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ABSTRACT



Feedback techniques are employed to examine the influence of various



physical design parameters on the aeroelastic stability of tilt proprotor



aircraft. In addition, the influence of single loop feedbacks to improve
 


the stability of the system are considered. Reduced order dynamic models



are employed where appropriate to promote physical insight. The influence
 


of fuselage freedom on the aeroelastic stability is exanined as well as



the influence of the airframe flexibility on the low frequency modes of



motion relevant to the stability and control characteristics of the vehicle.
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NOMENCLATURE



-Conventional helicopter notation is followed in this report. Quantities 

are made dimensionless using air density, p, rotor rotational velocity, P, and 

rotor radius, R. The nondimensionalization is implied by the notation , e.g., 

the inflow ratio V is written as V. Inertial properties normalized by N I 

are denoted by ( )*. Quantities are defined when introduced in the text or in 

Appendix I. The notation is identical to that of References 1 and 2. 
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INTRODUCTION



One of the critical problem areas related to the design and development
 


of low disc loading tilting proprotor aircraft has been associated with



eliminating the occurrance of aeroelastic instabilities at high cruise



flight speeds. Owing to the importance of this problem area many studies



1-12
have been conducted related to this complex problem



This report examines a number of aspects of this problem, the aero


elastic stability characteristics of tilting proprotor aircraft in cruise



flight including the effects of fuselage motion. It has generally been



found that a large number of degrees of freedom, as well as precise modelling



of the elastic properties of the rotor system are required in order to predict



all of the relevant aeroelastic phenomena3 . It has also been shown that these


9,12



models agree well with experiment The high order of thesemddels makes
'1. 
 

it difficult to obtain physical insight into the significant parameters in


fluencing the dynamic characteristics.



One of the objectives of this study was to employ automatic control



techniques to examine the feasibility of using relatively simple feedbacks



to improve the dynamic stability characteristics of the wing-proprotor system.



It was also expected that through the use of these techniques it would be



possible to obtain insight into the manner in which various physical param


eters influence the dynamics of this complex aeroelastic system.



Many of the studies referred to above have been concerned with the



dynamics of the wing prop-rotor system with the wing root assumed rigidly



fixed, and therefore also of interest in this study was the influence of the



fuselage degrees of freedom. The equations of motion of the vehicle were
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extended to include the effects of the rigid fuselage degrees of freedom



in a previous study13. The equations of motion for the complete vehicle
 


system employed in this report are presented in References 2 and 13.



A further objective of this study was to examine the effect of the



flexibility of the wing proprotor on the dynamic stability character


istics of the vehicle as related to stability and control,and to examine



the influence of body motion feedbacks as might be used for altering the



stability and control characteristics of the aircraft on the aeroelastic



stability of the vehicle. Experience on helicopters has indicated that



.
body motion feedbacks can influence rotor system stability
14
 


The analytical model employed in the analysis presented is given



by the equations of motion for the wing proprotor system presented in



Reference 2. Appendix I presents the equations of motion taken from
 


Reference 1. These equations of motion represent proprotor blade



bending by an uncoupled model and are of simpler form than the model



of Reference 2. The reduced degree of freedom models discussed in the
 


first part of this report are based on the model of Appendix I. The



refined equations of motion of Reference 2 taken with those of Reference



13 are employed for the analysis of the fuselage free case. The modi


fications to the model of Reference 2, to account for body degrees of



freedom are presented in Reference 13.



Since one of the objectives of this study was to obtain physical



insight into the dynamics of this vehicle, simplified dynamic models,



based on Reference 1, are discussed in some detail prior to examining



-2





the complete system. The reference physical parameters employed in this



study are those of the Bell XV-15 presented in Reference 15. In some



cases these parameters are varied from their reference values to obtain



insight into the effects of changes in design parameters since other



1,12
proprotor aircraft designs have been considered



The topics covered in this report are as follows: First, the



isolated rotor dynamics are discussed in cruise flight in order to



obtain insight into the flapping and lagging dynamics of the proprotor.



The discussion is largely concerned with the cyclic modes of motion.



Cyclic proprotor flapping for the configuration of interest is a rigid



blade motion owing to the gimbal mounting of the rotor, and cyclic



lagging involves the first in-plane bending mode. Owing to the polar



symmetry inherent in this problem, the method of complex coordinates is



employed (Ref. 16) to reduce the order of the physical system from



eighth to fourth order. Then the model is increased in order by allowing



shaft flexibility. In order to obtain insight into this increased order



system, first the dynamics of the proprotor on a flexible mounting is



examined assuming that the support characteristics are isotropic. This



allows retention of the method of complex coordinates and permits again



a reduction in order of the system by a factor of two. The real physical



system is then examined by relaxing the requirement that the support is



isotropic. Various feedbacks are examined for the complete system



indicating that certain decouplings exist with respect to the collective



and cyclic motions of the rotor and their coupling to the wing motion.



Then the fuselage degrees of freedom are relaxed and the dynamics of
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the complete system with symmetric fuselage motion is considered in some
 


detail. Consideration is also given to the use of reduced order dynamic



models for the prediction of the motion of the vehicle relevant to its
 


stability and control characteristics.



A general arrangement drawing of the reference aircraft, the Bell



XV-15 is shown in Figure 1.5.
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ISOLATED PROPROTOR DYNAMICS



In this section the dynamic characteristics of an isolated proprotor



are examined'with emphasis on high inflow conditions. Thus it is assumed



that the support system of the proprotor is rigid and the dynamics of prop


rotor flapping and lagging motion are examined. The equations of motion



development is presented in Appendix I.



The proprotor physical characteristics employed for this study are



3,15
essentially those of the Bell XV-lS and are listed in Table I This 

aircraft has a gimballed rotor with a soft flapping spring ('4 = 1.0355) 

so that its flapping motion is essentially that of an articulated rotor. 

The cyclic lag frequency, given in the Table, is the first flexible mode 

of the blade which in cruise flight is primarily lag bending (Ref. 3). 

The frequency of this mode, as well as the relative proportion of flap 

and lag bending associated with the mode, is influenced by the trim air

speed as a result of the blade pitch variation required to trim the air


craft. As can be seen from Reference 3 it is essentially a lag mode at



flight speeds above 300 knots. Therefore in the following it is referred



to as a lag mode and the small component of flap bending is neglected.



The complete equations of motion for the physical system assuming



that the blade modes are uncoupled, taken from Reference 1, are given
 


in Appendix I. The four degrees of freedom of interest in this section



are the two components of gimbal motion or flapping, 81c and 8 1s and



the two components of lag bending amplitude, CIc and ?Is* The equations
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General; N = 3



R = 12.5 ft 

= 48 rad/sec



2 

b =105 slugxftQ



y =3.83 

a= .089 

a = 5.7 

h = .342 

For Cyclic Motion ; For Collective 'Motion 

Constant RPM Case With RPM DOF 

2 = 1.0355 (*1) = 1.85 C-- ) 

v =1.33 (*2). = vV 0 

1.0 - = .779 

I* 
 = .670 1: = .670 I = 1.0 
C 0 CO



S* = 1.035
C 

(*1): @ Q = 48 rad/sec 

(*2): @ V = .844 & P = 48 rad/sec 

Table I. Description of the Rotor Used for Numerical Examples.
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of motion can be written as



' flc [ lc



1sI 01Is



[Aill] c = [Bll] a (1) 

Cis $g



where [A11] [B11] are given in Appendix I.



Since the cruise flight condition is of interest the matrices A11
 


and Bll possess certain symmetry properties which can be employed to



reduce the order of this system from eighth order to fourth order. A
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set of complex coordinates are defined



+
= O1c + i 1s C= Ic is (2)



= e + i i1s = ag9 g 

Now by multiplying the second of equations (1)by i and adding to the 

first and multiplying the fourth equation by i and adding to the third 

we obtain two second-order equations with complex coefficients in place



of four second-order equations with real coefficients. The equations of



motion in this form are



s2 - ( +2i) s


I M (s- i) 

+('j-1) +i I (C 
s2 + ( 2i) s 

- (s - i) + (-2 1) (3) 

JIa1f _= [Me--..7 
i%:
v% J( 
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where



LM L* Y()

C.)



The coordinates and Z are essentially complex multiblade coordinates



and as such are expressed with respect to a fixed or non-rotating



reference frame. The equations of motion can be effectively converted



to a non-rotating frame and also incidentally, the complex coefficients



removed, by defining a new operational variable



=-1



Substitution of this relationship into equation (3) yields a simpler



form of the equations of motion,



r (A4)uc iR1 

- Quc Qe iv4



where 

M* S +(A6)e =s-2 -- ; + 

-22



uc 

These quadratic factors give the uncoupled flap and lag eigenvalues of the



proprotor with respect to a rotating frame; The eigenvalues are shown in 

Figure 1 as a function of advance ratio. Approximate expressions for the 

aerodynamic coefficients M and Q are given in Reference 1, 

8 
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Figure 1. Uncoupled Flap and Lag Characteristic-Roots


(Cyclic Modes) Rotating Frame.
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- cos43


M 
 COS8



sin2



8 cos 

where the effective radius approximation has been employed to obtain 

simple expressions for the aerodynamic derivatives. The inflow 

angle 4 is related to the adtance ratio by 
3 

V =' tan4€ 

Thus from Figure 1, it can be seen that the flap damping, which



is proportional to M* decreases with increasing advance ratio and the



lag damping, Q increases.



As the model is complicated by more degrees of freedom it is con


venient to retain the original form of the equations given by equation



(3). The eigenvalues for this system are readily found from the re


lationships between the two operational variables s and s and thus



the fixed frame dynamics are found by adding i to the eigenvalues of



equation (4) giving the values shown in Figure 2.



*l.) Uncoupled Flapping Motion with Feedback



First we examine the uncoupled flap dynamics in further detail



especially as regards the response characteristics as a function of



advance ratio and the influence of cyclic feedback on the flapping



response.



The uncoupled flapping equation of motion is given by



{s2 (M +2i) s + i M} = Re 6 + iVM £ (5) 

10 
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The influence of the weak flapping spring as represented by V has



been neglected since its influence is small. The approximate expressions



for Me and M are given by Reference 1 as
 

I



1
Me = s cos d 

M-
M sin



p1 6



Thus the steady state flapping response to cyclic and gust inputs is



given by



55s M +i g1 (6)



In terms of the approximate aerodynamic derivatives, equation (6) can be



expressed as



(7)BSS 2 O-tan2 g 
Cos 4 

Thus; the flapping amplitude per unit cyclic increases with inflow angle


-2



proportional to cos 2' and the flapping response to gust inputs grows
 


as tan 4. At an advance ratio of 1 (355 knots) using the



equivalent radius approximation, the flapping amplitude per unit control



deflection is 2.76 degrees per degree,and the flapping response due to



a gust is 1.76 degrees per degree. The amplitude continues to grow
 


rapidly with advance ratio as shown in Figure 3.



Flapping feedbacks can be used to reduce the sensitivity of the



rotor. Two possible flapping feedbacks considered are a 63 hinge or
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Figure 3. 	 Steady State Flapping Response to Unit Cyclic


Pitch and Gust Input as a Function of Advance
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or pitch-flap coupling with the gearing denoted by Kp, and an Oemichen



type feedback where the pitch of one blade is controlled by the flap
 


angle of an adjacent blade and the gearing is expressed as K . In overall
o 

rotor plane sense, the 0emichen hinge is equivalent to a feedback which



is 900 out of phase compared to the effect of the 63 hinge. In complex



notation, these two feedbacks can be expressed compactly as,



e (-K + iKo) B (8) 

A root locus can be sketched as shown in Figure 4 showing the



influence of these two feedbacks on the flapping dynamics. Of particu


lar interest are the flapping stability limits and the amplitude reduction
 


possible through the use of these feedbacks. Inserting the feedback law



into equation (5)



{s 2 - (M + 2i) s + i ( -M6 K0) + M0 KP} B =_iVW g (9) 

The influence on the flapping amplitude is given by the steady state



solution to this equation



M

i V M 

g i (1 -- KO) +-11
M M p 

Substituting the equivalent radius approximation for the aerodynamic



derivatives, the ratio of flapping to gust input amplitude is
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Figure 4. Root Locus Showing Influence of 63 and Oemichen


Feedback on Flapping Dynamics.
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tan2 

K 2 -K 2 (11 

Cos2 Cos 2 

This indicates that the amplitude reduction due to the S 3 effect



(Kp) is independent of the sign of the pitch-flap coupling and in addition



that both feedbacks become more effective as the advance ratio or



inflow angle increases.



The gearing ratios or feedback gains are limited by stability



considerations. It can be shown that the stability boundaries



determined from equation (9) are given by



K 2 ___2
1+Icos (-) - 0K > 0 
cos4 cos2 

Thus for the 63 feedback only the stability boundary is given by


8 

K - . cos ¢ 
P Y 

and for the Oemichen feedback alone


2 

K = cos o 

Figure 5 shows the amplitude reduction which can be achieved by these



two feedbacks, as well as the stability boundaries, indicating the



effectiveness of these two feedbacks.



The effectiveness of pitch-flap coupling in reducing the flapping



amplitude can be seen.
 


2.) Flap-Lag Coupling
 


We now return to the complete set of flap-lag equations to examine



the influence of flap lag coupling arising from the terms Mt and Q .
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Figure 5. Relative Amplitude Reduction, 63 and Oemichen Feedback.
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The coupled characteristic equation for the flap-lag motion can be



written as in terms of the operational variable s



A + (A)uc (AC) + 2 (C12)


Ut Ut



Root locus techniques can be employed to illustrate the influence of the



coupling terms. Figure 6 shows the effect of this coupling term on the



modes of motion in the non-rotating frame. It can be seen that the



coupling between the modes destabilizes the flap mode and stabilizes



the lag mode.



The proprotor is also equipped with a 63 hinge or pitch-flap coupling.



This hinge causes additional coupling between the flap and lag motion



resulting in a change in the eigenvalues of the coupled flap-lag motion



as shown in Figure7 at the reference advance ratio V = 0.844. It can 


be seen that a negative value of K (up flap causes and increase in pitch)
p 

stabilizes the lightly damped mode and the value for the vehicle (Kp =



- 0.344) at this flight condition produces the maximum damping for the



lightly damped flap mode. A further source of coupling arises from



torsional flexibility of the blades. This effect can be approximately



treated as a pitch-lag coupling3 . For a more precise approach the coupled



equations of Reference 2 are required. Figure 8 shows the effect of



pitch-lag coupling on the eigenvalues indicating that the negative value



(corresponding to a pitch reduction with increasing lag angle) reduces



the damping of the lightly damped flap mode. The trend indicated is that



expected from experience with helicopter rotors, although because of



the fact that the flap mode has less damping it is this mode that is
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( The loci for higher modes are symmetric to those of



lower modes about the straight line, Im(s) = 1, hence, 

they are not shown here.)



Im
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p 
 _.0.5i



: K% > 0 (180 locus) Advancing 

K < 0 ( 00 locus) Modes 
if p 

Kp= - .344 -19) 

9-1.5 -1.0 -0.5 0.5 Re 

tower Lag Regressing 
y 3.83 Mode / o Modes,

/ Lower / 
V =.844 Flap



Mode -0.5i

1.0 
 

= .67 

V = 1.0355 

= 1.33



( Poles are from Fig. 6) ( s-plane ) 
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( The loci of higher modes are symmetric to those of



lower modes about the straight line, Im(s) = 1, and 

they are not shown.)
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destabilized by this coupling in contrast to the helicopter at low inflow



where the lag damping is small and therefore it is the lag mode which is



destablized17
 


This completes the discussion of the isolated rotor cyclic dynamics.
 


The collective flap and lag dynamics are also of interest. The collective



motions can be treated separately from the cyclic motions. It should also



be noted that the collective flapping is an elastic mode owing to the fact



that the rotor is gimballed and each blade is not free to flap individually.



3.) Collective Flap-Lag Motion



The equations of motion describing the collective flap-lag dynamics



are quite similar to the cyclic equations of motion expressed in terms of



the modified operational variable s. The major difference arises from the
 


fact that the collective flap mode is an elastic mode with a natural fre


quency, Vo 1.85. Pitch-flap and pitch-lag coupling are present. The 
0 

effect of a gust disturbance enters in a somewhat different fashion. In 

addition, an additioial degree of freedom, the rotor RPM must be included.



In principle, the complete equation of motion for the rotor RPM degree of



freedom would involve consideration of the drive train and engine governor



19


dynamics .It has been shown that these influences are not particularly



significant and that the major effects of the rotor RPM degree of freedom



can be examined through the study of two limiting cases: constant RPM, i.e.,



the case of a perfect engine/governor system; and autorotation, where the



rotor speed perturbation is determined by the aerodynamic forces acting on



the rotor.



With the constant RPM assumption, the elastic lag mode is excited,



22 



however with the RPM as a degree of freedom this mode is not important.
 


Consider the following two equations of motion, one describing the



elastic lag motion,


= 
 - az) + I* V 22o o AQ (13)



o 
 0 0o



and the other the torque balance,


CQ



I*oz =(;-)o+ AQ (14)



is the shaft rotation or RPM degree of freedom.



Now if the lag mode shape is assumed to be nj = r, then


C0



I* =I*=I*


Coa o o



Equation (13) reduces to,



o z + V2 1 AQ (15)Co 0



If the steady state torque is zero, equation (14) is,



_1 AQ (16)
o - z I*



0



Comparison of these two equations of motion indicates that o 0 and



therefore if the RPM degree of freedom (az) is present, then the elastic



mode degree of freedom (0 ) is not excited. Consequently the two cases 

considered are: RPM constant with elastic flapping and elastic lag, and



RPM free with elastic flapping and no elastic lag.



The equations of motion in the RPM fixed case are
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(Aso)uc sF e17 
- IA lQe' =o &' 

where 

(2 j V2 

uc 

ou =As 2 + s 
% 

+ V2 
(18) 

Co uc 

where


yM YQ()


M() 1* ) I 

6o o



Figure 9 shows the effect of the aerodynamic coupling as well as pitch-flap



and pitch-lag coupling. The basic flap-lag coupling arising from aero


dynamics as well as the pitch-flap coupling act to reduce the damping of



the collective flap mode. Pitch-lag coupling has only a small effect on the



collective flap mode, and reduces the frequency of the collective lag mode.



The free RPM case can be treated by taking = 0 and considering 
0 

the second motion variable as 0S rather than o, i.e., 2s = - . Note 

that since there is no spring in the RPM equation the order of the system 

is reduced by 1. The uncoupled RPM mode has only one eigenvalue, s = - Q. 

Figure 10 shows the effect of coupling in the RPM free case. Both 

in the case of the aerodynamic coupling and the pitch-flap coupling, the 

general trend is to reduce the natural frequency of the collective flap 

mode and produce only a minor change in the time constant associated with 

the RPM degree of freedom. Pitch-lag coupling is not present in the case 

with the RPM degree of freedom. 
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This section has considered the isolated proprotor dynamics which



enter into the vehicle dynamics. In axial flight,the cyclic modes can



be separated from the collective modes.
 


In contrast to the helicopter which operates at low inflow, it



should be noted that the cyclic flap mode has a lower damping than the



cyclic lag mode. As the wing/support dynamics are introduced in the



next section, recalling the characteristics of these isolated modes



will be helpful in interpreting the changes which occur in the flexible
 


wing case.
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PROPROTOR WITH ISOTROPIC SUPPORT



In order to promote physical insight into the aeroelastic stability



of the wing/proprotor system, in this section the dynamic stability



characteristics of the proprotor on a two degree of freedom isotropic



flexible support is considered before examining the specific physical



system under consideration. That is, for the actual aircraft the



aeroelastic flexibility of the wing is modelled by torsion, chordwise



bending and spanwise bending modes. In this section we only allow the



support two elastic degrees of freedom and assume that the inertial



and stiffness properties are the same in both directions. The approxi


mate model permits the use of the complex coordinate transformation



employed in the previous section to be extended to the case with a flexible



support and helps to promote physical insight into the dynamic character


istics of this complex system.



It should be noted that with this support model, the collective rotor



degrees of freedom will not be involved in the problem,as they are primarily



coupled to fore and aft translation of the proprotor shaft as shown later.



Thus, in general, we are considering a system with two cyclic flap



degrees of freedom, two cyclic lag degrees of freedom,and two directions



of support bending. Only aerodynamic forces produced by the proprotor are



included. The use of complex coordinates reduces this physical system



from a twelfth order system to a sixth order system.



Introducing the equality of the inertial, damping,and spring



characteristics of the support into the equations of motion given in
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Appendix I, such that



I* = I* = I*


p py .px



C*= C* =C* (19) 
x y 

K= K* =K*


x y



and introducing a complex coordinate describing shaft motion as



a=a -ia


y x



The equations of motion-for the three complex degrees of freedom can be



,written as



ucI 12 - P


(A )M. s -) I-S + [M+ i.(2 + h )1s -i vM



i I 2t



(s (A)uc 1 i h 
 (Q + i h Q) s- i VQ 
 1 
-i h ( 
 2--


i h H (s - i) 


Ig 2


+2 1) i h - C s -i) (Aa)uc



+ -T (vB -- H 

M ivi\ 

Qe ivH . (20) 

-i h He9 hVH1 

1*



where 1 and
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yM( YQ() YH() 

I* = I* + 2 h2 

p 

The uncoupled dynamics in each degree of freedom are 

(A )u s2 - 2i)2 + i M 

()uc s= ( 2 + 2i) s + ( 1 - i (21) 

(A)u c = Ap + (h 2 H -i h ) s -h VI 

where


2 2 


A s 
 + 2 cpi s + Wo
 
P pp p



with


)2 K* 
 C*



=P V 2 =p I



It can be readily seen that the equations of motion reduce to equations (4) 

when & = 0. 

First we examine the dynamics of the system with flapping and



support degrees of freedom, then consider the influence of the lag degrees



of freedom.
 


Thus, eliminating the lag degrees of freedom from equations (20) 

the equations of motion are, 

(A-) _ s 2 + + i (2 +hM)) s- i VM 

Buc2 (M+ 

ih H (s-i) l2(AdAtuc_+ 2 
ItI5 - 1) I 

R 6 i%6 (22) 

i h H h VR 
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The characteristic equation for this system can be expressed in terms of



the characteristic equation for an articulated rotor system and a rigid



propeller system as



A +(V-l (A) 	 (23)

S 	 + c (as + afa 	 arp 

where (A + a)fa is the characteristic equation for the articulated system 

(A 	 ) = (A) (A)C


8A+a)fa (8uc auc



(24)



+ ih H (s- i) [s2 - +i (2+ hR)js +iVii] 

and (A )rp is the characteristic equation for the rigid system,



(A) = (A) [S2 + i (2 + hM )) s + i VM ] (25) 

It is interesting to note from the form of these two expressions that H



is the term responsible for coupling in the articulated case, and the
 


ratio of blade to pylon inertia is responsible in the rigid propeller



case. In both instances, the polynomial associated with the effects of



coupling is the same and in a rather general sense can be-thought of as



containing the effects responsible for the whirl flutter instability as



will be shown.



First, the simpler problem of the dynamic behavior of a rigid



propeller described by equation (25) is examined. This leads



6 
to the classical problem of whirl flutter I* may be taken as 1, and
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the characteristic equation for the rigid case can be written as,



1 2 2
(A rp = Ap + f, (s + {h yH yM* - 2i} s - (hVyH - iVyM ))= 0 (26) 

It is convenient to use root locus techniques to illustrate the effect of



the aerodynamic terms on the dynamics of the rigid propeller. By considering



Cp and wp fixed and varying the inertia, I*, we can examine the related



importance of the aerodynamic terms in causing whirl flutter. The poles


1



of the system are given by A and with I as the gain, the root loci shown


p 
 f 

in Figure 11 for three values of support frequency can be drawn. The pylon



dynamics are shown,consisting of an advancing mode and a regressing mode.
 


As the inertia is decreased, the roots move towards the complex zeros given



by the quadratic factor in equation (26). One of the complex zeros lies in



the right half plane, moving farther to the right as the advance ratio is



increased as shown in the diagram. The reduction in inertia (or conversely



the increase is the aerodynamic terms) causes the regressing mode to become



unstable thus, giving rise to whirl flutter. The advancing mode is stabilized



by the coupling. Raising the support frequency also produces a stabilizing



tendency.



The zero in the right half plane lies there as a result of the term



iVyM and thus it is possible to identify this term as the source of the



whirl instability; it is interesting to note that this term increases



rapidly with inflow angle, i.e., from Reference 1,



VM - tan sin4



indicating that the onset of this instability tends to occur rapidly with



increasing airspeed. As in more conventional flutter, the solution is to



increase the stiffness of the mounting system, to reduce the effect of



aerodynamics.
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Now we turn to fully articulated case to see the contrast with the



rigid case. Equation (24) is expressed as


N


(A"+ )fa ={Au e iA + - (27)
(Adf uc 8= p It* 

where



= [(A)N~aihy[HB)s-]h6yH}1(28)
V ihyH ) s] {(h2 yH - hVyH(2 

+ ihyH (s - i)[s - {f + i (2 + hM )} s + iVM ] 

A root locus showing the influence of the support inertia on the modes of



motion is shown in Figure 12. Again it may be noted that the critical case



is the one with the lowest support frequency. The trend with Lock number,



y, is also shown, emphasizing the important role that the aerodynamic terms



play in the instability.



Now insight into the aerodynamic terms responsible for the instability



can be seen by dropping the term H from equation (28). If H = 0 in the



fully articulated case, the blade flapping dynamics are uncoupled and only



the support dynamics are influenced by inertia variation. Figure 13 shows



this root locus. Comparison of Figures 12 and 13 indicate the important



role of H in causing the whirl instability. It is also interesting to



note that in the articulated case, the instability occurs in both the advancing



and regressing modes as shown by Figure 12. The location of one zero near



the higher flap mode results in the fact that this root locus is essentially



symmetric about the real axis giving a root locus diagram that is more con


ventional in appearance than in the rigid propeller case. That is, the



influence of coupling is similar in both the advancing and regressing



modes. It should be noted that H* is of the opposite sign from its value



for conventional helicopter flight (low inflow) since it is equal to



34





0 2.0i 
1800 Locus 
 

Higher Im 
Flap 

Mode 
v = .844 

1.5i 	 y = 3.83 

h = .342 

I* = 1.0 

V 1.0 
1.00 

Pylon


Advancing


Mode . 

.i 

.5iEigenvalue 
 for y= 2 (1* 
 2.5)



Advancing 
Modes 

Lower Flap Mode Rr'Eigenvalue for y= 6 (1* = 2.5) 

-. 0 -.5 	 .5 1.0 Re 

Zero M -
Regressing Eigenvalue for y= 6 @ s=3.45-.Oli 

Modes (I* = 2.5) 

Eigenvalue for y= 2 
(I* = 2.5) 5 ( - : .5 

Pylon p 
Regressing A -

Mode p =! I
-1.0±i 

I*=n I*=2.5 (@, p= .02) 

- -1.5i 	 (s-plane) 

Figure 12. 	 Root Locus: Influence of I* on Coupled Dynamics; Isotropic Pylon



with Gimballed Rotor; cf. Eqn. (27).



35





Im


134.50 Locus



1.5i v = .844 

y = 3.83 

Pylon 

Advancing 
Mode 4 

1.0i 

h = .342 

.5i 


Advancing 

Modes 


-1.0 .5 1.0 Re 


Regressing 


Modes 


-p = .5 

= 1.0 

I * - I*=2.5 
t 

(@ 

=1.5 

p = 

WPylon
4Regressing 

.02) .0 Mode 

(s-plane)



Figure 13. Root Locus: Influence of I* on Uncoupled Pylon Dynamics (H = 0) for 

Isotropic Pylon; cf. Eqn. (28). 

36 



CT
-H- sin + CT 

8 6 au 

and therefore at high inflow conditions, the first term dominates. The 

negative sign corresponds to an unstable damping term at high inflow as 

comparison of Figures 12 and 13 indicates. With low support stiffness, 

the effect of H- can be seen to directly move the roots into the right 

half plane. Further insight into the fully articulated case can be



obtained by considering an approximate factorization of.Nfa. This poly


nomial can be written as 
V Ha 

fa 
h2 yH[{A}] 

ucV 
= - v (1

(29) 

h2 yU #, (s -i{s (I VI- M 

The simplified forms of the aerodynamic derivatives (Reference 1) give



-~ VM 3VM-1B-B

so that


NfahHI {s-V (I + 1 } fs2 (2i + M (I HeII sNfa 11{s H M.3V



3V PB



(30)
H 41
i M (I - 0+ H M 

Using the effective radius approximation



TV 16 
H M 27
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giving 


i
Nfa h2yH I(s -hyIs(V (I +..21( 54 85r - (2i + - M} (31)3Vh 
 

The approximate zeros given by this approximate factorization agree well



with the exact factorization of Nfa based on equation (28).



The last factor in equation (31) gives the zero very near the higher



flap mode, the second factor gives the zero near the origin,and the first



factor is responsible for the zero in the right half plane which may be



viewed as the source of the instability, arising from H* in effect.



Now we examine the influence of v0. the flap frequency, on the stability



of the system. Figure 14 shows the influence of the flap frequency on the



stability for three levels of pylon stiffness. Again with the high pylon



stiffness,the'dynamic system is stable and the effect of flap frequency is



small. At a pylon frequency ratio of 1.5 the effect of v is essentially



to raise the blade flapping frequency as would be expected from the uncoupled



system. In the low pylon stiffness case, the effect is markedly different,



with the variation in V8 causing primarily a damping change in the pylon and



lower flap modes. In fact, it can be seen that there is an optimum flap



frequency in the sense that the damping of the pylon mode and the damping



of the lower flap mode can be maximized by a suitable choice of V8 as



suggested in Reference 7. For this numerical example the system is stable



for 1.07 < v < 1.18. This figure also shows that the effect of the weak



flapping spring on the Bell rotor is small and that the dynamic character


istics of the system essentially correspond to the freely flapping rotor.
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We now consider the influence of adding the lag degrees of freedom.
 


The characteristic equation given by expanding equations (20) can be



expressed in the following form



2 
AO +=+ A A 6 + (32)
-C)
 s*I 


++ a + p 

where A80 is the characteristic equation for the coupled flap-lag motion



and Ap is defined as before. If the inertia characteristic I* is infinitely



large then the dynamics are given by A8 + and Ap, the former associated
 


with the isolated rotor cyclic motion and the latter with the pylon. The



root locus shown in Figure 13 presents the influence of pylon inertia on



the dynamics of the system with the lag motion degree of freedom for the



fully articulated case. The regressing modes are not particularly influenced



by the coupling and the instability which occurs in the pylon advancing mode



is quite similar to the case without the lag degree of freedom (Fig. 12)



indicating that while the lag is required to obtain a detailed description



of the dynamics, it does not play an essential role in the whirl flutter "



instability. There also appears to be no particular tendency towards an



air resonance instability undoubtedly as a result of the high lag damping.



Figure 16 shows the effect of blade coupling (blade pitch-flap and pitch-lag



effects) which produces no essential change in the root locus diagram.



Figures 12 and 14 appear to depict the essential contributing features



to the instability. With a pylon frequency of 1.5, there appears to be



little likelihood of an instability for the parameter ranges examined.
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1.) Pylon Motion Feedback



We now turn to the question of pylon motion feedback and its influence



on the dynamic stability of the pylon proprotor system. First consider the



rigid propeller case. The transfer function relating-complex pylon motion



to complex cyclic pitch is found for the rigid propeller case by taking the



limit V , Vv in equation (20). The transfer function is



yM0 + ihyHe 
 (33)



'p 

where the denominator has been discussed previously. The feedback law of



interest here is



- adc 

The feedback gain can in general be taken to be a complex number to



account for the phasing between pylon deflection and cyclic pitch.



For example, if Td has a purely imaginary value so that Kd = Kdi then



the feedback law implies



oe =-Kdx



els Kday 

hence cyclic pitch is applied in such a way that the maximum decrease in



cyclic occurs at the azimuth position (arg RKd) greater than the position at



which the maximum angular displacement of the pylon occurs. 'The character


istic equation for the closed loop system from equation (33) is,



K


TA}rp (Me + ihyH) = 0 (34)
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This equation may be expanded to yield



Ap + (s - 2i) + y(h2H - ) -)(s-
 - iMP+d(Ma + 0V(hH (35)
 
t h H -M



As seen previously, the possibility of whirl flutter is essentially due to



the location of one of the complex zeros associated with the quadratic factor



(see Fig. 11), i.e., which can be traced to the value of



V(hH - i M)
 


h2H - M



and the sign of (h2H - M-). Thus if the feedback gain Rd is appropriately 

chosen, such that the quadratic expression has no zeros in the right half



plane then the possibility of whirl flutter can be eliminated.
 


Figure 17 shows the location of the zeros as a function of the feedback



gain Kd indicating that when Kd = i, the first order factor has its root



in the second quadrant and then the zeros of the quadratic factor are in



the left half plane as shown for the parameter values appropriate to the
 


flight condition. With this choice for the feedback gain, the system is



stable for any value of the inertia parameter I* as shown in Figure 18 and



thus the possibility of whirl flutter is eliminated. Figure 19 then shows



the influence of the gain Kd on the whirl flutter. It can be seen from the



previous figure that the purely imaginary value of Kd is of interest. It



is interesting to note however that as the gain is increased,the regressing



mode is stabilized,and the advancing mode is destablized and that a gain



magnitude of less than 1 is desirable.
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Now considerthe effect of the same feedback law on the gimballed rotor



with no lag degree of freedom. The transfer function in this case obtained



from equations (20) is



(N) a) 
(Ae )fa (36)



a+ a fa



The denominator is given by equation (24) and the numerator is obtained from



equations (22),



(Nsa H)
- ihyHeI {s2
 2 [2i + N (I --HbMe s
a 
 

(37) 
H Me 

Using the effective radius approximation equation (37) becomes,


ihyH8YHM2
2 + 2i)+Li* 1 +1i 
 1i



959



The closed loop characteristic equation from (36) is



(A + a)fa + Kd (N@)fa =0 (38)



Figure 20 shows the root locus for this feedback for various values of gain. 

It is interesting to note that one of the zeros essentially acts to cancel 

the higher flap mode and the other zero lies quite close to the origin 

indicating that this feedback acts more like a damping term than a stiff

ness change. If Kd is real, the feedback law is 

aic Kd ay



eis 
 Kd ax 
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This would appear at first glance to be a stiffness effect, however, examin


ation of the nature of the inplane force indicates that the dominant term



in the inplane force is proportional to flapping velocity (at low frequency)



and since cyclic pitch produces a flap angle this would imply effectively



that a feedback proportional to shaft rate is produced by this displacement



feedback. Shifting the phase of feedback by 900 produces more of a spring



or stiffening effect as would be expected from the above discussion. It is
 


also interesting to note that in general, a feedback phase angle which tends



to stabilize one of the modes tends to destabilize the other mode, showing



behavior quite analogous to the rigid propeller case (Fig. 19).



Similar behavior is shown in Figure 21 where the effect of various phase



feedbacks is shown with different levels of pylon stiffness. In general,



the phase of feedback which stabilizes or adds damping to one of the pylon



modes, destabilizes or reduces the damping of the other mode.



It is interesting to note the similarity of the results of Figure



21 to the case examined previously in which the coupling term in the



pylon equation is dropped (H = 0). In this case the closed loop character

istic equation is given by 

{AaIuc - Rd ihF = 0 (39) 

The root loci based on equation (39), i.e., for a dynamically uncoupled



pylon is shown in Figure 22 for pylon frequencies vp = 1.0 and l.S. It



can be seen that the effects of feedback are very similar to the results



shown in Figure 21. Of course in this case,the stabilization is not



necessary since the increased stiffness has already stabilized the system.
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Now as a final topic in this section we examine the effect of the



flap frequency in conjunction with feedback. The open loop transfer



function is



& 	 N (40) 

A +a 

The numerator obtained from equation (22) is expressed as, 

ihyH ' iM 
(N) 	 = (Na - - I(vsl (l-
 (41) 

hH0


where (Na)fa is given by equation (37). Figure 23 shows the root locus



for the zeros of the transfer function (equation (40)) as a function of



V V The closed loop system equation is obtained from equation (40) as,
 


A+ + d 0 = 0 	 (42)



It should be recalled that the system poles given by As + a are also



dependent upon v5. Root loci are shown in Figure 24 as a function of



gain for various values of flapping stiffness with a pylon frequency of 0.5.



The feedback influences the pylon and flapping dynamics. The phase of



the feedback which stabilizes the motion shifts as the blade flap frequency



is increased as would be expected due to the changing phase angle of the
 


blade response to cyclic. It also may be noted that as the flap frequency



is increased, the least stable mode becomes the flapping mode which is



stabilized by feedback at the expense of the pylon mode damping.



Figures 25 and 26 show the effect of feedback with increased pylon



stiffness indicating that as shown before essentially the uncoupled



result is obtained at w = 1.0 and 1.5.


p
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In Figure 27, the articulated rotor case is considered with a



combination of displacement and rate feedback.



With a suitable choice bf rate and displacement gain the system can



be effectively stabilized as shown in Figure 27(c).



The lag degree of freedom is added along with the appropriate pitch


flap and pitch-lag coupling and a root locus is shown in Figure 28. In



this case a detailed discussion of the zero location is not possible.



However, it can be seen that the primary effect of the additions to the



model is to make the 90° phase feedback more effective in damping the



unstable advancing mode and in addition to markedly reduce the effect



of the feedback on the regressing mode. If the pylon stiffness is



increased, the decoupling shown previously does not seem to be present



as also shown in Figure 28. The feedbacks have little influence on the



regressing modes and the phase of feedback which tends to stabilize the



pylon advancing mode, destabilizes the higher lag mode. Thus, with the



complete model it appears difficult to provide stabilization for the



regressing mode and this result indicates the importance of including



all relevant degrees of freedom.
 


Figure 29 shows the influence of rate feedback and displacement plus



rate feedback for the complete system. It is interesting to note that



rate feedback alone destabilizes the higher flap and lag modes and has



little effect on the pylon mode. The combination of displacement and



rate stabilizes the pylon advancing mode while destabilizing the higher



flap mode. Thus, the addition of rate feedback does not appear to be



useful in this case.
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DYNAMICS OF PROPROTOR AND CANTILEVER WING



In this section we now examine the dynamics of the specific physical



system of interest, that is, a cantilever wing and proprotor in cruise



flight. The primary modification from the previous section is the support



model which ig a non-isotropic support, i.e, a wing with three degrees of



freedom:- spanwise bending; chordwise bending; and torsion. First we consider



the isolated wing dynamics.



1.) Isolated Wing Dynamics



The wing is modelled using only a single mode in each degree of freedom.



The modal amplitudes are denoted by q1 for spanwise bending, q2 for chordwise



bending and p for torsion.



The torsion and spanwise bending are coupled as a result of the relative



locations of the center of gravity and elastic axes. The chordwise degree



of'freedom is essentially uncoupled from the other two degrees of freedom.



The coupled spanwise Dending-torsion equatinns of motion are expressed as



uq t = 0 (43)F(A(A ) 7
L Apql rp uc 

The uncoupled characteristics are given by



2(A)uc = (I* + I* +2Mgh) s + (C* + h2y H -y ) s +K*-hVrH 
pu p'i py p Pi pp pP



+ 2t s2
(A (I* +m*+2 
 
qp uc: w qw tw(44)



* + Y2 yH -2qq 12yQ-) s + K* 
q1 Ytw '11 yI ll C q
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and the coupling terms are, 

A (S* + 22 + Y TH s


pq1 w 2 twyt P



Aqlp = (Sw + 2Mg h y') S2 + (ythyH - yC	ql) s - 3iVyH - YCqlP 
qw tW 11q1 

The characteristic equation for this system is given by



Aq + P (Aql)uc (A)u c - Aqlp 0 	q= 
1+pq~uc puc A = (49)Pq1 
 

For the physical system under consideration the uncoupled quadratic factors



have the following characteristics (at V = 0.844)



(Aql)uc = 109 (s + 0.035 + 0.413i)(s + 0.035 - 0.413i) 

(Ap )uc = 2.66 (s+ 0.055 + 1.10i)(s + 0.055 - 1.10i) 

It may be noted that the damping of these modes, which arises from aero

dynamics is very small. 

The coupling terms are 

A = 8.50 s (s + 0.074)
Pql



A = 8.50 s (s + 0.599)(s - 0.599)

qlp



The characteristic equation may be written in root locus form to examine



the influence of coupling,



I - 0.249 (s)(s + 0.074)(s + 0.599)(s - 0.587) = 0 
(s2 + .070s + 0.172)(s 2 + .109s + 1.20) 

The root loci shown in Figure 30 illustrate the influence of coupling between 

the modes. Figure 30(a) shows the dynamics with all of the terms included 
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and 30(b) shows the dynamics with the aerodynamic terms neglected indicating



that the coupling is produced by inertial effects arising from the center of



gravity displacement from the elastic axis of the wing. The effect of coupliig



is to raise the p or torsion mode frequency and to produce only a small change



in the spanwise or q mode from its uncoupled value. Examining the eigenvectors for



these modes is also useful with respect to interpreting some of the results



of the feedback analysis which follows.



For the q mode,



-5.9°i 
I = 1.26 e 
q,



and for the p mode



ql -178°i


-= 0.09 e



p



Thus in the q, mode p and ql act almost in phase while for the p mode,q1 and



p are very close to 1800 out of phase.



The chordwise mode is essentially uncoupled from the torsion, spanwise



motion and the effect of aerodynamic terms is very small so that the chordwise



motion degree of freedom motion is described by



(A ) =[* + M* + 1* 2 + (yt2 + h2 t)2 ] s2 

q2 uc qw p px Itw 2M y h W ((46) 

+ C* s + K* 2 0q2 
 q2"



Numerically 

(Aq2)uc = 110 (s + 0.012 + 0.677i) (s + 0.012 - 0.677i) 

Thus there are three frequencies associated with the wing motion, two associated 

with spanwise bending and torsion 

W = 1.10 , qo = 0.413 (uncoupled) 
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and one associated with chordwise bending



= 0.677
q2



The support system is, of course, no longer isotropic, however certain



similarities can be noted with the isotropic support treated in the previous



section as will be noted below.



2.) Wing Proprotor Dynamics



First we examine the influence of adding the wing degrees of freedom



to the rotor cyclic motion degrees of freedom. Figure 31 shows the eigen


values calculated for various degrees of freedom as follows:



4dof: This model includes only the rotor cyclic degrees of 

freedom [flc' ls' lc and is). The eigenvalues are 

those discussed previously. 

5dof: The wing torsion motion (p) is added to the rotor cyclic dof. 

6dof: The wing chordwise bending dof (q2) is added to the 5dof 

model. 

7dof: The wing spanwise bending dof (ql) is added to the 6dof model. 

Figure 31 indicates that when the torsion degree of freedom is added the



higher flap and lag modes are altered and there is little influence on the



lower flap and lag modes. Moving to the 6dof case, i.e., adding the



chordwise dof has essentially no effect on any of the 5dof eigenvalues.



Similarly, for the 7dof case the primary influence on the 6dof eigenvalues



is to raise the frequency of the p mode. This is of course, just the



trend discussed in the case of the isolated wing.



The complete system also involves the collective dynamics of the
 


rotor and the rotor RPM as degrees of freedom. Figure 32 shows
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the two degree of freedom dynamics associated with these additional degrees



of freedom for two casest constant RPM including the collective flap and



collective lag modes, and the collective flap plus rotor RPM degrees of



freedom. As noted previously, with the rotor RPM'degree of freedom, the



collective lag mode is essentially not excited and therefore not included



when RPM is included as a degree of freedom.



Also shown in Figure 32 are the seven degree of freedom eigenvalues



from Figure 31. The dynamics of the complete nine degree of freedom system,



i.e., including the coupling between the two collective rotor degrees of



freedom and the cyclic-wing motion system are also shown. It can be seen



from this figure that there is only weak coupling between these collective



dynamics and the 7dof. The eigenvalues of the seven degree of freedom



system correspond closely to the same modes in the nine degree of freedom



case.



Now we consider in more detail the influence of the support or wing



degrees of freedom on the modes of motion and in particular the influence



of anisotropy of the support as well as the nature of the coupling. First



consider the effect of the addition of the torsion degree of freedom on



the blade motion. The problem will be formulated as in the previous



section such that the influence of varying the torsional inertia of the



wing is employed to evaluate the nature of this coupling. The equations



of motion for this system can be written as,



All1 
 Crp 
 ls



(47)
=Ap)uc 
8lS 0 

p
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WhereA 1 1 is the characteristic equation for the flap/lag motion, (AP)uc is 

the uncoupled torsion motion. The coupling terms are given in Appendix I. 

This various terms are given as


I* ( 1) +y T - I* s + yM s 

- hyH s 2 o 
 + hyM ) s - YVM (48) 
= 
 hy H 
 s 
pr -	 Crp yQ s



S* h s 2 + hyHs 	 S h s 2 + hy(s - yVQ 
L 	 L C 2+h s-YV 

and 

S2 

(A1)U C = (I* + I*y + 2 h2 


(49) 

+ 	 (C* + h 2 YH - C s + K* - hVyH 
p p1 pp pp 

Pitch-flap and pitch-lag coupling are not included in the above matrices.



They can be readily included by modifications to the matrices A and Cpr.



In order to evaluate the influence of the rotor support system dynamics,



given by (A ) with the aerodynamic terms omitted (denoted by (A ) ), the 
Puc 
 0



coupled characteristic equation given by equations (47) can be expressed



oA8++1 = lAll[ (A) + 
lp 	 (50) 

Aa 	
 C (h2 yH - yC .) s - hyVH 

pr 	 pp 
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The first term in equation (50) represents the dynamics of the system when



the support has infinitely large inertia associated with the torsion degree



of freedom of the wing. In this case, the system dynamics are those of the



isolated proprotor cyclic modes and the torsion of the wing without aero


dynamics. We now examine the influence of the torsion inertia I* on the



dynamics, maintaining the natural frequency w and the damping ratio CPO



constant, following a similar approach to that used for the discussion of



the isotropic support.



The root locus varying I* is shown in Figure 33. It can be seen that
 

po



the influence of the torsional motion is primarily in the higher flap and
 


lag modes along with the wing torsion mode. This locus then represents



the effect of coupling, in the case where the support has one degree of



freedom.



We now examine the effect of additional wing flexibility arising 

from chordwise or q2 motion. It is interesting to examine this case as 

a departure from the isotropic case by formulating the equations in the 

following way. Let 

= - tw qq2 tw q2



The equations of motion can be written as



81c



Al1 Crqt Crp 8ls



C ' 
 lc


q2r (Aq2 )uc ihyH = 0 (51) 

C pr -hyH s (A )uc q 

p
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It may be noted that if (q') = (AP)u, that is, if the support is isotropic,
ucc



then the method of complex coordinates employed in the previous section could



be applied. So it is convenient to examine the real or anisotropic case by



splitting (Aql)_- into two parts, that is,


uc



2
(Aq)uc = (A ) + (AI* s + AC s + AK*) (52) 

where the quadratic factor in parentheses accounts for the anisotropy of the



support. Thus the characteristic polynomial for the system, given by equation
 


(51) can be expressed as 

A11  Crq Crp 

rq2 T 

+ S c (A) hy H s (53) 
q2r +uc 

Cpr - hy s ()uc 

+ (AI* s2 + AC* s + AK*)(A8 + C + P) 

where As + +P is the characteristic polynomial for the five degree of freedom



case previously discussed (equation (47)). The first term in equation (53) is



the characteristic equation for the case of isotropic supports. Once the eigen


values are found for this system, then root locus techniques can be employed to



examine the influence of the relevant inertia on the isotropic case and then the



effect of anisotropy is introduced.



The isotropic case is studied by introducing the complex coordinates
 


as before with the addition of



a,=p -iq1


2
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The characteristic equation obtained from the first term in equation (53) takes



the form of the previous section in the isotropic case,



A+ + a' 1 A [A) Il* ( h) 2 [s6 +..) (55) 

where A+ is the isolated rotor cyclic flap-lag characteristic equation



(12),and (A)0 is the isotropic support characteristic without aerodynamics



with the chordwise stiffness and inertial characteristic (q9)the same as p.



Figure 34 shows how the system dynamics vary with the support inertia I*


po



again maintaining the natural frequency and damping ratio at their proper 

values. The inflow ratio V = 0.844 and the pitch-flap and pitch-lag coupling 

are included (Kp = - 0.344 and K = - 0.3). For the proper value of the 

inertia,constant (Io = 2.66) the eigenvalues are shown. Note that since 

complex coordinates are employed here, the pole-zero configuration is not 

symmetric about the real axis. The trends shown are very similar to the



isotropic results of the previous section as would be expected. Primarily,



the advancing modes are influenced by the coupling and there is little



influence on the regressing modes. The trend with inertia in the isotropic



case is also very similar to the case with infinite stiffness in one



direction as may be seen by comparison with Figure 33, since the rotor support
 


regressing mode is hardly influenced by the coupling.



Now the influence of the anisotropy is examined using the root locus



approach described above. The factor under consideration related to the



anisotropy is



AI* s2 + AC* s + AK* = 33.8 (s +0.021+0.634i)(s + 0.021 - 0.623i) 

In the root locus shown in Figure 35, AI* is considered as the gain and AC*



AK*


and are maintained constant. The root locus is based on equation (53)



The 'root locus gain is given as AI* I*/(I* I* - S* h). Figure 35 then
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shows the variation of the eigenvalues as a function of AI*. The isotropic



case is represented of course by AI* = 0. The actual difference in support



characteristics in the two directions is such that in fact the physical



value of the inertia (AI* = 33.8) corresponds very closely to the limiting
 


value of AI* = -. This case is the 5dof model and the chordwise parameters



of the wing are such that the eigenvalues are close to this limit.



The formulation presented is in general useful in studying the effects



of support characteristics.



This investigation appears to indicate the the wing chordwise degree



of freedom for the parameters of the physical system of interest is not



particularly influential. The chordwise mode does play a role however



when the collective modes are examined as will be seen later in this section.



3.) Wing Motion-Cyclic Pitch Feedback



We now turn to the examination of the influence of various single loop



feedbacks on the dynamics of the wing proprotor system (nine degrees of 

freedom). An optimal control theory approach to this problem is presented 

in Reference 18. 

First consider the influence of q, + 01c feedback at the inflow ratio 

V = 0.844. Positive (br negative) feedback represents a feedback law 

such that the increase in ql (positive for upward bending) results in an 

increase (or decrease) in eIc" That is, blade pitch takes a maximum value 

at = 00 (1800) in proportion to feedback gain. Figure 36(a) shows the 

root locus for the influence of this gain. Points are shown for a selected 

physically reasonable value of the gain. The gain can be interpreted as



the ratio of the angular amplitude of cyclic pitch to angular deflection
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of the wing tip measured from the wing root. It can be seen that the
 


primary influence of cyclic feedback is to change the characteristics



of the wing p and q modes and the lower flap and lag modes. This feed


back essentially alters the damping of the torsion mode and the stiffness
 


and damping of the spanwise bending mode. Positive feedback increases



the torsion mode damping and destabilizes the spanwise mode. There is



little influence on the wing chordwise mode, the higher flap and lag cyclic



modes, the collective flap mode or the RPM mode. Considering a second



feedback, wing bending to Gis' i.e., a shift in phase of 900, essentially



the root loci effects are shifted by 900. In this case, the feedback



alters the frequency of the p mode and the damping of the q1 mode. In



each case, the larger change occurs in the lower frequency or q, mode, and



from the standpoint of stabilizing the ql mode, els feedback appear to be



the best candidate. Now consider the effects of torsion motion feedback



shown in Figure 37. The dominant effects of this feedback are to change



the torsion mode characteristics as would be expected and there is some



influence on the higher lag mode. A positive feedback of eIc can be



employed to provide torsion mode damping. It is interesting to note



that the trends with torsion feedback are very similar to the influence



of spanwise bending feedback with respect to their influence on the wing



modes. Of course, the q feedback causes a larger effect on the q mode



and similarly the p feedback causes a larger effect on the p mode. The



other difference to be noted is that the torsion mode feedback produces



favorable effects on both modes (although the effect on q, is small)



whereas the q feedback produces opposite effects. This can be explained



by noting the eigenvectors for the p, q, coupled modes given earlier
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where in the q, mode, p and q, are in phase,whereas in the p mode they are



out of phase.



Again the p mode feedback has little influence on many of the modes



similar to the ql feedback.



Torsion feedback is essentially similar to a single axis version of the



focussed pylon mount.



Now we examine chordwise motion feedback. Figure 38 shows the effect of



this feedback to each cyclic. The effect is generally small due to the large



stiffness noted above. For a reasonable physical value of gain some slight



increment in the damping of the chordwise mode can be provided.



These results indicate that owing to the small influence of q2 feedback



a focussed mount system with equal gains on both axes would act essentially



like a single axis feedback of torsion or spanwise bending motion.



In considering more generally the influence of these feedbacks it is



possible to note some marked similarities between the various feedbacks.



Further it is possible to associate certain of the zeros with the wing



dynamics and others with the blade dynamics.



Figure 39 shows the zeros for the ql transfer functions indicating



the source as arising from wing or rotor characteristics. The zeros from



the seven and nine degree of freedom models are shown to indicate that there



is only a small difference in these two cases. By the symbols H and W the 

origin of these zeros from the wing or H force transfer function are 

identified. Figures 40 and 41 show the zeros of the other transfer functions. 

Bach of the transfer functions , has nearly in common the
ic 
 ls 
 1C



following zeros (denoted by Hs, HcYs, or Y):
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1.) 	 Three zeros on the real axis; one on the negative real axis 

near the origin (s = - 0.1); another farther from the origin 

(s= - 1.4); and one on the positive real axis (s = 0.8). 

2.) One zero near the lower mode flap eigenvalue (s = - 0.1 + 0.14i). 

3.) One zero near the point s = 2i. 

Similarily for the other three transfer functions, q, 2 , P-there areIs ic @Is 

1.) Two zeros on the negative real axis; one near the origin 

(s = - 0.05) and one farther to the left (s = - 0.5). 

2.) One zero near the lower flap mode eigenvalue (s = - 0.03 + 0.2i). 

3.) One zero near the point s = 2i. 

4.) One zero far from the origin (s - 0.6 + 5.3i). 

As will be shown below, these zeros in both cases are associated with the 

rotor dynamics, and are essentially the zeros of the rotor inplane force 

to cyclic transfer functions. The following section considers this 

question in more detail. 

4.) Transfer Function Zeros for Cyclic Feedback 

We now examine some characteristics of the zeros of the transfer 

functions of the coupled proprotor cyclic and wing motion to illustrate 

the source of the zeros. The location of these zeros governs the manner 

in which feedback influences the dynamics of the system. 

The coupled system equations of motion may be written as 

A C C C rq I I rq2 rp 

-41 
qlr 	 ={[ (56) 

C 	 A222
qq2r 	 22 

C 
pr
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where



Bic



in1s 
 

Only the seven degree of freedom model has been employed, since it has



been shown that the collective rotor motion and the RPM degrees of freedom



do not influence the dynamics of this system.



Writing the equations (56) in more compact form



A11  21 : Bllj ( 57) 

A12 A ' ( 

and defining a new rotor motion variable 

x' = x +A A x (58)r r 11 21 xw 

The equations of motion can be written as



C

ql r


2 - qr [rql Crq


(59)
Cp 

r
Cq xf__*+B 2 1 -f


C



pr 

x'= 6 (60) 

11 r I 
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Now in this form,x may be regarded as the isolated rotor motion. Thus to



find the input terms on the right hand side of the equation above, in



particular as regards the zeros, they can be found from the isolated



rotor transfer functions;



For V = 1, which is a good approximation to the proprotor under con

sideration and noting that 

Ytw"


C =C
qlr pr h 

We can express the right hand side of equation (59) as 

C "fy Ytw 

y h 
C x'+' (61)
q2r 
 r 21 nb'w fx



C f 
pr 
 y



where

 2CH 2C



f = hy- + -Y MY


y acT ac



(62)


2C 2C



f = hy Y Y mx


x acTa



The left hand side of equation (59) can be simplified based on the fact



noted earlier that, wing chordwise bending (q2) has almost no effect on



the eigenvalues of the rotor wing dynamics, therefore we may drop coupling
 


terms such as C . Further q1 motion only effects wing torsion so that


rq2



(A )uc 0 Aqlp



At 0 (A) 0 (63)


22 q2 uc



A,
pql 0 (Ap) uc 
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c =f(o} 
rq1



C e{O)rq2



The hub moment contribution can be neglected due to the low flapping 

stiffness. 

As a result of these approximations equation (59) can be expressed 

as 

] o I A - h c 
0 2 Car Al- C 2 

q cuc 
 hp - 12pq I 0 I c A1 Crp 

L J 

"Ytw 
h0 (64)



q 11w f 

1 0 0 

q,



Now the transfer function - may be written as
i1c



ql ql f + f fX 

(65)e (f1() f 
 
1c y ic x 1C



From equation (64) the numerator of q- is 
y



ql Ytw 
 - A 
 (66)
fy h (q 2)uc (Yuc tw~

f - h (A2)U ~(Ap)UC-YWq



and the numerator



I- = 0 (67)


x



91





q,

Therefore it can be seen that the transfer function zeros are given



q, f


by the transfer function - and the zeros of the transfer function y



y IC


Similarly the transfer function



l qYl ) ey + (T -)(e ) (68) 

s y Is x s 

qlI ql


sinesic x 0 the zeros of i1s consist of the same wing zeros as for the



q l 
 f



-- with the rotor zero contribution given by T-"



The approximate zeros given by this approach are



From



(A2)u2 = 111 s2 + 5:17s + 49.5



s =:--Q.2 + 0.67i 

From


h 2 

(A )uc yh Aq 0.481 s + 0.265 s + 3.96


tw qp



s - 0.28 - 2.86i



f


Y
The zeros of the transfer function 
 Ole



s = - 0.11, 0.77, - 1.37, - 0.11 ± 0.14i, - 0.01 ± 2.03i 

The zeros in the figure are labelled W or H as to whether they arise from



the wing dynamics or the rotor dynamics on the figures. The physical



origin of the zeros can be seen. The wing motion aesponse to cyclic can
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be considered to be a product of cascaded transfer functions, i.e, the



product of the wing response to rotor force times the rotor force to



cyclic where the zeros can be calculated based on a decoupling assumption.



Now consider the torsion transfer functions 

L = P- fY+ P fx_ (69) 
81c fy 6ic fx a1c



From equation (64), we obtain the numerator of



fy = 	 t w  - (Aq2)uc(Aq 	 f(Aq)uc -A h-- APql } (70)



and similarly the numerator of



P= 0 (71)



f


x 

Again the zeros are given by the wing contributions



(A) 	 and (A )uc - T Aq,



q2 ucquc h 
 p 1



f


and the zeros of the transfer function y Similarly


ic



f f

P (--Ln) + p-Gx
Ils el '01
s 	 (72)
' 	 6 

So the wing contributions are the same as above and in addition we have
 

f



the zeros of the transfer function y

1s'



Thus the torsion to cyclic transfer functions have the sets of zeros



from the rotor which are identical and differ only in the wing contributions.



In a similar fashion we can examine the chordwise transfer functions
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= 2 (!2) + 2 f 

ilc y Ic x Ic


(73) 

q q2 q2 f

2 (t - + (f (i-)

1s y is x is



If we assume that C = 0 then the numerator of 

rp 

q--= 0(74)



y



and the numerator of



q( 2 (A -A 
 A 1(75) 
=fx 'w [(Aql)uc puc - pql q l P 

so it can be seen that the zeros for chordwise feedback are:



The zeros of the factor [(Aql)uc (A ) - A A which are in



+
fact the zeros of the characteristic polynomial A p, i.e, the coupled


q1 p fx 

And the zeros of the transfer function
 -- ,

wing torsion bending motion. 


f ic


which because of symmetry is equal to - a
q I1s
q2 
 

Similarly the zeros for the - transfer function have the same wing



contributions (the uncoupled wing torsion bending zeros) and the zeros of


f f 

the transfer function -xwhich is equivalent to 0y . The zeros obtained


6ls 1c



from this approximation agree well with the results obtained from the



complete model.



Thus the source of the similarity in the zeros can be seen. To 
2 p all have essentially the same zero 

summarize the results,s- 6 
lc 
 Is elc



contributions from the inplane response characteristics and differ in the



wing zeros. 1 2 and P also have similar characteristics, indi-
Is lc i1s


-'-S F91' Is



cating that the zeros may be derived from a cascaded system in which the
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coupling terms appearing in the numerators can be neglected, i.e., the



zeros in the rotor force to cyclic transfer functions can be estimated



ignoring wing motion.



It should be noted that these conclusions depend upon a number of 

assumptions which may not be true for other proprotor aircraft with 

markedly different characteristics. It appears that = 1 is one of 

the crucial assumptions. 

In this particular case, the difference in the action of each of these



feedbacks is essentially due to the role of the wing dynamics. Chordwise



feedback has little effect on the other wing modes owing to the fact that



the approximate zeros of the chordwise transfer functions lie on the ql,p



modes. The torsion and spanwise feedbacks have one pair of zeros very



near the q2 mode. The other pair is basically related to the wing response



to rotor force, and produces the nature of the feedback effect.
 


To summarize,the essential difference in the effects of the various



wing motion to cyclic feedbacks appears to be due to the location of the



zeros due to the wing dynamics, and these can be estimated from the wing



motion transfer functions in response to forces applied at the rotor hub.



Both the ql and p feedbacks give a zero at the uncoupled chordwise mode.



The second pair of wing zeros for q, feedback is at rather high frequency



while for p feedback the zeros are at relatively low frequency near the q,



mode, sufficiently cdose in fact such that p feedback has only a relatively



weak influence on the q1 mode. q2 feedback results in zeros from the wing



dynamics which are near the ql and p modes as would be expected.
 


It is also interesting to note that the rotor force to cyclic transfer



functions yield a zero quite close to the origin implying that the response
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of the rotor force to cyclic is close to being a rate dependent effect.



A simple model for the rotor in-plane force implies that for low fre


quency motions the inplane force is proportional to flapping rate, and



since cyclic produces a flap angle for low frequency inputs, the rotor



force transfer function is more like a damping feedback than a stiffness



change. This would be quite different if the rotor produced appreciable



hub moments through a flapping spring.
 


Thus it can be seen that cyclic pitch feedback could be effective in



controlling the wing torsion and spanwise bending modes but has little



influence on the chordwise mode. Therefore it seems desirable to examine



the effect of chordwise motion to collective pitch feedback.



5.) Chordwise Motion to Rotor Collective Feedback



The root loci shown in Figure 42 illustrates the influence of pro


portional feedback of wing q2 motion to collective pitch for the nine degree



of freedom model in the free rotor RPM case at advance ratio V = 0.844. The



sign convention for positive (or negative) feedback is such that an increase



in q2 (positive for aft bending) results in an increase (or decrease) in



blade collective pitch.



It can be seen from this complete model that essentially-only the



chordwise mode, collective flap and RPM modes are involved and pole zero



cancellations eliminate the effects on other modes. Thus it appears that
 


this feedback can be adequately examined using only a three degree of



freedom model.



Figure 43 shows some results using this three degree of freedom model.



It is interesting to note from Figure 42 the zero configuration involved



in this feedback. There is a zero at the origin implying that this feedback
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is essentially a rate feedback. That is, that a collective pitch change gives


no steady state thrust. This is a consequence of the free RPM assumption.



That is, in the steady state no thrust change is produced by a collective



pitch change. The two real axis zeros indicate the presence of a non-minimum.



phase effect. These trends can be readily explained by considering the three
 


degree of freedom dynamics in more detail



The equations of motion can be written as



yM0 

RfT - 6 8o (76)



q2 
 2 Ytw yTo



Since this is a relatively simple system,we do not consider the cascade



approach used in a previous section.


q2 q2 

The numerator of the - transfer functions, denoted by N is given by 
0 0 

( I e 

Y%s I(AQ)uc I -Q8 (77) 

oS 2 

2 + yTs) 2 ytw2 ytw(Ss 80 Yt T !- 2 twyTa 

But since the Q derivatives are proportional to the T derivatives , i.e., 

Q( =V T ( ) 
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equation (77) can be simplified to,



I* (A )_I yM
% 00ucI
0 

2 I 
N V S* s 2 s 0 (78)
o _ _Bo. 2
2 '7 F 

2 s + YTI s) 12 ytw I 2 ytwy 

Expanding



S-2 ytw Tes (o-s*1* MO 2 

o TN



06 t0



+ e2 

The damping term in the second factor is very small, i.e., if the effective 

radius approximation is employed this term vanishes, so that the numerator 

is given by 

U r 2 
q2 Sfoi02 
 o (0

N6 =2y ytw 111*T - 1) s (80)s 


T - ') 
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Inserting numerical values we find that the zeros are



s = 0, ± 6.49



which compares well with the more exact result obtained by retaining all



of the aerodynamic terms



s = 0, - 6.06, 6.95



The zero located at the origin gives a zero static gain indicating that



a step input in collective produces no steady state chordwise deflection



implying that in the steady state condition there is no thrust change.



It can also be seen that the nonminimum phase effect, or zero in the



right half plane arises from the blade inertia. A step increase in pitch



input causes the blades to accelerate forward,and the inertial reaction



of the wing occurs in the opposite direction or to the rear.



Consider the equations of motion for the three degrees of freedom,



neglecting aerodynamic terms on the left hand side,



I* (A 0
0uc 


0 2 ( ) uc0 0 (8 ) 
2y SO 
 0 (Aq2)uc qs21* (A)s y A (1 

•MO



YQy S0



2 ytwyTw 
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Figure 43 shows the influence of coupling for this model, including aero


dynamics, with and without the 9? degree of freedom. The primary effect
s 

of coupling is to raise the frequency of the collective flap mode, as



the neglect of the aerodynamic terms decouples the Q2 degree of freedom.



It also can be seen that the So term representing the blade inertial



characteristics is responsible for the non-minimum phase term.



The complete system analysis of Figure 42 shows an influence on the



q2 mode, a positive feedback, i.e., aft bending of the wing producing an



increase in collective pitch results in a stabilizing effect. Figure 44



considers the influence of rate feedback as well as a combination of rate



and displacement indicating that a combination of rate plus displacement



is most effective in increasihg the damping of the wing chordwise mode



although the damping of the collective blade mode is slightly reduced. A



physically reasonable value of gain produces a rather small effect however,



owing to the high chordwise stiffness of the wing.



To summarize the results of this section, it generally appears that



spanwise or torsion bending to cyclic feedback could be effective in



controlling the dynamic characteristics of these modes. Owing to the high



stiffness of the chordwise mode, it appears difficult to obtain much change



in the chordwise mode owing to the high stiffness. Collective pitch feed


back appears more effective, for reasonable gain values, in controlling



the chordwise mode.



Other possible feedbacks have not been considered since they primarily



influence the isolated modes, i.e., cyclic feedback-to blade motion



alters the blade motion itself and wing flap feedback will largely only



influence the wing torsion-spanwise bending motion.
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PROPROTOR DYNAMICS WITH FUSELAGE FREEDOM



In this section we examine the influence of freeing the fuselage on the



overall dynamics of the proprotor aircraft with flexibility. Only the



symmetric degrees of freedom of the fuselage are considered, i.e., pitch,



vertical translation,and horizontal translation. Further, additional



blade degrees of freedom have been included to more precisely represent



the influence of the blade torsion degree of freedom. The proprotor wing



model is now that of Reference 2. Rather than using an effective pitch-lag



coupling as in the previous sections, additional blade degrees of freedom



including modal coupling between flap and lag bending as well as control



system flexibility are incorporated. This increases the complexity of'



the basic model with free proprotor RPM. Fifteen degrees of freedom are



now involved. Therefore with the fuselage free, we have an eighteen degree



of freedom system. The inclusion of additional blade degrees of freeom,



while changing quantitative aspects of the results does not give any



essential qualitative differences from the nine degree of freedom model



with pitch-lag coupling.



Of particular interest here is the influence of freeing the fuselage



on the dynamics and stability of the overall system especially as regards



its influence on the whirl flutter speed. In addition, the influence of



the flexibility on the dynamics of the aircraft, especially with respect



to the lowest frequency modes which are related to the stability and control
 


of the aircraft are examined and an approximate model discussed which con


sideres the primary influence of flexibility.



Figure 45 shows the eigenvalues of the eighteen degree of freedom



(fuselage free) and fifteen degree of freedom (fuselage fixed) motions
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as a function of trimmed flight velocity and also the case with rotor RPM



assumed constant (seventeen and fourteen degrees of freedom). It can be



seen that there is little influence on many of the eigenvalues with the



exception of the wing bending modes and of course the addition bf the class


ical longitudinal modes of motion of the airframe.



In particular it can be noted that upon freeing the fuselage both of 

the wing bending modes (qw and qw2) are raised in frequency and their 

dampimg ratios are increased. This increase in frequency is simply 

explained by considering the way in which the natural frequencies of a beam



undergoing symmetric vibration are influenced by a mass located at the



center of the beam. If we compare the lowest natural frequency of a



cantilever beam which is given by
.s
3.52 
 

which would correspond to the limiting case of an infinite mass at the



center of a free-free beam to the natural frequency of a free-free beam



with no mass at the center, its natural frequency is



w
mf = 22.4 tWNff= 
 

indicating the lowest mode natural frequency increases as the effect of 

fuselage freedom is included. This effect can be seen in the complete 

model by comparing the frequencies of the qwI and qw2 modes in Figures 45(a) 

and (b). Figure 46 shows these results more explicitly giving the frequency 

of there two modes obtained from the fifteen and eighteen degree of freedom 

models. 
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Also shown is the influence of freeing the fuselage on the damping of the 

two modes. There is little effect shown on the damping of the chordwise mode



however the damping of the spanwise mode is increased quite significantly
 


apparently obtaining some additional damping from the freeing of the fuselage



The other case of interest here is that with the rotor RPM constant, i.e.,



the case of perfect engine governor. The eigenvalues in this case with the



fuselage fixed and fuselage free are also shown in Figure 45. The general



trend of the eigenvalues with speed are similar to the RPM free case. There



is a difference in the collective mode (a(1)) for reasons explained earlier.



As far as the stability of the system, or in other words the whirl flutter



speed,there is little change in the damping of the qw2 mode as shown in



Figure 46. There is however a marked increase in damping of the qw, mode.
 


This increase in damping arises apparently from the fact that wing spanwise



bending causes a rotation of the rotor shaft with respect to space and thus
 


if the proprotor RPM is assumed constant aerodynamic damping appears in the



spanwise mode. If the RPM is free, then in effect no aerodynamic forces



appear as a result of this rotation.



The constant RPM assumption also has a marked influence on the proprotor



contribution to the phugoid damping as may be seen from Figure 47. At the



higher flight speeds the phugoid becomes critically damped due to the large



thrust variation with airspeed which does not appear for the free rotor RPM



case.



Figure 47 compares the time to half amplitude in these two cases for the



phugoid and the short period where it can be seen that the only significant



difference between the eighteen and seventeed degree of freedom models



occurs in the phugoid mode. The period change in the phugoid between the



two cases is of course due to the difference in damping.
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We also examine at this point the influence of the aeroelastic degrees



of freedom on the two low frequency modes associated with the stability and



control characteristics of the aircraft. Also shown in Figure 47 are



the quasistatic approximations to the low frequency motions, i.e., the



dynamic terms associated with the aeroelastic effects are eliminated.
 


This approximation must be made with care since we must retain the proper



rate dependent aerodynamic contributions from the various modes. It can



be seen that the only significant difference between the quasistatic



approximation and the complete system dynamics is associated with the



short period damping. Use of the quasistatic approximation results in an



overestimation of the short period damping or time to half amplitude.



It would be highly desirable in order to obtain insight into the aircraft



dynamics to obtain a low order approximation to the short period motion



including the effect of aeroelasticity. The following section considers



this question in detail.



1.) Short Period Motion



First we consider the quasi-static approximation to the short period



motion in order to justify an approximate way in which to account for the



dynamics of the aircraft associated with its flexibility and then proceed
 


to develop this approximation.



The short period equations of motion in an inertial frame of reference



may be written as



S-w -2 =0 (82) 

where


Sl a aM

)N ()) C 1a( ) 



These equations are written in dimensional real time Cs = -C). It is of



course assumed that the center of gravity of the aircraft is fixed at



one point and thus M is the total aircraft mass and the moment of inertia



includes the rotor contributions as a point mass. Thus the rotor inplane
 


force does not contain any inertia terms. The rotor blade inertia terms



are included in the moment. This is important to keep in mind



when we examine the dynamic form of the inplane force and moment in the



following.



Note again that the conventional Eulerian frame is not being used for



the short period which accounts for the fact that pitch attitude dependence



of the aerodynamics appears in the equations and there is no inertial



term depending on pitch rate in the normal force equation.



2. and i4.are the usual downwash lag derivatives. Note that the angle
w w 
of attack change of the aircraft is equal to (Of--

w so that the 

derivatives Z- and M, also include downwash lag effects in addition to



the direct effects of pitch rate.



If we convert these equations of motion into dimensionless form



consistant with the notation of the rest of this report,



. ~~(I~ ~ 6s- 5 Zew


M. s2 M s _ s Mj fw w 

where


Wf



-f - VR
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2 

Z- y= 2y Z


w 	 w m*V ao .f
 

wt (,,) (,,)

Zw 	 3CWf 

T-=



z6 = vZ6 
Z8



VP R



I 2y 	 aCM
M. =M. VR= w 	 w I* au 

-yRM =Mw w



M6 =5 

M 	 2 

and 
Il'*= M N I



* - Ilb I* =N
(YtwR) N7ib



z2 b
ZT 

2 2	 1
M
prR2 (MR) 	 2 prR3 (QR) 	 2 

The various derivatives can be expressed as follows: 

1.) -The vertical acceleration derivatives (*f) are due to downwash lag 

and arise from the horizontal tail contributions. They are given by 

2 aCZ yV de 
aua3qf -ra SHi Cat 

2 aCM yV 2 2 dE


aar f in Hlt cw atd
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2.) The vertical velocity derivatives (wf) arise from the horizontal tail,



rotors, wing and fuseage.



a.) horizontal tail



s a2y DCZ jW V2 (l 
a wfhT ra H 

YV22y aCM S Yc (i


aaaw f hT H
HT ~wT



b.) rotor



ay Dwfi
r au Dag



2y acMI 2y acMY



owing to the equivalence between a gust input a g and a vertical velocity



of the aircraft wf



c.) wing

2y @Cz I - 2 2 S a



a l 1wfr
w 
 a w w
 

2y acM - 2 2 S 9 c a



ac @wf a w w w w



where 2yZ - 2~w is the distance between the aircraft center of gravity and the 

au aW f 7naG ww,
wing MAC (divided by Z-wR) 


d.) fuselage



2y aCz I _V2
= 
 C


where~~~~~~~~~~~steditnebtwe
£ h irrf 
 ete fgait n h



2y a _ = 2


aG ,f f ITaa w wf





3.) The pitch rate derivatives (6f) arise from the horizontal tail and



the rotors with a small contribution from the wing



a.) horizontal tail



2y acZsE

z yV SHk Cw (1 
a efh@@ltt laa aT 

2y aCM yV 2 2 a d e 
- c a (l+= 
 au o-flh t raa SHT wT d



b.) rotors. Noting the equivalence between ef and &


0 ay2y _CZ 2y CH 

.a-- -O-af& =Oa 

2y CM 2y 'CM


ao afr au a



c.) The wing produces a small contribution



2y az =- yV 2 S k c a 
auaef w Tac w w w w 

2y --Z YV 2 S 2 c2a


aua6Ifw Tao wW ww 

The fuselage contribution is neglected.



4.) The pitch attitude derivatives are directly related to the vertical



velocity derivatives,



2y 3Cz 2y aCz



au Of a(7 9w 
ac ac 

2y M 2y M 

au 3ef ac 9wf 
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These various derivatives are numerically evaluated using the parameters 

of the aircraft given in Table III to yield the results given in Table IV. 

We now proceed to examine the characteristic equation for the short 

-period motion. 

Using the equivalences Zw = - - M., and noting that the w 
 

derivative Z. is negligible compared to 1, the characteristic equation

w



for the short period mode is obtained from equation (82') is



=
Asp s2 + [- z -M 6 - ZM] s+ [ZM6-M e - zM -ZM] = 0 (83)Spw e we e e e 

Consider the numerical contributions of the derivatives to the stiffness



and damping terms in this quadratic equation



(- Z) + (- M) + (- ZgM.) 

(0.0362) + (0.108) + (- 0.0012) = 0.143 

Zw M6 + (-Me) + (-Z Mw) + (-ZeM.) 

(0.00391) + (0.0106) + (0.00039) + (- 0.00121) = 0.0129 

The characteristic roots are
 


Sl,2 = - 0.072 ± 0.088 i



The damping ratio and natural frequency are



sp = 0.63 Osp = 0.114 
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Total Aircraft: Horizontal Tail:



AFT CG (FS 298.2, WL 73.63) SH = .322 

= 4.23



ma = 712 (Gross Weight 13000 ibs) at = 4.13



!a = 81.9 (I a= 12903 slugxft 2) de = .335


V = .844 (300 kts when QR 600 dca



ft/sec)



It 
 

Rotor: Wing:



N = 3 2S w = 1.101 (= 2 yf Qcw) 
a = 5.7 YTw = 1.333


a = .089 w = .413


Ib = 105 slugxft2 ZW= .107



= 3.83 a w = 4.58
 
I *I = I* = 1.0 


.T = .67 Fuselage:



V = 1.0355



= 1.33 
 S = .206



h = .361 CLf = 3.64



Kp = -.344 Cmfa = 7.10


K =-.3 a



Table III. Data Used for the Evaluation of the Derivatives



Shown in Table IV. 
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Horizontal Rotors Wing Fuselage Total 

Tail (Two) 

2y z - 1.57 - 1.57 

aC aYf (*) (*) (*) 

Z. w -.00465 -.00465 

2y z - 1.51 -. 406 x2 -8.64 -1.28 -12.2 
aa awf 

2 -.00446 -.00240 -.0255 -.00379 -.0362 

ac 
2y
aa 

z 
a f 6.27 1 3.29 x2 -.454 () 

12.4 

z6 .0185 .0194 -.0013 .0366 

ac 

2y z 1.51 .406 x 2 8.64 1.28 12.2 
ac a ef 

Z .00446 .00240 .0255 .00379 .0362 

2y 
aa 

aCm 2.75 
(*) (.) (,) 

2.75 

f 

M. .0335 .0335 
w 
ac 

2y 9 2.64 -. 175 x2 -. 382 - 1.03 .869 

M .0322 -.00427 -.00467 -.0126 .0106 
w 

2y
aia 

ac3 ef 
-10.9 1.05 x2 -.0200 

(*.) 
-8.86 

M5 -.133 .0256 -.0002 -.108 

ac 

2y
aia 

a mae8 - 2.64 .175 x2 .382 1.03 -.869 

M -.0322 .00427 .00467 .0126 -.0106 

( * ) : neglected 

Table IV. Derivatives: Results of Numerical Evaluation for the Case 

Given in Table III. 
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This is the quasi-static prediction of the short period characteristic.



Noting from previous sections that the low frequency rotor flapping mode



has a frequency approximately equal to 0.18 it can be seen that this
 


frequency is reasonably close to the short period motion and would be



expected therefore that including in some approximate Way the coupling of



this mode to the short period would be the source of the discrepancy in



damping between the complete model and the quasi-static model described



previously.



First consider the relative magnitude of the contributions of the 

various derivatives to the short period motion and in particular the 

rotor contributions. The primary contribution to the damping is MIPand 

next in importance is Z . The influence of ZA is small. From Table IV 

it can also be seen that the rotor contribution to these three terms are 

18%, 1.7% and 0.5% respectively. Therefore we can conclude that the important



contribution of the rotor to the damping term is through M6.



In the stiffness term, the most important contribution is M0 . The



rotor contribution to this term is approximately 42% of the total. The



next term in order of size is Z M and from Table IV the rotor contribution
6 
 

to Z is about 6% and 24% of M6. Therefore it can be assumed that the



primary contribution of the rotor to this term is through M;. The last



two terms in the stiffness are relatively small and especially when the



rotor contributions to them are considered (Table IV) it is ?found that



they may be neglected. Thus we may conclude that the important rotor



contributions to the stiffness are through the terms M and M6.
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Now in order to include the rotor dynamics in the short period motion



we consider the following approach. The rotor contribution to the pitch



attitude and pitch rate derivatives are expressed as



a 3-Y -C A Gf(s)



2y 36f



2y M3M A' C ()


aaefgf 

where A and-A' are the rotor derivatives when the quasi-static approximation



is made and Gbf and Gaf are transfer frunctions which include the effect



of rotor dynamics.



Since there is an equivalence such that



@( ) = a( ) 

and


ac ) _B( ) 
aa '36 
g



we can obtain approximations to the dynamic effects by considering the



rotor hub moment frequency response characteristics to d and a which



can be calculated from expressions previously given.



Figures 48 and A9 showthe frequency response characteristics of the rotor



hub moment to sinusoidal inputs in & and a . Since many factors
y g



contribute to these frequency response characteristics.it is difficult



to obtain simple analytical expressions for the transfer characteristics



G6f(s) and Gf(s). However, second order approximations can be developed
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so that,



G6 (s)= 2(0.20) 2


f s + (2)(0.46)(0.20) s + (0.20)2



(84) 

+ (0.20)2+ 0.37s0.76 s2G 0 (s) = 
 

f s + 2 (0.46)(0.20) s + (0:20)2



The agreement between these approximate transfer functions and the exact



ones are shown in Figure 50 indicating that a good match is obtained-by'



second order form up to a frequency of 0.1.



We can now use Toot locus techniques to examine the effect of rotor



dynamics on the short period motion.



First consider only the rate effect of the rotor written as



(M&R ~ 2 (0.20)2 ( 2



s + (2)(0.46)(0.20) s + (0.20)



(85) 

= (MP (M(s) 2 (0.46)(0.20))- (s +=ORR 2) 0.20)2'
s + (2)(0.46)(0.20) s + (0.20) 

So that the total pitch damping can be written as



Mb - (Me)R { 2 (s) (s + 2 (0.46)(0.20)) 2} 
s + (2)(0.46)(0.20) s + (0.20) 

M6 is the quasi-static damping. The characteristic equation may be 

written in root locus form as 

A (s) (s - Zw) (s + 0 .184)= 

is2 
I+(MO)R + 2 (0.46)(0.20) s + (0.20)
 
sp
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where A is the quasi-static short period motion.
sp 

The root locus shown in Figure 51 shows the effect of the gain (MO)R indicating 

that the dynamic response of the rotor force to pitch rate and consequently 

coupling between the rotor dynamics and the short period produces a loss 

in damping. 

If we now also include the influence of the rotor dynamics in the 

attitude derivative M6 , the characteristic equation can be expressed as 

R 

jA (s [(s + 0.184)(s - Zw) + 0.24 (s - 0.78) (M) 

2s+ 2 (0.46)(0.20) s + 0.20)2 

M0


This can be placed in root locus form with the ratio R constant and the



results of the influence of these terms on the short period are also shown
 


in Figure 51. Using values from Table IV gives the short period'dynamics



shown. The characteristic roots are now



s - 0.063 ± 0.088i



giving a damping ratio and a natural frequency



; = 0.58



2'p = 0.108 

Thus using this approximate model indicates a loss in short period damping



due to the coupling between the rotor modes and the body modes. The



approximate results also agree well with the complete dynamic model.



Unfortunately, the amount of algebra involved precluded finding



analytical expressions for these transfer functions representing the blade
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Given in Table III. V = 300 kts. 



dynamics. It can be seen that the natural frequency in the denominator



lies relatively close to the lower flap mode.



It then appears that the rotor dynamics should be included in



predicing the short period characteristics of this type of vehicle. It



is not clear at this time how the flap natural frequency V8 would influence



this conclusion. Other studies on helicopters have indicated that as the



flap frequency is increased it becomes important to include this coupling



between blade motion and fuselage notion.



It is further interesting to note that the trend of the two modes, 

the short period and the lower gimbal mode ( G - 1) are such that the 

coupling increases with airspeed. It can be seen from Figure 45 that 

the lower gimbal mode frequency decreases with airspeed and the short



period frequency increases with airspeed and thus there is more significant



coupling between these two modes as airspeed incrqases. This trend is



also supported by the increasing departure of the short period dynamics



predicted by the quasi-static model compared to the complete model as



shown in Figure 45.
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INFLUENCE OF FEEDBACK WITH FUSELAGE FREE



We now examine the influence of various feedbacks using the complete



or eighteen degree of freedom model.



First we consider the effect of body motion feeback such as might be



employed to improve the stability and control characteristics of the
 


aircraft. Figure 52 shows the influence of a combination of pitch rate



and pitch attitude feedback to the elevator on the dynamics. This feed


back of course improves the damping of the phugoid as shown in the figure



and also increases the short period damping and frequency. The only other



significant changes occur in the two wing bending modes, where as might be



expected,as the gain is increased, the frequencies are lowered and the
 


spanwise bending mode is destabilized. Infinite gain essentially corresponds



to the fuselage fixed case and so the trends with increasing gain are essentially



the reverse of those shown in Figure 46 with respect to freeing the fuselage.



As indicated in Figure 52 a large value of the feedback gain does produce



an instability.



Figures 53 through 59 show the influence of various wing motion feed


backs considered earlier for the complete system dynamics.



In general it may be noted that there is little change from the simpler.



model with fuselage fixed considered earlier, particularly for any reasonable



level of gain. Compare for example Figures-n with Figure 36. It can be



seen that there is very little change in the influence of wing motion feed


backs on the dynamics of the system whether the fuselage is free or fixed.
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CONCLUSIONS



Classical feedback techniques, combined with the introduction of complex



coordinates are valuable in providing insight into the factors influencing
 


the dynamic stability of this complex aeroelastic system.



Simplified or lower order dynamic models can be conveniently developed



using these techniques which provide qualitative insight into the important



parameters in the problem, however a large number of degrees of freedom
 


appear necessary for quantitative accuracy.



The essential features of the whirl flutter problem, for the range of



physical parameters studied are shown by considering the proprotor cyclic



flapping degrees of freedom coupled with wing torsion and spanwise bending.



The wing chordwise mode is primarily coupled to the collective rotor modes.



The complexity of the coupling effects is largely associated with the fact
 


that the uncoupled wing modes have natural frequencies near or below once



per revolution.



Single loop feedbacks of wing motion to cyclic pitch generally appear



to stabilize one particular wing mode while destabilizing another.



Adding fuselage degrees of freedom tends to raise the natural fre


quencies of the wing modes and to increase the damping of the wing span


wise mode while exerting little influence on the damping of the chordwise



mode. Including fuselage freedom has only a small influence on the effects



of wing motion feedback.



Relevant to the stability and control characteristics of the aircraft,



the flexible modes couple with the short period mode of the vehicle and
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influence the damping ratio of this mode. Use of the quasi-static assumption



for the flexible modes of the vehicle results in an overestimation of the



short period dimping and this coupling tends to increase with flight speed.
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APPENDIX I



BASIC THEORY FOR PROPROTOR DYNAMICS IN HIGH INFLOW



1.1 Introduction



In this Appendixwe will develop linearized equations of motion for a



proprotor and its support in axial flow at high inflow ratio, employing a



relatively simple analytical model. Although the derivation of these equa


tions of motiofn is shown in detail in Ref. 1, it is briefly



recapitulated in this Appendix to show the basic analytical approach and



also for use in the main body of the report for a study of the fundamental



dynamics of the proprotor in high -inflow. The derivation of the more



elaborate model including aircraft longitudinal dynamics is given in Refr



erences 2 and 13.



The analytical model employed here consists of a proprotor with three



blades and the rotor support which is either a pivotted pylon or a canti


levered elastic wing. We consider pure out-of-plane ("flap") and pure in


plane ("lag") motion for each blade which is represented by the deflection



of the blade spar with no torque offset, no droop, and no sweep, retaining



only lowest modes of their motion. The rotor support motion comprises pylon



pitch and yaw motion degrees of freedom for the isotropic pylon, and elastic



bending (in spanwise and chordwise) and torsion motion degrees of freedom



for the cantilevered wing with only their lowest modes retained. - . 

For a typical proprotor aircraft operation in airplane cruise mode, the



rotor induced velocity is negligibly small compared with the forward velocity



even for the powered flight, owing to the high inflow and low thrust required



(the ratio of the rotor thrust in airplane cruise to that in hover is inverse


ly proportional to the aircraft lift-drag ratio). If simple momentum



theory is applied to estimate the ratio of the rotor induced velocity


to the forward velocity, it is approximated for high inflow as V/V = Cr/(2v 2)



which is typically of order 0.001. When we consider a proprotor in autorota


tion where the rotor torque is zero, the rotor produces a negative thrust,



however, its magnitude is much smaller than that for the powered flight, which



then makes it more valid to neglect the rotor induced velocity in high inflow.



From the proprotor dynamics point of view it appears that there is no



signifibant difference between the powered flight and the autorotation, and



since the latter provides a more simplified treatment we assume an autorota
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ting proprotor in axial flow at high inflow ratio in the following, and



consequently the rotor induced velocity is neglected.



1.2 Rotor Equations of Motion



Rotating Frame



Consider a model of a proprotor on its support as shown in Fig. I.I. 


When the rotor support is in motion represented by linear displacements of 


the pivot and angular displacements about it (both assumed small) as defined 


in the figure, the equations of motion of the flap and lag motion (also assumed 


small) for the M-th blade at azimuth position I= Pm' as is illustrated in 

Fig. 1.2, can then be written in dimensionless form as follows (in the rotat

ing frame)



a, M 

Flap: _T'~tB + v28 1 + I*' {-(a -2a ) cos 7P + (a + 2at ) sin ipI+ S* z = ySmM a m a y x n aX y n B P ac



Lag: IM{c + V 2 c + S" {(x +hct) sin* - (y-ha cos -iLT'=
 

..(1.1)



where



i. 2 dr -d/I S*--r/ 


f TI Mb / Yb =-b TIC RdaeR _bfn/ r 

Ib I_b /I R2 = f rO b dr y p[c ) 4 Ib



( ) d( )/d(flt) , ( ) d2( )/d(Qt)2 

r blade radial position, normalized by R



mb blade section mass per unit dimensionless length



v : blade flap rotating natural frequency, normalized by 0



I It"C " lag 

) :flap mode shape, normalized to 1 at the blade tip (r = 1)



"

S:lag " I 

MF : aerodynamic flap moment on the blade, normalized by pfl2R5 

M4L :"lag " 1 " 

Y, ZP, h and c are normalized by R
xi 
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and the Coriolis inertia coupling of the flap and lag motion is ignored, since



it is of order YCjTaa and negligible compared with the aerodynamic coupling



terms of the flap and lag motion which are of order 1 as will be shown later



(yM. & YQ). In conjunction with this, the influence of the blade precone is 

also neglected. The influence of the blade precone becomes important if the 

blade pitch motion~dynamics, specifically due to the blade pitch control system 

flexibility, is considered; however, its first order effect can be examined by 

introducing the "pitch-lag coupling parateter" which is an approximate treatment 

for a relatively stiff control system. 

Nonrotating Frame



When the number of the blades is equal to or greater than 3, i.e., N > 3,



it is possible to transform the motion variables described in the rotating frame



to those in the nonrotating frame by applying the Fourier type coordinate trans


formation or'the "Mulitiblade Coordinate Transformation" (Ref. 1) whose advantage



lies in the simplification it provides in the equations of motion.



As to the flapping motion, for example, the new degrees of freedom iih the



nonrotating frame are defined as follows:



m - i 

(1.2) 

n 2 sin n* N1 Y ON/2m(-l)m (only for N even) 

With these new degrees of freedom, Bm can be given as



0 nosn M+nsin n + 0 1 (l)m (1.3) 

where the last term On the right hand side appears only if N is even, and the 

summation is from n = 1 to n = (N - 1)/2 for N odd and to n= (N - 2)12 

for N even. 

The relations for the lag motion degrees of freedom are also found in a like



manner. 

In the present case where N = 3 is assumed, the new degrees of freedom for



the flap and lag motion in the nonrotating frame are the following:
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Flap : 0 : collective flap or coning



a1c : cyclic flap or longitudinal tip path plane tilt



ais t"lateral



Lag: : collective lag



Ic : cyclic lag



with which am and Cm are given as


S= ao + 8cCs lsinik
1co + 

Cm = o + ic s c
 + CiSsin ijM
 

Now we will convert the equations (1.1) to those in the nonrotating



frame. Consider the flap equation. From Eqn. (1.4.1) the time derivatives



(with respect to the dimensionless time, Qt) of B are as follows:



++(Bl +8 l) Cos PM+ (B I-Ba1 ) sin 
(1.5) 

80 + 1 - cos + (Bls i2 B1 )sin 1+( + 2 1 $1 ) 


Substituting Eqns. (1.4.1) and (1.5) into-the flap equation in (1.1) and

1 2 Y(...)...)sind



applying the operations N N (...)cos m and n 
 

to the resulting equation with following relations:



sin S 
 sin nco7


in F x Nnvos% cos -


M in m (1.6) 


=
N2 X .2 2 1cos2 i= = 2751'os'rn i ,in rn-iNT 
M Ma 


we obtain the flap equation of motion in the nonrotating frame as follows:
 


o -V+ 2 
 + So z MFo
Coning: -T 

Cyclic 
CI* {[aB+1)0i+ +I2 C- a + 

S. 

2a ) - 1(.71 
a 1c+ 2 Is+ Qu2 Ba y x a 

Flap :A



2
172{1 c+ (V2
 1+7 Ba( +'1)2a;) FlIs Ic 
 14
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where



~ N osii , f~1 . ~ . si 
=m-N fly d ' -- !IM oIm''l =N 

(1.8.1) 

The subscript 6 added to the inertia constants and to the (rotating)natural 

frequency in the'coning equation reflects that the different mode shape and 

natural frequency might be used, according to how the blade root is restrained; 

That is, if the blade is cantilevered at its root to the hub which is fixed



to the rotor shaft, then the coning mode and the cyclic flap mode are both the



elastic bending mode, hence, there is no difference in the mode shapes and



natural frequencies to be used. However, for the gimballed rotor the cyclic



flap mode is almost equal to that of an articulated blade which is hinged at



the center of rotation, i.e., rigid body mode (n = r), whereas the coning



mode is still an elastic bending mode. In such a case the appropriate mode



shapes and natural frequencies to describe each motion properly might be



different.



In a similar manner the lag equations of -motion in the nonrotating frame



may be given as follows:



MLO 
Collective Lag: if ( + v 2 r) a I=Co 0 Co 0 tot z ac 

It 2 {~,+ C,+.S o1(1.7.2) 
+
Cyclic I* 2 +is.( + S (-'P + h *o) y Lie 

C I1C cP X ac


Lag: M3



+I2 { ( - 1) } + S * ( 4 +h ) Y l 
CCis li sp Y 

where



M - ELI M cos , M E 2 4L sin (I..2)
L N m L m Li N



Again the subscript o added to the inertia constants and to the (rotating) 

natural frequency in the collective lag equation indicates that the different 

mode shape and natural frequency might be used. For an autorotating rotor, 

rigid body mode shape (n. = r) is used for which I* =.I*o = 1 and v = 0, 
CO Coa CO 

and now 40 represents the rotor shaft rotational velocity perturbation (with



reapect to the rotor support). If there is no shaft speed perturbation



considered (i.e., perfect rotor rpm governor is assumed) then the mode shape



and the natural frequency in the collective lag equation of motion are same
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as those in the cyclic lag equations of motion.



Aerodynamic Flap and Lag Moments



Now we will find the expressionsfor the aerodynamic forcing terms on the



right hand sides of Eqns. (1.7). By making use of the quasi-steady aerodynamics



and applying the strip theory with the tip loss neglected, the dimensionless



aerodynamic flap and lag moments on the blade are given as



MA f= n0 F dr' M fn F dr



where Fz and F are the dimensionless section forces resolved into the hub plane,



and they are related to the section lift and drag (also dimensionless) as



L uT- D up LuP + Du T
F = PP2 F' 
 
z U ' X U



where



I c U2 C 2 2 U2=U + U


2 cd T P



(cf. Fig. 1.3).



In the following evaluation we will use the rigid body mode.shape for



71 and ni , since the most significant aerodynamic loading occurs near the



blade tip where the mode shape is very mich like that of the rigid body mode.-'



Therefore, from the relations given in the above, we have



14%7P 1 c 
i Cd
 

ac fr dr =jfl u . - ) dr



MI2 IFP2: C (1.9)



+
f r- r = fl r U (up 2 U 2 
) dr 

ac 0 ac 0 

where the blade chord is assumed constant over the blade span.



In the trim condition where the rotor is operating in axial flow, the



velocity components and the angle-of-attack at the section r, are given as



2
uT = r up = V v = V U= r + V2 ,



(1.10)


a = 0- = 6-tan- (V/) 
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for which the moment coefficients in Eqns. (1.9) become



M 1 _ C_ Cd 
Cd

P-) t -M M0 = o0r ir2+ V2 (r 2 V- 2 a 

ML I C Cdo (. 
= 2 + V2= for.r (V 2a + V - ) dr 

cc@trilm - o 2a2 

where Cto and Cdo are the section lift and drag coefficients at trim,



respectively.



Now consider small perturbations from the equilibrium. In order to
 


evaluate the variations of the aerodynamic flap and lag moments on the blade
 


for those perturbations, it is apparently necessary from Eqns. (1.9) to find



the variations, SU, 6uT, 6up, 6C&V and 6Cd' in terms of the motion variables
 


and in the control and gust inputs.



First, recalling that a rigid body mode shape is assumed for 11 and n 

6uT and uP are written as follows: 

2U r 6uTA + (uTB ' u = r SuP + uFA (1.12)T 
 

where dT - -m

6TA &z m 

6 (-i &x+ Va+ P +V a) cos 7 

( aY + v aY - x + Va9 sin (1.13) 

3SuPB~saCos 
 &j + a sin '


inP x in 

6uPA -V 9 + p 

The variation, 6U, is obtained from the relation, U2 u2 + U2 , as



T' P



r 6UT + V 6Up
u= 2'P(1.14) 

2 V2
/ r + 

The blade section lift and drag coefficients may be considered as



functions of the angle-of-attack and Mach number at that section, hence,



SC1 = Cla +CZM SM , 6Cd = Cda6a + C, SM (1.15) 
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- -

where r U. - V 6uT 
Sc = 68 6 {tan-l(1pu)} = rd -d 

2 +r V2 (1.16)



6W = 	 M . 6U , where = 0R/a , as: speed of sound 
t-p 	 'tip a a 

It should be noted that from Eqns. (1.13), (1.14), (1.15) and (1.16) the



variations, SU, 6C and 6Cd can be eventually-expressed in terms of.thetvaria


tions, 6UTA 6UTB, 6UPB, SUPA, and 60. Therefore, the variational quantities



in the flap and lag moments on the-blade may be expanded as follows:



6{- } - M au +M 6U +M 6u +MA + M SO
ac11 TB TA A PA PB 8 

(1.17)


}6 {ac- I =_Qd6UTB + QSUNA+ QA&UPA + Qi SuB + Q6 601 	 ( 

where the 'aerodynamic derivatives in the above expressions can be found by 

the integration-along the blade span of the integrands which comprise r, V, 

C C CC C C and Mt , as easily seen from the above. 
1o'0, CZMI Cdoj ia' LLd tsp



However, the most important and dominant term in each derivative comes from



the section lift change due to the angle-of-attack change, hence, we retain



only C term in the evaluation of each derivative, using the relation



C, / 2a = 1/2, although it is a function of the Mach number.



Thus, the variations of the aerodynamic flap and lag moments may be



written as follows:



6= f'r/r2+1rV2 r stdr 
ac o 2a 

fl r2vr2+ V2 I r 	 (r 6u + Sup 
2 + V2
0tr/r~~ 2 r	 PB UA) 

+ 	 (r 6u + 6UTB) } dr 
2 + V2 

r 
f2o rV drj &A 

2 V2
S0 r d UTB+2J- VA 

+ f 
2 dry &UpA + 2If'2 fo r	 + V2 dr}IUIT+ r2 + V2 

+ fl r2/r2 + V2 dr}60 	 (1.18.1) 
210
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and similarly,



6{1P-1L =J r Vr 2 +V2 V- Ct6ad
S02a



- 2 i r dr} 6uB + { f r2 drl 
S fO/r 2 + v2 T+2 0 V2 

V fI - r2 dr} Su..A + f--Y fo r+L3 I UP 
0 2 + vVr2 

r2+ V2PB



V2
+{ f"Ir r 2 + dr} 60 (1.18.2)
2 a -

Comparing Eqns. (1.17) and (1.18), the derivatives are identified as



1J = V f2 QP V2 f
2



Ml. V f3 Qa 
 .V 2 f
 

M-- f3  V f 2
X (1.19)
 

S--4 
 Q -V 
 f3


* a g2 QO V g1 

where



n
S n 1 f r 
f- 2fo r2 + V2 d



(1.20)



If we use the inflow angle at the effective radius position for the



evaluation of the integrals involved in the rotor aerodynamic derivatives,



then the following expressions result:



Alp = (sin e )/6 Q = ( Vsin #e)/4 

M-l= (sin )/8 Q = CVsin e)/6 

MX = (Cos e)/6 
 QX 
= - (sin e)/6 (1.21) 
=- (cos e)/8 % = - (sin €e)18 

)
S 1/(8cos ) = V/(6 cos e
 

where



+ V 2
 
cos er /is-r2+V2 , n/r2 

e 
 s
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and r is usually taken as 3/4.



Since the trim values of the aerodynamic flap and lag moments and their
 


variations from the trim values, as are given in Eqns. (1.11) and (1.17),



respectively, are derived in the rotating frame, we will convert them to those



in the nonrotating frame, again applying the Fourier type coordinate trans


formation. Noting that the trim values, M0 and Q0, and the derivatives, M s, 

and Q( )ts, are all constants and independent of the -blade azimuth position 

(this is owing to the axial flow assumed in the trim condition), we need the


transformed expressions only for 6u SuA 6u 6u and 6e. Using rela-

ITB' dTA' 62A, PB, 

tions given in Eqns. (1.6), (1.5.1) for 0M, and a similar relationship for Z,



we obtain the following expressions from Eqns. (1.13):



0 1 
0(...)cosXC.. Pm % (...)sin 

OS O N M NMN 

+6uTB 0 -h&X VaX+ y p +V - h&y+ Va -x p+ Vag 

aUA- a0- ZIC - -l 
 l + ;1 

6u Vu + 0 0
PA *.g p 

(1.22)



For 60 we define the following:(



80 =-N m 6 : collective pitch



6l = m1 66 cos ON : lateral cyclic pitch (1.23) 

e 1 60 sin 'P : longitudinal cyclic pitch 
is N in 

Therefore, the aerodynamic flap and lag moments in the nonrotating frame



which have appeared on the right hand sides of Eqn. (1.7) are written in



terms of the motion variables and the control and gust inputs as follows:
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a-c 

Fo



Ypic yM (-h +Va + + v )+ yM (- 1 c C18 ) 

+ yM;( + 0js - a) + yveefo 

= YMP (-ha ++VC, p+ V q) +Y4( Zis++Ci) 

t

 "YMA + &X) 1e +ac r Qot61s Qn+yO Bi' EC%-+(.7)+an+ -Yv 6lc(V Ug+ I + o ld ere 

"Lie


eapca yQ -h& +a +yp +ont)+yQ -mic is)



+YQ.(91 -a)C + yQ0 

(1.24)



Thus the rotor flap and lag equations of notion are now fully described



in the nonrotating frame by Eqns. (1.7) and (1.24). It should be noted here



that these linear equations have only constant coefficients as a result of



the application of the Fourier type coordinate transformation, which is made



possible by the assumptions on the number of blades (N 3) and the rotor
 


operating condition in equilibrium (axial flow).



1.3 Rotor Hub Forces and Moments



Before developing the equations of motion for the rotor support, we will
 


derive the expressions for the rotor hub forces and moments in the nonrotating



frame which will appear as forcing terms in the support equations.



Hub Pitch and Yaw Moments



The rotor hub pitch and yaw moments originate from the bending moment at



the blade root due to the flapping motion, and with the nonrotating frame



degrees of freedom they can be written in dimensionless form (normalized by



N 1 &1 as 
 follows:
2 ) 
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!Sy = - 1* 02 -j p)ac 1 

(1.25)
2Cy 
 

where a _= N(cR)R /7rR2 = Nc /,T. 

Torque, Thrust, H Force and Y Force



The rotor torque, thrust, H force, and Y force transmitted to the rotor



hub comprise inertia and aerodynamic contributions.



First, the inertia contributions to these forces and moment are given



in coefficient form as follows:



CQ1 
-a-a- }in 0oa 0=-*A .C + a 

2'


2CH *(.26) 

2C2C i = - S* ""s - 2W ( + 

= s~ 2td~(U - h"1 b p X 

where M -b mb d / 

The aerodynamic contributions are written as



{ac- aero Y N ac 

- T-f dr }
aa aero F 0 ac 

(1.27)
2CH 2 1 F 
ac{ aero " n"{ et" r}sin C'Y~ ~ I-) - NX f .... Sdr IsiniP. 

2Cx 1 F
Saero { f x drI cosp' 0 ac 

C 

where F and P are the dimensionless section aerodynamic forces in the



hub plane already introduced before. The expression for the torque above is,



same as given in Eqn. (1.24.4), i.e.,



C 
 .
+ ) +X{-a - aer : Q YQZ (az - o -YQX (V Ug+ z ) +YQA 0o + 
YO 6oY{ a aero ) +-% (V9 + 0 + & 

(128.1) 
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For the evaluation of the forces in Eqns. (1.27) we will take a similar



approach as we did in the derivation of the aerodynamic flap and lag moments.



That is, expanding the integrals as



zf- T + T SuTB + T. 6uTA + T6UPA + T' . + T S8 
0o ac 
 0 11SPB 
 E 

f II -Facdr HH° + H U6U T 
+ R .6uTA + H 6v pA + F - 6u p + H 8 ' (1.29

0c0 11 TB C A A PA 0 EB (129 

and applying the operations of the Fouriertype coordinate transformation, we



obtain the following:



CT


1 
 yT + Y- ++ +
 -%62!Yo ae) = (s '() +YA VsyT 

2Cy


= (-h + VC + Va ) + yH(- i +-C ) 

wher afr v/r22 +g2 y C
 C 
 is
5 IsF ic 2x 2al 

aro - 0 yR 
(1.28.2,3,&4)

+h- el+ V 2° } dr0 2Ra 

+ jr-  --- d (1.30)
1r2 +V 2 fClO C 

02a 2a 

and the derivatives are found as



TP= V fl V



T= V f2 H - V2 fo 

TX 2-X Vf (1.31)


T;~ - 3 
 1f
To _91 He V 90 

where fn's and gn's are already defined by Eqns. (1.20). The integrals



required for the evaluation of the aerodynamic derivatives in Eqns. (1.19)
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and (1.31) are given as follows:



= 1 1+VI+ V2

fo 7.n V 
2 V2



=
f 22


= 1 { 1 + V2 ( 1 - 2 V2)-+ 2 V3}


1V 2 (2-3 V) V (1.32) 
f4 16 8 

g0= 4 /1+ V2 + 2 V2f 0o



= 1{(V' I + V2)3  V3 I
6



g= V + V2 (2 + V2) - V



Again,if the effective radius is used for the evaluation of the integrals,



then the following expressions result:



T = (sin e)/4 HI = (V sin a)/2 

T. = (sin 4e)/6 H = (Vsin A)/4 

TX =- (cos e)/4 HX = - (sin 0,)/4 (1.33) 

TA = - (cos 0e)/6 H = - (sin e)/6 

Te i/0 Cos H = V/(4 cos 4)
e 
 

Thus, combining the inertia and aerodynamic contributions, we have



aa = + We & 0) + YQX(VU +z;)



ayQ0 0 0~O



" 0T+ yQ8 O -D c* M z



2'
R


80+ a% 80a 0 b p



2yC - 'yR (ha 
 + Vt -x + Va)+ yH. (-C 
 +c


aa P y y p qis )


* 
 +yH ( - a1c + + e is c-S a 

(1.34.1, 2, & 3)
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20O

=Y -_ (-h + Vc + + Vo) - yH.(-~

au x x p gc C) 

-tRHA(8ic+ i5 -&) - yBe 0 01 + %Zjc-1 2 MS C h~a*~ 

(1.34.4) 

1.4 Equations of Motion for Proprotor and Pivoted Pylon Support



Support Equations of Motion



For the piiroted -pylon support we consider only its pitch and yaw motion



about the pivot. The pylon pitch and yaw equations of motion are written in



dimensionless farm as follows (normalized by E Ib12): 

-Pitch: T* * + C0 + K = y + h y
py y y y y y aoa 

2C (1.35)2CM0 
Yaw: +C* + ao - h y

px x .z x x x aau 

where I* pylon pitch moment of inertia about the pivot, normalized by -
Tb



Py2



,. yaw ,,
pX



,, pitch damping, normalized by N 1. 

C4 - yaw 

2

K* : , pitch spring constant, normalized by 1I



Y 2 b 

K,, yaw 

and the forcing terms on the right hand sides above are given in Eqns. (1.25)



and (1.34) with x , yP, z and aZ degrees of freedom dropped. It should be



noted again that the coefficients of the support equations are all constant.



Combined Equations of Motion



Dropping xP, yP , z and az degrees of freedom also in the rotor equations



of motion (Eqns. (1.7) & (1.24)), we obtain the combined equations of motion



for a model considered here in operational form as follows:



0 B 0
A11  A12  
 

l 02111 
-- ------- 4----------

A21  A22 0 B2 (1.36) 

4------ -- (-.36)-- -21 I I 
I ! 

-- 33 B.32
1583
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------- - -- - --------- ------

where 	 Oic


ls 	 l 

c Ols 

x cla- (1 

x 	 0 
a 	 0 

80 	 u o 	 g 
CO



-y* 0 2 -M s 

All - I 	 I 

ATs = 2 (_2 1)- i 
- s + * ( 	 I 

I 	 I-	 s . s IA +-a-__-+ 	 I 
-yQ~~s 	 +t + Qs*v1 

YY A 	 s - W I + _ Q ._ 1sv 

(1.37.1) 

ai - hvl~ IH --'nyu.+ h yH. 8 	 h -yH s 
A 	 _B

21 	 - S* h - * 	 8 8 ) +S hs 
-hyHs -h 	 yP1H
j 

+hyfAI+sh 	 yH.
(1.37.2) 

+-2 lh 2 + - s (M + - ,I 

A -- ------ 2 "--
J12 	 yQM s S* h s -+hyQM s V Q 

---------- = ~ ------------------A~~~~~~~~ 
S2 h s - V y 	 S2+h +yQ YQA s 

(1.37.3)


2
Ab*
I+2 
 

+ ( C* + h 2 yH) S 	 - h yH sy 

+ K* -hV yH 

A ---------------

22 	 - Mb



h yH6.s + ( C* + h2 yH ) s

5' 	 x



+ K* - hV yH
x p1



(1.37.4)
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- - --- - - - - - - -

I*s2 yM'sa +IT v2



80 a08 aoYMIZ 

AA33I
 ------------------ --------------- -- I3 
2
- YI 2 + yQ. s + v 

(1.37.5)



yMe 0 0 V yM 

0 YHO V T14 o 

B 1 2 

-rQ 1 0 10 V YQ 

0 o o a 0 

(1.37.6)


{-0 h yH hVyH 0


21 hyRT --- 21t Ip -7 -- J- - }



(1.37.7) 

B32  (1.37.8)
[ 

In the collective flap and lag equations above, 1/O and Qo terms are omitted,



since they only affect the trim values of 80 and 0, respectively. It should be



noted that the collective flap and lag motion does not couple with the pylon motion



for the present model, and that the final set of equations of motion has only



constant coefficients.



1.5 Equations of Motion for Proprotor and Cantilevered Elastic Wing Support



Support Equations of Motion



Consider an elastic wing which is cantilevered at its root to a certain



fixed support (Fig. 1.4). We assume for simplicity that the wing is rectangular



and has no sweep, no dihedral, and no incidence, and that its motion is repre


sented by the elastic bending and torsion of the wing elastic axis. Retaining



only lowest motion modes, they are expressed as



zw = O q 1. = ,w q2 ' 0W = p 
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where zW : wing vertical displacement



x : chordwise "



6W : " torsion 
 " 

:W " bending mode shape, normalized to yiTR at the wing tip 

" 
W : torsion it , I 

ql : spanwise bending degree of freedom, positive upward 

q2 " chordwise , rearward 

p torsion degree of freedom, positive leading edge up 

If it is further assumed that the" pylon is rigidly ttached to the wing



tip such that the pivot is located at the wing tip elastic axis, then the pivot



linear and angular displacements are expressed in terms of the wing motion as



follows:



xp = ZIGq "Y = 0 ,zp = - Ywq
q1 Y 0 Z q 2(1.38) 

a = 1 a =p a, 71

where nT is the slope of the bending mode shape at the wing tip, and the



rotor rotational direction is assumed clockwise on the right wing.



The wing equations of motion may be written in dimensionless form as



follows (normalized by E 122 :
)



+ * * +K* q +S*p =M* + VA q w qlw.aero qlrotor



Cr4, + -T f -+ * q 2 q 2 + K q =* + M (1.39)STW p 2 q2 q2 2 q2w.aero q2rotor



+I*)p + C* =34*
+2 +JC*p + St + APw py p p I p w.aero p rotor 

R
where I* _ tW 2 N Iy TOR 
200n,, h Y 7b 0t W W 2 

m-- N--

M*M Y2 -1 S* Y ZPp2b PEA 2 b 

C5'* :wing spanwise beding damping, normalized by



CA chordwise
q2



C* " torsion damping ,



P 
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wing spanwise bending spring constant, normalized by E _TN2



K* : " chordwise " " 
q

2



K " torsion spring constant 
P 

mW " section mass per unit spanwise length 

- " moment of inertia about EA per unit spanwise length 

m : pylon mass



The wing aerodynamic terms on the right hand sides in the above equations



may be found as



q,~eoqq1 ql P + yqlp P+yqag 
(1.40)



*- -"2waero M* YCpp 
Ap w.YaeroCP2 
 

= 3 

where C. - Va , C. = d Va - e 
qlql 13 w2 qlp 12 w 4 .4 

Cqp d12 Vw e4 qq a 12 Va 1 
C. =- - 1 

a : wing 3-dimensional lift curve slope 

d - (C yW/ (zrca) 

y~wR 1



e - fyto R TdYw / ( R) 2 5



2e4 y R dy / (Y ) = 

o ~ 0 IP 3 

where the integralA above are evaluated by using the approximated mode shapes


forn and C ,i.e., 2 / (y a2 
 

The rotor force and moment contributions are written as follows:
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------ - ------ - -------

CQ 2 CH 


qMrotor = 22n +a 


2 CMX 2Cy CT

t 
 - - n~ { C - hyy2 -} yw y - (1.41)q2 rotor nAO ' aa ao 	 aay 

2C 	 2CH


M* -- MY + hy
p rotor aa 	 ao



where the rotor hub forces and moments are found in Eqns. (1.25) and (1.34)



with the relations given in Eqns. (1.38) substituted. Again it should be noted



that the support equations have only constant coefficients.



Combined Equations of Motion



Using relations given in Eqns. (1.38), we obtain from Eqns. (1.7), (1.24)



(1.34), (1.39), (1.40), & (1.41) the combined equations of motion for the prop


rotor and the cantilevered elastic wing support in operational form as follows:
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where 	 All is same as given in Eqn. (1.37.1) 

A33 " (1.37.5) 

B1 1 " (1.37.6) 

B32 (1.37.8) 
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Again it should be mentioned that the final set of the equations of motion for



the present model has only constant coefficients.



1.6 Summary



In this Appendix we have developed linearized equations of motion for a



simple analytical model of a proprotor and its support in axial flow at high



inflow ratio. First, rotor blade flap and lag equations of motion which are



described in the rotating frame are Fourier type coordinate transformed to
 


those in the nonrotating frame by introducing new motion degrees of freedom



in that frame. The expressions for the aerodynamic flap and lag moments in


voleved in these equations are also obtained in the nonrotating frame. Then,



rotor hub forces and moments are found in the nonrotating frame, and using



these hub forces and moments, rotor support equations of motion are presented



for two support models, i.e., for a pivotted pylon support and for a canti


levered elastic wing support. Finally, the rotor and support equations of



m6tion are combined to give a set of linear, second order ordinary differential
 


equationswith constant coefficients, thus, standard techniques can be applied



to examine the dynamics of the system,



It should be mentioned here that we have not considered any coupling bet


ween pitch and flap or lag in the above. This is because their influences can



be conveniently dealt with by using conventional feedback techniques.
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Fig. 1.1 
 A Model of Proprotor on Its Support: Definition of Hub


Forces and Moments, Pylon Linear and Angular Displacements,


and Gust Velocities; 
 Only m-th Blade is shown.
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Fig. 1.4 A Model of Cantilevered Elastic Wing As A Proprotor Support
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Figure 1.5. XV-15 Aircraft General Arrangement
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