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ABS'rRAC'r

The leak rates through shaft seals with large pressurU (h-ops wt-rc sinui-

lated using gaseous hydrogen, or nitrogen flowing through ;ill with a

nonrotating centerbody. The flows were choked. For concentric or eccentri(

position of the rotor and parallel or convergent tapered flow passages, da m

o	 and analysis revealed that mass flux or leak rate can be determined frown a
0
w	 relation whose normalizing parameters depend on the thermodynamic Critical

constants of the working fluid and an average flow area expressed in terms

of the inlet and exit cross-sectional areas. using these normalized relations,

the flow data for parallel and three convergent tapered shaft seal coniigura-

tions are in good agreement. Generalization to any simple gas or gas mixture

is implied and demonstrated in part.

NOMENCLATURE

A	 flow area, cm 

A	 average flow area, cm2

C	 normalization constant

I)	 diameter, cm

G	 mass flux, g/cm2-s

G 	 normalizing constant ) 1 P c ,, c /Z c , g/cm2-s

GR	reduced mass flow, G/G*

h	 clearance height, cm

1,	 length, cm

m,n	 exponents
s

1'	 pressure, MPa

P R	reduced pressure, P/Pc

Ro	 rotor radius, cm

T	 temperature, K

TR	reduced temperature, T/Tc

Z	 compressibility

G

t
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density, g/cm3

ciw	 mass flow rate, g/s

Subscripts:	 a

c	 thermodynamic critical

e	 exit or exhaust

I	 inlet

t	 throat

0	 stagnation

INTRODUCTION

A well known rule of thumb in industrial practice is to provide some

convergence in the design of seal flow passages to minimize the possibility

of negative stiffness. The "rule" has not been established qualitatively or

quantatively, however Fleming (1) has found increased stiffness in his analy-

sis of convergent flow passages with an optimum occurring at an inlet to exit

clearance ratio of about 1.8. Often overlooked or minimized by large L/D

are the effects of the inlet. References 2 to 4 demonstrate that in some

cases, inlet geometry can be of significance in establishing flow rates and

pressure profiles. Well instrumented 90 0 sharp edge and Borda type inlet

results to 105 L/D not only indicate flow separation near the inlet, but

in some cases of sufficient strength to be classified as critical flow at the

inlet. For gases the flow recovery to 0.8 PO was common where PO is the

stagnation pressure.

In many seal designs, the pressure drop across the sealing surface is

only large enough to choke the flow and some seals are not choked at all;

however, many current designs require stagnation pressures many times the

necessary "2:1" for choking.	 Little data are available oil 	 throLlgll seals

with large axial pressure gradients with bcth concentric and eccentric posi-

tioning of the rotor in the housing including the effects of convergent coni-

cal tapers.

"Thus the purpose of these tests will be to determine the mass flux

through a simulated seal configuration with the fixed "rotor" held in both

the concentric and fully eccentric positions.
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APPARA IIIS AND INS I'Rl flENTAT I ON

The basic flow facility was of the blowdown type and is described iii

detail in Re1. 3.	 The system was modified s-mnewhat to accomodat, the li usin}

which simulated the seal configuration from the space -,hutti(' main fuel pupil)

interstage seal. A schematic of the modified facility is given as Fib;. I.

Although the system can handle cryogens as well, the primary objective of

these tests is to determine the flow rates for gases nitrogen or hydrogen,

c:'i lth .;nd wi' :1"11,	 l'hc SysLcm hacic-;ire: sur	 was controi ied bV

injecting gaseous nitrogen into the exhaust cone. Figure 2 is :+ pliotogrnph

of the seal assembly installed in the facility. A cross-section of the seal

assembly is shown as Fig. 3. The conical adaptor flanges on eac`r end, whip•

not a part of the seal configuration, are necessary to provide proper flow

distribution and measure temperature and pressure. For these tests, the :,eal

housing was modified while the centerbody simulating the rotor, remained un-

altered. A photograph of the instrumented centerbody and the huusing prior

to modifications is shown as Fig. 4. Previous experience indicated that

minor misalignment could readily be detected in the pressure profiles and in

the eccentric position, the nonuniform force distribution could bc large; so

in order to minimize misalignment and movement, four tabs at the inlet and

outlet were used to hold the simulated rotor (centerbody) in a fixed position,

see Fig. 5. The configurations were machined and data taken in such a way that

two basic housings could provide all the necessary geometric changes. One was

machined to give concentric alignment and the other fully eccentric position-

ing (i.e., contact simulation). Also shown in Fig. 5 are the pressure taps

whose locations are given in Table 1 along with geometric parameters for the

simulated rotor and h-	 tog.	 It is difficult to see the tapers, yet the flow

rates are significanL.y affected.

The flow rates were metered using a ventiiri flowmeter located in the•

bottom of the storage tank and checked against an orifice fiowmeter %,:h,•n ap-

propriate, that is, when back-pressure control gas was not used. Inlet star-

nation conditions were measured in a mixing chamber, not readi l y visible In

Fig. 2, •ind for data reduction the average of fuc • pressure, within the :,;eal

(P02,5,6,9) was used.
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TllEORF'r1CAL BACKGROUND

Within a flow passage as shown in Fig. 5, usually one dimensional flow

provides an adequate description. Fxtendirag some work on two phase choked

flows and applying the principle of corresponding states (6- 10) Otte ran estall-

lish choked flow parameters over a large range in temperature, pressure, rnul

working fluids.

The normalizing parameters (6-10) are 1. * , Tc, l',• where

G* 
_VIFTOC 

l)
7.

	

	 (
r

and P C , 'T c , pc , z 	 are the pressure, temperature, densit y and compressibil-

ity of the working fluid at its thermodynamic critical point. See Table 2

for values of the critical constants for nitrogen, hydrogen, oxygen, argoaa,

and methar.e. Further, it was determined that the choked flow of real gases

could be represented over a large range in pressur1- and temperature by

( R TR
C

m	
(mil

P 
U

where GR	G/G* , TRU	 TO /T C , P^	 PU/Y C , 0.5	 n	 0.55 and 1.	 m	 1.02 .

A similar form was advocated by Shapiro (11) for air. Equilibrium nozzle

computations using fluids nitrogen, hydrogen, oxygen, argon, and methane

were carried out using the methods of clefs. 6 to 9 Lite most appropriate value

of the constant appears to be

^' = 5	 (3)

for n = 0.5 and m = 1., with a scatter for fluid nitrogen of sbqut 5 percent.

With n = 0.55 the scatter is decreased to about 1 percent with the constant

increased to about 0.213. There also appears to be a trend with reduced pres-

sure such that in __ 1.02, however for the extensive characterization of hy-

drogen, m = 1.0. Such trends indicate that for a given rar,6Q of conditions

and a given fluid, some Improvement over Eq. (3) can be found.

Recalling that sharp edge inlets in some cases represent a reel flow loss

". of 0.2 P0 , it should follow that experimental flows should be less than 80

WIRM

G

tr



percent of tilt , predicted nozzle flows; that is, in Ey. (2), for n	 U.S,

ill = 1 .0, flat- Constant should he about 0. to.

For tapered geometries, the proper normalizing area for amiss flux

(G = ,ia/A) was estimated from some experience to be

_ 2A + n
i

A = - 
e 

3_	 ( 'a)

where A
V
 is the exhaust flow area and A l 	tilt , entrance fiow :area. 	 Hl-- cral-

culated average area was found to be

	

3A = Ae + A l 
_
f n(R0 -# It )(RU t It	 - nR'	 (5)

Where Il l is the clearance height at the inlet and h e is the clearance

height at the exit, with R0 the rotor radius.	 Tolerance buiId:ip ill

the hardware and the data are such that Eq. (5) cannot be ruled out even

though Eq. (4) will be used herein.

RESULTS AND DISCUSSION

In this section we will first discuss the flow data simulation of normal

operations (concentric) and then the abnormal- to the point of rub-case (fully

eccentric) for a seal with various convergent tapers	 fhe nominal tapers 0.0'),

0.2 0 , 0.3 0 , 0.4 0 will be used to characterize the respective geometries.	 In

'	 all cases, ambient gases will be used and data taken with back-pressure varied

from 0.25 to 1.4 MPa.

	

	 For specifics on the geometries, consult 1':lhle 1, and

note that the normalizing area A, given by Eq. (4) is used throughout.

Concentric Geometry

For the 0.00 , 0.2 0 , 0.3 0 , 0.4 0 taper configurations reduced mass flux

data for fluid nitrogen are shown as a function of" reduced pressure in Fig. h

along with some unpuplished data for the Shuttle seal l (unmodified version

of Fig. 4). In general the resuits are monotone with a few yuestionabie
1

s
points at high flow rates, which are really at the limit of the facility.

Figure 7 represents a similar plot for gaseous hydrogen, except that,

due to time schedules, no hydrogen data were taken with the 0.. 1. 0 taper geL;..e-

I	

try.

{	 Fully Eccentric Geometry

The fully eccentric case represents a near-rub and a complex inlet geome-

try subject to separation effects not usually considered in flow dvnamits (2-4).

More will be said about this problem later.
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Figure 8 represents the reduced mass flux results for the 0.0", 0.20,

0.3 0 taper fully eccentric configurations using fluid nitrogen. Also plotted

are some unpublished Shuttle seal : results and the locus of representing the

concentric position data. i"he flow rates are higher than the concentric posi-

tion by perhaps 6 percent and complex pressure profile behavior was noted.

The reason may be geometric as strongly suggested from both the nitrcgen and

hydrogen data; however, at this time it remains unresolved.

Figure 9 is a similar plot for fluid hydrogen with a limited number of

Shuttle seal 1 points and the locus of representing concentric position data

is for comparison. No hydrogen data were taken nor the 0.2 0 taper geometry

and due to finding of some uncharacteristic and unresolved pressure profile

results, the 0.4 0 fully eccentric taper was not machined.

Normalizing Constant C

To determine the constant C of Eq. (2), all the data were normalized

using n = 1/2 and m = 1, and the resulting value of C was plotted as a

function of reduced pressure P RO as Figs. 10 and 11. For the nitrogen and

hydrogen data there does appear to be a trend with P O and m	 1.02 per

theory, however the trend is weak and inconclusive. Further, n = 0.5 does

appear to group these db'_a better than n = 0.55, and as noted earlier,

some improvement can be made over a limited range with a specific fluid by

changing the exponents. The nominal values C for these data sre:

C	 0.153	 concentric

C	 0.158	 fully eccentric

This is in reasonable agreement with the theory considering a 0.2 PO

pressure loss at the inlet. Under such conditions the constant should be

C = 0.16.

Other Factors

The pressure profiles represent a significant effort, however as noted,

the results are complex. First the number of pressure taps are simply not

sufficient to establish the profiles either axially or circumferentially..

Consequently, the pressure profile results are of marginal value but several

indicative results should be noted for the fully eccentric configurations:

ORIGINAL PAGE IS
OF POOR QUALITY
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I. fhe overall stiffness of the conical seal contigura^ion, as sinnl-

lated, appea rs to be less Lhan or equal to the str.lig;ht seal (0.0" Lap.•r)

configuration.

2. It appears that the axial pressure profile for the 0.00 taper sepa-

rates within the passage with a subsequent crossover from positive to negative

Stiffness.	 In all cases it appears that the total stiffness is still positive,

but one must recall that these are static tests and such behavior can e•ffe(t

shaft instabilities under dynamic conditions.

3. It appears that a "shock" can develop within the seal with the largest

effect noted in the straight seal. The pressure profiles, the nature of the

"shock" and associated separation requires further investigation.

S UMNfARY

The homogeneous equilibrium choked flow analysis and the principle of

corresponding; states have been extended to the choked flow of gases throng;h

static configurations which simulate dynamic seal behavior under high Ares-

sure gradients with the following results:

1. The reduced flow rate for gaseous nitrogen or hydrogen flowing through

convergent conical or parallel passage geometries can be adequately represented

by Eq. (2) with m 1.0 and n = 0.5. It can be inferred using the extended

theory of corresponding states that any simple gas or mixtures of simple gaees

will also follow this formula.

2. For equilibrium nozzle computations, C = 1/5. 'therefore assuming a

t

	 0.2 YO flow loss at the sharp edge the constant (C) would be 0.16. The data

indicate (for a = 0.5 anti m = 1.0):

C = 0.153	 concentric

C = 0.158	 fully eccentric

These constants may converge ii the minimum stagnation choking pressures were

If	 accurately known for each configuration.

3. The pressure profiles within these configurations are complex and

^.	 separation (shock) effects a change from positive to negative stiffness with-

in the simulated seal however the overall stiffness appears to be positive.

4. Assessment of pressure profiles simulr)Ling dynamics requires rrnrlti-

e
	 axial and circumferential pressure taps; further work is required here.

et
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TABLE 2. - FLOW NORMALIZING PARAMETERS

Fluid G* TC, PC)
g/cm2 -s K MPa

Nitrogen 6010 126.3 3.47
Hydrogen 1158 33. 1.296
Oxygen 8670 154.78 5.082
Argon 9404 150.7 4.865
Methane 5094 190.77 4.627
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Figure 6. - Reduced mass flux as a function of reduced stag-
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0.00 , 0.20, 0.30 , 0.40 taper simulated seal configurations,
concentric position.
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Figure 7. - Reduced mass flux as a function of reduced stag-
nation pressure for gaseous hydrogen flowing through the
0. 00, 0. 30 , 0.40 taper simulated seal configurations, con-
centric position.
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