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1.0 	 EXECUTIVE SUMMARY
 

1.1 	 Purpose of Effort and Degree of Performance 

The overall objectives of the work have been to evaluate the 

Inertial Upper Stage (IUS) and DOD Communication Interface Unit (CIU) 

communication system design, hardware specifications, and interfaces to 

determine their compatibility with the Orbiter payload communication and 

data handling equipment and the Orbiter network communication equipment. 

Some of the principal accomplishments made by Axiomatix under this con­

tract have been:
 

(1) Algorithm developed for conversion of SGLS (Space-Ground
 

Link System) requires 2 or 4 kbps command data to 128 kbps for Ku-band
 

forward link.
 

(2) Orbiter avionics/CIU interface compatibility analysis found
 

problems in Multiplexer/Demultiplexer (MDM) interfaces.
 

(3) Payload Interrogator (PI)/IUS SGLS transponder compatibility
 

analysis found interface problems in transponder acquisition and frequency
 

instability requirements in both IUS and PI frequency sources.
 

(4) Orbiter/IUS RF range analysis established the optimum choices
 

for PI receiver sensitivity and PI transmitter power output selection as
 

a function of range.
 

(5) ESTL/IUS test requirements.
 

(6) Recommendations for "workarounds" for failures of nonredun­

dant equipment.
 

The contract Statement of Work identifies the following specific
 

tasks that were to be performed:
 

Task #1, IUS/Orbiter Communication Interface Definition
 

Task #2, Redundancy Evaluation
 

Task #3, IUS RF Coverage
 

Task #4, ESTL Test Requirements
 

Task #5, Link Budgets for IUS/PI/CIU Communication Links.
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During the contract period (March 1978 through June 1979), the IUS, CIU,
 

and Orbiter communication equipment concepts and implementations developed
 

significantly. Therefore, the majority of the effort was directed toward
 

Task #1 and the results of this task represent the majority of this Final
 

Report. Task #5 was added the last month of the contract. While Task #5
 

was not originally in the contract, the results obtained under this task
 

will greatly expedite, the development of operational scenarios for the IUS
 

and Orbiter.
 

1.2 General Approach to the Activity
 

Development of the IUS, CIU and Orbiter payload communication
 

equipment was a new activity beginning in CY78. The general approach has
 

been to work with the cognizant NASA personnel, USAF SAMSO personnel, Aero­

space Corporation personnel, and individuals at the IUS prime contractor
 

(Boeing Aerospace Company), the Orbiter prime contractor (Rockwell Int'l)
 

and the IUS, CIU and Orbiter payload communication equipment subcontractor
 

(TRW Defense and Space Group) to ascertain directions taken. A vital part
 

of this activity has involved Axiomatix attendance and participation in
 

design reviews (conceptual, preliminary and critical) as well as special
 

interface meetings. These latter gatherings usually involved detailed
 

discussions of interface issues between the IUS and Orbiter communication
 

systems that surfaced at the design reviews. During the performance of
 

the FY78 effort, Axiomatix provided technical support to the CIU Concep­

tual Design Review, the IUS SGLS Transponder Preliminary Design Review
 

(PDR), the CTU PDR, and the IUS SGLS Critical Design Review (CDR), as
 

shown in Figure 1. Also shown in Figure 1 is a schedule for future
 

design reviews that Axiomatix plans to support.
 

The work performed under the subject contract was strongly inter­

related to parallel efforts. Contract NAS 9-15514A, "Shuttle Orbiter
 

S-Band Communication Equipment Design Evaluation," provided support to
 

critique the design and assess the performance of the individual NASA
 

Orbiter S-band communication equipment (excluding the DOD CIU). Contract
 

NAS 9-15240D, "Shuttle Payload S-Band Communications Study," forms the
 

system framework which ties together the various payload-related equipment
 

(excluding the IUS and CIU). Under Contract NAS 9-15604B, a handbook,
 

"Users' Handbook for Payload-Shuttle Data Communication," was provided.
 



FY 78 FY79 FY 80 FY 81 
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CIU Conceptual Design Review 

IUS SGLS Transponder PDR 

CIU PDR 

IUS SGLS Transponder CDR 
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CIU CDR 

IUS SGLS Transponder Test Eval. L 

CIU Test Evaluation Z 

IUS TDRS Transponder CDR 

IUS TDRS Transponder Test Eval 

Summary Reports Due Z 

Figure 1. Orbiter/IUS Communication Interface Evaluation Schedule
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Also, the report, "Guidelines for Choosing and Evaluating Payload
 
Frequencies," produced under Contract NAS 9-15604A, was related to this
 

effort.
 

1.3 Contents of the Final Report
 

There are five sections which address various aspects and details
 

of the work.
 

Section 3.0 contains functional descriptions of the various Orbiter
 
communication/avionic equipment and IUS communication equipment. Included
 
in this section are the details of the IUS/Orbiter communication/avionic
 

interface issues.
 

Section 4.0 addresses the IUS/Orbiter communication redundancy
 
and illustrates the areas of single-point failures. The system performance
 

of nonredundant failures is evaluated and possible "workarounds" are
 

recommended.
 
In Section 5.0, the RF coverage of the IUS/Orbiter antennas is
 

evaluated for a single and tandem IUS in the payload bay for IUS station­
keeping, and for an IUS at maximum range. Included in this section are the
 
protection requirements for the IUS and Orbiter antennas at close proxim­
ity, the PI receiver sensitivity requirements versus range, and the PI RF
 

power output requirements versus range.
 

The ESTL (Electronic System Test Laboratory) test requirements
 

are presented in Section 6.0.
 
Finally, in Section 7.0, the link budgets for the IUS/PI/CIU com­

munications are provided. From these link budgets, the PI receiver sensi­

tivity and transmitter power output selections can be optimized versus
 

range.
 

1.4 Principal Activities, Studies, Results and Assessments
 

The overall IUS/Orbiter communication system is still evolving.
 
Direct payload-interfacing avionic subsystems such as the PI, PSP, and CIU
 

are in their preliminary design stages only. Other hardware, such as the
 
S-band network communications and the Ku-band communication equipment, is
 

more fully developed but only the S-band network connunication equipment
 
is entering its performance verification testing phase. Thus, it will be
 
sometime before all developmental problems are solved, and reliable, well­

understood performance can be documented.
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In order to present the interface compatibility issues, Figure 2
 

illustrates the IUS/Orbiter subsystems and interfaces. The interfaces of
 

concern are those with the CIU by other Orbiter subsystems and those
 

between the SGLS transponder or the STDN/TDRS transponder in the IUS with
 

the PI when the IUS is deployed. The CIU interfaces with the following
 

Orbiter avionic subsystems:
 

(1) Payload MDM
 

(2) GN&C MDM
 

(3) PI
 

(4) Ku-Band Signal Processor (KuSP)
 

(5) FM Signal Processor (FMSP)
 

(6) Payload Data Interleaver (PDI)
 

(7) Payload Recorder (PR).
 

Table 1 summarizes the major interface issues inwhich Axiomatix had been
 

involved. The interface issues in Table 1 are addressed in terms of the
 

nature of the issue and the effort expended by all concerned (TRW, Boeing,
 

SAMSO, Aerospace, Rockwell, NASA and Axiomatix) toward its resolution.
 

Specifically, Axiomatix proposed the interface between the KuSP 128 kbps
 

data and the CIU requirement for 2 kbps command data. The design of the
 

interface involved trading off the ease of implementation in the CIU and
 

at the ground station versus bit error rate (BER). That is,the required
 

BER must be met but not by so much that the implementation is unduly com­

plicated. Axiomatix proposed the simple conversion of 64 Ku-band
 

128 kbps l's equal to a 2 kbps "I"and 64 Ku-band 128 kbps O's equal to a
 

2 kbps "0." The 1 ksps SGLS ternary command symbols are converted to
 

binary 2 kbps, where an "S" is equal to '01,' a "I" is equal to '11' and
 

a "0" is equal to '00.' In the CIU, the 64 symbols representing a "I"or
 

"0" is sampled by a 2 kHz clock. The improvement in BER by combining the
 

64 symbols using majority decision or error correcting coding was unneces­

sary in order to meet the required BER. The binary symbols are converted
 

by the CIU to the SGLS ternary symbols for transmission to the IUS.
 

Each interface between Orbiter avionic subsystems and the CIU and
 

IUS transponders (SGLS and STDN/TDRS) are defined by a Payload Interface
 

Control Document (ICD). Therefore, the Orbiter subsystem specification
 

and the ClU or IUS transponder specification should agree with the Payload
 

ICD. In order to investigate the compatibility between the interfaces,
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Figure 2. Inertial Upper Stage/Shuttle Orbiter Subsystems and Interfaces
 



Table 1. Major IUS/Orbiter Communication Interface Issues
 

Issue 	 Issue Nature 


Ku-Band 1. SGLS command data is 1 kbps 

128 kbps with ternary symbols. 

to 2 kbps 

command 2. Ku-band forward link is 

data binary data at 128 kbps. 


CIU/MDM 	 1. CIU has only an MDM serial 

Interface 	 interface and does not have the 


required input/output inter-

faces to implement the 

required handshake procedure. 


2. CIU buffer for the MDM command 

data is not large enough for a 

command and its complement to 

be held at the CIU in one MDM 

transfer. 


2. Interface 	inconsistencies 


between CIU specification and 

payload ICD.
 

Frequency 	 SGLS and STDN/TDRS transponder 

Stability 	 auxiliary oscillator stability 


may cause a frequency uncertainty 

that is larger than PI receiver
acquisition range. 


Effort Toward Resolution 


Define format that meets 

the required BER and is 

easy to implement. 

(Axiomatix) 


1. Axiomatix/NASA pointed 

out the MDM interface 

deficiency at a NASA/ 

SAMSO meeting on 8/15/78. 


2. RID-35 at CIU PDR. 

(Aerospace) 


3. Tables 8 and 9 compare 

the PSP and CIU speci-

fications with the Pay-


load ICD.(Axiomatix) 


1. Investigation of increas- 

ing the PI receiver acqu 

sition sweep range.(TRW) 


2. Analysis of aging & envi­
rbnmental changes to scil­

lator stability. (TRW)
 

Resolution
 

64 Ku-band 128 kbps l's are
 
equal to a 2 	kbps "I"
 
64 Ku-band 128 kbps O's are
 
equal to a 2 kbps "0"
 

01 = "S" I ksps
 
11 = "l"1 ksps
 
00 = "0" 1 ksps.
 

1. Resolved by ground command
 
input control or CIU con­
trol panel control by limi­
tation on the command rate
 
into the CIU and verifica­
tion of accepted commands
 
using the VCC word.
 

2. To be resolved by Boeing
 
at CIU CDR.
 

3. Comparison must be made
 
3. pron e ade
 

clu CDR.
 

In process. Need more data
 
on oscillator stability for
 
TRW
 



Table 1. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue 	 Issue Nature 


Phase Noise 1. Phase noise requirements of Pl. 

and Commun-

ications 2. Phase noise requirements of 

Turn-around SGLS & STDN/TDRS transponder. 

Character-

istics 3. 	Effects of turn-around phase 


noise. 


False 1. PI receiver false lock avoid-

Acquisition ance with respect to SGLS and 

Suscepti- STDN modulations. 

bility 2. SGLS receiver false lock dis-


crimination with respect to 

SGLS command modulation from 

the PI transmitter. 


3. STDN/TDRS receiver false lock 

T asect 


discrimination with respect to 

3.STscriminatio re lo 


STDN command modulation from 


the PI transmitter. 


Effort Toward Resolution 


1. PI phase noise character-

istics need to be known. 


2. 	SGLS transponder phase
 
noise analysis as part of
 
SGLS CDR Data Package
 
shows that the performance
 
is less than 3.50 rms except
 
during vibration, where the
 
phase noise is less than
 
11.50 rms. (TRW)
 

3. Analysis to predict perfor­
mance has been developed,
 
but needs phase noise
 
characteristics. (Axiomatix)
 

1. Analysis of PI susceptibil-

ity to SGLS & STDN modula-

tions, analysis of strong 

signal phase demodulation 


discriminator and survey of 

anti-false lock methods. 

(Axiomatix & TRW) 


2. Analysis of discriminator-

aided phase-lock loop and 

discriminator lock detector 

for SGLS command modulation
 

from the P1 transmitter. (TRW) 


3. Analysis of discriminator 

lock detector for STDN com-

mand modulation from the PI 

transmitter, (TRW)
 

Resolution
 

Assessment awaits PI
 
phase noise data. (TRW)
 

1. In process. Protec­
tion methods still
 
under review.
 

2. In process. 	 Discrim­

inator may lock up to
 
"S"tone during below
 
threshold signal lev­
els and remain locked
 
at 	nominal signal
 
levels.
 

3. In process. 	 Discrim­
inator may lock 	to CO
 
data sidebands during
 
reacquisition at
 
strong signal levels.
 



Table I. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue Issue Nature 


PI Input Exact requirement of Rockwell 

Sensitivity specification on three receiver 

Ranges sensitivity levels needs further 


definition. 


PI Received 1. Undetermined PI receiver per-

Carrier formance for payload subcarrier 

Modulation modulation index larger than 

Limits 1 radian. 


2. Undetermined PI receiver per-

formance with two or more
 
payload subcarriers.
 

PI Inter- Rockwell specification that the 

ference PI receiver should work with an 

Suscepti- out-of-band interference signal 

bility as large as -25 dBm. 


CIU Inter- Interface inconsistencies 

face with between CIU specification and 

KuSP, payload ICD, 

PDI, FMSP 


Effort Toward Resolution 


1. Meet the requirement by 

using RF signal level 

limiting. (TRW) 


2. Use manual signal level 


attenuators. (TRW/NASA)
 

Complete parametric analysis 

of PI carrier and subcarrier 

levels as a function of mod­
ulation index and waveform
 
types. (Axiomatix)
 

Analysis showed that, with 

the expected receiver first 

LO noise characteristics, 

only a -65 dBm interference
 
signal level can be tolera­
ted. (TRW and Axiomatix)
 

1. Action Item for Boeing 

at CIU PDR. (Aerospace)
 

2. Tables 6, 7, 10, 11, 12
 
and 13 compare each
 

Orbiter subsystem spec,
 
with payload ICD and CIU
 
specification. (Axiomatix)
 

Resolution
 

Manual attenuator approach
 
selected. Preamplifier over­
load diodes as alternate
 
under investigation. (TRW)
 

Results of analysis made
 
known to TRW. (Axiomatix)
 

Specification amended to
 
the -65 dBm signal level.
 
(Rockwell)
 

To be resolved at CIU CDR.
 



Table 1. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue 


CIU-Inter-

face with 

Payload 

Recorder
 

PI Inter-

face with 

SGLS 

Transponder 


PI Inter-

face with 

STDN/TDRS 

Transponder 


Issue Nature 


1. Interface inconsistencies 

between CIU specification and 

payload ICD. 


2. TRW performance does not meet 

CIU specification.
 

Interface inconsistencies between 

SGLS transponder specification 

and payload ICD. 


Interface inconsistencies between 

STDN/TDRS transponder specifica-

tion and paylpad ICD. 


Effort Toward Resolution 


1. Table 14 compares the payload 

ICD with the CIU specifica­
tion. (Axiomatix)
 

2. RID-OI at CIU PDR. (Boeing)
 

Tables 2 and 3 compare the PI 

and SGLS transponder specifi-

cations with the payload ICD.
 
(Axiomatix)
 

Tables 4 and 5 compare the PI 

and STDN/TDRS transponder spec-

ifications with the payload ICD.
 
(Axiomatix)
 

Resolution
 

To be resolved at CIU CDR.
 

To be resolved in an
 
interface meeting.
 

To be resolved in an
 
interface meeting.
 

CD 
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each parameter involved in the interface, as defined by the Payload ICD,
 

the CIU or IUS specification, or the Orbiter subsystem specification, is
 

compared in Tables 2-14. It may be seen that the greatest interface incon­

sistencies between the interface parameter specifications exist where the
 

parameter either is not defined by a specification or it is defined by a
 

TBD or TBS. These interface inconsistencies need to be resolved and the
 

parameters with TBD or TBS must be specified consistent with the Orbiter
 

subsystem specification, the Payload ICD and the CIU or IUS transponder
 

specification.
 

In order to resolve some of the interface parameter inconsisten­

cies, some overall system analysis is required. For example, the phase
 

noise specifications need to be defined for the link from the PI to the
 

SGLS or STDN/TDRS transponder to determine the command channel BER. Both
 

the phase noise generated by the frequency synthesizer in the PI transmit­

ter and the oscillators used in the transponder affect the command channel
 

BER and, therefore, system analysis must be made to allocate a phase noise
 

specification for the PI and transponder. Similarly, the phase noise gen­

erated by the PI receiver frequency synthesizer, the oscillators used in
 

the transponder transmitter and the turn-around characteristics of the
 

transponder, affect the telemetry channel BER. Therefore, system analysis
 

must be made to allocate a phase noise specification to the PI receiver,
 

transponder oscillators and turn-around characteristics. Axiomatix has
 

developed the analysis needed to predict the command channel BER based on
 

phase noise characteristics; however, while some specifications have been
 

made on the phase noise of the PI transmitter and receiver and on the phase
 

noise of the transponder, the turn-around characteristics have not been
 

specified and the actual phase noise performance of the PI transmitter and
 

receiver frequency synthesizer has not been determined. Hence, final
 

assessment of the command channel and telemetry channel BER performance
 

awaits phase noise data from the PI frequency synthesizer.
 

Another area that received considerable attention in the interface
 

compatibility analysis was the susceptibility of false lock by the PI and
 

the IUS SGLS or STDN/TDRS transponder. Itwas found that certain modula­

tion conditions could produce false states of in-lock with the TRW PI
 

receiver conceptual design. Axiomatix determined that the problem was a
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Table 2. PI Transmission to SGLS Transponder
 

Parameter PI Specification 


Carrier 

Frequency <0.001% 

Tolerance 


Carrier 4 rms (steady state) 

Phase Noise 100 rms (maximum)
 

At least [55+10 log 

(Pt)] dB below modu-


Output lated carrier from
 
Spurs 200 MHz to 16 GHz
 

(Pt is transmitter
 
power in watts)
 

Waveform Sinusoidal with AM 


Modulation Ternary FSK 


"S"= = 65 kHz
Symbol "0" 76 kHz 
Frequencies "I"= 95 kHz 

Carrier 

Modulation 0.96 ± 10% radians 

Indices (determined by CIU
 

interface)
 

Symbol 1000 sps or 

Rates 2000 sps 


0.5 ± 10% AM by a 

triangular function 


AM equal to 500 Hz (for 

1000 sps) or 1000 Hz 

(for 2000 sps) 


Payload ICD 


±0.001% 


100 rms, maximum
 

<-65 dBc
 

Sinusoidal with AM 


Ternary FSK 


"S"= 65 kHz
"0"= 76 kHz 

"I"= 95 kHz 


0.3 ± 10% radians 

or 1.0 ± 10% radians 


1000 sps or 

2000 sps
 

0.5 ± 10% AM by a 

triangular function 

equal to one-half 

the command symbol
 
rate
 

SGLS Transponder

Specifiaton
Specification
 

Search ±100 kHz
 
doppler shifted
 
input signals
 

Sinusoidal with AM
 

Ternary FSK
 

"S"= 65 kHz
 "0" = 76 kHz
 
"l"= 95 kHz
 

0.3 ± 20% radians
 
or 1.0 ± 10% radians
 

1000 sps
 

0.5 ± 10% AM by a
 
triangular function
 
of 500 Hz
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Table 3. PI Reception from SGLS Transponder
 

Parameter PI Specification Payload ICD SGLS Transponder Spec 

Input 
Signal -124 to +3 dBm -124 to +25 dBm N/A 
Range 

False Shall not false lock Shall not false lock Shall not false lock 
Lock below -20 dBm 

Spurious 26 dBc 32 dBc 40 dBc 
Output 

Rec. Freq. ±80 kHz ±85 kHz at minimum ±67 kHz due to auxil-
Sweep of 10 kHz/sec iary oscillator 

Aux. Osc. 
Stability 

0.001% ±0.001% ±29 ppm 

Phase <150 rms Additive noise <100 rms < 3.5' rms 
Noise Oscillator < 5* rms <11.50 rms with 

Static ±30"maximum 
Mod. Track'g <100 rms 
Frequency offset 30 

vibration 
1.50 per 30 kHz 

Phase Frequency Dynamics 120 frequency offset 
Error 

Sinewave subcarrier Sinewave subcarrier Sinewave subcarrier 
PSK Sub- PSK modulated (±900) PSK modulated (±900) PSK modulated (±900) 
carriers by PCM data 

1.024 MHz 
by PCM data 
1.024 and 1.7 MHz 

by PCM data w/at least 
30 dB subcarrier sup­
pression (1.024 and 
1.7 MHz) 

Max. deviation ±TBS Hz Max. deviation ±200 kHz 

FMSubcarrier( i.7MHz) FM/FM 
peak w/highpass roll- peak-to-peak (minimum) 
off of TBS db/octave & Modulation bandwidthslowpass rolloff of TBS 20 Hz to 200 kHz with a
db/octave beyond 200 kHz rolloff of 12 dB/octave 

Subcarrier TBS% of fundamental 
Harm. Comp. frequency amplitude 

Subcarrier 0.01% for PSK ±50 Hz for PSK 
Freq. Stab. TBS% for FM 0.1% for FM 

Modulationdtios 
Indices 

0.3+ 0.1 radians, peak0.3-0.0 radians, peak 
1.0± 0.1 radians, peak 

O.3±I0% radians, peak10±10%radians, peak 0.3 to 2.0 radiansFactory set with±15% 
variation (perform±8%) 

Data 
Rates 

64,32,16,10,8,4,2,1, 
0.5,0.25 kbps on 1.024 
& 1.7 MHz subcarriers 

64,32,16,10,8,4,2,1, 
0.5,0.25 kbps on 1.024 
& 1.7 MHz subcarriers 

<128 kbps (1.024 MHz) 
<256 kbps (1.7 MHz) 
TSee CIU specification) 

256 and 128 kbps on 
1.7 MHz subcarrier 

Data Type Biphase-L or NRZ-L Biphase-L or NRZ-L Biphase-L 

Data Asym. TBS 

Bit Rate 0.1% of nominal bit (CIU requires 0.001%) 
Stability rate 
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Table 4. PI Transmission to STDN/TDRS Transponder
 

Parameter PI Specification 


±75 ± 5 kHz 

Carrier ±55 ± 5 kHz 

Frequency at 10 ± 3 kHz/sec 

Sweep ±33 ± 3 kHz 


at 540 ± 60 Hz/sec 


At least [55+ 10 log
 
(Pt)]dB below unmodulated
Spurious 
 carrier from 200 MHz to
Output 16 GHz (P is transmitter
 

power in atts)
 

Carrier 4' rms (steady state) 

Phase
 

100 rms (maximum)
Noise 


Waveform Sinusoidal 


Modulation PSK 


Subcarrier 16 kHz 

Frequency
 

Subcarrier <1% of fundamental 

Harmonic frequency amplitude 

Distortion (PSP Spec.)
 

Subcarrier <10 -5 of subcarrier fre-

Frequency quency over a 60-second 

Stability period (PSP Spec.) 


Modulation 1.0 ±.O.l radian 

Index
 

Data Type Biphase-L or NRZ-L 


Data <2% of nominal bit 

Asymmetry period 


Data Bit 

Jitter
 

Payload ICD 


±75 ± 5 kHz 

±55 ± 5 kHz 

at 10 ± 3 kHz/sec 

±33 ± 3 kHz 

at TBS ± TBS Hz/sec
 

<-65 dBc
 

100 rms, maximum
 

Sinusoidal 


PSK (±900) 


16 kHz 


<1% of fundamental
 
frequency amplitude
 

±' x 10 5 of nominal
 
subcarrier frequency
 
averaged over 60 sec.
 

1.0 ± 0.1 radian, peak 

NRZ-L, M, S 


<2% of nominal bit
 

period
 

<3% of data bit period 


STDN/TDRS TranspondE
 
Specification
 

±100 kHz
 
at 35 kHz/sec
 
(unmodulated
 
carrier)
 

Sinusoidal
 

PSK
 

16 kHz
 

1.0 ± 10% radian 

NRZ-L
 

-
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Table 5. PI Reception from IUS STDN/TDRS Transponder
 

Parameter PI Specification Payload ICD 
STDN/TDRS Transponder 

Specification 

Input 
Signal -124 to +3 dBm -124 to +25 dBm N/A 
Range 

Shall not false lock Shall not false lock PI shall not false 
below -20 dBm lock; STDN/TDRS 

False 
Lock 

transponder shall 
not false lock with 
input signal levels 
up to -40 dBm 

Spurious 26 dBc 32 dBc 40 dBc 
Output 

PI 
Transmitter 

±75 ± 5 kHz 
±55 ± 5 kHz 
at 10 ± 3 kHz/sec 

±75 ± 5 kHz 
±55 ± 5 kHz 
at 10 ± 3 kHz/sec 

±100 kHz at 35 kHz/ 
second (unmodulated 
carrier) 

Sweep ±33 ± 3 kHz ±33 ± 3 kHz at 
at 540 ± 60 Hz/sec at TBS ± TBS Hz/sec 

PI Receiver ±67 k~z due to auxil-
PISReive 
Sweep 

±80 kHz (minimum) ±85 kHz at 10 kHz/sec ±67 oscillator 
iary oscillator 

Aux. Osc. 
Stability 0.001% ±0.001% 29 ppm 

Phase Additive noise< 100 rms <3.50 rms 
Noise <15' rms Oscillator< 50 rms 

Mod. Track'g< 100 rms 
<11.5' rms 
with vibration 

StaticStatc 
Phase 
Error 

2Frequency
±30 maximum (PI) 

offset< 30 1.50 per 30 kHzFrequency dynamics< 12' offset
(PI) 

Sinewave subcarriers Sinewave subcarriers Sinewave subcarriers 
PSK 
Subcarriers 

PSK modulated (±900) 
by PCM data 
1.024 MHz 

PSK modulated (±900) 
by PCM data 
1.024 and 1.7 MHz 

PSK modulated (±900) 
by PCM data with at 
least 30 dB subcar­
rier suppression 
1.024 and 1.7 MHz 

FM 
Subcarriers 

FM/FM modulated 
by PCM data 
1.7 MHz 

1.7 MHz-max. deviation 1.7 MHz max. deviation 
±TBS Hz peak with high- ±200 kHz peak-to-peak 
pass rolloff of TBS dB/ Modulation bandwidths 
octave at 100 Hz and 20 Hz to 200 kHz with 
lowpass rolloff of TBS a rolloff of 12 dB/ 
dB/octave beginning at octave 
200 kHz 

Subcarrier TBS% of fundamental 
Harm., Comp. frequency amplitude 

Subcarrier 0.01% for PSK 50 Hz for PSK 
Frequency TBS% for FM 0.1% for FM 
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Table 5. PI Reception from IUS STDN/TDRS Transponder (Cont'd)
 

Parameter PI Specification 


0.3+ 0.1 radians, peak 

Modulation 0.3- 0.0 radians, peak 

Indices 1.0± 0.1 radians, peak 


64,32,16,10,8,4,2,1, 

0.5, 0.25 kbps on
Data 1.024 and.1.7 MHz
Rates subcarriers 


Data Type Biphase-L or NRZ-L 


Data Asym. 


Trans. 

Density
 

Bit Rate 

Stability 


Payload ICD 


0.3 ± 10% radians 

1.00 

1 


64,32,16,10,8,4,2,1,. 

0.5, 0.25 kbps on
1.024 and 1.7 MHz sub-
carriers; 256, 128 kbps
 

on 1.7-MHz subcarrier
 

Biphase-L or NRZ-L 


TBS
 

TBS 


0.1% of nominal 

bit rate'. 


STDN/TDRS Transponder

Specification
 

0.3 to 2.0 radians (PSK)
 
to TBD kHz (FM)
 

±15% variation (TRW
 
performance ±8%)
 

<128 kbps (1.024 MHz)
 
<256 kbps (1.7 MHz)
<(
 

Biphase-L
 

N/A'
 

(CIU requires
 
0.001%)
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Table 6. CIU Output to Payload Interrogator (PI)
 

Parameter PI Specification 


Data 1 K-baud or 

Rate 2 K-baud
 

FSK 65, 76 or 95 kHz 

sinewave subcarriers 


Waveform 	 with amplitude enve-
lope modulation of 

500 Hz (I K-baud) or 

1000 Hz (2 K-baud)
 

Ternary FSK/AM of 

$ = 0.2-2.5 radians 


Modulation 	 Logical "l"95 kHz 

Logical "0"76 kHz 

Logical "S"65 kHz 


Signal 	 1.0 to 8.0V ± 10% p-p,line-to-line for 

Level 0.2 to 2.5 radians
 

Phase 

Linearity 


Load 	 75 ± 5 ohms
Impedance
 

Signal Differential, direct 

Type coupled 


Payload ICD 


-


FSK 65, 76 or 95 kHz 

amplitude modulated 


by 1 kHz or 2 kHz 

triangular wave 


Ternary FSK/AM of 
j = 0.2-2.5 radians 
Logical "l" 95 kHz 
Logical "0" 76 kHz 
Logical "S" 65 kHz 

<8% from a =0.2 to
 
2.5 radiang
 

CIU Specification
 

1 K-baud ± 0.01%
 

FSK 65, 76 or 95 kHz
 
sinewave subcarriers
 
with triangular AM at
 
50% modulation at 
500 Hz ± 0.1% 

Ternary FSK/AM
 

Logical "1"95 kHz± 0.01%
 
Logical "0"76 kHz± 0.01%
 
Logical "S"65 kHz± 0.01%
 

3.3V ± 10% p-p,
line-to-line
 

75 ± 5 ohms
 

Differential, direct
 
coupled
 



Table 7. Payload Interrogator Input to CIU 

Parameter PI Specification Payload ICD 

Subcarrier 1.024 MHz and/or 1.024 MHz or 1.7 MHz 
Frequencies 1.7 MHz 

64, 32, 16, 10, 8, 4, 256, 64, 32, 16, 10, 
Data Rates 2, 1 kbps; 500 and 8, 4, 2, 1, 0.5 and 

250 bps 0.25 kbps 

1.024 MHz subcarrier PSK 
PSK modulated by PCM 

Modulation data, 1.7 MHz subcar-
rier frequency modu-
lated (FM/FM) or PSK 
modulated by PCM data 

Data Manchester II Biphase-L 
Waveform Biphase-L or NRZ-L NRZ-L 

Signal 2.0V rms ± O.4V line-
Level to line with 6V p-p max 

Bandwidth 4.5 MHz (3 dB points) 

Equivalent 
Source 0.3 to 2.5 radians 0.3 to 2.5 radians 
Modulation 

Signal Differential-AC coup-
Type led (1000 Hz minimum) 

LoadImpd
Impedance5 75 ± 5 ohms 

Subcarrier 0.01% 
Stability 

Data Rate 0.1% 
Stability 

Common Mode 
Rejection 
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CIU Specification
 

1.024 MHz ± TBD
 
and/or 1.7 MHz± TBD
 

16 kbps (PSK)
 
16, 24 and 32 kbps
 
(FM/FM)
 

1.024 MHz subcarrier
 
PSK modulated by PCM
 
data, 1.7 MHz sub­
carrier FM/FM by PCM
 
data
 

Biphase-L
 

2.OV rms ± 0.4V
 
line-to-line
 

Differential
 

75 ± 5 ohms
 

<1 part in 10 for
 
any 12-hour period
 

0.001%
 

>40 dB (0-2 MHz)
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Table 8. MDM Discretes Input to CIU
 

Parameter PSP Specification 


Differential, 

Receiver Type direct coupled 


Threshold 	 0 ± O.5V
(line-to-line) 


High State:
 
Line-to-ground 2.0 to 5.9V peak 

Line-to-line 2.0 to 5.9V peak 


Low State:
 
Line-to-ground -0.6 to +0.6 peak 

Line-to-line -2.0 to -5.9V peak 


"True" State Signal line "high 

(Logic "I") with respect to 


return line 


"False" State Signal line "low" 

(Logic "0") with respect to 


return line 


Interpret as
Open Circuit 	 Logical "0" 


Source Imped­
ance (Orbiter)

Line-to-line 100 ohms, maximum 

Line-to-ground 100 ohms, maximum 


Input Imped­
ance (CIU) 75 ohms ± 5% 

Line-to-line in series with 


3.3 pf ± 10% 


10-200ns 10% voltage 

Rise and to +2.OV (rise) or -2.OV to +2.1V (rise) or -2.1V
 

CIU Specification
 

Differential,
 
direct coupled
 

0 ± O.5V
 
(line-to-line
 

2.0 to 5.9V peak
 

-2.0 to -5.9V peak
 

Signal line "high"
 
with respect to
 
return line
 

Signal line "low"
 
with respect to
 
return line
 

Interpret as
Logical "0"
 

100 ohms, maximum
 

100 ohms ± 5% 
in series with
 
10.0 pf ± 10%
 

0.25V peak, maximum
 

Signals from DC to
 
2 MHz w/amplitude up
 
to ±lOV peak applied
 
to both signal termi­
nals shall not acti­
vate receiver circuits
 

32V either input
 

Fall Times 	 (fall) 100-1000 ns, 

10-90% voltage levels 


Overshoot/
 
Undershoot 0.25V peak, maximum 


Signals from DC to 

2 MHz w/amplitude up


Common Mode to ±1OV peak applied 

Rejection to both signal termi-


nals shall not acti-


Payload ICD 


Differential, 

direct coupled 


0 ± 0.5V 

(line-to-line) 


2.1 to 5.9V peak
 
2.1 to 5.9V peak 


-0.6 to +0.6V peak
 
-2.1 to -5.9V peak 


Signal line "high" 

with respect to 

return line 


Signal line "low" 

with respect to 

return line 


Interpret as non-
ambiguous state 


100 ohms, maximum 

100 ohms, maximum
 

90 ohms ± 5% 

in series with 

10.0 pf ± 10% 


10-200ns, 10% voltage
 

(fall) 100-10OOns,
 
10-90% voltage levels
 

0.25V peak, maximum 


Signals from DC to 

2 MHz w/amplitude up 

to ±1OV peak applied 

to both signal termi-

nals shall not acti-


vate receiver circuits vate receiver circuits 


Voltage ±32V e ±32V either input 

Damage either input via 320 ohms
 
Fault Voltage +8V maximum
 
Emission
 

Fault Current
 
40 ma
Limitation 
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Table 9. MDM Serial Digital Data Input to CIU
 

Parameter PSP Specification Payload ICD CIU Specification
 

Receiver Transformer coupled, Transformer coupled, Transformer coupled,
 
Type balanced balanced balanced
 

Waveform Manchester II Biphase- Manchester II Bi- Biphase-L in accord-


L (MIL-STD-442) phase-L (MIL-STD-442) ance with MIL-STD-1572
 

Data Rate 1 Mbps 	 1 Mbps ± 0.1% 1 Mbps ± 10%
 

Data
 
Threshold
 

Positive +0.5 ± O.lV peak +0.5 ± 0.lV peak +0.5 ± O.IV peak,
 
line-to-line line-to-line line-to-line
 

Negative 	 -0.5 ± O.lV peak -0.5 ± O.IV peak -0.5 ± O.lV peak
 
line-to-line line-to-line line-to-line
 

Logic Level +1.5V to +8V peak +1.5V to 8.0 peak +1.5V to +8V peak

"One" line-to-line line-to-line line-to-line
 

Logic Level -l.5V ± 8% to -8V -1.5V to -8.0 peak -1.5V to -8V peak
"Zero" ±8% peak line-to-line line-to-line line-to-line
 

Pulse Width
 
Variation ±125 ns maximum 40 ns (Jitter) ±125 ns maximum
 
Plus Jitter
 

1.9 X 10-7  
Bit Error 10-7 for 14 dB
 
Rate peak SNR
 

Rise 60-150 ns measured 60-250 ns measured 40-300 ns measured
 
and between 10-90% of between 10-90% of between 10-90% of
 
Fall Time voltage levels voltage levels voltage levels
 

Distortion 250 mV maximum, peak ±250 mV maximum 300 mV maximum, peak
 
(overshoot,
 
ringing)
 

Input 75 ohms ± 10% 75 ohms ± 10% 75 ohms ± 10%
Impedance
 

Isolation
 
Resistance 100 K ohms, minimum 100 K ohms, minimum
 
(line-to­
ground)
 

Signals fromDC to 2 MHz Signals from DC to Signals from DC to
 
with amplitude to ±32V 2MHzw/amplitude to 2 MHz w/amplitude to
 

Common peak, line-to-ground ±32V peak, line-to- ±32V peak, line-to-

Mode applied on both input ground applied on ground applied on
 
Rejection signal terminals, shall both input signal both input signal
 

not activate receiver terminals, shall not terminals, shall not
 
circuit activate receiver activate receiver
 

circuit circuit
 

Common Mode Greater than ±50V peak ±50V peak Greater than ±50V peak
 
Voltage
 
Damage
 
Threshold
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Table 10. Ku-Band Signal Processor Input to CIU
 

Parameter Ku-Band Specification Payload ICD CIU Spec. 

Data Rate 128 kbps 128 kbps 128 kbps 

Waveform: 
Data 
Clock 

NRZ-L 
Square wave 

NRZ-L 
Square wave 

NRZ-L 

Signal 
Amplitude 

High state: 
signal line to signal ground 
3.5V maximum 
2.OV minimum 

3.OV maximum 
2.OV minimum 

signal return to sig. ground 
0.5V maximum 
O.OV minimum 

Low state: 
signal line to signal ground 
0.5V maximum 
O.OV minimum 

0.5V maximum 
O.OV minimum 

0.5V maximum 
O.OV minimum 

TBD 

signal return to sig. ground 
3.5V maximum 
2.OV minimum 

3.OV maximum 
2.OV minimum 

Rise and 
Fall 
Times 

<2.5% of bit period measured 
at 10-90% points (195 ns) 

<2.5% of bit period* 
measured at 10-90% 
points (195 ns) 

Source 
and Load 
Coupling 

Balanced differential, 
direct coupled 

Balanced differ-
ential, direct 
coupled 

Differential, 
direct coupled 

Load
Impedance 75 ± 5 ohms 75 ± 5 ohms TBD 

Cable 75 ± 5 ohms, TSP 75 ± 5 ohms, TSP TBD 

Data
Stability . <0.01%' of bit rate 

Clock Skew <150 ns 15% clock per. max. -

Clock Duty 
Cycle 

Frequency 
Jitter 

50.0 ± 5% of bit period 

±0.1% of data rate at 0.1% 
of the data rate 

rms 

50.0 ± 5% of bit 
period* 

0.1% of bit period 

-

-

Clock Phase ±2% rms of bit period 
Jitter 

10% of bit period -

Data/Clock 
Asymmetry 

10% of bit period, maximum TBD -

Common Mode 
Voltage 

TBD 

Common Mode 
Damage 
Threshold 

TBD 

ICD 2-19001, 10/10/77, Rise and Fall Times 40 ns and Clock Duty Cycle 50 + 15% 
nf kit nnrinrl 
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Table 11. CIU Output to Ku-Band Signal Processor
 

Ku-Band CIU
 
Parameter Specification Payload ICD Specification
 

Data Rate 16 kbps to 2 Mbps 16 kbps to 2 Mbps
 
and NRZ-L, M, S NRZ-L, M, S 16, 64, 256 kbps
 
Signal 16-1024 kbps 16-1024 kbps Biphase-L
 
Coding Biphase-L, M, S Biphase-L, M, S
 

Signal 1.8 to 5.OV p-p 1.8 to 5.OV p-p TBD volts p-p*
 
Level line-to-line line-to-line line-to-line
 
Load
Impedance 75 ± 5 ohms 
 75 ± 5 ohms 
 75 ± 10% ohms*
 

Cable Type 75 ± 5 ohms, TPS 75 ± 5 ohms, TPS
 

Signal Balanced differential, Balanced differential, Differential,
 
Type direct coupled direct coupled direct coupled
 

RMS SNR 35 dB minimum 35 dB minimum
 

Rise 5% or 50 ns between 5% or 50 ns between TBD
 
and 10-90% points, which- 10-90% points, whichever
 
Fall ever is less is less (ICD 2-19001,
 
Times 10/10/77, requires 10 ns
 

maximum)
 

±0.1% rms of the data ±0.1% rms of the data

Frequency rate at 0.1% rms of rate at 0.1% rms of the
 
Jitter the data rate the data rate
 

Data
 
Asymmetry ±10% ±10%
 
(TDRS User
 
Constraint)
 

Stality
Data 0.01% long term <0.01% long term
Stabilt
 

Bit Jitter ±2% of bit period
 

±lOV DC to 10 kHz
 
Common decrease 10 dB per
 
Mode decade to lOOkHz and
 
Voltage 10 dB per octave above
 

100 kHz
 

Previously, signal level was 6 ± 3V p-p line-to-line, load impedance was 
90 ± 10% ohms, and rise and fall times were 1 psec.
 

http:Data0.01
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Table 12. CIU Output to FM Signal Processor
 

Parameter 
FM Signal Processor 

Specification Payload ICD 
CIU 

Specification 

Data Rate 250 bps to 256 kbps 250 bps to 256 kbps 16, 64, 256 kbps 

Signal 
Coding 

Manchester II, 
Biphase-L or NRZ-L 

Biphase-L or NRZ-L Biphase-L 

Signal 
Level 

1.0 ± 0.6V p-p 
line-to-line 

1.0 ± O.6V p-p 
line-to-line 

1.0 ± 0.6V p-p 

Logic "l" (Removed from spec) +1.lV ± 0.5V p-p 
line-to-line 

Logic "0" (Removed from spec) -O.3V to +0.4V p-p, 
line-to-line 

RiseFall andTimes Less than 100 ns Less than 100 ns Less than 100 ns 

Signal 
Type 

Balanced differential Balanced diffferential Differential, 
direct coupled 

Common 
Mode 
Rejection 

Signals from DC to 2 MHz 
up to 1V peak line-to-
ground shall not degrade 
output SNR to less than 
45 dB 

Signals from DC to 2 MHz 
up to 1V peak line-to­
ground shall not degrade 
output SNR to less than 
45 dB 

SourceImpedance 75 ohms ± 10% 75 ohms ± 10% TBD 

Impedance 
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Table 13. CIU Output to Payload Data Interleaver
 

Parameter Specification Payload ICD CIU Specification 

Bit Rate 10 bps to 64 kbps 10 bps to 64 kbps 16, 64 kbps 

Input Signal NRZ-L, M, S NRZ-L, M, S NRZ-L 

Code Biphase-L, M, S Biphase-L, M, S 

Logic Positive 

Bit Rate 
Accuracy ±6% <-2% 

Bit Rate 1 part in 105 1 part in lO6 

Stability 60-sec period 60-sec period 

Signal Balanced Balanced Differential, direct 
Type differential differential coupled 

Amplitude 2-12V p-p 2-12V p-p 6 ± 3V p-p line-line 

Rise and 10% between 10 51 sec or 10% of TBD 
Fall Time and 90% points bit, whichever is 

less, 100 ns min. 

Signal Overshoot and Overshoot and 
Waveform undershoot less undershoot less 
Distortion than 20% of peak than 20% of signal 

Clock Skew ±5% of clock per-
iod or 10 ms, 

±5% of clock per-
iod or 10 ms, 

±5% of clock period or 
10 ms, whichever is less 

whichever is less whichever is less 

Clock Duty 50.0 ± 5% 50 ± 5% Square wave 
Cycle 

Noise 
Immunity 

100 mV p-p 
line-to-line 

100 mV p-p 
line-to-line 

DC-1O kHz 
Load 
Impedance 75 ± 7 ohms 75 ± 7 ohms 75 ± 7 ohms 

Cable 
Impedance 

75 ± 7 ohms 75 ± 5 ohms, TSP 

Source 
Impedance 75 ± 7 ohms TBD 



Table 14. CIU Output to Payload Recorder
 

Parameter 	 Payload ICD 


Analog: 

Input Signal IV rms ± 6 dB 

Signal Type 

Source Impedance (CIU) 71 ± 10%
 

Load Impedance 71 ± 5% 

(Recorder)
 

Cable Impedance 75 ± 5 ohms, TSP 


Frequency 1.9 kHz to 1.6 MHz 


Signal/Noise 39 dB over any 3 kHz slot
 

Common Mode ±15V (reference to signal 

Rejection ground) 


Digital:
 

Data Rates 25.5 kbps to 1.024 Mbps 


Signal Code Biphase-L 


Bit Jitter 2% of bit duration (p-p)
 

Rise and Fall Times ±10% of bit duration 


Input Signal 	 3-9V p-p 


Signal Type 	 Differential 


Load Impedance 71 ± 10% ohms 


Cable Impedance 75 ± 5 ohms, TSP 


Source Impedance 71 ± 10% ohms 


Common Mode ±15V (reference to signal
 
Rejection 	 ground)
 

TRW performance: 	 IV rms + 2.9 dB
 

IV rms - 6.56 dB
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CIU Specification
 

IV rms ± 6 dB*
 

Differential
 

71 ± 7 ohms
 

75 ± 5 ohms, TSP
 

10 kHz to 100 kHz
 

±15V max (reference
 
to signal ground)
 

256 kbps, 64 kbps
 

Biphase-L
 

390 ns, maximum
 

6 ± 2V p-p
 
line-to-line
 

Differential, direct
 
coupled
 

71 ± 10% ohms
 

75 ± 5 ohms, TSP
 

TBD
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function of lack of receiver out-of-lock IFA gain control and the setting
 

of the lock detector threshold voltage according to a minimum operating
 

point some 6 dB below that required by the Rockwell specification.
 

Axiomatix therefore recommended use of a noncoherent receiver AGC during
 

periods prior to acquisition. This recommendation was acted upon by TRW
 

to the effect that false states of in-lock have been eliminated below a
 

received signal of -20 dBm. The IUS SGLS transponder uses a frequency­

discriminator to detect false states of in-lock. For received signal lev­

els above -117 dB, the frequency discriminator will not allow lock for a
 

frequency larger than the phase lock loop (PLL) bandwidth, however, for
 

received signal levels below -117 dB, the frequency discriminator does not
 

have a large enough signal-to-noise ratio to guarantee that a noise spike
 

could not stop the frequency sweep in the vicinity of one of the SGLS com­

mand tones (most likely, the "S"65 kHz tone). If the frequency sweep
 

stops in the vicinity of a command tone, the PLL will lock to the nearest
 

command tone. If the command tone that PLL locks to is the "S' tone, the
 

PLL could be false locked for long periods because the "S"tone is used
 

for command preambles and postambles. While the SGLS receiver is not
 

required to acquire below -117 dBm, signal levels below -117 dBm could
 

occur during IUS maneuvers and antenna switching. In this case, the
 

receiver might false lock at signal levels below -117 dBm and stay false
 

locked as the signal level increased above -117 dBm. TRW and Boeing are
 

still working to resolve this false lock problem.
 

The IUS STDN/TDRS transponder uses the same frequency discrimin­

ator as the IUS SGLS transponder but, in the case of the STDN transponder,
 

the frequency discriminator must avoid false lock by the PLL to the 16 kHz
 

subcarrier used to modulate the command data. The false lock performance
 

analysis for the STDN/TDRS transponder has not been completed by TRW and,
 

therefore, the overall system performance assessment must wait until this
 

analysis has been completed.
 

A final area of concern in the interface between the PI and the
 

IUS SGLS or STDN/TDRS transponder is the frequency stability of the auxil­

iary oscillator. The concern is that the frequency uncertainty due to the
 

frequency stabilty of the auxiliary oscillator will be larger than the
 

frequency acquisition range of the PI. To resolve this area of concern,
 

TRW is analyzing the aging and environmental changes to the auxiliary
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oscillator. Also, Rockwell has requested TRW to investigate the possibility
 
of increasing the PI receiver frequency sweep range. The initial results
 

from TRW, however, indicate that increasing the sweep range of the PI also
 
increases the uncertainty of the actual frequencies inthe sweep and,
 
thus, compounds the frequency uncertainty problem. Therefore, increasing
 

the PI sweep range does not seem to resolve the problem.
 

Another approach to successively increasing the sweep range isby
 
designating an adjacent channel as the nominal frequency for the next fre­

quency sweep ifacquisition is not obtained by frequency sweeping around
 

the expected nominal frequency. While this technique might be an opera­
tional workaround; it is not a desirable approach to resolution of the
 

frequency stability problem. Before an overall system performance assess­
ment can be made, more data on the auxiliary oscillator stability is needed
 

from TRW.
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2.0 INTRODUCTION
 

2.1 Statement of Work
 

2.1.1 Objectives
 

The overall objectives of the effort have been to evaluate the
 

Inertial Upper Stage (IUS) and DOD Communication Interface Unit (CIU)
 

communication system design, hardware specifications, and interfaces t(
 

determine their compatibility with the Orbiter payload communication ar
 

data handling equipment and the Orbiter network communication equipmeni
 

The IUS is being developed by the DOD for joint DOD/NASA use.
 

Two Orbiter/IUS communication configurations will be used for the DOD
 

NASA IUS missions. Operational constraints, however, may require the L
 

of a DOD IUS for NASA payload missions such as the Tracking and Data
 

Relay Satellite (TDRS) launch. The DOD and NASA IUS communications hai
 

ware will be tested for performance verification and interface compatit
 

ity with the Orbiter avionic subsystems in the Electronic Systems Test
 

Laboratory (ESTL) and the Shuttle Avionics Integration Laboratory (SAIL
 

2.1.2 Stipulated Tasks
 

The contract statement of work calls out the following tasks:
 

"Task #1 - IUS/Orbiter Communications Interface Definition.
 
The contractor shall review all IUS/Orbiter interface docu­
mentation such as hardware specifications and preliminary
 
Interface Control Documents (ICD) to assess the compatibility
 
of the IUS and Orbiter communications systems. This task
 
shall result in a complete discussion of the interface
 
characteristics including block diagrams. All areas of
 
incompatibility shall be clearly defined and analyzed in
 
terms of their effects on the IUS or Orbiter communications
 
system performance. Proposed solutions to incompatibilities
 
to optimize overall performance shall also be provided."
 

"Task #2 - Redundancy Evaluation. The degree of redundancy
 
varies throughout the Orbiter and IUS communications systems.
 
The contractor shall analyze the functional paths through the
 
Orbiter and the IUS communications systems and determine the
 
impacts of failures in nonredundant functions. Failure
 
'workarounds' shall 
be suggested whenever applicable."
 

"Task #3 - IUS RF Coverage. The Orbiter must establish RF
 
communications with the IUS when the IUS is in the payload
 
bay and maintain communications out to the maximum range of
 
the combined systems. The contractor shall perform an anal­
ysis of the IUS and Orbiter payload communication systems
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(both DOD and NASA configurations) to determine if there
 
are regions of RF blockage for single and tandem IUS's in
 
the payload bay. A strong signal analysis shall be made
 
for those instances where the IUS and Orbiter antennas are
 
very close together to determine if any damage can be rea­
lized in either the Orbiter or IUS communications equipment
 
or whether either receiver will saturate. An .analysis shall
 
also be performed to determine the required payload inter­
rogator receiver sensitivity (high, medium, or low) versus
 
range and the payload interrogator RF power output (high,
 
medium, or -low) versus range for DOD and NASA IUS communi­
cation configurations."
 

"Task #4 - ESTL Test Requirements. The contractor shall
 
develop a complete set of test requirements for the ISU
 
(DOD and NASA) communications equipment when it arrives at
 
the ESTL for compatibility testing. The test requirements
 
shall define all communication links, modes, and parameters
 
to be tested. Any special test equipment shall be identified."
 

"Task #5 - Link Budgets for IUS/PI/CIU Communication Links.
 
The contractor shall provide link budgets with a technical
 
back-up description for the IUS/PI/CIU communication links.
 
These link budgets shall cover all modes of operation from
 
RF communications in the payload bay out to maximum range.
 
Both the variable receiver sensitivity and the variable RF
 
output power of the PI shall be reflected in the link budgets."
 

During the contract period (March 1978 through June 1979), the
 

IUS, CIU, and Orbiter communication equipment concepts and implementations
 

developed significantly. Therefore, the majority of the effort was
 

directed toward Task #1 and the results of this task represent the major­

ity of this Final Report. Task #5 was added the last month of the con­

tract. While Task #5 was not originally in the contract, the results
 

obtained under this task will greatly expedite the development of opera­

tional scenarios for the IUS and Orbiter.
 

2.1.3 General Approach to the Activity
 

Development of the IUS, CIU and Orbiter payload communication
 

equipment was a new activity beginning in CY78. The general approach has
 

been to work with the cognizant NASA personnel, USAF SAMSO personnel,
 

Aerospace Corporation personnel, and individuals at the IUS prime contrac­

tor (Boeing Aerospace Company), the Orbiter prime contractor (Rockwell
 

Int'l) and the IUS, CIU and Orbiter payload communication equipment sub­

contracto (TRW Defense and Space Group) to ascertain directions taken.
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A vital part of this activity has involved Axiomatix attendance and
 

participation in design reviews (conceptual, preliminary and critical) as
 
well as special interface meetings. These latter gatherings usually
 

involved detailed discussions of interface issues between the IUS and
 

Orbiter communication systems that surfaced at the design reviews. Dur­

ing the performance of the FY78 effort, Axiomatix provided technical sup­

port to the CIU Conceptual Design Review, the IUS SGLS Transponder Pre­

liminary Design Review (PDR), the CIU PDR, and the IUS SGLS Critical
 

Design Review (CDR), as shown in Figure 3. Also shown in Figure 3 is a
 

schedule for future design reviews that Axiomatix plans to support.
 

2.1.4 Relationship to Parallel Work
 

The work performed under the subject contract was strongly inter­

related to parallel efforts. Contract NAS 9-15514A, "Shuttle Orbiter
 

S-band Communication Equipment Design Evaluation," provided support to
 

critique the design and assess the performance of the individual NASA
 

Orbiter S-band communication equipment (excluding the DOD CIU). Contract
 

NAS 9-15240D, "Shuttle Payload S-Band Communications Study," forms the
 

system framework which ties together the various payload-related equipment
 

(excluding the IUS and CIU). Under Contract NAS 9-15604B, a handbook,
 

"Users' Handbook for Payload-Shuttle Data Communication," was provided.
 

Also, the report, "Guidelines for Choosing and Evaluating Payload Frequen­

cies," produced under Contract NAS 9-15604A, was related to this effort.
 

2.2 Contents of the Final Report
 

There are five sections which address various aspects and details
 

of the work.
 

Section 3.0 contains functional descriptions of the various Orbiter
 

communication/avionic equipment and IUS communication equipment. Included
 

in this section are the details of the IUS/Orbiter communication/avionic
 

interface issues.
 

Section 4.0 addresses the IUS/Orbiter communication redundancy and
 

illustrates the areas of single-point failures. The system performance
 

of nonredundant failures is evaluated and possible "workarounds" are
 

recommended.
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In Section 5.0, the RF coverage of the IUS/Orbiter antennas is
 

evaluated for a single and tandem IUS in the payload bay for IUS station­

keeping and for an IUS at maximum range. Included fn this section are
 

the protection requirements for the IUS and Orbiter antennas at close
 

proximity, the PI receiver sensitivity requirements versus range, and the
 

PI RF power output requirements versus range.
 

The ESTL (Electronic System Test Laboratory) test requirements
 

are presented in Section 6.0.
 

Finally, in Section 7.0, the link budgets for the IUS/PI/CIU com­

munications are provided. From these link budgets, the PI receiver sen­

sitivity and transmitter power output selections can be optimized versus
 

range.
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3.0 IUS/ORBITER COMMUNICATION INTERFACE DEFINITION
 

The Orbiter avionics equipment serving the IUS in the attached and
 

detached modes perform two major functions. First, there are avionic
 

equipment that perform payload RF and baseband signal processing functions.
 

Second, there are avionic equipment that perform the payload data handling
 

functions. The equipment in the first category are the Payload Interroga­

tor (PI), Payload Signal Processor (PSP), Communication Interface Unit
 

(CIU), and Ku-Band Signal Processor (KuSP). The equipment in the second
 

category are the Payload Data Interleaver (PDI); PCM Master Unit (PCMMU),
 

Network Signal Processor (NSP), and various DOD encryptor/decryptor units.
 

3.1' Attached IUS Communication
 

In the attached mode, a hard line (umbilical) provides two-way
 

communication between the IUS and the Orbiter. Scientific data, engineer­

ing data, guidance, navigation and attitude control data (GN&C) are
 

received by the Orbiter from the IUS.
 

Alternately, command data, GN&C, and uplink data are transmitted
 

to the IUS from the Orbiter.
 

Figure 4 illustrates the functional scientific data interfaces for
 

attached payloads. Only limited processing--that required to throughput
 

data to a ground terminal--is provided for IUS medium-band and wideband
 

scientific data inputs (inputs in the range of 16-256 kbps). For data
 

rates below 64 kbps, the data can be routed through the PDI to the PCMMU,
 

where it is made available to the general-purpose computers (GPC) for pro­

cessing and onboard display. A payload specialist crew member may then
 

interface directly with a specific experiment, as required. Medium-band
 

scientific data is routed to the receiving ground terminal via either the
 

S-band FM link or the Ku-band system, as follows:
 

(1) S-band FM:
 

Analog: 300 Hz - 4 MHz 

or 

Digital: 200 bps - 5 Mbps NRZ-L, or 
200 bps - 2 Mbps biphase-L 

C2) Ku-band: 

Analog: DC - 4.5 MHz BW 
plus Digital: 16 kbps - 1024 Mbps biphase-L 

or 16 kbps - 2 Mbps NRZ-L, M or S 



Engineering Data 

(64Channes)(5 Channels) 

Payload PCM 
Data F-lMaster 
ler- Unitl'eaver 

To Other 
Engineering 
Data Services 

OOerational Data
(Tlmtr n 

S-Band PM
Tran­

1.024 Mbps max 
Analog 2 MHz BW PayloddFMReo d r SignalFProcessor ITrans-

Attached Digital: 5 Mbps max I FM i 

Payload 

Interface 

Analog: 4.0 MHz max SignalPaylad nalg:l,PocesorRelay 

P 

Operational., 

40 Mz 

IDeployed'-­

1Recorder 

16 kbps- 2 Mbps Digital 
16 kbps- 4 Mbps Digital 

2 Mbps- 50 Mbps.Digital 

Ku-Band 

Signal 

kp-Assmbly 

KuBnt 

E- I 
DC- 4.5 MHz Analog tis 

S-Band PM
 
Direct or
 
Relay
 

FMNetwork
 
Direct
 

Ku-Band
 
Relan
 

Figure 4. Attached Payload Scientific Data Interface
 



35 

The Ku-band wideband analog channel input (DC - 4.5 MHz) can be
 

used by the IUS or CIU for analog telemetry as a transparent throughput
 

channel, which provides flexibility and minimum Orbiter processing. Capa­

bility is constrained only by the KuSP bandwidth.
 

Figure 5 depicts the Orbiter provisions for processing, displaying
 

and downlinking systems status data from the IUS in support of monitoring
 

and checkout functions. Data can be accessed by the Orbiter via one of
 

five inputs to the PDI which makes specific parameters contained in the
 

input PCM bit stream (0-64 kbps) available to the PCMMU for insertion into
 

the operational instrumentation (01) downlink and available to the GPC's
 

for processing and display.
 

The PDI provides the capability to receive engineering data from
 

up to five attached payloads simultaneously. The PDI then decommutates
 

up to four of these inputs and provides time-tagged, time-homogeneous data
 

from these four payloads simultaneously to the Orbiter data processing
 

subsystem (DPS) for onboard display and/or transmission to the ground-via
 

01 downlink.
 

In order to provide the data processing service, the input data
 

to the PDI must be in a standard format, as follows:
 

* Bits per word: 8
 

* Words per frame: 1024 max
 

* Subframe rate groups per frame: 4 max
 

* Words per subframe: 128 max
 

* Frame rate: 200 per second max
 

* Bits per frame synchronization: 8, or 16, or 24, or 32
 

* Process data rate: up to 64 kbps
 

The throughput data rate (composite PDI output to the PCMMU) is
 

limited to 64 kbps maximum on-orbit and 5 kbps for ascent.
 

A capability to throughput data which is in nonstandard format,
 

or other unique data such as encrypted data, is also provided by the PDI.
 

In this mode, the frame synchronization circuitry is bypassed and artifi­

cial data blocks are established to transfer the data to the PCMMU. No
 

onboard processing or display of the data is available when operating in
 

the nonstandard mode.
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A capability for direct recording of certain types of payload data
 

isprovided, as shown in Figure 6. The payload recorder has 14 tracks
 

capable of serial or parallel recording of digital and analog data. Data
 

rates from 25.5 kbps to 1.024 Mbps and analog data of 1,9 kHz -to 2 MHz may
 
be recorded. A minimum record time of 56 minutes isprovided at the max­

imum data rate. Simultaneous analog/digital parallel recording islimited
 

to the first record pass. Subsequent passes are restricted to sequential
 

single-channel digital record.
 

A total of 14 tape speeds (four per mission) are available and
 

selectable by onboard or ground control.
 

Guidance, navigation and attitude control services are provided
 
for the IUS by the CIU or PSP using the interface shown in Figure 7,over
 

which the Orbiter provides state vector update data words to the IUS. The
 

CIU transmits the Orbiter state vector data to the IUS using the SGLS com­

mand format of ternary frequency-shift-keying (FSK) with "S"tones of
 

65 kHz, "0"tones of 76 kHz, and "I"tones of 95 kHz. The PSP transmits
 

the Orbiter state vector data to the NASA IUS on a 16-kHz sine wave sub­

carrier at a binary command data rate of 2 kbps.
 

3.2 Detached IUS Communication
 

The basic low rate data-processing/display services provided for
 
the attached IUS are also provided for detached or deployed IUS via S-band
 

RF communications link between the Orbiter and IUS. Figure 8 shows the
 

interfacing hardware that supports this link. Note that, when a spacecraft
 

is launched by the IUS, as shown in Figure 8, the spacecraft communicates
 

only in the attached mode through the IUS. Also note that the PI cannot
 
communicate with the IUS and the spacecraft simultaneously.
 

The Orbiter S-band transceiver (PI) supporting RF communications
 

with detached payloads iscompatible frequency-wise with STDN, SGLS, and
 

DSN-compatible payloads--capable of operating at approximately 850 selec­

table frequencies inthe 2200-2300 MHz range.
 

Telemetry signals inthe Orbiter standard mode of operation are
 

routed from the PI, after carrier demodulation, to the PSP or CIU, where
 

the data is demodulated off of a 1.024 MHz subcarrier (and a 1.7 MHz sub­

carrier by the CIU). The data isthen routed to the PDI/PCMMU/GPC for
 

decommutation processing, display and downlinking in the same manner as
 

the attached IUS or payload.
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Data rates that can be accommodated by the PSP in the standard
 

mode are 16, 8, 4, 2 and 1 kbps. Processing the 32, 24 and 16 kbps may
 
be provided by the CIU located at the payload station in the aft flight
 

deck for DOD missions. Inthis mode, the PSP is bypassed. The PSP is
 
being designed to accommodate any one of six PCM code formats inthe stan-­

dard mode (biphase-L, M, S andNRZ-L, M,-S).
 

The Orbiter standard mode of operation was selected to provide a
 
degree of flexibility of operation while minimizing basic Orbiter hardware
 

costs. Payloads that ultimately fly on the Orbiter which are incompatible
 

with the standard in terms of data rate or subcarrier frequency will be
 
accommodated in a transparent throughput fashion using a "bent-pipe" mode
 
of operation. In this mode, the interrogator output, following carrier
 

demodulation, is routed to the KuSP 4.5 MHz analog input channel or the
 
2 Mbps digital channel. These inputs are essentially limited only by the
 

respective bandwidths and are capable of a wide range of data rate/subcar­

rier options (the 2 Mbps channel is limited to one subcarrier). Unique
 

demodulation hardware at either the Ku-band ground station or the payload
 
operation center currently must be provided by the payload requiring bent­
pipe service. The bent-pipe channels are available for use by one detached
 

payload at a time with the following capabilities:
 

* Digital data from 2 kbps to 2 Mbps, or
 

* Analog data from 2 kHz to 2 MHz, or
 

* Digital data from 16 kbps to 4 Mbps, or
 

* Analog data from DC to 4.5 MHz.
 

No onboard processing or display of data is available when operat­

ing inthe bent-pipe mode.
 

3.3 Orbiter Avionic Equipment Serving the IUS
 

In order to determine that the interfaces between Orbiter avionic
 

equipment serving the IUS are compatible and that the NASA performance
 

requirements are being met, the details of the avionic equipment were
 

studied. This section summarizes the avionic equipment operation and
 

capability.
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3.3.1 Payload Interrogator
 

The function of the PI isto provide the RF communication link
 

between the Orbiter and detached payloads. For communication with the
 

NASA payloads and the NASA IUS, the PI operates inconjunction with the
 

PSP. During DOD missions, the PI is interfaced with the CIU. Nonstandard
 

(bent-pipe) data received by the PI from either NASA or DOD payloads is
 

delivered to the KuSP, where it is processed for transmission to the ground
 

via the Shuttle/TDRSS link.
 

Simultaneous RF transmission and reception is the primary modeof
 

PI operation with NASA IUS, DOD IUS, and payloads. The Orbiter-to-payload
 

link carries the commands while the payload-to-Orbiter link communicates
 

the telemetry data. Inaddition to this duplex coperation, the PI pro­

vides the "transmit only" and "receive only" modes of communication with
 

some payloads.
 

Figure 9 shows the functional block diagram for the PI. The
 

antenna connects to an input/output RF port which is common to the
 

receiver and transmitter of the PI unit. Because of a requirement to
 

operate the PI simultaneously with the Shuttle/ground S-band network tran­

sponder which radiates and receives on the same frequency bands, a dual
 

triplexer is employed. The S-band network transponder emits a signal at
 

either 2217.5 MHz or 2287.5 MHz; both frequencies thus fall directly into
 

the PI receive band of 2200-2300 MHz. Conversely, the IUS and payload
 

transmitters, operating ineither the 2025-2120 MHz (NASA) or the 1764­

1840 MHz DOD bands, can interfere with uplink signal reception by the
 

S-band network transponder receiver frequencies of 1776.733 MHz or
 

1831.787 MHz inthe DOD mode and 2041.947 MHz or 2106.406 MHz inthe NASA
 

STDN/TDRS mode. Therefore, by use of the triplexer and by simultaneously
 

operating the PI and network transponder in the mutually exclusive sub­

bands, the interference problem iseffectively eliminated.
 

The receiver frequency and phase-tracking-loop begins at the sec­

ond mixer. As shown in Figure 9, the output of the first IF amplifier is
 

down-converted to the second IFas a result of mixing with a variable sec­

ond LO frequency, fL02* The portion of the second IFwhich involves only
 

the carrier tracking function isnarrowband, passing the received signal
 

residual carrier component and excluding the bulk of the sideband frequen­

cies. Demodulation to baseband of the second IFsignal isadcomplished by
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mixing with a reference frequency, fR' The output of the tracking phase
 

detector, after proper filtering, is applied to the control terminals of
 

a VCO which provides the second local oscillator signal, thereby closing
 

the tracking loop. Thus, when phase track is established, fLO2 follows
 

frequency changes of the received payload signal.
 

For the purpose of frequency acquisition, the fL02 may be swept
 

over a ±75 kHz uncertainty region. Sweep is terminated when the output of
 

a coherent amplitude detector (CAD) exceeds a preset threshold, indicating
 

that the carrier tracking loop has attained lock. The output of the CAD
 

also provides the AGC to the first IF amplifier.
 

A wideband phase detector is used to demodulate the telemetry sig­

nals from the carrier. The output of this detector is filtered, envelope
 

level controlled, and buffered for delivery to the PSP, CIU, and KuSP.
 

The PI receiver frequency synthesizer provides the tunable first
 

LO frequency and the corresponding exciter frequency to the transmitter
 

synthesizer. It also delivers a reference signal to the transmitter phase
 

modulator. Baseband NASA or DOD command signals modulate the phase of
 

this reference signal which is, in turn, supplied to the transmitter syn­

thesizer where it is upconverted to either the NASA or DOD transmit fre­

quency and applied to the power amplifier.
 

For transmitter efficiency optimization, separate NASA and DOD RF
 

power amplifier units are used. Depending on the operating band selected;
 

transmitter output is applied to either the high-band or low-band triplexer.
 

3.3.2 Payload Signal Processor
 

The PSP performs the following functions: (1) it modulates NASA
 

IUS and NASA payload commands onto a 16 kHz sinusoidal subcarrier and
 

delivers the resultant signal to the PI and the attached payload umbilical,
 

(2) it demodulates the NASA IUS and NASA payload telemetry data from the
 

1.024 MHz subcarrier signal provided by the PI, and (3)it performs bit
 

and frame synchronization of demodulated telemetry data and delivers this
 

data and its clock to the PDI.
 

The PSP also transmits status messages to the Orbiter's GPC; the
 

status messages allow the GPC to control and configure the PSP and vali­

date command messages prior to transmission.
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The functional block diagram for the PSP is shown in Figure 10.
 

The PSP configuration and payload command data are input to the PSP via
 

a bidirectional serial interface. Transfer of data in either direction
 

is initiated by discrete control signals. Data words 20 bits in length
 

(16 information, 1 parity, 3 synchronization) are transferred across the
 

bidirectional interface at a burst rate of 1 1Mbps, and the serial words
 

received by the PSP are applied to word validation logic which examines 

their strucl:ure. Failure of the incoming message to pass a validation 

test results in a request for a repeat of the message from the GPC. 

Command daLa is furLher processed and validated as to contenL and 

the number of command words. The function of the command buffers is to 

perform data rate conversion from the 1 Mbps bursts to one of the selected 

standard command rates (see Table'15). Command rate and format are spec­

ified through the configuration message control subunit. 

Table 15. NASA Command System Parameters
 

Subcarrier Frequency 16 kHz, sinewave
 

Bit Rates 2000 2N bps, N=0,,2,...,B
 

l O-5
Eb/N for Pb =I X 10.5 dB
 

From the message buffers, the command bits are fed via the idle
 

pattern selector and generator to the subcarrier biphase modulator. The
 

idle pattern (which, in many cases, consists of alternating "ones" and
 
"zeros") precedes the actual command word and is usually also transmitted
 

in lieu of command messages. Subcarrier modulation isPSK NRZ-L only.
 

Figure 8 also shows (dotted line) an interface between the GN&C
 

MDM and the PSP. In the actual implementation, the PSP receives the GN&C
 

data from the GPC in the same way it receives command data (i.e., over
 

the payload MDM). In fact, the PSP makes no distinction between GN&C
 

data and command data and processes the GN&C data in exactly the same
 

way as commands.
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The 1.024 MHz telemetry subcarrier from the PI isapplied to the
 

PSK subcarrier demodulator. Since the subcarrier is biphase modulated, a
 

Costas-type loop is used to lock onto and track the subcarrier. The
 

resulting demodulated bit stream is input to the bit synchronizer subunit,
 

where a DTTL bit synchronization loop provides timing to an integrate-and­

dump matched filter which optimally detects and reclocks the telemetry data.
 

From the frame synchronizer, the telemetry data with corrected
 

frame synchronization words and clock are fed to the PDI. The telemetry
 

detection units also supply appropriate lock signals to the Orbiter oper­

ational instrumentation equipment, thus acting to indicate the presence
 

of valid telemetry.
 

3.3.3 Communication Interface Unit
 

The primary function of the CIU is to provide command and telem­

etry data conditioning between the Orbiter and the IUS transponder. The
 

CIU consists physically of four boxes and two control panels mounted in
 

an Orbiter standard console. The four boxes consist of two GFE units
 

{CKGT-60 and KGR-60), a CIU BLACK unit, and a CIU RED unit. The CIU/KG
 

control and display panels control the operating mode of the CIU. The CIU
 

BLACK unit performs command and telemetry processing of BLACK (encrypted
 

and clear) data. The CIU RED unit performs command and telemetry process­
ing of RED (unencrypted) data.
 

The CIU accepts command data from one of five sources:
 

Cl) S-band MOM
 

(2) KuSP
 

C3) GN&C MDM
 

C4) Crew-generated data from control panel
 

(5) T-O umbilical.
 

Input command data isvalidated, formatted, modulated on an SGLS baseband
 

carrier Csee Figure 11) at 1 k baud, and forwarded to one of six destina­

tions. In the attached mode, the CIU forwards the conditional command
 

data directly over hard line to one of two redundant IUS transponders on
 

one of two IUS's inthe Orbiter payload bay. Inthe detached mode, the
 

CIU forwards the conditioned command data to one of two redundant PI's for
 

RF transmission to the IUS transponder.
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The CIU receives IUS telemetry over hard line (attached and from
 

the PI (detached). Inthe attached or hard line mode, the CIU receives
 
data from one of two IUS's and provides selected telemetry data (NRZ-L)
 

to the KG-60 and the PDI., The CIU provides the same telemetry data after
 

NRZ-L to biphase-L conversion for selection to the Payload Recorder (PR),
 

FMSP or KuSP. The CIU also receives NRZ-L data from the Wideband Data
 

Interleaver (WBDI) on the IUS and performs NRZ-L to biphase-L conversion.
 

The WBDI data is selected to be supplied to the PR, FMSP or KuSP. The
 

IUS EMU analog environmental data is received by the CIU for selection to
 

the PR. In the detached or RF mode, the CIU receives telemetry data from
 

one of the two Pl's as a PSK subcarrier (1.024 MHz) frequency multiplexed
 

with FM/FM environmental data on a 1.7 MHz subcarrier. The CIU performs
 

PSK demodulation and bit synchronization to generate NRZ-L telemetry data
 

and clock for selection to the KGR-60 or the PDI. The same telemetry data
 

is NRZ-L to biphase-L converted for selection to the PR, FMSP or KuSP.
 

The CIU performs FM demodulation on the 1.7 MHz subcarrier to generate
 

three-channel FM (16, 24 and 32 kHz). The CIU provides the three-channel
 

FM plus a 00 kHz reference for selection to the PR.
 

Figure 12 shows a simplified block diagram of the CIU. Micropro­

cessor technology isfundamental to the CIU operation. The microprocessor
 

performs the bit synchronization function on the telemetry data for pro­
cessing by the KGR-60 and then receives telemetry data (NRZ-L) and clock
 

from the KGR-60. The microprocessor performs frame synchronization, VCC
 
extraction (,required for DOD commands), command authentication, and deter­

mines command rejection. The microprocessor also accepts GN&C data and
 

provides the command generator function to send GN&C or crew-generated
 

command data to the FM/AM modulator via the .KGT-60. Thei required binary­

to-ternary conversion on the command data is also performed by the micro­

processor. Additional functions performed by the microprocessor are CIU
 

mode control and status display.
 

3.3.4 Ku-Band Signal Processor
 

The KuSP receives IUS and payload data from the PI, PSP, CIU, PR,
 

operational recorder (OR), and attached payload interface (API). Similarly,
 

the KuSP transmits data to the IUS and payload via the CIU or NSP/GPC/PSP
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(or CIU). Table 16 presents the characteristics of the data that are
 

handled by the KuSP. The 216 kbps data shown for the forward link orig­

inates at the TDRSS ground station and can be 72 kbps command data to the
 

NSP, 128 kbps DOD command data to the CIU, 128 kbps text and graphics data
 

and 216 kbps data containing 72 kbps command data plus digital voice data
 

that is sent directly to the NSP. Figure 13 illustrates the functional
 

processing of the KuSP for data to be transmitted to the IUS and payload
 

(i.e., the forward link). When the forward link contains the normal
 

S-band 216 kbps operational data of the 72 kbps command data plus digital
 

voice data, the data mode select is set to transfer the data directly to
 

NSPI and NSP2 without any processing in the KuSP. Note that, in this data
 

select position, the possible data rates are 32, 72, 96 and 216 kbps.
 

When the 216 kbps forward link data contains either text and graphics
 

data or DOD command data, then data mode select is set to transfer the
 

72 kbps command data to NSP1 and NSP2. The 128 kbps DOD command data
 

is actually 2 kbps which has been coded to use the available 128 kbps
 

data rate without having to modify the KuSP bit synchronizer or frame
 

synchronizer design.
 

The characteristics of the data that must be processed by the
 

KuSP on the return link are quite varied, as shown in Table 16. The
 

return link is transmitted in one of two modes which are identified by
 

the type of carrier modulation utilized. Mode 1 implements unbalanced
 

quadriphase-shift-keying (UQPSK) while Mode 2 implements FM. In both
 

modes of operation, two of the channels (Iand 2) UQPSK modulate a sub­

carrier. Mode 1 utilizes this modulated subcarrier along with the third
 

channel to UQPSK the carrier, as shown in Figure 14. Mode 2 linearly
 

sums the modulated subcarrier with the third channel and frequency
 

modulates the carrier with the resultant summed signal, as shown in
 

Figure 15.
 

Channel 1 always (Modes 1 and 2) carries the operations data of
 

192 kbps consisting of 128 kbps telemetry data and two 32 kbps delta­

modulated voice channels. Similarly, the data on Channel 2 does not
 

change from Mode 1 to Mode 2. Channel 2 carries the output from the
 

PR, the OR, and the PSP as well as low rate data for the API and narrow­

band bent-pipe data from the PI. The range of data rates handled by
 

the KuSP thannel 2 is shown in Table 16 to be 16-1024 kbps Manchester
 

coded data, 16-2000 kbps NRZ coded data or DC-2 MHz analog bent-pipe data.
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Table 16. Ku-Band Signal Processor Data Characteristics
 

Processor Interface 


FORWARD LINK
 

Operations Data - NSP(1,2) 


Command/Text & Graphics- NSP 

(1,2) and Text & Graphics 


Command/DOD Payload Command 
Data - NSP(l ,2)/CIU 

RETURN LINK 

CHANNEL 1 (MODE I/MODE 2) 

Operations Data - NSP(I,2) 

CHANNEL 2 (MODE I/MODE 2) 

Payload Recorder (PR) 

Operations Recorder (OR) 

Payload low data rate - PSP 
(1,2) or Attached Payload 

Interface (API)
 

PI(1,2) low data rate 


CHANNEL 3 (MODE 1)
 

Attached Payload Interface 

(API)
 

CHANNEL 3 (MODE 2)
 

PI(1,2) high data rate 


Attached Payload Interface 


Video Interface Unit 


Type 


Digital 


Digital 


Digital 


Digital 


Digittl 


Digital 


Digital 


Digital/Analog 


Digital 


Digital/Analog 


Digital/Analog 


Analog 


Rate or Bandwidth
 

32,72,96,216 kbps (Manchester)
 

72 kbps Command
 
128 kbps Text & Graphics
 
16 khps Frame Sync
 
(Manchester)
 

72 kbps Command
 
128 kbps DOD Payload
 
16 kbps Frame Sync
 

(Manchester)
 

192 khps (Manchester)
 

25.5-1024 kbps (Manchester)
 

25.5-1024 kbps (Manchester)
 

16-2000 kbps (NRZ)
 
16-1024 kbps (Manchester)
 

16-2000 kbps (NRZ)
 
16-1024 kbps (Manchester)
 
0-2 MHz
 

2-50 Mbps (NRZ)
 

16-4000 kbps (NRZ)
 
0-4.5 MHz
 

16-4000 kbps (NRZ)
 

0-4.5 MHz
 

0-4.5 MHz
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The data carried on Channel 3 in Mode 1 is digital data of
 

2-50 Mbps (NRZ) which is rate 1/2-constraint length 7, convolutionally
 

encoded by the KuSP to maintain adequate performance margin at bit error
 

probability of 10-6 . Because the output data rate of the convolutional
 

encoder is twice the input, the input data clock must be doubled by the
 

KuSP. The input clock is regenerated and synchronized with the input
 

data to compensate for phase offsets and to avoid sampling the data
 

stream near transitions. A voltage-controlled oscillator (VCO) at twice
 

the clock frequency is divided by 2 and compared in a phase/frequency
 

detector. The detector output locks the VCO to twice the clock frequency
 

over the entire frequency range of 2 to 5 MHz. Use of the phase/frequency
 

detector makes it possible to cover the 25:1 frequency range without
 

selecting bands. To correct for asymmetry in both the clock (specified
 

at 20 percent maximum) and data (specified at 25 percent maximum) at
 

the KuSP input, a very symmetric clock is regenerated and used to clock
 

the convolutional encoder. The data bits are sampled using a pulse
 

generated every other clock pulse. The KuSP clock regeneration circuit
 

senses the proximity of a data transition to the sample pulse and inverts
 

the clock when the transition is within 5 nsec of the sample pulse, thus
 

shifting the sample pulse toward the middle of the data bit. The KuSP
 

reduces the encoder output data asymmetry to less than 10 percent for
 

all input rates and for the input clock and data asymmetry up to their
 

maximum specified values.
 

In Mode 2, the UQPSK modulated 8.5 MHz subcarrier is filtered,
 

as shown in Figure 15, by a bandpass filter with -3 dB points at 4.75
 

and 12.8 MHz. This BPF has extremely sharp low frequency skirts (-40 dB
 

point 4.0 MHz) to minimize spectral spillover of the modulated sub­

carrier into the Channel 3 frequency band (DC-4.5 MHz). The Channel 3
 

input is passed through a lowpass filter with specified amplitude
 

response of -3 dB at 5.5 MHz and -20 dB at 8.1 MHz. Differential delay
 

is no more than 20 nsec due to equalization. Although the combination
 

of these two filters will provide excellent performance of the linear
 

Channel 3, their selection is suboptimum for Channel 2 performance since
 
the bandpass necessarily has a high bandwidth to center frequency ratio
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and the lowpass filter provides only nominal skirt rejection. Note that
 

the degradation to Channel 2 due to spectral spillover from Channel 3
 

depends on the type of data on Channels 2 and 3. The worst degradation
 

occurs when Channel 2 is 2 Mbps NRZ digital data, and Channel 3 has a
 

flat spectrum greater than 8 MHz. Table T6 presents the.type of data
 

present in Channel 3 for Mode 2. The data with the greatest spectral
 

bandwidth and hence the most potential degradation to Channel 2 is the
 

4.0 Mbps NRZ digital data, but it is unlikely that Mode 2 would be used
 

to transmit this data. More likely, Mode 1 would be used to transmit
 

digital data at this high rate. The analog data from the PI can range
 

from DC to 4.5 MHz but, since the PI contains a lowpass filter with
 

effective noise bandwidth equal to 5 MHz, it can be expected that this
 

signal will cause little degradation to Channel 2. The video interface
 

unit (VIU) outputs a television signal with spectral bandwidth of approxi­

mately 4.5 MHz. Here again, there will be little spectral spillover into
 

Channel 2 and there should be little degradation. The data from the API
 

can be either digital data from 16 to 4000 kbps or analog data with spec­

tral bandwidth from DC to 4.5 MHz. Again, high rate digital data will
 

probably be transmitted in Mode 1 rather than Mode 2. However, there is
 

no filtering specified for the API; therefore, the greatest potential
 

degradation to Channel 2 from Channel 3 is when Channel 2 contains 2 Mbps
 

NRZ digital data and the output of the API has a larger spectral bandwidth
 

than 4.5 MHz, resulting in significant spectral spillover. This worst­

case degradation to Channel 2 is 3.3 dB. While the circuit margin on
 

Channel 2 is large enough to allow this much degradation, the use of the
 

three channels for a given mission should be examined to guarantee that
 

the correct mode is selected and that the data to be transmitted will
 

achieve the required performance on each of the channels.
 

3.3.5 FM Signal Processor
 

The FMSP and FM transmitter provide a capability for transmission
 

of data not amenable for i-ncorporation into the limited-rate PCM telemetry
 

data stream. The data to be transmitted via FM include television, digital
 

data from the main engines during launch, wideband payload data, or digital
 

data from the PR or the API. The characteristics of the data and the per­

formance specifications for the FMSP and the FM transmitter are presented
 

inTable 17.
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Table 17, S-Band FM Performance Specifications
 

FM Signal Processor
 

TV Channel Input 


TV Channel Gain 


TV Channel Dynamic Range 


Frequency Response ±0.25 dB 

and Phase Ripple ±1.0
 

CCIR K Factor 


Main Engine
 

Data in 3 Channels 


Subcarrier Frequencies 


Subcarrier Modulation 


Analog Data Bandwidth 


Wideband Digital Data Rate 


Recorded Data - 2 Channels
 
Data Rate 


Narrowband DOD Digital Data Rate 


Input Common Mode Voltage 

(DC to 2 MHz)
 

EIA T-V Standard RS 170
 

19 dB ±0.8 dB to -0.25 dB
 

51 dB ±0.25 dB
 

DC to 4.5 MHz
 

<2%
 

60 kbps BPL
 

576 kHz, 768 kHz, 1024 kHz
 

±1800 at ±150
 

300 Hz to 4 MHz
 

200 bps to 5 Mbps NRZ, or
 
200 bps to 2 Mbps Manchester Coded
 

25.5 kbps to 1024 kbps
 

250 bps to 256 kbps
 

1V max
 

FM Transmitter
 

Frequency 


Output Power (into 1.5:1 load) 


Deviation Sensitivity (for
 
deviation up to ±4.5 MHz peak) 


Frequency Response !I dB 


Incidental AM 


Incidental PM 


Intermodulation Distortion 

(2-tone equal amplitude) 


2250.0 MHz ±0.003%
 

lOW min, 15W max
 

1MHz/V peak ±10%
 

DC to 5.0 MHz
 

5% max over input range
 

<5 kHz RMS over modulation BW
 

<40 dB with frequency deviation
 
±1 MHz
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Conditioning and multiplexing for FM transmission occur in the
 

FMSP, as shown in Figure 16. Video and wideband digital and analog
 

signals are routed to the FM transmitter with only matching and filter­

ing, but narrowband digital engine data are placed on subcarriers at
 

576, 768, and 1024 kHz.
 

The FM transmitter operates at 2250 MHz with an output power of
 

lOW. Both baseband and RF filtering are provided to reduce out-of-channel
 

interference to the PM and payload receivers. The nominal RF bandwidth
 

is 10 MHz.
 

To further identify the interface between the payload system
 

(i.e., the API and PR) and the FMSP, Table 18 presents the requirements
 

on the input signals to the FMSP. As additional information concerning
 

the processing of the data, Tablel8 alsopresents the characteristics of
 

the data signals output to the FM transmitter. Corresponding to each
 

type of input signal, the signal source (i.e., API or PR) is identified.
 

The signal type is either digital or analog with the digital data further
 

specified by the type of data coding. Note that, for the NASA wideband
 

payload data, the data coding can be either Manchester II (biphase-L) or
 

NRZ-L, but the Manchester coded data is limited to data rates less than
 

2 Mbps rather than 5 Mbps for NRZ-L coded data. The signal level voltages
 

are all peak-to-peak (p/p) and line-to-line for differential coupling and
 

line-to-common for single-ended coupling. The impedance for all the
 

signals is 75 ohms ±10%, except,the recorded data from the PR which is
 

71 ohms ±10%. The rise and fall times for the digital data are also
 

presented in Table 18. It is desirable to keep the rise and fall times
 

less than 10% but, in some cases, absolute times are specified which deter­

mine the type of output drivers required at the PR, API and payload. Note
 

that there is an additional specification of ±2% data asymmetry and ±0.1%
 

bit jitter on the PR output signal to reduce the degradation associated
 

with these types of signal distortions. The output of the FMSP for the
 

PR signal has a specification of ±0.25% bit jitter which is expected due
 

to the multiplication of the jitter through the FMSP buffering. Actually,
 

each of the input signals to the FMSP should have these specifications,
 

but typically these are not difficult specifications to meet except from
 

tape recorders.
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Table 18. Input and Output Signal Characteristics of FMSP for Payload Data
 

Signal 


INPUT SIGNALS
 

.Recorded Data 

(PR) 


Wideband 

Payload 

(API) 


Wideband 

Payload 

(API) 


DOD Payload 

(API or CIU) 


OUTPUT SIGNALS 


Recorded Data 


Wideband 

Payload 


Wideband 

Payload 

DOD Payload 


1 Signal

Type 


Digital 

I 


Digital 


Analog

I 

Digital 

I 


Digital 


___jitter
 

Digital 


Analog 


Digital 


Signal

Data Coding Data Rate Level Rise/Fall Time 


Manchester II 22.5 kbps (min) 3-9V p/p <100 nsec 

1024 kbps (max) line/line <±2% asymmetry 


<0.1% bit jitter
 

Manchester II 200 bps-2 Mbps 5V ±0.5 V <50 nsec 

NRZ-L 200 bps-5 Mbps p/p 


line/line
 

300 Hz-4 MHz IV ±10% 

p/p 


. line/line
 

Manchester II 250 bps-250 kbps IV ±0.6 V <100 nsec 

or NRZ-L p/p


line/line,
 

22.5 kbps (min) 1.27V ±5% 10% of bit dura-

Manchester II 1024 kbps (max) p/p tion;c±O.25% bit 


Manchester II 200 bps-2 Mbps 4V ±5% <10% 
NRZ-L 200 bps-5 Mbps p/p 

300 1Hz-4 MHz 4V ±15% 
p/p 

Manchester II 250 bps-250 kbps 1.27V±5% <100 nsec 

or NRZ-L 


Coupling 


Balanced 

Differential 


Balanced 

Differential 


Balanced 

Differential 


Balanced 

Differential 


Single Ended 


Single Ended 


Single Ended 


Single Ended 


Impedance
 

71 ohms
 
±I0%
 

75 ohms
 
±10%
 

75 ohms
 
±10%
 

75 ohms
 
±10%
 

71 ohms
 

±10%
 

75 ohms
 
±10%
 

75 ohms
 
±10%
 

75 ohms
 
±10%
 

-I 

http:tion;c�O.25
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3.3.6 Multiplexer/Demultiplexer
 

The primary interface unit between the GPC and other subsystems
 
isan MOM, shown in Figure 17. The MDMs act as a GPC-to-Orbiter format
 
conversion unit. They accept serial digital information from the GPCs
 
and convert or format this information into analog, discrete, or serial
 
digital form for transfer to Space Shuttle subsystems. The MDMs can also
 
receive analog, discrete, or serial digital information from the Space
 
Shuttle subsystems and convert and format these data into serial digital
 
words for transfer to the GPC. Inaddition, MDMs are used by the instru­
mentation subsystems, but only ina receive mode. Each MOM is controlled
 
through either the primary port connected to the primary serial data bus
 
or through the secondary port connected to the backup serial bus iffailure
 
is encountered with the primary system. The input and output of the MDM
 
are via a multiplexer interface adapter (MIA).
 

The characteristics of the serial digital data input/output chan­
nels between the Orbiter subsystem (e.g., NSP, PSP, CIU) I/0 buffer and
 
the MOM are shown inFigure 18. The Word and Message Discretes are in
 
the "0"states when the voltage level is between -0.6 V to +0.6 V and in
 
the "1"states when the voltage level is between +2.1 V to +5.9 V. These
 
discretes have differential signal termination with an impedance of 71
 
*7 ohms and a rise and fall time between 10 and 90 percent of 100 to 
1000 nsec, as shown in Figure 19..
 

When the Word Discrete is switched to a logical "I"state, the
 
Orbiter subsystem isenabled to transmit individual words to the MDM.
 
Figures 20 through 22 present the format for individual words to the
 
MOM. Figure 20 illustrates the overall data format and shows the various
 
parts of the MOM word. Figure 21 presents the specifications for the
 
data coding. Note that the burst data rate to the MOM is1 Mbps. The
 
first three bits of each MOM word are used for word synchronization and
 
are different from the normal Manchester coded bits. Figure 22 presents
 
the specifications for the nonvalid Manchester code used for word
 
synchronization.
 

When the Message Discrete is switched to a logical "1"state, the
 
Orbiter subsystem isinitiated to transfer multiple words under the con­
trol of the Word Discrete beginning with the first word. Figure 23 pre­
sents the specifications for the Message Discrete and the relationship
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SYNC SIGN OR MSB 	 DATA PARITY
 

Figure 	20. Serial Word Format
 

- 1 psec ±0.1% avg/word
 

I Oi 1111 1111111
:io I1o I 

"" F f _ 1	= + voltage
 
= 
07-	 0 -voltage
 

1000 nsec ±5% At the
 
1000 nsec ±5% 50%
 
500 nsec ±10% points
 

NOTE: 	 Biphase Level (Manchester II)
 
"I" represented by 10 for Data
 
"0" represented by 01
 

"I" represented by 01 for Data
 

"0"represented by 10
 

Figure 21. Data Code
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Word Sync
 

- 1 2.0 wsec 
±4.75% 

l 5 psec ±3% 

+ Volts 

+ Volts .I 
I0 


-I 

V1.5 psec 

Figure 22. Data Word Synchronization, Nonvalid
 
Manchester Code
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Word 1-_ 

Discrete 

- [--1.5 i0.5 psec 1.5 ±0.5 1sec-- -

Data JFL 

20 pssec 20 psec 

Figure 23. Serial Channel Data Transfer 
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between the Message Discrete and Word Discretes inthe transfer of
 

multiple MDM words.
 

Single-Ended Discretes are also shown, in Figure 18. These dis­

cretes have the same logical state specifications as Word and Message
 

Discretes. However, Single-Ended Discretes have rise and fall times of
 

20 isec (max). The power off impedance and load impedance must be
 

10 kohms (max) with a line drive capacitance of 35 pf/ft (min). The
 

corresponding input current is 2.5 mA inthe "0"state and 1.25 mA in the
 

"I" state.
 

The characteristics of the analog interfaces with the MOM are a
 

voltage 'range of 0-5 V (peak), a source impedance of 100 ohms (max), a
 

load impedance of 500 kohm (min), a load "OFF" impedance of 100 kohms
 

(min) and a line drive of 35 pf/ft (min). There can be only one analog
 

interface per return.
 

3.3.7 PCM Master Unit
 

The block diagram of the PCMMU is presented in Figure 24. Opera­

tional instrumentation (01) sensor data (designated as downlink data) are
 

acquired by the PCMMU inconjunction with MDMs. The MDMs, under control
 

ofthe PCMMUs, accept, encode, and store the data in a random access mem­

ory (RAM) located within the PCMMU. The stored data are "refreshed"
 

(updated) periodically under the control of a preprogrammed ,read-only
 

memory. This module is known as a "fetch PROM."
 

GPC sensor and derived data (designated as downlist data) are
 

acquired by GPCs and sent by a data bus to the PCMMUs. The PCMMU provides
 

a unique double-buffer memory for each computer input, which allows data
 

reception asynchronously while synchronously outputting previously
 

received data. This guarantees the homogeneity of the data (i.e., output
 

data are not overlaid by incoming data). Payload data are processed
 

through the PCMMU inthe same manner as the 01 sensor data except that
 

the PCMMU interfaces with the PDI.
 
The.Ol PCMMU, after accepting data from the MOM, computers, and
 

PDI, formats the data into a serial digital output stream for telemetry,
 

recording, and GSE. Format control isprovided by the output formatter,
 

which is programmable and can be modified by a set of instructions from
 

the computers.
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Figure 24. PCMMU Block Diagram
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The PCMMU has a maximum output capability of 128 kbps for purposes
 

of telemetry and on-board recording. The PCMMU, on command from the crew,
 
can send 64 kbps of information. This mode is primarily used inconjunc­

tion with the low bit rate of the transmission system (S-band or Ku-band)
 

and the TDRSS.
 
Formats have been developed for the ascent phase, on-orbit phase,
 

entry phase, and ground checkout. As noted in Figure 24, one of the for­
mat memories-is a 128 kbps PROM, which isa fixed format and cannot be
 
modified by the GPC. This format isused during power-up of the Orbiter
 

and during the ascent phase. A fixed format isnecessary because loss of
 

power to the PCMMU would result in loss of information from 64/128 kbs
 

RAMs (volatile memory).
 

3.3.8 Payload Data Interleaver
 

The programmable PCMMU can be modified from one flight to the next.
 

Since the Shuttle provides transportation for many types of payloads, a
 

programmable PDI was designed to interface with the PCMMU. the PDI (Figure
 
25) can accept data simultaneously from five different attached payloads
 

including the IUS/CIU and an input from the PSP, then select and individ­
ually decommutate the data for storage in a buffer memory. This memory is
 

accessible to the PCMMU and the data are included with the-Orbiter PCM
 
stream. The PDI isprogrammed onboard from the mass memory through the
 
GPC, which is used to select specific data from each payload PCM signal
 

and transfer them to buffer memory locations. An input switch matrix
 
selects four of the inputs for the bit synchronizers. The "chain" func­

tions of bit synchronization, decommutation, and word selection are pro­

vided for up to four simultaneous PCM streams in two possible modes.
 
Mode 1: Inthis mode, a chain bit synchronizes, master-frame
 

synchronizes, minor-frame synchronizes, and word synchronizes to the
 

incoming data stream. The word selector blocks data into proper words
 

for storage inthe data RAM and/or toggle buffer. PCM code type, bit
 
rate, PCM format, synchronization codes, and word selection are program­

mable under control of the decommutator format memories. Two word
 

selection capabilities for this mode of operation are as follows:
 
Type I: The first type selects all, or a subset of, the
 

words in a payload PCM format minor frame (or master frame for formats
 

without minor frames) for storage inthe toggle buffer.
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Type II: The second type of word selection is by parameter.
 
The specification of a parameter consists of its word location within a
 
minor frame, the first minor frame in which it appears, and its sample
 
rate. The specification is provided as part-of the decommutator control
 

memory format load.
 

Mode 2: In this mode, a chain bit synchronizes to the incoming
 
data, blocks it into 8-bit words, blocks the 8-bit words into frames,
 

supplies synchronization pattern at the start of each-frame, and includes
 
the status register as the last three 16-bit words of each frame. A homo­
geneous data set for this mode of operation is defined as all information
 

within this PDT-created frame. Code type, bit rate, frame length, and
 
synchronization pattern are programmable under control of the decommutator
 
format memories. The frames are supplied to the toggle buffer for storage
 
as homogeneous data sets. No data is supplied to the data RAM in this
 

mode of operation.
 

A status register containing the status and time for a given chain
 
operation is provided by the word selector to the Toggle Buffer (TB) con­
trol logic. This logic regulates access to and from the half buffers by
 
the word selectors and the data buses. All requests for TB data by the
 
data ports are processed through the Fetch Pointer Memory-(FPM) and the
 
Toggle Buffer Identifier (TBI). The TB control logic also partitions
 

data from the word selector into homogeneous data sets for access by the
 

data bus ports.
 

The FPM is used to identify which TB is to be accessed by a data 
bus port. It also allows access to any location in the data RAM by any 
of the PDI data bus ports at any time. FPM control logic routes all 
requests for TB data to the location in the FPM identified by the data 
bus command word. It further provides for loading and reading of formats
 
to and from the FPM at any time by the data bus ports.
 

A data RAM for storage of data from the word selector by param­

eter is provided. The data RAM control logic steers data provided by the
 
word selector into addresses in the data RAM specified by the decommutator
 

control memory.
 

There are three data bus ports for interface with the Orbiter GPC
 
that have read and write access into the switch matrix, the decommutator
 
control memory, the FPM, the PDI, and the data RAM. 
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An IRIG "B"receiver/decoder accepts an IRIG "B"code from an
 
external source, decodes time, and supplies it to the four status
 
registers.
 

3.3.9 	 Payload Experiment Recorder
 

The data recording system uses wideband digital and analog mag­
netic tape recorders to record and reproduce digital and analog signals.
 
The magnetic tape recorder data storage system ,consists of two components.
 
The first component comprises the multitrack coaxial reel-to-reel tape
 
transport and its associated electronics. The tape transport features
 
negator spring tension and contains a minimum of 2400 usable feet of
 

0.5-inch by 1-mil magnetized tape. The transport can store a minimum
 
of 3.4x 109 bits of digital data. The second component contains addi­
tional data conditioning circuitry and all other control logic and asso­

ciated electronics.
 

Payload experiment data recording isprovided via the payload
 
station panel. Predetermined patch panel wiring permits digital data
 
recording ineither parallel (up to 14 tracks) or a combination of
 
parallel-serial. Data rates from 25.5 kbps (lowest rate for a tape
 
speed of 6 inches per second [ips]) to 1024 kbps (highest rate for a
 
tape speed of 120 ips) can be selected from four tape speeds provided
 
by premission wiring of recorder program plugs.
 

Analog data can be recorded on up to 14 tracks inparallel with
 
frequencies from 1.9 kHz (lowest frequency for 6 ips tape speed) to
 
1.6 MHz (highest frequency for 120 ips tape speed) by premission pro­
gram wiring. The basic recorder has the following record/playback
 
capabilities:
 

Data Range Frequency Range Selectable Tape Speed Time Per Track 

(kbps) (kHz) (ips) (min) 

64-128 1.9-250 15 32 
128-256 3.8-500 30 16 
256-512 7.5-1000 60 8 
512-1024 1.5-1600 120 4 
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3.4 	 IUS Communication Equipment
 

Two Orbiter/IUS communication configurations will be used for the
 

DOD and NASA IUS missions. Operational constraints, however, may require
 

the use of a DOD IUS for NASA payload missions such as the TDRS launch.
 

The DOD IUS uses the SGLS transponder for communications with the Orbiter.
 

Alternately, the NASA IUS uses the STDN/TDRS transponder inthe STDN mode
 

for communications with the Orbiter.
 

3.4.1 	 IUS SGLS Transponder
 

The telemetry, tracking and command (TT&C) SGLS transponder
 

acquires and tracks, with a phase-locked loop, an incoming S-band signal
 

and provides demodulated spacecraft commands to the decoder. The tran­

sponder also receives data and telemetry from the spacecraft and phase
 

modulates this information and the internally demodulated ranging tones
 

onto an S-band 3W carrier which isprovided to the antenna for downlink
 

transmission.
 

The transponder shown in a functional block diagram, Figure 26,
 

is a single unit consisting of an S-band receiver and transmitter. This
 

transponder configuration performs the following functions:
 

(1) Searches and acquires an SGLS-compatible S-band signal with
 

modulation.
 

(2) Provides a coherent return link, when in the VCXO mode, with
 

a fixed 	256/205 transmit-to-receive frequency ratio.
 

(3) Provides a noncoherent stable return link signal when inthe
 

auxiliary oscillator mode.
 

(4) Receives, demodulates command signals, outputting commands
 

and clock signals.
 

(5) Receives, demodulates to baseband, and remodulates ranging
 

signals on the return link carrier to provide coherent turn-around ranging.
 

(6) Accepts, modulates, and transmits various anaog and digital
 

telemetry data on the return link.
 

(7) Provides telemetry outputs of key transponder parameters and
 

operational status of the transponder.
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(8) Operates inthe receive and transmit modes independently by
 

way of having separate dc-to-dc converters.
 

The receiver utilizes a dual downconversion, fully phase-coherent
 

design, incorporating a second-order phase-lock loop. S-band input sig­

nals in the frequency range of 1763-1840 MHz are amplified in a low noise
 

preamplifier before downconversion to a first IF frequency of approxi­

mately 44 MHz. Amplification, gain control and bandwidth limiting are
 

accomplished in the first IFcircuits before further downconversion to
 

12.515 MHz. Then the signal isfurther amplified and sent to the demodu­

lator module circuits. Here, four functions are performed:
 

(1) Acquisition. Operates inconjunction with the discriminator
 

module to acquire an SGLS signal (including modulation).
 

(2) Phase detection. A predetection filter (30 kHz crystal fil­

ter) reduces the noise spectrum before phase detection takes place in the
 

carrier tracking phase lock loop. Loop bandwidth (BL) is 2 kHz.
 

(3) Coherent amplitude detection. Another detector, using a 90'
 

phase-shifted reference, produces an output proportional to the RF carrier
 

amplitude. This output forms the correction signal in the automatic gain
 

control CAGC) loop and signal strength information for telemetry.
 

(4) Wideband detection. A wideband phase detector which, unlike
 

the above two detectors, isnot preceded by a narrowband filter, is used
 

to demodulate the phase modulation from the uplink carrier. The output
 

of this demodulator provides the wideband data output to the baseband cir­

cuits where filtering separates ranging and command data. The demodulator
 

module also contains the VCXO, loop filter, and the VCXO sweep circuitry
 

used to scan the receiver center frequency over the frequency acquisition
 

range.
 

The discriminator module does not allow the receiver to acquire
 

to a sideband and, upon carrier acquisition, commands the sweep offin the
 

demodulator.
 

Acquisition threshold detectors and the AGC loop filter, along
 

with various telemetry circuits, are contained inthe baseband module with
 
rmnnnn and rnmmAnd filtpr rhAnnplc Cnmmnn hacPhmnn cinnn1c frnm thp
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baseband module are fed to a tone demodulator where command and clock
 

signals are detected,, reconstructed, and output from the receiver.
 

Ranging baseband signals exit the receiver and are sent to the transmit­

ter for downlink modulation and transmission.
 

The S-band transmitter operates from an internal auxiliary oscil­

lator in the noncoherent mode, or from a VCXO output provided by the
 

receiver (coherent mode). Selection of the source can be determined by
 

command or will be automatically set by the phase lock status of the
 

receiver. Both sources are at a frequency of 2foapproximately 17.5 MHz.
 

Frequency multipliers utilizing SAW filters increase the output
 

frequency to S-band at 256 fo" Phase modulation is performed at 1/4 the
 

output frequency, approximately 560 MHz. The modulator utilizes a quad­

rature hybrid terminated in voltage variable reactances to achieve linear
 

phase modulation.
 

Digital telemetry and data ate biphase modulated on a 1.024 MHz
 

subcarrier whil-e the analog data is FM'modulated onto a 1.7 MHz subcarrir.
 

These signals are summed with the turn-around ranging tones before they
 

are provided to the linear phase modulator. An option isavailable to
 

replace the 1.7 MHz FM subcarrier with a 1.7 MHz biphase modulated sub­

carrier. The transmitter also provides variable modulation indices of
 

the subcarrier automatically when either of the subcarriers are commanded
 

off.
 

The S-band power amplifiers are wideband circuits culminating in
 

a circulator protecting the 2.5 to 3.5W output from shorted or open loads.
 

A separate high efficiency dc-dc power converter provides operating power
 

to the transmitter upon command.
 

3.4.2 IUS STDN/TDRS Transponder
 

The STDN/TDRS transponder is a multimode device capable of receiv­

ing and transmitting signals compatible with both the STDN and TDRS oper­

ational modes and signal formats. An abbreviated block diagram of the
 

transponder isshown in Figure 27. A summary of transponder functions is
 

given below:.
 

* Provides two-way coherent communications with the Orbiter,
 

STDN ground station or TDRS satellites at the appropriate S-band frequency.
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* Transponds with a coherency ratio of 240/221
 

* Acquires and demodulates STDN signals in 1/2 second
 

(>-117 dBm) when commanded to the STDN ONLY fast acquisition mode
 

* Recognizes, acquires and demodulates either STDN or TDRS
 

signals when commanded to the DUAL mode; transponder recognizes signals
 

based on the signal structure rather than on the signal level
 

* Incorporates a command decoder unit which demodulates the
 

STDN subcarrier and recovers the 2 kbps clock and data signals ineither
 

mode; a data squelch circuit based on the measurement of EB/N0 isalso
 

included
 

* Removes the 3 Mbps spread-spectrum code from the TDRS command
 

channel signal and recovers the range synchronization from the TDRS
 

spread-spectrum range channel signal
 

* QPSK or PM modulates the coherent S-band transmit carrier
 

with telemetry and ranging data; inTDRS, the carrier is also coherently
 

spread at about 3 Mbps
 

* Provides noncoherent telemetry transmission inthe absence
 

of received signals or when commanded.
 

The basic transponder configuration is the same for both the STDN
 

and TDRS modes; that is,both are configured to utilize the same frequency
 

plan, receiver and transmitter RF and IFmodules. The TDRS 3 Mbps PN code
 

is removed by a spread-spectrum processor using a noncoherent code loop;
 

fast acquisition isaccomplished using sequential detection. The TDRS
 

signals are demodulated using a Costas circuit; the STDN signals are
 

demodulated using a conventional linear phase lock loop.
 

The received signal is amplified by a low noise preamplifier prior
 

to a first downconversion to approximately 47 MHz. A second coherent
 

downconversion brings the signal to the second IF (FR = 13.8 MHz); due to
 

the design of the frequency plan, this second IFoperates at a fixed fre­

quency regardless of the input frequency. The second IFsignal is divided
 

three ways and issimultaneously sent to the discriminator, the carrier
 

(coherent) demodulator and the spread-spectrum processor.
 

The discriminator isemployed as an aid to fast acquisition of mod­

ulated STDN signals; its sole purpose is to prevent the receiver from lock­
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The spread-spectrum processor has two functions. The first is to
 

acquire, despread and track the TDRS command Lhannel signal, and to send
 

the despread command channel IF signal to the demodulator. The .second is
 

to acquire synchronization of the TDRS range channel (spread) signal and
 

to generate synchronized "I"and "Q"range codes for use by the transmit­

ter in order to accomplish TDRS mode turn-around ranging.
 

The demodulator is employed to recover the data signals which are
 

modulated onto the carrier. It can be configured as either a linear demod­

ulator (STDN signals) or a Costas PSK demodulator (TDRS signals). It
 
.generates the phase error signal used to lock up the receiver VCXO; it
 

also generates the coherent amplitude detector (CAD) signal which indi­

cates receiver lock. Inthe special Spinner configuration, the demodula­

tor is configured as a linear demodulator even though the input signal is
 

TDRS. This is allowable since, inthis mode, there isno command data
 

modulation and, thus, the despread signal sent to the demodulator is
 

always CW rather than PSK; the motivation isto achieve the required
 

-135 dBm sensitivity for this mode. The receiver also contains the VCXO,
 

switches, sweeper, etc., as well as the master control algorithm necessary
 

to carry out the various lock-up sequences.
 

Inthe normal configuration, the demodulated data (baseband) sig­

nals are sent to the command detector unit (CDU). This unit contains a
 

subcarrier demodulator and a bit synchronizer. The subcarrier demodulator
 

recovers the 2 kbps data from the STDN 16 kHz PSK subcarrier; it employs
 

a frequency-doubling subcarrier recovery loop. The bit synchronizer is
 

an advanced design capable of recovering and reclocking data at three dif­

ferent selectable data rates (2kbps, 2 kbps/N and 2 kbps/M), where N and
 

M may be an integer from one to 16; only 2 kbps is used for the IUS pro­

gram. The bit synchronizer clock recovery loop employs a crystal oscil­

lator and an incremental phase lock loop to achieve excellent performance
 

even at low bit transition densities. The bit synchronizer also includes
 

a combined squelch and bit synchronization lock circuit which is insensi­

tive to bit transition density. The outputs of the CDU are the data and
 

clock and an ACTIVATE Cdesquelch) signal. Upon command, the CDU isalso
 

capable of demodulating an auxiliary 16 kHz PSK subcarrier signal.
 
The return link signal is provided by the transmitter, shown in
 

the lower portion of Figure 27. The STDN mode service consists of a
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1.024 MHz PSK subcarrier for digital telemetry, a 1.7 MHz subcarrier for
 

analog telemetry and the ranging signal. These signals are assembled at
 

baseband and used to modulate a linear phase modulator operating at 1/4
 

the output frequency. This signal is frequency multiplied X4; in the STDN
 

mode, the inputs to the QPSK modulator are held to a logical one. The
 

signal is amplified to 3.0W nominal and passed through an isolator to the
 

output.
 

In the TDRS mode, the services consist of a digital telemetry sig­

nal which is convolutionally encoded within the transmitter, and range
 

information contained within the return link spreading code (coherent
 

mode). In the noncoherent mode, separatenoncoherent PN code generators
 

are employed. The encoded data and PN spreading codes are combined in
 

"exclusive-OR" circuits and used to modulate the QPSK modulator. No spe­

cial RF filtering is provided for PN code modulation sidebands other than
 

that necessary to protect the receiver.
 

Thebasic frequency plan is depicted in Figure 28 which shows that
 

the phase lock loop is closed around the first and second mixers. The
 

first and second IF frequencies were established after careful spurious
 

studies by TRW. The selected frequencies are not multiples of the VCXO
 

or any internally generated signal, eliminating the potential for self­

lock or regeneration problems. The first IF at 5 f0 is at a frequency low
 

enough to achieve a high degree of selectivity using conventional filter­

ing and high enough to achieve 'broadband designs that are insensitive to
 

time delay variation (< ±40 ns) over the dynamic range.
 

A unique feature of the design is the technique employed to main­

tain a constant second IF frequency independent of the input channel
 

selection. A reference "offset" oscillator is combined with five times
 

the VCXO frequency in the third mixer. The third mixer output is divided
 

by two and used as the second mixer LO signal. The second IF signal is
 

then at a fixed frequency. This frequency plan has the advantage that one
 

set of hardware can service all transponder configurations. An additional
 

advantage is that placing the higher signal power second IF and phase
 

detector circuits at a frequency noncoherently related to the S-band input
 

signals eliminates regeneration of self-lock problems that can arise in a
 

system where these circuits are at submultiples of the S-band input fre­

quency. The frequency plan allows the input channel assignment to be
 

changed by replacing the module assemblies containing the receiver VCXO,
 

the transmitter TCXO and the SSP VCXO.
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Spurious outputs and harmonics of the local oscillator and the
 

transmitter X30 frequencies are controlled by Surface Acoustic Wave (SAW)
 

filters which also have the advantage of providing a much lower part count
 

than discrete designs and do not require tuning. The SAW devices have
 

been designed specifically for this transponder service and do not require
 

change or replacement for different channel assignment selections.
 

Another aspect of the frequency plan relates to the PN code rates
 

which are coherently related to the uplink and downlink carrier frequencies.
 

The transmitter noncoherent mode PN code rate is derived from the trans­

mitter TCXO using a 192/31 indirect synthesizer technique. The receiver
 

VCXO and SSP VCXO are also tied together using the same ratio during the
 

acquisition sequence; this sequence isdetailed inthe following paragraphs.
 

The requirement for dual-mode acquisition isto recognize either
 

a fixed frequency TDRS spread signal or a swept unmodulated STDN signal,
 

and to configure the receiver to allow acquisition of the recognized sig­

nal while locking out the other. This transponder differentiates between
 

the two types of signals based on signal structure rather than power level.
 

Figure 28 shows the transponder with all the switches in the DUAL mode
 

acquisition configuration. The input signal is sent to both the SSP and
 
the demodulator; the demodulator isconfigured as a linear demodulator and
 

thus the coherent amplitude detector (CAD) will respond to a CW signal
 

which sweeps through the receiver center frequency. The center frequency
 

is fixed according to the scheme described inthe next paragraph. If an
 

STDN signal sweeps to within reach of the linear demodulator C± the loop
 
bandwidth), the CAD will so indicate, and the algorithm will declare STDN
 

and proceed. If,on the other hand, a TDRS signal appears, the SSP will
 

acquire and begin to track the short (command) code signal; short code
 

lock will be indicated and the algorithm will declare TDRS and proceed.
 

At the beginning of this sequence, it is required by the specifi­

cation that the receiver center frequency be fixed and predictable to
 

within ±700 Hz at S-band. This isaccomplished by slaving the receiver
 

VCXO to the transmitter TCXO using the fourth mixer; the TCXO is a very
 

stable oscillator having a thermistor attached to the return link telem­

etry system; the ground station isprovided with a calibration curve
 

showing the TCXO frequency versus the thermistor voltage. Inaddition,
 

the SSP code rate VCXO is slaved to the receiver VCXO using the fifth
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mixer and the 192/31 circuits; this guarantees that the SSP clock is
 

known to within about 1 Hz, which is important to the proper operation
 

of the sequential detection circuits within the SSP.
 

For a TDRS signal, the TDRS ground station adjusts the forward
 

link frequency to correct for doppler and for what it thinks is the actual
 

receiver center frequency. This is supposed to bring the received fre­

quency of a TDRS signal to within ±1400 Hz of the actual receiver fixed
 

center frequency. If a TDRS signal appears and the SSP detects the pres­

ence of a short code signal, the following sequence of events occur:
 

* The SSP will switch its code-tracking loop from "slave" to
 

"track" and will begin tracking the received code; it will verify track,
 

then send a "short code lock" indi-cator signal to the receiver control 

algorithm circuit.
 

* The receiver VCXO select switch will then be switched from
 

position A to positionB; this will cause the receiver VCXO to be slaved
 

to the SSP VCXO using the fifth mixer and the 192/31 circuits. Since the
 

SSP is tracking the actual received code, the receiver VCXO will be pulled
 

toward the frequency which exactly matches the input RF frequency.
 

* At the same time, the demodulator is reconfigured as aCostas
 

demodulator and the despread IF signal from the SSP is-routed to the
 

demodulator. When the received signal is pulled to within one loop band­

width of the true center frequency by the action of the slaving circuit,
 

the Costas CAD circuit so indicates; the receiver lockup is completed by
 

switching the receiver VCXO select switch to position "C"to allow the
 

carrier loop to begin tracking.
 

If carrier lock is not achieved within 5 seconds, the SSP algorithm
 

assumes that the signal was multipath and the acquisition sequence is
 

reinitiated.
 

If an STDN signal appears and is recognized, the receiver VCXO
 

select switch is switched directly to position "C"and the carrier loop
 

commences tracking. In either event, the receiver control algorithm con­

figures the command detector unit (CDU) to match the received signal (TDRS
 

or STDN), and also sends the lock-up information to the transmitter con­

trol algdrithm circuit. The transmitter is then reconfigured and switched
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to coherent, assuming that the external TXR command is COHERENT. Note
 

that, in the TDRS mode, this does not occur until long (range) code lockup
 

is verified.
 

In the STDN mode only, the requirement is to correctly acquire an
 

STDN signal modulated with a 16 kHz command subcarrier (but no range tones) 

and to achieve this within 1/2 second at signal levels > -117 dBm. The 

STDN signal may be swept or it may be stationary. In this mode, the 

receiver VCXO select switch is set to position "D", which causes the 

receiver to sweep ±150 kHz every 300 ms. The demodulator is configured 

for linear. A true lock indication is declared when both of the following 

conditions are achieved: 

* The demodulator CAD indicates the presence of a CW signal
 

within the acquisition loop bandwidth (±4 kHz)
 

* The discriminator indicates that this CW signal is not a
 

sideband of the received carrier.
 

The discriminator is thus used to prevent false lock on the STDN subcar­

rier. It is equipped with a dual (±)threshold which indicates positive
 

if the incoming carrier is ±16 kHz from the true receiver center frequency,
 

as it would be if the receiver was attempting to lock on to a subcarrier
 

sideband.
 

If both of the above conditions are satisfied, the receiver select
 

switch is switched to position "C"and tracking commences. When tracking
 

is verified, the carrier loop bandwidth is narrowed to 800 Hz to prevent
 

tracking out the 4 kHz range tone when it is turned on.
 

3.5 IUS/Orbiter Communication Interface Issues
 

The overall IUS/Orbiter communication system is still evolving.
 

Direct payload-interfacing avionic subsystems such as the PI, PSP and CIU
 

are in their preliminary design stages only. Other hardware, such as the
 

S-band network communications and the Ku-band communication equipment, is
 

more fully developed but only the S-band network communication equipment
 

is entering its performance verification testing phase. Thus, itwill be
 

some time before all developmental problems are solved, and reliable,
 

well-understood performance can be documented.
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Table 19 summarizes the major interface issues in which Axiomatix
 

had been involved. The interface issues in Table 19 are addressed in
 

terms of the nature of the issue and the effort expended by all concerned
 

(TRW, Boeing, SAMSO, Aerospace, Rockwell, NASA and Axiomatix) toward its
 

resolution.
 

3.5.1 PI/SGLS Transponder Interface Issues
 

Each parameter involved in the interface between the PI and the
 

SGLS transponder, as defined by the SGLS transponder specification, the
 

Payload ICD or the PI specification, is compared in Tables 20 and 21.
 

Note that, for the interface between the PI transmitter and the SGLS tran­

sponder receiver, there is no specification by the SGLS transponder on
 

the carrier phase noise and the output spurs of the PI. In Table 21,
 

there is no specification on the SGLS transponder transmitter for subcar­

rier harmonic components or data asymmetry. Also, the SGLS transponder
 

specification for the allowed variation in modulation index is 15%, which
 

is larger than the PI can tolerate (10%).
 

In order to resolve some of the interface parameter inconsisten­

cies, some overall system analysis is required. For example, the phase
 

noise specifications need to be defined for the link from the PI to the
 

SGLS transponder to determine the command channel BER. Both the phase
 

noise generated by the frequency synthesizer in the PI transmitter and the
 

oscillators used in the transponder affect the command channel BER and,
 

therefore, system analysis must be made to allocate a phase noise specifi­

cation for the PI and transponder. Similarly, the phase noise generated
 

by the PI receiver frequency synthesizer, the oscillators used in the
 

transponder transmitter, and the turn-around characteristics of the tran­

sponder, affect the telemetry channel BER. Therefore, system analysis
 

must be made to allocate a phase noise specification to the PI receiver,
 

transponder oscillators and turn-around characteristics. Axiomatix has
 

developed the analysis needed to predict the command channel BER based on
 

phase noise characteristics; however, while some specifications have been
 

made on the phase noise of the PI transmitter and receiver and on the
 

phase noise of the transponder, the turn-around characteristics have not
 

been specified and the actual phase noise performance of the PI transmit­

ter and receiver frequency synthesizer has not been completed. Hence,
 



Table 19. Major IUS/Orbiter Communication Interface Issues
 

Issue 	 Issue Nature 


Ku-Band 	 I. SGLS command data is 1 kbps 

128 kbps 	 with ternary symbols. 

to 	2 kbps 

command 	 2. Ku-band forward link is 

data 	 binary data at 128 kbps. 


CIU/MDM 	 1. CIU has only an MDM serial 

Interface 	 interface and does not have the 


required input/output inter-

faces to implement the 

required handshake procedure. 


2. CIU buffer for the MDM command 

data is not large enough for a 

command and its complement to 

be held at the CIU in one MDM 

transfer. 


2. Interface inconsistencies 

between CIU specification and 

payload ICD.
 

Frequency 	 SGLS and STDN/TDRS transponder 

Stability 	 auxiliary oscillator stability 


may cause a frequency uncertainty 

that is larger than PI receiver
acquisition range. 


Effort Toward Resolution 


Define format that meets 

the required BER and is 

easy to implement. 

(Axiomatix) 


1. Axiomatix/NASA pointed 

out the MDM interface 

deficiency at a NASA/ 

SAMSO meeting on 8/15/78. 


2. RID-35 at CIU PDR. 

(Aerospace) 


3. Tables 26 and 27 compare

the PSP and CIU speci-


fications with the Pay-

load ICD.(Axiomatix) 


1. Investigation of increas-

ing the PI receiver acouq 

sition sweep range.(TRW) 


2. 	Analysis of aging & envi-i
 
ronbnmental changes to oscil
 

lator stability. (TRW)
 

Resolution
 

64 	Ku-band 128 kbps l's are
 
equal to a 2 kbps "I"
 
64 Ku-band 128 kbps 0's are
 
equal to a 2 kbps "0"
 

01 = "S" 1 ksps
 
11 = "1" 1 ksps
 
00 = "0' 1 ksps.
 

1. 	Resolved by ground command
 
input control or CIU con­
trol panel control by limi­
tation on the command rate
 
into the CIU and verifica­
tion of accepted commands
 
using the VCC word.
 

2. To 'be resolved by Boeing
 
at CIU CDR.
 

3. 	Comparison must be made
 

with performance data at
 
ciu CDR.
 

In process. Need more data
 
on oscillator stability for
 
TRW
 



Table 19. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue Issue Nature 


Phase Noise 1. Phase noise requirements of PI. 

and Commun-

ications 2. Phase noise requirements of 

Turn-around SGLS & STDN/TDRS transponder. 

Character-

istics 3. Effects of turn-around phase 


noise. 


False 1. PI receiver false lock avoid-

Acquisition ance with respect to SGLS and 

Suscepti- STDN modulations. 

bility 2. SGLS receiver false lock dis-


crimination with respect to 

SGLS comniand modulation from 

the PI transmitter. 


3. STDN/TDRS receiver false lock 

discrimination with respect to 


to
STDNdscomndodulationcommand modulationh rfrom 


the PI transmitter. 


Effort Toward Resolution 


1. PI phase noise characterr 

istics need to be known. 


2. SGLS transponder phase
 
noise analysis as part of
 
SGLS CDR Data Package
 
shows that the performance
 
is less than 3.50 rms except
 
during vibration, where the
 
phase noise is less than
 
11.5' rms. (TRW)
 

3. Analysis to predict perfor­
mance has been developed,
 
but needs phase noise
 
characteristics.(Axiomatix)
 

1. Analysis of PI susceptibil-

ity to SGLS & STDN modula-

tions, analysis of strong 

signal phase demodulation 


discriminator and survey of 

anti-false lock methods. 

(Axiomatix & TRW) 


2. Analysis of discriminator-

aided phase-lock loop and 

discriminator lock detector
for SGLS command modulation
 

from the P transmitter.(TRW) 


3. Analysis of discriminator 

lock detector for STDN com-

mand modulation from the PI 

transmitter. (TRW)
 

Resolution
 

Assessment awaits PI
 
phase noise data. (TRW)
 

1. In process. Protec­
tion methods still
 
under review.
 

2. In process. Discrim­

inator may lock up to
 
"S"tone during below
 
threshold signal lev­
els and remain locked
 
at nominal signal
 
levels.
 

3. In process. Discrim­
inator may lock to
 
data sidebands during
 
reacquisition at
 
strong signal levels.
 



Table 19. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue 


PI Input 

Sen-sitivity 

Ranges 


PI Received 

Carrier 

Modulation 

Limits 


C' 

PI Inter-

ference 

Suscepti-

bility 


CIU Inter-

face with 

KuSP, 

PDI, FMSP 


Issue Nature 


Exact requirement of Rockwell 

specification on three receiver 

sensitivity levels needs further 

definition. 


1. Undetermined PI receiver per- 

formance for payload subcarrier 

modulation index larger than 

1 radian. 


2. Undetermined PI receiver per-

formance with two or more
 
payload subcarriers.
 

Rockwell specification that the 

PI receiver should work with an 

out-of-band interference signal 

as large as -25 dBm. 


Interface inconsistencies 

between CIU specification and 

payload ICD, 


Effort Toward Resolution 


1. Meet the requirement by 

using RF signal level 

limiting. (TRW) 


2. Use manual signal level 


attenuators. (TRW/NASA)
 

Complete-parametric analysis 

of PI carrier and subcarrier 

levels as a function of mod­
ulation index and waveform
 
types. (Axiomatix)
 

Analysis showed that, with 

the expected receiver first 

LO noise characteristics, 

only a -65 dBm interference
 
signal level can be tolera­
ted. (TRW and Axiomatix)
 

1. Action Item for Boeing 

at CIU PDR. (Aerospace)
 

2. Tables 24, 25, 28, 29, 30
 
and 31 compare each
 

Orbiter subsystem spec,
 
with payload ICD and CIU
 
specification. (Axiomatix)
 

Resolution
 

Manual attenuator approach
 
selected. Preamplifier over­
load diodes as alternate
 
under investigation. (TRW)
 

Results of analysis made
 
known to TRW. (Axiomatix)
 

Specification amended to
 
the -65 dBm signal level.
 
(Rockwell)
 

To be resolved at CIU CDR.
 



Table 19. Major IUS/Orbiter Communication Interface Issues (Cont'd)
 

Issue 


CIU-Inter-

face with 

Payload 

Recorder
 

PI Inter-

face with 

SGLS 

Transponder 


PI Inter-

face with 

STDN/TDRS 

Transponder 


Issue Nature 


1. Interface inconsistencies 

between CIU specification and 

payload ICD. 


2. TRW performance does not meet 

CIU specification.
 

Interface inconsistencies between 

SGLS transponder specification 

and payload ICD. 


Interface inconsistencies between 

STDN/TDRS transponder specifica-

tion and payload ICD. 


Effort Toward Resolution 


1. Table 32 compares the payload 

ICD with the CIU specifica­
tion. (Axiomatix)
 

2. RID-OI at CIU PDR. (Boeing)
 

Tables 20 and 21 compare the PI 

and SGLS transponder specifi-

cations with the payload ICD.
 
(Axiomatix)
 

Tables 22 and 23 compare the PI 

and STDN/TDRS transponder spec-

ifications with the payload ICD.
 
(Axiomatix)
 

Resolution
 

To be resolved at CIU CDR.
 

To be resolved in an
 
interface meeting.
 

To be resolved in an
 
interface meeting.
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Table 20. PI Transmission to SGLS Transponder
 

Parameter 


Carrier 

Frequency 

Tolerance 


Carrier 

Phase Noise 


Output 

Spurs 


Waveform 


Modulation 


Symbol 
Frequencies 

Carrier 

Modulation 

Indices 


Symbol 

Rates 


AM 


PI Specification, 


<0.001% 


4' rms (steady state) 

100 rms (maximum)
 

At least [55+ 10 log 

(Pt)] dB below modu­
lated carrier from
 
200 MHz to 16 GHz
 
(Pt is transmitter
 
power inwatts)
 

Sinusoidal with AM 


Ternary FSK 


"S" = 65 kHz
"0" = 76 kHz 
"I" = 95 kHz 

0.96 ± 10% radians 

(determined by CIU
 
interface)
 

1000 sps or 

2000 sps 


0.5 ± 10% AM by a 

triangular function 

equal to 500 Hz (for 

1000 sps) or 1000 Hz 

(for 2000 sps) 


Payload ICD 


±0.001% 


100 rms, maximum
 

.<-65 dBc
 

Sinusoidal with AM 


Ternary FSK 


"S" = 65 kHz
"0" = 76 kHz 
"I" = 95 kHz 

0.3 ± 10% radians 

or 1.0 ± 10 radians 


1000 sps or 

2000 sps
 

0.5 ± 10% AM by a 

triangular function 

equal to one-half 

the command symbol
 
rate
 

SGLS Transponder

Specification
 

Search ±100 kHz
 
doppler shifted
 
input signals
 

Sinusoidal with AM
 

Ternary FSK
 

"S" = 65 kHz="' 76 kHz 
"I" = 95 kHz 

0.3 ± 20% radians
 
or 1.0 ± 10% radians
 

1000 sps
 

0.5 ± 10% AM by a
 
triangular function
 
of 500 Hz
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Table 21. PI Reception from SGLS Transponder
 

Parameter PI Specification Payload ICD SGLS Transponder Spec
 

Input
 
Signal -124 to +3 dBm -124 to +25 dBm N/A
 
Range
 

Shall not false lock
False Shall not false lock Shall not false lock 

Lock below -20 dBm
 

Spurious 26 dBc 32 dBc 40 dBc
 
Output
 

Rec. Freq. ±80 kHz ±85 kHz-at minimum ±67 kHz due to auxil-

Sweep of 10 kHz/sec iary oscillator
 

Aux. Osc. 0.001% +0.001% ±29 ppm
 
Stability
 

Phase <150 rms Additive noise<lOt .rms 1 3 .50 rms 
Noise Oscillator < 5' rms <11.50 rms with 

Mod. Track'g <100 rms vibration 
° 
Static ±3o"maximum Frequency offset 3 1.50 per 30 kHz
 

Phase Frequency Dynamics 120 frequency offset
 
Error
 

Sinewave subcarrier
Sinewave subcarrier Sinewave subcarrier 

PSK Sub- PSK modulated (±90) PSK modulated (±900) PSK modulated (±900)
 
carriers by PCM data by PCM data by PCM data w/at least
 

1.024 MHz 1.024 and 1.7 MHz 30 dB subcarrier sup­
pression (1.024 and
 
1.7 MHz)
 

Max. deviation ±TBS Hz Max. deviation ±200 kHz
 

peak w/highpass roll- peak-to-peak (minimum)

FMFM i off of TBS db/octave & Modulation bandwidths
 
Subcarrier FM/FM lowpass rolloff of TBS 20 Hz to 200 kHz with a
 
(1.7 MHz) db/octavebeyond200kHz rolloff of 12 dB/octave
 

Subcarrier TBS% of fundamental
 
Harm. Comp. frequency amplitude
 

±50 Hz for PSK
Subcarrier 0.01% for PSK 

Freq. Stab. TBS% for FM 0.1% for FM
 

0.3 to 2.0 radians
0.3±10% radians, peak
radians, peak
Modulati on 0.3+0.1 
0.3-0.0 radians, peak 1.0±10% radians, peak Factory set with±15%
 

Indices 
 1.0±0.1 radians, peak variation (perform± 8%)
 

64,32,16,10,8,4,2,1, 64,32,16,10,8,4,2,1, <128 kbps (1.024 MHz)
 
Data 0.5,0.25 kbps on 1.024 0.5,0.25 kbps on 1.024 T256 kbps (1.7 MHz)
 
Rates & 1.7 MHz subcarriers & 1.7 MHz subcarriers TSee CIU specification)
 

256 and 128 kbps on
 
1.7 MHz subcarrier
 

Data Type Biphase-L or NRZ-L Biphase-L or NRZ-L Biphase-L
 

Data Asym. TBS
 

Bit Rate 0.1% of nominal bit (CIU requires 0.001%)
 
Stability rate
 

http:0.5,0.25
http:0.5,0.25
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final assessment of the command channel and telemetry channel BER
 

performance awaits phase noise data from the PI frequency synthesizer.
 

Another area that received considerable attention inthe inter­

face compatibility analysis was the susceptibility of false lock by the
 

PI and the IUS SGLS transponder. Itwas found that certain modulation
 

conditions could produce false states of in-lock with the TRW PI receiver
 

conceptual design. Axiomatix determined that the problem was a function
 

of lack of receiver out-of-lock IFA gain control and the setting of the
 

lock detector threshold voltage according to a minimum operating point
 

some 6 dB below that required by the Rockwell specification. Axiomatix
 

therefore recommended use of a noncoherent receiver AGC during periods
 

prior to acquisition. This recommendation was acted upon by TRW to the
 

effect that false states of in-lock have been eliminated below a received
 

signal of -20 dBm. The IUS SGLS transponder uses a frequency discrimina­

tor to detect false states of in-lock. For received signal levels above
 

-117 dB, the frequency discriminator will not allow lock for a frequency
 

larger than the phase lock loop (PLL) bandwidth; however, for received
 

signal levels below -117 dB, the frequency discriminator does not have a
 

large enough signal-to-noise ratio to guarantee that a noise spike could
 

not stop the frequency sweep in the vicinity of one of the SGLS command
 

tones (most likely, the "S"65 kHz tone). If the frequency sweep stops
 

in the vicinity of a command tone, the PLL will lock to the nearest com­

mand tone. Ifthe command tone that PLL locks to is the "S"tone, the PLL
 

could be false locked for long periods because the "S"tone is used for
 

command preambles and postambles. While the SGLS receiver is not required
 

to acquire below -117 dBm, signal levels below -117 dBm could occur during
 

IUS maneuvers and antenna switching. In this case, the receiver might
 

false lock at signal levels below -117 dBm and stay false locked as the
 

signal level increased above -117 dBm. TRW and Boeing are still, working
 

to resolve this false lock problem.
 

A final area of concern in the interface between the PI and the
 

IUS SGLS transponder isthe frequency stability of the auxiliary oscilla­

tor. The concern isthat the frequency uncertainty due to the frequency
 

stability of the auxiliary oscillator will be larger than the frequency
 

acquisition range of the PI. To resolve this area of concern, TRW is
 

analyzing the aging and environmental changes to the auxiliary oscillator.
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Also, Rockwell has requested TRW to investigate the possibility of
 

increasing the PI receiver frequency sweep range. The initial results
 

from TRW, however, indicate that increasing the sweep range of the PI
 

also increases the uncertainty of the actual frequencies in the sweep and,
 

thus, compounds the frequency uncertainty problem. Therefore, increasing
 

the PI sweep range does not seem to resolve the problem.
 

Another approach to successively increasing the sweep range is by
 

designating an adjacent channel as the nominal frequency for the next fre­

quency sweep if acquisition is not obtained by frequency sweeping around
 

the expected nominal frequency. While this technique might be an opera­

tional workaround, it is not a desirable approach to resolution of the
 

frequency stability problem. Before an overall system performance assess­

ment can be made, more data on the auxiliary oscillator stability is
 

needed from TRW.
 

3.5.2 PI/IUS STDN Transponder Interface Issues
 

Tables 22 and 23 compare each parameter involved in the interface
 

between the PI and the IUS STDN transponder, as defined by the STDN/TDRS
 

transponder specification, the Payload ICD or the PI specification. Note
 

from Table 22 that the STDN/TDRSS transponder specification has no require­

ments on the PI for spurious output, carrier phase noise, subcarrier har­

monic distortion, subcarrier frequency stability, data asymmetry, or data
 

bit jitter. In Table 23, there is no specification on the STDN/TDRS tran­

sponder transmitter for subcarrier harmonic components or data asymmetry.
 

Also, the STDN/TDRS transponder specification for the allowed variation'in
 

modulation index is 15%, which is larger than the PI can tolerate (10%).
 

In order to resolve some of the interface parameter-inconsisten­

cies, some overall system analysis is required. As was mentioned inthe
 

previous section concerning the PI/SGLS transponder interface, three
 

interface areas in particular need overall system analysis: (1)phase
 

noise generated by the PI transmitter, by the STDN/TDRS transponder includ­

ing turn-around phase noise, and by the PI receiver, (2)frequency insta­

bility of the STDN/TDRS transponder auxiliary oscillator, and (3)false
 

lock of the STDN/TDRS transponder on the 16 kHz subcarrier or data side­

bands. Note that the IUS STDN/TDRS transponder uses the same frequency
 

discriminator as the IUS SGLS transponder but, in the case of the STDN
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Table 22. PI Transmission to STDN/TDRS Transponder 

Parameter PI Specification 


±75 ± 5 kHz 

Carrier ±55 ± 5 kHz 

Frequency at 10 ± 3 kHz/sec 

Sweep ±33 ± 3 kHz 


at 540 ± 60 Hz/sec 


At least [55+ 10 log
 
(Pt)]dB below unmodulated
Spurious 
 carrier from 200 MHz to
Output 16 GHz (Pt is transmitter
 

power inwatts)
 

Carrier 40 rms (steady state) 

Phase 100 rms (maximum)

Noise
 

Waveform Sinusoidal 


Modulation PSK 


Subcarrier 16 kHz 

Frequency
 

Subcarrier <1% of fundamental 

Harmonic frequency amplitude 

Distortion (PSP Spec.) 


Subcarrier <10 -5 of subcarrier fre-

Frequency quency over a 60-second 

Stability period (PSP Spec.) 


Modulation 1.0 ± 0.1 radian 

Index
 

Data Type Bi-phase-L or NRZ-L 


Data <2% of nominal bit 

Asymmetry period 


Data Bit 

Jitter
 

Payload ICD 


±75 ± 5 kHz 
±55 ± 5 kHz 
at 10 ± 3 kHz/sec 
±33 ± 3 kHz ­

at TBS ± TBS Hz/sec 

<-65 dBc
 

100 rms, maximum
 

Sinusoidal 


PSK (±900) 


16 kHz 


<1% of fundamental
 
fr/qufnfunamental
 
frequency amplitude
 

±1 x 10-5 of nominal
 
subcarrier frequency
 
averaged over 60 sec.
 

1.0 ± 0.1 radian, peak 


NRZ-L, M, S 


<2% of nominal bit
 
period
 

<3% of data bit period
 

STDN/TDRS Transponder

Specification
 

±100 kHz
 
at 35 kHz/sec
 
(unmodulated
 
carrier)
 

Sinusoidal
 

PSK
 

16 kHz
 

1.0 ± 10% radian
 

NRZ-L
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Table 23. PI Reception from IUS STDN/TDRS Transponder
 

Parameter PI Specification Payload ICD 
STDN/TDRS Transponder 

Specification 

Input 
Signal -124 to +3 dBm -124 to +25 dBm N/A 
Range 

Shall not false lock Shall not false lock PI shall not false 
below -20 dBm lock; STDN/TDRS 

False 
Lock 

transponder shall 
not false lock with 
input signal levels 
up to -40 dBm 

Spurious 26 dBc 32 dBc 40 dBc 
Output 

±75 ± 5 kHz ±75 ± 5 kHz ±100 kHz at 35 kHz/ 
PI ±55 ± 5 kHz ±55 ± 5 kHz second (unmodulated 
Transmitter at 10 ± 3 kHz/sec at 10 ± 3 kHz/sec carrier) 
Sweep ±33 ± 3 kHz ±33 ± 3 kHz at 

at 540 ± 60 Hz/sec at TBS ± TBS Hz/sec 

PI Receiver 
Sweep 

±80 kHz (minimum) ±85 kHz at 10 kHz/sec ±67 kHz due to auxil­
iary oscillator 

Aux. Osc. 0.001% ±0.001% 29 ppm 
Stability 0 

Phase 
Noise <15' rms 

Additive noise< 100 rms <3.5' ms 
Oscillator< 5' rms <11.5' rms 
Mod. Track'g< 10' rms with vibration. 

Static Frequency offset< 30 1.5' per 30 kHz 
Phase ±3' maximum (PI) Frequency dynamics< 12' offset 
Error (PI) 

Sinewave subcarriers Sinewave subcarriers Sinewave subcarriers 
PSK 
Subcarriers 

PSK modulated (±900) 
by PCM data 

PSK modulated (±900 ) 
by PCM data 

PSK modulated (±90 ° ) 
by PCM data with at 

1.024 MHz 1.024 and 1.7 MHz least 30 dB subcar­
rier suppression 
1.024 and 1.7 MHz 

FM/FM modulated. 1.7 MHz-max. deviation 1.7 MHz max. deviation 
FM by PCM data ±TBS Hz peak with high- ±200 kHz peak-to-peak 
Subcarriers 1.7 MHz pass rolloff of TBS dB/ Modulation bandwidths 

octave at 100 Hz and 20 Hz to 200 kHz with 
lowpass rolloff of TBS 
dB/octave beginning at 
200 kHz 

a rolloff of 12 dB/ 
octave 

Subcarrier TBS% of fundamental 
Harm. Comp. frequency amplitude 

Subcarrier 0.01% for PSK 50 Hz for PSK 
Frequency TBS% for FM 0.1% for FM 
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Table23. PI Reception from IUS STDN/TDRS Transponder (Cont'd)
 

Parameter 


Modulation 

Indices 


Data
Rata

Rates 


Data Type 


Data Asym. 


Trans. 

Density
 

Bit Rate 

Stability 


PI Specification 


0.3+ 0.1 radians, peak 

0.3-0.0 radians, peak 

1.0± 0.1 radians, peak 


64,32,16,10,8,4,2,1, 

0.5, 0.25 kbps on
1.024 and 1.7 MHz 

subcarriers 


Biphase-L or NRZ-L 


Payload ICD 


0.3 ± 10% radians 

1.0 ± 10% radians 

64,32,16,10,8,4,2,1, 

0.5, 0.25 kbps on
1.024 and 1.7 MHz sub-

carriers; 256, 128 kbps
 

on 1.7 MHz subcarrier
 

Biphase-L or NRZ-L 


TBS
 

TBS 


0.1% of nominal 

bit rate 


STDN/TDRS Transponder
 
Specification
 

0.3 to 2.0 radians (PSK)
 
0 to TBD kHz (FM)
 
±15% variation (TRW
 
performance ±8%)
 

<128 kbps (1.024 MHz)
 
<256 kbps (1.7 MHz)
-


Biphase-L
 

N/A
 

(CIU requires
 
0.001%)
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transponder, the frequency discriminator must avoid false lock by the PLL
 

to the 16 kHz subcarrier used to modulate the command data. The false
 

lock performance analysis for the STDN/TDRS transponder has not been com­

pl.eted by TRW and, therefore, the overall system performance assessment
 

must wait unit this analysis has been completed.
 

3.5.3 	 CIU Interface Issues
 

The CIU interfaces with the following Orbiter avionic subsystems:
 

Payload MOM, GN&C MOM, P1, KuSP, FMSP, PDI and PR. Inorder to investi­

gate the compatibility between the interfaces, each parameter involved in
 

the interface, as defined by the Payload ICD, the CIU specification, or
 

the Orbiter subsystem specification, iscompared in Tables 24-32. Itmay
 

be seen that the greatest interface inconsistencies between the interface
 

parameter specifications exist where the parameter either is not defined
 

by a specification or itis defined by a TBD or TBS. These interface
 

inconsistencies need to be resolved and the parameters with TBD or TBS
 

must be specified consistent with the Orbiter subsystem specification, the
 

Payload ICD and the CIU specification.
 

The CIU output to PI interface presented inTable 24 shows no real
 

discrepancies except the phase linearity of the PI modulator isonly spec­

ified inthe Payload ICD.
 

Two parameters in the PI input to CIU interface need to be resolved.
 

First, the output of the PI has an RMS regulator with a peak clipper at
 

6V peak-to-peak. The CIU expects an RMS-regulated PI output but does not
 

reflect the peak clipping inthe CIU specification. The effect of peak
 

clipping means that any waveform having a peak-to-RMS ratio larger than
 

1.5 will experience amplitude limiting which will cause SNR performance
 

loss. The peak-to-RMS values for typical complex wavefons that may be
 

present at the PI/CIU interface are a single sinewave subcarrier with a
 

peak-to-RMS value of 1.4, two equal amplitude noncoherent subcarriers with
 

a peak-to-RMS value of 2.0, and Gaussian noise with a peak-to-RMS value of
 

3.0 Note that only a single sinewave subcarrier will be transferred with­

out clipping. Also, the output of PI for weak received signals (<-100 dBm)
 

isessentially Gaussian in character and the output will be clipped. The
 

second interface parameter that needs to be mentioned is the signal type.
 

The CIU specification calls for a differential interface but the PI speci­

fication calls for a differential AC coupled (1000 Hz minimum) interface.
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Table 24. CIU Output to Payload Interrogator (PI)
 

Parameter PI Specification 

Data 
Rate 

I K-baud or 
2 K-baud 

FSK 65, 76 or 95 kHz 
sinewave subcarriers 
with amplitude enve-
lope modulation of 
500 Hz (1 K-baud) or 
1000 Hz (2 K-baud) 

Modulation 

Ternary FSK/AM of 
8 = 0.2-2.5 radians 
Logical "lV 95 kHz 
Logical "0"76 kHz 
Logical "S"65 kHz 

Signal 
Level 

1.0 to 8.0V ± 10% p-p,
line-to-line for 
0.2 to 2.5 radians 

Phase 
Linearity 

Load
Impedance 75 ± 5 ohms 

Signal 
Type 

Differential, direct 
coupled 

Payload ICD 


-


FSK 65, 76 or 95 kHz 

amplitude modulated 

by 1 kHz or 2 kHz 

triangular wave 


Ternary FSK/AM of 
s = 0.2-2.5 radians 
Logical "l" 95 kHz 
Logical "0" 76 kHz 
Logical "S" 65 kHz 

-

<8% from 8 = 0.2 to 
2.5 radians
 

CIU Specification
 

1 K-baud ± 0.01%
 

FSK 65, 76 or 95 kHz 
sinewave subcarriers 
with triangular AM at 
50% modulation at 
500 Hz ± 0.1% 

Ternary FSK/AM
 

Logical "l"95 kHz± 0.01% 
Logical "0"76 kHz± 0.01% 
Logical "S"65 kHz± 0.01% 

3.3V ± 10% p-p,

line-to-line
 

75 ± 5 ohms
 

Differential, direct
 
coupled
 



Table 25. Payload Interrogator Input to CIU 

Parameter PI Specification Payload ICD 

Subcarrier 1.024 MHz and/or 1.024 MHz or 1.7 MHz 
Frequencies 1.7 MHz 

64, 32, 16, 10, 8, 4, 256, 64, 32, 16, 10, 
Data Rates 2, 1 kbps; 500 and 8, 4, 2, 1, 0.5 and 

250 bps 0.25 kbps 

1.024 MHz subcarrier PSK 
PSK modulated by PCM 

Modulation data, 1.7 MHz subcar-
rier frequency modu- 
lated (FM/FM) or PSK 
modulated by PCM data 

Data Manchester II Biphase-L 
Waveform Biphase-L or NRZ-L NRZ-L 

Signal 2.OV rms ± O.4V line-

Level to line with 6V p-p max 

Bandwidth 4.5 MHz (3 dB points) -

Equivalent 
Source 0.3 to 2.5 radians 0.3 to 2.5 radians 
Modulation 

Signal Differential-AC coup-
Type led (1000 Hz minimum) 
Load 
Impedance 75 ± 5 ohms 

Subcarrier 0.01% 
Stability 

Data Rate 0.1% 
Stability 

Common Mode 
Rejection 
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CIU Specification'
 

1.024 MHz ± TBD
 
and/or 1.7 MHz± TBD
 

16 kbps (PSK)
 
16, 24 and 32 kbps
 
(FM/FM)
 

1.024 MHz subcarrier
 
PSK modulated by PCM
 
data, 1.7 MHz sub­
carrier FM/FM by PCM
 
data
 

Biphase-L
 

2.OV rms ± O.4V
 

line-to-line
 

Differential
 

75 ± 5 ohms
 

<1 part in 10 for
 
any 12-hour period
 

0.001%
 

>40 dB (0-2 .MHz)
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Table 26. MUM Discretes Input to CIU
 

Parameter PSP Specification Payload ICD CIU Specification
 

Receiver Type Differential, Differential, Differential,
 
direct coupled direct coupled direct coupled
 

0 ± 0.5V 0 ± O.5V
Threshold 0 ± 0.5V

(line-to-line) (line-to-line) (line-to-line
 

High State:
 
Line-to-ground 2.0 to 5.9V peak 2.1 to 5.9V peak
 
Line-to-line 2.0 to 5.9V peak 2.1 to 5.9V peak 2.0 to 5.9V peak
 

Low State:
 
Line-to-ground -0.6 to +0.6 peak -0.6 to +0.6V peak
 
Line-to-line -2.0 to -5.9V peak -2.1 to -5.9V peak -2.0 to -5.9V peak
 

"True" State Signal line "high Signal line "high" Signal line "high"
 

(Logic "I") with respect to with respect to with respect to
 
return line return line return line
 

"False" State Signal line "low" Signal line "low" Signal line "low"
 

with respect to with respect to with respect to
(Logic 0") 
 return line return line return line
 

Interpret as
Open Circuit Interpret as Interpret as non-

Logical "0" ambiguous state Logical "0"
 

Source Imped­
ance (Orbiter)
 
Line-to-line 100 ohms, maximum 100 ohms, maximum 100 ohms, maximum
 
Line-to-ground 100 ohms, maximum 100 ohms, maximum
 

Input Imped­
ance (CIU) 75 ohms ± 5% 90 ohms ± 5% 100 ohms ± 5%
 
Line-to-line in series with in series with in series with
 

3.3 pf ± 10% 10.0 pf ± 10% 10.0 pf ± 10%
 

10-200ns 10% voltage 10-200ns, 10% voltage
 
Rise and to +2.OV (rise) or -2.DV to +2.1V (rise) or -2.1V
 
Fall Times (fall) 100-1000 ns, (fall) 100-10OOns,
 

10-90% voltage levels 10-90% voltage levels
 

Overshoot/ 0.25V peak, maximum 0.25V peak, maximum 0.25V peak, maximum
Undershoot
 

Signals from DC to Signals from DC to Signals from DC to
 
2 MHz w/amplitude up 2 MHz w/amplitude up 2 MHz w/amplitude up
 

Common Mode to ±IOV peak applied to ±1OV peak applied to ±1OV peak applied
 
Rejection to both signal termi- to both signal termi- to both signal termi­

nals shall not acti- nals shall not acti- nals shall not acti­
vate receiver circuits vate receiver circuits vate receiver circuit!
 

Voltage ±32V either input ±32V either input ±32V either input
 
Damage via 320 ohms
 
Fault Voltage +8V maximum
 
Emission
 

Fault Current 40 ma
 
Limitation
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Table 27. MDM Serial Digital Data Input to CIU 

Parameter PSP Specification Payload ICD CIU Specification
 

Receiver Transformer coupled, Transformer coupled, Transformer coupled,
 
Type balanced balanced balanced
 

Manchester II Biphase- Manchester IIBi- Biphase-L in accord-

Wavefocm L (MIL-STD-442) phase-L (MIL-STD-442) ance with MIL-STD-1572
 

Data Rate 1 Mbps 1 Mbps ± 0.1% 1 Mbps ± 10%
 

Data
 
Threshold
 

Positive +0.5 ± O.lV peak +0.5 ± O.IV peak +0.5 ± O.1V peak,
 
line-to-line line-to-line line-to-line
 

-0.5 ± O.lV peak
Negative -0.5 ± O.IV peak -0.5 ± O.lV peak 

line-to-line
line-to-line line-to-line 


Logic Level +1.5V to +8V peak +1.5V to 8.0 peak +l.5V to +8V peak

"One" line-to-line line-to-line line-to-line
 

Logic Level -1.5V ± 8% to -8V -1.5V to -8.0 peak -1.5V to -8V peak

"Zero" ±8% peak line-to-line line-to-line line-to-line
 

Pulse Width
 
±125 ns maximum
Variation ±125 ns maximum 40 ns (Jitter) 


Plus Jitter
 
-


Bit Error 1.9 X 10-7 10 7 for 14 dB
 
peak SNR
Rate 


60-250 ns measured 40-300 ns measured
Rise 60-150 ns measured 

and between 10-90% of between 10-90% of between 10-90% of
 
Fall Time voltage levels voltage levels voltage levels
 

Distortion 250 mV maximum, peak ±250 mV maximum 300 mV maximum, peak
 
(overshoot,
 
ringing)
 

Input 75 ohms ± 10% 75 ohms ± 10% 75 ohms ± 10%
 
Impedance
 
Isolation
 
Resistance 100 K ohms, minimum 100 K ohms, minimum
 
(line-to­
ground)
 

SignalsfromDC to 2MHz Signals from DC to Signals from DC to
 
with amplitude to ±32V- 2MHzw/amplitude to 2 MHz w/amplitude to
 

Common peak, line-to-ground ±32V peak, line-to- ±32V peak, line-to-

Mode applied on both input ground applied on ground applied on
 
Rejection signal terminals, shall both input signal both input signal
 

not activate receiver terminals, shall not terminals, shall not
 
circuit -activate receiver activate receiver
 

circuit circuit
 

Common Mode Greater than ±50V peak ±50V peak Greater than ±5OV peak
 
Voltage
 
Damage
 
Threshold
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Table 28. Ku-Band Signal Processor Input to CIU
 

Parameter Ku-Band Specification Payload ICD CIU Spec. 

Data Rate 128 kbps 128 kbps 128 kbps 

Waveform: 
Data NRZ-L NRZ-L NRZ-L 
Clock Square wave Square-wave 

Signal High state: 
Amplitude signal line to signal ground 

3.5V maximum 3.OV maximum 
2.OV minimum 2.OV minimum 

signal return to sig. ground 
0.5V maximum 0.5V maximum 
O.OV minimum O.OV minimum 

Low state: TBD 
signal line to signal ground 
0.5V maximum 0.5V maximum 
O.OV minimum O.OV minimum 

signal return to sig. ground 
3.5V maximum 3.OV maximum 
2.OV minimum 2.OV minimum 

Rise and 
Fall 

<2.5% of bit period measured 
at 10-90% points (195 ns) 

<2.5% of bit period* 
measured at 10-90% 

Times points (195 ns) 

Source 
and Load 
Coupling 

Balanced differential, 
direct coupled 

Balanced differ-
ential, direct 
coupled 

Differential,, 
direct coupled 

Load 
Impedance 75 ± 5 ohms 75 ± 5 ohms TBD 

Cable 75 ± 5 ohms, TSP 75 ± 5 ohms, TSP TBD 

Data 
Stability <0.01% of bit rate 

Clock Skew <150 ns 15% clock per. max. -

Clock Duty 50.0 ± 5% of bit period 50.0 ± 5% of bit 
Cycle ---.period* 
Frequency ±0.1% of data rate at 0.1% rms 0.1% of bit period 
Jitter of the data rate 
Clock Phase
Jitter ±2% rms of bit period 10% of bit period -

Data/Clock 10% of bit period, maximum TBD

Asymmetry
 

Common Mode 
Voltage - TBD
 
Common Mode
 
Damage 
 TBD
 
Threshold
 

ICD 2-19001, 10/10/77, Rise and Fall Times 40 ns and Clock Duty Cycle 50 + 15%
 
of bit period.
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Table 29. CIU Output to Ku-Band Signal Ptocessor
 

Parameter 
Ku-Band 

Specification Payload CD 
CIU 

Specification 

Data Rate 
and 
Signal
Coding 

16 kbps to 2 Mbps 
NRZ-L, M, S 
16-1024 kbps
Biphase-L, M, S 

16 kbps to 2 Mbps 
NRZ-L, M, S 
16-1024 kbps
Biphase-L, M, S 

16, 64, 256 kbps 
Biphase-L 

Signal 
Level 

1.8 to 5.OV p-p 
line-to-line 

1.8 to 5.OV p-p 
line-to-line 

TBD volts p-p* 
line-to-line 

Load
Impedance 75 ± 5 ohms --­ 75 ± 5 ohms 75 ± 10% ohms* 

Cabie Type 

Signal 

Type 

75 ± 5 ohms, TPS 

Balanced differential, 

direct coupled 

75 ± 5 ohms, TPS 

Balanced differential, 

direct coupled 

Differential, 

direct coupled 

RMS SNR 35 dB minimum 35 dB minimum 

Rise 
and 
Fall 
Times 

5% or 50 ns between 
10-90% points, which-
ever isless 

5% or 50 ns between 
10-90% points, whichever 
isless (ICD 2-19001, 
10/10/77, requires 10 ns 
maximum) 

TBD 

Frequency ±0.1% rms of the datarate at 0.1% rms of 
the data rate 

±0.1% rms of the datarate at 0.1% rms of the 
the data rate 

Data 
Asymmetry 
(TDRS User 
Constraint) 

±10% ±10% 

Data
Stability 0.01% long term <0.01% long term 

Bit Jitter ±2% of bit period 

Common 
Mode 
Voltage 

±1OV DC to 10 kHz 
decrease 10 dB per 
decade to lOOkHz and 
10 dB per octave above 
100 kHz 

Previously, signal level was 6 ± 3V p-p line-to-line, load impedance was
 
90 ± 10% ohms, and rise and fall times were 1 psec.
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Table 30. CIU Output ta FM Signal Processor
 

FM Signal Processor 

Parameter Specification 

Data Rate 250 bps-to 256 kbps 

Signal Manchester II, 
Coding Biphase-L or NRZ-L 

Signal 1.0 ± 0.6V p-p 
Level line-to-line 

Logic "l" (Removed from spec) 

Logic "0" (Removed from spec) 

RiseFall. Timesand Less than 100 ns 

Signal Balanced differential 
Type 

Common 
Signals from DC to 2 MHz 
up to 1V peak line-to-

Mode ground shall not degrade 
Rejection output SNR to less than 

45 dB 
Source 
Impedance 75 ohms ± 10% 

Load
Impedance 

75 ohms ±10% 

CIU 

Payload ICD Specification 

250 bps to 256 kbps 16, 64, 256 kbps 

Biphase-L or NRZ-L Biphase-L 

1.0 ± 0.6V p-p 
line-to-line 

1.0 ± 0.6V p-p 

+1.1V ± O..5V p-p 
line-to-line 

-9.3V to +O.4V p-p, 
line-to-line 

Less than 100 ns Less than 100 

Balanced diffferential Differential, 
direct coupled 

Signals from DC to 2 MHz 
up to 1V peak line-to­
ground shall not degrade 
output SNR to less than 
45 dB 

75 ohms ± 10% TBD 

75 ohms ±10% 75 ohms ±10% 
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Table 31. CIU Output to Payload Data Interleaver
 

Paraeter SpeciicatPDISpecification Payload ICD CIU Specification 

Bit Rate 10 bps to 64 kbps 10 bps to 64 kbps 16, 64 kbps 

Input Signal NRZ-L, M, S NRZ-L, M, S NRZ-L 
Code - Biphase-L, M, S Biphase-L, M, S 

Logic Positive 

Bit Rate 
Accuracy 

Bit Rate 

.±6% 

1 part in lO5 1 part in lO6 

Stability .60-sec period 60-sec period 

Signal Balanced Balanced Differential, direct 
Type differential differential coupled 

Amplitude 2-12V p-p 2-12V p-p- 6 ± 3V p-p line-line 

Rise and 10% between 10 5p sec or 10% of TBD 
Fall Time and 90% points bit, whichever is 

less, 100 ns min. 

Signal Overshoot and Overshoot and 
Waveform undershoot less undershoot less 
Distortion than 20% of peak than 20% of signal 

Clock Skew ±5% of clock per- ±5% of clock per- ±5% of clock period or 
iod or 10 ms, iod or 10 ms, 10 ms, whichever is less 
whichever is less whichever is less 

Clock Duty 50.0 ± 5% 50 ± 5% Square wave 
Cycle 

Noise 100 mY p-p 100 mV p-p 
Immunity line-to-line line-to-line 

DC-100 kHz 
Load 
Impedance 75 ± 7 ohms 75 ± 7 ohms 75 ± 7 ohms 

Cable- 75 ± 7 ohms 75 ± 5 ohms, TSP 
Impedance 

Source 75 ± 7 ohms 180 
Impedance 
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Table 32. CIU Output to Payload Recorder
 

Parameter 	 Payload ICD 


Analog: 

Input Signal IV rms ± 6 dB 

Signal Type 

Source Impedance (CIU) 71 ± 10%
 

Load 'Impedance- 71 ± 5% 

(Recorder)
 

Cable Impedance 75 ± 5 ohms, TSP 


Frequency 1.9 kHz to 1.6 MHz 


Signal/Noise 39 dB over any 3 kHz slot
 

Common Mode ±15V (reference to signal 

Rejection ground) 


Digital:
 

Data Rates 25.5 kbps to 1.024 Mbps 


Signal Code Biphase-L 


Bit Jitter 2% of bit duration (p-p)
 

Rise and Fall Times ±10% of bit duration 


Input Signal 3-9V p-p 


Signal Type 	 Differential 


Load Impedance 71 ± 10% ohms 


Cable Impedance 75 ± 5 ohms, TSP 


Source Impedance 71 ± 10% ohms 


Common Mode ±15V (reference to signal
 
Rejection 	 ground)
 

TRW performance: 	 IV rms + 2.9 dB
 

IV rms - 6.56 dB
 

CIU Specification
 

IV rms ± 6 dB*
 

Differential
 

71 ± 7 ohms
 

75 ± 5 ohms, TSP
 

10 kHz to 100 kHz
 

±15V max (reference
 
to signal ground)
 

256 kbps, 64 kbps
 

Biphase-L
 

390 ns, maximum
 

6 ± 2V p-p
 
line-to-line
 

Differential, direct
 
coupled
 

71 ± 10% ohms
 

75 ± 5 ohms, TSP
 

TBD
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The Payload ICD and the CIU specification for the MDM/CIU interface
 

are in basic agreement, as shown in Tables 26 and 27. The rise and fall
 

times for the MOM discretes did not appear in the specification. This
 

missing parameter may be due to a missing figure since the CIU specifica­

tion referred to Figure 12 for the rise and fal.l time specification, but
 

Figure 12 had no reference to rise and fall times. There are also slight
 

discrepancies in the CIU specification of the MOM serial digital data
 

input for rise and fall times, pulse width variation plus jitter, and dis­

tortion (overshoot, ringing). However, since these are MOM input specifi­

cations, there does not seem to be any major discrepancies or problems with
 

this interface.
 

Tables 28 and 29 define the interface between the KuSP and the CIU.
 

Nearly all the parameters defining this interface are either not included
 

in the CIU specification or are TBD. This interface needs to have these
 

parameters specified very soon if large cost impacts are to be avoided.
 

One area of the interface was resolved by Axiomatix. This area concerns
 

the use of the Ku-band forward link 128 kbps for the 2 kbps command data
 

to the CIU.
 

The Ku-band forward link through the TRDSS is a very strong link
 

for the data rate of 216 kbps, of which the 128 kbps command channel is a
 

part. Table 33 presents the current NASA JSC link budget for this Ku-band
 

forward link. First, note that the required BER is 10-5 , which would then
 

be the same BER for the bits in the 128 kbps. But the circuit margin is
 

7.3 dB; therefore, the expected BER is actually about 10-23. In addition,
 

the circuit margin is based on current specifications and the contractor
 

performance on various equipment that are part of the link is better (in
 

some cases, much better) than the specifications. Therefore, the Ku-band
 

forward link can be considered essentially error-free.
 

Based on the fact that the Ku-band forward link is essentially
 

error-free (i.e., BER <10-23), Axiomatix proposed the most simple imple­

mentation of transmitting the SGLS 1 k-baud command data. First, the
 

1 k-baud ternary symbols would be converted to binary digits as follows:
 
"S"= 01, "l"= 11, and "0"= 00. Thus, the.binary data rate of the SGLS
 

commands is 2 kbps. If each binary one is transmitted as 64 ones and each
 

zero is transmitted as 64 zeros in the 128 kbps Ku-band forward link data
 

stream, the 128 kbps data can be easily d~formatted by the CIU into the
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Table 33. TDRSS-Orbiter Ku-Band Forward Link with 216 kbps TDM Digital Data
 
(128 kbps Command Data for DOD Missions)
 

PARAMETER VALUE 	 SOURCE
 

1. TDRS EIRP, dBW 46.5 	 ICD 2-0D004 (IRNO03) specification
 

2. Space loss, dB -207.7 	 f=13.775 GHz, R=22786 n.mi.
 

3. SSO Pointing loss, dB -0.5 	 Rockwell spec 

4. Polarization loss, dB -0.2 	 JSC estimate
 

5. SSO receive antenna gain, dB 38.0 	 Rockwell spec
 

6. SSO receive circuit loss, dB -3.0 	 Rockwell spec
 

7. Total received power (Prec), dBW -126.9 	 Sum 1 through 6
 

8. 	SSO system noise temperature, dBK 29.9 794 K (ref. to receiver input, Ta=45 K,
 
L=-3.0 dB, Tr=627 K)
 

9. Boltzmann's constant, dB (W/K/Hz) -228.6 	 1.38x10 
"2 3 

If/K/Hz 

10. 	 SS0 noise spectral density (No) db -199.6 Sum 8 and 9
 
(WlI/Hz
 

11. 	 SSO G/T, dB/K 6.01 5 plus 3 minus 8, Rockwell spec
(ICD 	2-004 spec value is 5.3 dB/K
 

12. 	 Total received power/noise spectral 72.7 7 minus 10
 

density (Prec/No), dBHz
 

13. 	 Spread spectrum degradation, dB -1.5 JSC estimate
 

14. 	 Bit rate bandwidth, dBHz 53.3 216 kbps
 

1S. 	 Signal-to-noise ratio in bit rate 17.9 12 plus 13 minus 14
 
bandwidth (Eb/No), dB
 

16. 	 Theoretical required Eb/No, dB 9.6 For 10 5 BEP
 

17. 	 Bit sync degradation, dB -1.0 JSC estimate
 

-

18. 	 Encryption/decryption degradation, dB 0.0 JSC estimate for 10 Z prob. of command
 

rejection­

19. 	 Requried Sb/No., dE 11.4 16 minus 17 minus 18
 

20. 	 Required Prt /N,,dBHz 6S.4 19 plus 14 minus 13 (ICD 2-0D004 spec
 
value is 654 dBHz)
 

21. Circuit Margin, dB 7.3 15 minus 19 or 12 minus 20
 

*These values are being submitted as changes to ICD 2-0D004 via PIRN IG 0014
 



into the 2 kbps binary command data. All the CIU needs to do is count
 

down the 128 kHz clock from the KuSP to 2 kHz, then sample the 128 kbps
 

binary data stream each 500 ls to obtain the 2 kbsp binary command data.
 

Note that theBER of the2 kbps binary command data isthen equal to BERof
 

the original 128 kbps data (i.e., BER <10-23). Without considering how
 

low the expected BER is for the 128 kbps, several people have proposed
 

making a majority decision on the 64 bits that make up the 2 kbps binary
 

digits. Majority decisions would improve the BER of the 2 kbps binary
 

command data to
 

4Ipi(l-P)64-i
14 (6 )
 
i=33 \
 

where Pb isthe BER of the 2 kbps data and p isthe BER of the 128 kbps
 

data. Note that Pb can be further bounded by
 

6433,l)31 < P < (64\(331 p33
 
(33) P1-P) 


33  

1.78 x 1018 p33 (1-p)31 < b < 1.78x 118 p (2) 

Ifp isl0- , then Pb < 1.78x10147 (an unrealistic number) and, if
 

p = 10-23 , then Pb < 1.78xlO741 (an even more unrealistic number).
 

Therefore, majority decisions on the 128 kbps data is not warranted.
 

method
Originally, error correcting coding techniques were proposed as a 


of optimally combining the 128 kbps binary digits to make the 2 kbps binary
 

digits. Based on the performance of majority decisions, itmay be seen
 

how unwarranted even the complexity of the most simple error correcting
 

coding technique is.
 

The interface between the CIU and the FMSP ispresented in
 

Table 30. The only two discrepancies between the CIU specification, the
 

Payload ICD, and the FMSP specification are the lack of CIU specifications
 

for common mode rejection and for source impedance.
 

Table 31 presents the comparison of the CIU specification, the
 

Payload ICD, and the PDI specification for the CIU/PDI interface. This
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interface has a number of parameters that are not specified in the CIU
 

specification including bit rate accuracy, bit rate stability, rise and
 

fall times, signal waveform distortion, noise immunity, and source imped­

ance. These parameters must be specified before this interface can be
 

resolved and should be resolved realatively soon inorder to avoid large
 

cost impacts.
 

Finally, Table 32 defines the CIU/PR interface by making the com­

parison between Payload ICD and CIU specification. First note that the
 

CIU specification does not include values for the analog or digital inter­

face source impedance, the analog signal/noise, the digital interface bit
 

jitter, or the digital interface common mode rejection. Inaddition,
 

while the Payload'ICD and the CIU specification agree on the analog input
 

signal parameter, TRW isnot meeting the.lower specification value. Boeing
 

wrote Review Item Disposition 1 (RID-OI) against this discrepancy at the
 

CIU PDR. The response to RID-0l isto be presented at the CIU CDR in
 

July 1979, but the expected action by Boeing isto modify the CIU speci­

fications to accommodate the TRW baseline design performance. Similarly,
 

TRW isn't meeting the digital signal level CIU specification but meets a
 

minimum of 3.5V peak-to-peak, line-to-line, which is consistent with the
 

Payload 	ICD. Therefore, RID-1O requested that Boeing change the CIU spec­

ification to accommodate the TRW baseline design performance.
 

3.5.4 	 CIU Preliminary Design Review Evaluation
 

During the CIU PDR held November 28-29, 1979, there were 26 RID's
 

and 20 Action Items (Al's). Tables 34 and 35 present the RID's and Al's,
 

respectively, along with the responsibilities and due dates for resolving
 

them. RID-OI and -10 were discussed inthe previous section. A number
 

of other RID'sand Al's were written against CIU interfaces and required
 

updates to the specifications. AI-04 noted that some of the interface
 

requirements inthe CIU specification were incompatible with the Payload
 

ICD. Axiomatix spelled out these incompatibilities in detail with Tables
 

24-32 inthe previous section. Other RID's and Al's concerned with the
 

CIU interface specifications are RID-35, -43, -44 and -46, and AI-09, -12,
 

-17, and -20.
 
RID-35 noted that CIU buffer for the MDM command interface-was too
 

small. Inorder to handle clear text commands adequately, the CIU buffer
 

should accommodate 160 bits rather than the current design of 102 bits
 



Table 34. CIU-PDR RID'S 

0Io0 Due Date 
RID No. Subject Assigned To 

C CIU-01 Payload Recorder Analog Amplitude BAC 12-20-78 

C) 
C 

CIU-03 
CIU-04 

TEMPEST Test Plan Submittal 
TEMPEST Control Plan Submittal 

TRW 
TRW 

CDR 
1-15-79 

CIU-05 Dimmer Control Implementation BAC 12-20-78 

CIU-07 VCC Extraction TRW 1-15-79 

CIU-08 Command Data to IUS (SPF) BAC 1-22-79 

CIU-09 EMC DC Converter Requirements BAC 1-15-79 

CIU-1O Payload Recorder Digital Amplitude BAC Spec. Revision 

CIU-11 EMC Test Plan TRW CDR 

CIU-12 EMC Control Plan TRW CDR 

CIU-14 KG Fill Access BAC Spec. Revision 

CIU-15 Incorporate Overload Protection TRW 1-1-5-79 

CIU-16 VCC Display as Two Digits Octal BAC Spec. Revision 

CIU-19 Evaluate BAC Connector Configuration TRW 12-18-78 

CIU-22 Command Authentication in "Clear" Mode BAC 1-10-79 

CIU-25 Test Plan TRW CDR 

CIU-35 S-Band Commands Variable Format BAC CDR 

CIU-37 Revise Control Panel Layout TRW CDR 

CIU-38 Revise Control Panel.Design TRW 1-15-79 

CIU-39 Revise KG Panel Design TRW CDR 

CIU-41 Update Envelope Drawing to Reflect Design BAC 1-20-79 

CIU-42 Clarify TBD's on T-O Umbilical 
Provide Switching for Redundant T-0 Umbilical 

BAC 
TRW 

CDR 
CDR 

CIU-43 Correct CMR Discrepancy for PI Input BAC 12-20-78 

CIU-44 Correct Documentation for ±15V Damage Threshold BAC 2-15-79 

CIU-45 Correct Documentation for Touch Temperature Discrepancy BAC 1-20-79 

CIU-46 Clear U1 CIU Specification TBD'.s BAC CDR 



Table 35. CIU-PDR Action Items 

Action 
AI Number Action Item Assigned To Due Date 

CIU-AIOl Status of Level 2 Change to Orbiter Wiring SAMSO 12-13-78 

CIU-AI02 Switch CIU and KG Panels TRW CDR 

CIU-AI03 VCC Extraction and Command Validation Lockout BAC 12-15-78 

CIU-AI04 Interface with Orbiter Equipment BAC 1-15-79 

CIU-AI05 FSK/AM Waveform Performance Data TRW 1-6-79 

CIU-AI07 CIU Worst-Case Propagation Delay Analysis TRW CDR 

CIU-AI08 Review Weight Estimates TRW 1-5-79 

CIU-AI09 Update Specfication for Two "S"Bits Separating CMD's BAC Spec. Review 

CIU-AIlO GN&C Command Rejection Criteria BAC 12-15-78 

CTU-AIII Confirm Console (GFE) Delivery Schedule BAC 12-20-78 

CIU-AI12 Provide WBDI and IUS CIU Input Symmetry BAC 1-20-79 

CIU-AI13 Submit Tantalum Cap IA060 to PMPCB BAC Next PMPCB 

CIU-AI14 Remove LHOOO2H from Design--PMPCB Action BAC CDR 

CIU-AI15 Measure Integrated PSK Demod-Bit Sync Acquisition Time TRW CDR 

CIU-AI16 Measure Integrated PSK Demod-Bit Sync BER TRW CDR 

CIU-AI17 Review Specification for Adequate KG/PDI Timing Margin BAC 1-15-79 

CIU-AI18 Add NIS Extraction to CIU Baseline BAC 12-20-78 

CIU-AI19 Prepare ICD and Update Envelope Drawing for KG Compatibility BAC 1-20-79 

CIU-AI20 Ensure Power "On" Maintenance for Crypto BAC CDR 

CIU-AI21 NIS Display Vector BAC With ECP 
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from the Orbiter MDM in the S-band PM uplink mode. This allows a command
 

and its complement for execution to be held in the CIU inone data trans­

fer from the MDM. Boeing is.to determine the design implementation
 

approach by-the CIU CDR.
 

RID-43 notes that common mode rejection for the PI/CIU interface
 

is specified at greater than 40 dB CDC to 2 MHz), as noted in Table 25,
 

but the CIU capability is greater than 40 dB (DC to 1 MHz) and greater
 

than 25 dB (IMHz to 2 MHz). There isno corresponding PI specification
 

or Payload ICD requirement for common mode rejection, as noted in Table 25.
 

Boeing isto determine corrective action to resolve the discrepancy.
 

RID-44 isconcerned with the voltage damage threshold for the MDM
 

discrete envelope signals at the input of the CIU. The CIU specification
 

and the Payload ICD require ±32V at either input as the voltage damage
 

threshold, as shown inTable 26; however, the 9615 line receiver used by
 

TRW to implement the CIU interface has only a ±15V worst-case voltage
 

damage threshold. The action on this RID was for Boeing to change the CIU
 

specification to allow only ±15V voltage damage threshold, but this is
 

inconsistent with the Payload ICD and, therefore, either this requirement
 

must be reviewed in terms of the Orbiter MDM design or TRW must redesign
 

the CIU/MDM interface.
 

RID-46 points out that the CIU specification has-a-large number
 

of TBD's, as was discussed in the previous section. Boeing is to clear up
 

these TBD's by the CIU CDR.
 

Al-09 requires Boeing to update the CIU specification so that, in
 

the clear text command mode, there is a specified separation between true
 

and complement clear text commands by a minimum of two "S" symbols. Boeing
 

is to complete this specification update at the next specification review.
 

Inthe previous section, the CIU interfaces with the Orbiter sub­

systems were investigated. The interfaces between the IUS and the CIU and
 

between the COMSEC and the CIU were not discussed. There are also inter­

face definition discrepancies between these subsystems. AI-12 points out
 

that the CIU specification requires the biphase-L output from the CIU to
 

have ±10% asymmetry, as noted inTable 29, for the interface between the.
 

CIU and the KuSP. In order for the CIU to meet this requirement, however,
 

input requirements on the WBDI and the IUS have to be imposed. Boeing is
 

to analyze'the problem and make the necessary documentation changes to the
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WBDI and IUS interfaces with the CIU. AI-17 is concerned with'telemetry
 

data and clock skew for the CIU interfaces with the COMSEC and the PDI.
 

Table 21 shows that the PDI specification, the Payload ICD, and the CIU
 

specification require the CIU/PDI clock skew to be ±5% of a clock period,
 

or 10 ms, whichever is less. However, the COMSEC GFE/CIU interface
 

requires that the data skew referenced to the clock leading edge shall be
 

greater than 280 ns and the data skew referenced to the clock falling edge
 

shall be greater than 330 ns. TRW analysis shows worst-case skew between
 

leading edges of data and clock of greater than 415 ns for the COMSEC and
 

less than 430 ns for PDI. This design margin is too small to meet.
 

Therefore, Boeing is to review and analyze the interface definitions to
 

determine if CIU specifications must be changed.
 

AI-18, -20.and -21 are concerned with CIU specifications that are
 

not included in the TRW baseline design. The CIU specification calls for
 

the Navigation Initialization Status (NIS) bits to be extracted from the
 

IUS 64 kbps telemetry stream whenever attitude data, state vector data or
 

a NAV Mode 2 command is transmitted to the IUS. The NIS bits are to be
 

routed to the CIU control and display panel for display. AI-18 and -21
 

note that the NIS bit extraction is not part of the TRW baseline design
 

of the CIU or the display panel. TRW is to add these requirements to the
 

baseline design and Boeing is going to accompany this change with an atti­

tude initialization Engineering Change Proposal (ECP). AI-20 notes that
 

the NASA specification on the COMSEC calls for erasure of memory if there
 

is a power loss of seven-seconds duration; however, there was no require­

ment presented to ensure that power is maintained once the COMSEC memory
 

is filled. Boeing is to create the documentation by the CIU CDR to guar­

antee that the power is maintained.
 

RID-41 points out that some of the design concepts specified within
 

the CIU specification have been changed due to revision 6f Boeing-generated
 

authorized design changes. Boeing is to revise the CIU specification as
 

required, but a new CIU specification has yet to be released.
 

The test data and analysis supplied with the CIU PDR package was
 

not in all cases sufficient to show that the required performance was met.
 

For example, AI-05 requested more tests from TRW to determine if the CIU­

generated FSK/AM waveform was satisfying the SGLS requirement, as shown
 

in Figure 11. AI-05 specifically requested test data to show that the bit
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transition versus zero crossing of the 500 Hz envelope "sync delay" = 0.6
 

bit period ±10%, that the frequency accuracy of the 1, 0, S tones was
 

±0.01%, and that the bit transitions were continuous. TRW supplied test
 

data on January 6, 1979 that showed that the bit transition versus zero
 

crossing of the 500 Hz AM envelope was within-0.6 bit period ±5%. The TRW
 

test data supplied to show the continuity between bits was sufficient;
 

however, the test data TRW supplied to show that the 1, 0 S tones met the
 

frequency accuracy of ±0.01% was insufficient. Additional test data will
 

have to be supplied as part of the CIU CDR Data Package.
 

AI-07 requested TRW to review and revise the worst-case analysis
 

since some of the propagation delays used in the CIU PDR worst-case anal­

ysis were in question. The revised worst-case analysis isto be part of
 

the CDR Data Package. Also to be included inthe CDR Data Package is
 

additional test data on the PSK demodulator and bit synchronizer acquisi­

tion time and BER degradation as requested by AI-15 and -16. This addi­

tional test data was requested since the PDR Data Package did not include
 

sufficient test data to show that these acquisition time and BER degrada­

tion requirements were being met. RID-03, -04, -11., -12 and -25 were
 

written because the test plans required by the Statement of Work (SOW)
 

were not included in the PDR Data Package. The response to these RID's
 

is for TRW to provide the various test plans as part of the CDR Data
 

Package.
 

VCC extraction for command verification, according to the CIU
 

specification, isto be performed by examining the subframe count such
 

that the "A"side VCC shall be contained inodd subframe counts and the
 

"B"side VCC shall be contained in even subframe counts, excluding zero.
 

RID-07 noted that the present TRW design examines bit 24 of the VCC word
 

to determine "A"side versus "B"side VCC. The TRW response to RID-07
 

was that the CIU design is in accordance with the CIU specification and
 

performs the VCC extraction by examining the subframe count. AI-03 notes
 

that there is a 1.2-second lockout time inthe CIU specification to per­

form the VCC extraction and command validation. AI-03 requests that Boeing
 

review the requirements for lockout of VCC for all conditions of operation
 

and, ifwrong, revise design and specify the correct lockout time. AI-IO
 

requests that Boeing provide VCC activity rules and command rejection cri­

teria. This isespecially critical for detection of command rejection of
 

GN&C data transfers to the IUS.
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The CIU design baseline provides that the COMSEC buffers will be
 

filled by the operator bringing his fill gun directly to the KG front
 

panel. The CIU specification requires that the KG fill connector be
 

located on the CIU.control panel. RID-14 points out that the fill con­

nector is to be located directly on the KGT-60 and KGR-60, but no provi­

sion has been made for access to the KG fill connector. Boeing is to
 

revise the CIU specification to eliminate the fill connector from the
 

panel and TRW is to provide a design,approach for accessing the fill con­

nector on the KGT-60 and KGR-60. Most likely, the CIU side panel will be
 

designed to provide convenient access. The design details are still being
 

worked out. It is a requirement that the access be convenient and simple
 

because the fill operation will probably occur just prior to launch. The
 

final' design details will be presented at the CIU CDR. Also pertaining to
 

the COMSEC, Al-0l requests that SAMSO determine the status of the Level 2
 

change to the Orbiter wiring that provides the Orbiter KGX-60 zeroize
 

signal to the CIU KGT-60 ,and KGR-60.
 

RID-08 and -42 address the redundancy problem of the CIU which is
 

discussed inmore detail inSection 4.0. It is noted in RID-08 that the
 

CIU signal control unit CSCU) iscommanded to select between four outputs
 

CIUS #A, IUS #lB, IUS #2A and IUS #2B). For a single-string TT&C mission,
 

a failure of the SCU A will preclude further onboard commanding on the IUS.
 

Boeing was assigned to study this problem and present a solution. This
 

will be discussed in greater detail at the CIU CDR. RID-42 points out
 

that the CIU specification requires the CIU to interface with two redun­

dant command lines from the T-O umbilical during ground checkout. The
 

CrU PDR Data Package shows the CIU interfacing with only one T-O umbilical
 

command line. By the CIU CDR, Boeing isto revise the CIU specification
 

to reflect the proper nomenclature of the redundant T-0 umbilical "A"and
 

"B"command lines and TRW is to alter the CIU design to accommodate inter­

facing with redundant T-0 umbilical command lines. This requires T-O "A"
 

and T-O "B"positions on the command source select rotary switch.
 

RID-09 is concerned that the CIU DC power converter has surge
 

voltage and conducted susceptibility. The CIU DC power converter is
 

based on the NSP power converter which is a qualified Orbiter component.
 

The CIU requirements for conducted susceptibility exceeds the NSP capabil­

ity by a factor of six. To be fully compliant with the CIU requirements
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would require a major CIU redesign and also complicate the TEMPEST design.
 

Since the EMC requirements for the CIU are not needed for the Orbiter, TRW
 

recommended that the EMC requirements be revised from MIL-STD-1521 and
 

D290-10068-1A to MIL-STD-461A, modified by NASA-SE-0002. Boeing was
 

assigned to study and determine if the requirements can be relaxed. The
 

result of this study will be discussed at the CIU CDR.
 

A number of RID's and AI's were directed toward the control panel
 

design and layout. RID-05 was written by Boeing and assigned to Boeing
 

to resolve the panel light dimming requirement. It was pointed out that
 

panel light dimming was required to allow for variations in background
 

lighting. The Orbiter has several annunciator control assemblies (ACA)
 

for light intensity control from centralized locations, and is was requested
 

that TRW be provided access to one of the 36 ACA channels for use by these
 

panels. This would eliminate the need to design a CIU ACA. The CIU would
 

require two additional lines to the Orbiter, a lamp power line and a
 

return line. AI-02 requested that the layout of the panels be changed
 

such that the KG control panel is switched with the CIU control panel so
 

that the CIU control panel is closer to the operator. This change is to
 

be included in the CIU CDR Data Package.
 

RID-15, -16, -22, -37, -38, -39 and -45, and AI-19 are concerned
 

with various aspects of the control panels. RID-37 notes-that the nomen­

clature used on the CIU panel is inconsistent with the Orbiter nomencla­

ture and the CIU panel nomenclature should be changed to minimize ambigu­

ity in operating the system. Also, RID-37 points out that the CIU "POWER"
 

and "PAYLOAD LINK" switches are incorrectly illustrated as three-position
 

switches. These changes to the CIU panel are to be included in the CIU
 

CDR Data Package. RID-38 recommends that the panel controls be guarded to
 

prevent inadvertent contact and selection of improper or false modes. In
 

particular, RID-38 recommends the addition of a barrier guard on the
 

"CLEAR" push-button switch and replacement of the "TLM RATE" and "PAYLOAD
 

LINK" switches with a single three-position switch. The three-position
 

switch should have the following switches: "HARDLINE-64 KBPS" (upper),
 

These panel changes
"HARDLINE-16 KBPS" (middle), and "RF-16 KBPS" (lower). 


were implemented by TRW on January 25, 1979. In addition, TRW added a
 

lamp dimmer capability which includes a potentiometer and a toggle switch
 

with normal and bright positions. The dimmer capability was added at the
 

request of Boeing.
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RID-39 itemizes several deficiencies of the KG control, panel. 

First; the "POWER ON," "OPERATE," and "ENCRYPTED" lights do not convey 
any additional information and remain constantly illuminated. Therefore, 

these lights should be deleted. The "MEMORY" light'should be located with 

the other failure lights. Second, the "LOAD"-push button should be 

recessed andan additional barrier guard provided. These changes to the 

KG control panel are to be part of the CIU CDR Data Package. RID-16 rec­

ommends that the ClU specification be changed from the requirement to pro­

vide the "VCC" display of two-digital hexadecimal for verification of 21 

bits to a two-digit octal display because of the unfamiliarity of hexa­

decimal. Boeing is to change the CIU specification to allow the "VCC" 

display to be two octal digits. 

AI-1l9 was prepared because the CIU design for incorporating the
 

KG-60 equipment provides toggle switches, rotary switches and push-button
 

interfaces on the KG control panel. The electrical interface in the CIU
 

specification is incompatible with the desi.gn description. Therefore,
 

AI-19 requests that Boeing prepare a "one-sided" ICD for submittal to
 

SAMSO showing the direct interface between the KGT-60 and KGR-60 and the
 

KG control panel. RID-22 establishes the requirement for the indication
 

in both CLEAR TEXT and KG modes for the Orbiter .crew to verify that the
 

CIU commands have been correctly accepted. With the present design, the
 

"VCC" and "COMMAND REJECT" indications are provided in the KG mode only.
 

The present design relies on the ground station confirmation that the com­

mands have been correctly accepted. RID-22 notes that this design is
 

unacceptable because it constrains the operational timelines due to reli­

ance upon data through the ground stations and because it does'not meet
 

the basic requirement that an operator be provided with feedback on
 

equipment ,response. Boeing isto provide a design approach for indicat­

ing to the crew inthe CLEAR TEXT mode that the CIU commands have been
 

correctly accepted.
 

The CIU specification requires that protection be provided where
 

a failure, fault or overload could result in hazards of fire, smoke or
 

explosion. RID-15 points out that overload protection islacking in the
 

current design of the CIU control panel. TRW provided overload protection
 

by use of proper wire sizing of all cables not confined in hermetically
 

sealed enclosures.. On January 25, 1979, TRW presented the power di-stri­

bution scheme utilized to provide the necessary overload protection.
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The final RID concerning the CIU control panel was RID-45, which
 

noted that the CIU specification required a maximum surface touch temper­

ature of 113'F; however, the maximum ambient temperature is 1350 F. At
 

135°F ambient, the CIU control panel cannot be held to 113 0F. Boeing is
 

to initiate documentation changes to correct this discrepancy.
 

RID-19 compares the connectors shown in the CIU PDR Data Package
 

with the negotiated Orbiter interface wiring and connectors and finds that
 

the connectors are incompatible. TRW reviewed the connector requirement
 

and the space available. Although the specified connectors are larger
 

than those TRW used on previous Shuttle equipment, TRW can accommodate
 

them in the design. The connectors to be used by TRW are the same as those
 

specified except that they are hermetically sealed instead of the environ­

mental type. The TRW design concept is predicated on hermetically-sealed
 

connectors on all the boxes.
 

AI-13 and -14 are concerned with components used in the ClIU design.
 

AI-13 is concerned with the use of a fixed tantalum capacitor IA060 which,
 

according to Aerospace, needs a series resistance of 3 ohms/V in order to
 

functional correctly. TRW disagrees with this position. Boeing is to
 

submit this discrepancy to the next PMPCB for resolution. AI-14 is con­

cerned with part #LHOOO2H which was disapproved by the PMPCB. TRW is to
 

delete this part from the CIU design before the ClIU CDR.
 

AI-08 recommends a review of the CIU console contents weight,
 

including the weight of each KG-60. AI-08 notes that a maximum CIU con­

sole contents weight of 135 lbs, including the maximum weight of each
 

KG-60 at 35 lbs, is required. The maximum weight of the ClIU excluding the
 

KGT-60, KGR-60, and console frame is to be 75 lbs. TRW revised the CIU
 

weights from those given in the PDR Data Package. The total weight of the
 

CIU console contents is 124 lbs (11 lbs margin); however, this is based on
 

an allocation of 30 lbs for the KG-60 according to the CIU specification,
 

not the 35 lbs shown in AI-08. Also, AI-08 noted that the control panel
 

weights appeared low in light of the power control panel weight at 50 lbs,
 

primarily to survive kick load requirements. TRW increased the control
 

panel weights over the PDR estimate to account for a 10.5 x 19.0 x 0.190
 

aluminum panel plus the estimated weight for the panel components.
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Finally, it is noted that the CIU consoles are CFE to TRW. The
 

SIL console was required in February 1979 and the Qualification and Flight
 

consoles were required in May 1979. AI-il was assigned to Boeing to
 

ensure that the consoles would be delivered as scheduled.
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4.0 IUS/ORBITER COMMUNICATION REDUNDANCY EVALUATION
 

Redundancy is used throughout the Orbiter and the IUS to protect
 

against failures; the degree of redundancy, however, varies in both the
 

IUS and Orbiter communication systems. In this section, the functional
 

paths available to command the IUS in both the-CLEAR TEXT and EXCRYPTED
 

TEXT modes are investigated first; second, the functional paths available
 

for the IUS to transmit telemetry of various data rates in the CLEAR TEXT
 

and ENCRYPTED TEXT modes are investigated. Also, the functional paths
 

for commands and telemetry are investigated for both the attached and
 

detached modes.
 

The SGLS commanding of the IUS is presented in Figure 29. The
 

various functional command signal paths are illustrated from the SCF
 

ground station and CIU control panel. In the attached mode, commands from
 

the SCF can be transmitted to the Orbiter using either the TDRS ground
 

station to relay the commands via the TDRS over Ku-band or S-band, or the
 

direct S-band link from the SCF ground station to the S-band network tran­

sponder. Onboard commands are entered using the CIU control panel. In
 

terms of redundant command paths, note that the S-band network transponder
 

and the NSP are completely redundant. Also, commands can be sent from the
 

KuSP to the two NSP's or directly to the CIU, but note that the Ku-band
 

system is not redundant. From each NSP, commands are sent to the GPC using
 

MDM's but, from the GPC to the CIU, there is only a single MDM path. Thus,
 

with only the S-band network equipment, the MOM to CIU is a single-point
 

failure that would eliminate the capability of transmitting commands to
 

the IUS from the ground through the Orbiter. During the first IUS flight(s)
 

before the TDRS is operational, the Ku-band system wil not be available to
 

provide a redundant command path through the Orbiter to the IUS. The only
 

way commands can be transmitted from the ground to the IUS is via the SCF
 

ground station directly to the IUS in the payload bay. When the IUS is in
 

the payload bay, the Orbiter may have to maneuver so that the line-of-sight
 

(LOS) from the SCF ground station to the IUS antennas is not blocked by the
 

Orbiter. In some cases, the IUS will have to be raised on the cradle in
 

order to assure that the LOS is not blocked by the Orbiter.
 

Another way to command the IUS is with crew-generated commands
 

using the CIU control panel. A failure in the KGT-60 would eliminate the
 

possibility of ENCRYPTED commands from the control panel. A failure in
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the CIU FSK/AN modulator or I/0 driver and selector would eliminate all
 

command signal paths through the Orbiter and the direct RF link from the
 

SCF to the IUS described in the previous paragraph would have to be used.
 

In the attached mode, the CIU can command the IUS directly (hard­

line) or by using the PI for PF communications-even though the [US is
 

still in the payload bay. Section 5.0 describes the RF coverage of the
 

Orbiter payload antenna when the IUS is in the payload bay. In the
 

detached mode, the CIU sends its commands through one of two redundant P1's.
 

A final area of concern in terms of redundancy is whether the IUS
 

transponder is single-string or double-string. Currently, the IUS will be
 

single-string (i.e., a single SGLS transponder) with a kittable option
 

for a second string, as shown by the dotted transponder in Figure 29.
 

Obviously, with a single string, a single failure in the transponder or IUS
 

signal conditioning unit (SCU) containing the command decoder would elim­

inate all possible paths to command the IUS.
 

The NASA IUS employs STDN/TDRS transponders. The functional com­

mand signal flow for the NASA IUS is shown in Figure 30. Note that the
 

Orbiter command signal flow is completely redundant, with only a single
 

string using the Ku-band system. But, in case of a failure in the Ku-band
 

system, there is still a fully redundant S-band system as backup.
 

Therefore, any single failure in the Orbiter communication system would
 

not affect the command signal flow. Also note that the IUS can be com­

manded from the GSTDN directly or from the TDRS ground station via the
 

TDRS while the IUS is in the payload bay and still attached. -Again, how­

ever, the Orbiter may have to maneuver so that the LOS from the GSTDN or
 

TDRS to the IUS antennas is not blocked by the Orbiter. The maneuvers
 

required of the Orbiter will be less demanding for the NASA IUS than the
 

DOD IUS because of the greater coverage of the TDRS. In some cases, how­

ever, the IUS still might have to be raised on the cradle in order to make
 

sure that the LOS is not blocked by the Orbiter.
 

Crew-generated commands to the IUS are via the GPC. In Figure 30,
 

the payload station control panel is shown as a way to enter commands into
 

the GPC and then into the PSP for transmission to the IUS. While a single
 

MDM is shown from the payload station control panel to the GPC, there are
 

several redundant keyboards with MDM that would allow the entering of com­

mands into the GPC.
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The only area of concern in terms of redundancy for the NASA IUS
 

is the possibility of a single-string STDN/TDRS transponder. Currently,
 

the NASA IUS will be single-string similar to the DOD IUS with a kittable
 

option for a second string, as shown by the dotted transponder in Figure 30.
 

As was mentioned in discussing the DOD IUS with a single string on the IUS,
 

a single failure in the transponder or SCU would eliminate all possible
 

paths to command the IUS.
 

The SGLS telemetry functional signal flow is presented in Figure 31.
 

In the attached mode, IUS telemetry comes from three sources: (1)the
 

Signal Interface Unit (SIU), (2)the Environmental Measurement Unit (EMU),
 

and (3)the Wideband Data Interleaver (WBDI). Note that each of these
 

telemetry sources is nonredundant so, if one of these units fails, that por­

tion of the telemetry is lost. The SIU provides switching from the two
 

IUS computers to one SGLS transponder (A) (baseline) or two transponders
 

when the redundant transponder (B) is installed. The SIU also provides
 

proper interfacing with the encrypter for the ENCRYPTED TEXT mode. The FM
 

vibration data consists of three sensors mounted on the spacecraft inter­

face ring. Their analog output is signal conditioned to modulate three
 

standard subcarriers in the EMU. The three subcarriers are summed together
 

and cabled directly to the attached payload interface and the transponder
 

1.7 MHz input port. The WBDI interleaves up to six separate channels of
 

asynchronous NRZ-L telemetry data. The WBDI output is serial NRZ-L data
 

at a rate of 256 kbps.
 

As shown in Figure 31, the output of the attached payload inter­

face is (1) EMU data from one of two IUS's sent to the SIU for selection
 

to the Payload Recorder (PR), (2)WBDI data from one of two IUS's sent to
 

the CIU for NRZ-L to biphase-L conversion and selection to the KuSP, FMSP
 

and PR, and (3)SIU data from both IUS's (labeled IUS I and IUS 2 data in
 

Figure 31) sent to the CIU for selection to the PDI or after NRZ-L to
 

biphase-L conversion to the KuSP, FMSP and PR. If the NRZ-L to biphase-L
 

convertor or selector for the WBDI fails, the WBDI data cannot be trans­

mitted or recorded. If the selector between IUS 1 and IUS 2 data fails,
 

this telemetry cannot be processed through the Orbiter. However, if the
 

NRZ-L to biphase-L convertor used for this data failed, the data would
 

still be sent to the PDI for downlinking. Also, the data from the SIU
 

(IUS 1 or 2) can be transmitted directly to the SCF ground station with
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the restriction(s) on Orbiter maneuvers described in connection with the
 

command data signal flow. It should be noted that, even in the attached
 

mode, the SIU and EMU data are available by using the RF link from the
 

SGLS transponder to the Orbiter PI.
 

In the detached mode, the telemetry can be received by the Orbiter
 

via the PI or by the SCF ground station via a direct RF link. On the
 

Orbiter, the output of one of the two PI's is selected for demodulation.
 

If the selector fails, the Orbiter cannot process telemetry data in the
 

detached mode. Also, following selection between the two Pl's, the FM
 

demodulator and PSK demodulator are not redundant so, if either fails,
 

then either the EMU data or the SIU data is not recovered by the Orbiter.
 

The bit synchronizer following the PSK demodulator is implemented partiall2
 

in hardware and partially in software. Here again, if the hardware por­

tion of the bit synchronizer fails, the SIU data is not processed by the
 

Orbiter. If the software portion of the bit synchronizer fails because of
 

a microprocessor failure, the whole CIU will probably not function. Once
 

the telemetry data is processed by the CIU up to the output selector, the
 

commands on the attached mode in terms of the result of failures in the
 

CIU apply to the detached mode.
 

Following telemetry processing by the CIU, the only nonredundant
 

Orbiter subsystems are the PDI, PCMMU and PR. Failure-of-the PR means
 

that no EMU data will be available for transmission to the SCF ground sta­

tion via the S-band FM link. The PDI and PCMMU are internally redundant,
 

as shown in Figures 24 and 25. The only failure that would disable the
 

PDI is a failure of the input switch matrix; alternate paths, however,
 

(i.e., KuSP, FMSP and PR) for the same data sent to the PDI are used to
 

provide redundancy such that a single failure in the Orbiter subsystems
 

other than the CIU will not cause loss of telemetry data.
 

The telemetry data has several RF paths available to the ground.
 

Using the Ku-band system, the telemetry data is transmitted via the TDRS
 

to the TDRS ground station. Using the S-band network transponder, the
 

telemetry data can be transmitted via either TDRS to the TDRS ground sta­

tion or directly to the SCF ground station. Finally, using the S-band FM
 

transmitter, the telemetry data is transmitted directly to the SCF ground
 

station.
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The only remaining single failure that could cause loss of the
 

telemetry data inthe detached mode is by failure of the SGLS transponder
 

with the baseline single-string system. This problem was discussed in
 

connection with the command signal flow and represents an area of major
 

concern.
 

The telemetry functional signal flow for the NASA IUS is shown
 

in Figure 32. Note that the Orbiter telemetry signal flow is completely
 

redundant except for the PDI, PCMMU and PR. Failures inthese subsystems
 

have exactly the same impacts as those discussed for the SGLS telemetry;
 

however, alternate paths (i.e., KuSP and FMSP) for the same data provide
 

redundancy for these subsystems as well. Therefore, inthe attached mode,
 

there are no single failures inthe Orbiter that would cause loss of the
 

telemetry data. The only way that portions of the telemetry data could
 

be lost inthe attached mode isfailure of the telemetry sources (i.e.,
 

SIU, EMU and WBDI) on the IUS. Inthe detached mode, the telemetry could
 

be lost ifthere were a failure inthe baseline single-string transponder.
 

Another area of concern in the detached mode isthat the EMU data
 

ismodulated on the 1.7 MHz subcarrier; the PSP, however, cannot demodu­

late FM data. Thus, ifthe EMU data isto be presented by the Orbiter in
 

the detached mode, the CIU most be used with the PSP bypassed. Since the
 

STDN/TDRS transponder expects command data from the PSP on a 16 kHz subcar­

rier, the PSP cannot be turned off (bypassed) unless command data transmis­

sion and telemetry processing are not to be performed simultaneously.
 

Without the sequential use of the PSP and CIU, the only way the EMU data­

can be processed is at the ground station via the TDRS or direct RF trans­

mission to the GSTDN.
 

The telemetry data has several RF paths to the ground. As was
 

mentioned previously, the NASA IUS can transmit telemetry inthe TDRS mode
 

via the TDRS to the TDRS ground station or inthe STDN-mode directly to
 

the GSTDN ground station. When the telemetry data is processed by the
 

Orbiter, the telemetry data can be transmitted via the TDRS using either
 

the Ku-band system or the S-band network transponder. Alternately, the
 

Orbiter can transmit the data directly to the GSTDN ground station using
 

either the S-band network transponder or the FM transmitter.
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5.0 IUS RF COVERAGE
 

The Orbiter-to-IUS communications link is established through a
 

single Orbiter S-band payload antenna, which isa cross-dipole-fed cavity
 

with both right- and left-hand circular polarization capabilities and con­

ical log spiral antennas located on the IUS. The number, orientation and
 

beamwidths of the IUS antennas vary depending on the particular mission,
 

and these parameters are subject to revision as required. This section
 

deals with the IUS RF coverage with the Orbiter for the various conditions
 

encountered during the mission from the period prior to injection of the
 

IUS into low-earth orbit, while the IUS isstill inthe Orbiter payload
 

bay, to the IUS in geosynchronous orbit or planetary transfer orbit. Of
 

particular concern are the ramifications of using the RF link while the
 

IUS isin the payload bay, especially interms of establishing carrier
 

frequency locking and receiver protection from high RF signal levels due
 

to close proximity.
 

Payload Bay RF Coverage
 

The task of analyzing the communications capability between the
 

S-band payload antenna and the corresponding IUS antennas inthe payload
 

bay isextremely complex. The original concept of communications between
 

the Orbiter and the IUS inthe payload bay was by means of a detachable
 

umbilical connecting the Orbiter and IUS until separation prior to IUS
 

ejection from the payload bay. For this reason, the specifications for
 

the S-band payload antenna required isolation of the radiated power from
 

the, bay itself. No provisions were therefore included to supply a direct
 

line-of-sight link to any IUS payloads inthe payload bay; rather, the
 

present design relies on the "spillover" of the S-band payload antenna
 

pattern to provide adequate coherent signal strength to permit the IUS
 

receivers in the payload bay to lock up on the carrier frequency. Simi­

larly, the transmissions from the IUS to the Orbiter must be considered
 

to evaluate the overall effectiveness of this RF link for both the single
 

and tandem IUS payload configurations. Various aspects of the existing
 

problems will be discussed with the idea that, as the Space Shuttle pro­

gram progresses, improvements can be implemented as a result of analyzing
 

and understanding potential areas of difficulty.
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5.1.1 Antenna Descriptions and Performance Characteristics
 

In order to characterize the Orbiter-IUS communications link, it
 

is essential to describe their respective antenna systems since their
 

designs greatly influence the overall performance. It should be noted
 

that the present Orbiter S-band payload antenha might undergo further
 

modifications to broaden its RF coverage. Also, the number, locations,
 

and orientations of the IUS antennas vary (depending on the mission) and
 

are subject to change. Therefore, for this preliminary description, only
 

general characteristics will be considered. If specific information is
 

required, definitive answers can be obtained only by either simulation
 

using mock-ups or measurements using actual hardware in the flight con­

figuration since the geometrical relationships of the antennas and the
 

payload bay enclosure are so complex.
 

5.1.1.1 Orbiter S-Band Payload Antenna
 

The Orbiter S-band payload antenna is located on the upper section
 

of the forward fuselage, approximately 18 inches from the payload bay, as
 

shown in Figures 33 and 34. The locations of the other Orbiter antennas are
 

also shown for reference purposes. The antenna is a cross-dipole-fed
 

cavity approximately 2.75 inches on each square side and 3 inches deep.
 

The two orthogonal dipoles are arranged so that they are electrically
 

phased 900 apart and can be readily switched between right- and left-hand
 

circular polarization .by an astronaut in the cabin. The gain/coverage
 

specification is 2.5 dBCI (dB gain with respect to a circularly polarized
 

isotropic source) within a 1600 cone (double angle) perpendicular to the
 

Orbiter longitudinal axis. The first flight model S-band payloadantenna
 

does not completely satisfy these requirements and might possibly be modi­

fied for subsequent flights.
 

There are two structural features which affect the S-band payload
 

antenna pattern. The thermal protection system consists of multiple lay­

ers of nylon, silicone rubber, and borosilicate which entirely cover the
 

aperture of the antenna. Although some of these materials have a high
 

dielectric constant, the layers used are thin so that the total effect is
 

small. The other obstruction is a dome light approximately 2 inches in
 

diameter which protrudes above the Orbiter skin directly between the pay­

load antenna and the payload bay. This dome light was simulated using
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metallic foil on a scaled mock-up at JSC, and the effect on the antenna
 

pattern was a perturbation resulting in less than the background level of
 

-20 dB in the general vicinity of the bay.
 

5.1.1.2 IUS Antenna Systems
 

The IUS antenna systems are composed of two versions of conical
 

log spiral antennas which are shown in Figure 35. The medium-gain
 

antennas have half-power beamwidths (HPBW) of 850 to assure a good high
 

data rate communication link during injection into geosynchronous orbit,
 

as shown in Figure 36 and 37 which illustrate the antenna configurations
 

for the DOD/STS missions. The Orbiter-launched DOD IUS has a combina­

tion of omnidirectional and medium-gain antennas, with redundant sets
 

denoted by A and B, which can be readily switched when necessary. This
 

combination assures a continuous RF coverage of the IUS with the Orbiter
 

for any orientation of the IUS spacecraft.
 

The design and testing of these antennas appear to be straight­

forward except for problems encountered when either a larger diameter
 

(180-inch) payload is used or the antenna is canted to fit within a
 

limited envelope. In both cases, reflections due to adjacent spacecraft
 

surfaces create destructive interference nulls which greatly distort the
 

antenna patterns. Although these tests were made at a scaled frequency
 

of 8.999 GHz, the results appear to be realistic and indicate that the
 

antennas for the 180-inch diameter payloads should be extended on a 1 m
 

boom to achieve the desired directivity characteristics.
 

The NASA IUS antenna requires nearly a 7 dB directivity for oper­

ation with TDRS. The system design approach incorporates two pods of
 

antenna elements to provide spherical coverage by switching to the appro­

priate antenna. Each antenna is dedicated to a conical sector of the
 

total radiation sphere. Ten antennas are required to provide 6.8 dB
 

directivity. The antenna installation consists of two pods of five con­

ical log spiral antennas, each pointed toward its dedicated 850 HPBW sec­

tor. A three-dimensional illustration of the antenna coverage is shown
 

in Figure 38. In this configuration, the arrays are cocked 22.50 so that
 

upper hemisphere coverages and vehicle shadowing would be identical to
 

lower hemisphere coverage.
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The conical log spiral antenna for the NASA vehicle is the same
 

medium-gain antenna used on the DOD vehicles. This antenna design (Fig­

ure 35) provides a compact size that permits a relatively close spacing
 

of the antenna phase centers for reduced phase switching transients. The
 

antenna provides an 850 HPBW pattern with 6.8 dB of on-axis directivity.
 

5.1.1.3 	 IUS Payload Antenna Patterns
 

Few antenna patterns are available for the IUS payloads. Except
 

for the blockage effects of large diameter payloads and canted antennas,
 

it appears that the present radiation distribution patterns are satisfac­

tory and detailed patterns will be taken for specific IUS configurations
 

when necessary. Some typical examples of the omnidirectional and medium­

gain conical log spiral antennas for the DOD IUS are shown inFigure 39.
 

Figure 39 shows the polar radiation patterns of the three principal planes:
 

yaw, pitch and roll for the omnidirectional antenna.
 

For the special case of the communications link with the IUS still
 

in the payload bay, it isapparent that these patterns are not necessarily
 

representative of the actual situation due to the influence of surrounding
 

reflective surfaces such as the open payload bay doors and Orbiter tail
 

structures. As was found to be the case for the larger diameter payloads
 

which partially blocked the antennas, null patterns will be created by
 

destructive interference of out-of-phase electric field components. The
 

exact locations and magnitudes of these nulls are impossible to predict
 

or simulate with any degree of reproducibility so that the only practical
 

approach is to realize that nulls can exist and therefore allow adequate
 

link margin to compensate for possible "drop-outs" or plan corrective
 

procedures inthe event that a satisfactory link isnot achievable.
 

5.2 	 Payload Interrogator (PI) Transmitter to the IUS Receiver Link
 

The transmitter for the PI has the capability of being switched to
 

a power output compatible with the distance to the IUS. The power steps
 

are 5W, 0.5W, and 0.0025W. Since the cable loss is of the order of 9.8 dB,
 

the payload antenna EIRP is+29.7 dBm, +19.7 dBm, and -3.3 dBm. For the
 

case of the IUS in the payload bay, the output power should be set at the
 

lowest power level (-3.3 dBm) to avoid the possibility of saturating or
 

damaging any of the IUS SGLS or STDN/TDRS. At this level, it is shown in
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Table 36 that the received power at the SGLS receiver is -56.8 dBm, which
 

is within the operating dynamic range of threshold (approximately -120 dBm)
 

to -40 dBm maximum. However, the other two output power levels are -23.8
 

and -33.8 dBm, which exceed the upper limit of the SGLS transponder speci­

fied dynamic range (TRW is currently achieving an upper limit of -23 dBm).
 

Table 37 presents the received signal power for the NASA IUS with the STDN/
 

TDRS transponder. Again, it is shown that the lowest output power level
 

must be used so that the IUS received power (-52.5 dBm) is less than
 

-40 dBm, the upper limit of the specified dynamic range for the STDN/TDRS
 

transponder.
 

Note that the received signal power shown in Tables 36 and 37 is
 

somewhat vague at this time for the IUS in the payload bay since this particu­

lar situation has never been simulated. Many unknown factors such as the
 

final IUS antenna configurations in the payload bay and the effects of the
 

walls of the bay on the transmitted signal have not been clarified and will
 

not be unless measurements are taken prior to the actual mission. The
 

only conclusion at this time from Tables 36 and 37 is that the received
 

signal power level at the lowest power setting of the PI appears to be
 

within the dynamic range of the SGLS and STDN/TORS receiver.
 

One unknown is the amount of energy actually entering the Orbiter
 

payload bay since a line-of-sight path does not exist for the case when
 

the IUS payload is still in the bay. Some diffraction effects around the
 

corner of the front fuselage will exist. Preliminary measurements using
 

a mock-up indicated a signal level 20 dB down in the vicinity of the bay.
 

More important, probably, will be the effects of back scatter from vari­

ous protrusions on the open bay doors, the rear wall of the bay, and the
 

rocket engine nozzles and tail section of the Orbiter vehicle. The bay
 

itself is 18 m long and, since the doors of the payload bay will be open,
 

little standing wave phenomena would be detected which might create nulls
 

that can cause loss of lock. A slight slope on the rear wall of the bay
 

would alleviate any possibility of this condition by reflecting incident
 

energy into space.
 

If the signal strength is found to be inadequate for communication
 

with the IUS in the bay, it is possible to use higher output power levels
 

from the PI transmitter until a suitable setting is found. If it is found
 

to be essential to check out the IUS payload prior to separation from the
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Table 36. Orbiter to IUS SGLS Transponder Received Signal Power
 

Parameter Values Source 

1. Orbiter Payload Transmit 7.0 -3.0 -26.0 Rockwell Spec. 
Power, dBw 

2. Orbiter Transmit Circuit -9.8 -9.8 -9.8 Rockwell estimate 
Loss, dB based on latest 

cable lengths, etc. 

3. Orbiter Payload Antenna 2.5 2.5 2.5 Omni, specified 
Gain, dB over 36% of upper 

hemisphere 

4. Orbiter EIRP, dBW -0.3 -10.3 -33.3 Sum 1 through 3 

5. Space Loss, dB -47.0 -47.0 -47.0 f = 1787.744 MHz 
(STS Primary), 
R= 3m 

6. IUS Receive Antenna 1.4 1.4 1.4 Boeing estimate 
Gain, dB 

7. IUS Pointing Loss, dB -4.0 -4.0 -4.0 Boeing estimate at 
950 off-axis 

8. IUS Receive Circuit -3.9 -3.9 -3.9 Boeing estimate 
Loss, dB 

9. IUS Total Received -53.8 -63.8 -86.8 Sum 4 through 8 
Power, dBW 

(dBm) (-23.8) (-33.8) (-56.8) 
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Table 37. Orbiter to IUS STDN/TDRS Transponder Received Signal Power
 

Parameter Values Source 

1. Orbiter Payload Transmit 7.0 -3.0 -26.0 Rockwell Spec. 
Power, dBW 

2. Orbiter Transmit Circuit -9.8 -9.8 -9.8 Rockwell estimate 
Loss, dB based on latest 

cable lengths, etc. 

3. Orbiter Payload Antenna 2.5 2.5 2.5 Omni, specified 
Gain, dB over 36% of upper 

hemisphere 

4. Orbiter EIRP, dBW -0.3 -10.3 -33.3 Sum 1 through 3 

5. Space Loss, dB -48.4 -48.4 -48.4 f = 2092.594 MHz 
(STS Primary, 
R= 3m 

6. IUS Receive Antenna 6.8 6.8 6.8 Boeing estimate 
Gain, dB 

7. IUS Pointing Loss, dB -3.4 -3.4 -3.4 Boeing estimate 
at 450 off-axis 

8. IUS Receive Circuit -4.2 -4.2 -4.2 Boeing estimate 
Loss, dB 

9. IUS Total Receiver -49.5 -59.5 -82.5 Sum 4 through 8 
Power, dBW 

(dBm) (-19.5) (-29.5) (-52.5) 
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Orbiter, it might be appropriate to incorporate another payload antenna
 

(with appropriate attenuation pads) facing directly into the payload bay.
 

This configuration would also involve adding another RF switch, but the
 

line-of-sight link would be more reliable for such a critical function.
 

5.3 IUS Transmitter to Payload Interrogator Receiver Link
 

No adjustments are possible for controlling the output power
 

of the IUS transmitter so that the 20W (13 dBW) from the TWT results in
 

13.2W (11.2 dBW) being radiated into.the bay. The payload interrogator
 

receiver achieves a very wide dynamic operating range by use of manual
 

attenuators selected by the crew. Table 38 compares the performance
 

parameters for each receiver sensitivity range. Above -20 dBm, however,
 

the receiver IF amplifier circuits begin to saturate. Although this would
 

not adversely affect demodulation of constant envelope signals, it may
 

cause receiver false-lock under certain conditions. Therefore, overall
 

receiver performance is not guaranteed above -20 dBm. At input signal
 

levels of +10 dBm and higher, a preamplifier protective diode breakdown
 

limiter becomes operative. Purposeful receiver operation above +10 dBm
 

is not recommended.
 

Table 38. PI Performance Parameter Versus Receiver Sensitivity
 

Receiver Sensitivity Maximum No Acquisition Tracking
 
Range Damage Input Minimum Maximum Threshold
 

Low +36 dBm -87 dBm +3 dBm -91 dBm
 

Medium +30 dBm -107 dBm -7 dBm -111 dBm
 

High +20 dBm -120 dBm -20 dBm -124 dBm
 

The PI received power from the IUS SGLS transponder at 3 m is
 

indicated in Table 39 as -19.4 dBm. Thus, with the PI in the low sensitiv­

ity range, the receiver IF amplifier is beginning to saturate. Note that,
 

inTable 39, the received power was calculated based on a -4.0 dB IUS
 

pointing loss (worst case). If there is no pointing loss, the received
 

power is -15.4 dBm and the PI IF amplifier is in saturation, but there
 

will be no damage to the PI receiver. Similarly, the PI received power
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Table 39. IUS SGLS Transponder to Orbiter Received Signal Power
 

Parameter Value Source
 

1. IUS SGLS Transmitter 13.0 Boeing specification for
 
Power, dBW 20W minimum
 

2. IUS Transmit Circuit -3.2 Boeing estimate
 

Loss, dB
 

3. IUS Antenna Gain, dB 1.4 Boeing estimate
 

4. IUS Pointing Loss, dB -4.0 Boeing estimate at 95
 
off-axis
 

5. IUS EIRP, dBW 7.2 Sum 1 through 4
 

6. Space Loss, dB -49.0 f =,2232.5 MHz (STS primary),
 
R = 3 m
 

7. Polarization Loss, dB -0.3 JSC estimate
 

8. Orbiter Receive Antenna 2.5 Omni, specified over 36% of
 
Gain, dB upper hemisphere
 

9. Orbiter Receive Circuit -9.8 Rockwell estimate
 
Loss, dB
 

10. Orbiter Total Received -49.4 Sum 5 through 9
 
Power, dBW (dBm) (-19.4)
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from the IUS STDN/TDRS transpondet at 3 m is shown in Table 40 to be
 

-13.6 dBm including a -3.4 dB IUS pointing loss (worst case). Either
 

with or without pointing loss, the PI IF amplifier is in saturation and
 

there is no guarantee on overall PI receiver performance. There will be
 

no damage, however, to the PI receiver at these received power levels.
 

Without any lower power output mode capability for the IUS than the 20W,
 

it has been calculated that the electric field strengths of the order of
 

up to 7.2 V/m can exist in the payload bay when the IUS is transmitting.
 

This electric field strength exceeds the established susceptibility level,
 

of 2 V/m. Therefore, operation of the IUS transmitters in the payload
 

bay pose a potential problem to other payloads.
 

Another aspect of the operation of the IUS payload transmitters
 

inthe payload bay is the potential problem of the inadvertent switching
 

of power to an inboard antenna, which presents a short-circuit load to
 

the traveling wave tube amplifier (TWTA). Although most TWTA's are pro­

tected by isolators/circulators at their outputs, the real possibility of
 

permanent damage to the TWTA slow-wave structure due to load-imposed phase
 

instabilities does exist.- Therefore, only the outboard antennas radiating
 

into space should be used for the final checkout phase prior to separation,
 

and any automatic switching operation between antennas should be deacti­

vated for this period. In the event that this procedure is not readily
 

implemented, space-qualified absorbers in the appropriate position should
 

shield the metallic walls of the bay. For a similar reason, the outboard
 

antennas should be used for reception also to avoid standing waves from
 

multiple reflections.
 

5.4 IUS and Orbiter Received Power Versus Range
 

The received power at the IUS transponders and the Orbiter PI was
 

presented in Tables 36, 37, 39 and 40 when the IUS is in the payload bay.
 

Figures 40 and 41 present the IUS and Orbiter received power as a function
 

of range. Figure 40 presents the received power at the IUS SGLS and STDN/
 

TDRS transponders versus range for the three PI output power levels. The
 

IUS transponders are specified to achieve acquisition at a received power
 

of -117 dBm in 0.5 sec with a probability of 0.9 for a modulated signal.
 

In terms of the Orbiter acquisition procedure, a modulated signal would be
 

present only during reacquisition. Therefore, the reacquisition threshold
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Table 40. IUS STDN/TDRS Transponder to Orbiter Received Signal Power
 

Parameter Value Source 

1. IUS STDN/TDRS Transponder 
Power, dBW 

13.0 Boeing specification for 20W 
minimum 

2. IUS Transmit Circuit -3.3 Boeing estimate 
Loss, dB 

3. IUS Antenna Gain, dB 6.8 Boeing estimate 

4. IUS Pointing Loss, dB -3.4 Boeing estimate at 450 
off-axis 

5. IUS EIRP, dBW 13.1 Sum 1 through 4 

6. Space Loss, dB -49.1 f = 2272.5 MHz (STS Primary), 
R=3m 

7. Polarization Loss, dB -0.3 JSC estimate 

8. Orbiter Receive Antenna 2.5 Omni specified over 36% of 

Gain, dB upper hemisphere 

9. Orbiter Receive Circuit -9.8 Rockwell estimate 
Loss, dB 

10. Orbiter Total Received -43.6 Sum 5 through 9 
Power, dBW (dBm) (-13.6) 
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for the SGLS transponder is reached at 5 nmi in the low-power mode, while
 

the STDN/TDRS transponder reaches the reacquisition threshold at 8.5 nmi
 
inthe low-power mode. Inthe medium-power mode, the SGLS and STDN/TDRS
 

transponders reach the reacquisition threshold at 14 nmi and 36 nmi,
 

respectively.
 

The PI received power versus range from the IUS is presented in
 
Figure 41. The acquisi-tion thresholds for the PI are given inTable 38
 

for each receiver sensitivity. For the low receiver sensitivity, the SGLS
 

transponder reaches the acquisition threshold at 4 nmi, while the STDN/
 

TDRS transponder reaches the acquisition threshold at 8 nmi. For the
 

medium receiver sensitivity, the SGLS and STDN/TDRS transponders reach the
 

acquisition threshold at 37 nmi and 72 nmi, respectively.
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6.0 ESTL TEST REQUIREMENTS
 

A main objective of the NASA Task 501 Program is the verification
 

testing of the various RF space-space and space-ground links of the Shuttle
 

and Shuttle-launched payloads. A considerable portion of this verification
 

testing will be performed by ESTL.
 

The functional diagram of the ESTL is shown in Figure 42. As can
 

be seen from this diagram, the ESTL has the capability to simulate the
 

direct Shuttle/earth S-band links and the indirect Orbiter/ground S-band
 

and Ku-band links. Means are additionally provided to simulate the data
 

generated within the Orbiter itself, along with the capability for routing
 

it via the various space-ground links for the purpose of total systems
 

evaluation.
 

The Orbiter communications subsystem provides a capability for
 

establishing communication links with both the attached IUS within the
 

Shuttle bay and the detached IUS in the near vicinity of the Orbiter. Com­

munication with'the attached IUS is via hardwire channels, as described
 

in Sections 3.0 and 4.0. The detached IUS RF communication is a two-way
 

link carrying commands, telemetry, and sometimes ranging. Both the hard­

wire and RF links with the IUS constitute a portion of the overall space­

space capability of the Orbiter communication system.
 

The ESTL test program objectives for the IUS and CIU with the
 

Orbiter subsystems and ground stations are:
 

(1) To establish equipment/subsystem electrical compatibility
 

(2) To identify performance and operational limitations and
 

constraints
 

(3) To verify that appropriate RF and hardwire interfaces are
 

commensurate with mission communications requirements
 

(4) To verify experimentally that the Orbiter/IUS forward and
 

return RF links are signal compatible in all modes
 

(5) To verify experimentally those tracking, ranging, command,
 

and telemetry channel performance characteristics required for operational
 

mission support.
 



Shielded Enclosure 3 Fi- 'I-- Shielded Enclosure 1 --l] ] RO 
Shielded Enclosure 2 

RELAY 

PAYLOAD RFO 
AND EVASCOMMUNfICAT IONS PROPAGATIONSIMULATOR COMMUNICATIONSSUBSYSTEM PROPAGATIONSIMUATOR COMMUNICATIONSHARDWARE I 

HARDWARE 

DATA 
DOPPLER 
WIDEBAND DATA OR TV 

C T UPDATA OR P/L TELEMETRY 
V 0MLE 

0 E i 
I M NO AE 

TELEMETRY OR P/L COMMAND 

DOWN VOICE 
IPROPAGATION

SIMULATOR 

RF 
PRPAATOSIMULATOR 

EDENTR UP VOICEI/ • 
SR YII 

VOICE 1I RELAY 
UPDATA J SCF STDN SATELLITE 

UPDATA INIT I GROUND GROUND GROUND 

UPLINK MUX STATION STATION STATION 

TEST CONTROL FREQ STND 

AND 

EVALUATION CENTER 4 ICTORECOR-DrRS -11 

P04M TELEMETRY 
DOWNLINK MUX 

4DOWNLINK WIDEBAND DATA OR TV I 

RANGE RATE DATA 

Figure 42. ESTL Functional Block Diagram
 



154
 

Tests may be classified under two different types, as follows:
 

(1) Calibration Tests. Those tests required to establish equip­

ment and performance apart from its operational use. These tests gener­

ally establish why the piece of hardware performs in a certain manner.
 

They parameterize the overall or end-to-end performance.
 

(2) Operational Tests. Those tests conducted to measure the
 

equipment performance in terms of its intended use. Such tests establish
 

the input/output and interactive capabilities of the hardware without spe­

cific regard to internal mechanisms.
 

Calibration tests will include measurements to establish:
 

(1) Impedances/load characteristics
 

(2) Voltage levels
 

(3) Waveform characteristics
 

(4) VSWR
 

(5) RF power levels
 

(6) Frequency and phase responses
 

(7) Spectra (normal and spurious)
 

(8) Linearity and dynamic range
 

(9) Sensitivities
 

(10) Gains and losses 

(11) Noise figure
 

(12) Intermodulation products
 

(13) Loop parameters
 

(14) Suppression factors
 

(15) Frequency stability.
 

Operational tests will be conducted to measure:
 

(1) Acquisition characteristics/time
 

(2) Carrier tracking loop performance
 

(a) Transient response
 

(b) Noise threshold
 

(3) AGC performance
 

(4) Lock detector SNR performance
 

(5) Demodulation SNR
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(6) Turnaround noise
 
(a) Modulation
 

(b) Random
 

(c) Carrier phase noise
 

(7) Ranging performance (with SCF arid GSTDN ground stations or
 
direct link from the IUS through the TDRS)
 

(8) Bit error rate
 

(9) Data loss statistics.
 

Figure 43 shows the general configuration that will be used for
 
all calibration and performance tests involving,the Orbiter subsystems.
 
The ranging and other direct link communication functions will be tested
 
using the various ground station capabilities in the ESTL. Table 41 docu­
ments the various tests to be performed on subsystems and functional con­
figurations. The type of test is also indicated. rou-
Some tests are so 

tinely conducted they may be classed as both operational and calibration.
 
Table 42 gives a summary of the operational link test configurations
 

required for ESTL testing of the IUS and Orbiter communications. 'To
 
aacomplish the operational tests listed in Table 41, the ESTL test setup
 
must provide command data to the PSP or CIU and telemetry data to the IUS
 
transponder. For testing of the forward (Orbiter-to-IUS) link, the Uni­
vac 642B computer generates commands which are sent to the IUS transponder
 
via either a cable (hardwire) or the simulated RF link. Command verifica­
tion is performed by the 642B computer. Return link (IUS-to-Orbiter)
 
telemetry data is originated by either a PCM telemetry simulator or a tape
 
recorder, and transmitted via cable or RF. PCM simulator data is usually
 
verified directly by a bit error comparator, while tape recorder-generated
 
data must be tested by the 642B computer for known pattern errors. The
 
use of the 642B computer in conjunction with DOD CIU/PI testing depends
 
on the nature of the tests to be carried out. Primarily, it is used to
 
aid in the statistical evaluation of the link performance. The computer
 
may also be employed to provide simulated navigation update signals for
 
transmission to the IUS transponder. Most importantly, the 642B provides
 
the p'rocessing and control necessary to multiplex received commands and
 
return telemetry data, with the CIU ultimately being used to perform com­

mand verification.
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Table 41. Test Summary
 

Type
 
Test Operational Calibration
 

IUS Receiver
 

1. Tracking and AGC Loop Parameters X
 
2. Noise Figure X X
 
3.AGC versus Signal Level X X
 
4. Strong Signal Phase Noi.se X X
 
5.Tracking Loop Phase Error X X
 
6.Tracking Loop Noise Biasing X
 
7. Frequency Swept Acquisition X
 
8.Absolute Threshold Tracking X
 
9. Minimum Operating Point Tracking X
 

10. Lock Detector Statistics (False Lock) X X
 
11. Auxiliary Oscillator Stability X X
 

Command Detection (IUS SCU)
 

1. Detector/Synchronizer Noise/BER X
 
2. Subcarrier Demodulation/Detection/
 

Synchronizer Noise/BER X
 
3. SCU Lock Statistics X X
 
4. Complete Forward Link Noise/BER X X
 

IUS Transmitter
 

1. Command Link Modulation Feedthrough X
 
2. Modulation Transfer Characteristics X
 
3. Modulation Indices X
 
4. Modulated Subcarrier Spectra X X
 
5. Modulated Carrier Spectra X X
 
6. Intermodulation Products (Spurious Outputs) X
 

P1 Receiver
 

1.AGC versus Signal Level X X
 
2. Strong Signal Phase Noise X X
 
3. Frequency Acquisition X
 
4. Absolute Threshold Tracking X
 
5. Minimum Operating Point Tracking X X
 
6. Lock Detector Statistics (False Lock) X X
 
7. Telemetry Link Threshold Effects X
 

Telemetry Detection
 

1. Intermodulation Effects X
 
2. PCM/PSK/PM Noise/BER X
 
3. FM/PM Nbise/BER X
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Table 41. Test Summary (Cont'd)
 

Type 
Test Operational Calibrational
 

CIU Interface Characteristics
 

1. Rise and Fall Times X
 
2. Data Asymmetry X
 
3. Signal Distortion (overshoot, ringing) x
 
4. Bit Jitter X
 
5. Data Rate Stability X
 
6. Clock Data Skew X
 
7. Clock Jitter X
 
8. End-to-End BER Tests (All Links) X
 

PI Transmitter
 

1. Modulation Transfer Characteristics X
 
2. Modulation Indites X X
 
3. Modulated Subcarrier Spectra X X
 
4. Modulated Carrier Spectra X X
 
'5. Intermodulation Products (Spurious Outputs) X
 



Table 42. Summary of IUS Equipment and ESTL Communication Link Test Configurations
 

User Link Type 

Hardwire 

NASA 

Hardwire 

Hardwire 

RF 

RF 

Hardwire 

DOD 

Hardwire 

Hardwire 

Hardwire 

Hardwire 

RF 

RF 

Data 


CMDS 


CMDS 


TLM 


CMDS 


TLM 


CMDS 


CMDS 


NAV UPDATE 


TLM 


TLM 


CMDS 


TLM 


Modulation Format 


NRZ 


PSK 


NRZ 


PSK/PM 


PSK/PM 


Ternary Symbols 


plus Clock
 

FSK/AM 


FSK/AM 


NRZ 


PSK and FM 


FSK/AM/PM 


PSK/PM and FM/FM 


Signal Test Function 


IUS SCU 


Bit Detector
 

IUS SCU 

Performance
 

Ku-Band Processor 


PI, PSP, IUS Transponder 


PI, PSP, IUS Transponder 


CIU 


CIU & IUS SCU 


CIU 


CIU 


CIU 


PI and CIU 


PI and CIU 


Signal Flow
 
Direction Tested
 

(Simulated)
 

Orbiter to IUS
 

Orbiter to IUS
 

IUS to Orbiter
 

Orbiter to IUS
 

IUS to Orbiter
 

Orbiter to IUS
 

Orbiter to IUS
 

Orbiter to IUS
 

IUS to Orbiter
 

IUS to Orbiter
 

Orbiter to IUS
 

IUS to Orbiter
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Table 43 presents the equipment required to perform the operational
 

tests in ESTL. Note that the 642B computer has a parallel data interface,
 

but the CIU and PSP are serial data devices. Therefore, appropriate inter­

face units shown inTable 43 are required to use the 642B computer inthese
 

tests. Also, the attached payload tests require an attached payload inter­

face similar to that used on the Orbiter. Included inthe special test
 

equipment required for operational tests isequipment that iscapable of
 

delivering telemetry data with the various frame forms and data rates to
 

the IUS transponder. Presently, ESTL has a number of types of equipment,
 

such as the Dynatronic Inc. Model 100, which can provide the required telem­

etry data to the IUS transponder. Additional special test equipment to­

perform the calibration and operational tests are:
 

(1) Spectrum analyzer (HP Model 8555 with 8552B IFsection and
 

141T mainframe display or equivalent)
 

(2) Noise figure meter (HP Model 949A or equivalent)
 

(3) Frequency counter (HP Model 5245L with 5254C heterodyne con­

verter or equivalent)
 

(4) High-frequency oscilloscope
 

(5) Digital multimeter
 

(6) Low-frequency (<2 MHz) function generator.
 

Table 43. Equipment Required for ESTL Tests
 

Communication Functions Support Functions
 

RF Receiver Serial to Parallel 
Frequency Source/Exciter Tran- Data Converter(s) ) Univac 642B 

a
Power Amplifier Parallel to Serial Output
 

Data Converter Equipment
 
Subcarrier Generators Telemetry
 
Subcarrier Modulators Modulators Special Test Equipment
 

Command Subcarrier Command Attached Payload Hardwire
 
Demodulator Detector Interface Equipment
 

Command BIt Detector Unit
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7.0 LINK BUDGETS FOR IUS/PI/CIU COMMUNICATIONS
 

There are a number of possible end-to-end IUS communication links
 

as discussed in Section 4.0. A prime link involves the IUS transponder,
 

the PI, CIU (or PSP), and the Orbiter Ku-band relay links, or the Orbiter
 

S-band relay and direct links. A large number of parameters are involved
 

in the determination of the end-to-end link performance. Some link bud­

gets (design control tables) that predict the performance of the links
 

may be found in the report "Users' Handbook For Payload-Shuttle Data Com­

munication," Axiomatix Report No. R7809-4, for NASA Contract NAS 9-15604B,
 

September 27, 1978. This Users' Handbook provides a technical background
 

for calculating the various parameters in a link budget. In this section,
 

the link budgets for the command channel from the Orbiter to the IUS and
 

for the telemetry channel from the IUS to the Orbiter are presented. Two
 

of the parameters in the link budget need to be calculated as a function
 

of the system design. The receiver noise spectral density is equal to
 

kTe' where k is Boltzmann's constant (1.38 x 10-23 W/OK/Hz) and Te is the
 

effective receiver noise temperature in degrees Kelvin. The value of Te
 

is calculated as follows:
 

+
-L 1) +T r(3)
TeTe TTA +-t(1 LT
 

where 

TA = effective antenna temperature (assumed to be 290'K) 

L = losses between the antenna and the receiver
 

TL = effective temperature of the losses (assumed to be 2900K)
 

Tr = effective temperature of the receiver, as given by
 

Tr = (F-I)(290°K) .(4)
 

in which F is the noise figure (NF) of the receiver.
 

The modulation loss, LMCI for the carrier is given by
 

LMC = JO () (5) 

for a single subcarrier with modulation index 0 in radians, where Jo is
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the Bessel function of zero order. For two subcarriers,
 

LMC : J02(g)J02 ( 2) (6)
 

where 01 and 02 are the modulation indices for the subcarriers. The sub­

carrier modulation loss, LMS, for a single subcarrier is given by
 

LMS = 22(a) (7) 

where J is the Bessel function of first order. For two subcarriers,
 

LMS1 = 2J1 2l)dO2(2 ) 

LMS2 = 2o (I)J2 (Y (8) 

The link budget for the Orbiter to DOD IUS is presented in
 

Table 44 when the IUS is in the payload bay with a range of 3 m. The
 

received power is-obtained from Table 36 in Section 5.0. It may be noted
 

that there are extremely large circuit margins for this range, even at the
 

lowest PI output power setting of (0.0025W). Figure 44 illustrates the
 

effect of increasing the range between the Orbiter and the DOD IUS (SGLS
 

transponder). At the lowest PI power setting, the command circuit margin
 

becomes zero at 1 mni, and the carrier tracking margin becomes zero at
 

3.2 nmi. With the medium PI power setting, the command circuit margin
 

and the carrier tracking margin become zero at 14 nmi and 44 nmi, respec­

tively. Finally, with the high PI power setting, the command circuit
 

margin and the carrier tracking margin become zero at 44 nmi and at
 

180 nmi, respectively.
 

Table 45 presents the link budget for the Orbiter to NASA IUS
 

(STDN/TDRS transponder) with the IUS in the payload bay and a range of
 

3 m. The received power is from Table 37. Figure 44 illustrates how the
 

carrier tracking circuit margin and the command circuit margin decrease
 

with increased range. At the lowest PI power setting, the command and
 

carrier tracking circuit margins become zero at 4.2 nmi and 12 nmi, respec­

tively. With the medium PI power setting, the command and carrier tracking
 

circuit margins become zero at 50 nmi and 165 nmi, respectively. Finally,
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Table 44. Orbiter to DOD IUS Link Budget
 

Parameter Values Source 

1. IUS Total Received Power, 
dBW 

-53.8 -63.8 -86.8 Table 36 

-2.IUS System Noise Temper-
ature, dBK 

29.6 29.6 29.6 TA 290°K, NF= 5.0 dB 
(917 0K) 

3. Boltzmann's Constant, dB 
(W/K/Hz) 

-228.6 -228.6 -228.6 1.38 x IC23 

4. IUS Noise Spectral 
sity, dB (W/Hz) 

Den- -199.0 -199.0 -199.0 Sum 2 and 3 

5. Total Received Power Noise 
Spectral Density (P /NO), 
dBHz rec 

145.2 135.2 112.2 1 minus 4 

6. Carrier Modulation Loss,dB -2.3 -2.3 -2.3 PM, :..0 ±10% rad. 

7. Carrier Loop Bandwidth, dB 36.0 36.0 36.0 2BL0 = 4 kHz (TRWdesign) 

8. Received Carrier Loop SNR, 
dB 

106.9 96.9 73.9 5 plus 6 minus 7 

-9.Required Carrier Loop SNR, 
dB 

8.0 8.0 8.0 Boeing estimate 

10. Carrier Tracking Margin,dB 98.9 88.9 65.9 8 minus 9 

11. Subcarrier Modulation 
Loss, dB 

-4.1 -4.1 -4.1 PM, 0: 1..0 ±10% rad. 

12. Command Symbol Bandwidth, 
dBHz 

30.0 30.0 30.0 1 k-baud 

13. SNR inSymbol Rate Band- 
width (Es/No), dB 

111.1 101.1 78.1 5 plus 11 minus 12 

14. Theoretical Required 
Es/N O, dB 

19.9 19.9 19.9 For 10-5 symbol error 
probability (USAF est.) 

15. Equipment Degradation,dB -2.5 -2.5 -2.5 Aerospace Corp. est. 

16. Required Es/N O, dBHz 22.4 22.4 22.4 14 minus 15 

17. Circuit Margin 88.7 78.7 55.7 13 minus 16 
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Table 45. Orbiter to NASA IUS Link Budget
 

Parameter Values Source 

1. IUS Total 
dBW 

Received Power, -49.5 -59.5 -82.5 Table 37 

2. IUS System Noise Temper-
ature, dBK 

29.6 29.6 29.6 TA= 290'K, NF= 5.0 dB 
(917 0 K) 

3. Boltzmann's Constant, dB 
(W/K/Hz) 

-228.6 -228.6 -228.6 1.38 x 10-23 

4. IUS Noise Spectral Den-
sity, dB (W/Hz) 

-199.0 -199.0 -199.0 Sum 2 and 3 

5. Total Received Power/Noise 
Spectral Density (P /N 
dBHz rec 0 

149.5 139.5 116.5 1 minus 4 

6. Carrier Modulation Loss,dB -2.3 -2.3 -2.3 PM,g = 1.0 ±15% rad. 

7. Carrier Loop Bandwidth, dB 29.0 29.0 29.0 , 2BLO= 800 Hz ±20%
LO Boeing spec. 

8. Received Carrier Loop SNR, 
dB 

118.2 108.2 85.2 5 plus 6 minus 7 

9. Required Carrier Loop SNR, 
dB 

8.0 8.0 8.0 Boeing estimate 

10. Carrier Tracking Margin,dB 110.2 100.2 77.2 8 minus 9 

11. Subcarrier Modulation Loss, 
dB 

-4.1 -4.1 -4.1 PM,0= 1.0 ±15% rad. 

12. Command Bit Rate, dB 33.0 33.0 33.0 2 kbps 

13. SNR in Bit Rate Bandwidth 
(Eb/No), dB 

112.4 102.4 79.4 5 plus 11 minus 12 

14. Theoretical Required 
Eb/Nb , dB 

9.6 9.6 9.6 For 10-5 BER 

15. Bit Synchronizer Degra-
dation, dB 

-1.5 -1.5 -1.5 JSC estimate 

16. Required Eb/NO , dB 11.1 11.1 11.1 14 minus 15 

17. Circuit,Margin, dB 101.3 91.3 68.3 13 minus 16 
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with the high RI power setting, the command and carrier tracking circuit
 

margins become zero at 190 nmi and 500 nmi, respectively.
 

The link budget for the DOD IUS (SGLS transponder) to the Orbiter
 

with the IUS inthe payload bay (i.e., a range of 3 m) is presented in
 
Table 46. The received signal power at the Orbiter was calculated in
 

Table 39. There are three circuit margins to be considered for this link:
 
(1)carrier tracking, (2)PSK telemetry on the 1.024 MHz subcarrier, and
 

(3)FM telemetry on the 1.7 MHz subcarrier. The link budget inTable 46
 
assumes both subcarriers are transmitted simultaneously. Figure 45 pre­

sents the-relationship between circuit margin and range as a function of
 
the PI receiver sensitivity. At the PI low sensitivity, the FM telemetry
 

circuit margin becomes zero at 960 ft (0.16 nmi), while the PSK telemetry
 
and the carrier tracking circuit margins become zero at 0.82 nmi and 6 nmi,
 

respectively. At the PI medium sensitivity, the FM telemetry, the PSK
 
telemetry and the carrier tracking circuit margins become zero at 1.6 nmi,
 

8.5 nmi, and 64 nmi, respectively. Finally, at the PI high sensitivity,
 

the FM telemetry, the PSK telemetry and the carrier tracking circuit mar­
gins become zero at 7 nmi, 37 nmi, and 260 nmi, respectively.
 

Table 47 presents the link budget for the NASA IUS (STDN/TDRS
 
transponder) to Orbiter for the IUS in the payload bay (i.e., the range
 

is 3 m). The Orbiter receiyed power is calculated inTable 40 for this
 

range. Figure 45 shows the decrease in PSK telemetry and carrier tracking
 
circuit margins for an increase inrange. The circuit margins are given
 

as a function of the PI receiver sensitivity. With the low PI sensitivity,
 

the PSK telemetry and the carrier tracking circuit margins become zero at
 
2 nmi and 15 nmi, respectively. With the medium PI sensitivity, the PSK
 

telemetry and the carrier tracking circuit margins become zero at 21 nmi
 

and 160 nmi, respectively. Finally, with the high PI sensitivity, the PSK
 
telemetry and carrier tracking circuit margins become zero at 95 nmi and
 

660 nmi, respectively.
 

The IUS/PI/CIU (PSP) link budgets and circuit margins presented in
 

this section show the relationship between the various design parameters.
 
Variation of design parameters can be easily taken into account. The link
 

budgets, along with the figures relating circuit margin to range, provide
 
a tool indeveloping operational scenarios for the IUS and Orbiter.
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DOD 	IUS to Orbiter Link Budget
Table 46. 


Parameter Value 	 Source
 

1. 	Orbiter Total Received -49.4 Table 39
 
Power, dBW
 

2. 	Orbiter System Noise 31.7 TA= 2900K, L= 9.8 dB, T I163K
 
Temperature, dBK (14740K)
 

3. 	Boltzmann's Constant, dB -228.6 1.38 x 10-23
 
(N/K/Hz)
 

4. 	Orbiter Noise Spectral -196.9 Sum 2 and 3
 
Density, dB (W/Hz)
 

5. Total Received Power/Noise 147.5 1 minus 4
 
Spectral Density (Prec/NO),
 e
dBHz 


=
6. 	Carrier Modulation Loss,dB -4.7 PM, a = 1.0, a2 1.0 rad. 

7. 	Carrier Loop Bandwidth, dB 30.0 2B = 1 kHz (TRW design)
 

8. 	Received Carrier Loop SNR, 112.8 5 plus 6 minus 7
 
dB
 

9. 	Required Carrier Loop SNR, 8.2 Rockwell Specification for
 

dB Tracking Threshold
 

10. 	 Carrier Tracking Margin, dB 104.6 8 minus 9
 

=
11. 	 Telemetry Subcarrier Modu- -6.4 PM, a = 1.0, B2 1.0 rad. 
lation Loss, dB 

12. 	 Telemetry Bit Rate, dBHz 42.0 16 kbps
 

13. 	 SNR in Bit Rate Bandwidth 99.1 5 plus 11 minus 12
 
(Eb/No), dB
 

14. 	 Theoretical Required 10.5 For io6 BER
 
Eb/NO , dB
 

15. 	 Bit Synchronizer Degrada- -1.5 Boeing CIU Specification
 
dation, dB
 

16. 	 Required Eb/NO , dB 12.0 14 minus 15
 

17. 	 Telemetry Circuit Margin,dE 87.1 13 minus 16
 
=
18. 	 FM Subcarrier Modulation. -6.4 PM, 81 = 1.0, s2 1.0 rad.
 

Loss, dB
 

19. Subcatrier Bandwidth, dBHz 53.1 B = 204 kHz (TRW 	design)
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Table 46. DOD IUS to Orbiter Link Budget (Cont'd)
 

Parameter Value Source
 

20. 	 Received SNR, dB 88.0 5 plus 18 minus.19
 

21. 	 Required SNR, dB 15.0 Boeing CIU specification
 

22. 	 FM Telemetry Circuit 73.0 20 minus 21
 
Margin, dB
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Figure 45. Circuit Margins Versus Range for IUS to Orbiter with Each PI Receiver Sensitivity
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Table 47. NASA IUS to Orbiter Link Budget
 

Parameter Value 	 Source
 

1. Orbiter Total Received -43.6 Table 40
 
Power, dBW
 

2. Orbiter System Noise Tem- 31.7- TA= 290°K, L= 9.8 dB, Tr= 1163°K
 
perature, dBK (14740K)
 

3. Boltzmann's Constant, dB -228.6 13 -23
 
1.38 	x
(W/K/Hz) 


4. Orbiter Noise Spectral -196.9 Sum 2 and 3
 
Density, dB (W/Hz)
 

5. Total Received Power/Noise 153.3 1 minus 4
 
Spectral Density (Prec/No),
 
dBHz
 

6. Carrier Modulation Loss, dB -2.3 PM, a = 1.0 rad. 

7. Carrier Loop Bandwidth, dB 30.0 2BLO = 1 kHz (TRW design) 

8. Received Carrier Loop SNR, 121.0 5 plus 6 minus 7
 
dB
 

9. Required Carrier Loop SNR, 8.2 Rockwell Specification for
 

dB Tracking Threshold
 

10. 	 Carrier Tracking Margin,dB 112.8 8 minus 9
 

11. 	 Telemetry Subcarrier Modu- -4.1 PM, R = 1.0 rad.
 
lation Loss, dB
 

12. 	 Telemetry Bit Rate, dBHz 42.0 16 kbps
 

13. 	 SNR in'Bit Rate Bandwidth 107.2 5 plus IIminus 12
 
(Eb/No), dB
 

14. 	 Theoretical Required 10.5 For 10-6 BER
 
Eb/No dB
 

15. 	 Bit Synchronization Degra- -1.5 JSC estimate
 
dation, dB
 

16. 	 Required Eb/NO dB 12.0 14 minus 15
 , 


17. 	 Telemetry Circuit Margin,dB 95.2 13 minus 16
 



171
 

8.0 CONCLUSIONS
 

This report summarizes the effort expended to date during FY78
 

and FY79. Figure 3 in Section 2.0 presented the design reviews and the
 

tasks to be performed in the future as well as a schedule for completion
 

of each of the tasks. Since the overall IUS/Orbiter communication system
 

is still evolving, direct interfacing of the avionic subsystems is in only
 

their preliminary design stages. Thus, it will be some time before all
 

development problems are solved, and reliable, well-understood performance
 

can be documented. The ESTL testing forms a vital part of the overall
 

system performance verification and, therefore, Axiomatix will provide
 

updates to the ESTL testing requirements as the Orbiter and IUS communi­

cation equipment develop.
 


