Bdx can be used to

correct for this area variation. An applicable equation is

kT

N

where An is the increment in electron density required to drive the

current j through an increment in magnetic field integral (A/Bdx) .

with an "area" %./d where £B. is the length of the ith field line.

The ratio ^g./d is effectively a length because a unit width is

assumed in the direction normal to both £3. and j. The local current

density thus equals j where £g./d = 1. Solving Eq. (2-21) is facili-

tated if one recognizes the clear analogy with current flow through

resistors connected in series. In this analogy, the density increment

is analogous to the voltage across a resistor, while the resistance is
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analogous to (A/Bdx). d/£g.. Using this analogy, it can be shown that

an effective overall value of £g./d is

/Bdx

- dx

where the integral is over the region between the anode and the nearly

field-free main volume of the discharge chamber. -We can use a curve

fit for the variation of B with distance.similar to the one obtained

previously (Eq. 2-8), .

B = B exp[-1.5 (x/d + 1/2)2] ,

where x is indicated in Fig. 2-12. Assuming parabolic arc paths for

field lines between the ends of pole pieces, one can then find by inte-

grating Eq. (2-22) that the area correction is equivalent to

kT n

T37Bdx- (2-23)

where j is based on the area indicated by the dashed line in Fig.

2-12. Equation (2-23), then, can be used to find the maximum electron

current that will diffuse to the anodes without making the anodes more

positive than the discharge-chamber plasma. In view of the relatively

small difference between Eqs. (2-20) and (2-23), a more accurate cor-

rection for the area affect does not appear necessary. Also, a separate

correction for corner pole pieces, which have a slightly different

variation of B with x, is not required.
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The theoretical electron currents to the anodes .were calculated

using Eq. (2-23), the effective anode areas for the active anodes, and

plasma properties from a centrally located Langmuir probe. The experi-

mental anode currents were assumed to be the sums of discharge and beam

currents. The ratios of experimental-to-theoretical anode currents

were then plotted in Figs. 2-13(a) and 2-13(b) . Basing the calcula-

tions on the plasma properties led to considerably more scatter in

Figs. 2-13(a) and 2-13(b) than in Figs. 2-ll(a) and 2-ll(b), enough

scatter so that only one curve is shown, Still, the trends appear

clear. The anode current ratio, J / J , , becomes greater than unity
11 IT

at close to the anode fraction where the plasma becomes negative rela-

tive to the anodes.

Operation with a plasma significantly negative of the anodes is

believed to be marginally stable, or even unstable. The reasons for

such a viewpoint are the absence of such data in thruster literature,

and the difficulty of obtaining such data in this investigation. The

data of Figs. 2-11 and 2-13 were obtained by using rheostats to

The only description of a plasma significantly negative relative to
the anode is the cesium multipole of Moore.^ A very high magnetic
field strength was used in this early multipole design. This high
field strength apparently prevented sufficient electrons from dif-
fusing to the multipole anodes, which roughly resembled the multi-
pole anodes of Fig. 2-12. A "plasma anode" (a narrow strip of metal
across the discharge chamber, unprotected by a magnetic field) was
therefore introduced to provide a path for the required electron
current. Stable operation with the plasma negative relative to the
multipole anodes was obtained by also operating the plasma anode
negative of the multipole anodes. The plasma anode, of course,
operated close to plasma potential. Similar operation may have
been used by Ramsey," but insufficient description was included for
the determination of the potential bias between plasma and multipole
anodes. . .
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gradually disconnect anodes, thereby minimizing switching transients.

Without these rheostats,, switching of anodes without extinguishing the

discharge was reliable only'above 7̂0% of total anode length. That is,

it was reliable only at anode lengths where the plasma was not signi-

ficantly negative of the anodes.

Other tests were also conducted with both 15-cm and 7.5-cm multi-

pole discharge chambers (configurations described in Ref. 17 and 18).

Because plasma probe data were not obtained with these smaller discharge

chambers, it was necessary to estimate electron temperature from other

tests and electron density from beam current. To the latter end, the

beam current extracted can be expressed as < .

J,= A n VD e , (2-24)
b scr e B '

where n is the electron/ion density, v_ is the Bohm criticale D ,

sheath velocity, e is the absolute electronic charge, and A is
^ > s GIT

the effective open screen area for extraction. This area can be some-

what above or below the geometrical open area, but the latter should

be a good approximation. Replacing the Bohm velocity with the equiva-

l,
lent expression (k T /m.)2, Eq. (2-24) becomes

J, = A n e(kT /m.) . (2-25)b scr e e i

Using K , as the anode-to-beam current ratio, the anode current
3-D

" ? • ' • > . - * ' .
required to generate the ion beam can be written as

J =. K ,A n e(kT An.)5 . . (2-26)a a b s c r e e i . - . . - . . -
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From Eq. (2-23), the current permitted to diffuse to the anode (or

anodes) without the anode becoming substantially more positive than

the discharge-chamber plasma is•

J = A kT n /13/Bdx , (2-27)
a a e e

where A is the anode area. Equating these two anode currents to
a.

obtain the minimum anode area for stable operation,

A = 13 K' A e/Bdx/(kT m.)3* . (2-28)
a ab scr e i

This, then, is the relationship that can be used in the absence of

plasma probe data.

In earlier tests of the 15-cm discharge chamber with argon the

mean electron temperature ranged from about 5 to 15 eV. Using 10 eV as

a typical value, together with measured values for the magnetic field

integral, screen open area, and anode-to-beam current ratio, minimum

discharge voltages* were used with Eq. (2-28) to estimate anode area.

For a 24 magnet configuration of the 15 cm chamber an anode area of

2 o
430-510 cm was estimated. The measured anode area was 471 cm , which

is in excellent agreement with the estimates from Eq. (2-28).

*
The minimum discharge voltage, where the discharge is extinguished, is
believed to correspond to the anode diffusion limit. The reason that
the limit is approached in this condition is that the discharge losses
per ion are roughly constant while the dispharge voltage decreases
toward the limit. As a result, the ratio of discharge-to-beam current,
Kab, increases as discharge voltage drops. When Ka^ increases, to a
large enough value, at the minimum voltage, the required anode area
will exceed the actual area anode and the discharge will extinguish.
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Similar minimum discharge voltage tests were conducted with the

7.5-cm discharge chamber. Inasmuch as electron temperature generally

increases as thruster size becomes smaller, an electron temperature of

15 eV was felt to be a better estimate for this thruster size. With

this temperature and similar measured values as for the 15-cm tests,

2
Eq. (2-28) indicated an anode area of 70-130 cm . The measured anode

2
area was 118 cm , which again is in excellent agreement.

This diffusion model also appears applicable to general performance

trends. As an example, the minimum permissible discharge voltage tends

to increase as neutral pressure in the discharge chamber is decreased. '

We also know that, in the operating range of interest, the discharge

losses tend to increase as neutral density is decreased. This increase

would result in an increase in required anode current at constant dis-

charge voltage, which, in itself, would result in an increased require-

ment for anode area. If this increased anode area is not available,

then the minimum discharge voltage increases to where the anode current

becomes consistent with the anode area available.

Application to Design

The electron diffusion theory of this section can be applied to

design problems. An obvious application is to estimate the minimum

required anode area for expected operating conditions. Less obvious

is the evaluation of other multipole magnetic field configurations.

One example of a possible design is shown in Fig. 2-14(a). This flux

concentrator design is a possible means of reducing the stray magnetic

flux, thereby reducing the required magnet weight. From the model

however, the flanges that serve to concentrate the flux will also serve



45

Magnets

Anodes

Discharge
chamber

(a) Flux concentration

nn

Discharge
chamber

(b) Recessed anodes
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configurations.
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to reduce the effective anode area. Inasmuch as the flux integral

above the anode is fixed by the need to contain high velocity primary

electrons, this integral will need to be about the- same for both the

regular design and the design of Fig. 2-14(a). The reduction of magnet

weight would thus have to be balanced against the loss in effective

anode area.

Another approach, the recessing of anodes behind the pole pieces,

is shown in Fig. 2-14(b). The model clearly indicates that the shape

of the field above the anodes is of secondary importance. Except for

corner locations, the anodes have in the past been made flush with the

inside edges of the pole pieces. By recessing the anodes, it should be

possible to reduce the number of magnets for the same magnetic field

integral above the anodes.

The diffusion of electrons through the magnetic field above multi-

pole anodes has been studied in detail. The data are consistent with

Bohm diffusion across a magnetic field. The model based on Bohm dif-

fusion is simple arid easily used for diffusion calculations.



III. ENERGETIC BINARY COLLISIONS IN RARE GAS PLASMAS

Energetic binary collisions become important in plasmas or in ion

beams where high voltages (several hundred or a few thousand eV) are

introduced to accelerate ions toward a target within a plasma or to

form a beam. High voltage, taken in this context, is meant to imply

particle energies very much greater than thermal energies, usually

three to five orders of magnitude greater, while, at the same time, not

approaching the extremely high energies utilized in particle accelera-

tors for nuclear research. -Interest in these collision cross sections

arose primarily in connection with experimental work involving the

propagation of ion beams used for sputtering and processes occurring

1 2
within diode plasma sputtering devices. ' Thus, although the cross

sections obtained should also be of interest in other areas, the cross

sections obtained herein are largely described in terms of their impact

on the understanding of these particular experimental sputtering appli-

cations as representative systems. Energies of several hundred eV are

3
typical of those employed in diode sputtering and in ion beam devices.

At such energies, interaction cross sections are found to differ sharply

4
from their values at very low or thermal energies. It is this strong

dependence on energy that is of most interest because the relative

importance of certain interaction .processes can be enhanced or diminished

by moving from one realm of energy to another.

The plasmas and beams generated in sputtering devices are typically

derived from rare gases, with Ar being the most common by far, primarily

because of its low cost. Other, more reactive gases are employed occa-

sionally to achieve .special effects due to chemical reactions in addition

to the .physical sputtering effect of a directed ion beam. This work
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will be restricted to consideration of Ar, Kr, and Xe for momentum

and energy transfer calculations and to Ar for the discussion of

charge exchange.

- " '• * f. - • •

Ion Beam Interactions

Effective application of ion sources to various ion milling,

reactive ion etching and sputter deposition processes requires char-

acterization of the major interactions of the ion beam with the back-

ground environment-through which it propagates. The major interaction

processes are: (1) resonance charge exchange between fast ions and

slow moving or thermal neutrals, and (2) momentum transfer from .fast

moving neutrals to-slow moving neutrals. A variety of other processes

can take place as well but are found to be quantitatively much less

significant than these two. . • :

For example, a small fraction of ions generated in a discharge

chamber are doubly ionized. Depending on the particular ion source .

and operating conditions, the fraction of doubly ionized atoms extracted

with the beam ranges from less than one percent to several percent.

In sputtering applications, double ions would strike the substrate with

twice the energy of single ions. The effect, of this doubly ionized

fraction can be .significant where depth of damage is a critical factor,

but is otherwise a negligible process. .As another example, while it .

is recognized that free:electrons will generally be present in plasmas

and propagating beams, their collisional effects may usually be

neglected. Electrons are important .for .space-charge and current

neutralization of an ion beam but do not ..otherwise enter significantly

into reactions. Electron, masses are,of the. order of 10. of the ion
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\

or atom masses of interest so that in the usual range of background

densities the energy and momentum losses from beam particles to elec-

trons are negligible. In addition, the injection energy of electrons

8
from a neutralizer is too low to cause significant ionization. The

process of recombination of electrons with ions can be neglected

compared to charge transfer for ion neutralization because the cross

section for this process is several orders of magnitude smaller than

9
charge exchange cross sections.

As a final example, the momentum transfer from ions to background

neutrals is of relatively lesser importance because: (1) the ion-atom

collision cross section is somewhat less than for atom-atom collisions,

and (2) the charge exchange process has a much larger cross section

than >.the momentum transfer process. Thus, the high-velocity beam par-

ticles involved in significant momentum transfer processes tend to be

neutral particles that result from ion-atom resonance charge exchange

rather than the ions themselves.

The background plasma through which an ion beam propagates is

largely the result of charge exchange between beam ions and the neutral

background gas. In addition, neutral working gas flows out of the dis-

charge chamber through the apertures in the accelerator system and pro-

duces a local density increase in the neutral background gas near the

ion source. There is another local density increase in the neutral

background gas at the target due to beam ions that have given up their

directed energy to the target and have been neutralized by recombina-

tion with electrons at the target or substrate, thus contributing to

the neutral gas background in the vacuum chamber. Aside from the local

pressure maxima mentioned above, pressure in the vacuum chamber is
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governed by the speed of the 'pumping system relative to the total flow

rate of working gas into the discharge chamber.

Using known characteristics of practical ion sources,;vacuum

systems, and working gases some estimates can be made :of the various

deviations of actual beam properties from the ideal case of no beam-

background interactions.

Charge Exchange

An ion and a neutral atom of the same element can undergo resonance

charge exchange wherein an electron is transferred from the atom to the

ion, e.g., Arf + Ar —> Ar, + Ar (the subscript f indicating a fast-

moving particle relative to the other reactant). If a fast ion under-

goes charge exchange with an 'atom of thermal neutral gas, the result is

a slow ion and a fast neutral atom possessing essentially the original

ion energy. Resonance charge exchange can be a significant process in

the propagation of energetic ions or ion beams through typical back-

ground gas pressures. The resonance charge exchange cross section can

be looked upon as a reflection of the quantum mechanical probability

amplitude for an electron to be localized near a second ion in the

neighborhood of the one to which it is originally bound.

Several workers have reported experimental data for Ar resonance

charge exchange in various energy ranges. A few theoretical studies

have also explored the expected behavior of the charge exchange cross

section as a function of relative energy. A functional form for the

total cross section for resonance charge is given by lovitsu and

lonescu-Pallas and Rapp and Francis. Their expression for the form
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of the total cross section variation for resonance charge exchange

Qr is

Q = (a-b £n v)2 , (3-1)

where a and b are constants to be determined using empirical data

and v is the relative speed of.the atom and ion. This form for the

total resonance charge exchange cross.section has been shown experi-

12
mentally by Zucearo to hold for Hg.

A curve of the form of Eq. (3-1) was fit to experimental data for

13 14
Ar from Dillon, et al. and Hasted using a least squares regression

technique. The constants a .and b were determined for Ar resonance

charge exchange:

a = 1.51 x 10 9

b = 9.53 x 10

2
where Q in m and v in m/sec. Other experimental data were avail-

able from Potter that, however, were in disagreement with both Dillon,

13 14
et al. and Hasted; thus, these data were not included in the fit to

Eq. (3-1). Experimental data obtained by Kushnir, et al. was also

14
found to be in fair agreement with the work of Hasted but existed at

only a few discreet energies in the range of interest.

Figure 3-1. is a plot of the total resonance charge exchange cross

section for Ar as a function of relative energy using this best fit for



52

50 r

«, 40

o
0)
CO

CO
o

<D
o>

30

20
0>
o>
k.
o
o

10

10 20 30 50 100 200300 500
Relative energy, eV

1000

Figure 3-1. Total resonance charge exchange cross section for argon
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the function. At 500 eV,'a typical beam energy, the charge exchange

cross section is about 23 A . The cross section decreases monoton-

ically with increasing relative energy but the decrease is not rapid;

the cross section is reduced by about half as the relative energy

increases fifty-fold from 20 eV to 1000 eV. In addition, because this

is a fairly smooth and slowly-varying function, a reasonable degree of

confidence could be placed in mild extrapolations to lower or higher

energies.

As an ion beam travels through the background gas in a vacuum

chamber, the current in the beam as measured with a Faraday probe will

exhibit a decrease with increasing distance from the ion source

(because the beam current considered here is the total beam current

obtained by integrating over the entire ion beam cross section, beam

divergence is not a factor contributing to this decrease). The

observed decrease in measured ion current occurs because the ions are

being neutralized by charge exchange and the Faraday probe will indicate

only positive ions. The detection of slow ions resulting from charge

exchange is greatly reduced because they tend to diffuse radially from

the beam region. If resonance charge transfer were the only process to

consider, the beam current, I, would decrease exponentially with

distance x from the ion source.

I = I e~nQrX (3-2)

where n is the number density of the neutral background gas and I

is the total beam current extracted from the ion source.
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Because the density of fast neutrals.in. the beam can approach the

density of the fast ions-, the competing process of Ar- + Ar •*• Arf + Ar

should be considered. This inverse process has the same cross section

Q , so that fast neutrals can be converted back to ions. However, the

density of background ions in typical ion beam applications is usually

down by several orders of magnitude from the neutral density allowing

the inverse process to be neglected.

The mean free path X of a beam ion with respect to charge

transfer is given by

Background pressures in a bell jar with an operating ion source

-5 -4
typically range from 1 x 10 Torr to about 5 x. 10 Torr, the corres-

ponding range of mean free paths for a 500 eV ion beam would thus be

roughly 1300 cm down to 26 cm. Operating in the upper end of this back-

ground pressure range would yield beams having a significant content of

fast neutrals within a transport distance of a few tenths of a meter.

Because ion beam current densities are customarily monitored using

Faraday probes, accurate values for the total sputtering dose delivered

to a substrate or target must take into account the energetic neutral

component of the beam.

Figure 3-2 is a plot of the product of the mean free path and the

pressure as a function of ion.energy. The curve was calculated from

the data of Fig. 3-1 assuming ideal gas behavior at a temperature of

approximately 300°K. At a given beam .energy, dividing the ordinate by

the background pressure yields a measure of the mean free path for reso-

nance charge exchange.
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A more refined estimate of the magnitude of the charge exchange

effect could possibly be developed by considering the detailed effusion"

of neutral gas from the ion source rather than assuming a uniform den-

sity of background gas. Kaufman has considered the gradient of

neutral density downstream of an ion thruster and its effect on the

generation of a charge exchange plasma. However, the accuracy of the

experimental values used here for the charge exchange cross section

probably does not warrant the inclusion of higher order effects in these

estimates.

As an example of the loss in measured beam current with distance,

the integrated beam current data taken using a 15 cm multipole ion

source can be compared with calculated values based on the curve in

Fig. 3-2. Table 3-1 compares total integrated beam currents at dif-

ferent distances from the ion source with values calculated for the

two longer distances based on the value of the current at 5 cm. Data

to calculate the total integrated beam current at the ion source were

unavailable; therefore, the current I in Eq. (3-2) was calculated

by inverting the equation and using the current measured 5 cm from the

source along with the appropriate cross section from Fig. 3-1. The

source operating conditions were the same for all three current density

measurements.
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Table 3-1- .Comparison of Measured Beam .Currents with Values Calculated
from Charge Exchange Considerations.

Distance from
Source,, cm .

5

10

15

Pressure,
•Torr . .

4xlO~4

4xlO~4

2.8xlO~4

Total
Integrated

Beam Current,
. . - ma

98.7

85.0

86.1

Calculated
Beam Current,

: • . • ma

-

85.1

83.8

Percent
Difference

-

0.0%

2.7%

The agreement between the calculated beam currents and the measured

currents is, seen to be excellent, supporting the charge exchange theory

as summarized in Fig. 3-2.

Momentum and Energy Transfer

Only through scattering from the particles of comparable mass can

energetic particles of the beam lose significant energy and forward

momentum. Scattering at sufficiently large angles will remove some ions

or atoms entirely from the effective working volume of the beam.

Because the neutral background gas has a density .several orders of mag-

nitude greater than the background ion density, collisions with neutral

atoms are dominant compared with collisions involving the background

charge exchange•ions. Further, the probability of charge exchange

prior to elastic collisions is high for incident ions. The collisions

of high velocity neutrals with background neutrals is thus the dominant

process for significant; momentum; and energy loss prior to sputtering.

In addition, the cross sections for ion-neutral collisions are not
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expected to differ substantially from the neutral-neutral cross

sections when multi-electron atoms are considered.

Collision Dynamics •

The deBroglie wavelength of an argon atom or ion with a typical

beam energy of 500 eV is:

- = 2.03 x 10 13 m
P

where h is Planck's constant and p is the momentum of the atom.

This wavelength is very small .compared to atomic;dimensions, allowing

the use of classical particle, trajectories as a first approximation to

the scattering of argon from argon. Measuring the angular momentum of

the two colliding atoms in units of h/2ir yields an angular momentum

quantum number for the collision that is.-typically several thousand for

impact parameters of the order of atomic dimensions. This is a further

indication that classical dynamics is applicable since most collisions

of interest fall in the realm of very large quantum numbers.

If the interaction potential between two atoms is known, the clas-

sical equations of motion can be solved to relate the scattering angle

to the impact parameter for the incident atom. The solution is most

directly obtained using center of mass coordinates where a particle of

reduced mass p interacts with a fixed center of force through a

potential V(r) where r is the separation distance of the particle

1 8 ' • ' ' • . • - '
from the center of force. Conservation of energy can be expressed as

^'yu =;% yr 4- Jg yr <j> + V(r) ' (3—4)

where u is the relative speed of the two atoms at large separations
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where V(r) is negligible, and <f> and r are the angular and radial

coordinates respectively of the incoming particle.

Conservation of angular momentum can be expressed as

yu s = yr <Ji (3-5)

•

where s is the impact parameter (see Fig. 3-3). Eliminating <f

between Eqs. (3-4) and (3-5) and using the chain rule for differentia-

tion we can write:

r I Q Vf T1 IIL-YI-V-^I (3-6)
or,

2
-7 (1 - % - -"-̂ T 1 dr > . (3-7)
r \ r

Integration of Eq. (3-7) gives the angle through which the radius

vector turns during the collision. Let the total turning angle be cj> ,

then

- 9 s 1 j^ ,-- 2 1"" — dr (3-

where r is the distance of closest approach. The scattering angle

in the center of mass system is given by
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Figure 3-3. Scattering of reduced mass particle by a center of force.
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0 = tr - <|>t -. • ' (3-9)

Therefore,

(3-10)

which relates the scattering angle'in the center of mass system to the

impact parameter and energy of the incident particle.

For incident and target particles having equal masses (which is

the case of most interest), the scattering angle in the center of mass

system is easily converted to the scattering angle 6 in the lab-

. . . 19
oratory frame of reference:

f . ' - . . • • - • • (3_n)

The integration of Eq. (3-10) is not straightforward because the

upper limit is infinite and the integrand itself has a singularity at

the point of closest approach. Closed form solutions in terms of

elliptic integrals are known for only a few power-law functions of r

18
for the potential V(r).

The actual integration can be carried out numerically after a

change of variables, to u = 1/r which gives finite limits but does not

remove the singularity in the integral. .An algorithm was developed for

this integration utilizing a ten-point Gauss-Legendre quadrature scheme

along with a logarithmically decreasing .integration interval as the
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integration proceeds from the well-behaved end of the interval toward

the singularity. Before integrating, the upper limit of integration,

u - 1/r , was first determined by an iterative solution to the

(usually) transcendental equation:

2V(r ) 2
1 . (3-12)

t ; r o

obtained from energy and momentum conservation, where E is the energy

of the incident particle in the laboratory frame of reference.

To verify that the integration algorithm was functioning properly,

scattering angles for an inverse square law force (Rutherford Seat-
ed

tering), were calculated . .These calculated angles for 1 eV argon ions

incident on argon ions were compared with the closed-form solutipn,

Table 3-2 and Fig. 3-4. The qualitative agreement between the numeri-

cal and closed form solutions is adequately demonstrated in Fig. 3-4,

while the numerical values tend to exhibit a divergence of only a few

units in the third significant figure.

Table 3-2. Comparison of Numerical Integration with Closed Form
Solution for Rutherford Scattering.

Impact
Parameter A

10
20
30

' 40 '• :->
50; 60 •••••:-
70

• ' 80' - ' -''
90

•" ioo; ••••" -'•*

.9, Closed
Form Deg .

55.22
• 35.75'

25.64
•• 19.80
.16.07

" 13.50 •
11.62

• 10;20 ' '•-
9.09

'•-••'=' "' 8:19 ' • :,

6, Numerical
Integration Deg.

55.05
35.59
25.39
19.57
15.61

'13.49
11.63
10.13
9.06

. , 8.20
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Closed Form Solution.

Numerical Integration.
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Figure 3-4. Rutherford Scattering: Comparison of closed form and
numerical integration for Ar+ ->• Ar+ @ 1 eV.
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Argon Interaction Potential

To use a classical approximation for argon-argon scattering it is

necessary to obtain a potential function describing the argon-argon

20
pair;interaction. Barker, Fisher and Watts have developed an argon

pair potential that is in best overall agreement with experimental data

from a number of sources such as specific heats, internal energies,

viscosities, solid state parameters, and scattering data. Their expres-

sion for the argon isolated pair potential is the Barker-Pompe form:

V(r) = e -a(R-l) A.(R-l) '"8

1=0 + 6) '(R8+6)

(3-13)

where R = r/r .m

The Barker-Fisher-Watts coefficients for argon are given in Table 3-3.

Table -3-3. Barker-Fisher-Watts Coefficients for the Argon Pair
Potential.

Coefficient

e

rm
Ao
Al
A2

A3
A4
Ac

Value . Coefficient

0.0122448 eV- , . . ;.:, C6

3.7612 A C8

0.27783. . : C10

-4.50431 a

-8.331215 6

-25.2696

-102.0195

-113.25

Value

1.10727

0.16971325

0.013611

12.5

0.01
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21 22
The screened Coulomb potential used by Bingham ' and Everhart,

23 24
et al. ' is valid at higher energies (e.g., above 50 KeV) but dis-

regards the electron repulsion important at lower energies. Smoothly

21 22 20
joining the Bingham ' and Barker potentials between the energies

where each potential is known to fit experimental data well, supports

the use of Barker's results up to about 1 KeV. Figure 3-5 is a plot

of the pair potential on a linear scale showing the attractive part of

the potential, the minimum, and the zero crossing. The depth of the

attractive well is given by the coefficient e = 0.0122448 eV. This is

an energy four or five orders of magnitude lower than most beam energies

of interest. Thus, in scattering, attractive forces will be of little

consequence compared to the dominant repulsive core potential.

Potentials for Krypton and Xenon ..

25
Barker, et al.. have developed potentials for two other rare

gases, krypton and xenon,.using nearly the same analytical form for

the potential as for argon with similar adjustable parameters. The

form for these potentials is:

V(r) = e i^t 1 * ' fi Q

l-o (R +6) (R +5)

(R

for.R>l .. (3-14)
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. , a(l-R) A . ,„ lNi
 C6 C8

V(r) = e e 2-, A (R-l) 7 5
i=o x (R°+6) (R +6)

in i » 4-'-"- "•"-•-.- (3-15)
(R +6)

with R = r/r . The coefficients for krypton and xenon are given in

Table 3-4. . ' '

Table 3-4. Coefficients for Krypton and Xenon Pair Potentials ,

Coefficient

e

rm
A 0 -V

Al

/A2

, A3;
A4

A5
C6 ,

C8
C10
a

f

P

. .,;• ' Q. ...

Kr Value

0.01740 eV

4.0067 A
: '0.23526

-4.78686

-9.2

,' -9.0

-30.0

-205.8

1.0632

0.1701

0.0143

12.5

0.01

-9.0

68.67

Xe Value

0.02421 eV

4.3623 A

0.2402 , . "

-4.8169

-10.9

-25.0

-50.7

-200.0

1.0544

0.1660

0.0323 :

12.5

0.01

59.3

71.1

Figure 3-6 compares the pair potentials for Ar, Kr and Xe showing

the increase in effective- radius of the atom as the atomic number increases.
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The general character of the like-particle scattering from Ar, Kr and Xe

in the classical approximation would be similar since the shapes of

the potentials are similar. However, the corresponding cross

sections for the heavier gases should be larger in the energy range dis-

played in Fig. 3-6. . .

Calculation Procedures

There are numerous intermediate steps in cross section calculations

as well as several different modes for presenting the information. Some

of the Ar-Ar calculations are presented here in detail for certain ener-

gies to emphasize the numerical procedures and to show some simplifying

correlations that can-be used.

Table 3-5 contains laboratory scattering angles calculated as a

function of impact parameter and incident energy using the Barker-

Fisher-Watts ' argon potential.

Table 3-5. Calculated Laboratory Scattering Angles in degrees as a
Function of Incident Energy and Impact Parameter for Argon.

Energy of Incident Atom, eV
Impact

Parameter, A 1.0 10 100 500 1000

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

90.0
84.9
79.9
74.8
69.7 .
64.6
59.4
54.2
49.0
43.7
38.3
32.8
27.3

90.0
82.5
75.0
67.4
59.9
52.3
44.9

.37.8
31.1
25.0
19.4
14.6
10.3

90.0
80.1
70.2
60.2
50.0
39.7
29.5
19.9
12.0

6.93
4.16
2.60
1.60

90.0
77.5

•65.0
52.5
40.2
28.2
17.4
9.02
4.00
1.81
0.95
0.57
0.34

90.0
75.8
61.7
47.9
34.6
22.4
12.4

5.59
2.22

. 0.94
0.49
0.29
0.17
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Table 3-5. (Continued)

Impact
Parameter , A

2.6
2.8
3.0
3.2
3.4
3.6

1.0

21.8
16.3
11.0
6.28
2.49
0.01

Energy of

10

6.78
4.03
2.10
0.90
0.26
0.01

Incident

100

0.93
0.49
0.24
0.10
0.03
0.01

Atom, eV

500

0.19
0.10
0.05
0.02
:0.01

1000

0.10
0.05
0.02
0.01

Figure 3-7 is a plot of some of .the numerically integrated scat-

tering angles given in Table 3-5. These curves show the basic trends

of the scattering in this energy range. Lower energy atom.s are scat-

tered at larger angles for the same .impact parameter implying an

increase in calculated cross sections as the beam energy is reduced.

Although, using classical calculations, it is not possible to

18
obtain correct values for the total cross sections, it is possible

to correlate cross sections for scattering through angles greater than

some minimum angle 6 . The classical cross section is taken as the

area of a circle of radius equal to the impact parameter for this

minimum angle.

Table 3-6 gives representative calculated values for the total

cross section, Q(0>10°), for scattering through angles greater than

10°'as a function of energy.
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Figure 3-7. Calculated argon laboratory scattering angles as a
function of impact parameter at various energies.
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Table 3-6. Total Cross Section for Argon Scattering through Angles
Greater than 10°.

E
eV

1

3

10

30

100

300

1000

2000

Q (6>10°)
A2 '•

29.1

24.2

18.4

12.9

. 8.76

6.71

5.00

4.14

For small angle scattering, an approximate correlation is achieved

for potentials that approach exponential behavior in the energy range of

interest. The Barker-Fisher-Watts potential exhibits exponential

behavior over certain energy ranges at small separations. This cor-

relation for the cross section as a function of energy can be seen by

plotting the square root of the cross section versus the logarithm of

?fi
the fourth root of the cross section divided by the energy. Figure

3-8 is a plot of the correlated parameters showing the behavior over
i

approximately four decades for Q(0>10°). The correlation appears to

be nearly linear in two separate energy ranges, E>100 eV and E<100 eV.

Such a correlation can be used for interpolation and for minor extra-

polation.

Calculated Differential Cross Sections for Argon

The necessity for calculating differential cross sections directly

from a potential might reasonably be questioned; however, Massey and

Gilbody have this to say:
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Figure 3-8. Correlation parameters for cross section and energy for
argon scattering through angles greater than 10°.
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"Up to the time of this writing (1974)
measurements of differential cross-
sections for elastic scattering have
been almost entirely confined to beams
of positive ions in gases. For neutral
atom beams observations have been con-
fined to the 'total' scattering outside
a particular mean scattering angle in
the laboratory system. Measurements of
this kind have also been carried out for
ion beams."^'

The thorough search conducted by Massey and Gilbody thus uncovered no

data relating to the important neutral-neutral momentum transfer

process.

To determine the average momentum transfer for argon atoms that

suffer collisions with other argon atoms, the differential cross section

18
must first be calculated. The differential cross section is given by

where s is the impact parameter and a(9) is the differential cross

section measured in m^/steradian. Data of the kind given in Fig. 3-7

were used to calculate the differential cross section using Eq. (3-16).

As an example, the differential scattering cross section for 500 eV

argon is plotted in Fig. 3-9. It can be seen from this curve that most

of the scattering occurs at angles that do not contribute significantly

to momentum transfer; also, the differential cross section tends to

zero as the scattering angles approach 90°.

Ion-Neutral Collisions ,

A potential function was not available describing the interaction

between an argon ion and a neutral argon atom. However, because only
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Figure 3-9. . Calculated differential elastic scattering cross-section
for 500 eV Ar-Ar collisions.
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one of the particles is charged, the interaction at large distances can

be of no lower order than dipole-monopole which would imply a modifi-

-4
cation in the potential to include attractive r and higher-order

potential terms. The repulsive core potential would be altered by the

absence of one electron compared to the Ar-Ar interaction; but, gen-

erally, the ion-atom interaction should remain of.similar order of mag-

nitude to the atom-atom interaction at energies above several eV. The

absence of one electron in the ion-atom interaction may tend to weaken

the repulsion, thereby reducing the differential scattering cross

section compared to the argon-argon differential cross section.

Some experimental data are available for Ar -Ar collisions at

28400 eV. These experimental data, expressed as a differential cross

section, are compared in Fig. 3-10 to the calculated differential cross

section for 500 eV Ar-Ar collisions.

As expected, the Ar -Ar differential cross section is less than

that for Ar-Ar; however, the general trends of the data are similar in

28
each case. The experimental data reported by Aberth and Lorents

oscillates somewhat but the linear fit shown in Fig. 3-10 is a fair

representation of the magnitudes and trends in the data.

Even when the interaction cross sections are directly compared

between Ar -Ar and Ar-Ar collisions, the neutral-neutral collisions

remain the dominant process to be considered for momentum and energy

loss in the beam. '

Energy and Momentum Transfer

In a collision in which an atom is scattered through an angle 0,

. ' . . , . 2
it will have lost a fraction of 'its energy equal to (1-cos 0).
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The average fractional energy transfer, f, for scattered atoms is:

IT/2
,2Cf (l-cos26) 0(6) 2irsin6de

— /̂2~ ~ ^ ~ • <3-17>

/ 0(8).

This fraction can be thought of as the ratio of two cross sections:

i.e., the ratio of an energy transfer cross section to the total scat-

tering cross section. The fractional transfer of energy from a beam

traversing a distance dx through a medium containing a number density

n of scattering centers of total scattering cross section Q is:

^r = f n Q dx . (3-18)

where f is the average fractional transfer per collision given in Eq.

(3-17). The product fQ can be considered as a single parameter or

cross section, Q , related to the rate of energy decay in the beam.

Equation (3-19) is the customary form for the widely used, defined cross

29
section for viscosity.

IT/2

QE = I (l-cos29) a(8) 2irsin9de (3-19)

o

A similar expression is obtained when momentum transfer is considered.

This momentum transfer cross section is used to describe diffusion

processes: -'. - - " •

ir/2

Q = j (1-cose) o(9) 2irsinede . (3-20)

o
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Integration of Eqs. (3-19) and (3-20) yields cross sections for energy

and momentum transfer.

Using differential-cross sections calculated for a number of inci-

dent energies, the integrals of the form given in Eqs. (3-19) and (3-20)

were evaluated to yield cross sections for energy and momentum transfer

as a function of beam energy for Ar, Kr, and Xe. Some of the results

of these integrations are given in Table 3-7. These data are plotted

in Figs. 3-11 and 3-12 over the energy range from 1 eV to 1000 eV.

These cross sections then are the desired end result of this numerical

effort. An example of their anticipated use is. in the determination of

acceptable background pressures for ion beam etching. Figure 3-13 is

«• •

a plot of the mean free path for'energy transfer times the pressure

versus beam energy. At a given energy, dividing the ordinate by the

background pressure yields a measure of the mean free path or attenua-

tion length for beam energy decay in that environment and at the given

beam energy. The-curve was calculated from the Ar data of Table 3-7

assuming ideal gas behavior and a temperature of approximately 300°K.

An energy attenuation in the beam of up to 10 percent might be expected

to be acceptable. The source-to-substrate distance should therefore

correspond to about 1/10 of a mean free path. At 1000 eV, for example,

_2
the pressure times distance should equal about 1.9 x 10 Torr-cm, or

less, for a 10 percent, or less, attenuation in beam energy. This

calculation, then, permits a tradeoff to be made between pumping

capacity and the ion beam energy and momentum content. The simple

method described should be adequate for losses up to 10 to 20 percent

of the initial beam energy, but larger losses will probably require a

more detailed calculation that will take into account both the mean
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Table 3-7. Calculated Energy and Momentum Transfer Cross Sections.

Energy ,
eV

1

2

3

5

10

20

30

50

100

200

300

500

1000

Energy Transfer
Cross Section, &

Ar

11.2

9,54

8.57

7.37

5.88

4.72

4.20

3.67'

. ' 3.09

2.60

2,34

2.03

1.65

Kr

14.0

12.5

11.8

10.9

9.78

8.77

8.22

7.55

6.70

5.89

5.44

4.89

4.19

Xe

17.7

15.9

14.9

13.8

12.4

11.1

10.4

9.59

.8.51

7.49

6/93

6.24

5.36

Momentum Transfer
Cross Section, A^

Ar

7.17

6.07

5.42

4.63

3.68

2.97

2.'65

2.32

1.96

1.65

1.48

1.28

1.04

Kr

9.04

8.10

7.61

7.03

6.31

5.66

5.30

4.86

4.30

3.77

3.48

3.12

. 2.66

Xe

11.5

10.3

9.66

8.93

8.02

7.18

6.73

6.17

5.47

4.81

4.44

3.99

3.41
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energy and the distribution of particle energies as a function of

distance. Knock-on atoms should also be included as well as beam atoms

in a more detailed analysis.

_2
In comparison to the 1.9 x 10 Torr-cm for a 10 percent energy

-3
loss in the beam, a 10 percent charge exchange requires 1.4 x 10

Torr-cm. It should be clear that a substantial amount of charge

exchange can take place without significantly affecting the momentum,

energy, or, to a first approximation, the sputtering capability of

the beam.

The interaction of a beam of ions passing through a background gas

is of interest for industrial application of broad-beam ion sources,

particularly for etching. The momentum or energy losses in the beam

can be used to determine pressure, hence pumping, requirements in

etching applications.

The rare gas interaction cross sections that have been obtained

will allow a more thorough analysis and understanding of a variety

of energetic processes involved in both ion beam and plasma devices.

Cross sections at these high energies have not previously been avail-

able to investigators, resulting in the occasional erroneous use of

thermal values. The argon energy transfer cross section has been

successfully applied to the theoretical elucidation, by Harper, Cuomo,

30
Gambino, Kaufman and Robinson of a complex negative ion sputtering

phenomenon discovered experimentally in diode plasma devices.



IV. ION BEAM TEXTURING OF SURFACES

Ion beam sputtering is frequently used in surface etch or milling

operations where the desired result is the uniform removal of material,

perhaps using a mask to produce a relief pattern on a substrate, or

simply as a thinning process such as sample preparation for transmission

electron microscopy.' The processed surfaces, however, are often not

microscopically smooth but exhibit a variety of surface textures that

develop as a result of the ion bombardment.

' Textures can develop on solid surfaces in several ways during

directed ion beam sputtering. Physical-sputtering of solid materials,

which is customarily accomplished using chemically inert ion species,

can reveal individual crystal grains because of differential sputter

etch rates dependent on crystal grain orientation. Impurities, pre-

cipitates, phases or initially irregular surfaces can also cause char-

acteristic textures to develop during sputtering because of preferential

etching of higher sputter yield sites. In addition, reactive ion beam

etching can chemically texture a surface through selective removal of

2
elements from an alloy.

Of particular interest here, however, is the texturing induced by

the deliberate deposition of an impurity .onto a solid surface while

simultaneously bombarding the surface with an ion beam. This technique

is often referred to as "seeding", with the impurity being termed the

seed material. Under appropriate conditions, microscopic cones or

hillocks develop because of preferential sputtering of surrounding

material. It has been generally understood that these cones result

from clusters of seed atoms protecting the underlying substrate while
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surrounding substrate material is etched away. Extensive experimental

studies of the ion beam texturing of surfaces have been reported by

4
Robinson and Haynes.

Ion beam texturing has been attempted with many material combina-

tions and has several potential applications. Textured surfaces have

been successfully used for enhanced absorption of radiant energy in

solar collectors. Perhaps one of the more promising applications is

in the realm of biomedical materials such as prostheses with soft or

hard tissue interfaces that require firm bonding. ' ' '

Some examples of textured surfaces are shown in Figs. 4-1 to 4-4

for various combinations of seed and substrate materials. These sur-

faces were documented using a scanning electron microscope. Of par-

ticular interest are the prominent round knobs attached to the apexes

of the Cu cones in Fig. 4-1. It appears likely that these knobs are

the seed material aiding in cone formation by protecting the apexes.

The sequence appears to be first the knob formation, then the eventual

undercutting and removal of the knob, and finally the rounding off of the

apex. Cones in all phases of this sequence are visible in Fig. 4-1.

It has been postulated that the formation and replenishment of

seed clusters is a result of the surface diffusion or migration of seed

atoms with nucleation or attachment occurring when other seed atoms are

encountered. It has also been widely believed that a necessary, but

possibly not a sufficient,•condition for the formation of sputter cones

is that the seed material must have a lower sputter yield than the sub-

strate material to account for the observed differential etch. The

validity of these ideas is explored within the context of an analytical

model along with experimental tests.
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Figure 4-1. Copper sample coned using molybdenum as seed
material, 500 eV Ar+ ions, 250°C.

Figure 4-2. Aluminum sample coned using gold as seed material,
500 eV Ar+ ions, 450°C.
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I 1U I

Figure 4-3. Aluminum sample coned using molybdenum as seed material,
500 eV Ar+ ions, 250°C.

Figure 4-4. Silicon sample coned using iron as seed material,
500 eV Ar+ ions, 600°C.
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A model has been developed as a first approximation to both a

qualitative and quantitative description of the surface migration of

seed atoms, the clustering .process, and the resulting distribution of

cones on a substrate.. Experimentally controllable parameters as well

as physical properties of the materials involved are included in the

model. The diffusion aspect is described first. The critical minimum

size of seed clusters is then related to the seed diffusion rate. As a

further result, a critical substrate temperature is obtained, below

which cones will not be formed by the diffusion and sputtering of 'seed

material. The predictions based on this model are investigated experi-

mentally and an assessment is made of the impact of the model on the

variously held postulates and assumptions regarding the seeding and

cone formation processes.

Sputter- Cone Seeding Theory

The primary features of a conceptual model used to understand seed

diffusion are: (1) a substrate surface characterized as an array of

uniformly distributed adsorption sites at which seed atoms can be bound

to the surface after being deposited onto the substrate; (2) these

individual adsorption sites described as potential energy minima that

interact with seed atoms through isotropic binding and restoring forces;

(3) the seed atoms of sizes and masses appropriate to the seeding

species used that are deposited onto the substrate through some external

means; and (4) an ion beam of a given energy and type of ion providing

a uniform flux density of energetic ions over the substrate.
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Surface Diffusion'

The frequency for an isolated seed atom, located at an adsorption

site and belonging to a population of adsorbed seed atoms in thermal

equilibrium with a substrate of temperature T, to jump between

adsorption sites is

v = (!/TO) exp (-Ed/kT) , (4-1)

where I/T is the attempt frequency for the jumping process, E, is

the activation energy for diffusion (i.e., the energy barrier between

adsorption sites) and k is Boltzmanri's constant. The exponential

factor reflects the probability that, given thermal equilibrium at tem-

perature T, a seed atom has an energy greater than E,, assuming a

uniform density of states. The reciprocal of the characteristic time

T may be thought of as a characteristic frequency of oscillation for

the seed atom in the potential well representing the adsorption site.

The total number of adsorption sites visited by an adsorbed seed atom

during the time that it spends on the surface is given by the jump fre-

quency v multiplied by the mean adsorption time T :
3.

n = v T = (T /T ) exp (-E,/kT) . (4-2)
a a a o d

The magnitude of the mean adsorption time T is governed by those
. • * 3.

•processes that would tend to remove or desorb a seed atom from the

surface. One candidate process would be evaporation or sublimation

which would occur if a seed atom possessed simultaneously sufficient

energy to break the adsorption bond and a momentum directed away from
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the surface. If the seed atoms are considered, to be- in thermal equi-

librium with the substrate, the probability of having sufficient thermal

energy to desorb would be exp(-E /kT) where E is the total binding

energy of the seed atom to the surface. Clearly, E >E,, making this

process highly improbable. A more likely mechanism for removal of

adsorbed seed atoms is physical sputtering by an applied high current

density ion beam. The probability of a seed atom being sputtered

depends linearly on the ion flux and on the seed cross section.

The migration of seed atoms along the surface of the substrate can

be viewed as a random-walk process. Using a as the mean distance

between adsorption sites, the random-walk diffusion length r is

given by

= * n %=a (T /T )% exp (-E,/2kT) . (4-3)

The random-walk diffusion length represents the average net separation

distance of a seed atom from its initial adsorption site, achieved

during a time i . This, then, is the average radius through which
3.

seed atoms are expected to be able to diffuse. This expression (Eq.

4-3) is similar to diffusion equations derived for condensation of a

vapor phase onto a substrate. It is necessary to obtain appropriate

values for T and T to apply this equation to the seeding and
3. O

texturing problem.

The seed adsorption time is limited by the ion beam sputter

removal of seed atoms once they are attached to the surface. If the

2
ion flux (ions/m -sec) is given by R. and the cross section that a

seed atom presents to the ion beam is given by a then the probability
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per unit time P for individual ion-seed collisions to occur is

P = R.a . (4-4)
c i a

The probability that a given collision will result in' removal of an

atom is the sputter yield or sputter probability Y . Thus, the proba-
cl

bility per unit time P for sputter removal of individual seed atoms
s

from the substrate is

P = Y R.a . • (4-5)
s a i a

The reciprocal of this probability per unit time is then the mean

adsorption lifetime for a seed atom on the substrate

= f = 1/YaVa 's

A first estimate of T can be obtained by inserting approximate values
3.

for. the quantities of Eq. (4-6). For a loosely bonded and mobile seed

atom, the sputtering yield Y should be near unity. The cross section
3.

-2/3
o can be approximated as N , where N is the atomic density
3. O O

29 -3 10
of the substrate with a typical value of 10 m . The value of R.

2 2
for a typical 10 A/m (1 mA/cm ) ion beam current density is about

19 2 -1
6 x 10 (m -sec) . With these substitutions an adsorption time of

about 1/3 sec is obtained.

Seed atoms of interest in the process of sputter cone formation

must be mobile. The seed atoms should therefore exhibit weaker bonding

to the substrate than that of the substrate atoms to one another.
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Because of this relatively weak bonding for seed atoms, the character-

istic time T for a seed atom to jump between adsorption sites should

be a function of this bonding interaction, rather than the substrate

lattice vibrations to which it is only loosely coupled. Considering a

seed atom at an adsorption site, the site can be thought of as a poten-

tial well within which the seed atom is bound. The potential barrier

between adjacent sites is the activation energy E,. Motion along the

surface should therefore be characterized by a well depth E, and an

approximate periodicity. Using a as the average spacing between

sites, a sinusoidal representation of a periodic, undulating potential

is

U(r) £ Ed(l-cos 2irr/ao)/2 . (4-7)

A parabolic potential results from retaining only the first two terms

in the cosine series expansion.

U(r) £ 7T2E,r2/a 2 (4-8)
d o

Using m as the mass of the seed atom, the equation of motion iss

m d2r/dt2 = -8U(r)/3r =-2ir2E r/a 2 , (4-9)
S u O

which implies an harmonic oscillation'frequency of

2 **v = (E'/2m a ) , (4-10)d so
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or a period of

(4-n)

A numerical estimate of T can be obtained using the appropriate

-1/3substitutions. The distance a can be approximated as N ,

with N again the atomic density. The mass m of a representative

-25
heavy seed atom can be taken as 3 x 10 kg, while the activation

-19
energy E, may be assumed to be in the neighborhood of 1.6 x 10 J

(1 eV). With these substitutions, T is found to be about 4 x

10 sec.

Using Eqs. (4-6) and (4-11) to substitute for T and T in
ci O

Eq. (4-3):

(4-12)

-1/3 -2/3
With the substitutions of N and N for a and a ,

o o o a

together with unity for Y , a simplified expression is obtained,
3.

.(4-13)

The exponential factor varies rapidly over a wide range. The square-

root factor is much more slowly varying, so that numerical values may

be substituted therein for a first approximation. Making the substitu-

-1Q 29 -^ -?S
tions of 1.6 x 10 * J for Ed> 10 m for N , 3 x 10 kg for
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19 2 -1
m and 6 x 10 (m -sec) for R. in the square-root factor,
S 1

rd = 2 x 10 exp (-Ed/2kT) . (m) (4-14)

This, then, is an estimate of the radius over which surface diffusion

can be expected to take place. This radius is a function primarily of

the activation energy E, and the substrate temperature. Other factors

such as seed atom mass m , ion flux R., and the adsorption site
S 1

spacing a are considerably less important. The activation energy

is a function of the seed-substrate material combination (together with

a small temperature effect) and ranges from about 0.5 to 2 eV for

12
metallic materials of interest for seeding. The large variation of

r, with temperature is shown in Fig. 4-5 for this range of activation

energies. It can be seen that relatively modest temperature changes

can have a profound effect on the mean seed diffusion radius.

A distance equal to twice the average diffusion radius can be used

as a measure of the average separation between clusters. If clusters

were, on the average, much farther apart than 2r,, more clusters

would begin to nucleate and grow in the intervening spaces where seed

densities were enhanced, thus narrowing the gaps between clusters. At

the other extreme, if clusters began to nucleate at separations much

less than 2r,, larger clusters would grow faster and intercept dif-

fusing seed material at the expense of smaller clusters. Thus, an

average cluster separation of about 2r, would be expected to be

stable.
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Seed Clustering

Having found the radius from which diffusion will supply a seed

cluster, it is appropriate to consider the stability of that cluster.

There is a critical size of a seed cluster, below which steady growth

13is not possible. This critical radius is essentially the same value

as is used in nucleation theory. It is obtained by setting to zero the

14
derivative of free energy (surface plus volume) with respect to radius.

Continuous growth can take place above this radius, but dissociation of

the cluster will tend to occur at smaller radii.

Whether or not a seed cluster is stable will therefore depend on

the diffusion rate to the cluster being sufficient, or insufficient, to

supply the sputtering loss from a cluster of critical radius. To

determine the stability requirements of seed clusters it is necessary

to investigate more closely the processes of seed movement, and clus-

tering while adsorbed on a substrate.

Seed atoms are assumed to move from adsorption site to adsorption

site on the surface by a random walk process. Only those seed atoms

that acquire an energy greater than E, are mobile. Energy is exchanged

between seed atoms and the lattice through the loose coupling of the

seed atom to thermal lattice vibrations bringing the adsorbed seed atom

population into approximate thermal equilibrium with the substrate

lattice. It is then the temperature of the substrate that governs the

fraction of seed atoms that are mobile at any given time. A random

walk process for seed motion requires that, on the average, seed atoms

experience an inelastic "collision" as a result of each jump to a

neighboring adsorption site. The energy loss in the inelastic process

would then be associated with a loss of the initial direction of motion
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resulting in a random direction for the next jump. Regarding each jump

to a neighboring adsorption site as an independent event terminating

with directional and energy losses can be further supported by considering

the adsorption bonding forces tending to accelerate a seed atom down

into the neighboring adsorption site once it has cleared the potential

barrier E,, where E, is the diffusion activation energy. It is

improbable that the incoming seed velocity vector would be sufficiently

well-aligned with the spatial symmetry of the neighboring adsorption

site to proceed without significant deflection.

To appropriately model the clustering of seed atoms, it is first

necessary to characterize the mean speed for the surface migration of

seed atoms. There are different characteristic velocities of mbbile

seed atoms. One velocity, designating the micro-velocity u ,

could be derived from the spacing of adsorption sites and the jump

time,

(4-15)

or, using Eq. (4-11),

(4-16)

-25
Substituting 1 eV for E, and 3 * 10 Kg for m yields,

u = 5.2 x 102 m/sec . (4-17)
m



99

Another velocity, designated macro-velocity u , can be obtained from

the random walk diffusion radius and the mean adsorption time,

or, using Eqs. (4-6) and (4-13),

(4-18)

(4-19)

19 -2 -1
Using the representative values of 1 eV for E,, 6 x 10 m sec

for R., 1 for Y , 3 x 10~25 Kg for m , 1Q29 m~3 for N , and

800°K for T we get

UM =4.0 x 10
 7 m/sec . (4-20)

M

This is nine orders of magnitude less than u . Perhaps a more appro-

priate expression for the seed velocity,for seed clustering, would take

into account the total distance of travel found by summing all jumps taken

in a seed lifetime T . The number of jumps is given by Eq. (4-2):

n = (T /T )exp(-E,/kT) , (4-21)
3. O Q

and the mean seed speed is:

u = na /T , . (4-22)
s o a
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or, using Eqs. (4-21) and (4-11)

u = (E,/2m )isexp(-E,/kT) , (4-23)
s a s a

or,

u = 2.6 x 10 4 m/sec (4-24)
s

with the usual substitutions. Equation (4-23) is the appropriate

expression for average seed velocity for the purpose of understanding

diffusion and clustering.

With an expression for seed velocity, the detailed movements.of

seed atom populations will now be considered. As a first example, an

estimate for the upper bound of the areal density of seed atoms on the

substrate, N , can be obtained by assuming that clusters fail to
S

form on a seeded surface. In the absence of seed clusters, a steady

state will be reached with the seed deposition rate and the re-

sputtering rate being equal. The seed f.lux R (seed atoms deposited/
S

2
m -sec) can be written in terms of the ion flux using a factor F ,

S

the seeding fraction, that reflects the ratio of seed deposition to

ion flux:

R = F R. . (4-25)
s s i ^ '

The seeding rate is discussed in detail in Appendix B. The rate of seed

removal by physical sputtering S is the probability per unit time

for sputtering an individual seed atom multiplied by the areal seed
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density N

S = Y R.o N . , , . (4-26)s a i a s

Equating the deposition and sputter removal rates gives,

FsRi - YaVaNs
max

where Nc is the maximum achievable areal seed density in thesmax

absence of clustering. Solving for Ns :

.N_. = F /Y a . . (4-28)smax s a a

With a value of 0.01 for F (see Appendix B) this expression yields,
S

using the previous substitutions:

N . £ 2 x 1017.m~2 . ., (4-29)
max

We can also look at the fraction of surface coverage by seed atoms.

Since I/a is approximately the density of adsorption sites we get
3,

F N % N . . (4-30)
s a s

where Y has been assumed to be approximately 1. and N, is the
3. " 3.

adsorption site density. Thus, the maximum fractional surface coverage

by seed material is about equal to the seeding fraction F .
S
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A more detailed analysis is necessary when clusters are assumed

to be present on the substrate. Figure (4-6) represents a cluster and

its surrounding seed diffusion area. The various N's shown in Fig.

(4-6) are flow rates of seed atoms in atoms/sec. Let N be the area
c

density of seed clusters, then 1/N = A = A -H A,, where A is the

cluster area and A, is the diffusion 'drawing' area. The definitions
d

of the seed flow rates are in Table 4-1.

Table 4-1. Seed Flow Rates.

•

NI Seed atom deposition rate into area A,

•

N» Seed atom deposition rate into area A

•

N« Rate of seed atom acquisition by the cluster

•

N, Rate of re-sputtering of seed atoms from A,

•

NC Rate of re-sputtering of seed atoms from A

•

N, Rate of diffusion of seed atoms out of A,b d

•
N-. Rate of diffusion of seed atoms into A,
/ d

All rates, N. are positive with the direction of seed flow indicated

by the arrows in Fig. 4-6.

A steady state situation will be considered first. Under steady

state conditions, the following relations hold: •-

(4-31)
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N4

Figure 4-6. Geometrical representation of a cluster of seed atoms of
area Ac with the surrounding area A,. Seed atom fluxes
are represented by arrows.
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(4-32)

(4-33)

(4-34)

Equation (4-31) simply expresses the symmetry of seed diffusion into

and out of the area A containing a single cluster. Equation (4-32)

equates the total seed deposition rate to the total sputter removal

rate in area A. Equation (4-33) relates the net seed flux into A,

(taking re-sputtering into account) to the diffusion flux from A, to

the cluster. Finally, Eq. (4-34) equates the total flux to the cluster

to the total sputtering from the cluster. Equation (4-32) can be

obtained by eliminating N,. between Eqs. (4-33) and (4-34).

Most of the individual rates can be-obtained from consideration of

simple sputtering rates:

Nl = RiFsAd

(4-36)

N4 - RiYa°aNsAd

N5 = RiYcAc * (4~38)
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where Y is the sputter yield of atoms from the seed cluster and the

•

sticking coefficient for all deposited atoms is assumed to be 1. N_

is related to the 'collision' frequency of "seeds with clusters.

Assuming that each seed colliding with a cluster adheres we can use a

length of 2r to describe the two-dimensional cluster interaction

cross section where r is the cluster radius.
c .

N_ = 2r u N N A, (4-39)
3 c s c s d

This relation can be understood more simply by noting that 2r u N
, . • • * t * ' ' < C S C * .

is the collision frequency for a single seed moving through clusters of

density N at a speed u . Multiplying by the number of seed atoms
C • S ' ,

per unit area gives the total frequency of seed-cluster collisions per

unit area. Multiplying by the "drawing" area A, for a single cluster

gives the number of collisions with one cluster per unit time.

With substitutions for the various rates, Eqns. (4-33) and (4-34)

can be rewritten as:

R.F A, - R.Y a N A, = 2r u N N A, (4-40)
i s d x a a s d . c s c s d

and

R.F A +.2r u N N A, = R.Y A . (4-41)
isc c s c s d x c c

These equations may be solved simultaneously for the drawing area A,

and for the surface seed density N .
-. . .• s
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A (Y -F ) (2r u +A Y a R.)A = cc s" c s c a a i ( .
Ad 2r u F - A (Y - F )Y a R. V 'e s s c c s a a i

A (Y -F )R.
N = -c—£ S—Ji
s 2r u

c s

Under typical seeding and sputtering conditions the additive terms in

Eq. (4-42) involving the ion arrival rate can be neglected giving:

Ad*Ac(Yc-Fs)/Fs •

Physically, this approximation corresponds to the actual seed coverage

between clusters being much smaller than the maximum possible coverage.

Equation (4-44) can be written in terms of r, assuming circular

geometry.

This is the required diffusion radius to sustain a seed cluster of

critical radius r . For most applications, F «Y , so that F may
C S C S

often be neglected in the numerator with little error.

Critical Temperature

This diffusion radius (Eq. (4-45)) can be equated to that of

Eq. (4-12) to determine the minimum substrate temperature that will

give the required diffusion to sustain clusters of the minimum size.
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T = E,/k£n (E,/2m ) 2 IF N ' /R.Y r (Y - F )
c d d s I s o i a c c s

2 (4-26)

The logarithmic factor will vary slowly with changes in the variables

therein; thus, the activation energy will most strongly dominate the

critical temperature. The new variables that have been introduced are

the critical radius r and the seeding fraction .F . The seeding
c s

fraction is treated in Appendix B, a value of 0.01 will be used as a

reasonable approximation. Values of the critical radius range from

about 6 to 10 A. A cross check was made on these values of r
c

from another point of view. The use of a critical radius derived from

nucleation studies implies perturbations corresponding to thermal

energy. The energy of an ion impact in a sputtering environment, how-

ever, is far above the thermal level. The limiting condition for ion

impact is that the cluster should be large enough to absorb all the

ion energy without vaporizing. The heat of sublimation for typical

seed materials ranges from about 3 to 9 eV/atom. For typical ion

energies of 500 to 1000 eV, then, this minimum cluster radius is about

5 A to 10 A assuming a roughly spherical cluster shape. The heat of

sublimation is, of course, a macroscopic quantity. However, this cal-

culation indicates that the increase in cluster size to a ccomodate the

maximum perturbation of an ion collision should be moderate, almost

certainly less than a factor of two times the nucleation theory radius

of 10 A.

Using 10 A for r and 0.01 for F an approximate expression
c s

can be obtained for T in terms of the activation energy measured in

eV for this expression only.
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T % 587°K E, (4-47)
c d

This expression may be used for rapid estimates and approximations

without paying undue attention to the precise values used for some of

the other quantities.

Experimental Results and Discussion

Two physical effects following from the cone seeding theory were

investigated experimentally: (1) the variation in cone density with

substrate temperature, and (2) the existence of a critical temperature

for cone formation. In the experiments, samples of aluminum were heated

2
to a specified temperature and sputtered for 20 min. using a 1 mA/cm

beam of 500 eV Ar ions, while simultaneously seeding the sample with a

source of either Mo or Au. The specified substrate temperatures

ranged from 400 to 575°C in different tests, with In used to assure

good thermal contact between the samples and the heat source.

Seeding was accomplished by partially covering the sample with a

sheet of the seed material. Seed material was then sputtered from the

beveled edge of this covering sheet onto the sample. Because of this

geometrical arrangement, the seeding intensity decreased with increasing

distance from the beveled edge (see Appendix B) . After sputtering,

scanning electron micrographs were obtained of the sample surfaces.
\,

The average separation between cones was then (A/N) , where N is the

number of cones counted in an area A of the micrograph.

We identify <r>, one half the average separation between cones,

with the diffusion radius r, in the preceding theory. Figures 4-7

and 4-8 show plots of <r> as a function of reciprocal temperature for
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the two seed materials. From the theory, we expect straight lines on

these plots. This can be shown by rewriting Eq. (4-13) as

r. = r exp(-E,/2kT) (4-48)
d o d

where r is a constant
o

(4-49)

Taking the natural logarithm of Eq. (4-48) and rearranging the result,

£n r, = (-E,/2k) 1/T + ln r . (4-50)
d d o

This expression is-linear if £n r, is plotted as a function of inverse
d

temperature, as done in Figs. 4-7 and 4-8. This slope of the line is

-E,/2k, while the ordinate intercept is r .
d o

A least squares regression line was fitted to each of Figs. 4-7

and 4-8. The best fit corresponded to an E, of 1.20 eV and an r

7 °
of 1.10 x 10 A for 'Fig. 4-7 and an E, of 1.04 eV and an r of

d o
6 9

6.04 x 10 A for Fig. 4-8. The correlation coefficients exceeded 0.9

for both fits. Experimental critical temperatures were also determined:

700°K for Al seeded with Mo and 675°K for Al seeded with Au.

The qualitative trends shown in Figs. 4-7 and 4-8 are all consis-

tent with theory. The data shown also include varying distances from

the edge of covering sheet, which corresponded to different seed ratios

F . The only data selection used was that regions far enough from thes

covering sheet (low enough seed ratio) showed large fractions of the
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areas without cones and were omitted. For regions with sufficient seed

to show fully developed cone structures, then, the effect of seed fraction

F on cone spacing must be small. This result is in agreement with Eq.
s

(4-13), which does not include F as a variable. Activation energies
s

for surface diffusion were not available from literature for the exact com-

binations of materials used, but the values obtained from the slopes of

Figs. 4-7 and 4-8 are in qualitative agreement with other.combinations

that have been studied using standard diffusion measurement techniques.

The activation energies from Figs. 4-7 and 4-8 can be used for a more

quantitative comparison of experimental results with theory. Using these

19 2
activation energies together with 6.24x10 ions/m -sec for R., .01 for

F , 1x10 m for r , and handbook values for other variables including
S C

using bulk sputter yields, theoretical values were calculated for r

and the critical temperature. These values were 2.21x10 A and 684°K

for Al seeded with Mo and 1.78xl06 A and 646°K for Al seeded with Au.

The agreement for critical temperature is close, with experimental

values being 2 and 4 percent above the theoretical values for Eq. (4-46).

This close agreement is due in part to most of the variables in Eq.

(4-46) being included in a logarithmic factor. Closer agreement is to

be expected between the predictions of the model and experimental

results for the critical temperature than for other aspects of the

model. For example, a limiting case of a flat surface as used in this

model is more appropriate for derivation of the critical temperature at

which no cones are present than for determining cone separation on a

fully developed surface. The agreement for cone spacing is less

close, with experimental values of r and cone spacing being 3 to 5

times the theoretical ones from Eq. (4-13). This difference may be
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the result of theory being derived for a flat isotropic surface, while

the experimental values were for well developed.conical surfaces. The

cascades of sputtered substrate atoms on the conical surfaces would be

expected to reduce seed diffusion toward the apexes, resulting in the

reduction of some seed clusters below the critical size.

The choice of materials for Fig. 4-8 also represents support for

the theory. Previous descriptions of coning state that low sputter

yield materials protected the apexes of cones in higher sputter yield

substrates. The present theory indicates that the seed can have a

higher sputter yield than the substrate if the seed material is suf-

ficiently mobile to replenish the sputtering loss from a seed cluster.

The Au seed in Fig. 4-8 has a much higher yield than the Al substrate,

so that this result is an example of coning that was predicted by the

present theory.

A texturing theory based on surface diffusion has shown substantial

agreement with experimental results. The existence of a minimum sub-

strate temperature for texturing, the variation of cone spacing with

temperatures and the texturing with a high sputter yield seed on a

lower sputter yield substrate were all predicted by this theory. This

theory has obvious utility in the production of textured surfaces for

applications such as low reflectance solar cells, high emissivity heat

radiators, and medical implants. The existence of a minimum critical

temperature for coning is also important for the production of smooth

surfaces, in that a sufficient reduction in surface temperature should

reduce the mobility of any seed material enough to avoid coning,

whether the seeding is due to stray sputtering or one of the elements

in the substrate material. Due to the continual cleaning of the
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surface by the bombarding specie, the coning process also permits

evaluation of the surface diffusion activation energy under conditions

of extreme cleanliness; • : .



- •:.. . - • • - • - . . " V . CONCLUDING REMARKS . • - . . . .

The theory and experimental evidence presented here can have
• ' • ' • - • ' . :' ; • < - • - . -: ; ^ (. . • ' ' . '•/• ',-'• j I . . . ' . .

application in ion thruster work or in alternative types of plasma

devices. However, the desire to increase understanding of the

physical processes important in directed ion beam sputtering has been

.paramount. An increased understanding of basic processes has come in

three main areas: (1) reliable discharge chamber design, (2) directed
;". -~ .. ' ' ' ' • " • . v ,' - :: . ' " :. -

ion beam interactions, and (3) the physical texturing of surfaces on

a micron and sub-micron scale.

Discharge chambers can now be designed and constructed with a

considerably increased confidence that is largely the result of an

almost complete decoupling of the bulk plasma from the magnetic fields

used for containment. This decoupling has yielded a tractable configu-
' • - -' ' • , . ' ' ' • - • ' ' 1 .' - •. " '' !

ration in terms of theoretical analysis. The enhanced plasma and beam
" • • ' • • .. • •"• ' ' • : . . - . t . ' . : ' -.-. •' . • :'

uniformity expected with a large multipole design have been obtained

experimentally, along with the observation that the bulk of the dis-

charge plasma is exceptionally quiet when DC heaters are employed.

The integrated magnetic field necessary to contain primary electrons

has been determined theoretically and three multipole ion sources

designed to meet this criterion have performed well. Of particular

interest is the absence of numerous iterations in the design and con-

struction of new multipole chambers, in sharp contrast with the cut

and try approach used so often in the past. The question of Maxwellian

electron conduction across the multipole field has been treated satis-

factorily as a simple additional requirement for a sufficient anode

area for electron collection. This requirement, then, allows stable
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operation without a large forward potential at the anodes to drive the

electron diffusion. Although these analyses have been directed prin-

cipally at multipole chambers, many of the concepts and trends seen

here are equally valid for other magnetic field designs.

Interaction cross sections for energetic collisions of rare gas

atoms have been calculated from isolated pair potentials, and, in the

case of Ar charge exchange, obtained from the literature. The energy

and momentum transfer cross sections were previously unavailable and

are substantially smaller than the thermal values that have occasionally

been misleading when used at higher energies. Experimental data have

been found to be in agreement with the values for the charge exchange

cross section, while the momentum transfer cross section was used some-

what less directly in the analysis of a newly observed sputtering

phenomenon in diode plasma devices. The known energy losses in the

beam can be used to determine pressure requirements in practical sys-

tems as well as allowing a more thorough analysis and understanding of

a variety of energetic processes in ion beam and plasma devices.

A model has been developed that describes the process of conical

texturing of a surface due to simultaneous directed ion beam etching

and sputter deposition of an impurity material. This model accurately

predicts both a minimum temperature for texturing to take place and the

variation of cone density with temperature * It also provides the cor-

rect order of magnitude of the cone separation. It was predicted from

the model, and subsequently verified experimentally, that a high

sputter yield material could serve as a seed for coning of a lower

sputter yield substrate material if the seed were sufficiently mobile

on the surface. The specific combination reported was gold seed on an
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aluminum substrate. Seeding geometries and seed deposition rates were

studied to obtain an important input to the theoretical texturing model

and to permit rapid and effective application of the coning model to

specific experiments. . •
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APPENDIX A

CHARGED PARTICLE MOTIONS IN SPATIALLY INHOMOGENEOUS ELECTRIC AND
MAGNETIC FIELDS

Where magnetic fields are introduced to contain or confine charged

particles within the volume of a plasma, potential gradients will often

develop within the magnetic field region in response to applied voltages,

current flow and density gradients. Of particular interest is the case

of a spatially localized magnetic field distribution separating a

plasma volume of essentially unobstructed flow from a container wall or

an electrode.

The equation of motion for a particle of charge q in a time-

independent given distribution of fields is:

(A-l)
dt

--
where r is the position vector of a particle with charge to mass ratio

q/m, V(r) is the potential and B(r) is the magnetic induction.

Equation (A-l) will, in general, be non-linear and closed form solutions

will not exist. It can, however, be integrated to obtain tra-

jectories for prescribed fields using standard Runge-Kutta techniques.

In Cartesian coordinates, Eq. (A-l) becomes a set of three second-order

coupled equations.

- = _ . _
dt2 m 9x m dt -z m dt y
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<-* „ _ £ |V + * £ u _<l£lB (A_3)
dfc2 m 9y m dt x m dt z

_ 4 3V 4 dx .g. dy__
dt2 m 3z m dt y m dt x

A problem of practical concern involves certain constraints on

B(r) and V(r) within a specified volume. The magnetic field is

assumed to be uniform in direction but not necessarily in magnitude

with the magnetic field normal to the gradient of the potential. Con-

sider a region of space from x = a to x = b where the magnetic field

is along the z-axis but with a magnitude that depends arbitrarily on

x. The potential is also allowed to vary arbitrarily in x with the

constraint that the total change in potential from x = a to x = b in

a fixed quantity AV. A particle impinges on this region from x < a

with an incident velocity v ." The region from x = a to x = b may

form a barrier to particle penetration to the region x > b if the

particle has lost all momentum in the x-direction upon reaching x = b.

With the stated limitations on V(x) and B(x), Eqns. (A-2) to (A-4)

become:

Z = _ 4.3V £ dy_'_

, 2 v 8x m dt z
at "

- " B (A-6)
dt2 m dt z
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- 0 . (A-7)
dtV

Equation (A-7) yields a constant velocity in the z-direction equal to

that initial velocity component vo . To determine the exact trajectory,
z

Eqns. (A-5) and (A-6) must be solved simultaneously. However, a simpli-

fication is possible in that the requirement for a zero velocity in the

x-direction implies that the incident energy plus the energy acquired

in traversing the potential difference AV should all appear as

kinetic energy in the y-z plane at x=b giving,

or,

(A-8)

v + v - 2qAV/m = v (x = b) . (A-9)
o .o, • • . .. yx y *

Equation (A-6) may be written as:

A lZ = _ S. B (x) dx ( .
dt dt m zw dt <-A iu;

or

dv = - -^ B (x)dx . (A-ll)y m z

Integrating over the barrier region
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« r 'dv = - :f I B(x)dx . (A-12)

Let the total field integral be represented by Bab

v . - v = - - 3 - 3 ,
f o m ab

(A-13)

or,

- B (A-14)

This, then is the criterion that must be met by the integrated magnetic

field for containment of a particle of specified incident velocity

crossing a region of total potential charge AV. If the incident

energy of an electron is negligible with respect to eAV then the

criterion simplifies to:
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SEEDING RATE FROM A BEVELED SOURCE

Experimental arrangements for ion beam texturing include a beveled

source of seed material placed on top of a substrate (Fig. B-l). Part
;•

of the substrate is covered with the seed source providing a control

surface for comparison with the part that is uncovered and exposed to

both sputter deposition of seed material and ion bombardment. This

study will focus on the deposition rate of seed material onto the sub-

strate from such a beveled surface.

A number of assumptions will be implicit in this seeding rate

model. The ion beam will be assumed to have uniform current density over

the area of interest and the beam will be directed normal to the sub-

strate surface. The emission .of sputtered seed atoms from points on the

beveled edge will be assumed to correspond to a cosine distribution about

the local surface normal. This assumption is in close agreement with

experimental observations where only small departures from a cosine

distribution have been observed. ' ' ' '

To model in detail the emission of sputtered atoms from the beveled

surface and their subsequent deposition onto the substrate, we explore

the geometry indicated in Fig. B-2". Let dT- be the rate of sputtered

particle collection at the element of area'"da- in particles per unit time

arriving from the element of area da . This rate is proportional to the

fraction of hemispherical solid angle subtended by da,, as viewed from da.. ,

2
i.e., da«cos((),?/2irr . The emission from da., in the direction <(>.. is pro-

portional to da..cos<f>, because of the assumed cosine emission distribu-

tion. The emission from da., arriving at da,, can thus be expressed as:
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•Ion Beam
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1
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Substrate
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Figure B-l. Experimental seeding arrangement for ion beam texturing.
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Figure B-2. Geometry for sputter emission and flux collection.
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da-cosi))-
F da-L cos()>1 2— (B-l)

2irr

where F is a constant of proportionality representing the sputtered .

flux in particles per unit time per unit area emitted normal to da.. .

The factor F normalizes to total emission from the emitter plane,

pr
Integrating over the plane P.. will yield the total rate of par-

ticle collection at da?

Fda- cosc|>2 a • (B-2)

An effective flux at da_ is found by dividing the particle arrival

rate by the area of the element da_

2 V C COS<'I2
F2 = da~ = ~27f / 2^ cos<f>ldal • <B~3)

The relative seeding rate as a function of position on the sub-

strate plane can thus be found from the integral indicated in Eq. (B-3).

This integral will, in general, not be solvable in closed form and will

thus require a numerical procedure for evaluation.

Figure B-3 shows the geometry and definition of variables to be

used in a numerical integration algorithm. From Fig. B-3 it can be seen

that:

r2 = ( x - x ) 2 + y 2 s in 2 B+(y + ycos3)2 , (B-4)
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(B-5)

and that

y2sin3/r . (B-6)

Thus Eq. (B-3) becomes:

L h/sin* yiy2sin
23F2 - it I dxi ' '

Given the coordinates of the observation point and the dimensions and

bevel angle of the seed source Eq. (B-7) can be written:

Fy sin23 £
F2 - -i / dxl

+ y1
2sin23+(y2+y1cos3)

2 . (B-8)

The numerical integration is carried out in N increments of Ax, and

M increments of Ay, where:

Axn = L/N (B-9)

and
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= h/Msing . (B-10)

The integral, can now be written approximately as a summation:

F2 y2sin g N M

2ir £ E

where

AxlAyl yl.T
,12 (B-ll)

x (B-12)

and

. (B-13)

A program was written to carry out the numerical procedure indi-

cated in Eq. (B-ll). The factor F is carried as a constant through

the numerical work. It is, however, proportional to the ion arrival

rate and the sputter yield of the seed material.

.F = R.J, cosg Y(3) (B-14)
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where R is the ion arrival rate in ions per unit area per unit time

at the substrate, the cosine of 3 takes into account the tilt of the

beveled edge with respect to the ion beam direction, and Y(3) is the

sputter yield of the seed material at the angle 3 in atoms per ion.

First the integration step size necessary to assure convergence

within one percent was investigated. The parameters used corresponded

to a realistic experimental arrangement: L/h = 8.0, 3 = 45°, x~/h =

4.0, and y2/h = 1.0. The results of calculating F2/F as a function

of N and M are given in Table 5-1.

Table B-l. Integrations with Various Increments of Area.

N

6

11

17

23

28

34

40

45

51

154

20

10

8

6

4

M

1

2

3

4

5

6

7

8

9

27

7

7

7

7

7

. . v>
3.0645;,x

2.8013 x

2.6867 x

2.6396 x

2.6164 x

2.6035 x

2.5955 x

2.5903 x

2.5867 x

2.5746 x

2.5957 x

2.5948 x

.2.5881 x

2.5489 x

2.3271 x

io-2 ;
io~2

io~2
-2

10

io~2 .
_2

10

io~2
_2

10
_2

10 .

io~2

io-2
_2

10
_2

10

io-2 " L - • • •
io-2
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Letting the N = 154, M = 27 value be the standard, this standard

is approached within 1% by letting N = 40 and M = 7. However, N

can be further reduced by a factor of 4 without sacrificing significant

accuracy. These values, N = 10 and M = 7, are appropriate when the

observation point y~/h is a unit distance, or greater, from the

source. If y~/h is decreased by a factor of two, accuracy can be

maintained by increasing both M and N each by a factor of two.

Other, similar adjustments would be appropriate as y2/h changes.

The seeding rate variation as a function of distance from the

center of the seed source is given in Table B-2 for the choice of

parameters: L/h = 8.0, g = 45°, x2/h = 4.0.

The data of Table B-2 are plotted in Figs. B-4 and B-5. The

seeding rate decreases rapidly near the source and falls off more

slowly at greater distances as shown in Fig. B-4. For typical dimen-

sions of seed source and substrate, the seeding rate can vary by one

or two orders of magnitude over the substrate. Both seeding rate and

distance are represented on logarithmic scales in Fig. B-5. The linear

portion at large distances from the source has a slope corresponding to

an inverse cubic variation with distance in agreement with the y«

dependence of Eq. (B-8). At small distances from the source, the

seeding rate from a source of semi-infinite extent tilted at an angle

B. ' .

The limit can be calculated by integrating Eq. (B-8) after changing

to suitable dimensionless variables: u = x../y2 and u = YT/YO-
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Table B-2. Seeding Rate along the Centerline of the Source.

y2/h

0.03125

0:0625

0.125

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

F2/F -

7.JD7 x 1Q~2.
v _2

6.81 x 10

6.32 x 10~2

4.18 x 10~2

3.77 x 10~2

3.41 x 10~2

3.10.x 10~2

2.82 x 10~2

2.59 x 10~2

2.38 x 10~2

2.18 x 10~2 "

2.01 x 10~2

1.85 x 10"2

1.71 x 10~2

1.58 x 10~2

1.47 x 10~2

1.37 x 10~2

1.27 x 10~2

1.19 x 10~2

1.11 x 10~2

1.04 x 10~2

9.70 x 10~3
_•}

9.09 x 10

8.54 x 10~3

y2/h

2.6

2.7

, 2.8

2.9

3.0

3.1

.. 3.2

3.4

3.5

3.6

3.7 .

3.8

3.9

4.0

8.0

16

32

64 :

128

256

512

1024-

2048

4096

F2/F

8.02 x 10~3

-37.55 x 10

7.11 x 1Q~3

6.71 x io~3

6.33 x 10~3

5.98 x 1Q~3

5.66 x 1Q~3

5.07 x 1Q~3

4.81 x io~3

4.57 x 10~3

4.34 x 10~3

4.12 x 10~3

3.92 x io~3

3.73 x 1Q~3

. = 8.70 x 10~4

1.37 x 10~4

1.83 x io~5

2.35 x 10~6

2.99 .x 10~7

3.77 x io~8

4.72 x io~9

5.92 x 10~10
•I 1

7.40 x IQ'̂

9 26 x 10~12
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S.OrXlO' L/h = 8.0
£ =45°

x2/h = 4.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from Source, yz/h

Figure B-4. Seeding rate-versus distance from the seed source along
the centerline. .. .
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the centerline (log-log plot).
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(F2/F>limit

2l~2
+ ucosB) I . (B-15)

Equation (B-15) can be integrated to yield:

(F2/F)limit = (i-cosP)/4 (B~16>

which can be evaluated for- 3 = 45°' as 7.32 x 10 . This value is

plotted in Fig. B-5 as the y2/h = 0 limit which the function

2
approaches very closely at small y /h.

Table B-3 lists calculated values for. F-/F obtained over a

regular mesh covering the substrate region for the same geometrical

parameters used for Table B-2. The data of Table B-3 are plotted in

Fig. B-6. Close to the seed source there is a strong variation with

lateral position dropping to only about one half the center value at

the extreme ends where flux contributions are being received from the

right or left side only. As the observation line is moved further from

the source the lateral variations diminish considerably because the

subtended angle of the seed source is then changed less when observed

from various lateral positions.

An Auger surface composition analysis done at various distances

from the shield location on a seeded sample .should .provide an experi-

mental verification of the calculated profile shown in Fig. B-4.
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Table B-3. Calculated Vaues for F_/F for Positions on the Substrate.

x2/h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x2/h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2.11

3.32

3.82

4.02

4.11

4.15

4.17

4.18

4.18

4.72

5.67

6.53

7.22

7.75

8.12

8.36

8.49

8.54

0.5

x 10~2

xiO-2

x 10~2

x 10~2

xiO-2

xiO-2

x 10~2

x 10-2

xiO-2

2.5

x 10"3

x 10"3

x 10"3

xiO-3

x 10"3

x 10"3

x 10"3

x 10"3

x 10"3

1.

1.33 *

y2/h

0

:10-2

1.86 x 10"2

2.20 x

2.39 x

2.49 x

2.55 x

2.58 x

2.59 x

2.59 x

3.

3.62 x

4.25 x

4.83 x

5.32 x

5.70 x

5.99 x

6.18 x

6.30 x

6.33 x

:iO-2

:iO-2

io-2

io-2

io-2

io-2

io-2

y2/h

0

io-3

io-3

io-3

io-3

io-3

io-3

io-3

io-3

io-3

8.92

1.16

1.37

1.51

1.60

1.66

1.69

1.71

1.71

2.85

3.28

3.69

4.04

4.32

4.54

4.69

4.78

4.81

1.5

xiO-3

x 10

x 10-
2

x IO-2 .

xiO-2

x 10~2

xiO-2

xiO-2

x 10"2

3.5

x 10"3

xiO-3

x 10"3

x 10"3

xiO-3

xiO-3

x 10"3

x "lO"3

x 10"3

6.35

7.89

9.20

1.02

1.09

1.14

1.17

1.18

1.19

•

2.29

2.60

2.89

3.14

3.35

3.52

3.64

3.71

3.73

2.0

x 10~3

x 10~3

x 10~3

x 10~2

x 10"2

x 10~2

x 10~2

x 10~2

x 10~2

•

4.0

x 10~3

x 10~3

x 10~3

x 10~3

x 10~3

x 10~3

x 10~3

x 10~3

x 10~3
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L/h =8.0
B =45°

1.0 2.0 3.0 4.0 5.0 6.0
Lateral Position, x8/h

Figure B-6. Seed flux on lines'parallel to the source at increasing
distances from the source.
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From seeding theory (see Chapter IV) we have shown that the

critical temperature varies inversely as the logarithm of the seeding

density times a constant.

E, 11600°K

•V* 25 + lnF (B-17)
s

for reasonable magnitudes of the variables (E, in eV). Table B-4

shows a possible variation of T with F .c s

Table B-4. Variation of Critical Temperature with Seed Fraction.

T
c

735°K

641°K

569°K

511°K

464°K

F
s

.0001

.001

'.01

.1
1.0

AT , '•c

94 °K

72°K

58°K

47°K

Thus, the variation in seeding density across a substrate can be trans-

lated into a corresponding variation in the critical texturing tempera-

ture across the substrate. Contours of equal critical temperature can

in theory be specified as to shape and position. If a substrate were

held at a temperature corresponding to a contour a certain distance

from the seed source, then locations between the source and that contour

would be textured and locations beyond would remain non-textured. Such

a texture boundary would be.convex, curved and symmetrical about the

centerline of the seed source. Silicon seeded with Mo has exhibited

textured regions suggestive of this effect.
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The technique presented here for calculating seeding rate can be

used to determine appropriate seed source geometries to be utilized

when uniform seeding is desired over an entire substrate to generate

uniform texturing. Such a possibility is the use of a wire mesh

normal to the beam direction.
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