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ABSTRACT

Feedback techniques are employed to examine the influence of various
physical design parameters on the aerocelastic stability of tilt proprotor
aircraft. In addition, the influence of single loop feedbacks to improve
the stability of the system are considered. Reduced order dynamic models
are employed where appropriate to promote physical insight. The influence
of fuselage freedom on the aeroelastic stability is examined as well as
the influence of the airframe flexibility on the low frequency modes of

motion relevant to the stability and control characteristics of the vehicle.
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NOMENCLATURE

-Conventional hélicopter notation is followed in this report. Quantities

are made dimensionless using air density, p, rotor rotational velocity, R, and

H

rotor radius, R. The nondimensionalization is implied by the notation , e.g.,
the inflow ratio %ﬁ-is written as V. Inertial properties normalized by g'lb
are denoted by ( })*. Quantities are defined when introduced in the text or in

Appendix I. The notation is identical to that of References 1 and 2.

-
-
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INTRODUCTION

One of the critical problem areas related to the design and development
of low disc loading tilting proprotor aircraft has been associated with
eliminating the occurrance of aeroelastic instabilities at high cruise
flight speeds. Owing to the importance of this problem area many studies
have been conducted related to this complex probleml_lz.

This report examines a number of aspects of this problem, the aero-
elastic stability characterigtics of tilting proprotor aircraft in cruise .
fiight including the effects of fuselage motion. It has generally been
found that a large number of degrees of freedom, as well as. precise modelling
of the elastic properties of the rotor system are required in order to predict
all of the relevant aercelastic phenomenas. It has also been shown that these
models agree well with experimentg’lz. The high order of thesemddels makes
it difficult to obtain physical insight into the significant parameters in-
fluencing the dynamic characteristics.

One of the objectives of this study was to employ automatic control
techniques to examine the feasibility of using relatively simple feedbacks
to improve the dynamic stability characteristics of the wing-proprotor system.
It was also expected that through the use of these techniques it would be
possible to obtain insight into the manner in which various physical param-
eters influence the dynamics of this complex aercelastic system.

Many of the studies referred to above have been concerned with the
dynamics of the wing prop-rotor system with the wing root assumed rigidly

fixed, and therefore also of interest in this study was the influence of the

fuselage degrees of freedom. The equations of motion of the vehicle were



extended to include the effects of the rigid fuse;age degrees of freedom
in a previous studyls. The equations of motion for the complete vehicle
system employed in this report are presented in References 2 and 13.

A further objective of this study was to examine the effect of the
flexibility of the wing proprotor on the dynamic stability character-
istics of the vehicle as related to stability and contrel, and to examine
the influence of body motion feedbacks as might be used for altering the
stability and :control characteristics of the aircraft on the aeroelastic
stability of the vehicle. Experience on helicopters has indicated that
body motion feedbacks can influence rotor system stability14'

The analytical model employed in the analysis presented is given
by the equations of motion for the wing proprotor system presented in
Reference 2. Appendix I presents the equations of motion taken from
Reference 1. These equations of motion represent proprotor blade
bending by an uncoupled model and are of simpler form than the model
of Reference 2. The reduced degree of freedom models discussed in the
first part of this report are based on the model of Appendix I. The
refined equations of motion of Reference 2 taken with those of Reference
13 are employed for the analysis of the fuselage free case. The modi-
fications to the model of Reference 2, to account for body degrees of
freedom are presented in Reference 13.

Since one of the objectives of this study was to obtain physical
insight into the dynamics of this vehicle, simplified dynamic models,

based on Reference 1, are discussed in some detail prior to examining



the complete system. The reference physical parameters employed in this
study are those of the Bell XV-15 presented in Reference 15. In some
cases these parameters are varied from their reference values to obtain
insight into the effects of changes in design parametexrs since other
proprotor aircraft designs have been consideredl’lz.

The topics covered in this report are as follows: First, the.
isolated rotor dynamics are discussed in cruise flight in order to
obtain insight into the flapping and lagging dynamics of the proprotor.
The discussion is largely concerned with the cyclic modes of motion.
Cyclic proproter flapping for the configura;ion of interest is a rigid
blade motion owing to the gimbal mounting of the rotor, and cyclic
lagging involves the first in-plane bending mode. Owing to the polar
symmetry inherent in this problem, the method of complex coordinates is
employed (Ref. 16} to reduce the order of the physical system from
eighth to fourth order. Then the model is increased in order by allowing
shaft flexibility. In order to obtain insight into this increased order
system, first the dynamics of the proprotor on a flexible mounting is
examined assuming that the support characteristics are isotropic. This
allows retention of the method of complex coordinates and permits again
a reduction in order of the system by a factor of two. The real physical
system is then examined by relaxing the requirement that the support is
isotropic. Various feedbacks are examined for the complete system
indicating that certain decouplings exist with respect to the collective

and cyclic motions of the rotor and their coupling to the wing motion.

Then the fuselage degrees of freedom are relaxed and the dynamics of



the complete system with symmetric fuselage motion is considered in some
detail. Consideration is alse given to the use of reduced order dynamic
models for the prediction of the motion of the vehicle relevant to its
stability and control characteristics.

A general arrangement drawing of the reference aireraft, the Bell

XV-15 is shown in Figure 1.5.



ISOLATED PROPROTOR DYNAMICS

In this section the dynamic characteristics of an isolated proprotor
are examined ‘with emphasis on high inflow conditions. Thus it is assumed
that the support system of the proprotor is rigid and the dynamics of prop-
rotor flapping and-lagging motion are examined, The equations of motion
development is presented in Appendix I.

The proprotor physical characteristics employed for this study are

essentially those of the Bell XV-15 and are listed in Table 13’15.

This
aircraft has a gimballed rotor with a soft flapping spring (vé = 1.0355)
so that its flapping motion is essentially that of an articulated rotor.
. The cyclic lag frequency, given in the Table, is the first flexible mode
of the blade which in cruise flight is primarily lag bending (Ref. 3).
The frequency of this mode, as well as the relative proportion of flap
and lag bending associated with the mode, is influenced by the trim air-
speed as a result of the blade pitch variation required to txim the air-
craft. As can be seen from Reference 3 it is essentially a lag mode at
flight speeds above 300 knots. Therefore in the following it is referred
to as a lag mode and the small component of flap bending is neglected.
The complete equations of motion for the physical system assuming
that the blade modes are uncoupled, taken from Reference 1, are given
in Appendix I. The four degrees of freedom of interest in this section

are the two components of gimbal motion or flapping, B e and Bls and

1
the two components of lag bending amplitude, Elc and cls' The equations
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of motion can be written as

( Blc \ r elc\
8ls } els
[All] i Elc = [Bll] < ag } (1)
Lclsj lBgJ

where [All] [BlI} are given in Appendix I.

Since the cruise flight condition is of interest the matrices All

and B11 possess certain symmetry properties which can be employed to
reduce the order of this system from eighth order to fourth order. A

. . 13
set of complex coordinates are defined ~,

B = 81c i 81s E

Z‘:lc i E1s

(2)

& = elc + 1 615 g = ag -1 Bg

Now by multiplying the second of equations (1) by i and adding to the
first and multiplying the fourth equation by i and adding to the third
we obtain two second-order equations with complex coefficients in place
of four second-order equations with real coefficients. The equations of

motion in this form are

Fsz-(ﬁ-+21)s | _ -
B | Mé (s - 1)
B R W U :
2 —
: ) l s” + (Qi - 2i) s z
=Qy {(s -1 -
" ! *p -1 -1 2
]
[T taw, |38
g, 1ivQ, |lZ



- -YM(') ...‘YQ

Qey =1
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The coordinates B and I are essentially complex multiblade coordinates
and as such are expressed with respect to a fixed or non-rotating
reference frame. The equations of motion can be effectively converted
to a non-rotating frame and also incidentally, the complex coefficients
removed, by defining a new operational variable

$=5 -1
Substitution of this relationship into equation (3) yields a simpler

form of the equations of motion,

(A) M. s 7 C ]
B uc z é Me WM}1 5
Qy 5 (&) ABRE Q g @
- Qs s C Q ivQ g
B T e ® u_
where
I
(AB)uc =5 - MB s + VB
2= =2
(Ac)uC =5 ¥ QC s + Ui

These quadratic factors give the uncoupled flap and lag eigenvalues of the
proprotor with respect to a rotating frame. The eigenvalues are shown in
Figure 1 as a function of advance ratio. Approximate expressions for the

aerodynamic coefficients Mé and Qé are given in Reference 1,
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cos ¢

Mé = - 3
Q = sin2¢
£ =~ 8 cos ¢

where the effective radius approximation has been employed to obtain
simple expressions for the aerodynamic derivatives, The inflow
angle ¢ is related to the advance ratio by

v=% tan ¢
Thus from Figure 1, it can be seen that the flap damping, which
is proportional to Mé decreases with increasing advance ratio and the
lag damping, Q& increases,

As the model is complicated by more degrees of freedom it is con-
venient to retain the original form of the equations given by equation
(3). The eigenvalues for this system are readily found from the re-
lationships between the two operational variables s and s and thus
the fixed frame dynamics are found by adding i to the eigenvalues of
equation (4) giving the values shown in Figure 2.

1.) Uncoupled Flapping Motion with Feedback

First we examine the uncoupled flap dynamics in further detail
especially as regards the response characteristics as a function of
advance ratio and the influence of cyclic feedback on the flapping
response.

The uncoupled flapping equation of motion is given by

{52-(MB+21)s+iMB} B = B+ iVl (5)

10
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The influence of the weak flapping spring as represented by v, has

B

been neglected since its influence is small. The approximate expressions

for M, and M are given by Reference 1 as

B I
_ 1
My = T cos d
' _ sin ¢
Mu = 3

Thus the steady state flapping response to cyclic and gust inputs is

given by
M ivy
— . 8 TR .
Bes= -1 Vi © *y— 8 (6)
53 Mg Mp

In terms of the approximate azerodynamic derivatives, equation (6) can be

expressed as

Bss™ — ; 8 - tan’¢ 2 (7
cos ¢

Thus,; the flapping amplitude per unit cyclic increases with inflow angle
propertional to 005-2 ¢ and the flapping response to gust inputs grows
as tan2 ¢. At an advance ratio of 1 (355 knots) using the
equivalent radius approximation, the flapping amplitude per unit control
deflection is 2.76 degrees per degree, and the flapping response due to
a gust is 1.76 degrees per degree. The amplitude continues to grow
rapidly with advance ratio as shown in Figure 3.

Flapping feedbacks can be used to reduce the sensitivity of the

rotor. Two possible flapping feedbacks considered are a 63 hinge or

12
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or pitch-flap coupling with the gearing denoted by 59’ and an Oemichen
type feedback where the pitch of one blade is controlled by the flap
angle of an adjacent blade and the gearing is expressed as Ko. In overall
rotor plane sense, the Oemichen hinge is equivalent to a feedback which
is 90° out of phase compared to the effect of the 63 hinge. In complex
notation, these twe feedbacks can be expressed compactly as,

6= (- K, + 1K) B (8)

A Toot locus can be 'sketched as shown in Figure 4 showing the
influence of these two feedbacks on the flapping dynamics. Of particu-
lar interest are the flapping stability limits and the amplitude reduction
possible through the use of these feedbacks. Inserting the feedback law
into equation (5)

2 —

{s -(Mé+21)s+i(ﬁé-meKo}+M K}B=_iVl7{u§ (9

R

The influence on the flapping amplitude is given by the steady state

solution to this equation

M
ivM—L_‘
B

(10)

I\'de M
i(l-—=K) +» Ly
M'B MB

Tl

Substituting the equivalent radius approximation for the aerodynamic

derivatives, the ratio of flapping to gust input amplitude is

14
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{@+ 2 32 4 ¢ P %y (1)
cos ¢ cos ¢

This indicates that the amplitude reduction due to the 63 effect
(KP) is independent of the sign of the pitch-flap coupling and in addition
that both feedbacks become more effective as the advance ratio or
inflow angle increases.
The gearing ratios or feedback gains are limited by stability

considerations. It can be shown that the stability boundaries

determined from equation (9) are given by

1+ % cosp—29% - 2% > o

Thus for the 63 feedback only the stability boundary is given by

8
KP = - ;fCOS ¢
and for the Uemichen feedback alone
Ko = c052 ¢
Figure 5 shows the amplitude reduction which can be achieved by these
two feedbacks, as well as the stability boundaries,indic§ting the
effectiveness of these two feedbacks.
The effectiveness of pitch-flap coupling in reducing the flapping
amplitude can be seen.
2.) Flap-Lag Coupling
We now return to the complete set of flap-lag equations to examine

the influence of flap lag coupling arising from the terms ﬂt and QB.

16
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The coupled characteristic equation for the flap-lag motion can be

written as in terms of the operational variable s

- = =2
S

A =(A +Mi QB

B+ L (12)

) (&)
B'ue | ©

uc

Root locus techniques can be employed to illustrate the influence of the
coupling terms. Figure 6 shows the effect of this coupling term on the
modes of motion'in the non-rotating frame. It can be seen that the
coupling between the modes destabilizes the flap mode and stabilizes
the lag mode.

The proprotor is also equipped with a 63 hinge or pitch-flap coupling.
This hinge causes additional coupling between the flap and lag motion
resulting in a change in the eigenvalues of the coupled flap-lag motion
as shown in Figure 7 at the reference advance ratio V = 0.844. It can -
be seen that a negative value of KP (up flap causes and increase in pitch)
stabilizes the lightly damped mode and the value for the vehicle (Kp =
- 0.344) at this flight condition produces the maximum damping for the
lightly damped flap mode. A further source of coupling arises from
torsional flexibility of the blades, This effect can be approximately
treated as a pitch-lag couplings. For a more precise approach the coupled
equations of Reference 2 are required. Figure & shows the effect of
pitch-lag coupling on the eigenvalues indicating that the negative value
(corresponding to a pitch reduction with increasiﬂg lag angle) reduces
the damping of the lightly damped flap mode. The trend indicated is that
expected from experience with helicopter rotors, although because of

the fact that the flap mode has less damping it is this mode that is

18
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( The loci for higher modes are symmetric to those of

lower modes about the straight line, Im(s) = 1, hence,

they are not shown here.)
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destabilized by this coupling in contrast to the helicopter at low inflow
where the lag damping is small and therefore it is the lag mode which is
destablized17.

This completes the discussion of the isclated rotor cyclic dynamics.
The collective flap and lag dymamics are also of interest. The collective
motions can be treated separately from the cyclic motions. It should also
be noted that the collective flapping is an elastic mode owing to the fact
that the rotor is gimballed and each blade is not free to flap individually.
3.} Collective Flap-Lag Motion

The equations of motion describing the collective flap-lag dynmamics
are quite similar to the cyclic equations of motion expressed in terms of
the modified operational variable s. The major difference arises from the
fact that the collective flap mode is an elastic mode with a natural fre-
quency, vBOn= 1.85. Pitch-flap and pitch-lag coupling are present. The
effect of a gust disturbance enters in a somewhat different fashion. In
addition, an additiopal degree of freedom, the rotor RPM must be included.
In principle, the complete equation of motion for the rotor RPM degree of
freedom would involve consideration of the drive train and engine governor
dynamicslg.It has been shown that these influences are not particularly
significant and that the major effects of the rotor RPM degree of freedom
can be examined through the study of two limiting cases: constant RPM, i.e.,
the case of a perfect engine/governor system; and autorotation, where the
rotor speed perturbation is determined by the aerodynamic forces acting on

the rotor.

With the constant RPM assumption, the elastic lag mode is excited,

22



however with the RPM as a degree of freedom this mode is not important.
Consider the following two equations of motion, one describing the

elastic lag motion,

2 -
z vy Ly ® AQ (13)

* -
T &, uz)+10 .

0
and the other the torque balance,
C

*"_*"___Q_
z %o Ixo, =(x)* M (14}

o, is the shaft rotation or RPM degree of freedom.

Now if the lag mode shape is assumed to be nc = r, then
o

I* = [* = I*
Coa ° %o

Equation (13) reduces to,
. o 2 1

- = el 1
;0 a + vc ;0 % AQ {15)
?0 0

If the steady state torque is zero, equation (14) is,
. . 1
to T 9 T I A (16)

Comparison of these two equations of motion indicates that £ =0 and
therefore if the RPM degree of freedom (az) is present, then the elastic
mode degree of freedom (co) is not excited. Consequently the two cases
considered are: RPM constant with elastic flapping and elastic lag, and
RPM free with elastic flapping and no elastic lag.

The equations of motion in the RPM fixed case are

23



(A, ) M.s B M. VM 8
Bo ue : ° N (7
"% Wehe [(%) | % V& | (%
where
(8 ) =52-ﬁés+v2
0O uc BO (18)
2 2
(ACo)uc =s 7 Qt s MQO
where
. YM YQ
. (3 X _ )
Moy %y~ T
o 0

Figure 9 shows the effect of the aerodynamic coupling as well as pitch-flap
and pitch-lag coupling. The basic flap-lag coupling arising from aero-
dynamics as well as the pitch-flap coupling act to reduce the damping of
the collective flap mode. Pitch-lag coupling has only a small effect on the
collective flap mode, and reduces the frequency of the collective lag mode.

The free RPM case can be treated by taking v_ = 0 and considering

2

o

the second motion variable as QS rather than Co’ i.e., Qs = - éo' Note

that since there is no spring in the RPM equation the order of the system

is reduced by 1. The uncoupled RPM mode has only one eigenvalue, s = _<a&.
Figure 10 shows the effect of coupling in the RPM free case. Both
in the case of the aerodynamic coupling and the pitch-flap coupling, the
general trend is to reduce the natural frequency of the collective flap
mode and produce only a minor change in the time constant associated with

the RPM degree of freedom. Pitch-lag coupling is not present in the case

with the RPM degree of freedom.
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This section has considered the isolated proprotor dynamics which
enter intoc the vehicle dynamics. 1In axial flight, the cyclic modes can
be separated from the collective modes.

In contrast to the helicopter which operates at low inflow, it
should be noted that the cyclic flap mode has a lower damping than the
cyclic lag mode. As the wing/support dynamics are introduced in the
next section, recalling the characteristics of these isclated modes
will be helpful in interpreting the changes which occur in the flexible

wing case.
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PROPROTOR WITH ISOTROPIC SUPPORT

In order to promote physical insight into the aeroelastic stability
of the wing/proprotor system, in this section the dynamic stability
characteristics of the proprotor on a two degree of freedom isotropic
flexible support is considered before examining the specific physical
system under consideration. That is, for the actual aircraft the
aeroelastic flexibility of the wing is modelled by torsion, chordwise
bending and spanwise bending modes. In this section we only allow the
support two elastic degrees of freedom and assume that the inertial
and stiffness properties are the same in both directions. The approxi-
mate model permits the use of the complex coordinate transformation
emplcyed in the previous section to be extended to the case with a flexible
support and helps to promote physical insight into the dynamic character-~
istics of this complex system.

It should be noted that with this support model, the collective rotorx
degrees of freedom will not be involved in the problem,as they are primarily
coupled to fore and aft translation of the proprotor shaft as shown later.

Thus, in general, we are considering a system with two cyclic flap
degrees of freedom, two cyclic lag degrees of freedom,and two directions
of support bending. Only aerodynamic forces produced by the proprotor are
included. The use of complex coordinates reduces this physical system
from a twelfth order system to a sixth order system.

Introducing the equality of the inertial, damping,and spring

characteristics of the support into the equations of motion given in
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Appendix I, such that

I*:I'k =I*

P py px
cr=cr o=ck (19}

K¥ = g% = g»
KX Ky

and introducing a complex coordinate describing shaft motion as

The equations of motion for the three complex degrees of freedom can be

written as

- | : -
. ! = . L - -
(AB)uc Mt (s - 1) l; s° 4 [Mé +1 (2+h Mu)] s - i VM]J ;

-1 o o 2 @ eingys-iva, (2

- QB s ~ 1 | ruc |1 TEJ s QB i Qu s -1 QEﬁ z
"""""" T R | P
ih HB (s -~ 1) (- ih CT;-) s ‘

i ’ l
g 2 L .y oa L
t43 O =D -ihA (s - (A e |
M VM ]
6 1VMu )
_ _ 6
= Q ivQ, (20)
o ] g
i -1ih HB hVHu
By
where 5 - 1 and
B
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The uncoupled dynamics in each degree of freedom are
2

- = . 2 -
(Ag)uc—s "(MB + 21) s-f(vi_,)—l)+11vlf3
(A) =5+ @ -20) s+ O -1)-1id,
L uc C g (A
- 2 - _
(Aa)uc = AP + (h Hu -1ih HB) 5 - h VH]J
where
A = s2 + 27w s+ w2
Y PP P
with

2 ,K* c*
I R e

(21)

It can be Teadily seen that the equations of motion reduce to equations (4)

when o = 0,

First we examine the dynamics of the system with flapping and

support degrees of freedom, then consider the influence of the lag degrees

of freedom.

Thus, eliminating the lag degrees of freedom from equations (20)

the equations of motion are,

| 2 - . - -
(AB)uc : - 5 4 (MB +1 (2 + hMU)) s - 1 VM
e e e e
ih HB (s - 1) I
I* ; (Aa)uc
+—§-(\)2-l) E
I* "B i
MB iVMu 0
-ih He h VHu g
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The characteristic equation for this system can be expressed in terms of
the characteristic equation for an articulated rotor system and a rigid

propeller system as

2
Aoy o = gy “)fa + Vg - 1 (A (23)

where (A ) is the characteristic equation for the articulated system

B+ fa

Bg, dga = Belye (6,)

o uc
Y
=1 (24)

+ihHy (s - ) [52-(Me+i(2+hﬂu)js+i&fl\_du]
and (Auprp is the characteristic equation for the rigid system,

i*
B = Bye * 7 [s7 - Gy + 1 2+ WL s + 1 VL) (25)

It is interesting to note from the form of these two expressions that RB
is the term responsible for coupling in the articulated case, and the
ratio of blade to pylon inertia is responsible in the rigid propeller
case. In both instances, the polynomial associated with the effects of
coupling is the same and in a rather general sense can be thought of as
containing the effects responsible for the whirl flutter instability as
will be shown.
First, the simpler problem of the dynamic behavior of a rigid

propeller described by equation (25) is examined. This leads

to the classical problem of whirl flutters. IE may be taken as 1, and
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the characteristic equation for the rigid case can be written as,

L (s?+ (h%yH - . - 2i} s - (hvyH - 1VYM )= 0 (26)

A = A -
( a)rp p T o B

It is convenient to use root locus techniques to illustrate the effect of

the aerodynamic terms on the dynamics of the rigid propeller. By comnsidering
cp and mp fixed and varying the inmertia, I*, we can examine the related
importance of the aerodynamic terms in causing whiri flutter. The poles

of the system are given by AP and with %; as the gain, the root loci ghown

in Figure 11 for three values of support frequency can be drawn. The pylon
dynamics are shown, consisting of an advancing mode and a regressing mode.

As the inertia is decreased, the roots move towards the complex zeros given
by the quadratic factor in equation (26). One of the complex zeros lies in
the right half plane, moving farther to the right as the advance ratio is
increased as shown in the diagraﬁ. The reduction in inertia (or conversely
the increase is the aerodynamic terms) causes the regressing mode to become
unstable thus, giving rise to whirl flutter. The advancing mode is stabilized
by the coupling. Raising the support frequency also produces a stabilizing
tendency.

The zerc in the right half piane‘lies there as a result of the term
iVYMuandthus it is possible to identify this term as the source of the
whirl instability; it is interesting to note that this term increases
rapidly with inflow angle, i.e., from Reference 1,

VMu = tan ¢ sin ¢
indicating that the onset of this instability tends to occur rapidly with
increasing airspeed. As in more conventional flutter, the solution is to

increase the stiffness of the mounting system, to reduce the effect of

aerodynamics.
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with Rigid Propeller; :cf. Eqn. {(26)
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Now we turn to fully articulated case to see the contrast with the
rigid case. Equation (24) is expressed as

N
fa
(B, o

s = A %

} A+

(27)
81:1::\)8-:1 P

where
- 2 .
Ng, = [(43),,] {(h" yA, - ihyHg) s - hVYH }

uc '\)B=1

+ ihyHy (s - 1) [s% - Wy +1 2+ BA)Y s + 1V

(28)

A root locus showing the influence of the support inertia on the modes of
motion is shown in Figure 12. Again it may be noted that the critical case
is the one with the lowest support frequency. The trend with Lock number,
Y, is also shown, emphasizing the important role that the aerodynamic terms
play in the instability.

Now insight into the aerodynamic terms responsible for the instability
can be seen by dropping the term HB from equation (28). If HB = 0 in the
fully articulated case, the biade flapping dynamics are uncoupled and only
the support dynamics are influenced by inertia variation. Figure 13 shows
this root locus. Comparison of Figures 12 and 13 indicate the important
role of HB in causing the whirl instability. It is also interesting to
note that in the articulated case, the instability occurs in both the advancing
and regressing modes as shown by Figure 12, The Ilocation of one zero neaxr
the higher flap mode results in the fact that this root locus is essentially
symmetric about the real axis giving a root locus diagram that is more con-
ventional in appearance than in the rigid propeller case. That is, the
influence of cdupling is similar in both the advancing and regressing
modes. ‘It should be noted that H; is of the opposite sign from its value

B

for conventional helicopter flight (low inflow) since it is equal to
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and therefore at high inflow conditions, the first term dominates. The
negative sign corresponds to an unstable damping term at high inflow as
comparison of Figures 12 and 13 indicates. With low support stiffness,
the effect of Hé can be~5een to directly move the roots into the right
half plane. Turther insight into the fully articulated case can be
obtained by considering an approximate factorization Of.Nfa' This poly-

nomial can be written as

N. = h% yH [{A,} 1 s -y H———B}
fa = Yu B'uc'v, _ *Th -VH)
B =1 Uy

(28)

- M
+h2'\rH-é'ﬁ]‘l (s - i) {s-%(l—ﬁ%j)}
H

The simplified forms of the aerodynamic derivatives (Reference 1) give

HEL;?EL; o1
2
Vi WM -
sothz;._t
H-M
~ .2 \ 1 2 . By
Ne, ShyH {s -+ (1 + =53} {s" - (21 + M3 (L -55-) s
fa U h 3V2 B HuMB
B (30)
+ 1M (1-ﬂ¥)
ue

Using the effective radius approximation

B 16
HUM B 27
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giving

-2 v 1 11 . . .1
Ng, =h yHu{(s -y 4 g;§9(5 - gz‘MB)(S - (21 + EZ'MB)} (31)

The approximate zeros given by this approximate factorization agree well
with the exact factorization of Nfa based on equation (28).

The last factor in equation (31) gives the zero very near the higher
flap mode, the second factor gives the zerc near the origin, and the first
factor is responsible for the zero in the right half plane which may be
viewed as the source of the instability, arising from Hé in effect.

Now we examine the influence of vB, the flap frequency, on the stability
of the system. Figure 14 shows the influence of the flap frequency on the
stability for three levels of pylon stiffness. Again with the high pylon
stiffness,the dynamic system is stable and the effect of flap frequency is
small, At a pylon frequency ratio of 1.5 the effect of VB is essentially
to raise the blade flapping frequency as would be expected from the uncoupled
system. In the low pylon stiffness case, the effect is markedly different,
with the variation in vB causing primarily a damping change in the pylon and
lower flap modes. In fact, it can be seen that there is an optimum flap
frequency in the sense that the damping of the pylon mode and the damping
of the lower flap mode can be maximized by a suitable choice of vB as
suggested in Reference 7. For this numerical example the system is stable

for 1.07 < v, < 1.18. This figure also shows that the effect of the weak

B

flapping spring on the Bell rotor is small and that the dynamic character-

istics of the system essentially correspond to the freely flapping rotor.
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We now consider the influence of adding the lag degrees of freedom.
The characteristic equation given by expanding equations (20) can be

expressed in the following form

AB + T O AB + Ap ST} TE S T e (32)

11 2
. {(s,:h) 6
g

where A is the characteristic equation for the coupled flap-lag motion

B+L

and AP is defined as before. If the inertia characteristic I* is infinitely

large then the dynamics are given by A and Ap’ the former asscociated

B+C
with the isolated rotor cyclic motion and the latter with the pylon. The
Troot locus shown in Figure 15 presents the influence of pylon inertia on

the dynamics of the system with the lag motion degree of freedom for the
fully articulated case. The regressing modes are not particularly influenced
by the coupling and the instability which occurs in the pylon advancing mode
is quite similar to the case without the lag degree of freedom (Fig. 12)
indicating that while the lag is required to obtain a detailed description

of the dynamics, it does not play an essential role in the whirl flutter -
instability. There also appears to be no particular tendency towards an

air resonance instability undoubtedly as a result of the high lag damping.
Figure 16 shows the effect of blade coupling (blade pitch-flap and pitch-lag
effects} which produces no essential change in the root locus diagram,
Figures 12 and 14 appear to depict the essential contributing features

to the instability. With a pylon frequency of 1.5, there appears to be

little Iikelihood of an instability for the parameter ranges examined,
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1.} Pylon Motion Feedback

We now turn to the question of pylon motion feedback and its influence
on the dynamic stability of the pylon proprotor system. First consider the
rigid propeller case. The transfer function relating-complex pylon motion
to complex cyclic pitch is found for the rigid propeller case by taking the
limit vB, UC + ® in equation (20). The transfer function is
YMe + ihYH8

= - EEET : (33)
o
TP

@RI

where the denominator has been discussed previously. The feedback law of

interest here is

g6 = - Kda

The feedback gain can in general be taken to be a complex number to
account for the phasing between pylon deflection and cyclic pitch.
For example, if f& has a purely imaginary value so that K. = K,i then

d d
the feedback law implies

elc: =Kq%
els = —Kday

hence cyclic pitch is applied in such a way that the maximum decrease in
cyclic occurs at the azimuth position {arg Kd) greater than the position at
which the maximum angular displacement of the pylon occurs. ‘The character-
istic equation for the closed loop system from equation (33) is,

X

d . _ ]
{Aa}rp -5 (YMe + 1hYHe) =0 (34)
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This equation may be expanded to yield

Vi, - M) + K3y + ihHg) Y o rzsi
o * T (35)

hlH - M
U

A+ L*{s(s - 2i) + 'Y(hZH]_l - MB) (s -
B

As seen previously, the possibility of whirl flutter is essentially due to
the location of one of the complex zeros associated with the quadratic factor
(see Fig. 11), i.e., which can be traced to the value of

v s
(hHu i Mu)

2
H - M:
hH, - Mg

and the sipgn of (thu - MB)' Thus if the feedback gain Kd is appropriately
chosen, such that the quadratic expression has no zeros in the right half
plane then the possibility of whirl flutter can be eliminated.

Figure 17 shows the location of the zeros as a function of the feedback
gain Kd indicating that when Kd = i, the first order factor has its root
in the second quadrant and then the zeros of the quadratic factor are in
the left half plane as shown for the parameter values appropriate to the
flight condition. With this choice for the feedback gain, the system is
stable for any value of the inertia parameter I* as shown in Figure 18 and
thus the possibility of whirl flutter is eliminated. Figure 19 then shows
the influence of the gain Kd on the whirl flutter. It can be seen from the
previous figure that the purely imaginary value of Kd is of interest. It
is interesting to note however that as the gain is increased, the regressing

mode is stabilized, and the advancing mode is destablized and that a gain

magnitude of less than 1 is desirable.
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Now consider the effect of the same feedback law on the gimballed rotor
with no lag degree of freedom. The transfer function in this case obtained
from equations (20) is

O
" (Ne)fa

. 8fa_ (36)
(A84-u)fa

@ |1

The denominator is given by equation (24) and the numerator is obtained from

equations {22),

lh'YHe ) 2 HBMG

(Ng)fa=--——-1—*-—5 —[2i+ﬁé(l—m‘)]s

(37)
HxM
+iM, (1 - wﬁ—gﬁ}

HGMB

Using the effective radius approximationl equation (37) becomes,
ihyH 2 1

=____ 8 _ . . L 5.
= 7% {s 3 MB + 2i) s + 3 1M8}

The closed loop characteristic equation from (36) is
(A Y. o+ K, (X, =0 (38)
B + o'fa d V' 9'fa

Figure 20 shows the root locus for this feedback for various values of gain.
It is ‘interesting to note that one of the zeros essentially acts to cancel
the higher flap mode and the other zero lies quite close to the origin
indicating that this feedback acts more like a damping term than a stiff-

ness change. If Kd is real, the feedback law is

6

il
-
154

lc d Ty

1s d x
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This would appear at first glance to be a stiffness effect, however, examin-
ation of the nature of the inplane force indicates that the dominant term
in the inplane force is proportional to flapping velocity (at low frequency)
and since cyclic pitch produces a flap angle this would imply effectively
that a feedback proportional to shaft rate is produced by this displacement
feedback. Shifting the phase of feedback by 90° produces more of a spring
or stiffening effect as would be expected from the above discussion. It is
also interesting to note that in general, a feedback phase angle which tends
to stabilize one of the medes tends to destabilize the other mode, showing
behaviior quite analogous to the rigid propeller case (Fig. 19).
Similar behavior is shown in Figure 21 where the effect of various phase
feedbacks is shown with different levels of pylon stiffness. In general,
the phase of feedback which stabilizes or adds damping to one of the pylon
modes, destabilizes or reduces the damping of the other mode.

It is interesting to note the similarity of the results of Figure .
21 to the case examined previously in which the coupling term in the
pylon equation is dropped (HB = 0). In this case the closed locﬁ character-

istic equation is given by

{Aa}uc - Ky ibf, = 0 (39)

The root loci based on equation (39), i.e., for a dynamically uncoupled
pylon is shown in Figure 22 for pylon frequencies vp = 1.0 and 1.5. It
can be seen that the effects of feedback are very similar to the results
shown in Figure 21. Of course in this case, the stabilization is not

necessary since the increased stiffness has already stabilized the system.
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Now as a final topic in this section we examine the effect of the
flap frequency in conjunction with feedback. The open loop transfer

function is

s
- N
a8 (40)
5] B+ o
The numerator obtained from equation (22) is expressed as,
ihyH, iM
Oy _ g .2 8

where (Ng]fa is given by equation (37). Figure 23 shows the root locus
for the zeros of the transfer function (equation (40)) as a function of

V,. The closed loop system equation is obtained from equation (40) as,

B

= .0
fg+a* KgNg =0 (42)
It should be recalled that the system poles given by A are also

B+ a

dependent upon Vv Root loci are shown in Figure 24 as a function of

8"
gain for various values of flapping stiffness with a pylon frequency of (.5.

The feedback influences the pylon and flapping dynamics. The phase of
the feedback which stabilizes the motion shifts as the blade flap frequency
is increased as would be expected due to the changing phase angle of the
blade response te cyclic. It also may be noted that as the flap frequency
is increased, the 1ea§t stable mode becoﬁes the flapping mode which is
stabilized by feedback at the expense of the pylon mode damping.

Figures 25 and 26 show the effect of feedback with increased pylon

stiffness indicating that as shown before essentially the uncoupled

result is obtained at wp = 1,0 and 1.5,
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In Figure 27, the articulated rotor case is considered with a
combination of displacement and rate feedback.

With a suitable choice of rate and displacement gain the system can
be effectively stabilized as shown in Figure 27(c).

The lag degree of freedom is added along with the appropriate pitch-
flap and pitch~lag coupling and a root locus is shown in Figure 28. In
this case a detailed discussion of the zero location is not possible.
However, it can be seen that the primary effect of the additions to the
model is to make the 90° phase feedback more effective in damping the
unstable advancing mode and in additiomn to markedly reduce the effect
of the feedback on the regressing mode. If the pylon stiffness is
increased, thé decoupling shown previously does not seem to be present
as also shown in Figure 28. The feedbacks have little influence on the
Tegressing modes and the phase of feedback which tends to stabilize the
pylon advancing mode, destabilizes the higher lag mode. Thus, with the
complete model it appears difficult to provide stabilization for the
regressing mode and this result indicates the importance of including
all relevant degrees of freedom.

Figure 29 shows the influence of rate feedback and displacement plus
‘rate feedback for the complete system. It is interesting to note that
rate feedback alone destabilizes the higher flap and lag modes and has
little effect on the pylon mode. The combination of displacement and
rate stabilizes the pylon advancing mode while destabilizing the higher
flap mode. Thus, the addition of rate feedback does not appear to be

useful in this case.

55



9¢

@
Im Im Higher § | "
. 2.24, Higher @ L 2, 28 Flap Mode }2.21
Higher § | @ Flap
Flap 49,01 Mode -2 (g + 2,01
Mode ' T 2.0l
2 <
) ‘Zk Pylon\b\- .
o .Si ,\ b 051 ‘J Advancing\x i 1l nSl
‘ . ’A”’ Pylon X o~ Mode N\ A’f
Pylon ~ - N - \ A
Ko o o ™ Advancing N N
Advancing -
Mode Advancing Advancing
Mode Advancing
Modes Modes
Modes _
Re _ ,0 Re TN Re
! ¢ i i‘/'\/ N t 1 /& \\\ 0 {
T — ] T S 1 T
=3 Lower%‘ 3 =43 ‘Tg%rlap U’ '3 > Lover Flap’% U 2
: Regressing Regressing '\ Regressing
Flap Mode Modes @ ' Modes ‘D/ l Modes
=TT, ' \ @ !
«8 \EK\ \9\& ‘E\
|31 L7\ 58 Pylon T-.51
Pylon Regressing
Regressing Pylon Mode
Mode Regressing Ay
Mode
(s-plane) (s-planc) (s-plane)
= b = .2 V = 1.3
{a) uB 1.1 (b) \JB 1 (c) 3
Figure 24. ,ROOt Locus: Influence of o -+ § V= .844, Yy = 3.83, h = .342,] { Feedback Law: 8 = - Ed-a
Feedback on Coupled Motion Dynamies I,é - Igu = 1,0, I% = 2,5, ___=4Kd=0o’ "-'"-*=Z$Kd=90°
= o ¥ _‘ ol s 7 ——
r;p = ,02, w_= .5 _ .zu{dulso s O, 0, 1 Ky=1




LS

7]
Tm Im Higher 63 Lm
o @ Flap Mode N
- - ;.21 Highercﬁ 2,21 2,21
{ } Z
Higher \\i/ Flap Mode
Flap Mode T 2.04 T2.0L T 2,01
> _ < <
~7. T 1.04 \E\.\Xﬁ“ 1.01 Pylon ‘El\ . T Ll.54
Pyl X4 A Pylon ~~a. Advancing B
Agvzzc 1 Advancing Advancing Advancing Mode ! Advanein
Mode g+ 8i Modes Mode - .81 Modes 1.34 Modes &
< Q Re < ,0 Re < N
t — t I ; ;
-.5 & ‘U’ .5 -.5 U/ .5 -.5 U .5
Lower Regressing % _ »n Regressing
Flap Mode L ~.2i  Modes @ | -.21 Reﬁzzzzing oX —-.21 Modes
. Lower IP
Flap @ TLowe
Mode Flap
? e Mode
Bt PN R | ~1.01
Pylon T -1.04 T -
o ine . Pylon ~1.01 K
Msg:ess ng Regressing Pylon
L Mode - . 4 Regressing L 1,24
(s-plane) 1.21 1.1 (s-planej Mode (s-plane)
(a) \)B = 1.1 - (b) \)B = 1.2 {c) \)B = 1,3
Figure 25, Root Locus: Influence of o + § Feed- - Y = .844, y = 3.83, h = ,342, feedback Law: 8 = = Eda
. . = = * » 7 = © 4 K = °
back on Coupled Motion Dy‘namics, . IE Iga 1.0, T* = 2.5, _____.zﬂfd_o , ,____.qr_Kd_go :
tp = 102, w0, = 1.0 ~-=13R =180°; ©, A, @1 [Ky|=1




8¢

o g 4 st s

Im Im - G% m @
® Higher
® Higher °8 Flap Mode
Higherog Flap Mcde
Flap Mode T2.01 T2.01 T+2.01
‘EL.f.“l'ﬁn ‘E\xﬁ{'“l.Si ‘Elf' 1.54
ay, Pylon AL Pylon Al
Pylen q" Advancing Advancing
Advancing Mode Mode
Mode Advancing 2 Advancing Advancing
Modes Modes Modes
T8 o= T -
: : : I : —
-.5 (o) U s -5 U 5 .5 U s
Lower '~~~ &
: .—.21 Regressing o . Regressing = Regressing
Flap Mode Modes ¢ $21 Modes -2 Modes
Lower
Flap @ Lower
Mode Flap Mode
N\
i <N ~1.51
Pylon g 1.51 Pylon ~1.51 O T
Regressing Repressin Pylon ¢
Mode & & Regressing .
) (s-plane) . (s-plane) (s-plane)
= . - . \) = 113
(a) Vg 1.1 {(b) \’B 1.2 (e) 8
Figure 26. Root Locus: Influence of o + 6 Teed- V = .84k, y = 3.83, h = .342, || Feedback Law: 5« - Kda
' o * = * = * = — —
back on Coupled Motion Dynamics IB IBa 1.0, 1 2.5, ___:41{(1:00, ___:m(d=900’
’ r = ,02, w_ = 1.5 oA =180« A7 1=
P » Wy 13K =180°; 0, A, [@:]K, [ =1



http:Lower---.21

69

Im Im Im
‘ f 204 - 2,24 - 2,21
Higher,-ﬁ\ Higher .-« Higher  .-.
Flap | x 1@L 2.01 Flap | x ‘&l 2.0% Flap { %) &
Mode “.../ Mode — M__. Mode AV 2.01
T 7 7
1 .51 4 .51 i .51
Pylon
Advancing Mode Pylon Pylon
Advancing Advancin
X Advancing X Mode 20X Mod &
Modes g Lower Flap o.e
Advancing Advancing
{} Re Lower Flap Mode f}Modes Mode {}Modee
; >¢¥"‘f3=13 : ""“:*3‘*4< o =“139( O—g
= IS —-5 Re Re
Lower -.5
Flap Mode Regressing Regressing " X Regressing
Modes Feedback Law: %l. Modey Feedback Law: Mode
Feedback Law: Pylon 5« Raa X pylon 5==Lﬁv(s+ﬁd/ﬁv)§ ‘Y>%KPylon
5_ 5 - Regressing Mode v Regressing . T _ ano Regressing
86=-K.0 with 3K =90
.d = ° . Mode v Mode
L -, 51 with 4K =90 4 -.51 T oT L L
, = _ano v & K /K = .2 =51
with 4K =90 o - d' v
d {180° Locus) °
° (180° Locus)
(180° Locus) @: R |=1 -
O: |de= 1 (s~plane) v (s-plane) O: IKVI= 1 (s—plane)

(a) Pylon Displacement Feedback

Figure 27. Root Locus: Influence of g + ¢ Feedback

on Coupled Motlon Dynamics; Isotropic
Pylon:

(b) Pylon Rate Feedback .

(c) Pylon [Dis. + Rate] Feedback

1% =

B

V= .844, vy =3{83, h

I*

Ba

= ,342,
' = 1,0, vE = 1.0355,
Ik = 2.5, ¢ = 02, w =.5




) |

Higher
Zero Flap ﬁ“

.87 : N\
@ —-.87+12.401 Mode
V = 844
2.0 y = 3.83
A h = .342
- ¥ = I = 1.0
Higher Y E_= 6%
Lag Mode '
Sé = 1.035
T3t vg = 1.0355
v, = 1.33
C
K = -.344
P
K = -.3
P
R = 2.
1101 I 3
= ,02
CP
A

3 Pylon
A Advancing

.53 .
\\\ Mode
- —X Advancing
/3' Modes

0

1.0 -5 ° .5 J 1.0 Re
Lower L9 Regressing
Flap ;-;‘J Modes
Mode - — p—
4 Feedback Law: 6 = -k
Pylon X —-.51 = o
: - —_— A XK, =06
Regressing 3‘-{ * Lo i d 0
Mode WD} 2 g0°
. }<-—-~— ————{3—-9-— v o4 120°
(Poles are from Fig. 16) IKd|- 0, |K [= 1.0

{(a) mp = .5

Figure 28. Root Locus: Influence of & +~ 8 Feedback on Coupled Motion Dynamics,

for Isotropic Pylon; With Lag Motion Degree of Freedom and Kp & KPZ;

60



% Higher g Im
Flap :
Zero Mode
@ —-.87+ 12.40%1
V = .844
S 2.0t Y = 3.83
% h = .342
.23 2 = T% =
= éh B Bo . 1.0
Higher RN Ié = ,67
Lag Mode 8% = 1.035
4+ 1.51 vg = 1.0355
v_=1.33
[
K = -.344
P
Kp = -.3
4 c
AN J/ T# = 2.5
\ g 1-0t z_ = .02
Pylon \ £\ P
Advanecing {
Mode, {
.\\\\ \
\
T——X
+ .51
X
Lower >
Lag Mode
Advancing
Modes
} 4 ) + i
-1.0 -5 5y 1.0 Re
Lower 17,9 Regressing
Flap Mode Modes
® Feedback Law: @ = -—Rd& l]
T .51 _ .
Moo m =Ly — e T AK, = 60
KL 7 g0°
Hrrm e e} # 120°
Pylon T t
Regressing IKd[= 0, |Kd|_ 1.0
Mode y .
éea -1.0i
(Poles are from Fig. 16). (s-plane)

1.0

(b) wp

Figure 28. (continued)

61



é Im
- Higher 1 2.51
Zero Flap
@ -.87+12.405  Tode
V = ,B44
& 2.0 Y= 3.83
Higher Lag Mode h = .342
&/X}E!br :
~—- T# = I% = 1.0
ék“ev E ga
.S I* = .67
A
Sé = 1.035
4 1.51 vi = 1.0355
-~ " 1.33
v, = L.
& c
J K = -.344
P
K = ~.3
! 1
Pylon X I* = 2.5
Advancing 4 1.04
Mode e g = .02
p
+ .51
Lower Lag Mode
o
& Advanci
3 vancing
Modes
; % : 0 }
~1.0 .5 © .5 U 1.0 Re
Lower B Regressing
Flap Mode Modes
S Feedback Law: 8 = -ch_!
+ =51 | X-———- A-—>:4K = 60°
? *———— = % 90°
Worms —{Fm- s 4 120°
) h '
Pylon Ik, = o, {Ed|= 1.0
Regressing e —1.51
Mode r
(Poles are from Fig. 16). (s-plane)

(c)

Figure 28.{concluded)

62




é%\ Im 4%} Im
Zero Cf" 2.51 Zerxo 2.51
@ s = -.87 + 12.401 )é_/j[.. @ s = -.87 + 12.40i xfj
Higher Higheq
Flap Flap
Mode Mode
, el 2.01
POIEVACRE S Ed = 60° @L 2.01
' P Xt
[V o, N g0° \\Aa- N
\A*
Higher Higher
X 120° Lag Mode 5
t Lag
- as . Mode 4 .
[K |= 0’ ]K I= 1 1.5% 1.51
- : < <
T .51 T .51
A »%
st = -+
e Pylon . Lower Pylon A%
Lower - % < . f_
JJ:r Lac Mode Advancing Lag Mode  Advancing
© Mode Mode
i 4 j§—§¥— — St 3
“1.0 '—.5 f’-h Re —'.5 Re
Lower: X ) @fLower
Flap | Flap
Mode Mode
2 o
pylon 751 Pylon &5
Regressing Regressing :
Mode Mode
(s-plane) (s-plane)

(a) Pylon Rate Feedback:

FB Law: 8 = - K 50
v

Figure 29. Root Locus: Influence of a8
Feedback on Coupled Motion Dynamics;

Isotropic Pylon with Rotor Cyclic Lag

Motion DOF and K & K
p D

Z

63

(b) Pylon (Dis. + Rate) Feedback;

FB Law: 6 = —_vas + Kd/Kv)a
with Kd/Kv = .6
V=84, Y =3.83, h = .342,
I* = I* = 1.0, I* = .67
B Bot I ?
sz = 1.033, .vg = 1.0355,
v_ = 1.33, K_= -.344, K_= -.3,
[ P PC
* = 0.5 L = .02, =5
I 2.5, L, SN




DYNAMICS OF PROPROTOR AND CANTILEVER WING

In this section we now examine the dynamics of the specific physical
system of interest, that is,‘a cantilever wing and proprotor in cruise
flight. The primary modification from the previous section is the support
model which i8 a nom-isotropic support, i.e, a wing with three degrees of
freedom:; spanwise bending; chordwise bending; and térsion. First we consider
the isolated wing dynamics.

1.) Isolated Wing Dynamics

The wing is modelled using only a single mode in each degree of freedom.
The modal amplitudes are denoted by q, for spanwise bending, q, for chordwise
bending and p for torsion.

The torsion and spanwise bending are coupled as a result of the relative
locations of the center of gravity and elastic axes. The chordwise degree
of ‘freedom is essentially uncoupled from the other two degrees of freedom.

The coupled spanwise »ending-torsion equati»ns of motion are expressed as
(a. ) A
q qip q
I uc I { 1} = 0 (43)
qul [Qp)uc P

The uncoupled characteristics are given by
2

2. 2
I* 4 I* + 2M* h C* + hvy H - ¥C_. K* - hVyH
( B oy ME ) ST o+ ( 5 + h™y Y PP) s + Y

A
( p)uc u p [}

[CD]
ql uc

2
* * £k
(IQW T ML Yy * 2y ) S
(44)
2 2
* - 1 . %
HC L+ v, T - ¥C o+ L B0 s + K

1 1% 1

64



and the coupling terms are,

_ - 2

qul = (S; + ZMg hytw)s * Yiw hYHuS
: 2

= * * - - -V -

Aqpp = (83 + MFhy ) s” + Oy byl Yqup) S - Yo VHy chlP
The characteristic equation for this system is given by

A = {A A - A A =0 49
q; * P ¢ ql)uc ( p)uc Pq; Q4P (49)

For the physical system under consideration the uncoupled quadratic factors

have the following characteristics (at V = 0.844)

(8 Due

109 (s + 0.035 + 0.413i)(s + 0.035 - 0.413i)

(a)

p uc

2.66 (s + 0,055 + 1.10i}(s + 0.055 - 1.10i)

It may be noted that the damping of these modes, which arises from aero-

dynamics is very small.

The coupling terms are

A 8.50 s (s + 0.074)
g,

A 8.50 s (s + 0.599)(s - 0.599)
q,p

The characteristic equation may be written in root locus form to examine

the influence of coupling,

(s)(s + 0.074) (s + 0.599) (s - 0.587)  _
(s + .0705 + 0.172) (s*> + .109s + 1.20)

1 - 0.248

The root loci shown in Figure 30 illustrate the influence of coupling between

the modes. Figure 30(a) shows the dynamics with all of the terms included
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and 30(b} shows the dynamics with the aerodynamic terms neglected, indicating

that the coupling is produced by inertial effects arising from the center of
gravity displacement from the elastic axis of the wing. The effect of coupling

is to raise the p or torsion mode frequency and to produce only a small change

in the spanwise or ay mode from its uncoupled value. Examining the eigenvectors for
these modes is also useful with respect to interpreting some of the results

of the feedback analysis which follows.

For the ql mode,

0.
B - 12621
q
and for the p mode
94 -178%

—==0.09 e
p

Thus in the qq mode, p and q, act almost in phase while for the p mode,q1 and
p are very close to 180° out of phase.

The chordwise mode is essentially uncoupled from the torsion, spanwise
motion and the effect of aerodynamic terms is very small so that the chordwise

motion degree of freedom motion is described by

= 2 o2 .2 2.0 2
(qu)uc - [Iq; * M; * I;x n%w * ZME gy + B NI s
' (46)
+C* s+ K¥ = 0
12 4z
Numerically
(A} =110 (s + 0.012 + 0.6771) (s + 0.012 - 0.6771)
q,"uc

Thus there are three frequencies associated with the wing motion, two associated
with spanwise bending and torsion

w =110, o = 0.413 (uncoupled)

P 44
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and one asscclated with chordwise bending

W = 0.677
9

The support system is, of course, no longer isotropic, however certain
similarities can be noted with the isotropic support treated in the previous
section as will be noted below.

2.} Wing Proprotor Dynamics

First we examine the influence of adding the wing degrees of freedom
to the rotor cyclic motion degrees of freedom. Figure 31 shows the eigen-
values calculated for various degrees of freedom as follows:

4dof: This model includes only the rotor cyclic degrees of

freedom [Blc, Bls’ Elc and Cls)' The eigenvalues are
those discussed previously.

5dof: The wing torsion motion (p) is added to the rotor cyclic dof.

6dof: The wing chordwise bénding dof (q2) is added to the 5dof

model.

7dof: The wing spanwise bending dof (ql) is added to the 6dof model.
Figure 31 indicates that when the torsion degree of freedom is added the
higher flap and lag modes are altered and there is little influence on the
lower flap and lag modes. Moving to the 6dof case, i.e., adding the
chordwise dof has essentially no effect on any of the 5dof eigenvalues.
Similarly, for the 7dof case the primary influence on the 6dof eigenvalues
is to raise fhe frequency of the p mode. This is of course, just the
trend discussed in the case of the isolated wing.

The complete system also involves the collective dynamics of the

rotor and the rotor RPM as degrees of freedom. Figure 32 shows
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the two degree of freedom dymamics associated with these additiconal degrees
of freedom for two cases: constant RPM including the collective flap and
collective lag modes, and the collective flap plus rotor RPM degrees of
freedom. As noted previocusly, with the rotor RPM degree of freedom, the
collective lag mode is essentially not excited and therefore not included
when RPM is included as a degree of freedom.

Also shown in Figure 32 are the seven degree of freedom eigenvalues
from Figure 31. The dynamics of the complete nine degree of freedom system,
i.e., including the coupling between the two collective rotor degrees of
freedom and the cyclic-wing motion system are also shown. It can be seen
from this figure that there is only weak coupling between these collective
dynamics and the 7dof. The eigenvalues of the seven degree of freedom
system correspond closely to the same modes in the nine degree of freedom
case.

Now we consider in more detail the influence of the support or wing
degrees of freedom on the modes of motion and in particular the influemnce
of anisotropy of the support as well as the nature of the coupling. First
consider the effect of the addition of the torsion degree of freedom on
the blade motion. The problem will be formulated as in the previous
section such that the influence of varying the torsional inertia of the
wing is employed to evaluate the mature of this coupling. The equations

of motion for this system can be written as,

B1c

A Crp Bls

Cpr (Ap}uc Clc - ° “n
Cls
P
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WhareAllis the characteristic equation for the flap/lag motion, (A ) is

uc
the uncoupled torsion motion. The coupling terms are given in Appendix I.

This various terms are given as

- 2 qT 2 ]
I§'(VB - 1) + hYHB - Iéa s+ YMB s
- hy H; s (2I* + hyM )} s - YVM
pT - hy H: s Tp YQ: s
o B
§* h s2 + hyH:s S* h 52 + hyQus - YVQp
| C L _ L C

and

2, 2
(Ap)uc (¥;W + I;y + 2Mg h') s

(49)
+(c*+h2YH - C..) s+ K* - hWH ~
P 3 2% P |

Pitch-flap and pitch-Tag coupling are not included in the above matrices.
They can be readily included by modifications to the matrices All and Cpr'

In order to evaluate the influence of the rotor support system dynamics,

given by (ép) with the aerodynamic terms omitted (denoted by (QP) ), the

uc Q

coupled characteristic equation given by equations (47) can be expressed

c
1 zp (50)
AB +T+p |A11i (Ap)o * 9
h® YH - Y¥C_.) s - hyVH
( YH Ypp)s Y

Cor ’

|



The first term in equation {50) represents the dynamics of the system when
the support has infinitely large inertia associated with the torsion degree
of freedom of the wing, In this case, the system dynamics are those of the
isolated proprotor cyclic modes and the torsion of the wing without aero-
dynamics. We now examine the influence of the torsion inertia I;o on the
dynamics, maintaining the natural frequency QPD and the damping ratio ;Po
constant, following a similar approach to that used for the discussion of
the isotropic support.

The root locus varyingbI;O is shown in Figure 33. It can be seen that
the influence of the torsional motion is primarily in the higher flap and
lag modes along with the wing torsion mode. This locus then represents
the effect of coupling, in the case where the support has one degree of
freedom.

We now examine the effect of additional wing flexibility arising
from chordwise or %y motion. It is interesting to examine this case as
a departure from the isotropic case by formulating the equations in the

following way. Let

f = 1]
a, Tew 92

The equations of motion can be written as

n - Blc:\

Ay € a Crp Bs
z
c1 ic
A hyH,
ar ( qz')uc Y B s c » =0 (51)

is

C — ey g

- hvH-

2 YHg S A )ye as

=]
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It may be noted that if (Aqé) = (Ap)uc, that is, if the support is isotropic,
uc

then the method of complex coordinates employed in the previous section could

be applied. So it is convenient to examine the real or anisotropic case by

splitting (Aqé)" inté two parts, that is,
uc

- 2 *
(Aqé)uc = (Ap)uc + (AI* s™ + AC s + AK¥) (52)

where the quadratic factor in parentheses accounts for the anisotropy of the

support. Thus the characteristic polynomial for the system,_given by equation

(51) can be expressed as

A11 eré Crp
%tz rayep =l a) hy Hg s (53)
2 q,T P uc g
Cpr - hyHé s (Ap)uc

2

+ (AI* s + AC* s + AK*) (A )

B+ +p

where AB + T 4p is the characteristic polynomial for the five degree of freedom
case previously discussed (equation (47}). The first term in equation (53) is
the characteristic equation for the case of isotropic supports. Once the eigen-
values are found for this system, then root locus techniques can be employed to
examine the influencezof the relevant inertia on the isotropic case and then the

effect of anisotropy is introduced.

The isotropic case is studied by introducing the complex coordinates

as before with the addition of

a'=p -1 q}
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The characteristic equation obtained from the first term in equation (53) takes

the form of the previous section in the isotropic case,

- 2 . 6
A = I% I* A A - I% * ven
grgrar T BT g o~ Tp (ST IsT e (&%)
whexre AB sz is the isolated rotor cyclic flap-lag characteristic equation

(12),and (Ap)o is the isotropic support characteristic without aerodynamics
with the chordwise stiffness and inertial characteristic (qé) the same as p.
Figure 34 shows how the system dynamics vary with the support inertia I;
again maintaining the natural frequency and damping ratio at their proper
values. The inflow ratio V ; 0.844 and the pitch-flap and pitch-lag coupling
are included (Kp = - 0.344 and K? = - 0.3). For the proper value of the
inertia constant (I;o = 2.66) the eigenvalues are shown., Note that since
complex coordinates are employed here, the pole-zero configuration is not
symmetric about the real axis. The trends shown are very similar to the
isotropic results of the previous section as would be expected. Primarily,
the advancing modes are influenced by the coupling and there is little
influence on the regressing modes. The trend with inertia in the isotropic
case is also very similar to the case with infinite stiffness in one
direction as may be seen by comparison with Figure 33, since the rotor support
regressing mode is hardly influenced by the coupling.

Now the influence of the anisotropy is examined using the root locus
approach described above. The factor under consideration related to the
anisotropy is

AT* 52 + AC*¥ s + AK* = 33.8 (s +0.021+0.634i) (s + 0.021 - 0.6231)

*

In the root locus shown in Figure 35, AI* is considered as the gain and %%;
]

and %%} are maintained constant. The root locus is based on equation (53)
The 'root locus gain is given as AI* IE/(IE I;D - SE h). Figure 35 then
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shows the variation of the eigenvalues as a function of AI*., The isotropic
case is represented of course by AI* = (0. The actual difference in support
characteristics in the two directions is such that in fact the physical
value of the inertia (AI* = 33.8) corresponds very closely to the limiting
value of AI* = », This case is the 5dof model and the chordwise parameters
of the wing are such that the eigenvalues are close to this limit.

The formulation presented is in general useful in studying the effects
of support characteristics.

This investigation appears to indicate the the wing chordwise degree
of freedom for the parameters of the physical system of interest is not
particularly influential. The chordwise mode does play a role however
when the collective modes are examined as will be seen later in this section.
3.) Wing Motion Cycliic Pitch Feedback

We now turn to the examination of the influence of various single loop
feedbacks on the dynamics of the wing proprotor system (nine degrees of
freedom). An optimal control theory approach to this problem is presented
in Reference 18,

First consider the influence of 9 +-Blc feedback at the inflow ratio
V = 0,844, Positive (or negative) feedback represents a feedback law
such that the increase in 9 (positive for upward bending) results in an

increase (or decrease)} in © That 1s, blade pitch takes a maximum value

lc®
at P = 0° (1800) in proportion to feedback gain. Figure 36(a) shows the
root locus for the influence of this gain. Points are shown for a selected

physically reasonable value of the gain. The gain can be interpreted as

the ratio of the angular amplitude of cyclic pitch to angular deflection
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of the wing tip measured from the wing root, It can be seen that the
primary influence of cyclic feedback is to change the characteristics

of the wing p and qi modes and the lower flap and lag modes. This feed-
back essentially alters the damping of the torsion mode and the stiffness
and damping of the spanwise bending mode. Positive feedback increases

the torsion mode damping and destabilizes the spanwise mode. There is
little influence on the wing chordwise mode, the higher flap and lag cyclic
modes, the collective flap mode or the RPM mode. Considering a second
feedback, wing bending to Bls’ i.e., a shift in phase of 900, essentially
the root loci effects are shifted by 90°. In this case, the feedback
alters the frequency of the p mode and the damping of the qp mode., In
each case, the larger changé occurs in the lower frequency or 9 mode, and

from the standpoint of stabilizing the 43 mode, © feedback appear to be

is
the best candidate., Now consider the éffects of torsion motion feedback
shown in Figure 37. The dominant effects of this feedback are to change
the torsion mode characteristics as would be expected and there is some
influence on the higher lag mode. A positive feedback of elc can be
employed to provide torsion mode damping. It is interesting to note
that the trends with torsion feedback are very similar to the influence
of spanwise bending feedback with respect to their influence on the wing
modes. Of course, the a, feedback causes a larger effect on the q; mode
and similarly the p feedback causes a larger effect on the p mode. The
other difference to be noted is that the torsion mode feedback produces
favorable effects on both modes (although the effect on 9, is small)

whereas the q., feedback produces opposite effects. This can be explained
1 PP,

by noting the eigenvectors for the p, 9 coupled modes given earlier
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where in the 93 mode, p and q, are in phase,whereas in the p mode they are
out of phase.

Agaiﬁ the p mode feedback has little influence on many of the modes
similar to the 9 feedback.

Torsion feedback is essentially similar to a single axis version of the
focussed pylon mount.

Now we examine chordwise motion feedback. Figure 38 shows the effect of
this feedback to each c¢yclic. The effect is generally small due to the large
stiffness noted above. For a reasonable physical value of gain some slight
increment in the damping of the chordwise mode can be provided.

These results indicate that owing to the small influence of Ay feed?ack
a focussed mount system with equal gains on both axes would act essentially
like a single axis feedback of torsion or spanwise bending motion.

In considering more generally the influence of these feedbacks it is
possible to note some marked similarities between the various feedbacks.
Further it is possible to associate certain of the zeros with the wing
dynamics and others with the blade: dynamics.

Figure 39 shows the zeros for the a; transrfer functions indicating
the source as arising from wing or rotor characteristics. The zeros from
the seven and nine degree of freedom models are shown to indicate that there
is only a small difference in these two cases. By the symbols H and W the
origin of these zeros from the wing or H foxce transfer function are
identified. Figures 40 and 41 show the zeros of the other transfer functions.
E . 9 'q2 P .

ach of the transfer functions 5 Bls’:e has nearly in common the

1c 1c
following zeros (denoted by Hs’ HC,Y , Or Yc):

S
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1.)

2.)

3.)

Similarily for the other three transfer functions, 61
1

1.)

2.)
3.)

4.)

Three zeros on the real axis; one on the negative real axis

near the origin (s = - 0.1); another farther from the origin

(s = - 1.4}); and one on the positive real axis (s = 0.8).

One zero near the lower mode flap eigenvalue (s = - 0.1 + 0.14i).

One zero near the point s = 2i,

q 4, P
] >

S e1c e15

Two zeros on the negative real axis; one near the origin

there are

(s = - 0.05) and one farther to the left (s = - 0.5).

One zero near the lower flap mode eigenvalue (s = - 0.03 + 0.2i).
One zero near the point s = 2i.

One zero far from the origin (s = - 0.6 + 5.3i).

As will be shown below, these zeros in both cases are associated with the

rotor dynamics, and are essentially the zeros of the rotor inplane force

to cyclic transfer functions.

question

The following section considers this

in more detail.

4)) Transfer Function Zeros for Cyclic Feedback

We now examine some characteristics of the zeros of the transfer

functions of the coupled proprotor cyclic and wing motion to illustrate

the source of the zeros.

The location of these zeros governs the manner

in which feedback influences the dynamics of the system.

The coupled system equations of motion may be written as

(4, ¢ 1 o¢ toc 7
rq}. § qu l TP
———d T
Cqr | Xy B
- | =" " {Q}
' X B,!
a,T : A’22 Y 21
c [
pr |
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where

B.)
B 94 8lc
1s }
x = X = q E =
z Clc ¥ 2 6ls
P
Elsi

Only the seven degree of freedom model has been employed, since it has
been shown that the collective rotor motion and the RPM degrees of freedom

do not influence the dynamics of this system.

Writing the equations (56) in more compact form

11 21 X B

T
i —
A2 Ap Xy Bl

and defining a new rotor motion varizble

X' =x + A
T I

-1 '
11 P % (58)

The equations of motion can be written as

- -
1
[, - c. . arle. te, i [1x
22 QT 11)7rq; , Tq, { TPlAW
. ' ‘ (59)
Cor
q,T
s qur T: * B21-§
C
pT
T =
Ap Xp = B3 8 (60)
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Now in this form,x; may be regarded as the isolated rotor motion. Thus to
find the input tegks on the right hand side of the equation above, in
particular as regards the zeros, they can be found from the isolated
rotor transfer functioms;

For vB = 1, which is a good approximation to the proprotor under con-

sideration and noting that

We can express the right hand side of equation (59) as

qur £ ZEE
I y h
C x' + B! 8 = (61)
-qzr = 21 n%w fx
£
PT y
- - - -
where ;
ZCH zcmy
f& = hy ao Y ac
(62)
2Cy 2me
fx = hy ac ~ Y ao

The left hand side of equation (59) can be simplified based on the fact
noted earlier that, wing chordwise bending (qz) has almost no effect on

the eigenvalues of the rotor wing dynamics, therefore we may drop coupling

terms such as er .  Further q motion only effects wing torsicn so that
2
- —
(& ) 0 A
qp ue 4P
T 63
A22 0 (qu)uc 0 (63)
A,
P4y 0 (Ap)uc
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{o}

fl

C
Tq,

erz_ {0}

The hub moment contribution can be neglected due to the low flapping

stiffness.

As a result of these approximations equation (59) can be expressed

as
(a1 o la Ate
q; uc ] | QP h pr "1l Trp
e ___.___[L______i_____ a,
0 A C_AT C
| ( z)uc | qr "11 “rp =Py
u-_-—-—.......i.-.—... ..-...-_[ ______ _T__——
Py t 0 I (Ap)uc T Vpr All Crp P
L | 1 i
FY -
=0 (64)
f&
= 0 'r"
tw fx
1 ¢ -
9
Now the transfer function g may be written as
lc
q q; f q, f
@ @ D (65)
1lc ¥y 1c X lc
ol
From equation (64) the numerator of I is
y
9 Yiw h
== - = (A ) a) -~—A~A (66)
:Ey h q,"uc pruc  y.. 9P
and the numerator
q
I .
?; =0 (67)
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Therefore it can be seen that the gl—- transfer function zeros ars given

1c
a, : £
by the transfer function ra and the zeros of the transfer function gz— .
Y ic
Similarly the transfer function
q q, f% q, f
1
2= EIED + (@D (68)
1s v 1s x 1s
9 . ol
since r 0 the zeros of 5 consist of the same wing zeros as for the
X 1s
4 f
—=—— Wwith the rotor zero contribution given by EX_ .
elc s

The approximate zeros given by this approach are

From
(A ) =111 s® + 5.17s + 49.5
q,"uc
s =2Q,02 + 0.671
From
h 2
(A) - —— A _ =0.481 s° + 0.265 s + 3.96
pu ¥y 9,P
tw,
s = - 0.28 * 2,861
f
The zeros of the transfer finction EX
1c
s = - 0.11, 0.77, - 1.37, - 0.11 £ 0.14i, - 0,01 £ 2,031

The zeros in the figure are labelled W or H as to whether they arise from
the wing dynamics or the rotor dynamics on the figures. The physical

origin of the zeros can be seen. The wing motion Tesponse to cyclic can
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be considered to be a product of cascaded transfer functions, i.e, the
product of the wing response to rotor force times the rotor force to
cyclic where the zeros can be calculated based on a decoupling assumption.

Now consider the torsion transfer functions

£ £
P P Y.,PB X (69)

elc fy e1c fx elc

From equation (64), we obtain the numerator of

7.
P _ _ v
£, [qu)uc {(Aquuc h qul} (70)

and similarly the numerator of

b _
—=0 (71)
X

Again the zeros are given by the wing contributions

yfw
(A ) and{(A ) - —=— A
q,"uc q"uc h P9,

£
and the zeros of the transfer function EZ_. Similarly
ilc
£ fx
E—= B B (72)
Is y 1s x 1s
So the wing contributions are the same as above and in addition we have
f
the zeros of the transfer function EZ.
1s

Thus the torsion to cyclic transfer functions have the sets of zeros
from the rotor which are identical and differ only in the wing contributions.

In a similar fashion we can examine the chordwise transfer functions
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q q, f q, f
2 2
= (DE + (BED
2] £-’' £ 70
ic y ic x 1c
(73)
q 9, £ q, £
= P+ PHED
1s y 1s x 1s
If we assume that CIP = ( then the numerator of
42
Y
and the numerator of
2o e CA A A ' (75)
-~ = - 5
£ ntw L ql)uc pluc Pdy q_-LP]

so it can be seen that the zeros for chordwise feedback are:

The zeros of the factor [(A ) Aa) -A A ] which are in
q; uc " pruc P4y 4P

fact the zeros of the characteristic polynomial Aql . p’ i.e, the cougled
wing torsion bending motion. And the zeﬁos of the transfer function ﬁf— ,
which because of sy@metry is equal to - Efw . ©

Similarly the zeros for the %f— transfzr function have the same wing
contributions (the uncoupled wing iorsion bending zeros) and the zeros of
ﬁf;-which is equivalent to ;{—u The zeros obtained
from this approximation agree well with the resultscobtained from the

the transfer function

complete model.

Thus the source of the similarity in the zeros can be seen. To
. 9 , %9 P .
summarize the results, 5 * 5 6 211 have essentially the same zero
ilc "1s lc
contributions from the inplane response characteristics and differ in the
. 4@ b p_ -
wing zeros. g—, 5 and 5 also have similar characteristics, indi-
1s lc 1s
cating that the zeros may be derived from a cascaded system in which the
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coupling terms appearing in the numerators can be neglected, i.e., the
zeros in the rotor force to c¢yclic transfer functions can be estimated
ignoring wing motion.

It should be noted that these conclusions depend upon a number of
assumptions which may not be true for other proprotor aircraft with
markedly different characteristics., It appears that vB = 1 is one of
the crucial assumptions.

In this particular case, the difference in the action of each of these
feedbacks is essentially due to the role of the wing dynamics. Chordwise
feedback has little effect on the other wing modes owing to the fact that
the épproximate zeros of the chordwise transfer functions lie on the qy5P
modes. The torsion and spanwise feedbacks have one pair of zeros very
near the qa, mode. The other pair is basically related to the wing response

to rotor force, and produces the nature of the feedback effect.

To summarize,the essential difference in the effects of the various
wing motion to cyclic feedbacks appears to be due to the location of the
zeros due to the wing dynamics, and these can be estimated from the wing
motion transfer functions in response to forces applied at the rotor hub.
Both the q, and p feedbacks give a zero at the uncoupled chordwise mode.
The second pair of wing zeros for 9 feedback is at rather high frequency
while for p-feedback the zeros are at relatively low frequency near the Q3
mode, sufficiently ctose in fact such that p feedback has only a relatively
weak influence on the 93 mode. q, feedback results in zeros from the wing
dynamics which are near the 93 and p modes 'as would be expected.

It is also interesting to note that the rotor force to cyclic transfer

functions yield a zero quite close to the origin implying that the response
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of the rotor force to cyclic is close to being a rate dependent effect.
A simple model for the rotor in-plane force implies that for low fre-
quency motions the inplane force is proportional to flapping rate, and
since cyclic produces a flap angle for low frequency inputs, the rotor
force transfer function is more like a damping feedback than a stiffness
change. This would be quite different if the rotor produced appreciable
hub moments through a flapping spring.

Thus it can be seen that cyclic pitch feedback could be effective in
controlling the wing torsiog and spanwise bending modes but has little
influence on the chordwise mode. Therefore it seems desirable to examine
the effect of chordwise motion to collective pitch feedback.

5.) Chordwise Motion to Rotor Ceollective Feedback

The root loci shown in Figure 42 illustrates the influence of pro-
portional feedback of wing q, motion to collective pitch for the nine degree
of freedom model in the free rotor RPM case at advance ratio V = 0.844. The
sign convention for positive (or negative) feedback is such that an increase
in 4, (positive for aft bending) results in an increase (or decrease) in
blade collective pitch.

It can be seen from this complete model that essentially only the
chordwise mode, collective flap and RPM modes are involved and pole zero
cancellations eliminate the effects on other modes. Thus it appears that
this feedback can be adequately examined using only a three degree of
freedom model,

Figure 43 shows some results using this three degree of freedom model.
It is interesting to note from Figure 42 the zero configuration involved

in this feedback. There is a zero at the origin implying that this feedback
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is essentially a rate feedback. That is, that a collective pitch change gives.
no steady state thrust. This is a consequence of the free RPM assumption.
That is, in the steady state no thrust change is produced by a collective
pitch change. The two real axis zeros indicate the presence of a non-minimum .
phase effect. These trends can be readily explained by considering the three
degree of freedom dynamics in more detail

The equations of motion can be written as

Bo YMB
{A] Qs - - YQe 90 (76}
9z T2 Y YTy

Since this is a relatively simple system,we do not consider the cascade

approach used in a previous section.
9 42
The numerator of the =— <transfer functions, denoted by Ne N

5 is given by
o} Lo}

B0 Jue T L
2 e ____
9 \ !
Neo = YQs s (A, : - YQ, (77)
i

2 ! X
2 ytw(— SEOS + YTBS)I 2 Yiw Tt | 2 thYTB

. . . . . 1 .
But since the Q derivatives are proportional to the T derivatives , i.e.,

=VT

Qs ®
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equation (77) can be simplified to,

o
I3 (Bg Dye | M | Mg
0 [0}
S I
1, > T |
N~ = V S% s | s 0 (78)
B I
0 _—— - Q —— — ...._...l_._.__._
2
2, (55 5 T VT S 2Ty - 2 YT
Expanding
q M
2 8 2
Ny" = -2y yT,s | (It -S% ) s
eo tw' 0 Bo Bo Tq
T M ' T:M
g '
+ kY (=—-M) -VSE (=) -M) | s (79)
. ( Ty B Bo " Tg 6
2
+ Ix v
Bo B,

The damping term in the second factor is very small, i.e., if the effective
radius approximation is employed this term vanishes, so that the numerator

is given by

2
Y
q 5% M B
2 _ Bo 6 2 0
Neo =2y, YTBIEO (Pé T 1) s <s 53 (80)
© M——" (I§ Ty - 1)
3] o
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Inserting numerical values we find that the zeros are

s =0, + 6.49
which compares well with the more exact result obtained by retaining all
of the aerodynamic terms

s =0, - 6.06, 6.95

The zero located at the origin gives a zero static gain indicating that
a step input in collective produces no steady state chordwise deflection
implying that in the steady state condition there is no thrust change.

It can also be seen that the nonminimum phase effect, or zero in the
right half plane arises from the blade inertia. A step increase in pitch
input causes the blades to accelerate forward and the inertial reaction
of the wing occurs in the opposite direction or to the rear.

Consider the equations of motion for the three degrees of freedom,

neglecting aerodynamic terms on the left hand side,

— 2 -
I () 0 - Yy S5 S
80 B87uc tw Bo ) Bo
0 (Aﬂ)uc it Qs (81)°
2
-2 ytwsé s 0 (Aq Juc 47
i o} 2
YMB
[ -—1
- YQe eO
2 ywaTG_
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Figure 43 shows the influence of coupling for this model, including aero-~
dynamics, with and without the QS degree of freedom. The primary effect

of coupling is to raise the frequency of the collective flap mode, as

the neglect of the aerodynamic terms decouples the QS degree of freedom.

It also can be seen that the S% term representing the blade inertial

B

o
characteristics is responsible for the non-minimum phase term.

The complete system analysis of Figure 42 shows an influence on the
9 mode, a positive feedback, i.e., aft bending of the wing producing an
increase in collective pitch results in a stabilizing effect. Figure 44
considers the influence of rate feedback as well as a combination of rate
and displacement indicating that a combination of rate plus displacement
is most effective in increasing the damping of the wing chordwise mode
although the damping of the collective blade mode is slightly reduced. A
physically reasonable value of gain produces a rather small effect however,
owing to the high chordwise stiffness of the wing.

Toc summarize the results of this section, it generally appears that
spanwise or torsion bending to cyclic feedback could be effective in
controlling the dynamic characteristics of these modes. Owing to the high
stiffness of the chordwise mode, it appears difficult to obtain much change
in the chordwise mode owing to the high stiffness. Collective pitch feed-
back appears more effective, for reasonable gain values, in controlling
the chordwise mode.

Other possible feedbacks have not been considered since they primarily
influence the isolated modes, i.é., cyclic feedback -to blade motion
alters the blade motion itself and wing flap feedback will largely only

influence the wing torsion-spanwise bending motion.
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PROPROTOR DYNAMICS WITH FUSELAGE FREEDOM

In this section we examine the influence of freeing the fuselage on the
overall dynamics of the proprotor aircraft with flexibility. Only the
symmetric degrees of freedom of the fuselage are considered, i.e., pitch,
vertical translation,and horizontal translation. Further, additional
blade degrees of freedom have been included to more precisely represent
the influence of the blade torsion degree of freedom. The proprotor wing
model is now that of Reference 2. Rather than using an effective pitch-lag
coupling as in the previous sections, additional blade degrees of freedom
including modal coupling between flap and lag bending as well as control
system flexibility are incorporated. This increases the complexity of -
the basic model with free proprotor RPM. Fifteen degrees of freedom are
now involved. Therefore with the fuselage free, we have an eighteen degree
of freedom system. The inclusion of additional blade degrees of freeom,
while changing quantitative aspects of the results does not give any
essential qualitative differences from the nine degree of freedom model
with pitch-lag coupling.

Of particular interest here is the influence of freeing the fuselage
on the dynamics and stability of the overall system especially as rTegards
its influence on the whirl flutter speed. In addition, the influence of
the flexibility on the dynamics of the aircraft, especially with respect
to the lowest frequency modes which are related to the stability and control
of the aircraft are examined and an approximate model discussed which con-
sideres the primary influence of flexibility.

Figure 45 shows the eigenvalues of the eighteen degree of freedom

(fuselage free) and fifteen degree of freedom (fuselage fixed) motions
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as a function of trimmed flight velocity and also the case with rotor RPM
assumed constant (seventeen and fourteen degrees of freedom). It can be
seen that there is 1ittle influence on many of the eigenvalues with the
exception of the wing‘bending modes and of course the addition of the class-

ical longitudinal modes of motion of the airframe.

In particular it can be noted that upon freeing the fuselage both of
the wing bending modes (qwl and qwz) are raised in frequency and their
damping ratios are increased. This increase in frequency is simply
explained by considering-the way in which the natural frequencies of a beam
undergoing symmetric vibration are influenced by a mass located at the
center of the beam. If we compare the lowest natural frequency of a

cantilever beam which is given by

EI

= 3,52 —
“N, mgd

which would correspond to the limiting case of an infinite mass at the
center of a free-free beam to the natural frequency of a free-free beam

with no mass at the center, its natural frequency is

=22.4 | EL
Neg mg’

indicating the lowest mode natural frequency increases as the effect of
fuselage freedom is included. This effect can be seen in the complete
model by comparing the frequencies of the qwl and qw2 modes in Figures 45(a)
and (b). Figure 46 shows these results more explicitly giving the frequency
of there two modes obtained from the fifteen and eighteen degree of freedom

models.
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Also shown is the influence of freeing the fuselage on the damping of the
two modes. There is little effect shown on the damping of the chordwise mode
however the damping of the spanwise mode is increased quite significantly
apparently obtaining some additional damping from the freeing of the fuselage

The other case of interest here is that with the rotor RPM constant, i.e.,
the case of perfect engine governor. The eigenvalues in this case with the
fuselage fixed and fuselage free are also shown in Figure 45. The general
trend of the eigenvalues with speed are similar to the RPM free case. There

is a difference in the collective mode (8(1)) for reasons explained earlier.

As far as the stabiliéy of the system, or iﬁ otier words the whirl flutter
speed, there is little change in the damping of the qwz mode as shown in
Figure 46. There is however a marked increase in damping of the qu mode.
This increase in damping arises apparently from the fact that wing spanwise
bending causes a rotation of the rotor shaft with respect to space and thus
if the proprotor RPM is assumed constant asrodynamic damping appears in the
spanwise mode. If the RPM is free, then in effect no aerodynamic forces
appear as a result of this rotation.

The constant RPM assumption also has a marked influence on the proprotor
contribution to-the phugoid damping as may be seen from Figure 47. At the
higher flight speeds the phugoid becomes critically damped due to the large
thrust variation with airspeed which does not appear for the free rotor RPM
case.

Figure 47 compares the time to half amplitude in these two cases for the
phugoid and the short period where it can be seen that the only significant‘
difference between the eighteen and seventeen degree of freedom models
occurs in the phugoid mode. The period change in the phugoid between the

two cases is of course due to the difference in damping,
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We also examine at this point the influence of the aeroelastic degrees
of freedom on the two low frequency modes associated with the stability and

control characteristics of the aircraft. Also shown in Figure 47 are

the quasistatic app?oximations to the low frequéncy_motions, i.e., the
dynamic terms associated with the aeroelastic effects are eliminated.
This approximation must be made with care since we must retain the proper
rate dependent aerodynamic contributions from the various modes. It can
be seen that the only significant difference between the quasistatic
approximation and the complete system dynamics is associated with the
short period damping. Use of the quasistatic approximation results in an
overestimation of the short period damping or time to half amplitude.
It would be highly desirable in order to obtain insight into the aircraft
dynamics to obtain a low order approximation to the short period motion
including the effect of aeroelasticity. The following section considers
this question in detail.
1.) Short Period Motion

First we consider the quasi-static approximation to the short period
motion in order to justify an approximate way in which to account for the
dynamics of the aircraft associated with its flexibility and then proceed
to develop this approximation.

The short period equations of motion in an inertial frame of reference

may be written as

~

(1 - Zw) s - Ew - Eé s - EB ﬁf

-ﬁ.’g-iﬁw §2-ﬁé§-ﬁe gf =0 (82)
where o . o
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These equations are written in dimensional real time (5 = s2). It is of
course assumed that the center of gravity of the aircraft is fixed at

one peint and thus M is the total aircraft mass and the moment of inertia
includes the rotor contributions as a point mass. Thus the rotor inplane
force does not contain any inertia terms. The rotor blade inertia terms
are included in the moment.. This is important to keep in mind

when we examine the dynamic form of the inplane force and moment in the
following.

Note again that the conventional Eulerian frame is not being used for
the short period which accounts for the fact that pitch attitude dependence
of the aerodynamics appears in the equations and there is mo inertial
term depending on pitch rate in the normal force equation.

iﬁ and ﬂw are the usual downwash lag derivatives. Note that the angle

e

Vv

also include downwash lag effects in addition to

of attack change of the aircraft is equal to (ef ) so that the

derivatives ié and ﬁé

the direct effects of pitch rate.

If we convert these equations of motion into dimensionless form

consistant with the notation of the rest of this report,

{1 -2.) s -1%2 - Zz8 -1 W
W W 0 6 f - 0 (82"
2 Oz
- Mw 5 - Mw s - Més - Me
where
Ve T VIR
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The various derivatives can be expressed as follows:
1.} -The vertical acceleration derivatives (wf) are due to downwash lag

and arise from the horizontal tail contributions. They are given by
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2.) The vertical veloéity derivatives (wf) arise from the horizontal tail,
rotors, wing and fuseage.

a.) horizontal tail

ac 2
%Wé ='gc Sy {1‘%%)
£ hT
ac 2
| = Tssp s, ap A - 3¢
a Wf hT mal
b.) rotor
2 e
ag awf - aoc chg
2 2y Y
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owing to the equivalence between a gust input ag and a vertical velocity

of the aircraft w

f
c.) wing
8C 2
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C ow nao oW
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where Ew is the distance between the aircraft center of gravity and the
wing MAC (divided by cwR)

&.) fuselage
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3.) The pitch rate derivatives (éf) arise from the horizontal tail and
the rotors with a small contribution from the wing

a.) horizontal tail

aC
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ag Béf b Tac SHET “u aT(1 do
t
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2y M I 4 2 2 de.
ad pely =~ Tag Swir ¢y 2p( * 5
t

b.) rotors. Noting the equivalence between Gf and ©

.gl."BCZ 2y BCH
ac Béf r aod 3G
2y BCM 2 BCM
ao aef T ag Bay

c.) The wing produces a small contribution

aC
.‘_2....Y_...__.Z =--—-—-——YV 28 8% ca
ag Bef W Tadg WW W W
ac
2 ) LW 5592 %
ag Bgf " Tag WW ww

The fuselage contribution is neglected.

4.) The pitch attitude derivatives are directly related to the vertical

veloeity derivatives,

e B
ag Bef ag awf
ao aef ag Bwf
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These various derivatives are numerically evaluated using the parameters
of the aircraft given in Table ITI to yield the results given in Table IV.
We now proceed to examine the characteristic equation for the short

‘period motion,

Using the equivalences, Zw = - ZB’ Mw = - Me, and noting that the
derivative ZW is negligible compared to 1, the characteristic equation
for the short period mode is obtained from equation (82') is

= g2 . . . . =
Bop = 8"+ I- 2, -Mg - ZgMT s+ [ZMy - My~ ZM - ZM.T =0 (83)

Consider the numerical contributions of the derivatives to the stiffness

and damping terms in this quadratic equation
(-Z) + (-Mg) + (- ZgM)
(0.0362) + (0.108) + (- 0.0012) = 0.143

Zy Mg+ (- Mg + (= ZgM ) + (= ZgMy)

(0.00391) + (0.0106) + (0.00039) + (- 0.00121) = 0.0129

The characteristic roots are
51’2 = - 0.072 £ 0.088 1

The damping ratio and natural frequency are

Csp = 0-63 wg, = 0.114
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Total Aireraft: Horizontal Tail:
_AFT CG (FS 298.2, WL 73.6%) . SH = _322
] Zt = 4,23

mcf = 712 (Gross Weight 13000 1bs) a; = £.13

A = = 2
I(z 81.9 (Ia 12903 slugxft®) de _ 235

V = .844 (300 kts when IR = 600 do

ft/sec)
Rotor: Wing:

¥F=23 28W= 1.101 (= Zym cw)

a=5.7 Yoy = 1-333

g = .089 e, = L4113
I, = 105 slugxft? 1, = 107

v = 3.83 a, = 4,58
Té¢=71% =1.0

B Ba
Iz = ,67 Fuselage:

vé = 1,0355

v. = 1.33 S, = .206

[4 r

ko= .361 CLfa = 3.64

Kp = m. 344 g = 7410

Kp = «,3 o

L

Table III. Data Used for the Evaluation of the Derivatives

Shown in Table IV.
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Horizontal{ Rotors Wing Fuselage Total
Tail (Two)
3¢
zg =2 - 1.57 - 1.57
a Wy (%) (%) (%)
z- -.00465 ~.00465
3¢
A S ~1.51 | -.406x2 - 8.64 - 1.28 -12.2
ad dw
f _
Z -.00446 -. 00240 -.0255 -.00379 ~.0362
2v ac
=L éz 6.27 3.29 %2 -.454 12.4
f (%)
%5 .0185 L0194 -.0013 .0366
o 3¢
5 1.51 406 X 2 8.64 1.28 12.2
ad 995
f
Zg .00446 .00240 .0255 .00379 .0362
3¢
az; aw.”‘ 2.75 2.75
f (*) (=) (*)
?4‘} .0335 .0335
3¢
2y m 2.64 —.175 x2 ~.382 - 1.03 .869
ag oW
) kil
M .0322 ~.00427 ~.00467 -.0126 L0106 .
ac
2; S - 10.9 1.05% 2 ~.0200 -8.86
a O (%)
5 -.133 .0256 -.0002 -.108
3 C _
x _m - 2.64 .175 % 2 .382 1.03 -.869
as 98
_f
Me -.0322 .00427 .00467 L0126 -.0106
( # ) : neglected
Table IV, Derivatives: Results of Numerical Evaluation for the Case

Given in Table III.
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This is the quasi-static prediction of the short period characteristic.
Noting from previous sections that the low frequency rotor flapping mode
has a frequency approximately equal to 0.18 it can be seen that this
frequency is reasonably close to the short period motion and would be
expected therefore that including in some approximate way the coupling of
this mode to the short period would be the source of the discrepancy in
damping between the complete model and the quasi-static model described
previously.

First consider the relative magnitude of the contributions of the
various derivatives to the short period motion and in particular the
rotor contributions. The primary contribution to the damping is Mé and
next in importance is %w' The influence of ZéMW is small. From Table IV
it can also be seen that the rotor contribution to these three terms are
18%, 1.7% and 0.5% respectively. Therefore we can conclude that the important
contribution of the rotor to the damping term is through Mg-

In the stiffness term, the most important contribution is Mg- The
rotor contribution to this term is approximately 42% of the total. The
next term in order of size is ZwMé and from Table IV the rotor contribution
to Z_ is about 6% and 24 % of My. Therefore it can be assumed that the
primary contribution of the rotor to this term is through Mé. The last
twe terms in the stiffness are relatively small and especially when the
rotor contributions to them are considered (Table IV) it is “found that
théy may be neglected. Thus we may conclude that the important rotor

contributions to the stiffness are through the terms Mé and Mé.
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Now in order to include the rotor dynamics in the short period motion
we consider the following approach. The rotor contribution to the pitch

attitude and pitchrate derivatives are expressed as

_HEEM. - _ A Gs
- A Gy (s)
adaef G'f
ac
Mo A' G, (s)
ac 36 Gf

where A and-A' are the rotor derivatives when the quasi-static approximation
is made and Gé and GB are transfer frunctions which include the effect
£ £

of rotor dynamics.

Since there is an equivalence such that

a»
~
-

n

L= F]
CamnY
ot

£
gy
Q2
e
H

Q@

and

L3}
Lt
et
I

Q2
~—~
it

Q7
Q

Q?
[e>]

we can obtain approximations to the dynamic effects by considering the
rotor hub moment frequency response characteristics to dy and ag which
can be calculated from expressions previously given.
Figures 48 and 49 show.the frequency response characteristics of the rotor
hub moment to sinusoidal inputs in dy and ag. Since many factors
contribute to these frequency response characteristics.it is difficult
to obtain simple analytical expressions for the transfer characteristics

Gé {s) and Ge (s). However, second order approximations can be developed
£

£
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Figure 48, Polar Plot: Frequency Response of the Fivot Pitching Moment
to the Shaft Pitch Rate Input
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V = .844 T -4i

@
= 3.83
= 1.0 A '+ -05-
©
a

H = <
»
=
o]

= .67
1.035 + .31
= 1.0355 '
= 1.33
‘= .342

~.342 T -2i T

(1)
L]

|
wn

2]
W T P W TRk
]

<
N,UN s <
it

Re
— %\
total due to By—2 _ 44 .
(with VhyH = -.396) )
due to Bl;}/
+ -.24i

Figure 49. Polar Plot: Freguency Response of the Pivot Pitching Moment
.to Normal Gust Input.
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so that,

2
6 (s) = — (0.20) .
£ s” + (2)(0.46)(0.20) s + (0.20)
‘ (84)
2 2
0.76 s° + 0.37s + (0.20)
Gy (s} = 3 2
f s + 2 (0.46)(0.20) s + (0.20)
The agreement between these approximate transfer functions and the exact
ones are shown in Figure 50 indicating that a good match is obtained.-by "~
second order form up to a frequency of 0.1.
We can now use root locus techniques to examine the effect of rotor
dynamics on the short period motion.
First consider only the rate effect of the rotor written as
(0.20)*
Ml {3 =
s+ (2)(0.46)(0.20) s + (0.20)
(85)
- 2 . .20
= (Mé)R _ (Mé)R{ > (s) (s + (0.46) (0 ) 2]_
s” + (2)(0.46)(0.20) s + (0.20)
So that the total pitch damping can be written as
Mé _ Gué)R { - (s) (s + 2 (0.46)(0.20)) 2}
s + (2)(0.46)(0.20) s + (0.20)
Mg is the quasi-static damping. The characteristic equation may be
written in root locus form as -
(s) (s ~Z) (s + 0.184)
L \ - 0 (86)

1+ (M)
R (Asp [s% + 2 (0.46)(0.20) s + (0.20)2f
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where Asp is the quasi-static short period motion.

The root locus shown in Figure 51 shows the effect of the gain (Mé)R indicating

that the dynamic response of the rotor force to pitch rate and consequently
coupling between the rotor dynamics and the short period produces a loss
in damping.

If we now also include the influence of the rotor dynamics in the

attitude derivative My , the characteristic equation can be expressed as

(Mg
5 [(s +0.184)(s - Z) + 0.24 (s - 0.78)
W (Me) g
A+ (M) =.0
sp 8'R 2 ‘o
s” + 2 (0.46)(0.20) s + 0.20)
MB
This can be placed in root locus form with the ratio %ETJR constant and the
8

results of the influence of these terms on the short period are also shown
in Figure 51. Using values from Table IV gives the short quigg'dynamics
shown. The characteristic roots are now '

s =~ 0.063 + 0.0881

giving a damping ratio and a natural frequency

' =

CSP 0.58
-

msp 0.108

Thus using this approximate model indicates a loss in short period damping

due to the coupling between the rotor modes and the body modes. The

approximate results also agree well with the complete dynamic model.
Unfortunately, the amount of algebra involved precluded finding

analytical expressions for these transfer functions representing the blade
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dynamics. It can be seen that the natural frequency in the denominator
lies relatively close to the lower flap mode.

It then appears that the rotor dynamics should be included in
predicing the short period characteristics of this type of vehicle. It
is not clear at this time how the flap natural frequency vB would influence
this conclusion. Other studies on helicopters have indicated that as the
flap frequency is increasedlit becomes important to include this coupling

between blade motion and fuselage motiom.

It is further interesting to note that the trend of the two modes,
the short period and the lower gimbal mode (BG - 1) are such that the
coupling increases with airspeed. It can be seen from Figure 45 that
the lower gimbal mode frequency decreases with airspeed and the short
period frequency increases with airspeed and thus there is more significant
coupling between these two modes as airspeed increases. This trend is
also supported by the increasing departure of the short period dynamics
predicted by the quasi-static model compared to the complete model as

shown in Figure 45.
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INFLUENCE OF FEEDBACK WITH FUSELAGE FREE

We now examine the influence of various feedbacks using the complete
or eighteen degree of freedom model.

First we consider the effect of body motion feeback such as might be
employed to improve the stability and control characteristics of the
aircraft. Figure 52 shows the influence of a combination of pitch rate
and pitch attitude feedback tec the elevator on the dynamics, This feed-
back of course improves the damping of the phugoid as shown in the figure
and also increases the short ieriod damping and frequency. The only other
significant changes occur in the two wing bending modes, where as might be
expected,as the gain is increased, the frequencies are lowered and the
spanwise bending mode is destabilized. Infinite gain essentially corresponds
to the fuselage fixed case and so the trends with increasing gain are essentially
the reverse of those shown in Figure 46 with respect to freeing the fuselage.
As indicated in Figure 52 a large value of the feedback gain does produce
an instability.

Figures 53 through 59 show the influence of various wing motion feed-
backs considered earlier for the complete system dymamics.

In general it may be noted that there is little change from the simpler.
model with fuselage fixed considered earlier, particularly for any reasonable
level of gain. Compare for example Figures.53 with Figure 36. It can be
seen that there is very little change in the influence of wing motion feed-

backs on the dynamics of the system whether the fuselage is free or fixed.

131



Im
0 — :
I Im
6 Poles almost . : :
6 Zeros cancel } T !
out i =
i X
42,54 ; qwz +.7614 !
I
B +1 1 |
G‘/ﬁ\ { 1 |
& | |
(l)\/ | l
a : +.741 )
t2.01 | {
t < :
|
- l '"'.50i l
(1) ®; ' :
Nt |
gt 41 ! . !
f 1 !
+1.51 - §
I I
i 9o |
i A
VAPRY i 4
pwkfé,' |  iw Crossing Point: }
- i
| w = .475 for Kp = 136 ;
+1.01 ¢ . ; -+ ; L4634
LT S X I —
v L
q ir A ™|
o R Phugoid Mode }
!
& / | +.0023!
g1 r%j-( 5 ! ;
EIRIE -
qwl 1 P E Zero @ s=-,0337 | E
, J §=-.020 |
B,~1 | Short | 4 !
/ Period 4——@‘-—‘\,——:’3—’\, =z = bt Bt () § ~——td
P % Mode | --002 v !
f e - i S |
"N T'"l::'.- , . t
Sl /T .5 1.0 1.5 Re
—1/1‘e
180° Locus (s—plane)
= - 7 » = _l
Feedback Law: 6e = Ke (s + 1/'re) Bf with Ke>0 & l/‘l.'e = 0833 (4.0 sec 7))

A Ké = 10 (20 dB) - [ Pitch Rate: .20°/(°/sec)
Piteh Attitude: .83°%/°

Figure 52. Root Locus: Effect of 8¢ + 8, Feedback; 18 DOF ‘Model @ V = .844 (300 kts)

132



0 Im
6 Foles and 5 Zeros
% @ s=-.57 + 10.761 (B'%'+1) © @ s=-9.33 + 282.31i
X @ s=-,25+ 8.75i (8(2)—1) @ @s= -.56 + 10.73i
% @s=-.77 + 6.60i (8%11) @ @s= .24+ B8.774
X @s=-.86+ 5.651 (80 ) ® @s= -.8 + 5.651
X @ s=-.19 + 5.101 (8(2) ) @ @s= =19+ 5.10i
X @ s=-.75 + 4.625 (80)-1)
-
+ 2.51
BG+1
~5a Zero @ 5=-2,17+2.331 —
tx ¥
fg‘ RS
) ” (1) Zv
Feedback Law: elc— 3 L g
1 o
%—{J——2~ : Positive FB T2-0%
(Kd > 0; 0° Locus)
"W — A~ == : Negative FB -(l)'
° B '+1
(Kd < 0; 180° Locus)
+1.541
D&A : lel = 2.51 (8 dB)
e
Py
A R | -0
| Phugoid '
: Mode 002-: qW
+ i
1 f 2 ‘&
| g
: 9 ; pe Departure” | N> Zero p-
i (1) \A Ang1e=258..1 A @ s=1.27
| A | 8
| | \l R +.631,
: t + 0di —i / \ i
L_..o=002 & __1_ 4
T~ Bc‘lf,é:g{ _— Short Period
P - Mode -
/"3\ 7
—- 1 —L‘%ﬁ Cellle +
-1.5 -1.0 -.5 .5 Re
(s—plane)
Figure 53. Root Locus: Effect of q, - Blc Feedback (Proportional);
18 DOF Model @ V = .844 (300 kts)

133



{} Im
6 Poles and 5 Zeros
x @s =-.57 +10.761 (8‘P41) @ @s=-.57 + 10.761
w @s=-.25+ 8.75i (8$?-1) ® @s=-.24+ 8.741
X @s=-.77+ 6.60i (6(%41) © Gs= -8 + 5.651
 @s=-.8 + 5651 (609 ) © @s=-.7L+ 5.55i
% @s=-.19+ 5.10i 8 ) ®@s=-.19+ 5.0
X @s=-.75+ 4.621 (89_1)
+2.51
B +1
Feedback Lay: 61 = Kd q G TN
5 Wl FAREN ‘\x}
(@) -
¥—~—L3—>== ; Positive FB ® N~ o
(X, > 0; Q° Locus) 3(1)
+2.01

K —fA— — P Negative FB
(Kd < 03 180° Locus)

B A: [k =251

18 DOF Model @ V = ,844 (300 kts)

134

(8 dB)
T1.51
Zero =
p, X @ s=.75+1.31i
]
|
1 B S~ 4 1.04
i . ~ ~
| Phugoid - 1 > Dbl N B 4
| Mode 1 0021 A 3:1; 4
l | 9, %
| | g4 / 24
[ ot 1 X Departure
! | /B’ .51 | Angle = 154.5°
/ .
: f i 01 ‘1l / L
L_me062 - 0 4 1 .
—~— 2/ Short Period Mode
v, ——~_.
& { ; 43— é E ;
-1.5 -1.0 -.5 .5 Re
8% Zero @ s = 5591 (s-plane)
Figure 54,

Root Locus: Effect of q, Gls Feedback (Proportional);
1



{} Im
6 Poles and 7 Zeros @ @5 = —.56+ 33.041
wx @ 5 = -.57 + 10.761 (Bmﬂ) ®@ @s= -.8+ 10.871
 @s=-25+ 875 (8.1 © @s= -.15+ B.781
x @s=-.77+ 6.601 (6P1) ® @s= -.8 + 5.581
@s=-.84+ 5.651 5] s = =154+ 5.051
X CO) e
es=-19+ 510 8% ) ® @s= .03+ 4.431
X
X @s=-.75+ 4621 (891) ® @s = -2.01 + 3.81i
+2.51
G
5(13§5 {59
Feedback Law: Y= T T T
i ; }
- ¢
O K % To.00 | e | |
2 I |
T ! !
1511}
Positive F¥B (;?1 ; Y i
(K, > 0; 180° Locus) B(1)+l ; _ i
1 |
¥ — A — 2 +1.51 } .
Negative FB o i q, \A . 1-491% }
(Kd < 0; 0° Locus) > s ; 1N E
w N ~
i ~t i
37 A: lk,| = 2.51 -~ /} N {
i
(? dB) L 1.01 /’}. f 4 WY
Departure \ / L___";Q?-_.._.._._.._.Q___._l
v/
Angle = 112.6° A -
rlF ““““““ —TTTT T
qW2 a /| . !
A N/ } Phugoid Mode ) ;
X / i i
.‘.. —13\ ;___T, { W .0021;‘
.51
8(1)_1 qwl L- ..lI * ! :
} Zero 1 i
: / @ s=-.0063 }
818 e Aot 01
A ~.002 P
|m __,J-— —————————— '——"'J
: B EAg ' —
' Rt P o B ' '
-1.0 -.5 Short -5 1.0 Re
Period
(s-plane) Mode

Figure 55.

18 DOF Model @ V = .844 (300 kts)

135

Root Locus: Effect of q, élc Feedback (proportional);
2




ﬂ_G Poles and Tm
6 Zeros

X @s=-,57 + 10.761 (3(2)-!-1) 8 @s=-.67+ 10.761
X @5 =-.254+ 8.751 (5(2)-1) ® @ s =-.25+ 8.68i
X @8 =-77+ 6,601 (8(0)+1) @ @s =-.84+ 5.62i
x @s=-.8 + 5.651 (60 © @s=-.96+ 5.391
X @s=-,19+ 5.101i (8(2) ) © @s=-.18+ 5.061
X @s =75+ 4.62i (9(0)—1) © @s=-.98+ 3.701
+2.51 Feedback Law: 915 =K qW2
+
BG %’\ pe——F—==- : Positive FB (K.d > 0; 180° Locus)
(1)IG€] {_J X —=fA——» : Negative FB (Kd < 03 0° Locus)
8 -
s BxA : |K;] = 2.51 (g dB)
r— T = /= ——7= T T T T
©2.01 } ©
! -1 tSli
|
(1§2€, i 1
|
B4 | A T
- ’&’
+1.54 ]l T 491
!
% e | !
i
A}(pw !
\K:;r i { ! f t -471i—
' +1.01 om0 0
Departure” | ol
V4 I B 1
Angle = 203.2° e ; |
A . ; 5 Phugeid :
., | NIOr 0021 Mod L
X (1) ;/ ] oce |
A B -1 1o ! !
# 0 L 51 ' T !
|
I
E g 4 %ﬁ?——1
Short Period 0 002
—_ /’\ ”J- —————— b —————— J
~$ " L
TR Bt ] ¥ +— '
- =.5 5 1.0 1.5
2 Zeros
@ s= —1.63, —4757 (s-plane)

Figure 56. Root Locus: Effect of q, ~ Gls Feedback (Proportional);
9 .

18 DOF Model @ V = .844 (300 kts)
136




i
; 1?} Im
i 6 Poles and 6 Zeros
w @s =~.57 4+ 10.761 (8(2)-!-1) g @ s =2.32+98.924
x @s=-.25+ 8.751 (8(2) -1) @ @ s =-.62 4+ 10.661
i w @s=-77+ 6.60i (8% +1) © @s =-.23+ B.74i
w @s=-.8+ 5.650 (8 ) © @s-=-.84+ 5.651
x @s=-.19+ 5.10i (8% ) © @s=-.19+ 5.101
| L xes=-75+ 4628 P-p ®© @s= .52+ 3.31
; 42.51
£
{
& BG+1 ' r_ nnnnnnnnn _H_-.-—._j
W (& |
| SCN | bl i
e e —_— I +.52% I
| © R e .- 7 |
; | - ! \ +2.0i | Departure A :
1 Q y +.78i = N } Angle = 254.5"!’ +.50i
: i ; B N\ I >’< !
[ ™ +.761 1 ‘ Y. +.481 1
| 1 H (1) 1 1 }
i : | Bl l } [
l 1 i I l
|t 78 t1.54 | +.461 :
i .i_.__....".._:.._l“_ =02 _& ____ .k ! 3 1
! ~ } t
H \\ P § T _[].Z[.i i
: Feedback Law N x‘i"——A-—"":&. : i §
' I
8 =K, p -<———D/\\ I f—y 421 1
le 747w TN . J— .04 -.02 Q_ _:
~22 Zero \\ T1.01 ——— e e e
= N —_——
X @ s=~2.62+.70i “\.- /e =
Positive FB Q | "; // E PN i
Phugoid -~ l
(K, >0; 180° Locus) y 3 S 5 anos
4 e J/ % Mode ey .0021]l
‘ X ol / I I
i K A=~ 2 ’af B(1)_1 :-—-!{ | {
Negative FB ¥ qwl =$ j.51 i T '
(Kafiﬁ; 0° Locus) i ;
) % f ; 01 —%
-.002
Beh: k-1 R I T T
I -~
(0 a8}  Yg ex| -7
: ";!{\\_l {-I_FT"T’ 1 5N, i.
i ¥ \)5, 3 _%—_—-L‘J T L4 )
i 1.0 ~5 gore .5 1.0  Re
I -
} {s-plane) Pe;igz
Fignre 57. Root Locus: Effect of P, -+ elc Feedback (proportional);

18 DOF Model @ V =

137

.844 (300 kts)



http:S.74i---1.5i

{}\ 6 Poles and 5 Zeros Tm
X @s =-.57 + 10.761 (B(z)+l) ® @5 =-.57 + 10.7341
X @s=-.25+ 8.75%1 (3(2)—1) ® @s=-.26+ 8.741
X @s=-,77+ 6.60i (9(0)-!-1) © @s=-.8+ 5.65i
X @s=-.8+ 5.651 (6(0) ) 9 @s=-.83+ 5,551
X @s=-,19 + 5.104 (5(2) ) @ @5 =-,19+ 5.10i
X @s=-75+ 4.621 (8891
1o.54 Feedback Law: els = Kd P
Mr——iF——3== : Positive FB
-qt5< (Kd>'0; 180° Locus)
~ DA
l/ 3 8 +1'\ HK— = ——2m : Negative FB
- B(l) A ¢ (Kd< 0; 0° Locus)
® 0 &A: |k} = 1.0 (0 aB)
T 2.04 ;— ———————————————— —:
'.Sli [
BN G
I ‘
> N |
B(l)+1\~.._ [ « qwl ]
Be - | | 5 1
] ) |
\K\\ T1.54 ] \\\\*ﬂ\“\~\\3~ l
A | Departure 1 . L
I@ ] N i o AT H
| I I \ { Angle=150.9" - | :
| |
I \Ax .771| §<pw s e w— 4531 ._i
| qw_,_ = ! )___':-_0‘.*_._:_-92___9_“___._{
; \ 751 : t1.0i
L /!
| i /e . _
i
BV 734 v A ® i
-— - i I -
=04 =02 4 __ _ .— qwz ' & i // | Phugoid 2 00
e l L N Zi[
/ Mode -
s A o | [
\ o, s | b
Wy bt I |
| | i
; : ~ .Oi—--:
BG_l (;(é) ’)_“qugg_._._..._..}?__._l
‘4’ /_—,‘\ ,,/'//
s A8
—+ @3_ 2 S a ; &=
~1.0 -.5 Short .5 1.0 Re
Period Zero .
(s—plane) Mode @ s = 1535
Figure 58. Root Locus: Effect of p, * Bls Feedback (Proportional);

18 DOF Model @ V = .844 (300 kts)

138




0- 6 Poles and 6 Zeros

Im

X @ s =-.57 + 10.761 (B'“)+1) ©® @s =-.57 + 10.761
X @s=-.25+ 8.75i (8B'¥-1) ® @s=-.25+ 8.751
X @s=-,77 + 6.60i (8(0)+1) @ @s=-.76+ 6.601
X @s=-.8+ 5.65 (80 ® @s=-.10+ 5.22i
X @s=-.19+ 5.101 (8(2) ) € @s=-.75+ -4.621
X @s=-.75+ 4.62i (8(0)-—1) & @s=-.59+ 4.07%i
-+ 2.51
BG+1 ‘
‘%)
- = \—Fj
Feedback Law: 90 K, qwz B(l)
Me——f}—== : Positive FB
(Kd > 0; 0° Locus) -+ 2-01
Wer —fA— e Negative FB
(Kd < 0; 180° Locus) { X
B(l)-i-\l"}
@ &A : |Kd| = 2.51
{8 dB) ~+1.51
P
W
(B
o
1.0i Departure
r—-—-—n.—_.—_-—-—-—-—-——v.———— et il -
; _TI Angle = 127.4°
I T S I i
i Phugoid X A.0021 \
FaS
] Mode ! —~ qW2 A’\a"
! | (&)
! E \‘-"} N
{ i o (1), T (-1
— { £ @—-—-Oi—l
L0902 __ ___ Q0 __ L
Te—a B~ Short Period
T~ ¢ Jiﬂ; / Mode
v T~ 8
S ~ied
} t ~— Y I {
-1.5 -1.0 -.5 .5 Re
<™ Zaro Zero 2w
@s = —4.37 (s—plane) @s = 4.00
Figure 59.

18 DOF Model @ V = .8B44 (300 kts)

139

Root Locus: Effect of q, 60 Feedback (Proportional);
2




CONCLUSIONS

Classical feedback techniques, combined with the introduction of complex
coordinates are valuable in providing insight into the factors influencing
the dynamic stability of this complex aeroelastic system.

Simplified or lower order dynamic models can be conveniently developed
using these techniques which provide qualitative insight into the important
parameters in the problem, however a large number of degrees of freedom
appear necessary for quantitative accuracy.

The essential features of the whirl flutter problem, for the range of
physical parameters studied are shown by considering the proprotor cyclic
flapping degrees of freedom coupled with wing torsion and spanwise bending.
The wing chordwise mode is primarily coupled to the collective rotor modes.
The complexity of the coupling effects is largely associated with the fact
that the uncoupled wing modes have natural frequencies near or below once
per revolution.

Single loop feedbacks of wing motion to cyclic pitch generally appear
to stabilize one particular wing mode while destabilizing another.

Adding fuselage degrees of freedom tends to raise the natural fre-
quencies of the wing modes and to increase the damping of the wing span-
wise mode while exerting little influence on the damping of the chordwise
mode. Including fuselage freedom has only a small influence on the effects
of wing motion feedback.

Relevant to the stability and control characteristics of the aircraft,

the flexible modes couple with the short period mode of the vehicle and
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influence the damping ratio of this mode. Use of the quasi-static assumption
for the flexible modes of the vehicle results in an overestimation of the

short period damping and this coupling tends to increase with flight speed.
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APPENDIX I

BASIC THEORY FOR PROPROTOR DYNAMICS IN HIGH INFLOW

1.1 Introduction

In this‘App@ndixwé will develop linearized equations of motion for a
proprotor and its support im axial flow at high inflow ratio, employing a
relatively simple analytical model. Although the derivation of these equa-
tions of motion is shown in detail in Ref, 1, it is briefly
recapitulated in this Appendix to show the basic analytical aﬁbroach and
also for use in the main body of the report for a study of the fundamental
dynamics of the proprotor in high inflow. The derivation of the more
elaborate model iqgluding aircraft longitudinal dynamics is given in Ref-
erences 2 and 13.

The analytical model employed here consists of ‘a proprotor with three
blades and the rotor support which is either a pivotted pylon or a canti-
levered elastic wing. We consider pure out-of-plane ("flap") and pure in—
plane ("lag") motion for'each blade which is represented by the deflection
of the blade spar with no torque offset, no droop, and no sweep, retaining
only lowest modes of their motion., The rotor support motion comprises pylon
pitch and yaw motion degrees of freedom for the isotropic pylon, and elastic
bending (in spanwise and chordwise) and torsion motion degrees of freedom
for the cantilevered wing with only their lowest modes retained.

For a typical proprotor aircraft operation in airplane cruise mode, the
rotor induced velocity is negligibly small compared with the forward ve19city
even for the powered flight, owing to the high inflow and low thrust required
(the ratio of the rotor thrust in airplane cruise to that in hover is inverse~
ly proportional to the aircraft lift~drag ratio). If simple momentum
theory is applied to estimate the ratio of the rotor induced velo;ity-
to the forward velocity, it is approximated for high inflow as v/V = QT/(zv?)
which is typically of order (.00l. When we consider a proprotor in autorota-—
tion where the rotor torque is zero, the rotor produces a negative thrust,
however, its magnitude is much smaller than that for the powered flight, which
then makes it more valid to neglect the rotor induced velocity in high inflow.

From the proprotor dynamics point of view it appears that there is no
significant difference between the powered flight and the autoroctation, and

since the latter provides a more simplified treatment we assume an autorota-—
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ting proprotor in axial flow at high inflow ratio in the following, and

consequently the rotor induced velocity is neglected,

1.2 Rotor Equations of Motion

Rotating Frame

Consider a model of a proprotor on its support as shown in Fig. 1.1,
When the rotor support i1s in motion represented by linear displacements of
the pivot and angular displacements about it (both assumed small) as defineé
in the figure, the equatlons of motion of the flap and lag motion (also assumed
small) for the m*th blade at azimuth position ¢ = ¢m, as is illustrated in
Fig. 1.2, can then be written in dimensionless form as follows {in the rotat-

ing frame)

" aw Ta M
. %1 2 A I (o — _,." - F
Flap: IB{%ﬁ+ vB ﬁm} + IBG{ (uy ZGm) cos w + (a + Za } sin v o+ SB o Y
.- yL
- F3 & s - —_ P # = —————
Lag: I# {§ + vc gm} +—S {(m + ha ) sin v (y he ) cos ¥ } ICQ =Y
LD
where .
. 1 —
% =z 2 T * = de / T = a'.'r- T
I fo ng m, dr / I, , T fU ng rmy /I, ,8 f ngn /
1 — i) — —
% = 2 * = % = d I
IC IO my de / I, , ICa IO nc rmy de / I, , SC fongmb r / >
— 1
= 2 = = L
If = Ib / R fo rzmb dr , v = paleR)RY/ Ib

('Y =d( Hydee), (7)) = d2( )/deL)?

R

blade radial position, normalized-by R

my blade section mass per unit dimensionless length

v_ : blade flap rotating natural frequeney, normalized by Q
v, " lag v : T, "

g : flap mode shape, normalized to 1 at the blade tip (r = 1)
n, ¢ lag " , _ "

QF : aerodynamic flap moment on the blade, normalized by pRERS
ML : " lag " R "

s yp, zp, h and ¢ are normalized by R

'\‘J
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and the Coriolis inertia coupling of the flap and lag motion is ignored, since
it is of order YCT/aU and negligible compared with the aerodynamic coupling
terms of the flap and lag motion which are of order 1 as will be shown later
(YME & YQB). In conjunction with this, tﬁe influence of the blade precone is
also neglected. The influence of the blade precone becomes important if the
blade pitch motion®dynamics, specifically due to the blade pitch control system
flexibility, is considered; however, its first order effect can be examined by
introducing the "pitch-lag coupling parameter! which is an approximate treatment

for a relatively stiff control system,

Nonrotating Frame

When the number of the blades is equal to or greater tham 3, i.e., N:i 3,
it is possible to transform the motion variables described in the rotating frame
to those in the nonrotating frame by applying the Fourier type coordinate trans-
formation of the "Mulitiblade Coordinate Transformation” (Ref. 1) whose advantage
lies in the simplification it provides in the equations of motion.

As to the flapping motion, for example, the new degrees of freedom in the

nonrotating frame are defined as follcws:

=1 = 2
Bo Y Z Bm > Bnc TN E Bm cos nwm
m . m
1.2)
B =278 gin mp B2 278 (-1)" (only for ¥ even)
ns WL tm m w/2" WL m niy even
With these new degrees of freedom, Qm can be given as
= . . a1
B, =8, +]{B conmy +8B sinny} + By, (-1) 1.3

n
where the last term on the right hand side appears only if ¥ is even, and the
sumpation is from #n =1 to n= ({@-1)/2 for N odd and to n= ¥ - 2)/2

for K even.

The relations for the lag motion degrees of freedom are also found in a like

manner.

In the present case where §¥ = 3 is assumed, the new degrees of freedom for

the flap and lag motiom in the nonrotating frame are the following:
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Flap : B ¢ collective flap or coning

o]
Blc : cyclic flap or longitudinal tip path plane tilt
. "
B}. s ° lateral
Lag : z;b : collective lag
clc : cyclic lag
b1g f "

with which Bm and ;m are given as

ﬁm

*m

Bo + Blccos “bm + BlsSin wm (1.4)

co + clccos tpm + clss:m tpm

I

Now we will comnvert the equations (1.l) to those in the nonrotating
frame., Consider the flap equation. From Eqn. (1.4.1) the time derivatives

(with respect to the dimensionless time, Ot) of Bm are as follows:

Bm = Bo + (Blc+ BIS) cos le+ (Bls- Blc) sin IJJm -
{1.5)
B, = Bo + (Blc+ 2 BlS— Blc) cos Ipm + (Bls— 2818— Bls} sin lbm

Substituting Eqns. (1.4.1) and (1.5) into -the flap equation in (1.1) and

N
to the resulting equation with following relations: ’

applying the operations X Y (..., 2 E {...)cos ¢, and-%- } (...)sin ¥
] N 5 m ¥ 5 m

}']}‘ X sin lIJm =% z cos lbm =~'§7 )‘ sin q;mcos d’m =0,
m m m
(1.6)
—2- i 2 = _.2... 2 = 1 - = 2T
7 r};l sin ybm-— 7 EI cos wm 1 3 [ gpm ¢m~1+ 5 )

we obtain the flap equation of motion in the nonrotating frame as follows:

c . 5 - MFo
- s #* = ————
oning IBO(BO + vBOBO) + SBo zp Y 75
an . ) MF a
. % 2 _ . _ .. o - .
Cyclic IB {Blc + 28, (vB 1)810} + IBQ( ay+ 2a.) = ¥ ———l—ac (1.7.1)
Flap : M
I"{E —28: + (v2 - 148 +I% (ot 20) = 28,
B *"1s e T Vg T Pl T Y AT 2% T Y g
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where

i
=2 |

=N

2 ) _ .
L Mp s My =gl Mpcosy , My =yl Mpsiny
m Tl m

(1.8.1)

The subscript o added to the inertia comstants and to the (rotating)natural
frequency in the coning equation reflects that the different mode shape and
natural frequency might be used, according to how the blade root is restrained.
That is, if the blade is cantilevered at its rcot to the hub which is fixed

to the rotor shaft, then the coning mode and the cyclic flap mode are both the
elastic bending mode, hence, there is no difference in the mode shapes and
natural frequencies to be used, However, for the gimballed rotor the cyclic
flap mode is almost equal to that of an articulated blade which is hinged at

the center of rotation, i.e., rigid body mode (n, = »), whereas the coning

B
mode is still an elastic bending mode. Tn such a case the appropriate mode
shapes and natural frequencies to describe each motion properly might be

different.

In a similar manner the lag equations of motion in the nonrotating frame

may be given as follows:

. . o _ Z . - Lo
Collective Lag : (C + v;o ;o) I§0a o Yooa
‘ MLIc
. * ' ] . _2 _ * _ Y - -
Cyclic IC { §IG+ 2§13+ (v; l)clc} + SC ( yp +h ax) Y 3 (1.7.2)
Lag : .
e - ’ . MLJS
* — 2 — * w = ra——
Ia; { C1g 2z, * (vE 1)?;13} + .S'; ( :z:p +h qy) Y o
where
=—1~): M. =27 M cosy M. = 27 L sin ¥ (1.8.2)
) e i Lle ~ N . L m > "Lls T m '

Again the subscript ¢ added to the inertia constants and to the (rotating)
natural frequency in the collective lag equation indicates that the different
mode shape and natural frequency might be used. TFor an autorotating rotor,
rigid bodz mode shape (nC = ) is used for which IZO =-I§oa =1 apd vc0= 0,
and now ;0 represents the rotor shaft rotational velocity perturbation {with
reapect to the rotor support). If there is no shaft speed perturbation
considered (i.e., perfect rotor rpm governor is assumed) then the mode shape

and the natural frequency in the collective lag equation of motion are same
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as those in the cyelic lag equations of motion.

Aerodynamic Flap and Lag Moments

Now we will find the expressionsfor the aerodynamic forcing terms on the
right hand sides of ‘Egns. (1.7). By making use of the quasi-steady aerodynamics
and applying the strip theory with the tip loss neglected, the dimensionless
aercdynamic flap and lag moments on the blade are given as

1 1
MF=f0nBder, ML=f0nchdr

where Fz and Ex are the dimensionless section forces resolved into the hub plane,

and they are related to the section lift and drag (also dimensionless) as

. _ L uT - D uP , r - L uP + D uT
b u ? x> U
where
=L, -1 2 02 = 52 2
L 5 el C‘Z s D= 5 e U Cd > uT + uP

(cf. Fig. 1.3).

In the following evaluation we will use the rigid Qody_mode.shape fo;
nB and nc » since the most significant aero&ynamic Joading occp;é_néaf'thg‘
blade tip where the mode shape is very mich like.that of the rigid body mode.”

Therefore, from the relations given in the above, we have

M F ¢ c
F 1 Z. ot 2 d
ac ° Io el fo U g - g )
1.9
Moo e 1 ‘ Ca dr -
ac ° IO el fo r U Gp gy * Upgg)

where the blade chord is assumed constant over the blade span.
In the trim condition where the rotor is operating in axial flow, the

velocity components and the angle-of-attack at the section r, are given as

u,= r, u,=vVi+v= V, U= Vr2+p2,

T
(1.10)
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for which the moment coefficients in Eqns. (1.9) become

M ‘ c c
7 - L TRy lo do
o atrim © Mo-.forfr MR Gl P P ) dr
) (1.11)
M —— c C
L. = I 2 2 Lo do -
oo etwin = Y = v/ PP VW Vg dr

where cZo ‘and C do 2re the section 1ift and drag coefficients at trim,
respectively,

Now cons;der small perturbations from the equilibrium. In order to
evaluate the variations of the aerodynamic flap and lag moments on the blade
for those perturbations, it is apparently necessary from Egns. (1.9) to find
the variations, &U, 6u_, GuP, 601’ and 6C EZ in terms of the motion wvariables

and in the control and gust inputs.

First, recalling that a rigid body mode shape is assumed for g and ng,
éuT and Sup are written as follows:
6uT = p 6uIA + GuTB R ﬁuP = p 6uPB + SuPA {1.12)
where (SV_TA = az - ?;m
SuTB = (- h ?x +Va +y +V Bg) cos %ﬂ
- -7 in i
+(- h ay +V e mr + V'ag) sin ¥ (1.13)

(1]

‘SMPB Bm - ay cos Ibm + ax sin \bm

Su

o4 Vug+zp

The variation, 6U, is obtained from the relation, U? - u; + u;, as

r fu., + V u
&7 = L £ (1.14)

Y r2 4 V2

The blade section l1ift and drag coefficients may be considered as

functions of the angle-of-attack and Mach number at that section, hence,

8¢, = C, 8o+ C
o

Y = + .
7 7 1y SM GC'd Cdaﬁot Cd_’vf &M (1.15)

12
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http:2'P(1.14

h
where r Su -VGuT

S = &8 - & {tan-l(u fu_ )} = 88 - B
P r2¢ V2
(1.16)
M = . ., E :
3 Mﬂpﬁb’ s where M tip or / a s ag speed of sound .

It should be noted that from Eqms. (1.13), (1.14), (1.15) and (1.16) the
variations, &U, 66‘1_, and (’SC'd can be eventually -expressed in terms of.the varia-
tions, GuT BuTB’ GuPB, GuPA, and 66, Therefore, the variational quantities
in the flap and lag moments on the-blade may be expanded as follows:

M

F =

S8 { pom } = M]-l GuTB +Mﬁ 6uTA +M;\ MPA + MB WPB + Me 56
M ) (1.17)
L

ac u TB r T4

where the aerodynamic derivatives in the above expressions can be found by
the integration-along the blade span of the integrands which comprise »r, ¥,
clo’ Cla’ CZM s Cdb s Cda > CdM and Mtip" as easily seen from the above.
However, the most important and dominant term in each derivative comes from
the section 1ift change due to the angle-of-attack change, hence, we retain
only CZ& term in the evaluation of each derivative, using the relation
C’a [ 2a = 1/2, although it is a function of the Mach number.

Thus, the variations of the aerodynamic flap and lag moments may be

written as follows:

M S c
F - 1 2 2 ZU.
a{ac}-for/r+v r o dr
1
= [ p2/p2+ p2 L o —F (rﬁu +6uP
0 2 p2 4 P2 A
+ Y (r Su,, + u_) }dr
r2 + 12 ™ B
= {5 [ = drY supy 4 {5 [ e dr) s
270 Jp2 g2 7B 2% JpZ {72 4
1l 3 Pl
-5 == &}suﬂ.»{..-f ————dr} éuy
0 /»2 4 p2 g‘/rz_'_v?_
+{ %j r2/ p2 + V2 dr} §e (1.18,1)
0

151



and similarly,

My 1 s Oy
8 { Y2 f »V/r24+¥2 ¥v-= s dr
ac 0 2a
2 1 2 1 2
= 1T [ ee=E Aoy + { [ e e}
2 0/ p2 4 72 I 2 "0 /el yZ TA
' 1 2 1 3
+{—§ | === dr} 5uPA+{-g~ [ ar} Sty
0/ pZ 4 y2 0 / p2 + V2
1 S
+ { l?f- [ »7/»r2+ vZ dr} 68 (1.18.2)
0 _ _

Comparing Egns. (1.17) aund (1.18), the derivatives are identified as

= = 2
Ml.l _VJ“2 Qu v 3"1
= e 2
M, v £, Q= V2 F,
MA - o fg QA - sz (1.19)
fd-B L f4 Qé = -V fg
Mg = 9 = V9
where
. 1 1 1 —
F = l‘f —"—'—__.:f_—':“ dr , g = -l-f I’n Y 2 + 72 dr
m 270 yp2yp2 mo 27

(1.20)
If we use the inflow angle at the effective radius position for the
evaluation of the integrals involved in the rotor aerodynamic derivatives,

then the following expressions result:

My = (sin ¢ )/6 9, = (Vsin$ )/4
ME; ~ (sin ¢e_)/8 Q(-: = { Vsin @e)/G
MA =~ - (cos cbe)/s €, = - (sin $,)/6 (1.21)
Mé =~ (cos ¢ )/8 Qé = - (sin ¢,)/8
Me = 1/(8 cos ¢e) Qe = ¥ /(6 cos ¢.)

where

cos ¢esre//r2+V2 s sin ¢eE v/ »? + 12
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and r is usually taken as 3/4.

Since the trim values of the aerodynamic ﬁlap and lag moments and their
variations from the trim values, as are given in Eqns. (1.11} and (1.17),
respectively, are derived in the rotating frame, we will convert them to those
in the nonrotating frame, again applying the Fourier type coordinate trans-
formation, Noting that the trim values, M; and QO, and the derivatives, Mk )'s,
and Q( )'s, are all co?stants and independent of -the blade azimuth position
(this is owing to the axial flow assumed in the trim condition), we need the
transformed expressions only for 6u__, 6%1%’ SuPA, 6uPB and ¢6. Using relaj
tions given inquns. {1.6), (1.5.1) for %n’ and a similar relationship for %w,

we obtain the following expressions from Eqns. (1.13):

3z, 1 2 2 R
0, Q(-_Z-OQ : T Z (oos) ﬁz (...)cos y, EZ (...)sin ybm
oy m m m
u,, 0 ~he+ Vo +y + VB | -~ ho + Vo - = + Ve
78 ot gt Upt Ty y ¥y p g
Supy . " % " t1e” Ftis Tt F t1e
(SuPA 14 Tffg-l' zp 0 0
Supg & Bio ¥ Byg - % Bis = Bro T %
"(1.22)
For 66 we define the following:
o, = = I @ " 4 collective pitch
@ m
.2 . e o
elc = ¥ % 86 cos ?m : lateral cycliec pitch {1.23)
6, = %- ; 36 sin $, ¢ longitudinal cyclic pitch

Therefore, the aerodynamic flap and lag moments in the nonrotating frame
which have appeared on the right hand sides of Egn. (1.7) are written in

terms of the motion variablegs and the control and gust inputs as follows:
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Fo - ; ;
.= A o - M«
pradial N YMC (o, = 2) + ¥4, (¥ ug+ zp) Ty B M8
M :
Ble _ i (-nb_ +Vo_ + 3 + VB +yHe (-2, -7,
ac u T x P g (" Ie Is
+ YM§ (B.Ie + B_‘Zs - Oty) + YMQGIG
M .
__Fls _ L _ . -
e YMU ( hay + Vhy xp-f Vag) + yM& { ;18 + clc)
+ ?Mé (816 - B ¥ o) F YM8,
", ' J
Y — = Yq, + YQi (&, =T + ¥§, (¥ ug+ zp) + YQé B, +Y8,6,
M
Lic T . r
o = YQH (- hux + Vo + Y, + VBg) + yQi (- Lip ~ cis)
+ Y9 (B, + By - ay) + Y8508,
M
LIs _ yg (-ha + Vo - & +Ve) +v9.( - L, +C,)
ac Y&y Y Y 2 g LAt Ci1s T %1c

+ Ygé (815 ~ By am) + YQGBIS ’
(1.24)
Thus the rotor flap and lag equations of motion are now fully descfibed
in the nonrotating frame by Egns. (1.7) and (1.24). It should be noted here

that these linear equations have only constant coefficients as a result of

the application of the Fourier type coordinate transformation, which is made
possible by the assumptions on the number of blades (¥ > 3) and the rotor

operating condition in equilibriuvm (axial flow).

1.3 Rotor Hub Forces and Moments

Before developing the equatioms of motiom for the rotor support, we will
derive the expressions for the rotor hub forces and moments in the nonrotating

frame which will appear as forcing terms in the support equations.

Hub Pitch and Yaw Moments

The rotor hub pitch and yaw moments originate from the bending moment at
the blade root due to the flapping motion, and with the nonrotating frame
degrees of freedom they can be written in dimensionless form (normalized by

y 02) as follows:

7 1
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2C
My _ 2 _
Y 2o Ig (vB 1) 8.,
(1.25)

2CMx

ag

= # 2 _
¥ IB (\JB 12 Bls

where o = N(eR)R /mR® = Ne J'w.

Torque, Thrust, H Force and Y Force

The rotor torgque, thrust, H force, and Y force transmitted to the rotor
hub comprise inertia and aerodynamic contributions.
First, the inertda contributions to these forces and moment are given

in coefficient form as follows:

c

Q _ TE L& (1)
vi ac }in T Lo * E
CT - "
= . g% - ME
¥{ aoc }in Sso Bc:» Mb zp
20 (1n26) -
H _ # e % . -»
vi e }in = - S?; Leg - 2!4'b (:r:p + hay)
zéy 1)
-~ - * - - L L
yi—1, 5% %10 2MF (yp he )
T i /T
where Mi. = fo my / I, -
The aerodynamic contributicns are written as
C, F
) _ 1 1 x
T{ao}aero— Y-ﬁg{foraedr}
c F
N | ' &,
25t qero = YN}E{IO ac &}
2C F (1.27)
y—2 = vZ 01 fl £ dr } sin g
ag ~ aero N o 0 ac m
2C 1 F
Y _ 2 x
vi ac}aero—-TanI{IU chr}coswm
c

where F:c and -Fz are the dimensionless section aerodynamic forces in the
hub plane already 'introduced before. The expression for the torque above is.

same as given in Eqn. (1.24.4), i,e.,

c

Q _ . - - . .
Yoo gero = Y9, * ¥@p (ap - B ) + @ (Vi 2,) *¥Qz Byt ¥y 8,
(1.28.1)
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For the evaluation
approach as we did

That is, expanding

1 B
'[0- ae dr
1 F
[ —=ar
G ac

of the forces in Eqns. (1.27) we will take a similar
in the derivation of the aerodynamic flap and lag moments.

the integrals as

Ht

‘ Tb + Tu SMTB + Tt SMTA + TA 6MPA + Té 6¥PB + Te &8

(1.29)

-+ H}\ 6MPA + Hé ‘SuPB + He 66

Ho + Hu GuTB + H& 6um

and applying the operations of the Fourier-type coordinate transformation, we

obtain the following:

CT )
ac ~ aero

2C

¥

}

Y{ aag aero

2C
Y
}

adc aero

i

where

Hb =

YTO + YTa (uz - go) + YT}\ v ug—l— zp) + yT- Bo + w(Te eo

B

YHU (~ hay + Vay - :cp + Vocg) + YH& (~ Tis Clc)

and the derivatives are found as

> e T

k3 3 k3 3 Lo
e

where fn's and gn'

*VHy (Byg = Bigt o)t YHG 8y
=..-yHU (- hax + Vum + yp + Vﬁg) - Y}’f& (~ S -1;_18)
inE (Blc + Bls_ uy) ~ Vg 9,
(1.28.2,3,84)
e B “ Cdo
Z z - AR A
fov/r' + V2 {r 5 VZa T dr
) c Cd (1.30)
v Lo o
jolr + V2 V57— +r 5 —}tdr
- x 2
=V H = V2f,
= y2
= Vf, Hy = V2§,
= = f, Hy=~7V I3 (1.31)
. - s ==V
= =~ J3 & T2
- = ¥V
= 93 7y 9y

s are already defined by Equns. (1.20). The integrals

required for the evalunation of the aerodynamic derivatives in Eqns. (1.19)
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and (1.31) are given as follows:

_ 1 1+ /1 + 72
fop= 2 I 7
. § 1 1 U2
f} > (Y1 +V V)
= L z _ 1.2
. £y 7/ 1+ >V f,
fsz= -% V1+7v2(1-2v2)+273}
PO 142 ) 3 pu (1.32)
fp= qg Y1V (2 ~-37V% +3 fb
= 1 R S AP
g, 4‘/ 1+ V2 + > v fb
g, = %-{(J 1+vH3 —y3}p
- 1 2 2y _ 1 oy
g5 16/1+V (2 + V9 SV fo

Again,if the effective radius is used for the evaluation of the integrals,

then the following expressions result:

T!1 = (sin ¢e)/4 H, = (Vsin ¢e)/2
P, o= (sin 9,)/6 Hy = (Vsin ¢)/4
T, == (cos ¢ ,)/4 Hy = - (sin ¢,))/4 (1.33)
Té = ~"{cos ¢,)/6 Hy = =~ (sin ¢.)/6
Ty = 1/(6 cos ¢)) "Hy = V/(4 cos §)

Thus, combining the inertia and aerodynamic contributions, we have

c
g . _ 2 >
Yoo T Y4, + Y9 (o, ,Z;O) + ¥4, (V Uy + 25)
. » - " e -
+Y8g By + Y@ 8, - 17505 * 9
CT . .
Y oo T Yt Y (e - p) 4 v, (Vu 4R
. » _ % as _ * -s
+xT 8 E"o + YTB 6o Sﬁo Bo Mb zp
2CH - -
Y~ = "'Hp (~ hu.y + Vay - :cp + Vag) + "{H& (- g+ B340
. A, - p _SHF Y o ME (o oy
+ ¥Hy ( Byg = By, + &) +vH, B, S; Z1s 2A§,(a%ﬁ-kuy)

(1.34.1, 2, & 3)
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201,

YT s - YHU (- hum + Ve, + yp + Vﬁg) - THi(- Lo Ze)
- . . - _ - - . -t - * - _ e
YHB (Blc + BIS cty) YHB ele * Sf‘. C.’lc 2 Mb (yp ham)
(1.34.4)

1.4 Equations of Motion for Proprotor and Pivoted Pylon Support

Support Equations of Motion

For the pivoted pylon support we cousider only its pitch and yaw motion

about the pivot. The pylon pitch and yaw equations of motion are written in
dimensionless form as follows (normalized by %:Ibnz):
2 .
-Pitch: A8+t + Ko = Y.__féﬂ. + hoy 26@
: py ¥ ¥y Y ¥y ¥y . ao ad -
2¢ 2 (1.35)
- . . Mz Y
. % * = -
Yaw: I?m o, + qx o, + K; . Y " ae h v o
where 1;9 : pylon pitch moment of inertia about the pivot, normalized by %;Ib
T# . " yaw " ’ "
pz °
C; : w Ppitch damping, normalized by %1139
C; : ] yaw 1) ’ n
K; : " piteh spring constant, normalized by %LIbQZ
K; H " yaw t ) "

and the forcing terms on the right hand sides above are given in Equns. (1.25)

and (1.34) with xp, yp, zp and o, degrees of freedom dropped. It should be

noted again that the coefficients of the support equations are all constant.

Combined Equations of Motion

Dropping mp, yp, zp and o, degrees of freedom also in the rotor equations

of motion (Eqns. (1.7) & (1.24)), we obtain the combined equations of motion

for a model considered here in operational form as follows:
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where

11

21

12

22

it}

Ble ) A
Bls e.‘lc
i 815
" ()
x = |-25. > vp=(9
— o — S
Y “g._
o ¢
L o
BO ;ug J
;;0 J
i o2 _ . * )
I © ZYMB s 2 T} s - Mg vy Vi
% -
_:IB (vB 1)
] IE 8% - Ty 8 .
_2Iss+"rMé +IE (Vé* 1) - YMi -Y:;;:.s
o IE 82 + YQ;Z s -
- . - . * .
TQB s YQB + I,é ("_% S0 ZIC s + YQC
_ I 82+ e s
- ~0 -2T* g =
YQé YQB s ZI?; s YQZ: + I’é (“2 - D
(1.37.1)
I (vg-l) _ ! szhs?l
+ 7 yHy - koYl s —h vH; | +hyELs
. T o 5* 1 g2 i
. BB z | .
-hTHBS —hyHé +hYH‘is | kYH;
{1.37.2)
_ T# 2 . % - )
IBds +'\rMBS (ZIBa+ hyMu)s. VyMu
- e _ * 2_..-.. » b
__(ZIBa+ kyMu) s V}(Mu IBas . yMﬁs :
s % 24 -V
YQB 8 ' Sz; h s~+h 'YQu s TQU
* 2 - - [ 1
SC hos?+h yQu g~V yQu 'YQB ]
(1.37.3) .
I* M* h?y g2 Co
oy + 25 79
c* h2 yH y s - h yHs s
+ ( Y + Y u) Yig
K* - hV vyH
,__+ Y Y u
% B2 2
(I;$+_2Mbh ) s
. * 2
h YHB_S + ( C:c + h YHu) 8
-
+ Km hv 'yHu ]
{1.37.4)
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[ % 2 _ . + 2 . 3
IBO_S YMB 8 + IBO vBo i yMi 5
A33 = - “
- : s I* 82 +vyg@. s + I%* 2 .
194 zo g o “to ]
) (1.37.5) -
)
M, 0 0 v ]
0 M, v *{Mu .0
By E mmmsmpem s
Y9, 0 0 |4 ‘YQu
0 v 0
q YQB YQu J
(1.37.6)
[ ]
0 E hoYH, RV YE 0
By F = T
‘ % YHS = 0 0 I hv YHD .
(1.37.7)
l -
M, E v i,
332 = - - i ——— (1.37.8)
YQe ; vV yg,

In the collective flap and lag equations above, Mb and Qo terms are omitted,
since they only affect the trim values of 80 and ;0, respectively., TIi should be
noted that the collective flap and lag motion does not couple with the pylon motion
for the present model, aﬁd that the final set of equations of motion has only

constant coefficients.

1.5 Equations of Motion for Proprotor and Cantilevered Elastic Wing Suppért

Support Equations of Motion

Consider an elastic wing which is cantilevered at its xoot to a certain
fixed support (Fig. l1.4). We assume for simplicity that the wing is rectangular
and has no sweep, no dihedral, and no incidence, and that its motion is repre-
sented by the elastic bending and torsion of the wing elastic axis. Retaining

only lowest motion modes, they are expressed as

2y = My dps By = “qu’em = &,p
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where &z : wing vertical displacement

: chordwise "

: " torsiom "

¥ bending mode shape, normalized to yImR at the wing tip

-n 11 " "

torsion ’ 1

" spanwise bending degree of freedom, positive upward

" chordwise " , ' rearward

N
o e @ P e

" torsion degree of freeaom, positive leading edge up

If it is further assumed that the pylom is rigidly attached to the wing
tip such that the pivot is located at the wing tip elastic axis, then the pivot
linear and angular displacements are expressed in terms of the wing motion as

follows:

xr = = 0 z = -
= - r = = — H
U-:c n.Tli q2 2 O"y D . az TlTw ql
where ném is the slope of the bending mode shape at the wing tip, and the

rotor rotational direction is assumed clockwise on the right wing.

The wing equations of motion may be written in dimensionless form as

follows (normalized by gLIbQZ) :

# £y o % 0 % % 0 = p* . *
(Iqw * mp) U F quql * quql * Sw P Mqlw.aera + Mqlrotoz’
#* A P2 .3 A P % o #* = M#* * .
(Iqm + Ip:.t: N1 + mp) AP + quqz * quqz quw.aera * quroi:or (1.39)
% Yy B % > % s = M# *
(I?w + Iéy) p o+ Cb P+ Rﬁ p+ Sﬁ i Mb w.aero Mf rotor
R - Y, B
Tw N Puy N
* = Iy 2 = * = 2 =
where Iéw =, ndm dyw /7 > Ib N Iéw IO Ew Iew dyw / > Ib >
% = 2 E_ * = .{’i_
My My p, /3T, s S5 E MU, Aop /7T
q; : wing spanwise beding damping, normalized by %llbﬂ
1
C; : " chordwise n . "
2
C; : " torsion damping s "
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X* : wing spanwise bending spring constant, normalized by gllbﬂz

9
X* : "™ chordwise v . "
.99
K; : " torsion spring constant s T
m, oz "  section mass per unit spanwise length
Iew s+ - " moment of inertia about EA per unit spanwise length
mp : pylon mass

The wing aercdynamic terms on the right hand sides in the above equations

may be found as

*

q, w.aero = ch.lzzlél + chlf, P + Yqup p + chlaag
) (1.40)
M;zw. aero o M; w.aero ch. p
where quél = - 6213 |4 @, €y quﬁ = d12 174 a, % 2,
qup = dgpV f“w s qua = d,Va, e,
“p =7 93 V“w%f’é

a, * wing 3-dimensional lift curve slope

do, = ()" @g)"/ (noa)

6 - I?""R n, B, | W B = 3
€ = '[iTNR wody, | G 'é"
e4 z fsz Ny Ew dyw / (yTwR)_z = %
rooE f:wR 2dy | GpR = 3

vhere the integrals above are evaluated by using the approximated mode shapes

i s 4? - .
for n, and P;w > i.e., m, ¥, / (ymR) and £ yw/ (ymR) .

The rotor force and moment comntributions are written as follows:
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CQ 2‘%?
: - '
Mg} rotor z " ¥ Tao +t oy 7w ¥ qo
2C 2¢
Mx Y
R = _ nt. - -
'qurotoz* iy Ty ac by ag } 2 Ypy ¥
2C 2C
* = -—————ML 24
Mp rotor T 72 Ry ac

c

ag

(1.41)

where the rotor hub forces and moments are found in Eqns. (1.25) and (1.34)

with the relations given in Eqms. (1.38) substituted.

that the suppor-t equations have only constant coefficients.

Combined Equations of Motion

Again it should be noted

Using relations given in Eqns. (1.38), we obtain from Eqmns. (1.7), (1.24),
(1.34), (1.39), (1.40), &. (1.41) the combined equations of motion for the prop-

roter and the cantilevered elastic wing support in operational form as follows:

¢ 1 s r " r 3
] BIe
! B r 1
] 15 8
14
411 412 il B 0 le
1z BI
z ! s
1s I oag
451 432 a5 || %2 By CByy |8 | (4D
“1lp a |
- BO - {. 7 ‘..’:
4
2 432 433 )| ¢ 2 1 Py
4 e J \ ! J
where All is same as given in Eqn. {1.37.1)
A33 n (1.37.5)
Bll n (1.37.6)
332 n (1.37.8)
r sty s2 ]
noIf OF -1 - Sy s’
A;l = h n&w YHé s 7 -k nit'w YH;;
2z r [ - r -
+h nm YHB h nTw TH; s
I* (2 - 1) | 5* . s2
BB ro- h'yHé s - hyH, <
+hyH, 1 + h YH: 8
| B i 4 J
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AIZ
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Al
32

- ! *
ni”w( 2IBa+ h -rMu) s

+ yTwhyHus

0 - I* 82 4 yMs s
) Ba B
+ 1! ¥V v4
g Y“
¢ - T* g2 - £ -
Yo 'YMus nTw{‘ IBU.S +7MBS) {218a+h TMIJ)S VYMu
L (8*h s2+h vQ s
0 WL s TQéS
—VYQU)
: . S’éh82+hyQu s
& H .
Y, (57 8%+ ¥4, &) Ny YR S
- Ve
5
(1.43.2)
[ # * £ 52 i
(Iqw+mp+2-Mb Y ]
+zn515) §2 (8242 Ry, ) g2
]
1
T4+(C2 +yZ NH - s ! +yH: ) s lt h yH - .
2, Yy YH, quql Yy (2YQ +YHR) 81+ (Y o YH chlp}s
. r2 - - -
+ 2N g, YQC)S Yp,V YHB TC'QIP
+ g4
a4 !
% % % r2
{Iqw-l-mp-i-fpx Ny
£ 2 2.12 2
+2 M (yTw+ h nTw)} s
! YT, I+ ( C* + R2nt2 vH -k on! yH
2y, Ny, ¥YTp 8 i+ ( a, g YE g THBS
.~ 2
- gym YT}\}S
+ wh r2
Kq Nz PzVYHu
2
) I* + I* +2MF B2) g2
(S5 +2Mf hy, ) s : Voot py" 2
h nt Hs HC* + WPvyH -~ yC..
gy YHg 8 (p VH YPP)S

+ K% - BV
p = BV YE,

(1.43.3)
n_,lfm YM& ¥:] i Yy - S‘éo sZ + 'yMA s)i 0
- -4 i
] g
! * 2 . 1 i
N (I;oa 8%+ YQ‘: s) ! Yoy YQA 5 | 0
{1.43.4)
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- YQé s 207, (Izoa 82 4 YQ& 8)
45, = "zym - S’éo 2 + ¥T5 € ) 2Yp, YF; S
5 0
‘ (1.43.5)
( 0 Yy YHg yTwVYHuHqua 0
Bél = | 2 N 7 vE 0 = ng, BV YHp
' L 0 hovE, HY Y o
(1.43.6)
' 200, Y24 205, ¥ Y9,
by F -2y VT -2y, VYT, (1.43.7)
S 0 ]

Again it should be mentioned that the final. set of the equations of metion for

the present model has only constant coefficients,

1.6 Summary

In this AppendiX we have developed linearized equations of motion for a
simple analytical model of a proprotor and its support in axial flow at high
inflow ratic. First, rotor blade flap and lag equations of motion which are
deseribed in the rotatiné frame are Fourier type coordinate transformed to
those in the nonrotating frame by introducing new motion degrees of freedom
in that frame. The expressions for the aerodynamic flap and lag moments in-
voleved in these equations are also obtained in the nonrotating frame. Then,
rotor hub forces and moments are found in the nonrotating frame, and using
these hub forces and moments, rotor support equations of motion are presented
for two support models, i.e., for a pivotted pylon support and for a canti-
levered elastic wing support. Fimally, the rotor and support equations of
motion are combined to give a set of linear, second order ordinary differential

equationswith constant coefficients, thus, standard techniques can be applied

to examine the dynamics of the system,
It should be mentioned here that we have not gonsidered any coupling bgtf_
ween pitch and flap or lag in the above. This is because their influences can

be conveniently dealt with by using conventional feedback techmiques.
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Fig., 1.1

Vau = v

= T, ~Q

A Model of Proprotor on Its Support: Definition of Hub
Forces and Moments, Pylon Linear and Angular Displacemeants,

and Gust Velocities; Only w—th Blade is shown.
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- Flg. 1.3 Typical Blade Section: Velocities,

Fig., 1.2 Blade Flap and Lag Deformatilons and the Resulting Aerodynamic Forces,
(math_Blade) (Looking Inboard)
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