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SUMMARY

An accurate and efficient numerical solution algorithm is established
fof solution of the high Reynolds number 1imit of the Navier-Stokes equations
governing the multi-dimensional flow of a compressible essentially inviscid
fluid. The theoretical basis employs finite element interpolation theory
within a dissipative formulation established using Galerkin criteria within
the Method of Weighted Residuals (MWR). An implicit iterative solution al-
gorithm is developed, employing tenéor prbduct bases within a fractional
steps integration procedure, that significantly enhances solution economy
concurrent with sharp1y reduced computer hardware demands. "The algorithm is
eva1ua;;& for resolution of steep-fie]d.gradients and coarse grid accuracy
using both linear and quadratic tensor product interpolation bases. Numeri-
cal solutions for linear and non-Tinear, one-, two- and three-dimensional

examples confirm and extend the linearized theoretical analyses, and results

are compared to competitive finite differenced-derived algorithms.



INTRODUCTION

Finite element concepts burst upon the computationall?]uid dynamics
scene about a decade ago in the guise of a triangle. The primary motiva-
tion was the profuse” geometric flexibility, in contrast to the then-
current finite difference limitation to regular grids. In the ensuing
interval, the inherent versatility of the basic finite element .concept has
proven difficult to master within a computationally ecdnomica] framework.

In the same period, development of regularizing coordinate transformation
(ref. 1, 2) has markedly extended the applicability of efficient.finite ,
difference recursion formulae to non-regular shaped solution domain closures.

What was patently obscure in the early work, but is becoming convin-
cingly transparent, is that the finite element/weighted residuals theoretical
basis provides a foundation for derivation of optimally-accurate (in the
apprbpriate norm) numerical algorithms for solutjon of general categories in
fluid mechanics. The theoretical ;uﬁport for finite element solution of
Tinear elliptic equations is complete, and in particular one is assured that
a finite element potential flow solution is optimally accurate in the L.
(energy) norm in comparison to all other methods (ref. 3). Solution of ini-
tial-valued problem- descriptions is quife typical in fluid mechanics, and in
the Lé norm the finite element algorithm is confirmed optimally accurate for
Tinear parabolic equations (ref. 4). The numerical extension to non-linear
parabolic equations, as appropriate for boundary layer flows, has confirmed
extremization of the energy norm for both laminar (ref. 5} and turbuient
flows (ref. 6)}. The latter is of particular interest, since the energy norm
is a strongly non-Tinear function of the mean flow field gradients through the
effective turbulent viscosity. While by no means constituting a theoretical

proof, these results to indicate that the linear finite element theory may be

extensible to the more interesting problem classes.
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A particularly difficult problem class in fluid dynamics corresponds
to high Reynolds number flow prediction. The governing Navier-Stokes
equations are generally a non-linear elliptic boundary value description,
but the importance of the viscosity term is complietely dwarfed by the non-
Tinear convective acceleration everywhere away from a wall. Furthermore,
the continuity equation péssesses no viscosity-like term, hence exhibits
uniformly the hyperbolic description pervading the entire flowfield region
away from walls. The primary objective of the research reported herein is
to derive and numerically evaluate a finite element/weighted residuals solu-
tion algorithm applicable to large Reynolds number flow prediction. It was
decided that the algorithm must be fmplicit so as to handle physical viscosity
effects as appropriate. However, primary emphasis rests on determination of
accuracy and convergence phenomena for dominantly inviscid forms of the
Navier-Stokes equations, ie. the Euler equations. Since three-dimensjonal
flow field prediction is the eventual goal, the'deve1oped algorithm must be
computer core and CPU efficient. Furthermore, since multi-dimensional fluid
mechanics predictions are of necessity almost universally performed on coarse
computational grids, particular emphasis is placed on coarse~-grid, accuracy
assessment. The accurate and efficient finite element tensor-product algorithm

that has been derived to meet these requirements is reported herein,

PROBLEM STATEMENT

The basic requirement is to establish a numerical solution algorithm to
accurately and efficiently model the substantial time derivative associated
with all flow field descriptions (save potential flow). This hyperbolic operator

dominates high Reynolds number flows, as governed by the Navier-Stokes equations.



The conservation form of this familiar partial differential equation system is

L(o) = 22+ 22 (ou) = 0 | (1)
J

a(pu-i) 5 5
L{pus) = —5¢—+ axj[é”'”i *pys - Uii] =0 (2)

J
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In equations (1)-(3), p is the density, pu, the momentum vector, e is the
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specific energy, and p is the static pressure defined by the equation of

state,

(Y—l)l:-—-pu u:l (4)

where vy is the ratio of specific heats. For present purposes, the heat flux
vector ej and the Stokes stress tensor % are both assumed negligible; hence,
equations (1)-(3) are hyperbolic. Equations (2}, 1<i<3, are explicitly non-
linear, while equations {1) and (3) are quasi-Tinear in the expressed dependent
variable, and each require characterization.

Equations (1)-(3) describe the transient evolution of the element qk'of
{q}, 1<k<5, on the n-dimensional space R" spanned by the x; coordinate system,
1<i<n. The domain of the solution is @ = R"xt ¢ X5 x[Kto,t) with closure

Rn"l

0 = x t. On Q, each member of {q} is the solution to

=39, 8 =
ﬁ a) = o g [uga v ] = 0 (5)
where f(qk) 1s specified in equations (2)-(3). Al1 applicable boundary con-
ditions on 30 are contained within the expression

N
2£(q) = a1q + 5§£-n£ +a; =0 (6)



where ﬁj 1s the local outward-pointing unit normal vector and the a; are
specified coefficients. An initial condition on Qo = R" x t0 is regquired,

hence
alxy, ty) = q {x;) (7)

-Since regularizing coordinate transformations are available, no generality

. . . . . . n
is lost in assuming X; a Cartesian coordinate system spanning R.

FINITE ELEMENT SOLUTION ALGORITHM

A dissipative finite element solution algorithm is established for
equations (5)-(7), hence the Navier-Stokes and Euler equations. Assuming
Ue, = @, the domain of L{q), that the Q. are non-overlapping, and that
Qg = Rg X t, where‘URg is the finite element discretization of R", let each

member of {q} be interpolated on Q, as
ae(xg> ) = 1N (x)1T0Q(E)}, (8)

The elements of {Nk(xi)} are polynomials in Xy, complete to degree k, and

form a cardinal basis {ref. 7). The expansioﬁ coefficients {Q(t)}e are un—‘
known; a solution algorithm for which is required established to determine the
temporal evolution of the dependent variable system {q}.. To accomplish this,
substitute equation (8) into equations (5)1}6), and set to zero the integral
of each over Rg and BRE after weighting by {Nk(xi)}' In addition, as sug-
gested in reference 8,.éet the weighted integral of the vector gradient of
equation (5) to zero. AIdentifying the vector and scalar multipliers B; and A,
which must be determined, combine these expressions into the matrix equation

system.
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Equations (9) are systems of ordinary differential equations written on the
temporal evolution of the discrete approximation Z{Q}e to each qe(xi; t) of
{g}. These differential equations are uncoupled ?n the temporal derivatives,
and Se is the familiar fin&te element assemb]& operator mapping local opera-
tions to the global reference frame (cf., ref. 4). The scalar muTtiplier A
is conventionally employed to enforce the discretized boundary condition state-
ment, equation (6).

The B; are scalar components of an n-dimensional vector, the determina-
tion of which is required. This term represents the additional requirement
that the gradient of the soTution error in L(qe) be orthogonal to the inter-
potation basis {Nk}. The desired form for the augmented MWR algorithm is

achieved using a Green-Gauss theorem. Letting Bi = viA , where Ae is the

e
measure of the finite element domain Rg, yields

s, [Rn[[l v 8, a%j-vj]{N}i|L(qe)dT : ALR“ (0(a, )do| = (0} (10)
o e("]aR

The n scalar components of vj can be element-dependent in the general case,

and the closure surface integral stemming from use of the Green-Gauss theorem

vanishes identically. Independent of the dimension n of Rn, equation (10)

yields an ordinary differential equation‘system for solution of Z{Q(t)}e = {Q},

e
of the form

S| [0 @0, + [ {03, + (R} = (O (11)



The superscript prime denotes (ordinary) differentiation with respect to

time. The first two terms, common for all q,, see equations {5)-(6), are
(], = | |1+ 8, w2 v |in 3N, }Tdr (12)
e~ RN e ax_i itk k
e

[u], = JR”[[I + Ae'aX] }{N }] X [{u BN }{Nk}"]d—c | (13)
e

Here, {Ui} is the nodal distribution of the discrete representation of the
velocity field ui(x,t). The source term {f(q)}e is distinct for each Q>
and represents a non-homogeneity at the minimum.

As mentioned, an implicit integration algorithm for equation (11) is re-
qu%red. A familiar single-step procedure is

Q= L0} + b e{Q}Jﬂ (1 - 0)1033] (14)

J+

where j is the time-step-index, h is the integration stepsize, and 6 is a
parameter 0 < 6 < 1 controlling implicitness. Following the usual manipula-
tions (ref. 4), insertion of equation (11) into (14) yields a large order, non-
Tinear algebraic equation system, ‘The Newton matrix jteration algorithm for

sofution of this system is

{ [{Q}Jﬂﬂ{amgﬁ - [ [{Q}mﬂ (15)

The dependent variable is the iteration vector,

@ = @b, + {aa}gﬁ (16)



where p is the iteration index. The right side of equation (15) is the

homogeneous form of equation {14) evaluated with the pEE-iterate.

{F}gﬂ = SeI:[C]e[{Q}?ﬂ - {Q}j] + h[e{ge}gﬂ + (1 - 6){98}.]']] (17)

where

{g 1) = [U] £}, + (f1, (18)

Note that equations (17)-(18) are defined solely in terms of inher products on
elements, with the assembly operator yielding the equivalent global contri-
bution. The vanishing of {F} to within definition of a computed zero yields
eguation (15) homogeneous, hence convergence of the iteration process. By
definition, the Jacobian is the derivative of equation (17) with respect to

{Q}?+1. Hence,

. al[U], + {f}
L] = Se|[C + hofu], + he -[[]g{q}e : @y (19)

where the final term accounts for contributions stemming from explicit non-
Tinearity. ATl operations invoTlve matrix inner products of an elemental basis,
hence implicitly independent of the dimension n of R". The rank of [J] at
least equals the order of {&8Q}; spécific (Dirichlet) boundary constraints are
applied within the evaluation of {F}.

As opposed to the conventional use of mu]tidimensio$a1, finite element
interpolation functions {N(xi)}, the three-dimensional requirements demand
a spatial factorization that permits replacement of the large, sparse-matrix
Jacobian operations with elementary banded-matrix procedures. The theoreti-

cal operations are to replace the multi-dimensional interpolation bases with



tensor product bases (ref. 9), and to implement the method of fractional
steps (ref. 10) to resolive solution operations onto scalar components
parallel to coordinate axis. Hence, the interpolation basis in equation

(8) becomes, for three-dimensional space

W (3303 > 0 (x )3 @ (Y ()} ® Y (x, )3 | (20)

where (X) signifies the tensor product. The equivalent tensor matrix products
are similarly expressed; for example, the matrix equivalent of the initial-

value operator, equation (12) becomes

[Cle > €] ® [C2], ® [Ca], (21)

where

[c], = JR&[[l + Ay 5%;-va]{Nk(xu){l{Nk(xa)}dea (22)
e .

The similar operations for the convection operator, equation (13) yields

3 9 T T
e -

and o is not a tensor summation index in equations (22)-(23).

With the finite element matrix equivalents of the terms in equation (11)
recast as tensor products, the method of fractional steps (ref. 10) is employed
to establish the desired operations for the Newton matrix iteration algorithm,
equation (15). It is elementary operation to evaluate the Jacobian as the

tensor matrix product,

[ = [91] @ P21 [9:] ' (24)



THE UNIVERSITY OF TENNESSEE

Department of Engineering Science and Mechanics
317 Perkins Hall

Knoxville, Tennessee 37916
(615)974-2171

August 3, 1979

NASA Scientific and Technical Information Facility
PO Box 8757

Baltimore & Washington International Airport
Maryland 21240C

REF: NASA Grant NSG-1529, Final Report

a

Persuant to requirements for NASA Grant NSG-1529, enclosed are two (2)
copies of the final technical report entitled, "A Split Finite Element
Algorithm For The Compressible Navier-Stokes Equations.® This report
constitutes satisfaction of all reporting requirements for the rFefer-
enced grant.

%

A. J. Baker

Associate Professor
Principal Investigator
mik

cc Mr. Robert E. Smith, Jr.
NASA LaRC, M/S 125

Distingurshed Pasf. w Dynamic Future...



and each of the [J ] exhibit the desired banded matrix structure. Spe-
cifically, for k = 1 in equation (20), [J&] is tridiagonal, while for k = 2
it is dominantly pentadiagonal. Hence, the tensor matrix solution aigorithm

equation (15) becomes

pondefuinefuinJut-

- {Fl (‘6")5-’“} ® {Fz (§)§+1} ® [Fg (Q)§+1] (25)

Here, Q and Q represent intermediate iterates and 8Q is interpreted as the

.- PR,

»

iteration vector for each respective iterate.

THEORETICAL ANALYSIS

A von Neumann stability analysis (ref. 11} can quantize the formal
order of accuracy- of the develoepd algorithm for a Tinearized one-dimensional
equation, hence predict an appropriate value for v. Therefore, consider the

¥ - momentum equation with constant advection velocity Uo’ ie

0 (26)

g B

The analytical solution to equation (26) is the Fourier expansion
u{x,t} = V exp E w(x - Uot):l (27)

where i = /T, w = 2m/A is the wave number where A is wavelength and V is
the initial velocity disfribution u(x,0). This solution corresponds to the
diffusion- and dispersion-free advection of the initial wave form parallel to

the x® axis with velocity UO.



The Fourier analysis of ﬁhe discrete algorithm is best accompiished
using equation (11). It is readily facilitated only for specification of
k = 1 in equation (20), wherein the assembly operation yields an elementary
recursion relation form of the algorithm. The resultant expression for -
equation {22) is
A T2 1] g -1 R
[Cle = 5 L 2] t o [ : J (28)

for v a constant. For a uniform discretization, the assembly of the first

term of equation (11) over the two elements sharing node j yields.

o

se[[cu]e{o};] - %— |:(1+3\)) Q;_l + 4Q; + (1-3\))Q;+1:l (29)

where A® is the uniform measure of the discretization in the direction of x%.

Similarly, the convection term in equation (23) becomes

-{{} ﬁ}] i
= .]_'. Uu T 3 \_). o T
[ch]e 5 { }e _{%} {%}J 5 {U }e “[}} {}} (30)

For the constant advection,ve1ocity,'{Ua}e = Uo{l}’ énd

U
se{[ua]e{q}e} - ?El:—(mv)qj_l + 4v0; + (1-2\>)Qj+1:l (31a)
TN
"7 Qo1 F G| P U0 2 - G (31b)

The second form of equation (31) emphasizes the action of the dissipative al-

gorithm in introduction of a viscosity-like term, ie. the difference operation

-10-



equivalent of a second derivative term in equation (26) except for the omis-
sion of a power of the measure A%. ATternatively, the first form suggests
the action of v # 0 as a sort of upwind difference operation. It is import-
ant to note, howgver, that these elementary interpretation are valid only

for the seiected case, ie. U0 a constant and AZ uniform.

The von Neumann stabiiity analysis assumes the solution for the semi-dis-

crete equivalent of the continuous Fourier form as

u*{Ax,t}) = I u, = Vexp [ﬁ w{jAx - Ati] (32)
: £
where Ax E:Ag, the uniform discretization of R%, j is the nodé indicator; and
A = B+ 16, where B and § are real numbers. Comparing equations (27) and
(32}, a difference between g and U8 constitutes a disparity in the phase
speed of propagation of V, hence phase error in.the discrete solution. Cor-
respondingly, § # 0 introduces a real exponential argument yielding a damping
(or growth) of the amplitude of the initial distribution V. Direct substi-
tution of equations (29) and (31) into (32) and expanding the resultant ex-

pressions for B and 8 in a Taylor series yields (ref. 12)

B = uol} + [“1%3'6+ ‘T’;-Jd'* + O(dsi| (33)
5 = uo[. e, 0(d5):l (34)

Here, d = wAx and 0{ ) indicates the order of the truncated term. Since B is
the real component of A, it can be made identical to U0 to order (Ax)® by re-

quiring v"! = V15, Then, the phase accuracy.of the discrete solution u*

-1]-



agrees with U  to sixth order accuracy in Ax, i.e., 0(Ax)&. For v > 0,
d < 0 and an artificial damping is introduced. The resultant specific form

for equation (32} is

u*(Ax,t) = V exp {} ® [jﬂx - [UO + O(Axs)]t]}exp[i w'kt + U(Axsil (35)

where k = UO(Ax)3/12/T§'is the damping coefficient. Note that the damping is
quite selective, occuring only for sufficiently large wave numbers w (small

wave Tengths) due to the w® factor.

Two additional comments are warranted. Setting v = 0 eliminates § and B
is a fourth order accurate representation of the differenﬁia1 equation. This
high order accuracy accrues with use of the simplest Tinear interpolation.

It is obvious that the convection term in equation (31b) is the central dif-
ference equivalent; the improvement to fourth order results directly from the
finite element derived form for [@g]e, ie. equation (29). The normalized
(1,4;1) weighting on .the derivatives corresponds identically with a spline
interpolation. The conventional finite difference practice, eg. reference 13,
is to replace equation (19) with Aan,which yields directly a degradation to
overall second order accuracy. Secondly, the conventional finite difference
practice to introduce dissipation is to add the "artificial viscosity" term

¢ 3%u/ax? to the parent differential equation (29). Repeating the semi-dis-

crete Fourier analysis with this added term, and setting v = 0 but retaining

the finite element derived initial-value term, yields (ref. 12).

u*{Ax,t) = V exp |i w[ij - [UO + O(Axk)]t] exp[} wut + O(sz{] (36)

12~



The basic fourth order phase accuracy remains intact, but the artificial
damping is less selective due to the diminution of the wave number ex-

ponent to 2 and the appearance of the term of order Ax2.

The stability of the algorithm for the linearized equation can be as-
sessed using a fully discrete Fourier analysis of equation (14} combined
with (11). 1In this instance, letting n denote the time index, the approximate

sotution form is

u* (Ax,At) = glexp ijAx] (37)

The form of the ampiification matrix gn js sought, since the discrete solution
will propagate and damp/grow dependent upon its real and imaginary arguments.
Previous analyses (ref. 14), for the non-dissipative algorithm, indicate that
the trapezoidal rule {@ = %) is the sole suitable selection. Retaining this
definition, the amplification factor for the dissipative finite element al-
gorithm is

145 cos(wAx) - 3Cv sin?(bwAx) - i%—(C+2v)sin(wa) a5)
- 38

1+ cos{uwax) + 3Cv sin?(bwax) + i%{C—Zv)sin(wﬂx)

C= UOAx/At is the Courant Number, and the numerator and denominator of g are

1t

complex conjugates for v = 0. Therefore, the basic non-dissipative algorithm
is neutrally stable, fe. |g] = ¥ for all Ax and At, hence error induced by
the solution will propagate undamped and unmagnified throughout the solution
domain. Selecting v # 0 destroys this neutral stability; therefore, define g

in terms of real and imaginary parts as

g=+vy+irl (39)

-13-



Hence, v > 0 quantizes the dissipative mechanism, while I' determines the

phase accuracy. In particuiar,

_ 1 -fiF i
0= 3 tan [Y:I (40)

"yields the normalized phase velocity of the approximate solution u*", Figure
1 graphs equation (40) for the non-dissipative form; the analytical solution
corresponds to the horizontal 1ine at u*/U0 = 1, The solid curves represent
the finite element algorithm, while the dashed curves correspond to equation
(38) as modified by the finite difference diagonalized initial-value hatrix
form. The superior performance of the éresent theory is clearly evident: At

a modest Courant number, eg. 0.01 < € < 0.5, the algorithm accurately resolves

all wavelengths X > 5Ax, while for the latter this occurs only for X > 1bAx.

The action of the added dissipative 'mechanism (v # 0) is to improve the
phase accuracy in the short wave length region. Table 1 Tists select evalua-
tions of equation (38) for € = 0.26 for-various v and A. The dissipation
Tevel y is defined as

u = 35 nfg| _ (41)

It is evident that v exerts a profound correction to 8 on the interval

2 < X < 5, hence produces a closer approximation to the correct solution re-
garding phase accuracy. The penalty for improved phase accuracy is the
corresponding 1ntroduc£ﬁon of dissipation. The dissipation level u is modestly

sensitive to A and nearly linearly dependent on v.

-14-
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Table 1

Influence of Dissipation Level v on Phase Celerity and Dissipation Level, C = 0,25

ﬁissipation Level - n

Wavelength Phase Celerity = 8
l(nAxg
v=0, v=0,1 v=0.25 v=0.5 v=0 v=0.1 v=0.25 v=0,5
2.00 |0.00000 0.00000 0.00000 0.00001 | 0.0 0.01241 0.03438 0.07991
2.25 10.34486 0.38455 0.59418 1.26043 | 0.0 0.01615 0.03854 0.06108
2.50 |0.58252 0.62651 0.82294 1.26599 | 0.0 0.01637 0.03611 0.04907
2.75 [0.72707 - 0.76034 0.90723 1.20781 | 0.0 0.01547 0.03322 0.04358
3.00 |(0.81442 0.83843 0.94355 1.15717 | 0.0 0.01443 0.03093 0.04075
3.50 |0.90399 0.9163%9 0.97178 1.09111 | 0.0 0.01275 0.02786 0.03839
4.00 (0.94397 (.95081 0.98222 1.05509 | 0.0 0.01163 0.02601 0.03777
5.00 10.97560 0.97815 0,99037 1.02238 | 0.0 0.01036 0.02400 0.03799
6.00 [0.98687 0.98803 0.99373 1.00994 | 0.0 0.0097%1 0.02298 0.03860
8.00 (0.99455 0.99490 0.99664 1.00208 { 0.0 0.00%09 0.02201 0.03962
10.00 {0.9%705 0.99719 0.99789 1.00018 { 0.0 - 0.00881 0.02158 0.04025
15,00 10.99891 0.998%94 0.99908 0.99954 | 0.0 0.00854 0.02116 0.04099




Anticipating the results of numerical experiments, to be discussed, the
phase-accurate optimum value of v'! = /I5 introduces entirely too much arti-
ficial diffusion, for both Tinear and non-linear example equation systeﬁs.
In.addition, these linearized analyses are valid only for the algorithm using
1inear interpolation, and performance assessment with at least quadratics is
required. As an indication qf expected performance, the quadratic interpola-
tion basis yields formally fourth order accurate difference representation
for both convection and diffusion differential operators at the elemental
vertex nodes of a uniform discretization of x*. The additional required as-
sessment of the tensor product algorithm basis is also faci?jtated by numeri-

cal experiment.

NUMERICAL RESULTS

One-Dimerisional Solutions

The primary requirement is to assess acceptable bounds on v > 0 that
facilitate accurate solutions without introduction of excessive artificial
diffusion. An appropriate example for examining the important non-linearity

of the momentum equation (2} is the inviscid form of Burgers equafion

L) = sy W= (42)

For an initial condition corresponding to a square Qave, see Figure 2a), the
exact solution to equation (42) is propagation of the original wave form
parallel to u with a celerity of Lu. Figures 2b)-c) show the results obtained
from tﬁe dissipative finite element algorithm for k = 1, € = 0,125 and

v'! = /30. The propagation speed of the wave is exactly correct, ie., the
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Fig. 2. Solution of 1-D Burger's Equation, C = 0.125, v*! = /30' k = 1,
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wave numerical distribution is identically repeated every 16 time steps, ie.
2/C. The solution approximation to the original sguare wave is excellent,
ie., the step remains interpolated across one element domain only, the
leading phase error is only 0.3%, while the lagging phase error extremum is
1.3%. For this value of v, there is no perceptible diffusion of the step:
however, diffusion is introduced when the "optimal" linear analysis value of
v ! = /15 is used, and the square wave becomes interpo]éted across three
element domains.

Figure 3 summarizes the influence of Courant number (time intergration
step size) and level of v on the square wave solution. The results in Figure
3a) were obtained for C = 0.5 and v“1.= V30. The fidelity of the original
square wave is excellently maintained w{th no evidence of numerical diffusion.
The leading phase error is reduced to 0.1%, compare to Figure 2b), while the
lagging error eﬁtremum is increased to 1.9%. The éTgorithﬁ is stable to unit
Courant Number; the fideiity of the brigina] sqﬁare wave is degraded further
(1agging error extremum is 4.6%), as induced by the truncation error associ-
ated with the trapezoidal rule. However, the wave remains interpolated
acress only one finite element. For comparison, setting v'! = /15 and C = 1.0
yields the results shown in Figure 3c). The lagging error peaks have become
completely diffused, the leading error peak is 1.9%, and the wave has be-
come interpolated over four element domains.

These results verify that the developed dissipative implicit finite
element algorithm, employing Tinear interpolation bases, exhibits excellent
accuracy control for the sample non-linear problem. Additional numerical
tests have quantized the relative importance of the derived matrix structures.

By and large, all modification degrade performance of the basic algorithm.
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For example, the results in Figure 4a) were obtained following replacement
of the diffusion term v{Ua}Z with the scalar v{l}T in equation (30). The
results are clearly inferior to the comparison test, Figure.2. For Figure
4b), this modification was retained, and in addition, the finite element- -
derived initial value matrix structure, equation (49), was collapsed to the
" finite difference diagonal form. A large lagging dispersion error peak is
introduced, and these results are definitely poorer than the comparison case,
Figure 3a). Figure 4c) corresponds to the exact dupiicate of the Beam and
Warming (ref, 13) implicit finite difference algorithm with an added fourth-
order dissipation term, ie., a fqyéth order accurate finite differenéé 2qui-
valent of a viscosity term. The value of u, the artificial diffusion coéf—
ficient, was numerically optimized, and Figure 4c compares almost exactly
with Figure 1c of reference 13. By comparison, these results are clearly much
poorer than those of Figure 3. Hence, these tegts firmly quantize the super-
ior performance of the finite element-based algorithm for this test case.
SimiTar results are obtéinea for the quadratic element embodiment of
the algorithm, as obtained setting k = 2 in equation-(ZO). Figure 5a) illus-
trates the square wave after 80 time steps at C = 0.125 and for v'! = /I5,
Since ‘the quadratic possesses a non-vertex node, the original wave (inter-
polated across one element) possesses a nodal mid-value. The quadratic al-
gorithm maintains an adequately accurate representation of the original wave,
see Figure 5a), with 1aggin§ and leading dispersion error extrema of + 4%.
The phase celerity is again exactly correct, as the numerical solution is
repeared every 16 timé steps. For Figure 5b}, the dissipation term was
scalarized, as discussed for the k = 1 solution in Figure 4b), which induces

sufficient additional dissipation to eliminate the dispersion error and

.21



1.08

I

t

VELOCITY

0.50

b k=1; S=2; vi=/30 {1}; € = 0.5

0.00 0.20 0,40 0.60 0.80 1,00
STATION

¢) k=1;B8&W+ad = 5(-3);¢c=0.5
Fig. 4. Solution of 1-D Burger's Equation, Various Assembly and .

Viscosity, Linear Elements..
-92-



a) k=2;8=0; v=1{U}

o
gl
c{" T T T T 1
0.00 0.20 0.u0 0.60 0.80 1.00
STRATION
¢} k=2;$=2; v={1}
Fig. 5. Solution of 1-D Burger's Equation, Quadratic Elements,

Various Assembly and Viscosity, ndt = 80
-23-



smear the wave over two element domains. The additional diagonalizing of
the initial value matrix does not markedly alter this solution, Figure 5c,
in contrast to the linear element solution results.

The influence of the dissipative mechanism within the derived algor-
ithm is less demonstrative for a one-dimensional Tinear equation solution,
eg. the continuity equat%on (1). A test case is advection of a cosine wave
by a constént imposed velocity, for which the theoretical analysis is exact.
Figure 6a) shows the initial-condition, and Fig. 6b) the non-dissipative
linear {v = 0, k = 1) finite element solution following propagation over
three wave-lengths. The dashed curve is the exact solution, and for C = 0.4
the finite element result agrees almost exactly. A modest Teading, phase
error is exhibited, a trailing 2-3ax wave is induced by the relatively
poorer phase accuracy, and the peak value remains at 100%. The diagonal
initial-value matrix form yields exactly the Crank-Nicolson algorithm. Fig-
ure 6¢} shows the corresponding results, which are substantially poorer in
comparison, As prédicted by the theoretical analysis, phase fidelity is much
poorer, to the extent that the marginally diffused peak celerity becomes in
substantial error. In contrast to the non-linear square wave test case,
this solution if continued will produce totally erroneous trash.

Table 2 summarizes the accuracy of the non-dissipative linear element
algorithm solutions as a function of integration time-step, ie. Courant num-
ber. A peak value of 100 is retained up to C = 0.5, and solution dissymetry
progressively increases with larger Courant number. Thé Tast column denotes
the magnitude of the largest trailing wave peak, which always occurs imme-
diately behind the cosine wave. (Not until C = 1.4 is the finite element
solution distribution similar in appearance to the Crank-Nicolson result For

C = 0.4.) Table 3 summarizes the influence of the dissipation factor level
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Influence of Courant Number on
Cosine Hi1l1 Distribution, k=1, v=0

Table 2

Co;;ant Solution Distribution D1§E$gi1on
. . Peak

Analytical 15 50 85 100 85 50 15 0
0.1 16 50 85 100 84 47 15 -2

B 16, 50 85 10d . 8 46 15 -2
0.4 17 52 87 100 81 45 15 -3
0.5 18 54 90 100 78 43 16 -5
0.6 20 56 90 98 75 42 16 -6
0.7 21 59 91 96 73 41 17 -7
0.8 23 61 92 94 70 - 40 17 -8




Table 3

Influence of Dissipation Level on Solution
For Cosine Hill, € = 0.4, k=1

Dissipation Solution Distribution |
Level (v) Peak

Anatytical 15 50 85 100 85 50 15 0
0.0 17 52 87 100 81 45 15 ~3

1 0.1 £-03 18 52 85- 98 80 45 17 -3
0.1 E-02 19 52 8 98 80 45 17 | -3
0.1 E-01 19 52 84 97 79 45 17 -3
0.2 E-01 20 52 84 95 78 46 18 -2
0.5 E-01 | 21 52 81 92 76 46 20 -1
0.9 E-01 23 52 78 87 74 47 22 0
0.1291 25 51 75 84 72 47 23 0
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v on phase accuracy for the test case at C = 0.4. Levels of v < 0.01 do
not measureably alter the solution. Increasing v < 0.01 tends to pro-
greésive]y symmetrize the solution while continuously adding diffusion of
the peak level. At Q = 0.1291, which is one-half the linear analysis
optimum value, the solution is nearly symmetric, but the Tevel of peak
diffusion is unacceptably large. Therefore, it is confirmed that the
sixth-order phase accuracy is unacceptable in terms of induced artificial
diffusion.

The corresponding results. for the quadratic element form of the
algorithm are summarized in Tables 4 and 5. Up to C = 0.5, the non-
dissipative algorithm produces essentially identical results using k = 1
and 2, compare Tables 2 and 4. For larger Courant number, the inaccuracy
and phase shift of the quadratic form becomes progressively poorer in
~ comparison. Comparing Tables 3 and 5, the?e is Tittle performance
difference between k = 1 and_k ; 2 for v > 0 at C = 0.4 for this test case.

Definitive. differences will result for multidimensional solutions, however.
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Table 4

Influence of Courant Number on
Cosine Hiil Distribution, k=2, v=10

Courant Solution Distribution T Eor
. Peak
Analytical| 15 50 8 100 8 50 15 0
0.1 4 49 85 98 8 50 14 -1
0.2 14 50 8 99 8 . 49 14 -1
0.3 15 52 87 99 g 47 13 -2
0.4 16 53 8 99 8 45 13 -3
0.5 19 58 92 98 77 41 14 -7
0.6 21 60 94 97 74 40 15 -9
0.7 26 66 9% 91 67 38 16 1
0.8 26 67 98 92 67 37 16 -13

-29_.




Influence of Dissipation Level on Solution
For Cosine Hill, C - 0.4, k =2

Tab]e 5

DEZiégafi?n Soelution Distribution D1EE$E§TOn
Peak
Analytical 15 50 85 100 85 50. 15 0
0.0 16 53 89 99 82 45 13 -3
0.1 E-3 16 53 89 98 82 45 13 -3
0.1 E-2 17 53 88 98 82 45 14 -3
0.1 E-1 19 -53 85 94 79 46 16 -2
0.2 E-T 21 53 82 90 77 46 19 -1
0.5 E-1 26 51 73 79 70 47 24 0
0.9 E-1 30 49 65 70 63 46 28 0
0.1291 31 47 59 63 58 45 30 0
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Multi-Dimensional Solutions

The one-dimensional solutions have quantized acceptable levels of
v > 0 for which adequate accuracy can be maintained within acceptable dif-
fusion levels. The present reguirement is embedding the tensor-product
basis into a multi-dimensional algorithm and evaluate non-Tinear and linear
solutions. Figure 7 illustrates, for two-dimensions, the manner in which
fractional steps are employed for the grid sweeps associated with use .of
the tensor product basis. For linear interpolation, Figure 7a), the ele-
ments of the Tinearly independent.cardinal basis are contracted on the first

sweep (parallel to x, axis) with node numbers

{1, 2; 2, 3; 3, 4; ..; 29, 30; 31, 32; 32, 33; ...}

to form the vectors on the interpolation subspace. Within the fractional
steps concept, the first (inner) tensor matrix statement in equation (25) is
iterated to convergence of {ﬁ5+1}1 For the second sweep, paraliel to the

X2 axis, the elemental contraction vecéors:are ordered ‘

{1, 31; 31, 61; ...; 200, 2015 2, 32; ...}

and the independent variables in the interpolation basis are linearly depen-
dent upon x»,. The iteration of the interior matrix product then yields the
converged value of {3jj+1' The extension to the third direction is obvious,

whereupon the matrix iteration converges to {(} the solution at time-step

j+1’
tj+1.

~ The linear element tensor product algorithm is rather comparable to a
finite difference alternating direction framework. The quadratic basis al;
gorithm is somewhat more complex. Referring to Figure 7b), for the first
sweep the contraction nodal vector is

{1, 2, 3; 3, 4, 5; ..; 28, 29, 30; 31, 32, 33; .

-31-
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The even numbered nodes 2, 4, 6, .., 32, ... are non-vertex in the
first sweep, which yields the solution {ﬁ}j+1. For the second sweep
ﬁara11e1 to X2, the contraction vector becomes

{1, 31, 613 61, 91, 121; ...; 2, 32, 62; ...}
The odd-number nodes 31, 91, 33, etc. are now non-vertex, whi1§ 2, 62,
4, etc. have become vertex, and the solution is {6}j+1' Note that only
nodes 32, 34, 92, etc. are always non-vertex for a two-dimensional prob-
lem. Hence, the tensor product algorithm employs an interpolation basis
essentially comparable to the non-Serendipity multi-dimensional quadratic
with an interior (centroidal) node. The extension of the quadratic ten-
sor product algorithm to three-dimensions is again direct. To avoid the
one-sided accumulation of round-off error, the tensor matrix algorithm
sweeps are sequenced with each coordinate direction cyclically a]ternatiﬁg
position within equation (25). .
- The comparable non-1inear test case is the two-dimensional inviscid

Burgers equation system

Tt Yy
L{v) = .g%+u3‘f+vg;’7- - (43)

Figure 8a shows the initial condition for a square wave impinging on the
upper left corner of the solution domain. The initial step distribution is
interpolated across one e]emen£ domain only; the correct solution is pure
advection of the initial distribution, parallel to the-domain diagonal with
celerity UO/JE; and maintenance of unit and zero level plateaus. Vanishing
normal derivative boundary conditions were applied everywhere except for
those nodes possessing non-zero initial values which were fixed. Figures

8b) -c) show the Tinear element computed results for C = 0.125 and v * = /30,

They are excellent approximations to the correct solution away from the
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c¢) Downstream, nAt = 120

'Fig. 8. Solution of Two-Dimensional BurgefS‘Equation, Linear Tensor
Product Finite Element Algorithm, C = .125, v = /30
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boundaries. Thereupon,the numerical solution generates an acceptable
approximation to the vanishing normal derivative (which cannot be explicitly
enforced, see equation (6), since 2{(q) = 0 is a homogeniety in equation
{9)). The center wave celerity is exact, and the dispersion error-induced
peaks are nominally + 4% and are Timited to the immediate vicinity of the
front. For comparison, Figure 9 shows the identical test case but with

v = 0 within the algorithm. The importance of the dissipative mechanism

is graphically evident.

As was done for the one-dimensional cases, comparison results are ob-
tained with finite difference matrix structure modifications. The diag-
onalization of the initial-value matrix degrades the algorithm to second-
order acéuracy. The concomitant artificial diffusion is further enhanced
by reducing the phase selectivity of the dissipation action by setting
v {U} 2 v {1}. The resultant solution, Figure 10 has diffused the front
over approximately six element doﬁains. The wave front is considerably
sharpened, see Figure 11, by restom‘né the theoretical matrix sfatement
v{U}, with an associated increase (to 12%) of the lagging phase error peak.
These multi-dimensional results appear quite comparable to the finite dif-
ference experience discussed in Figure 4. In all cases, the restructuring
of the basic theoretical statement degrades solution performance.

Figure 12 shows the corresponding test case solutions generated by
the quadratic tensor product algorithm for € = 0.125 and v ! = V30. The
solutions are basically identical to those obtained by the Tinear element '
form, see Figure 8, with only modest leading and lagging error peaks, ex-
ce'l'ient plateaus and good approximations to vanishing ncrmal boundary
gradients. In particular, the one~dimensional wave form in Figure 5a) is
almost identical with the intersection of the two-dimensional solution with

the plane y = 0, Figure 12h).
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a) Downstream, nAt = 60

b) Downstream, nAt = 120

Fig. 9. Solution of Two-Dimensional Burgers Equation, Linear Tensor
Product Finite Element, C = ,125, v £ 0
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@) Downstream, nAt = 60

b) Downstream, nAt = 120

Fig. 10. Solution of Two-Dimensional Burgérs Equation, Diagonalized Linear
Tensor Product Algorithm, € = 0.125, v ! = v30 ({1}).
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b} Downstream, nAt =120

Fié. 11. Solution of Two-Dimensional Burgers Equation, Diagonalized Linear
Tensor Product Algorithm, C = 0.125, v * = V30 ({U}).
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Fig. 12. Solution of Two-Dimensional Burgers Equation, Quadratic '

Tensor Product Algorithm, C = 0,125, v™! = /37

-30-



Solution improvement with the quadratic tensor product basis occurs
for the multi-dimensional sclution of the Tlinear equation. The two-dimen-
sional test case equivalent is the "cosine hill", obtained by rotating the
one-dimensiénal cosine wave about the peak. A demanding test is pure ad-
vectioﬁ by an imposed solid body rotation, ¢f. reference 16. The correct
solution is exact propagation of the initial distribution. Fibures 13a) -c)
i1lustrate the linear element solution results for C = 0.15 and v = 0. After
one-full turn, the peak value would remain at 100 if the phase distortion did
not move it off a node location, and the lagging phase error peak is 10%.
Figure 14 quantizes the data; Figure 14a) shows the initial condition distri-
bution, which is identical with the exact solution following one full revolu-
tion. Figure 14b) shows the k = 1 results obtained after one rotation at
€ = 0,15, and the circled value corresponds to the correct peak Tocation.
The generally Tagging phase has retarded the cqmputed peak about one-half cell,
and the phase dispersion error is f%rm]y gquantized. Figure 15a) shows the
comparison solution, obtained with the non-dissipative k = 2 a]gofithm form
at C = 0,15, the accuracy of which is excellent. The solution distortion due
to lagging phase is nominally absent, the lagging wake, peak is -2%, and the
solution peak is undiffused (it is actually modestly increased) and occurs
at the exact nodal location. Doubling the integration step size to C = 0.3
produces the solution shown in Fig. 15b), which is essentially comparable to .
the Tinear element solution at C = 0.15. Due to the pentadiagonal Jacobian,
the quadratic algorithm is about 16% slower than the Tinear; therefore, the
net CPU savings for the k = 2 solution at double the Courant Number is about
35%. The Tinear element solution at C = 0.3 further decreased the peak value

to 82, from the 93 in Figure 14b), and the corresponding enhancement of dis-

persion error produced an unacceptable -17 in the trailing wake.
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{a) nAt = 80
- One-Quarter Turn

(b) nat = 240
Three-Quarter Turn

(c) nat = 320
Full Turn

...;{:::"‘%
-""-?._;J"

Fig. 13. Advection of Cosine Hi1l 1in Solid-Body Rotation Velocity
Field, C = 0.15, k = 1.
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A three-dimensional solution for which an exact solution is known is
pure advection of the "cosine-sphere”, the three-dimensional eqﬁiva]ent of
the "cosine-hil1." The selected case is linear convection along the domain
diagonal, and Figure 16 visualizes the solution in terms of particle dens%ty
distributions. Here, the lagging phase of the k = 1 algorithm progressively
" sheds particles into the distribution wake. The accuracy of the tensor pro-
duct algorithm is quantized in the remaining figures, which are printouts of
the computed two dimensional distributions in the three xs;-planes centered
about the exact solution mid-plane. For comparison, Figure 17 contains the
initial distributions; the correct solution is pure translation to the upper
right corner, and preservation of all symmetries. '

The result for the non-dissipative linear algorithm, as obtained for

C = 2/3, are shown in Figure 18. The peak level is almost retained (99),
and the lagging phase distortion produces overall lower solution levels in
the upper plane, Fig. 18c¢) compared to the Tower plane. The dispersion error
produces the evidenced trailing wakes with peaks of -7%. The solution alter-
ations produced by introducing v > 0 are summarized in Figure 19, which are
printouts of central-plane distributions for v = 0.006 and 0.012., The d{s—
persion error peaks are modestly reduced, with the corresponding decrease in
peak level.

The comparison results for the quadratic algorithm at C = 2/3 are shown
in Figure 20 for the non-dissipative form.  The peak value is enhanced, as
occurred for the two-dimensional solution, énd overall symmetries are con-
siderably improved over the linear element results. The dispersion error peaks
in the trailing wake are also modestly higher in comparison. In Figure 21a),
setting v = 0.06 diffuses the peak to 96%, and reduces the wake error by

nominally half while retaining the symmetry preservation of the v = 0 solution.
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“Fig. 16. Solution of Three-Dimensional Advection of Cosine-Sphere,
Linear Tensor Product Algorithm, k = 1, v = 0.
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c) Upper Plane
Three-Dimensional Planar Initial Distributions at Center

Fig. 17.
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Increasing v = 0.012 diffuses the peak further to 87% while further improving
the wake error, Figure 21.b)}. All the three-dimensional results further con-
firm that acceptable Tevels of dissipation v are appreciably below the linear
analysis optimum value.

The computer requirements for the three-dimensional solutions encompass
those of all the lower dimensional cases. A total of 120,000 words of core
were sufficient to execute both the Tlinear and quadratic algorithm. forms on
17° mesh. The Jacobian LU decomposition, for the quadratic requires about
twice the storage of the linear, but the Jacobian core constitutes less than
1% of total storage using the tensor product algorithm. The CPU to execute
one sweep of the quadratic algorithm form is approximately 15 - 20% larger than °
to execute the 1inear element sweep. The linear element three-dimensional test
case requires 1éss than 1 minute of CPU on an IBM 360/195 computer for execu-

,

tion.

SUMMARY AND. CONCLUSIONS

An accurate and efficient tensor product basis finite element solution
algorithm is established for application to convection dominated flow field
predictions. The intrinsic fourth-order accuracy is enhanced using a dissi-
pative formulation to modify phase error-induced oscillations and instabili-
ties., Embedding the formu]ation-within the method of fractional éteps yields
a core-efficient procedure for implicit integration of the resultant ordinary
differential equation systems.

The results of numerical experiments, for linear and non-linear model
partial differential equations, firmly quantize the performance and accuracy

of the developed algorithm. In particular, practically acceptable levels of

-5]-



numérica] diffusion demand the dissipation parameter be selected much smaller
than an "optimum" linear analysis evaluation. The overall performance of

the quadratic tensor product basis algorithm is modestly superior to the

linear basis form, although the Tatter functions quite well for an exceed-
ingly simple formulation. Minor modifications to the derived matrix structures
for the Tinear algorithm yields familiar finite difference form;, the perform-
ance of which appears inferior based upon the results presented. The deve-
loped finite element algorithm should find wide applicétion in computational

fluid dynamics.

-hZ-



10.
11.

12.
13,
14,
}5.

16.

REFERENCES

Thames, F. C., Thompson, J. F., Mastin, W. C., and Walker, R. L.,
"Numerical So1ut1ons for V1scous and Potential Flow About Arb1trary
Two-Dimensional Bodies Using Body Fitted Coordinate Systems,” J. Comp.
Phys., Vol. 24, No. '3, pp. 245-273, 1977.

Mastin, W, C. and Thompson, J. F., "Three-Dimensional Body-Fitted
Coordinate Systems for Numerical Solutions of the Navier-Stokes Equa-
tions," AIAA Paper No. 78-1147, 1978.

Strang, G. and Fix, G. J., An Analysis of the Finite Element Method,
Prentice-Hall, New Jersey, 1973.

Baker, A. J. and Soliman, M, 0., "Utiiity of a Finite Element Solution
Algorithm for Initial-Value Problems," J. Comp. Phys., to appear.

Sotiman, M., 0. and Baker, A. d., "Accuracy and Convergence of a Finite
Element Algorithm for Laminar-Boundary Layer Flow," Computers and Fluids,
to appear.

Sotiman, M. 0., and Baker, A, J., "A High Order Accurate Numerical Solution
Algorithm for Turbulent Boundary Layer Flow," AIAA Paper 79-0001, 1979.

Prenter, P. M., Splines and Variational Methods, John Wiley, New York,
1975,

Dendy, J. E., "Two Methods of Galerkin Type Achieving Optimum L? Rates
of Convergence for First Order Hyperbolics," SIAM. d. Num. Anal., V. II,
No. 3, p. 637-653, 1974,

Halmos, P. R., Finite-Dimensional Vector ‘Spaces, Van Nostrand, N.Y., 1958.

Yanenko, N. N., The Method of Fractional Steps, Springer-ﬁer]ag, New
York, 1971.

Roache, P. J., Computational Fluid Dynamics, Hermosa Publ., Albuquerque,
USA, 1972. . .

Raymond, W. H. and Garder, A., "Selective Damping in a Galerkin Method
for Solving Wave Problems:- With Variable Grids," Monthly Weather Review,

_ Vol. 104, pp. 1583-1590, 1976.

Beam, R. M. and Warming, R. F., "An Implicit Finite Difference Algorithm
for Hyperbolic Systems in Conservation Law Form" J. Comp. Phys., Vol. 22,
p. 87-110, 1976,

Pepper, D. W. & Baker, A. J., "A Simple One-Dimensional Finite Element
Algorithm with Multi-Dimensional Capability," Num. Heat Transfer, V. 2,
pp. 81-95, 1979,

Baker, A. J., Soliman, M. 0., and Pepper, D. W., "A Time-Split Finite
Element Algorithm for Environmental Release Prediction," Finite Element

In Water Resources, Pentech Press, london, pp. 453-465, 1978,

Pepper, D. W. and Kern, C. D., "Modeling The Dispersion of Atmospheric
Po}]ution Using Cubic Splines and Chapeau Functions," Atmos. Environ.,
Yol. , 1979.

-53-



