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SUMMARY 

In support of the Department of Energy's Stirling Engine Highway Vehicle 

Systems Program, the NASA Lewis Research Center has converted a 7. 5-

kilowatt (10-hp) Stirling engine to a research configuration in order to obtain 

c'ata for validating Stirling-cycle computer simulations. The engine was ori

ginally built by General Motors Research Laboratories for the U. S. Army in 
1965 as part of a 3-kilowatt engine-generator set that was designated the 
CP U 3 ,C :'ound Power Unit 3). 

Baseline tests were run to map the engine over a range of heater- tube gas 

temperatures, mean compression-space pressures, and engine speeds with 

both helium and hydrogen as the working fluid. Tests were limited to the lower 
power levels because the original alternator and a resistance load bank were 

used and they were not capable of absorbing the full engine output power. 
Test results show that engine output and engine efficiency increased with 

lOcreasing pressure level. However, the relative gain in power and, particu

larly, the relative gain in efficiency decreased as pressure increased. The 
maximum efficiency for a given pressure level was obtained at intermediate 

speeds. Flow losses caused the efficiency to decrease at high speeds, and con
duction losses caused it to decrease at low speeds. 

The hydrogen power curves were more linear with speed than were the 
corresponding helium curves - an indication of the lower flow losses associated 

with hydrogen. The maximum power obtained with hydrogen was 4.48 kilowatts 

(6.0 hp) at 4.1 megapascals (600 psi) mean compression-space pressure; the 

maximum power output with helium was 3.92 kilowatts (5.25 hp) at 6.9 mega
pascals (1000 pSI). 

INTRODUCTION 

This work was done in support of the U. S. Department of Energy's (DOE) 

Stirling Engine Highway Vehicle Systems Program. The NASA Lewis Research 
Center, through Interagency Agreement EC-77-A-31-1040 with DOE, is respon
sible for management of the project under the programmatic direction of the 
DOE Division of Transportation Energy Conservation. 

As part of this effort, Lewis obtained and restored to operating condition 
a 7. 5-kilowatt (10-hp), sihgle-cylinder, rhombic-drive Stirling engine. The 

engine was originally built by General Motors Research Laboratories for the 
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u.s. Army in 1965 as part of a 3-kilowatt engme-generator set that was desig

nated the GPU 3 (Ground Power Unit 3). 

The GPU 3 Stirling engine test program at Lewis has three objectives: 

(1) To obtain and publish detailed engine performance data (I'hese data, 

along with the engine dimensions necessary for modeling, should 

assist in the development of stirling engine simulation techniques.) 

(2) To validate, document, and publish a NASA LeWIS Stirling computer 

model 

(3) To provide a test bed for evaluatmg new component concepts that evolve 

from supporting Stirling-engine technology activities 

The engine was converted to a research configuration so that the necessary 

data could be obtained. The engine-driven accessories from the original GPU 3 

package were removed and extensive instrumentation was added. Baseline 
tests were then run to map the engine over a range of heater-tube gas tempera
tures, mean compression-space pressures, and engine speeds with both helium 

and hydrogen as the workmg flUid. Tests, however, were hmited to the lower 
power levels because the original alternator and a reSIstance load bank were 

used and they were not capable of absorbing the full engine output power. 
This report presents results from these tests plotted as curves of engine 

output and brake specifIC fuel consumptIOn as functions of engine speed, mean 

compression-space pressure, and heater-tube gas temperature. An mstrumen
tabon system for measuring mdicated work IS also described and preliminary 
results are presented. 

The engine dImenSIOns necessary for modeling, as well as the results of 
volume measurements and steady-state flow tests, are presented m the appen

dixes. The detaIled data taken durmg these baselIne tests are included on mI
crofiche as part of thIS report. A sample data POInt and the format mformatIOn 
needed to Interpret the data are given In the appendixes. 

These data have been used to make the InItial direct comparIsons WIth the 

Lewis computer SImulatIon predICtions. The SImulatIOn code is descrIbed In 
references 1 and 2. Results of the SImulation comparIsons WIth the test data 
are given In reference 2. 

The tests and results covered in thIS report are also briefly described in 

reference 3. 
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APPARATUS AND PROCEDURE 

GPU 3 STIRLING ENGINE 

DeSCriptIOn and Background 

The GPU 3 Stirling engme as recently tested at Lewis is shown m figure 1. 

The engme was obtained from the U, S. Army Mobility Equipment Research and 

Development Center (MERDC) at Fort BelVOIr, Virgmia, A second, identical 

engine was also obtained through a loan from the Smithsonian Institution, This 

second engine has so far been used as a source of spare parts for the Army en

gine. Both engines were origmally part of Identical 3-kilowatt engine-generator 

sets built by General Motors Research Laboratories in 1965 for the U. S. Army. 

These units were completely self-contained and capable of operatmg with a var

iety of fuels over a broad range of ambient condItions. They were designed to 

use hydrogen as the working fluid. The GPU 3 engine is a single-cylinder, dis

placer engine with a rhombic drive and sliding rod seals. It is capable of pro

ducing a maximum engine output of approximately 7.5 kilowatts (10 hp) with hy

drogen working fluid at 6.9 megapascals (1000 psi) mean compression-space 

pressure. The piston swept volume is 120 cubic centimeters (T,3 in. 3). 

The engine obtamed from Fort Belvoir was initially torn down and restored 

to operating condition. It was then tested as part of the original GPU 3 with 
only those changes that were necessary to make the unit operable. Tests were 

run with both hydrogen and helium as the working fluid at varIOUS pressures and 

at the design heater-tube gas temperature of 6750 C (12500 F) and an engine 

speed of 3000 rpm. Comparisons were made WIth data taken by the Army m 

1966. These results and a deSCrIptlOn ot the Original GPU 3 engine components 

and systems are glVen m reference 4, 

Conversion to Research Engine 

The GPU 3 engme IS used primarily to provide data for modlfymg and vali

dating StIrlmg-cycle Simulation techniques, The Lewis Simulation that wIll di
rectly make use of these data is described m references 1 and 2. The followmg 

changes were made to convert the engme to a research conflguratlOn so that the 

required data could be obtamed. Where necessary, new parts (power piston, 

cooler-regenerator cartridges, dlsplacer shaft) were made and others (fuel noz

zle) were reworked to allow successful operation. Dimensional and volume mea-
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surements were completed to determine the engme dimenslOns necessary for 

modeling. Steady-state flow tests were made on the coolers, the regenerators, 
the cooler-regenerator cartridges, and the entire heater head in order to de

termme pressure-drop-versus-mass-flow-rate characterlstlCs. The engme di

mensions, volume measurements, and flow tests are described m appendIxes A, 

B, and C, respectively. The engme-driven accessorIes were removed, wIth the 

exceptlOn of the 011 system. Air, water, fuel, and workmg fluid were provIded 

from the faclhty support systems. These facility systems are dIscussed m the 

sectlOn TEST SETUP. The control system of the orlgmal GPU 3 was replaced 

WIth manual controls. 

Fmally, mstrumentation was added to the engine and faclhty systems m or

der to obtam an energy balance, engme temperature profiles, conduction losses, 

working-space gas temperatures and dynamlC pressures and to attempt to mea

sure indicated work. Instrumentation in the faClhty systems IS discussed m the 

sectlOn TEST SETUP. Instrumentation on the engine mcluded 32 thermocouples 

on the. cylinder assembly for measurmg surface temperatures; 15 thermocouples 

on the preheater, mcludmg three for measurmg exhaust temperature; six thermo

couple probes for measurmg working-flUId temperatures at varlOUS 10catlOns 
three miniature pressure transducers m the expanslOn, compression, and buffer 

spaces; and a shaft encoder to measure crankshaft angle. An mstrumentatlOn 

list and sketches showing measurement locatlOns are included m appendix D, 

TEST SETUP 

A schematic dIagram of the GPU 3 test setup IS shown m fIgure 2. Facihty 

support systems shown mclude fuel, aIr, coolmg water, 011, and workmg fluid. 

Also shown are the alternator and the reSIstance load bank that were used to ab
sorb the engme output. Numbers by the mstrumentatlOn symbols refer to the 
item numbers m table III 

The fuel system mcluded two external tanks that were pressurlzed WIth m

trogen: One tank, the startup tank, was used to supply fuel durmg engine startup 

and while a data pomt was bemg estabhshed" The second tank, the run tank, was 

used while data were being taken. Its weIght was recorded before and after each 

data pomt to determine the amount of fuel used. 

The mr system consIsted of two separate Imes to supply nozzle air for fuel 

atomization and combustlOn mr to the preheater inlet. Mass flow, pressure, and 

temperature were measured m each hne. Each supply could be controlled sepa

rately to the deSIred pressure or flow, 
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Clty water was used to supply cooling water to the engine and was not recy

cled through the engme. The water system consisted of three separate cIrcuits. 
The mam CircUlt provided flow through the coolers and around the cylinder. 

Separate lines cooled the buffer space and the fuel nozzle. Inlet water temper
ature was measured for the total flow. The flow rate and the temperature rise 

from the outlet to the mlet were recorded for each cIrcuit as well as for the 
total flow. Total water flow rate could be set to the desired value, but water 

inlet temperature was not controlled. 

The 011 pump remained engme driven as It was in the original GPU 3. The 
011 was cooled by a separate oil cooler and then recIrculated through the engme. 

Flow rate, pressure, inlet temperature to the engine, and temperature rise from 

the outlet to the mlet were measured for the oil circuIt. 
The system to provide the workmg fluid included an external gas-supply 

panel connected to hellum and hydrogen bottles so that It could supply eIther 

working fluid to the pressurizatIOn system. The pressurization system then 
supplied the working fluid to the engine. Mean pressure was measured in both 

the compression and buffer spaces of the engme. 

The origmal GPU 3 alternator and a separate resistance load bank were 

used to absorb the engine output power. In the GPU 3 engine-generator set, 

the alternator output voltage was regulated to a constant 30 volts at design con

ditions. This voltage regulator was removed and a fixed 28-volt fIeld voltage 

was used to increase thE' alternator capacity. The alternator was calibrated to 

define Its effIciency at variOUS ·speeds and output voltages. The orIgmal GPU 3 

package was deslgned for a 3-kilowatt output. Although the maximum possible 
alternator output was increased for these tests, the alternator was still not cap

able of the maximum engine output. Thus, these tests were limIted by the method 
of power absorptIOn. Primarily, the restrictions were maximum alternator cur
rent and load bank capacity. 

The GPU 3 test setup LS shown III figure 3. The engine and faCilIty systems 

Just deSCribed are shown on the right half of the flgure. The left half shows the 
slgnal condltioning equipment and the data recording systems. Steady-state data 
were recorded and printed out on a data logger. Dynamic data were taken with 
both an oscillograph recorder and an OSCIlloscope. 
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TEST PROCEDURE 

The desired test matrlX range for both the helium and hydrogen runs was 

as follows: mean compression-space pressure, 1. 4 to 6.9 megapascals (200 to 

1000 psih heater-tube gas temperature, 5950 to 7050 C (11000 to 13000 F); and 

engIne speed, 1000 to 3500 rpm. The actual range of the tests was determmed 

by the limitations due to the alternator and resistance load bank 0 The heater

tube gas temperature was measured with thermocouple probes mstalled Inside 

three of the 40 heater tubes and spaced circumferentlally around the heater 

head. The maximum reading of these three thermocouples was controlled to 

the deSIred temperature by adjusting the fuel flow WIth a needle valve. The 

coohng-water Inlet temperature was not controlled and varied about 5. 5 degrees 

CelsIus (10 deg F) over the series of tests. However, this temperature did re

main constant for any given test run. 

On each engIne startup, cooling-water flow was first prOVIded to the engine, 

and the mean compression-space pressure was set at approxImately 1.7 mega

pascals (250 psi). Combustion was then begun with No. 1 diesel fuel from the 

startup fuel tank. When the heater-tube gas temperature reached 6750 C 
(1250 0 F), the startIng cable was pulled to rotate the crankshaft and move the 

pistons. The engIne would then normally sustaIn operation. A reference point 

of 7050 C (13000 F) heater-tube gas temperature, no load, and 3000-rpm engine 

speed was established to verIfy proper engIne operation and to allow the engIne 

to reach operating temperatures. 
Generally, one curve at constant mean compresslOn-space pressure, 

heater-tube gas temperature, and cooling-water flow was run after each engIne 

startup. The curve consIsted of data POInts taken at engIne speeds varying by 
500-rpm mtervals. At each point, the reSIstance load was adjusted to estab

hsh the deSIred speed. The combustlOn airflow was set to maintain an approxi

mately constant air-fuel ratlO. After proper conditlOns were reached, the fuel 

run tank was valved to the engine. These conditions were then maintruned for 

15 mInutes. All steady-state data were recorded three times and dynamIC data 

once durmg this period. The startup fuel tank was then again valved to the en

gme and the next data POInt established. The fuel flow was determined from the 

initial and fmal weights of the fuel run tank. ThiS procedure was repeated for 

each data pOInt. 
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RESULTS AND DISCUSSION 

The mfluence of mean compression-space pressure and heater-tube gas 

temperature on engme output and brake speciflc fuel consumption (bsfc) are 

shown in flgures 4 to 9. AU curves are plotted with engine speed as the ab

SClssa. Examples of energy balances obtained on the engine are given in 

figures 10 and 11. All det&led data taken during these tests are included on 

microfiche in the back of this report. Appendixes D, E, and F give all the in

formation needed to understana the mlCrofiched data. A sample data point lS 
mcluded in appendlX F. 

PRESSURE EFFECTS ON ENGINE PERFORMANCE WITH HELIUM 

The effects of mean compression-space pressure and engine speed on en

gine performance at constant heater-tube gas temperature are lllustrated in 
figures 4 and 5 for helium working fluid. Engine output and bsfc versus engine 

speed are shown as a function of pressure at 6500 C (12000 F) and 7050 C 
(13000 F) heater-tube gas temperatures, respectively. Of the three steady

state data scans taken at each operatmg condltion, two were reduced and 
plotted. When both scans gave approximately the same results, only one 

symbolls shown plotted for that condition. The engine output was determined 
by measurmg the output power of the alternator and dividing this power by the 

alternator efficiency. 

The mcomplete curves at the higher pressure levels mdicate the limiting 

current capacity of the alternator and load bank. Thls limit establlshed the 
mimmum speed at which the engine could be operated for a given pressure. 
Also, because of this current limitation, the engine could not be operated at 

6.9 megapascals (1000 psi) at 7050 C (13000 F) heater-tube gas temperature. 
Finally, the maximum speed for the 1.4-megapascal (200-Pii) curve at 7050 C 
(13000 F) heater-tube gas temperature was only 2500 rpm. This was the high

est speed for whlCh the engine could sust&n operatlOn for thls pressure level 

with helium. 
For a constant pressure, the engine output and brake thermal efficiency 

tended to decrease at the higher speeds. This was primarIly due to the m

creasing flow losses through the heat exchangers. This effect was substantia
ted by the computer simulation predlctlOns. At the lower speeds, the conduc
tion and other flXed heat losses became a significant percentage of the heat in
put and caused the efficiency to decrease. Therefore, the efflCiency tended to 
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m3Xl.mize (minimum bsfc) at some intermedlate speed, as shown m figures 4 

and 5. 
For a given speed, the engine output and efficiency both mcreased with m

creasing pressure level. The mcreasmg output was due to more mass m the 

cycle, and the increasmg efflciency was due to the smaller percentage that the 

conduction and other flxed heat losses and the mechanlCal losses contributed to 

the heat mput. These effects on the efflCiency are shown with the energy bal

ances. However, the spacing between the curves shows that, as the pressure 

increased, the relative gam in power and particularly the relative gain in ef

flciency decreased. Part of this decreasmg efflClency gam can be attributed 
to the dimmishing effect had by the percentage of heat losses and the mechan

icallosses relative to the heat mput as the pressure mcreased. Thus, thls 

effect caused the efficiency to mcrease with pressure as mentlOned prevlOusly, 

but also to do so at a decreasing rate. In addition, as pressure increased, both 

power and efficiency appeared to be affected by heat-transfer limitations at the 

cold end of the engme. During testing, the compression-space gas temperature 

was observed to Increase with pressure at a fixed speed. For example, the 

compression-space gas temperature rose from 910 C (1950 F) at 2.8 mega
pascals (400 psi) and 3000 rpm to 1190 C (2470 F) at 6.9 megapascals (1000 

pSI) and 3000 rpm. Thus, the Carnot efficiency based on the gas temperatures 

was less for the higher pressure levels although the heater-tube gas tempera

ture and the cooling-water inlet temperature remained the same. 

The maxlmum power obtamed Wlth helium was 3.92 kilowatts (5.25 hp) at 
a mean compresslOn-space pressure of 6.9 megapascals (1000 psi). The mini

mum bsfc measured was 602 g/kW . hr (0.99 lb/hp . hr), whlCh corresponds 

to 13.9 percent brake thermal efficiency. 

PRESSURE EFFECTS ON ENGINE PERFORMANCE WITH HYDROGEN 

The effects of mean compresslOn-space pressure and engine speed on en

gine performance at constant heater-tube gas temperature are shown m figure 6 

for hydrogen workmg flUld. Engine output and bsfc versus eng me speed are 
shown as a function of pressure at 7050 C (13000 F) heater-tube gas tempera

ture. These data were taken over a smaller pressure range than were the 
helium data because the hlgher power output WIth hydrogen at a given pressure 

caused the limiting alternator values to be reached at a lower pressure level 

The hydrogen power curves are more linear with speed and peak out at a 

much higher speed than do the corresponding hellum curves. Also, the bsfc 



9 

curves are much flatter at higher speeds than are those for helium. These are 

inw.cations of the lower flow losses assoClated wlth hydrogen. 

The maximum engine output with hydrogen was 4.48 kilowatts (6.0 hp) at 

4.1 megapascals (600 psi) and 3500 rpm. The minimum bsfc was 492 g/kW . hr 

(0.811b/hp • hr) at 2.8 megapascals (400 pSl) and 2500 rpm. Tills corresponds 

to a brake thermal efficiency of 16.9 percent. 

EFFECTS OF HEATER-TUBE GAS TEMPERATURE 

ON ENGINE PERFORMANCE 

Test data were taken to determine the effect of varying heater-tube gas tem

perature. For a constant mean compreSSIOn-space pressure, tests were run at 

heater-tube gas temperatures of 5950
, 6500

, and 7050 C (11000
, 12000

, and 

13000 F). Figures 7 and 8 show engine output and bsfc versus engine speed at 

these temperatures for helium at 2.8 and 5.5 megapascals (400 and 800 psi), 

respectively. Figure 9 shows the same for hydrogen at 2.8 megapascals 

(400 psi). The engine output and efficiency both mcreased WIth increasing 

heater-tube gas temperature, as was expected. 

ENERGY BALANCES 

Two examples of an energy balance on the engine operatmg with helium are 

shown in figure 10. Both graphs are for a heater-tube gas temperature of 

6500 C (12000 F) and an engine speed of 3000 rpm. The first is for an engine 

output of 1. 05 kilowatts (1. 4 hp) at a mean compression-space pressure of 

2.8 megapascals (400 psi), the second 1S for 3.9 kilowatts (5.2 hp) at 6.9 meg

apascals (1000 pSl). The bar graphs mdicate that more than 98 percent of all 

heat mput was accounted for at these two pomts. More than 93 percent of the 

input energy was accounted for m most heat balances taken during these tests. 

As shown in f1gure 10, the exhaust losses and the cycle heat rejection to 

the cooling water accounted for most of the energy losses. The cycle heat re

Jection was found by measurmg the heat flow to the water passmg through the 
coolers and subtracting the conduction losses. The heat loss to the exhaust 

gas was substantial because of the rugh alr-fuel ratio (about 40 for the points 
shown m fig. 10). This tended to adversely affect the overall engme efflCien

cies. In add1tion, exceSS1ve exhaust temperatures exitmg the preheater md1-
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cated poor preheater performance, whlCh would further decrease the measured 

efficIencIes. 
For any gIven heater temperature, the conductlOn losses through the engme 

were approXImately constant. Also, the radIation and convectlOn losses and the 

nozzle water losses mcreased much more slowly WIth pressure than dId the heat 

mput from the fuel. Consequently, these losses accounted for a greater percent

age of the heat mput at low pressure levels, where the engme output was low. 

The bar graphs mdicate that the percentage of loss due to conductlOn, radIation 

and convectlOn, and nozzle water losses at 2.8 megapascals (400 pSI) was almost 

double that at 6.9 megapascals (1000 pSI). Also, the heat to the oil and buffer 

water can be taken as an mdicatlOn of the mechanlCal losses m the engine. The 

graphs show that for a constant speed these losses, too, were a larger percent

age of the heat mput at the lower pressures and were especIally slgniflCant when 

compared Wlth the engme output. 

Energy balances as a functlOn of engine speed for hehum working fluid are 

shown in figure 11 for a heater-tube gas temperature of 6500 C (12000 F) and a 

mean compresslOn-space pressure of 2.8 megapascals (400 pSI) To determme 

the actual magnitude of the losses, refer to the engine output graphed in fig-

ure 4. For these balances, more than 95 percent of the energy was accounted 

for at each pomt although a value shghtly over 100 percent was measured at 

1000 rpm. 
The conductlOn, radIation and convectlOn, and nozzle water losses were ap

proximately constant over the speed range for any glVen heater-tube gas temper

ature and pressure. Because the heat input from the fuel mcreased WIth speed, 

these losses represented a greater percentage of the heat mput at the lower 

speeds, as IS verified by the energy balance. As a result the engme efflClency 

began to decrease at the lower speeds, as mdlCated prevlOusly m the bsfc curves 

and shown m the engine output curve of the energy balance. 
The heat to the 011 and buffer water was nearly a constant percentage of the 

heat mput throughout the speed range. It became partlCularly slgniflCant at rugh 
speed for these hellum curves, where flow losses caused the engine output to de

crease substantially. 

The cycle heat re]ectlOn and exhaust losses agam accuunted for most of the 

heat loss. The exhaust losses vaned because of a fluctuatmg au-fuel ratio that 

was espeClally high at the lowest speed, For compansons with the computer 
slmulatlOn, the exhaust losses and other burner losses were subtracted from the 

heat input from the fuel to obtam the heat mput mto the engme. Thus, mamtain-
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mg a constant rur-fuel ratIo became less important for computer valIdation pur

poses as long as the exhaust losses could be accounted for. 

INDICATED-WORK MEASUREMENT 

DeSCriptIOn of Measurement System 

Initial attempts to determme the mdicated work produced by the worklllg . 
flUId m the engine were made by measurmg the pressure-volume relatIOnships m 

the working space. Pressure-volume dIagrams were obtained for the expansIOn 

and compreSSIOn spaces; and the indicated work was expansion work mmus com

preSSIOn work. A pressure-volume dIagram was also obtained for the buffer 

space and compared with the heat reJ ection to the buffer cooling water. 

The dynamic pressure measurements were made with mmiature pressure 

transducers in the expansion, compression, and buffer spaces. The 

compression- and buffer-space transducers were approximately flush mounted. 

The expansion-space transducer was installed at the end of a O. 16-centlmeter

(O.063-m.-) mside-diameter tube about 15.2 centimeters (6 m.) long. This 

tube was then mserted llltO one of the four oversIzed heater tubes that led into 

the expansion space and that were specially modifIed m the Original GPU 3 de

SIgn to accept instrumentatIOn. The necessary volumes were predetermllled and 

referenced from the crankshaft angle. The crankshaft angle was measured WIth 

respect to displacer top-dead-center by the shaft-angle encoder shown m fIg

ure 12. The encoder was mounted on the accessory drive shaft of the origlllal 

GPU 3 and was capable of resolvmg the crankshaft angle to O. 35-degree mcre

ments 
The recording system for the pressure-volume measurements 1S shown m 

figure 13. The crankshaft-angle SIgnal was mput to the module rack located 

above the SWitch panel. From this SIgnal, the functIOn generator produced a 

marker channel that was used to determine the phase angles of the pressure 

peaks. The marker channel could be recorded on the OSCIllograph and dIS
played on the OSCIlloscope. The volume generator used the crankshaft angle 

and the assoCiated volumes stored mSIde the volume generator module to pro

duce the volume SIgnal for each of the three spaces. 

The switch panel received the pressure and volume SIgnalS as mput. The 

switchmg arrangement was used to select WhICh combination of pressure and 

volume to display on the scope. The normal procedure was to photograph each 

of the three pressure-volume diagrams from the scope for each operating con-
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dition. A plammeter was then used to determine the area Inside each dIagram 

and, thus, the work. 

The indicated work was also measured from the compression-space pres

sure versus the total workIng-space volume (expanslOn plus compreSSlOn vol

ume). Tills pressure-volume diagram could be displayed on the oscilloscope. 

In addItion, the IMEP module, developed at LeWls and shown In fIgure 13, nu

merically Integrated the pressure-volume diagram to obtaIn the work in terms 

of indicated mean effective pressure (IMEP). To perform the integration, the 

module used the compression-space pressure and the derlVative of the total 

working-space volume stored in Its memory as a functlOn of crankshaft angle. 
The value of IMEP calculated and dIsplayed was an average value obtaIned 

over 100 engine cycles. An IMEP value for each cycle was also available to 

be recorded on the oscillograph. 

IMEP modules will soon be avaIlable for determimng the work m the IndI

VIdual spaces (expanslOn, compresslOn, and buffer), and other modules WIll be 

available to determine the pressure maximums and mimmums and theIr phase 

angles. Reference 5 provIdes more Information on thIS type of mstrumenta

tion system. 

Prehminary Results of IndIcated-Work Measurements 

Several of the prehmInary results of IndlCated-work measurements are 

shown In fIgures 14 and 15. Figure 14 illustrates the pressure-volume diagrams 

for the expansion and compression spaces for helium working fluid at a heater

tube gas temperature of 6500 C (12000 F), a mean compresslOn-space pressure 

of 2.8 megapascals (400 pSI), and an engine speed of 3000 rpm. FIgure 15 shows 

the results at the same operating conditions for hydrogen workIng fluid. 

Each dIagram gives the indlCated work, the pressure swing, and the loca

tion of the 90-degree Intervals with displacer top-dead-center as a reference. 

These 90-degree locations indicate that the expansion-space dIagram was being 

traced clockwise (pOSItive work) and that the compression-space diagram was 

beIng traced counterclockwise (negative work), as would be expected Abso

lute values of the pressure maximums and mimmums could not be determIned 

because of zero shlfts of the pressure SIgnals caused by temperature effects 

on the mimature transducers. 
The helium pressure-volume diagrams yielded an Indicated power of 2. 31 

kilowatts (3.10 hp). The indicated power from the heat balance was 2.28 kilo-
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watts (3.05 hp), as calculated from the heat lllto the gas minus the cycle heat 

reJection. The heat into the gas was found by using the heat lllput from the 

fuel and subtractlllg the exhaust, radiatlOn and convection, nozzle water, and 

conduction losses. The cycle heat rejection is defllled m the section ENERGY 

BALANCES. The engine output (brake power) was 1. 05 kilowatts (1.4 hp). 

The hydrogen pressure-volume diagrams YIelded an llldicated power of 

3.47 kilowatts (4.65 hp). The llldlcated power from the heat balance was 3.46 
kIlowatts (4.63 hp). Another method of comparing the hydrogen diagrams was 

to use the mechamcalloss curves derived from General Motors motorlllg 

tests of the GPU engllle Wlth hydrogen as the working fluid. Motorlllg curves 

for hellum were not avaIlable. The hydrogen motoring data are given in ref

erence 6. The mechanical losses for this operating conditlOn from the motor

ing data were approximately 1.16 kilowatts (1. 55 hp). Adding thIS to the Lewis 

measured engme output of 2.41 kIlowatts (3.23 hp) yielded an indicated power 

of 3.57 kilowatts (4.78 hp). Thus, the results from each method for these op

erating conditions are III agreement and appear to be reasonable values for the 

llldicated work 0 

The overall results obtallled are preliminary and do not agree as well for 

every point as for those that are shown. There are problems associated with 
sensitivity changes of the pressure transducers due to temperature effects and 

with accurately locatlllg a crankshaft-angle reference. Work is proceedlllg to 

alleviate these problems III future testing. Also, mechanical losses will be 

determined by motorlllg tests to better ascertain the accuracy of the indicated

work results. 

CONCL UDING REMARKS 

The data from these tests are bemg compared directly WIth the LeWIS 

Stirling-cycle SImulation code. These comparIsons are being made to md m 

determining the prImary reasons why predictions and experimental observa

tions dIffer. 
The detmled test data are included on miorofiche III the back of thIS report. 

It is hoped that making available the combination of detmled test data and the 

corresponding engllle dImensions necessary for modeling WIll further the de

velopment of Stirling-cycle computer simulatlOns. All information needed to 
understand the mlCrofiched data IS lllcluded ill the appendlXes. 

Prehmlllary results from the mdicated-work measurement system were 
satisfactory and mdlCate that this work should serve as a good basis for 
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further refining this useful measurement techmque. The uncertamty, m com

parison with simulation predictions of engme output, associated wIth accurately 

specifying the mechamcal losses could be eliminated by directly measuring the 

indicated power developed by the engine. 

Future test work with the GPU 3 engine will mclude mapping the engme at 

the higher power levels with a dynamometer. Motoring tests will also be run 

to aid in determining the mechamcal losses. 

SUMMARY OF RESULTS 

The GPU 3 Stlrlmg engme has been convertep. to a research configuratIOn. 
The engine was mapped over a limited range at heater-tube gas temperatures 

from 5950 to 7050 C (11000 to 13000 F), mean compression-space pressures 

from 1.4 to 6.9 megapascals (200 to 1000 psi), and engine speeds from 1000 to 

3500 rpm with both hydrogen and helium as the workmg fluid. The major re

sults obtained from these tests are as follows: 

1. Engine output and engine efficiency increased with increasing pressure 

level. However, the relative gain in power and, particularly, the relative 
gain in efficiency decreased as pressure increased. ... 

2. The maximum efficiency (minimum brake specific fuel consmiption 

(bsfc» for a given pressure level was obtamed at intermedIate speeds. Flow 

losses caused the efficiency to decrease at hlgh speeds, and conductlOn losses 

caused it to decrease at low speeds. 
3. The hydrogen power curves were more hnear wlth speed than were the 

correspondmg helium curves - an indication of the lower flow losses associated 

with hydrogen. 

4. An instrumentatlOn system was developed to measure the indlcated work 

of the engine. ThIS measurement will allow direct comparison With the indicated
work predicted by the computer simulation. Thus, accurate knowledge of the 

engme mechanical losses will not be necessary for the engme output comparison. 

5. The m8.Xl.mum power obtained with hydrogen was 4.48 kilowatts (6.0 hp) 
at 4.1 megapascals (600 psi) mean compression-space pressure and 7050 C 

(13000 F) heater-tube gas temperature. The minimum bsfc was 492 g/kW . hr 

(0.81 Ib/hp . hr). 

6. The maximum power obtamed With helium was 3.92 kIlowatts (5.25 hp) at 
6. 9 megapascals (1000 psi) mean compression-space pressure and 6500 C 

(12000 F) heater-tube gas temperature. The minimum bsfc was 602 g/kW . hr 

(0.99 lb/hp . hr). 
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APPENDIX A 

GPU 3 ENGINE DIMENSIONS AND PARAMETERS 

This appendlX gives the GPU 3 Stirlmg-engine dimensions and parameters 

that are necessary to model the engine for a computer simulation. The pri

mary engine dimensions as they apply to the test data reported herem are 

listed m table I. Table II gives a breakdown of the various dead volumes in 

the engine. The dimensions needed for calculating heat conduction through 
the cylinder and regenerator housings are shown in figure 16. Also shown in 

this figure are the thermocouple locatIons for these measurements. The dimen

sions needed for calculating conduction losses through the insulation covers are 

included in table I. 
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APPENDIX B 

GPU 3 VOLUME MEASUREMENTS 

The gas volumes in the working and buffer spaces of the GPU 3 engme were 

measured by a gas-displacement method. These data were then used to verIfy 

the volumes in the NASA Lewis computer slmulatlOn. So that the measurements 

could be made, an O-ring was first mstalled around the power piston to prevent 

leakage from the workmg space to the buffer space. The power pIston was set 

at top-dead-center to allow measurement of mmlmum workmg-space volume 

and mwnmum buffer-space volume. 

A burrette was connected to the unknown gas volume and to a water reser

VOlr. A known volume of gas was then dIsplaced and the pressure rise meas

ured. A second burrette was mstalled m the water lme to measure the pres

sure differentIal .D.P. The unknown gas volume was then found from PV = Con

stant (Boyles' law). ThIS method was based on that reported m reference 7. 

The calculation procedure was as follows: 

P V - P V mltIal mitIal - fmal fmal 

P ambIent (V unknown + Vburrette-imtial + V connecting tubing) = 

(P . + .D.P) (V + V + V ) ambIent unknown burrette-fmal connectmg tubmg 

where 

Vburrette-fmal < Vburrette-Imtial 

Typical values for the workmg-space volume measurement were 

P ambient = 1039 cm H20 (34.1 ft H20) 

3 3 
Vburrette-mitial = 17.55 cm (10 07 m. ) 

Vburrette-fmal = 9.25 cm
3 

(0.564 in. 3) 

V connecting tubing = 21. 17 cm 
3 

(1. 292 in. 3) 

Vunknown = 234 cm
3 

(14.28 in.
3
) 
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Several readings were taken for each measurement and then averaged to 

arrIve at the fmal value. 

Working space 

236.1 cm3 (14.41 m. 3) 

233.0 cm3 (14.22 m. 3) 

234. 0 cm 3 (14. 28 m. 3) 

Buffer space 

512.1 cm3 (31. 25 m. 3) 

520.8 cm3 (31.78 m. 3) 

528.0 cm3 (32.22 m. 3) 

522.3 cm3 (31.87 in. 3) 

520.6 cm3 (31. 77 in. 3) 

234.3 cm3 (14.30 in. 3) average 520.8 cm3 (31.78 in. 3) average 

The volumes calculated from dimensional measurements and given m 

table II mclude an increase in the working-space volume of about 2.46 cubic 

centimeters (0.15 in. 3) because of a minor engme modificatien that was made 

after the volume measurements were completed. Thus, a "corrected" mea

sured value of (234.3 + 2.46) = 236.8 cubic centimeters (14.45 in. 3) for the 

mmimum total working-space volume should be compared with the 232.4 cubic 

centimeters (14.18 in. 3) shown in table II. There is a difference of about 

2 percent between the measured and calculated values. 
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APPENDIX C 

GPU 3 STEADY-STATE FLOW TESTS 

Steady-state flow tests were made on the coolers, the regenerators, the 

cooler-regenerator cartridges, and the entire heater head to determine the 
pressure-drop-versus-mass-flow-rate characteristics. Tests were run with 
8lr at mass flow rates that gave apprmamately the same Reynolds numbers 

as actually occur in the engine These Reynolds numbers were determmed 

from the NASA LeWIS computer simulation described in reference 1. The m

let au temperature for these tests was about 270 C (800 F) For each compo

nent, measurements were made for flow m both directlOns 

Flow tests were run both before and after the engme tests discussed m 

thIS report. FIgures 17 to 20 give data taken before the test runs (new cooler

regenerator cartridges). Figures 17 and 18 show pressure drop versus mass 
flow rate for the coolers and regenerators, respectIvely. A range of data IS 

shown in each figure that represents test results for 22 coolers and 16 regen

erators. 
Results for the assembled cooler-regenerator cartrIdges are gIven m fIg

ures 19 and 20. Figure 19 shows a range of pressure drop versus mass flow 
rate for the nine cartridges that were tested. Measurements for reverse flow 

and forward flow for one cartridge are shown m figure 20. Forward flow is de
fined as flow from the cooler to the regenerator. 

Flow tests were made on the heater head (complete heat-exchanger CIrcuIt) 

and on three mdividual cartridges after the engme tests were fInIshed. The 

cartrIdges had accumulated 80 hours of run time FIgure 21 gives pressure 

drop versus mass flow rate for the heater head for flow in both directlOns. It 

also shows the range of pressure drop for the three cartridges. The difference 
between the two represents the losses m the heater tubes and the losses due to 

entrance and eXIt effects for the varIOUS heat exchangers. For the heater head, 
the abscissa corresponds to the flow rate through Just one of the cooler
regenerator paths This was determmed by dividmg the total 8lrflow through 
the heater head by 8. The fIxture used to flow test the heater head IS shown 

with the heater head m figure 22. 

Finally, pressure drop for the cooler-regenerator cartridges when they 
were new IS compared WIth that obtained after 80 hours of run tIme m fIgure 23. 

The figure mdlCates that by the concluslOn of the engine tests the pressure drop 

had mcreased by about one-thud from what it had been for the new cartrIdges. 
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Also, the spread of pressure drop for the three cartridges had mcreased. To 
make this plot, the data for the new cartridges were corrected from 150-psi 
mlet pressure to 115 psi to allow comparison to the 80-hour data. 

The primary reason for the increased pressure drop was apparently oil 
contamination of the regenerators. Figure 24 shows the three cooler
regenerator cartridges that were removed from the heater head after the engIne 

tests. 011 deposits found on the outside of the regenerator cans indicate that 
oil was migrating into the working fluid. Also, rust was present in the work
ing fluid, as indicated by rust deposits on the cooler-end-caps at the exits of 
the cooler tubes The power pIston was coated wIth rust. 
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APPENDIX D 

GPU 3 INSTRUMENTATION 

All measurements made m thIS serIes of engme tests are described m 

table III Included for each are Item number, mnemomc, parameter descrip

tion, mstrument type, and range The ranges lIsted are the full-scale m

strument range for pressure gages, pressure transducers, and flowmeters 

and the measurement range for thermocouples. All mstruments read out m 

U. S customary umts. In the data reductlOn program, data are prmted out 

m both U.S. customary and S.I umts. 

Thermocouple locatlOns on the preheater, the cylInder, and the regenerator 
housmgs, respectively, are shown m fIgures 25 to 27. For dimenslOns needed 

for conductlOn calculatlOns associated wIth these temperature measurements, 

see fIgure 16. FIgure 28 gIves the heater-tube metal and heater-tube gas 

thermocouple locatlOns. A detatled schematic of the engme assembly IS glVen 

m reference 4. Fmally, figure 2 is a schematIc of the test setup and shows 

the mstrumentation locatIons in the faCilIty support systems. All measure

ments are referenced by Item number and also, wIth the exceptlon of fIgure 2, 
by mnemonic. 

Several mstrumentatlOn locatlOns do not show m these fIgures, mcludmg 

those for the msulation cover temperatures and the compresslOn-space gas 
temperature. The dImenSIons necessary for calculatmg conductIOn losses 
through the msulation covers are glVen in table I. The compresslOn-space 

gas temperature IS measured m the connecting passage between the cooler 

(cartrIdge 3) and the cyhnder. 
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APPENDIX E 

GPU 3 CALCULATIONS AND DATA REDUCTION PROGRAM 

GPU 3 CALCULATIONS 

TIns appendiX contains a partial listing of the data reductIOn program used 

to obtain calculated quantities from the test data mput Table IV defmes all 

calculatIOn parameters that are printed out as part of the final data output. All 

calculatIOns were done in U S customary units and then printed out m both 

U S customary and SI umts Table ITI preVIOusly defmed the input data to the 

program Finally, table V deSCribes the constants used in the data reductIOn 

The conversions to SI umts and the Write statements for both sets of units are 

not shown in the program listmg. 

In addItIOn to the mformatlOn m the tables, several points sould be clar

ified concerning the data reduction program. For zero power out of the alter

nator. the reqUlred er;tgine output to overcome alternator losses at various 
speeds was determiiled dunng alternator calibration. That part of the pro

gram from the statement preceding statement 21 through statement 33 defines 

this engine output Also, the following mtermediate quantities were calculated 

from equations linearized over the listed temperature range: 
RH01: cooling-water denSity, lbm/ft3 (500 to 1000 F) 

RH02: oil densIty, Ibm/ft3 (800 to 1600 F) 

CP2: speciflC heat of 011, Btu/Ibm OR (800 to 1600 F) 

CONVY: gf3p2/11-2, parameter for convection heat loss calculation, 
1/ft3 

0 OF (1000 to 200 0 F and 2000 to 3000 F) 

where gf3p2/11-2 IS part of the Grashof number 

CONVK: 

GASK: 

SSK: 

thermal conductivity of rur, Btu/hr ft OR (1000 to 3000 F) 

thermal conductivity of working fluld, Btu/hr ft. OR 

(2000 to 8000 F) 

thermal conductivIty of stamless steel, Btu/hr . ft . OR 

(2000 to 6000 F and 6000 to 12000 F) 

Finally, the equatIOns under the comment card" Calculation Change Due to 

MIssmg Data" are used to correct for a regenerator housing temperature 

sensor, TRH2M, that failed durmg the tests and thus affected the conduction 
calculatIOns. 
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GPU 3 DATA REDUCTION PROGRAM 

DIME~SION RUNIDC21 
1 REAL lHV,NAFLO.M[ANCP.MEANBP 

REAL IMEPT.IND.T,JPWR.INDEFF 
REAl L SHUT 
REAO'5,Z.EN~=100u) 

L fORMATC2X,'~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYXYXYXXXXXXXXXXXXXX 
lXXX') 

READ(S,111RUNIO 
71 fOR"'AT (6X .7A6) 

READ'S.3) RUNTIM.TA"'8,TGOUH2.PHSU~,POIL.pFNOZ.PWATEP,PCnATR. 
lPNOAIR,RLOAO.TALTH.TALTD 

3 fORpotlT1l2f6.1I 
READ(S,3) TfINN,TAINN,TlINP~,TOILIN,TCWIN.TOELO,TOLWT.TOLWC, 

ITOLWB,TOWFV,TGBUf,TGCOHP 
REAOCS,3) TGEXP,TGOUMI.TEXhOI,TEXH02.TEXH03.TPHOTI.TPHOTZ, 
ITPHOT3,TPHOPl,TPHOB2,TP~O~3,TPHITl 

READtS,31 TPHITZ,TPHIT3,TPHIB1,TPHIBZ,TPHTB3,TR~IT,TRHZM, 

1TRH3B,TRHIfC.TRHSC,TRH6C,TRH1C 
READtS,3) TRHSTI,TRH9"'I,TRHIOB,TCYLIT,TCYlZ,TCYL3,TCYLIf,TCYLSB, 

ITCYL6C.TCYL1C,TCYL8C,TIC1T 
READtS,3) TICZB,THTIOT,THT2D",THT30B,THTIIPT,THT~R8,THT6C,THT1C, 

ITHT8C,THT9T,THT10B,THTllE 
READ'S.3) THT1ZR,MEANCP,potEANBP,lMP,VOLT,RPM,CWflOT,CWFLOC,CWFLOB, 

lCWFLFV,OILFLO,FFLO 
READtS,31 ClFLO,NAFLO,ALTEFF,TGOU"'3.IMEPT,PDCOpotP,POEXP,POAUF, 

lAMINCP,A"'lXCP,AMINEP,AMlXEP 
RE AD CS,3)AMIN8P,AMAXBP,DMARK,GMARK 
N=O 
LHV=lSS811. 
CP 1 = 1. 00 
VSWEPT = 1.36 
CP3=.Z5 
VT=1.Z9S 
AI =.00 lit 1 
A2=.0036S 
A3=.0069S 
AII=I.133 
Cll=.0333 
CL2=.0392 
CL3= .0938 
CLII=.0333 
Cl5=.11l3 
Cl6=.01t11 
RI1=.1I54 
RI2=1.3f! 
RO=.S21 
Rl=.II9S 
RZ=1.62 
R3=1.5b 
RII=1.53 
01=.8511 
Hl=.6I1b 
VF= 1.0 
EMM=0.5 
PR=0.1Z 
OSHUT=Z.15 
STROKE=1.239 
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5S. CL[AR=G.Ot 
59- lSHUT=1.525 
60. C OVERAll QUANTITIES 
61. 
62. 
f 3-
64. 
b5-
bb-
67. 
b8. 
69. 
70· 
71* 
72. 
73. 
74-
75. 
76-
77-
78. 
79. 
SO. 
81* 
82. 
83. 
811. 
85. 
86. 
87. 
88. 
89-
90. 
91-
92. 
93* 
911* 
95. 
96* 
97· 
98. 
99. 

100. 
101· 
10Z. 
103* 
lOll. 
105. 
106* 
107. 
10S* 
109. 
110. 
111* 
llZ* 
113* 
1111* 
115. 
116* 

PWRIN=FFlO.lHV/2543.11 
PWRAlT=VOlT*AMP/7Ilb. 
IFI PwRAlT'21.22.21 

21 PWROUFPWPAl TllAlHFf+.CuOI t*lOO. 

GO TO 31 
22 IfCRPM-3250'23.24.211 
24 PWROUT=.35 

GO TO 31 
23 IFC~P"'-275(jt25.26.26 
26 PWROUT=.27 

GO TO 31 
25 IfCQP"'-225u'27.28.28 
28 PWROuT =.20 

GO TO 31 
27 IFCRPM-17~u'29.32.32 
32 PWROUT=.17 

GO TO 31 
29 IFIRPM-125r'33.311.311 
311 PWROUT=.11 

GO TO 31 
33 PWROUT=.07 
31 BRKffF=PWROUT/PWRIN.I00. 

RHOI=CTCWIN+1I59.67'.-.0077+b6.311 
QCWCO=CWflOC.PH01*CPl.TOlWC/317.08 
BMEP=PWPOUT*33000./RP"'*12./VT 

10 BSfC=FFlO/PWROUT 
15 TRATIO=CTGCOMP+1I59.67'/CTGEXP+IIS9.67, 

AfRAl=ICAFlO-60.+NAFlOI/fFlO 

C HEAT BALANCE 
QIN=PWRIN.33QOO./PP'" 
WRKOUT=PWROUT*33000./RP'" 
RH02=IIOIlIN+1I59.b71--.03I1bP+7S.1I11 
CP2=l2.*lTOIlIN+1I59.671+TOElO'/Z.*.OOOIl677+.1q5~ 
QOIlC=OIlFlO*RHO~.CPZ*TOElO*lOIl./RPM 

TAEXHO=CTEX~01+TEXHOZ+TEXHO!'/3. 
QEXHC=llfFlO+NAflO,/60.+CAflO,*778.*CP3.lTAExHO-TAINPH,/RPM 
QCWTOC=CWFlOT*PHOl*CP1*TOlWT*10'./RPM 
QCWCOC=OCWCO.33000./RPM 
QCWBC=CWFlO~*RHOI-CPl*TOlW8·IOII./RpM 
QCWFVC=CWFlFV.RHOI_CPl·TOWfV·lOII./RPM 
TAPREH=CTPHOTl+TPHOT2+TPHOT3+TPH081+TPH08Z+TPHO~~"6. 

QRAOC=6.9758E-u8-01*H1*Vf*lEMM*,TAPREH.1I59.67, •• '-E"'M*ITA"8+1159.67 
1'**II'/RPM 

TACONV=ITAPPEH+TAMBJ/Z. 
IFCTACONV-200'99.99,98 

98 CO~VY='(TAPpEH+TAM8+2.*_S9.b7'/Z.*-.OOIl06+3.53'*l.E06 
GO TO 97 

99 CONVY='lTAPPEH+TAM8+Z.*,S9.67"Z.*-.0091+f.85'*1.E06 
97 CONVK=lTAPR£H.TA"B+Z.*IIS9.b7"Z.*Z.E-OS.II.Z07E-~3 

CONVH=CONVK*.555/Hl*,PR*Hl**3*CONVY*,TAPRfH-TAMB,,**.25 
QCONVC=CONVH*AII*lZ.971*'TAPPEH-TAM8'/RPM 
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~UN~CC=CIN-rcwcnC-OC.BC-CC.FVC-WRMOUT-OOIlC-OfXHC-QPAOC-QCONVC 
C CO~OUCTION Lossrs 

TI=fTphlT·TPH2M'/2. 
CALL CONDMITl,SSKll 
~RHl=Al/CLl·SSMl*ITRHlT-TPH?MI 

T2=ITRHZH·TPh3BI/Z. 
CALL CCNDMIT2,SSM21 
CPH2=6.Z831~.SS~2.Rll.,pl-krl.I1RH2~-TRH3r"144./CL?/'lOG 

1 I 1 R 1 -R 11 ) * , P C+ R I 1 1/ f R 1 + P 11 1/ I R 0 -R I 1 I , 
13= ITR~eTI.TRH9~I 112. 
CALL COND~IT3,SSK3' 

~RH3=Al/Cll.SSM3.ITPH8TI-TRH9~II 

TII=ITRH9HI+TkHI0~'/2. 

CALL CONDMIT4,SSK4' 
QRH4=0.Z831P.SSM4.RIl*'RI-~CI.ITRH9MI-TRHlORI/1411./rLl "LOG 

I I fRI-RIl I*IRC+RI lIlIRI.Plll/(RD-RJ 1" 
TS=fTCYL3.TfYL41/Z. 
CALL CC~DMIT~,SSM51 
~CYll=6.2831B*SSMS*PI7*IR3-P21.ITCYl3-TCYl4"144./Cl31AlOG 

lICR3-RI21*CP2+RI21/IR3+RI21/,R2-RJ211 
Tb=ITCYl4+TfYL5BI/2. 
CAll CONDKITb,SSKbl 
QCYl2=0.2831a.SSKb-RI2.IR4-P3).CTCYl4-TCYl5~)/14"./Cl4IAlOG 

ICCR4-RI2)·IP3+RI2)/CR~.RI21/CR3-RI2)) 

T7=ITICIT.TIC281/2. 
CAll CONDKIT1,SSK11 
QINSC=A3/Clo.SSK1*ITIClT-TIC1B) 
T8=CTGCOMP.TGEXPI/l. 
CAll CONDKIT8,SSKel 
ODISP=A2/Cl~·SSK8.ITGExP-TGCOMPI 

C THERMAL CONDUCTIVITY or WOR~ING FlUID:HElIuM:O,HyOROGEN:1 
IFCGMARKI82,6I,8Z 

81 GASK=6.8S0E-CS*,TCYL3.4SS.6 7 .TCYlS&+4S9.b7'/Z.+O.OS401 
GO TO 83 

82 GASM=I.063[-04*ITCYl3.4~9.67+TCYL5B·4S9.b7)/2.·n.OS411 

83 OSHUT=GASK*3.141S9*OSHUT*STPOKE.*2.cTCYl3-TCYl5AJ/CA.*CLEaR 
1*lSHUT*I2.1 
QCO~OT=IORHI.ORH31.~./2.+0CYll·CSHUT+OINSr+OoJSP 

QING=PwRIN*254 5. - 'OPAoe +tlCONVC +OEXHe+OCWF VC ,*PP"',.. 077-CORH l+QRHH 
1-8./2.-tlCYlI-ODISP-CINSC-oSHUT 
OOUT=oeWCO*254S.-0eYlI-IORH1+QR~31.p.11.-rDISP-QINSC-QSHUT 

QINEH=OING+ceONOT 
OINEe=IWRKoUT+oOIlC+Qcw~e+QcWCOC)*RPH*.017 

e CALCULATION CHANGE DUE TO HISSING DATA 
IFIOHARKll1,18,17 

11 QPH1=O.0 
ORH2=0.0 
QCONOT=OPH3*8.·0CYLl+OS~UT.OINSC·OOIsP 

QINr,=PWRIN_ZSQS.-IQRADC+CCONVC+OEXHc.ocwrVC)_PP"' •• 077-OPH3 
1*8. -OCYlI-OOISP-QINSC-OSHUT 

OOUT=OCWCO*2S4S.-CCYLl-CRH3*8. -rOISP-OINSC-oSHUT 
OINEH=OING·OCONDT 

SUBROUTINE CONOKIZ,SSK) 
IF(Z-600.)20,20,3C 

20 SSK=.00387-7+8.511 
3U SSK=.0041b*Z+7.977 

RETURN 
END 
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APPENDIX F 

GPU 3 MICROF1CHED DATA AND SAMPLE DATA POINT 

A complete listmg of the detailed test data for the 67 data pomts taken 

during tlus series of engIne tests IS included on mICrofiche m the back of this 
report. The printout for each data point mcludes the test data, as well as the 

results of all calculations computed from the test data. These are shown in 
both U S customary and SI units. As an example of what is available on 

mICrofiche, thIS appendix contains a hstmg for a sample data point. The in

formation needed to understand the computer listings is contained in this ap

pendix and m appendIXes D and E The mnemonics for the test data are ex

plru.ned m table III and those for the calculations in table IV. 
Bach data point is identified by run number, date, and time of the data 

scan. The run number consists of five alphanumeric characters and is ex

plru.ned as follows, where the sample data point (run number HE3-63B) is 

used as an example: 
(a) HE helium working flwd 

(b) 

(c) 

(d) 

H hydrogen working flwd 

3 
2 

1 

10 

8 

6 

4 
2 

1 
2 

3 
4 

5 

6 
R 

13000 F heater-tube gas temperature 
12000 F heater-tube gas temperature 

11000 F heater-tube gas temperature 

lOOO-PSI mean compression-space pressure 

800-pSI mean compreSSIOn-space pressure 

600-PSI mean compreSSIOn-space pressure 

400-PSI mean compreSSIOn-space pressure 

200-pSI mean compression-space pressure 

3500-rpm engine speed 
3000~rpm engIne speed 

2500-rpm engIne speed 
2000-rpm engine speed 

1500-rpm engine speed 

1000-rpm engine speed 

reference point - Initial point established after each engine 
startup - heater-tube gas t~mperature, 13000 F; engine 
speed, 3000 rpm; no load 
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(e) A first data scan 

B second data scan 

Therefore, HE3-63B indicates helium working fluid, 13000 F heater-tube 

gas temperature, 600-psi mean compression-space pressure, 2500-rpm engine 

speed, and second data scan. 

Several measurements (primarily temperatures) were not recorded for 

parts of the tests because of malfunctioning instrumentatIOn. These measure
ments are indicated by a zero under the appropriate mnemonic. 

As a final comment, it appears from an analysis of the data that most 
errors in the energy balance (QUNACC) were due to inaccuracies in the exhaust 

loss measurement or in the radiatIon and convection loss calculation. 
A listmg for a sample data point follows. 



RUN NUMBER: HE3-638 DATE: 616/78 RfAl TI"E: 2:511 

U.s. CUSTOMARY UNITS 

STEADY STATE TEcT OAT. 

RUNTH" IHRt U"B IF. TGOUM2 IF. TlLTH 1Ft TFINN 1Ft TAINN HI TAIHP" IFI TOllIN IFI TnIN IF. 
135.5 92. 1313. 163. 82. 87. 83. 1118. 54. 

TOELO IF. T[lLwT IFI TOLWC IF. TDLWB IFI TOWFV IF) TGBUF IF! Tr;COMP IF. TGE)(P If) TGOUI"I IF) TEXHOI IF. 
_.4 18.3 18.5 16.1 4.~ 124. 708. 1259. 1267. 479. 

TExH02 IF. HXH03 IF. TPHOTl IF) TPHOT2 IF) TPHOT3 (FI TPHOBJ (F' TPHrl82 (F' TPHO B 3 (F. TPHIl 1 IF, 
859. 803. "6b. 791. 118. I 8e;. 362. 22". 923. 

TPHIT2 In TPHIT3 IF. TpHIBI IF' TPHIB2 IF' T PH I B 3 (F, TRHlT IF' TR"211f I F I TRH3B If) TRHII C IF. TRH5C IF I 
1166. 10111 • 867. 1053. 780. I nSf>. IllZ. 372. 791. 814. 

TRHbC IF. TRH7C I F I TRH8 TI IF I TRH911I (F' TRH lOR IF I HYlI T (FI T(Yl2 If) leYU IF' TCYl" IF' TCVUB IF) 
7111. 80b. lObI. 798. 293. 1300. 1194. 1076. 121. 527. 

TCYlbC IF I TCYllC IF I TCYl8e IF. TICIT IF. T IC2B IF' THTIOT 1Ft THT20"' IF. THT3DB In TH T 4PT IF. HH5RB 
1059. 1035. 111 ~. 795. 58_ • 1116'1. 111 19. 1481. O. 13511 • 

IHT6C IF. IHT7C IF' THT8e If' THT9T IF' THTI OP IF' THTllf (F • THTl2P IF. I1EANCP IPSI) ME ANBP I PS I. 
1385. 1396. 11175 • 1529. 1373. 1218. 1157. 600. 692. 

AI1P lAMPS. VOLT I VOL Ts. RPI1 IRPI1. CwFLOT IGPM, CiooflOC I (PM, eWFL(\B (GP", • CwFLfv IGPM, OIL FLO I GPI1 • 
68.3 31.5 2503. 3.81 3.05 .11 3 .11 9 .51 

FFLO IlS/HR. CArlO IlS/MIN. NAFlO (lB/HR. POll (PSII PFN(\l (PSI' PCOAIR lIN H2o' PNOAIR IPSI) RlOAO UI1PS, 
3.827 2.13 1.51 56. '1.1 15.5 1.1 b2. 

TGDUM3 Irt 
1280. 

t-:) 
-.::J 

IF' 



OYNA~le TE~T DATA 

PDCO~P CPSI. Po[XP IPSI' P['IBUf IPSO A"INep IOEG. A"AXfP ,OEG, AMYNfP IOEG, '''AX[P COEG. A"INRP CDEfl A"HBP 10EGI 
112b. 1120. 273. 285. 70. 295. 70. 55. 255. 

STE.OY STATE CALCULATYONS 

OVERALL QUANTITI[S 

PWRIN CHPI PWR.lT CHPI PWROUT CHPI AlTEff ttl BPl(fH III celileo I~PI 

H[Al RALANeE 

27.96 2.8811 3.5~2 81.2 12.7['1 11.10 

R"EP IPSI I 
77.03 

RSfe'LB/HD-HR' TRATIO IDIMEN. AfRaT IOI"'ENI 
1.071! .381! "~.2 

CIN 1fT-LB' WI(I(OUT IfT-LIlI cOILe 1fT-LSI UEXHO If. cEx~e If"T-LRI cewTOC ffT-LP. celleoe cfT-LSI 
368.67 116.83 2."11 713.7 13e.15 18~.57 1"6.36 

ueWBe CfT-LB' QeWfVe IfT-LB' TAPREH If lOR_De CfT-LB' eONVH IRTU/~R-Sc fT-f' QeONVe 1FT-LB' QUNAee eFT-UlI 
17.95 5.116 1157.7 ... 73 1.782 11.21 2.55 

CONDUCTION LOSSES 

CRHI IBTU/HR, CRH2 CBTU/HR, ORH3 caTU/HR' CRHII IBTU/HR. OeYll CPTIf/HR' oeYL2 CBTU/HRI CSHUT CBTU/HRI 
128.3 1311.5 138.1 151.2 ~26.. 669.6 69B.3 

OINse fBTU/HR. OOISP CBTU/HR. oeONOT CBTU/HR. CING IBTU/~R' QOUT IBTU/HR. QINEH flHU/HR I CINEe CBTU/HRI 
395.9 307.7 30911. 38&70. 25159. 1117611. 111162. 

I\:) 
00 



$. I. UN 1 TS 

S TEA 0 y S T ATr TEST DnA 

RUNTIM IHR t TAMB ICt T GOU'" 2 let TALTH I ct TF INN I Ct TA INN IC, TAINPH ICt TOILIN ICt TCWI N IC I 
13S.5 33. 712. 73. 28. 31. 28. 611 • 12. 

TOlLO let TOlWT ICt TOlWC ICt TDlWEI ICt T OWF V I C I TGBUr ICt TGCOMP It) TG[xP IC I Teo UM I I C I TEXHOI IC I 
2.11 10.2 10.3 !!.9 2.11 5 I. 98. 682. b8b. 2118. 

TEXH021Ct TEXHo3 fCt TPHon ICI TPHOT21Ct TPHOT3 ICt TPHOBI tet TPHOB2 tet TPHOB3 tel TPHITI ICt 
1159. 112B. 2111. 1122. 381. 8~. 183. 107. 1195. 

TPHIT2 tet TPHIT31Ct TPHIBIICI TPHIB2 tet TPHIB3 fCt TRHIl let TRH2'1ICt lRH381rt TRHlle ICt lPH!;C let 
630. 5116. IIbli. 5b7. 1116. 569. 1133. 189. 1122. 11311. 

lRH6C ICt TRH1C ICt TRH811 ICt TPH9MI Ict TRHIOR let TnllT ICt TCYL2 ICI TCVl3IC, TOlli IC, TCYL"B ICI 
3911. 1130. 512. 112b. IllS. 7011. 6116. 58U. 383. 215. 

TCYL6C ICI lClllC ICt TCYl8e tet TlCll ICt TIC2B ICt T!-ITIOT ICt lHl70'" fet THT30B ICt lHlIIRT 10 THT5RR ICt 
511. 557. 603. 11211. 307. 198. BOil. 808. O. 1311. 

THT6e IC. THT1C IC' THlBC leI THT9T IC. T!-IllOB IC. lHTllE ICt l!-lyJ21? ICI MEANCP IMPAt M[ANBP IMPAI 
752. 158. 802. 832. 711~. ~59. 625. 11.13 11.11 

AMP CAMPSI VOLT IVOlTSI RPM IRPMI CWFlOT llPMI rwflOC ILPl't ewFlOB IlP"'1 CwFlFV IlP"" OIlFlO IlPMt 
68.3 31.5 2503. III.b II.S 1.63 1.85 1.93 

FFlO IG/HRI CArlO IG/"'INI NArlO IG/HPI POll IMPAt PFN07 IMP" PCOAII? IMPAI PNOAIR IMPAI RLOAD .. ,.PSI 
1736. 1238. 685. 386. 66.9 3.85 7.58 62. 

TGDUM3 ICt 
693. 

N 
CoO 



OYNA~Ir TESI DA'A 

PDCOMP ,MPA' PIl[lI'P I "PA' POBUf I "pi I 

1.1:1" 

'MINO' IrE!;1 'MAxrp .flf(;1 A"IINfP '0[(;' IIUXfP 10[rd A"'INR'" lO[ CI 
55. 1.9_ 2.89 2/1~. 70. 19~. 70. 

STEIDY STATf C'~CI~ATIONS 

OVERALL QUANTITI[S 

PWRIN .UII PWRAlT .IIWI PIoPOUT 1111/1 ALTrff.U SPterff nl UCwCO (Kw' 
la.B5 1.151 1.6119 81.1 11.70 e.1S 

8"fP (liP" RHC (G/ICW-HPI TRillO COI'"ENI .flUT -«DIMEN' 
531.1 65'<;. .3118 "1.2 

H[AT 8ALANcr 

QIN (JOUL[SI WPIIOuT .JOULE.SI QOILC IJOUL£~' TAfxHU leI CEXHC • .jOUl[<;J OCWTOC IJOulf S I 
"99.55 63."5 3.30 379. 1"7.1';1 l .. 8.7" 

QC .. coc ( ... OULlSI 
198.32 

AMAXSP lO[GI 

255. 

QCOllRC (JOULfS. "cwfVC (JOUL[~' TIPIHH 10 ORIDr IJOUL[<;I CONVH (WATT~-ql "-C, QCONVC .JOUU'>. OUNAce IJOUUSI 
1".31 7.110 71b. b ... 1 7.7"811 ~.70 3."~ 

CONDUCTION LOSSES 

QRHI ... ATTSI 

.37 .b 

QPH2 .WATTSI yPH3 (wATTS' 
39." .. u.~ 

UPHII (w.TTS. QCYll IWATTSI QCYL7 'wATTS' IJSHUT .WATTS. 
..... 3 1/11.S 19b.l 2011.5 

QINSC .WATTS' ODISP .WATTSI ,"co NOT IWATTS' QINr. (wllTSI QOUT IwaTTS, OINrH IWATTS. OIN[r IwATTS. 
11b.O 9(1.1 90b. 11327. 7~bf). lU3l. 120~7. 

~ 
o 
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TABLE I - GPU 3 ENGINE DIMENSIONS AND PARAMETERS 

Number of cyUnders 

Type of engine 

Type of drive 

Type of shaft seals 

Miscellaneous 
Cylinder bore v."lth liner, cm (in) 

Cylinder bore above IlDer !top of dlsplacer seal at top 
of lmer at dlsplacer top-dead-center), cm (In ) 

Stroke, cm (in ) 
DIsplacement (mBX1mum change lD total working-space 

volume), cm 3 (m 3) 

Plston-rod diameter, em (in ) 

Displacer-rod diameter, em (In ) 

Displacer diameter, cm (in ) 

Displacer wall thickness, cm (In,) 

Expansion-space clearance, cm (In ) 

Compression-space clearance, cm (In ) 

Cooler 
Tube length, em (In ) 

Heat-transfer length, em (in ) 

Tube inside dlameter, em (m ) 

Tube outside diameter, em (in 

Number of tubes per cylinder 

Number of tubes per cooler 

Heater 

Mean tube length, cm (in ) 

Regenerator side 

CyUnder side 
Heat-transfer length, em (In ) 

Tube Inside diameter, cm (In ) 

Tube outside diameter, em (in ) 

Number of tubes per cylinder (consider tubes to regenerator 

and cylinder separately) 

Regenerators 
Length (inside), em (In ) 

Diameter [lDslde), em (in ) 
Number per cylinder 

Matrix 
Wire-cloth materia! 
Cloth mesh per 2 5 em (1 ID 

Wire diameter, em (ID ) 

Number of layers 
Filler factor, percent 

Drive 

Connecting-rod length, cm (ID 

Crank radius, em (in ) 

Eccentricity, em (m 

Insulation covers 
Cross-sectional area, cm2 (in 2) 

Length between thermocouples, em (in 

1 

DispllCer 

Rhombic 

Sliding 

6 99 (2 75) 

7 01 (2 76) 

3 15 (1 24) 

ll9 6 rr 30) 

2 22 (0 875) 

o 953 (0 375) 

6 96 (2 74) 

o 159 (0 0625) 

0 

0 

0 163 (0 064) 

o 030 (0 012) 

4 60 (1 81) 

3 56 (1 40) 

108 (0 0425) 

159 (0 0625) 

312 

39 

12 90 (5 08) 

11 63 (4 58) 

7 77 (3 06) 

o 302 (0 ll9) 

o 483 (0 190) 

80 

2 26 (0 89) 

2 26 (0 89) 

8 

304 stainless steel 
200x200 

o 00406 (0 0016) 

308 

30 3 

4 60 (1 81) 

1 38 (0 543) 

2 08 (0 82) 

6 45 (1 00) 

1 27 (0 50) 



T ABLE IT - GPU 3 ENGINE DEAD VOLUMES 

[All volumes In Gm3 (In 3) ] 

ExpansIOn space clearance volume 

Clearance around displacer 
Clearance above chsplacer 

Volume from end of heater tubes mto cyhnder 

Heater dead volume 

Insulated portion of tubes leadmg to expansion space 
Heated portIOn of tubes 

Total 

Insulated portlOn of tubes leading to regenerator 
Additional volume In four tubes used for Instrumentation . 
Volume In header 

Regenerator dead volume 
Volume between regenerators and heater tubes 
Volume withm matrix 

Volume between regenerators and cooler tubes 

Total . 

Total 

3 34 (0 204) 

7 41 (0 452) 

1 74 (0 106) 

• 12 49 (0 762) 

9 68 (0 591) 

47 46 (2 896) 

13 29 (0 811) 

2 74 (0 167) 

7 67 (0 468) 

80 84 (4 933) 

8 75 (0 534) 

50 60 (3 088) 

6 16 (0 376) 

65 51 (3 998) 

Cooler dead volume 
Volume m cooler tubes •••• 13 14 (0 802) 

Compression-space clearance volume 
Volume In connectmg passages from cooler tubes to 

compreSSion space 
Clearance around power piston 
Clearance between displacer and power piston 

Total dead volume 
Minimum live volume (power piston at TDC) 
Calculated mmimum total workmg-space volume 

Total. 

12 57 (0 767) 

7 36 (0 449) 

1 26 (0 077) 

• 21 19 (1 293) 

193 2 (11 79) 

39 2 ~ 
232 4 (14 18) 



TABLE m. - GPU 3 INSTRUMENTATION 

[All thermocouples are Chromel-Alumel (type K); tbermopUeII are Chromel-ooutaDta. Uated ranges are 
full-scBle range for presllUl'e trlD8C:Ucers, presllUl'e Nell, and flowmetera and meuuremeDt range for 
thermocouples. Pressure phue angles are determined by u.lDg a marker ohmDel generated from the 
crankshaft angle s1gnBl (crllDkshaft angle meallUl'ed with shaft eDOOCler),] 

Item Mnemonic Parameter Instrument Range 

1 RUNTIM Accumulative engine run-time ------------------ -----------------
2 TAMB Ambient air temperature Uquid-in-glass 50° - 100° F 

thermometer 
3 TALTH Alternator housing temperature Thermocouple 80° - 250° F 

4 TFINN Fuel Inlet temperature 

j 
80° - 100° F 

5 TAINN Air inlet temperature - nozzle 80° - 100° F 

8 TAINPH Air inlet temperature - preheater 60° - 100° F 

7 TOILIN Engine 011 Inlet temperature 80° - 200° F 

8 TCWIN Cooling-water inlet temperature 50° - 70° F 

9 TDELO Engine 011 delta temperature - outlet 10 Inlet Thermopile 1° - 100 F 
10 TDLWT Cooling-w.ter delta temperature - total 

- :fJ - 350 F 
now out 10 in 

11 TDLWC Cooling-w.ter delta temperature - cooler 3° - 36° F 

outlet 10 Inlet 

12 TDLWB Cooling-w.ter delta temperature - buffer 3°_35°F 

outlet to Inlet 
13 TDWFV Cooling-w.ter delta temperature - IIOzzle 1° - 10° F 

outlet to inlet 

14 TGDUM1 Heater-tube gas temperature - inBtrumen- Thermooouple 1000° - 1350° F 
tatton tube 1 

15 TGDUM2 Heater-tube gas temperature - inatrumen- 1000° - 1350° F 

tatton tube 2 

18 TGDUM3 Heater-tube gas temperature - inatrumen- 1000° - 1350° F 

tation tube 4 

17 TGBUF Buffer-space gas temperature 70° - 1500 F 

18 TGCOMP Compression-space gas temperature 700 
- 250° F 

19 TGEXP Expansion-space gas temperature 1000° - 1300° F 

20 TEXH01 Exhaust temperature out of prehe.ter _ 0° 300° - 1000° F 

21 TEXH02 Exhaust temperature out of prehe.ter - 120° 300° - 1000° F 

22 TEXH03 Exhaust temperature out of prehe.ter - 2400 300° - 1000° F 

23 TPHOT1 Preheater outside surface temperature - 100° - 9000 F 
top _ 00 

24 TPHOT2 Preheater outside surface temperature -
top - 120° 

25 TPHOT3 Preheater outside surface temperature -
lop - 2400 

28 TPHOBl Preheater outside surface temperature -
bottom _ 0° 

27 TPHOB2 Preheater outside surface temperature -
bottom - 120° 

28 TPHOB3 Preheater outside surface temperature -
bottom - 2400 

29 TPHlT1 Preheater inside surface temperature - 500° - 13000 F 
lop _ 0° 

30 TPHlT2 Preheater inside surface temperature - 500° - 1300° F 

lop - 1200 



TABLE ill - Continued 

Item Mnemonic Parameter Instrument Range 

31 TPHIT3 Preheater mSlde surface temperature - Thermocouple 5000 
- 13000 F 

top - 2400 

32 TPHIm Preheater mSlde surface temperature -

bottom - 00 

33 TPHIB2 Preheater lDslde surface temperature -

bottom - 1200 

34 TPHIB3 Preheater mSlde surface temperature -

bottom - 2400 

35 THR1T Regenerator housmg temperature - outside 9000 
- 12000 F 

vertical profile - top 

36 T.RH2M Regenerator housing temperature - outSide 6000 
- 9000 F 

vertlCal profile - middle 

37 TRH3B Regenerator hoUSing temperature - outSide 2000 
- 5000 F 

vertlCal profile - bottom 

38 TRH4C Regenerator housing temperature - circum- 6000 
- 9000 F 

ferenbal profile - 00 

39 TRH5C Regenerator housing temperature - circum-

ferential profile - 900 

40 TRH6C Regenerator housing temperature - circum-

ferential profile - 1800 

41 TRH7C Regenerator housmg temperature - circum-

ferential profile - 2700 

42 TRH8TI Regenerator hOUSing temperature - Inside 9000 
- 12000 F 

vertlCal profile - top 

43 TRH9MI Regenerator housmg temperature - Inside 6000 
- 9000 F 

vertlCal profile - middle 

44 TRH10B Regenerator housmg temperature - lDslde 2000 
- 5000 F 

vertlCal profile - bottom 

45 TCYUT Cyhnder temperature - vertical profile - top 9000 
- 14000 F 

46 TYCL2 Cyhnder temperature - verbcal profile 9000 
- 14000 F 

47 TYCL3 Cyhndcr temperature - vertical profile. 9000 
- 14000 F 

Circumferential profile - 00 

48 TCYL4 Cylmder temperature - vertical profile 4000 
- 9000 F 

49 TCYL5B Cyhnder temperature - vertical profile - 4000 
- 9000 F 

bottom 

50 TCYL6C Cylmder temperature - Circumferential 9000 
- 14000 F 

profile - 900 

51 TCYL7C CylInder temperature - circumferential 9000 
- 14000 F 

profile - 1800 

52 TCYLBC Cyhnder temperature - Circumferential 9000 
- 14000 F 

profile - 2700 

53 TIC1T Insulation-cover temperature - top 4000 
- 8000 F 

54 TIC2B InsulatIOn-cover temperature - bottom 4000 
- 8000 F 

55 THT1DT Heater-tube metal temperature - Instrumen- 11000 
- 15000 F 

tatlOn tube 1 - top 

56 THT2DM Heater-tube metal temperature - instrumen-

tation tube 1 - middle _ 00 

57 THT3DB Heater-tube metal temperature - mstrumen-

tation tube 1 - bottom 

58 THT4RT Heater-tube metal temperature - regenerator 

tube - top 

59 THT5RB Heater-tube metal temperature - regenerator 

tube - bottom 



TABLE m - Concluded 

Item Mnemonic Parameter Instrument Range 

60 THT6C Heater-tube metal temperature - mstrumen- Thermocouple 11000 - 15000 F 
tatlOn tube 2 - middle - 900 

61 THT7C Heater-tube metal temperature - mstrumen-

tatlOn tube 3 - middle - 1800 

62 THT8C Heater-tube metal temperature - mstrumen-

tallon tube 4 - middle - 2700 

63 THT9T Heater-tube metal temperature - cyhnder 

tube - top 

64 THT10B Heater-tube metal temperature - cylinder 

tube - bottom 

65 THTllE Heater-tube metal temperature - msulated 900 0 
- 13000 F 

portion of mstrumentatlOn tube 1 

66 THTl2R Heater-tube metal temperature - insulated 9000 - 13000 F 
portion of regenerator tube 

67 l\IEA~CP \lean compression-space pressure Strain gage o - 1000 pSlg 

I transducer 

68 l\IEA~BP l\lean buifer-space pressure ~tram gage [) - 1500 pSlg 

transducer 

69 Al\IP ".lternator output current Ammeter o - 150 A 

70 VOLT Alternator output \ oltage Voltmeter (1 - 60 \ 

71 RP\I I Engme speed Pulse type \\lth 500 - -1000 rpm 

frequency meter 

72 CWFLOT Coohng-\< ater flo\\ - total Turbine flowmeter 1 - 10 gal min 

73 c\\ FLOC Coohng-\\ ater flo\< - cooler 

I 
1 - 10 gal mm 

74 c\\ FLOB Coohng-water flo\< - buffer 0 1 - 1 25 gal mm 

75 C\\ FLFV Coohng-\\ ater flo\\ - nozzle 0 1 - 1 25 gal nun 

76 OILFLO Engme 011 flo\\ (1 05 - 0 5 gal mm 

77 FFLO Fuel flo\\ \\ eight-time method 1 - 6 lb hr 

78 CAFLO CombustIOn atrflo\\ lI1ass flo\\ meter o -I - -I lb min 

79 ~AFLO 'ozzle atrflo\\ Mass flowmeter o 2 - 2 lb hr 

80 POlL Engme 011 pressure Gage 1I - 100 p51g 

81 PF:-'OZ 'ozzle tuel pressure 

~ 
(1 - 15 pSlg 

82 PCOAIH CombusUon aIr pressure u - 33 m H2O 

83 P!'.OAlH I 'ozzle atr pressure o - 15 pSlg 

84 RLOAD 

I 
ReSistance load ban~ setting ------------------ -----------------

-- PDCO\'P Pressure s\<lng (minimum to maximum) -

} compreSSIOn space 

-- A:\II"CP Angle from dlsplacer TDC - minimum Mlruature stratn 

gage transducer 
o - 3000 pSlg 

compressIOn-space pressure 

-- AMAXCP Angle from dlsplacer TDC - maximum 

compressIon-space pressure .., 
-- PDEXP Pressure S\\ mg - expansion space 

-- Al\II'EP Angle from dlsplacer TDC - mlrumum 
Mmlature stram 

I expanSIOn-space pressure 
gage transducer 

o - .WOO pSlg 

-- A \lAAEP Angle from dlsplacer TDC - maximum 
I expanSIOn-space pressure 

-- PDBUF Pre~sure s\< mg - buffer space 
;) 

-- ~\IINBP Angle from dlsplacer TDC - mlrumum MIniature strain 
buffer-space pressure gage transducer o - '1000 pSlg 

-- AMAXBP Angle from dlsplacer TDC - maximum 

buffer-space pressure 



Mnemonic 

Miscellaneous 

PWRIN 

PWRALT 

PWROUT 

ALTEFF 

BRKEFF 

QCWCO 

BMEP 

BSFC 

TRATIO 

A FRAT 

Heat balance 
QIN 

WRKOUT 

QOILC 

TAEXHO 

QEXHC 

QCWTOC 

QCWCOC 

QCWBC 

QCWFVC 

TAPREH 

QRADC 

CONVH 

QCONVC 

QUNACC 

Conduction losses 
QRH1 

QRH2 

QRH3 

QRH4 

QCYL1 

QCYL2 
QSHUT 

QINSC 

QDISP 

QCONDT 

QING 

QOUT 

QINEH 

QINEC 

TABLE IV - GPU 3 CALCULATIONS 

Calculation 

PO\\er In from fuel, hp 

Alternator output power. hp 
Engine output power. hp 

Alternator efficiency, percent 

Brake thermal efficiency, percent 

PO\\ er out to coohng water - from coolers, hp 

Brake mean effective pressure, pSI 
Brake specific fuel consumption, Ib/hp hr 

Temperature raho - compression-space gas to expansion-space gas, 

dlmenslOnless 

i Air-fuel ratio, dimensionless 

Heat in from fuel per cycle, ft-Ib 

Engine output per cycle, ft-Ib 

Heat out to oil per cycle, ft-Ib 
Average exhaust temperature out of preheater, OF 

Heat out to exhaust per cycle, ft-Ib 

Heat out to cooling water per cycle - total flow, ft-lb 

Heat out to cooling water per cycle - from coolers, ft-Ib 

Heat out to cooling water per cycle - from buffer space. ft-Ib 

Heat out to cooling water per cycle - from fuel nozzle. ft-Ib 
Average preheater outside surface temperature. OF 

Heat out to surroundings by radiation per cycle, ft-lb 
Convection heat-transfer coefficient, Btu/hr ft2 OF 

Heat out to surroundings by convection per cycle, ft-Ib 

Unaccounted heat per cycle, ft-Ib 

Heat loss by conduction through regenerator housing - station 1. Btu/hr 

Heat loss by conduction through regenerator housing - station 2. Btu/hr 
Heat loss by conduction through regenerator houaing - station 3, Btu/hr 

Heat loss by conduction through regenerator housing - station 4, Btu/hr 

Heat loss by conduction through cylinder - station 1, Btu/hr 

Heat loss by conduction through cylinder - station 2, Btu/hr 
Shuttle heat loss, Btu/hr 
Heat loss by conduction through insulation covers, Btu/hr 

Heat loss by c'lnduction through dlsplacer, Btu/hr 

Total conduction heat losses, Btu/hr 

Heat lOto working flUid, Btu/hr 

Heat out of working fluid, Btu/hr 

Heat Into engine - hot-end heat balance, Btu/hr 

Heat lOto engine - cold-end heat balance, Btu/hr 



TABLE V - CONSTANTS FOR GPl: 3 DATA REDUCTION PROGRAM 

Mnemoruc 

LHV 
CPl 

CP3 

VSWEPT 

VT 

Al 

A2 

A3 

A4 

CLI 

CL2 

CL3 

CL4 

CL5 

CL6 

RIl 

RI2 

RO 
Rl 

R2 

R3 

R4 

Dl 

HI 
VF 
EMM 

PR 

DSHUT 

STROKE 

CLEAR 

LSHUT 

Descnpbon of constant 

Lo .... er heating value of ~o 1 diesel fuel, Btu/Ibm 

Specific heat of coohng \\ater, Btu/Ibm of 

Approximate specific heat of exhaust gases, Btu/lbm of 

Volume swept 10 expanslOn space, 10 3 

M8.Xlmum change 10 total .... orklng-space volume, 10 3 

Cross-sectlonal area of regene .. ator houslng - top. ft2 

Cross-sechonal area of displacer \\ all, ft2 

Cross-sectional area of lnsulatlOn cover, ft2 

Outside surface area of preheater, ft2 

Conduction length for regenerator housmg - stabons 1 and 3, ft 

ConductlOn length for regenerator housing - stations 2 and 4, ft 

ConductlOn length for cyhnder - statlon I, ft 

ConductlOn length for c} hnder - station 2, ft 

ConductlOn length for displacer, ft 

Conduction length for msulation CO\ er, ft 

Inner radius of regenerator housmg, 10 

Inner radius of cyhnder housmg, 10 

Outer radius of regenerator housmg - middle, 10 

Outer radiUS of regenerator hous1Og - bottom, 10 

Outer radius of cyhnder hous1Og - top, 10 

Outer radius of cyhnder housmg - middle. 10 

Outer radius of cyhnder houslng - bottom, 10 

Outside cbameter of preheater, ft 

Outside preheater height for losses to surroundings, ft 

View factor for radiation losses, dimenslOnless 

EmiSSivity for radiation losses, dimenslOnless 

Prandtl number for au for convection losses, dimenslOnless 

Average diameter of gap between displacer and cylinder, 10 

Piston stroke, 10 

Clearance between displacer and cyhnder, 10 

Dlsplacer length for shuttle calculation, 10 
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Figu re 1 - GPU 3 test setup. 
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Figure 12. - Crankshaft-angle encoder. 



Figure 13. •. Pressure-volume recording system. 
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