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TECHNICAL MEMORANDUM 78227 

EVALUATION OF REGISTRATION, COMPRESSION
 
AND CLASSIFICATION ALGORITHMS -


VOLUME I (RESULTS)
 

1.0 INTRODUCTION 

Several types of algorithms are generally used to process digital imagery 
such as Landsat data. The most commonly used algorithms perform the follow2 

ing tasks: 

a) Registration - geographically or geometrically correcting the 
imagery. 

b) Compression- reducing the data volume and in some cases re­
ducing the cost of processing the imagery. 

c) Classifieation-producing inventories and maps from such various 
disciplines as agriculture, land use, geology, and hydrology. 

Because there are also'several types of registration, compression, and classifi­
cation techniques, a user needs a rationale for selecting a particular approach. 
To assist users in their selection, various types of registration, compression, 
and classification approaches were used on Landsat data. The computer re­
sources that were needed by the different approabhes were determined, and the 
changes that the approaches produced in the data and in the inventories and 
maps were quantified. 

For practical reasons the choice of processing techniques could not be 
made exhaustive, but it is believed that the choices include most of the existing 
approaches, if the approaches are expressed in simple terms. For example, 
there are two types of registration approaches: those that use interpolation 
(spatial averaging) and those that do not. There are two types of noninformation­
preserving compression approaches: those that use transforms or difference 
methods and requantize at lower bit rates (which is equivalent to spatial averag­
ing) and those that use a clustering approach (spectral averaging). There are 
basically two types of classification approaches, admittedly with many variations: 



those that-use a linear decision rule and those that use a quadratic decision 

rule. The techniques that were used are documented in Volume 11 of this 

report. 

The most important part of evaluating the different approaches is 

probably the choice of the evaluation criteria. The use of different criteria 

can lead to different conclusions; and often there is no obvious way of deciding 

which criteria are the most important. Thus, the investigation serves two 

purposes: the first is an evaluation of the different processing techniques, and 

the second is an evaluation of the different evaluation criteria. Again, for 

practical reasons, the choice of evaluation criteria could not be made exhaustive, 

but it is believed that the choices include the criteria that are most frequently 
used. 

All of the evaluatibn criteria have one common element: they compare 

the obseived results with the expected results. For image reconstruction 

processes such as registration and compression the expected results are 

usually assumed to be the original image data or some selected characteristic 

of the original data. For classification inventories and maps, the expected 

result is the ground truth; although the ground truth is subjective to a certain 

extent and may contain errors. Thus, the comparisons mainly consist of 

determining what change has occurred, where the change has occurred, how 

much change has occurred and, where possible, the amplitude of the change. 

The following chapters contain a discussion of the evaluation criteria, 

data registration effects, data compression effects, combined data registration 

and data compression effects, classification effects, the effects of registration 

on classification, the effects of compression on classification, and the combined 

effects of registration and compression on classification. The final chapter 

contains conclusions drawn from those results. 
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2.0 ERROR CRITERIA 

Error is a measure of the deviation between the observed results and 
the expected results. Thus, error is a relative measure, and the error can 
change when the expected results are defined differently. For registration 
and compression techniques, the common practice is to define the expected 
results in terms of some characteristic of the original data and to compare this 
characteristic (the expected results) with the same characteristics (the 
observed results) in the registered or compressed data. 

Because error is a measure of change, it is necessary, for example, 
to consider what will change when an image is registered. The shape or size 
of the image may change. The number of picture elements usually changes. 
The number of unique vectors contained in a multispectral image may change, 
a result which causes the distributions of the image bands to change. Since the 
shape, size, and the number of picture elements contained in a registered 
image can be predicted, and the observed results differ very little from the 
predicted (expected) results; shape, size, and number of picture elements are 
not commonly used for error measurements. Thus, the unique vectors and 
distributions are left as candidates for error measurements. 

Before an error can be computed for image registration, the expected 
results need to be defined. The definition, although somewhat subjective, is 
based on two observations about the data and two desired characteristics of the 
registration approach. First, regardless of how a sensor samples data from a 
ground scene, the features in the ground scene do not change. This tends to 
imply that reasonable variations in the sampling procedure should not signifi­
cantly change the number and distribution of unique vectors in a multispectral 
image. Second, if a linear geometric correction is applied to a particular 
image band, the proportion of each ground scene feature does not change. This 
tends to imply that the data distribution, before and after correction, should 
remain approximately proportional. One of the desired characteristics of the 
registration approach is that it should be reversible: it should be possible to 
reconstruct the original image from the corrected image. Some investigators 
have been known to "uncorrect" corrected data, because of their preference for 
working with the original data. The second desired characteristic is that the 
correction should not adversely affect the classification results. 

When an image is compressed with a noninformation-preserving technique, 
the shape of the image, size of the image, and number of picture elements con­
tained in the image are not changed; but like the registered images, the number 
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of unique vectors and their distribution and the distribution of the data in each 
image band will change. The desired result is to compress the image data as 
much as possible and, at the same time, be able to reconstruct the bompressed 
data to form an image that is as much like the original data as possible. Thus 
the original image data and its characteristics are defined as the expected re­
sult. Furthermore, the compression approach should also not adversely 
affect the classification results. 

For image reconstruction, the following three types of error measure­
ments are commonly used: 

a) Chi-squared value. 

b) Mutual information. 

c) Normalized mean square error. 

The chi-squared value is used to compare one distribution with another, but 
does not track the identity of the original data during the reconstruction process. 
That is, there is no way of knowing how many original data points having a value 
B, or how many original data points having a value B were converted to a recon­
structed data point having a value A. The only information known is the number 
of original data points that have a value of A or B and the number of recon­
structed data points that have a value of A or B. Mutual information is a more 
restrictive error measurement because it uses the joint distribution between 
the original and reconstructed data and because it can track the identity of the 
original data during the reconstruction process. Both of these error measure­
ments count the number of things that change during reconstruction. The mean 
square error, however, computes an amplitude of change: it not only considers 
the number of things that change, but it also considers how much they change. 

The chi-squared value is given by 

N (0. e)2 

where e.
1 

is the number of picture elements that have the i-th grey scale value 

in the original data (expected results) and 0. is the number of picture elements 
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that have the i-th grey scale value in the registered or compressed and recon­
structed data (observed results). Because the distributions tend to have a 
large number (30 or more) of grey scale values, (X2/N) 1/3 is usually con­
sidered to be normally distributed. 

Mutual information is derived from the concepts of image entropy and 
self-inforniation. The self-information, I(x), of data in bits is given by 

I(x )= log2 P(xi), (2) 

where P(xi) is the probability that the i-th grey scale value xi occurs. The 

definition appears intuitively reasonable: if there is only one grey scale value 
in the image, the probability that it will occur is one, and the amount of infor­
mation that the data provides is zero. At the other extreme, suppose that an 
image contains 64 grey scale values and the values occur with equal probability. 
In this case each grey scale value contributes six bits of information, which is 
the maximum amount that each can simultaneously contribute. Thus, the 
amount of self-information increases as the number of different grey scales 
increase and as their probabilities of occurrence become equal. The average 
amount of information provided by an image is called image entropy and is 
equal to the average of the self-information. Image entropy, H(x), in bits is 
defined as 

N N 
H(x) : £ "P(x.) I(x) - P(x ) log2 P(x,). (3)

1=1 i=l~ 

As in the previous example, the entropy is zero for an image containing only 
one grey scale value and is equal to six bits for an image containing 64 equally 
probable grey scale values. Mutual information is used to describe the amount 
of information that is transmitted as a result of some process such as com­
pression and reconstruction. If x is the input data and y is the output data, 
then the mutual information between the input and output data in bits is defined as 

I(xy) lo) (xi' (4)
i g2 t'(x.) P(y.) 

where P(x.) is the probability that the input value xi occurs, P(y.) is the 

probability that the output value y. occurs, and P(xi,yj) is the probability that 
. 
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an output value yj occurs when an input value xi occurs. The average amount 

of information transmitted between an input and output image is given by the 
average mutual information which is 

N M 	 N M P(x.,y.)
I .-= Z Z P(x.,y.) I(x, y.)= Z Z P(xi,yj) l g 2 .(5) 

i71 j=1 i71 j=1 

The fact that the average mutual information is based upon self-information and 
'image entropy can be seen when the output image is identical to the iniht image. 
In this case P(xi,y)= P(xi)= P(yj) and the average information reduces to 

N 
I=- Z P(x.) log 2 P(x ) =H(x) (6) 

which is the average information contained in the input image. Because the 
output image 	is usually not identical to the input image, some information loss 
must have occurred. The information loss term can be found by expanding 
equation (5) to obtain 

N M 	 P(x., y.) N M 
I= Z Z P(xi, yj) log P() -Z Z P(x.,y.) log2 P(x) 

i=-I i i'j 2 	 i= j=1 

N MW 	 P(x., y.) P(x.,y.) N 

Z£ P(y) p Ilog y - E P(x) log2 (x)
2 P(yj) ii

ji=1 j P(yj 

M N 
= Z P(y.) 	 z P(xi!yj) log2 P(xIl yj) + H(x)


i=2
j=l 

-I-i(xly) + H(x), 	 (7) 

where P(xiI y.) is the probability that xi occurred in the input image given that 

yj occurred in the output image. The first of the two terms in equation (7) 
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represents the information lost becuase it describes the ambiguity of a particular 

x occurring when a particular y has occurred. The first term is negative, 

which indicates a loss, except when only one x value occurs for a particular 
y value. In this case P(xi yj) = 1 (there is no ambiguity in which x occurred 

given that the particular y has occurred), the first term is zero, and no 
information is lost. H( xl y) is often called the error entropy, and the percent 

information lost can be calculated by dividing H(xIy) by I and multiplying 
by 100.
 

The mean square error is given by 

A=1 2 

Cr NM L (xi - yij (8) 
i=1 j=1 

where, in this case, x.. is the grey scale value of a picture element in the input 

image (expected result) and yii is the grey scale value of a picture element in 

the output image (observed result); both picture elements are at scan i and 

column J. Usually A2 is divided by the variance of the input image to form a 

dimensionless quantity and to remove the dependence of the error on the type 

of image scene. Thus, the ratio of the two quantities is'a comparison between 

the image reconstruction and approximating the image with a least squares 

constant, which is the mean value; and the ratio is always less than one. 

Image complexity is another quantity that may be useful in describing the 

effects of registration and compression on image data. Image complexity is a 

multispectral measurement, rather than a single band measurement, and is 

described in terms of the number and distribution of the unique vectors con­

tained in a multispectral image. In Landsat 1 and 2 data, for example, there 

are four different spectral images; and each picture element contains four 

different spectral reflectance values associated with a particular location in the 

ground scene. Thus, each picture element can be mathematically represented 

by a four-dimensional vector, and a multispectral image becomes more complex 

as the number of unique vectors contained in the image is increased. Registra­

tion and compression approaches usually change the complexity of a multispectral 

image by changing the number and distribution of the unique vectors. 

Each of the previous error criteria has been concerned with the effects 

that can be observed in the data and that are important for image reconstruction. 
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It is also important to determine the effects that registration and compression 
have on classification results and to determine the effects that are produced 
by different classification approaches. These effects are usually measured by 
digitizing a ground truth map (GTM), which is assumed to be 100 percent 
correct; overlaying the GTM with a classification map (CM); and constructing 
a feature or thematic contingency table of GTM and CM agreements and dis­

agreements for all of the classified picture elements. Using the contingency 
table, there are three types of accuracy that can be measured: inventory 
accuracy$ classification accuracy, and mapping accuracy. For a particular 
classification result, inventory accuracy is usually greater than classification 
accuracy, and classification accuracy is usually greater than mapping accuracy. 
Inventory accuracy is a comparison of the percentage of different feature 

occurrences between the GTM and CM. Because no effort is made to determine 
which picture elements are classified correctly or incorrectly and because 
much of the classification error is random, the error tends to cancel when an 

inventory percentage of features is calculated. The classification accuracy, 
however, is measured by determinirg the number of picture elements that are 

correctly classified. 
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3.0 EFFECTS OF REGISTRATION ON IMAGE DATA 

3.1 Introduction 

Many applications that use digital imagery often necessitate a change in 
the image data coordinate system. For example, it may be necessary to overlay 
Landsat digital imagery with a maip, with data from another imaging sensor, or 
with other Landsat data acquired from the same ground track at different times. 
To perform this change, two types of transformations need to be considered: 
the first is a coordinate transformation that defines the location of the new 
coordinate system picture elements in the old coordinate system, and the 
second is a grey scale transformation that defines the grey scale value of the 
picture elements in the new coordinate system. The coordinate transformation 
is developed by locating numerous corresponding picture elements in the two 
coordinate systems, and by using those corresponding picture element coordi­
nates to determine the least squares coefficients of a transformation polynomial. 
One problem, which consistently arises, is that a picture element in the new 
coordinate system will usually not have an integer picture element location in 
the old coordinate system. Thus, there is some ambiguity concerning the 
transfer of a grey scale value to a picture element in the new coordinate system. 
To account for this problem, registration approaches have been developed that 
use different approximations for assigning grey scale values in the new coordi­
nate system. The effects that will be evaluated are those of the grey scale 
transformation, rather than those of the coordinate transfdrmation. 

3.2 Registration Approaches [ 1] 

According to digital sampling theory, the ideal interpolation function for 
discretely sampled band limited data is sin (x)/x. Theoretically, a continuous 
signal could be sampled at intervals, and the grey scale value at any point could 
be determined by averaging the grey scale values of all other picture elements 
with a sin (x) /x weighting function. In practice, however, the resulting series 
of terms in the average converges quite slowly and requires a large number of 
terms. For registration, interpolation is used to.assign grey scale values to 
picture elements in the new coordinate system- especially those picture elements 
that do not have integer coordinate locations in the old coordinate system. The 
three most commonly used registration techniques (bicubic interpolation, 
bilinear interpolation, and nearest neighbor) use different approximations to 
the sin (x) /x weighting function. 
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3.2. 1 Bicubic Interpolation 

Of the three registration approaches, the bicubic approximation is the 

most like the sin (x)/x weighting function, a similiarity which also requires 
substantial computer time. The weighting functions for sin (x)/x and the 

bicubic approximations are shown for comparison in Figure 1. The equation 

for the bicubic approximation is written in three parts as follows: 

f (x) Ix -2x 2 +1 o.<jIsi 1 

- 8 ­f2(x) = JIX3+5x2 xI'+ 4; 1 - IxI 2 

f3(X) = 0; 1xj >2, (9) 

SIN Wx 

SUNX RESPONSE CURVE
 

CQx) 

CUBIC CONVOLUTION RESPONSE CURVE 

Figure 1. Sin (x)/x and bicubic functions. 
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- - - - - - -- --- - -

where x is the picture element distance, usually from a noninteger coordinate 
location. The bicubic weighting function is shown in Figure 2 with values at 
one half picture element intervals. 

1.0 

(.625)
 
.6
 

.2 

-. 2 - ----

Figure 2. Bicubic function weighting. 

The bicubic approximation uses 16 picture elements to calculate four 
interpolated values shown in Figure 3 at A', Bt , Ct, and D'. These four 
interpolated values are then used to calculate a fifth interpolated grey scale 
value at the desired coordinate location, and this grey scale value is trans­
ferred to the new coordinate system via the coordinate transformation. When 
the bicubic weighting function is substituted into the average for calculating 
the grey scale value, I, at a coordinate location, the following equation is 
obtained: 

- 21 + I - I )d2I = (-I±+ 2 - I+ i )d 3+ (21-
12 3 4 1 2 3 4 

+ (-II+ 13 )d +12, (10) 

where d is the distance of the coordinate location from the second of the four 
picture elements that have grey scale values I1, I2, I3, and I4 as shown in 
Figure 4. 
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Figure I3. Bicubic' interpolation. 
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Figure 4. Distance measures for bicubic interpolation. 

3.2.2 Bilinear Interpolation 

The bilinear approximation only uses four picture elements and calcu­

lates a total of three interpolated grey scale values. Because the approxima­

tion is less exact and contains no squared or cubed terms, the bilinear approach 

is faster than the bicubic approach. 

Figure 5 shows that if the neighboring picture elements at A and B have 

grey scale values IA and IB, the grey scale value Ix a distance dx from A 

will be given by 
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I 
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Figure 5. Bilinear interpolation. 

Similarly at the point Y, the interpolated grey scale value will be 

y = (Id - Ic)dx (12) 

The desired interpolated grey scale value, I, that is transferred to the new 

coordinate system will be given by 

S(y - X)y (13) 

3.2.3 Nearest Neighbor Approach 

The nearest neighbor approximation is faster than either bicubic or 

bilinear interpolation, because no interpolation is used. Instead, the grey 

scale value of the picture element nearest the coordinate location is transferred 

to the new coordinate system. In the example of Figure 6, the grey scale value 

of the picture element at D would be transferred. When the coordinate location 

in the old coordinate system is an integer picture element location, bicubic 

interpolation, bilinear interpolation, and the nearest neighbor approach give 

identical results. However, the majority of coordinate locations in the old 

coordinate system do not turn out to be integer picture element locations. 
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Figure 6. Nearest neighbor resampling. 

3. 3 Registration Results 

3.3.1 Data Description 

The image data used in studying registration and compression effects 
consisted of seasonal passes over a LACIE supersite in Finney County, Kansas, 
and was provided by Johnson Space Center. The test site contains 22 932 pels 
(picture elements) and is 196 pels wide and 117 pels long. The test site also 
had the unique characteristics that everything in the ground scene was almost 
pure vegetation, the shapes of the ground scene features did not change as a 
function of time, the great majority of the shapes were regular geometric 
figures like rectangles or circles, and the only thing that changed was the 
*spectralrepresentation of the ground scene features. These characteristics 
provided the opportunity of limiting the effect variations to either the registra­
tion approach or spectral changes and of comparing the relative size of the two 
variations for different evaluation criteria. This comparison would provide 
insight on the predictability of the evaluation criteria and the general applicability 
of the criteria to other test sites. 

Eleven different passes were acquired over the supersite; however, so 
as not to bias the evaluation results toward any particular season, only three 
passes were selected. This choice was based upon the spectral activity of the 
test site, an activity which reaches a minimum during winter and a maximum 
during the peak of the growing season. The January 2, 1976, pass contained 
a minimum of 1975 unique feature vectors, the May 6, 1976, pass contained a 
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maximum of 8039 unique vectors, and the October 22, 1975, pass contained 
3790 unique vectors. Thus, the three choices represented a minimum, 
maximum, and an average spectral activity; this type activity is common to 
Landsat imagery. The number of unique vectors, when compared'to the 
number of picture elements (22 932), indicate that there is considerable 
redundancy in the multispectral imagery. Figure 7 shows the distribution of 
the unique vectors for the three passes. The distribution is also typical in 
that the majority of unique vectors occur only a few times and that there are 
more vectors that occur only once than any other kind. For example, in the 
January image 33. 7 percent of the vectors occur once, and 15.2 percent occur 
twice, in the October image 43. 5 percent occur once and 16. 3 percent occur 
twice, and inthe May image 49.4 percent occur once and 17. 9 percent occur 
twice. Although the distributions were only plotted for vectors that occur 15 
times or less, the distributions account for 83.9 percent of the vectors and 
25.1 percent of the picture elements in the January image, 85. 1 percent of 
the vectors and 43.2 percent of the picture elements in the October image, and 
98. 3 percent of the vectors and 88. 3 percent of the picture elements in the 
May image. 

3. 3. 2 Registration Evaluation 

Landsat data have approximately 1. 38 more picture elements in the 
east-west direction per unit of distance than it does in the north-south direction. 
Thus, Landsat digital data have a different resolution in the two perpendicular 
directions. The LACIE test area was geometrically corrected at a resolution 
which was an average resolution of the two directions in the original Landsat 
data. This correction produced an image which had approximately the same 
number of picture elements as the original test site, as well as an image that 
had the same resolution in all directions. The correction was performed using 
.the NN (Nearest Neighbor), BL (BiLinear), and BC (BiCubic) approaches on 
the three different seasonal passes. 

Table 1 shows the running times for the three registration approaches, 
the number of picture elements in the corrected image compared to the original 
image, and the number of-unique vectors in the corrected image compared to 
the original image. The NN approach is approximately two times faster than 
BL and approximately six times faster than BC. If the coordinate transforma­
tion were exact, the NN corrected image would have the same number of 
picture elements as the original image. The difference in number of picture 
elements between the two images in 24, which indicates an error of approxi­
mately 0.1 percent. BL and BC images should have fewer picture elements 
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Figure 7. Number of unique vectors versus number of occurrences 
for LACIE test site. 
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TABLE 1. NUMBER OF UNIQUE VECTORS VERSUS REGISTRATION APPROACH
 

Date of Data Acquisition 

Approach 

Original Data 

First Transformation 

Nearest Neighbor 

Bilinear Interpolation 

Bicubic Interpolation 

Second Transformation 

Nearest Neighbor 

Bilinear Interpolation 

Bicubic Interpolation 

10/22/75 01/02/76 05/06/76 

Number of Unique Vectors 

3790 1 1975 8 039 

(Corrected Coordinates) 

3562 1882 7 525 

4596 1862 12 293 

6085 2737 14 873 

(Back to Original Coordinates) 

3530 1868 7 434 

3947 1602 11 036 

5914 2649 14 036 

Number of Picture
Elements 

CPU Time
(see) 

22 932 

22 908 7 

22 596 16 

21 980 42 

22 915 5 

22 250 15 

20 950 41 

-1 



than the original image, and the BC image should have fewer picture elements 
than the BL image. The number of picture elements lost because of the 
interpolation requirement for BL is one scan and one column (196 + 117 - 1) plus 
24 picture elements lost via the coordinate transformation error. For BC, the 
number of picture elements lost to the interpolation requirement is the first 
and last scan (2 x 196), the first and last column (2 x 117 - 4), plus an 
additional scan and column (196 - 2 + 117 - 3), plus 24 picture elements lost 
via the coordinate transformation error. 

The NN approach usually has slightly fewer unique vectors than the 
original image because the coordinate transformation can cause the equivalent 
of one scan and column not to be nearest neighbors of a set of transformed 
coordinates. The interpolation approaches, however, have two competing 
effects on unique vectors. One effect is that there are fewer unique vectors 
because there may be fewer picture elements in the corrected image. The 
other effect is that interpolation creates new unique vectors by spatial averaging. 
Table 1 shows that the number of unique vectors generally increases with the 
interpolation extent. Figure 8 shows how the unique vector distribution changes 
as a function of registration approach. The NN corrected image has a distri­
bution of unique vectors that is very similar to the distribution of unique vectors 
in the original image. The BC corrected image, however, has more unique 
vectors that occur only once than there were total unique vectors in the original 
image. This is almost the same situation with the BL corrected image. In 
general, the interpolation approaches significantly increase the number of unique 
vectors occurring a few times, while significantly decreasing the number of 
unique vectors occurring many times. Although the original image has unique 
vectors occurring as many as 40 times, the BC image has only one unique 
vector that occurs a maximum of 12 times. 

The geometrically corrected image is rectangular, but it is also rotated. 
To maintain a data set which has the same number of pels in each scan, data 
with zero grey scale values were introduced into the corrected image where no 
real transformed data existed. The distributions for the corrected image were 
then computed by ignoring the picture elements that contained a zero grey scale 
value and by rescaling the distribution to match the number of picture elements 

in the original image. The (x2/N)1/3 values could then be computed; Table 2 
presents these values as a function of spectral band, season, and registration 
approach. At the 90 percent and 95 percent confidence level, the NN approach 
is the only approach that maintains spectral band distributions that are consist­
ently and statistically similar to the spectral band distributions of the original 

data. For the interpolation approaches, the (x2 /N) 1/3 values are very similar 
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TABLE 2. (X2N)1/3 VERSUS REGISTRATION APPROACH 
(FIRST TRANSFORMATION) 

Date of Data 
Acquisition 10/22/75 01/02/76 05/06/76 

Spectral Band 4 5 6 7 4 5 6 7 4 5 6 7 

- Nearest 

Neighbor 0.47 0.64 0.56 0.52 0.51 0.51 0.56 0.60 0.58 0.62 0.59 0.58 

Bilinear 
Interpolation 4.53 6.06 4.07 1.55 6.98 6.79 3.77 2.87 5.56 4.60 7.47 2.09 

BicubLc 
Interpolation 4.09 6.08 4.07 1.38 6.64 6.33 3.24 1.31 5.56 4.76 7.79 1.65 

to the values obtained from the compression results at 1, 2, or 3 bits per pel 

per band. Table 2 shows that the results for NN are fairly consistent and that 

the results for the interpolation approaches are consistent with each other, 

but that shows the NN and interpolation results are not consistent. The 

analysis of variance for (y 2/N) 1/3, Table 3, shows that the majority of the 

variation is attributed to the different registration approaches. Table 3 also 

indicates that there is a significant effect due to the different spectral bands, 

which indicates that the (X2 IN)1/3 criterion is not independent of spectral band. 

TABLE 3. ANOVA FOR (x2/N)1/3 AND REGISTRATION APPROACHES 
(F IRST TRANSFORMATION) 

Degrees Sum 
of of % Mean F 

Source Freedom Squares Variation Square Test 

Approach 2 127.99 57.78 64.0 Significant 

Spectral Band 3 41.10 18.55 13.7 Significant 

Season 2 2.84 1.28 1.42 

Season/Band 6 17.58 7.94 2.93 

Error 23 23.01 14.45 1.39 

Total 36 221.52 
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The geometrically corrected data were then transformed back to the 

original Landsat coordinate system so that the effects of "uncorrecting' the 
data could be examined. Again, zero values were used to fill in where no real 

data existed, and picture elements corresponding to the location of the zeros 

were not used in the computations of (X2/ N) 1/3, the percent normalized mean 
square error, mutual information, or the number of unique vectors (see Table 

1). Thus, only the uncorrected image were used in the computations. Tables 

4, 5, and 6 show (2 IN) /3, the percent normalized mean square error, and 

the percent information transmitted as a function of registration approach 
spectral band, and season. Again the NN approach is the only approach which 

maintains a spectral band distribution that is consistently and statistically 
similar to the spectral band distributions of the original data according to the 

(X2 IN)1/3 measure. All of the error criteria are consistent in that BL 
interpolation produces the worst errors. The percent information transmitted 

and (X2/ N)1/3 measure indicate that the NN approach performs better than 
BC interpolation, while the percent normalized mean square error indicates 

that BC interpolation performs better than the NN approach. This apparefit 

discrepancy is explained in the following manner. The information transmitted 

is related to the number of times that the data in the original image agree with 

the data in the twice transformed image and contains no information on the 

amplitude of the disagreements. The mean square error, however, does 

contain information on the amplitude of the disagreements. Thus, the tables 

indicate that the NN approach produces fewer disagreements than BC interpola­

tion, but the disagreements are much larger in magnitude than with BC inter­

polation. Conversely, BC interpolation produces more disagreements in the 

reconstructed image, but the magnitude of the disagreements are smaller than 

with the NN approach. 

Figure 9 shows the joint histograms of band four versus band six for the 

original data. In this figure, square symbols of various sizes were used to 

indicate the number of occurrences of pairs of values in band four and band six­

the larger the symbol, the greater the number of occurrences. The NN geo­

metric correction produces a negligible effect on the joint histogram, an effect 

which would not be discernible in a figure such as Figure 8. The interpolation 

approaches, however, act as a filter and produce a noticeable effect. Since 

the effect produced by BL and BC interpolation are very similar, only the BC 

interpolated result will be shown. Figure 10 shows the joint histogram when 

the image is geometrically corrected using BC interpolation. Data have been 
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LID 2 1/3
bl TABLE 4. X /N) VERSUS REGISTRATION APPROACH (SECOND TRANSFORMATION) 

Date of Data Acquisition 10/22/75 01/02/76 05/06/76 

Spectral Band 4 5 6 7 4 5 6 7 4 5 6 7 

Nearest Neighbor 0.34 0.52 0.52 0.56 0.58 0.45 0.62 0.,52 0.60 0.55 0.63 0.49 

Bilinear Interpolation 5.13 6.32 4.19 1.95 7.45 7.00 4.35 3.34 5.76 4.82 8.05 2.50 

Bicubic Iterpolation 3.51 4.39 3.38 1.58 5.85 4.71 3.03 1.23 4.54 4.08 5.59 1,82 

TABLE 5. PERCENT NORMALIZED MEAN SQUARE ERROR VERSUS REGISTRATION APPROACH 

(SECOND TRANSFORMATION) 

Date of Data Acquisition 10/22/75 01/02/76 05/06/76 

Spectral Band 4 5 6 7 4 5 6 7 4 5 6 7 

Nearest Neighbor 4.60 2.87 2.46 1.88 7.72 4.43 4.77 4.91 2.69 2.41 2.96 2,18 

Bilinear Interpolation .98 3.91 3.29 3,02 11.97 6.65 7.47 8.50 3.52 2.98 4.11 3.32 

Bicubic Interpolation 3.17 1.53 1.29 1.62 6.97 3.37 3.51 5.84 1,12 0.83 1.36 1.32 

TABLE 6. PERCENT INFORMATION TRANSMITTED VERSUS REGISTRATION APPROACH 
(SECOND TRANSFORMATION) 

Date of Data Acquisition 10/22/75 01/02/76 05/06/76 

Spectral Band 4 5 6 7 4 5 6 7 4 5 6 7 

Nearest Neighbor 86.00 85.53 85.16 84.47 83.26 83.23 82.01 82.22 86.24 85.47 85.41 83.49 

Bilinear Interpolation 51.33 54.10 52.02 68.81 55,55 56.54 47,64 65.33 52.42- 48.66 49.99 61.39 

Bicubic Interpolation 65.03 68.30 65.51 79.10 66.52 69.17 61.51 73.85 68.06 64.14 64.89 75.86 
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created where there was no data before, and the histogram has been smoothed. 
The geometrically corrected image was then transformed back into the original 
Landsat coordinate system using BC interpolation for a second time. The 
resulting histogram is shown in Figure 11. The result is essentially of the 

same nature as in Figure 10, except that the histogram has been smoothed 
even more. 

To illustrate the effects of the three registration approaches on the 

test site image, each approach was used to geometrically correct the image 
and then to transform the image back into the Landsat coordinate system. An 

absolute value difference image of band six was then constructed using the 

original image and the twice transformed image for each registration approach. 

In this case, the size of the square symbols indicate the size of the absolute 

value difference -the larger the size, the larger the difference. Figures 12, 13, 

and 14 show the difference images for the NN, BL, and BC registration 
approaches, respectively. The scan and column numbers are marked along 

the edge of the difference images, and the borders on the BL and BC difference 

images result from a loss of data in the interpolation process. The NN approach 
produces the least amount of differences, but the differences tend to be larger 

in magnitude than those produced by the BL and BC approaches. The BL and 

BC approaches produce considerably more differences that are smaller in 

magnitude than the NN differences. According to Tables 4, 5, and 6, the 

cumulative effects of the differences are still much larger for BL and BC than 

for NN.. If Figures 12, 13, and 14 are raised to the eye level, such that the 

plane of the paper is almost parallel to the line of sight, and then slowly rotated, 

various linear patterns will appear and disappear. These patterns are most 

easily seen in Figure 12 and are most dominant in the direction starting with 

the lower left hand corner and ending with the upper right hand corner of the 

image. There is also a less dominant pattern in Figure 11 running from the 

lower right hand corner to the upper left hand corner. These two patterns 

occur in Figures 12 and .13, which also contain other linear patterns. The light 

bands in the linear patterns occur at picture elements where very little or no 

approximation was needed in assigning a grey scale value. Thus, the coordi­

nates of these picture elements are very close to being integer coordinates in
 

the original and the geometrically corrected coordinate system.
 

The registration effects examined in the section showed that considerable 

change was produced in the image data as a result of geometric correction, 

especially when an interpolation approach was used. These effects can be pre­

dicted and described in a qualitative sense, but the magnitude of these effects 

cannot be predicted in a quantitative-sense. However, if a registration approach 

is selected based upon least cost and least amount of data effects produced, the 

NN approach is a clear choice. 
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4.0 EFFECTS OF COMPRESSION ON IMAGE DATA 

4. 1 Introduction 

As of July 26, 1978, Landsats 1, 2, and 3 had provided a total of 
568,660 multispectral scanner scenes. Each of the Landsat 1 and 2 scenes 
contains approximately 30 million data points, while each Landsat 3 scene 
contains approximately 120 million data points. Thus, not only is the existing 
data volume quite large, but the rate at which image data are being acquired 
is increasing with new satellites, new sensors, more spectral bands, and 
better resolution. The expanding data acquisition situation is a cause for 
concern, specifically in the costs of storing, retrieving, distributing and pro­
cessing the data. One approach for reducing part of these costs is data 
compression. 

Data compression is an operation performed on data to reduce the data 
volume, and there are two general types of compression: information-preserv­
ing compression and noninformation-preserving compression. Whenever data 
are acquired, and if the data are not completely random, there is usually some 
information that is redundant or approximately predictable. The data volume 
is reduced by recoding the data more efficiently or by approximating the data; 
both approaches require fewer bits to represent the data. Information­
preserving compression is based upon recoding the data more efficiently; the 
original data can be reconstructed exactly and no information is lost. Informa­
tion-preserving approaches typically achieve compression ratios of 2 or 3 to 1. 
To achieve higher compression ratios -typically 5 or 6 to 1-the data are usually 
approximated and information is lost. This type of compression is called non­
information-preserving because the original data can never be recreated. 
Information-preserving compression approaches were not evaluated since they 
produce no effects on the imagery or the classification results. 

4.2 Compression Approaches-, 

Most compression techniques are sequentially applied to small blocks 
of the image data rather than to one large block containing the full scene. The 
three main reasons for this approach are: the storage requirements become 
prohibitive for large data blocks, the approximations are confined to a local 
area within a block and errors are not propagated, and the compression tech­
niques can be made adaptable to account for variations among the different 
blocks. The main difference among the techniques is the approach used to 
approximate the data. 
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4.2.1 ADPCM (Adaptive Differential Pulse Code Modulation) [2] 

The main approach of ADPCM is to use the difference in grey scale 
values among adjacent picture elements, since the range in difference values 
is usually much smaller than the range of the actual data and requires fewer 
bits for encoding. Because difference values are used, the grey scale values 
of the first picture element in each scan must be retained for reconstructing 
the image data. 

For the first scan of data, a single order predictor is used to estimate 
the grey scale value of the next picture element. That is, if x.. is the grey 

scale value for the next picture element in the first scan and jth column, it is 
assumed to have the same value as xi,-," The difference (xij - x.j. ) is 

computed for each picture element with j greater than one. Thus, the first 
scan of data could be reconstructed from the grey scale differences using the 
following equations: 

x1 1 =x1 1  (14) 

and xiU =xij- 4 e , j > 1, 

where e is the difference in grey scale values between the two adjacent picture 
elements. 

For the remaining scans in the image, a third order predictor is used 
and the corresponding equations are 

xi = Xil .(15) 

3 1 

and x =" (X..+ x..) - x + ei. , I, j>1,
ij 4 i-lj+ ij-1 2 i-lj-1 i 

where 3/4 and -1/2 are the normally used weighting functions In the predictor. 
The weighting functions are an input variable and can be easily changed. 
Ordinarily, the prediction error (e) decreases rapidly as the order of the 
predictor increases, but increasing the order beyond three usually provides 
only a slight improvement in the error reduction at the expense of computation 
time. 
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greyA compressed image could now be generated by using the x i 

scale values and encoding the e.. difference values. However, an additional 

eimprovement in the encoding can be made by modifying the form of the 

distribution. The grey scale difference distribution is usually a two sided 
are toexponential having a peak at zero. If the grey scale difference values 

have maximum self-information, then the values must occur with equal proba­

bility. Thus, the exponential distribution needs to be changed to a uniform 

distribution, a change which enables all the difference values to be encoded 

with same number of bits and have the same accuracy of representation. The 

transformation that is used to make the difference distribution more uniform 

is given by 

e [I - exp(cle/em)] 
z(e) =- exp(-c) (16) 

where em is the maximum grey scale difference that occurs, c is chosen to be 

is the standard deviation of the grey scale differences.,42 e /3 re, and r em 

Usually e is set equal to 3or . The transformation has the effect of combining
m 

the integer class intervals of the e distribution, especially for large values of 

e, while not combining the class intervals for small values of e. Changing the 
z distribution that ise distribution class intervals in this manner results in a 

more uniform. For negative values of e, the sign of z is made negative. The 

grey scale differences in the z distribution are quantized to the desired number 

of bits to give z*, and the inverse transformation, 

e 
e* -- loge 11 - (z*/e ) (1 - exp(-c))] , (iv)

Cm 

is used to obtain e*, the compressed values of the e grey scale difference 

distribution. The compressed image is reconstructed using the original data 

in the first column of the image and the appropriate e* values for each of the 

other picture elements. 

ADPCM is adaptive because a is computed for each string of 16 e 

picture elements in a scan, and a e usually changes. Although ADPCM operates 

on strings of picture elements there is a potential problem of error propagation. 
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If ADPCM were to operate independently - retain the original data values for 
starting points of individual strings rather than retain the original data values 
for the entire scene - on strings of data, errors (due to dropped bits for 
example) would only propagate within a string instead of from string to string. 
With the existing approach, an error occurring in the left-hand portion of the 
image would propagate across the entire image scan. 

4.2.2 2H (Two Dimensional Hadamard) [2] 

2H uses a transformation matrix and operates on square blocks of 
data - usually a 16 x 16 picture element array. The transformation matrix 
contains only ones and minus ones, numbers which require addition instead 
of multiplication. Because no multiplication is required, the transformation 
can be performed rather quickly. The transformation matrix for any square 
block of data, whose width or length in picture elements is a power of two, 
can be developed using the following 2 X 2 matrix: 

T 1 [ . (18) 
[1-i 

The transformation matrix for a 4 x 4 picture element array is obtained by 
repeating the 2 x 2 matrix and reversing the signs in the 2 x 2 matrix in the 
lower right-hand corner as follows: 

1 -I i i" 

T4 2 
2 

1 
i-

1j-1 -1 
i 1(9) 

1 -2I-1 1 

The 8 x 8 matrix is constructed from the 4 x 4 matrix in the same manner, and 
the constant in front of the matrix is the reciprocal of the square root of the 
number of rows or columns. These transformation matrices are also their 
own inverse. 

If X is a square block of picture element grey scale values, then the 
transform coefficients (Y) of the picture elements are computed using 

Y= TXT (20) 
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Instead of compressing the transformed image data by omitting the smallest 

coefficients, the coefficients are first arranged according to size. This 

arrangement or distribution usually has the appearance of an exponential 

curve, and the previously discussed z transformation is used to make the 

distribution more uniform. The resulting z distribution is quantized with the 

desired number of bits, and the inverse z transformation is applied to recon­

struct the compressed Hadamard coefficients Y*. The compressed image 

X* is then reconstructed using 

X* = T - 1 Y*T. (21) 

Error is not propagated' throughout the entire image because each block is 

independently compressed. 2H is also adaptive, because the standard deviation 
zof the transform coefficients is calculated for each block and used in the 

transformation. 

4. 2. 3 2C (Two Dimensional Cosine) [2] 

2C is identical in use to 2H except that a fast Fourier transform is 

used in place of the Hadamard transform. 

4.2.4 HH (Hybrid Hadamard) [2) 

HH uses a combination of ADPCM and the Hadamard transform and 

operates usually on a 16 x 16 block of picture elements. The Hadamard 

transform is used first in the vertical direction to convert the 16 x 16 array 

to a string of 16 Hadamard coefficients. ADPCM is then used to quantize the 

Hadamard coefficients with a first order predictor and the z transformation. 

The inverse z transformation is applied to reconstruct the compressed 

Hadamard coefficients, and the inverse Hadamard transformation is applied 

to reconstruct the compressed image data. 'RH is adaptive and no error is 

propagated from block to block. 

4.2.5 HC (Hybrid Cosine) [2] 

HC is identical in use to HH except that a Fourier transform is used 
in place of the Hadamard transform. 

4.2.6 Blob Algorithm [3] 

The Blob algorithm uses a combination of spatial and spectral averaging. 

The data are first spatially compressed by computing a mean value and variance 
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for each 2 X2 picture element array in each multispectral band, a computation 
which creates a modified picture element with the mean values and replaces 
the original 2 X 2 array in each band. Thus, the size of the original image 
and the resolution are decreased by a factor of four. The data are further 
compressed with a contour tracing routine that compares the means and 
variances of adjacent modified picture elements. In the routine a T test is 
used on the mean values, and a F test is used on the variances to determine 
if the two adjacent modified picture elements can belong to the same Blob. The 
T test is checked first then the F test is checked; both tests must be passed 
for all the multispectral bands before the modified picture elements can be 

merged. If the tests are passed, the mean and variance of the resulting Blob 
is recalculated to include the contributions of all the modified picture elements 

contained in the Blob. Other adjacent modified picture elements are then 
examined to determine if they can also be included in the Blob. Thus the Blob 
algorithm is a region growing algorithm. 

Occassionally, one modified picture element may end up being a Blob, 

but usually several modified picture elements are combined until a region is 
contoured or a homogeneous area is defined. The computer routine works 
with one Blob at a time until it has been completed and keeps track of the status 
of each modified picture element, remembering which elements belong to 

which Blob and where to look for new Blobs. The Blobs are treated independently 
and are not merged. All of the modified picture elements contained in a Blob 
are represented by one mean vector. 

The number of bits contained in the compressed image is given by 

NB 

N (N C + NV + ND)+ 2 - Z Nd (22) 
d=I
 

which can be converted to a compression ratio by dividing by N V N!P. The 

number of Blobs in the image is NB, N C is the number of bits needed to specify 

the initial scan and column coordinates of each Blob. The maximum value of 

NC is 24 bits (12 bits for each scan or column coordinate), for an entire 

Landsat scene. NV is the number of bits needed to specify the multispectral 

components for each picture element, modified picture element, or Blob mean
 

vector; and for Landsat data NV is 27 bits. ND is the number of bits needed
 

35. 



to specify the largest number of directionals for a Blob contour, and Nd is the 

actual number of directionals for each Blob contour. Two bits are needed to 
specify each directional. Starting with the initial scan and column coordinates 
of a Blob, the directionals tell the location of the next modified picture element 
in the contour. For example, a zero indicates that the next element is the next 
element in the same scan, a one indicates that it is the element in the same 
column but previous scan, a two indicates that it is the previous element in the 
same scan, and a three indicates that it is the element in the same column but 
next scan. Finally, Np is the total number of picture elements in the original 
image. 

Unlike the previous compression routines where the number of bits per 
picture element per band could be input to the program, the Blob algorithm 
offers a variety of combinations of confidence limits for the F and T tests; 
and they control the compression - the less strict the tests, the more the com­
pression. Also, the compression increases when the number of directionals 
per Blob increases. Thus, the compression is difficult to predict because the 
number of Blobs and directionals are difficult to predict. The number of Blobs 
and directionals not only depends on the confidence limits but it also depends 
on the particular image scene. The number of Blobs and directionals also tend 
to change when the starting picture element in the image is changed slightly or 
when the size of the image area is changed (edge effects) slightly. These 
effects can also be seen in the remainder of the compression approaches, but 
their effects are not so pronounced. 

Also unlike the previous compression routines, the Blob operates on all 
spectral bands simultaneously instead of one band at a time. In addition, a 
classification inventory could be performed on the compressed data without 
reconstructing the compressed image, an inventory which could be performed 
at a reduced cost. Since each Blob is represented by one mean vector, an 
entire Blob is classified when the mean vector is classified. Thus, instead of 
classifying every picture element, multispectral vector, it is only necessary 
to classify the Blob mean vectors, which are much fewer in number. The 
compressed image obtained from the Blob algorithm is reconstructed by using 
the mean vectors for each Blob and the corresponding directionals. To regain 
the original size of the image, each modified picture element scan and column 
are repeated.
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4.2.7 CCA (Cluster Coding Algorithm) [4] 

This particular routine is a version of the routine developed at Jet 
Propulsion Laboratories (JPL). CCA operates on a rectangular or square 

picture element array with a maximum array size of 32 X 32 picture elements. 

The array size is an input to the program. Unlike the Blob, CCA does not 

perform any direct spatial averaging, but instead averages vectors that are 

spectrally very similar. Like the Blob, CCA operates on all spectral bands 

simultaneously and permits a classification inventory to be performed on the 

compressed data without reconstruction and at a reduced cost. The inventory 

and reconstruction are easier to perform with CCA than Blob because the 

format of the compressed data can be determined before compression and does 

not vary. 

The first step in the program is to compute a four-dimensional histogram 

of the multispectral vectors contained in an array. The number of unique 

vectors will always be equal to or less than the number of picture elements in 

the array. For homogeneous areas, the number of unique vectors will be much 

less than the number of picture elements. Thus, the historgram approach is 

a computation saving device that sacrifices memory for speed. 

The second step in the program is to approximate the unique vectors
 

with a small number of mean vectors. For example, a 16 x 16 picture element
 

array is approximated typically with 8 mean vectors, or a 32 × 32 array might
 

The number of mean vectors per arraybe approximated with 16 mean vectors. 

is also an input to the program. The initial estimates for the mean vectors 

are obtained from the four-dimensional histogram. Since the approach used 

by the histogram routine results in an ordering of the unique vectors, every 

nth unique vector is selected as an initial mean vector or zero order estimate; 

so that the desired number of initial estimates are obtained.n is calculated 
A Euclidian distance measure is used to determine which unique vectors are 

closest to the initial mean vector estimates. Each initial mean vector estimate 

is then replaced with the mean vector (first order estimate) obtained from the 

unique vectors that are closest to that particular initial mean vector estimate. 

This process can be repeated as many times as desired by replacing the nth 
Typically,order mean vector estimates with the n+1 order mean vectors. 

second order estimates are used because the approximation error does not 

significantly decrease compared to the computer time increase for higher order 

estimates. During the iteration, the computer routine keeps track of the mean 

vectors and the picture elements to which they are assigned. 
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Compression is achieved by separately listing the mean vectors that 

are contained in a picture element array and by replacing the multispectral 

picture elements with one number that identifies the mean vector belonging 

to the picture element. The equation for determining the compression ratio is 

N V + , -Nb 
m 

NV 
p (23) 
pp 

where Nmbis the number of mean vectors per array and Nb is the number of 

bits needed to define N . Usually Nm is chosen to be 4, 8, or 16 so that no 
mm 

bits for N will be wasted. If N were five, N would have to be three. If 
- b In b 

N were eight, Nb could still be three. When N is 4, 8, or 16, Nb will be 

2, 3, or 4 respectively. As before, N¥ is the number of bits needed to define 

the multispectral vectors for each picture element, which for Landsat is 27 

bits, and Np is the number of picture elements per array. The compressed 

image is reconstructed by inserting the mean vectors back in their correspond­

ing picture element locations. 

In addition to the image compression, a cost savings is realized if the 

image is processed in compressed form because the mean vectors (which 

represent several picture elements) are processed instead of a vector at each 

picture element location. Thus, processing one mean vector is equivalent to 

processing several picture element vectors. 

4.3 Compression Results 

4.3.1 Data Description 

The supersite image data described in Section 3.3. 1 were used with the 

compression routines. However, since most of the compression routines 

operate on local portions of the image that are multiples of 16 picture elements, 

the first 192 picture elements of the first 112 scans are used. Thus the total 

number of picture elements used is 21 504 instead of the original 22 932 

Some statistics computed from the 21 504 picture elements are shown in Table 

7. Seasonal trends can be seen in each statistic in the table with minimums 

occurring in the winter and maximums occurring in the peak of the growing 

season. The degrees of freedom are the band distribution class intervals 
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TABLE 7. TEST AREA STATISTICS (average 6.75 bits/pixel/band) 

Date 10/22/75 01/02/76 05/06/76 

Unique Vectors 3552 1872 7692 

MSS Band 4 5 6 7 4 5 6 7 4 5 6 7 

Mean 25.1 31.6 33.0 13.6 14.8 18.2 18.7 9.0 45.1 54.7 67.8 29.0 

Variance 12.4 31.2 48.6 8.3 3.7 8.8 12.2 2.1 73.0 194.5 85.1 17.6 

Entropy 3.7 4.1 4.5 3.3 2.6 3.3 3.6 2.5 4.9 5.6 4.9 4.0 

N 25 42 49 21 14 21 26 10 50 76 58 24 

Co 



minus one and are used with the chi-squared computation. To assure that 

each class interval contained at least five members, some of the class intervals 
on the tails of the distributions were combined. 

Landsat data are acquired at 6 bits per pel per band, but the first 

three bands are radiometrically corrected to 7 bits. Thus, a total of 27 bits 

are used in all four bands to represent the spectral information at each picture 

element, or 6. 75 is the average number of bits per pel per band. 

Table 7 also shows that on the average and for a vegetated area, a 

vector extracted from a picture element would have a band 6 value as the 

largest value, band 5 would have the next largest value, band 4 would have 

the next to the smallest value, and band 7 would have the smallest value ­
regardless of season. The same trend is true with the band variances and 
entropies, except that at the peak of the growing season the band 5 entropy and 
variance have the largest values instead of band 6. 

4.3.2 Compression Evaluation 

Ultimately, a user would like to be able to compute a few simple 

statistics from a digital image and be able to predict how a particular com­

pression technique would perform and how long it would take. Using this as 
an end objective, processing times were logged and many statistical quantities 

were computed and graphed in numerous forms. As a matter of practicality not 

all of the results (tables and graphs) are shown. First, different statistics 
had to be examined to determine how sensitive they were to the compression 
approaches; secondly, they were examined to determine how consistently they 

behaved. Analysis of variance was used to partition and quantify the variations 

of the statistics, variations whose sources were attributed to the compression 
approach, bit rate, spectral band, seasonal effects, and random error. 

ADPCM was not run at 1/2 bit because the program quantizes each 

picture element difference with a minimum of I bit. The Blob algorithm was 
not run at 1/2 bit, because the confidence limits for both the F and T tests 

would have to exceed the largest values available in the program. However, 
three confidence limits were added to the F test, increasing the smallest 
range of values, so that a bit rate of approximately 3 bits could be achieved. 

The Blob algorithm was not run at 4 bits because that bit rate could not be 
achieved with the extended F values and because 4 bits is not of much interest 

compared to the original 6.75 bits per pel per band. Trial and error is used 
with the Blob algorithm to obtain a desired bit rate. Table 8 shows the bit rates 
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TABLE 8. BLOB BIT RATE FOI COMBINATION F AND T VALUES 

1.44 1.94 2.45 3.14 3.71 5.96 

2.36 (10) 3.05 (1) 3.05 

(5) 3.06 (1o) 3.00 

5.39 (10) 2.68 (10) 2.48 

9.28 (iO) 2.26 
(5) 2.23 

29.46 (10) 2.35 (10) 1.99 (1) 1.98 (lo) 1.48 (io) 1.21 
(5) 1.93 

47.47 (10) 2.32 (1) 2.16 
(5) 2.31 (10) 1.95 

144.1 (10) 1.51 

261.0 (5)1.01(io) 1.32 

884.6 (5)o.85 
(io) 1.21 

1514.0 (1) 1.31 
(1o) 1.05 
(5) 0.66 



that were achieved for various F and T values. The number in parenthesis 
indicates the month associated with the supersite data, and the underlined bit 
rate (which will be rounded to the nearest integer) indicates the run that was 
selected for evaluation. The table shows a slight seasonal trend with the Blob 
algorithm in that for a given combination of F and T values, the compression 
tends to increase as the number of unique vectors, band mean value, or band 
variance increases. Table 9 shows the number of clusters per picture element 
array and the array sizes that were used with CCA to achieve a particular bit 
rate. Two iterations were used to refine the initial cluster centroid estimates. 

TABLE 9. CCA CONFIGURATION 

Number of Pel Array Pe! Array 

Bits/Pel/ Clusters per Column Scan 
Band Array Width Length 

1/2 2 9 6 

1 8 18 12 

2 32 16 18 

3 16 9 6 

4 16 6 6 

The IBM-360/75 CPU processing times for the various compression 
approaches are shown in Table 10 as a function of bits per pel per band and 
data set. The processing times are for all four compressed and reconstructed 
bands of data. The processing times should not vary significantly with the 

seasonal data, although they might appear to do so. Instead, the majority of 
the variation is due to the processing load in the IBM-360/75 at the time the 

computer runs were made. Average processing speeds as a function of bit 
rate are shown in Figure 15. 

The processing times have not been optimized; however, for the sake 
of comparison, minimum running times for a particular bit rate and compression 
approach should be used. The general observations from Figure 15 concerning 
the processing speeds are: 

a) ADPCM times would not appear to vary with bit rate. 

b) Combinations of ADPCM with the transforms run faster than the 
pure transforms but slower than pure ADPCM. 
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TABLE 10. PROCESSING TIMES VERSUS COMPRESSION APPROACHES
 

21 504 Pets 

Date of Data 
Acquisition 

Bits/ 

Pel/ 
Band ADPCM 11 

Compression Approach 

2H HC 2C CCAa Blob 

CPU Time (see) 

10/22/75 

1/2 
1 
2 
3 

4 

-
33 

36 
35 
36 

26 
36 

43 
42 
44 

41 
47 

65 
74 
75 

66 

65 

90 
97 
88 

140 

146 

153 
173 
169 

28 

37 
62 
46 
50 

-
225 

197 
196 

-

1/2/76 

1/2 
1 

2 
3 

4 

-
35 

36 
35 

36 

26 
31 
42 
43 

43 

46 
53 
75 
86 

88 

84 

91 

101 
102 

101 

148 

159 
179 
189 
188 

15 

30 
46 
38 
56 

-

196 
210 
269 

-

5/6/76 

1/2 
1 
2 
3 
4 

-
33 
33 
33 
33 

24 

30 
40 
42 
41 

48 

61 
67 
88 
85 

86 

96 
100 
95 
99 

138 

'145 
159 
172 
170 

26 

42 
76 
66 
62 

-

184 
196 
212 

-

aTwo iterations were used to refine the initial cluster centrold estimates. 
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Figure 15. Processing speeds for compression. 
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c) Transform running times tend to decrease with bit rate. 

d) The fastest approaches appear to be ADPCM, HH and CCA, while 
the slowest approaches appear to be 21, HC, 2C, and Blob. 

Table 11 shows how the image complexity (or number of unique vectors) 

changes with compression approach. The general observations concerning 
the unique vectors are: 

a) With ADPCM, the number of vectors or image complexity increases 
with decreasing bit rate (Fig. 16). 

b) With CCA and Blob, the number of vectors decreases with de­
creasing bit rate (Fig. 17). 

c) With the transform approaches, the number of vectors increases 
and tends to peak at approximately 2 bits per pel per band. The number of 
vectors tend to decrease at below 2 bits, presumably because more picture 

element vectors are being approximated per array than with ADPCM and the 
number of bits with which to approximate is decreasing (Fig. 16). 

Analysis of variance was performed on the data in Table 11 to determine 

the percentage of variation due to such sources as compression approach, bit 
rate, seasonal effects, the interaction between bit rate and seasonal effects, 

and random error; and to determine which variations were statistically signifi­

cant using the F test at the 0.05 and 0. 01 levels. The desired result for the 

evaluation criteria is that the variances attributed to the compression approach 
and bit rate should be large and statistically significant and that all other 
variances should be small and statistically insignificant. Table 12 presents a 

summary of the analysis of variance of the unique vector for all of the com­
pression approaches, and shows that most all of the variance is contained in 

the differences due to compression approach, seasonal effects and random 
error (or unexplained variance). The surprising result is that there is 

practically no variation attributable to change in bit rate. This lack of varia­

tion is due to the cancelling effect of the decrease in unique vectors with bit 

rate using Blob and CCA versus the increase in unique vectors with bit rate 

using ADPCM and the transform approaches. This opposing effect suggests 

splitting the ANOVA (Analyais of Variance) table and treating Blob and CCA 

independently of ADPCM and the transform approaches. 
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TABLE 11. UNIQUE VECTORS VERSUS COMPRESSION APPROACH
 

Date of Data Bits/ Compression Approach 
Acquisition Pel/ 

Band ADPOM HH 2H HC 2C CCA Blob 

Number of Unique Vectors 

10/22/75 

at 6.75 bits/ 

1/2
1
2 

-
10432

7 228 

5 283 
6 836
7 633 

5117 
5 385
5925 

7 698 
7 101
7 684 

5 756 
5 236
5 754 

407 

557
1 536 

-

766
1 232 

a/ 3 5 898 6 299 5 893 6 308 5 806 2 712 1 635 
pel/band 4 4 346 4 530 5 300 4 465 4 860 3 166 

1/2/76 
1 872 vectors 

1/2
1 

-2 
5180 

107 
2 511 

1 606 
2 260 

2835 
S 041 

1 981 
2 206 

238 
380 

-
485 

at 6.75 bits/ 2 
3 

3 203 
2 436 

3 432 
2 791 

2 599 
2 484 

3 615 
2 879 

2 605 
2 486 

981 
1 446 

598 
742 

4 2 031 1 993 2 087 1 988 2 076 1 643 

5/6/76 
7 692 vectors 

1/2
1
2 

-
19 496
16 866 

11 166 
17 238
18 041 

15940 
15 802
15 796 

18 582 
18 067
17 885 

16 635 
15 597
15 114 

743 
803

2,377 

-

1 312
2 579 

at6.75bits/ 3 14 803 15981 15 374 15 833 14 966 5 274 3 939 
pel/band 4 11 033 12 954 14 072 12 644 13 454 6 787 
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Figure 16. Number of unique vectors for ADPCM and transform compression 
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TABLE 12. ANALYSIS OF VARIANCE FOR ALL COMPRESSION APPROACHES USING UNIQUE VECTORS 

Source of Degrees of Percent 
Variation Freedom Sum of Squares Variation Mean Square F Test 

Approach 6 736 015 459 23.7 122 669 249 Significant at 
0.05 and 0.01 

Bit Rate 4 5 977 753 0.2 1494438 

Season 2 1 788 040 744 57.6 894 020 372 Significant at 
0.05 and 0.01 

Season/Bit Rate 8 11 566 402 0.4 1 445 800 

Error 75 562 232 192 18.1 7 496 429 

Total 95 3 103 832 586 



Table 13 shows the ANOVA results for ADPCM and the transform 

approaches. In this case, the effects due to compression approach, bit rate 

and season are significant, but the seasonal effects are clearly dominant. 

The ANOVA results for CCA and Blob are shown in Table 14, and they 

indicate that all of the effects are significant with season, bit rate and the 

interaction between season and bit rate containing approximately 96 percent 

of the variation. Thus, the seasonal effects tend to dominate the unique 

vector criterion. Even if the number of unique vectors is normalized by 

the number of vectors contained in the original image, ADPCVI and the trans­

form results still exhibit the seasonal effects because these approaches have 

the characteristic that as the number of unique vectors contained in an 

original image increases, the more unique vectors the approaches generate. 

With CCA and Blob the seasonal effects can almost be eliminated with 
an increasenormalization, but the random error increases significantly, 

which makes unique vector predictions difficult as a function of bit rate. 

Figure 18 shows a fairly typical result and illustrates how the unique 

vector distribution changes with compression approach. The four curves 

show the number of vectors that occur once, twice, .. ., n times in the 

05/06/76 supersite image for the original data at 6.75 bits per pel per band 

and for the compressed and reconstructed data using HI, CCA, and Blob at 

2. 0 bits per pel per band. Compared to the original data, the curve steepens 

with ADPCM and the transform approaches, and it usually has more unique 

vectors occurring only once than there are total vectors in the original image. 

CCA reduces the number of unique vectors occurring fewer than five or six 

times and increases the number of vectors occurring six times or more. 

Since the Blob algorithm averages over 2 x 2 picture element arrays, the 

resulting number of vectors can only occur in multiples of four. The CCA 

and Blob curve would be more similar if for CCA the sum of the vectors , 

occurring one to four times, five to eight times, ... , n-3 to n times were 

plotted against four occurrences, eight occurrences, ... , n occurrences 

respectively. 

Table 15 shows the results of the compression evaluation using 

3 as a criterion, which is a measure of how well the distributions(X2 IN)1 / 

of the compressed and reconstructed spectral bands agree with the distribu­

tions of the original spectral bands. The agreement does improve as the bits 

per pel per band increase, but the agreement does not become statistically 

significant until (X / N)!/3 reaches approximately 1.2. ANOVA was performed 

on the criterion to determine the consistency of the measure, as well as the 
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TABLE 13. ANALYSIS OF VARIANCE FOR ADPCM AND TRANSFORM APPROACHES
 
USING UNIQUE VECTORS
 

Source of Degrees of Percent 
Variation Freedom Sum of Squares Variation Mean Square F Test 

Approach 4 14 317 989 0.62 3 579 497 Significant at 
0.05 

Bit Rate 4 62 146 596 2.68 15 536 649 Significant at 
0.05 and 0.01 

Season 2 2 154 295 666 92.77 1 077 147 830 Significant at 
0.05 and 0.01 

Season/Bit Rate 8 17 634 318 0.76 2 204 290 

Error 54 73 917 270 3.18 1 368 838 

Total 72 2 322 311 832 

C-l 



aTABLE 14. ANALYSIS OF VARIANCE FOR CCA AND BLOB USING UNIQUE VECTORS 

Source of 
Variation 

Degrees of 
Freedom Sum of Squares 

Percent 
Variation Mean Square F Test 

Approach 

Bit Rate 

Season 

1 

4 

2 

1 192 400 

29 443 834 

19 359 463 

1.93 

47.61 

31.30 

1 192 400 

7 360 959 

9 679 732 

All are 

significant 
at 0.05 and 
0.01 

Season/Bit Rate 8 11 019 097 17.82 1 377 287 

Error 8 833 333 1.35 104 167 

Total 23 61 848 127 
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Figure 18. Number of unique vectors versus number of occurrences. 
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2 1/3TABLE 15. ( IN ) / VALUES FOR THE COMPRESSION APPROACHES 

Date 10/22/75 01/02/76 05/06/16 

Technique ADPCM 2H 2C HH HC CcA Blob ADPCM 2H 2C HH HC CCA Blob ADPCM 2H 2C H BC CCA Blob 

Band Bits/ 
Pel/ 

Band 

1/2 - 6.0 5.6 5.8 5.7 6.2 - - 9.3 9.3 9.9 9.7 9.2 - - 6.4 5.9 6.4 6.2 6.4 -

1 6.7 5.5 5.3 5.4 5.4 5.0 10.7 11.3 8.9 8.6 8.9 9,2 7.2 16.8 6.7 6.3 6.0 6.2 6.0 6.5 8.2 

4 2 4.0 4.5 4.3 4,6 5.0 2.6 6.1 5,2 6.7 6.7 9.5 10.2 . 2.8 9,3 5.8 5,$ 5.5 5.9 5,8 5.3 6.3 

3 2.6 3.2 2.7 3.2 3.3 2.9 5.6 2.8 3.2 2.7 5.2 5.9 2.2 9.2 4.4 5.1 4.5 5.3 5.3 4.4 6.2 

4 1.3 1.8 1.3 .1.3 1.2 2.4 - 2.3 0.6 0.7 0.6 0.8 2.0 - 1.6 3.7 3.1 3.2 3.2 3.7 -

1/2 - 6,7 6.6 6.7 6.9 7.3 - - 8.3 7.6 8.3 7.9 8.2 - - 4.9 4.8 5.0 4.9 5.4 -

1 6.8 6.6 6.5 6.7 6.7 6.5 9.6 8.1 7.7 7.6 7.4 7.4 5.5 8.4 4.8 5.4 4.8 4.9 4.8 5.1 5.5 

5 2 6.3 6.3 6.1 5.7 5.6 4.7 6.3 4.8 6.1 5.9 4.9 4.9 2.4 8.2 4.7 4.8 4.6 4.7 4.6 4.1 4.9 

3 4.3 5.0 4.2 3.0 3.0 4.3 6.4 2.9 3.4 3.1 1.4 1.5 2.4 8.0 4.1 4.6 4.2 4.0 3.9 3.7 5.0 

4 1.4 3.4 2.2 1.3 1.1 3.9 - 1.9 1.2 0.9 0.5 0.4 2.1 - 2.3 3.9 3.3 2.4 2.3 3.3 -

1/2 - 4.3 4.3 4.4 4.4 4.7 - - 4.5 4.2 4.4 4.2 5.5 - - 6.4 6.5 6.6 6.5 7.5 -

1 4.6 4.2 4i2 4.3 4.3 4.5 7.9 5.4 4.0 3.9 4.0 4.0 3.5 13.4 6.7 6.6 6.5 6.3 6.7 6.6 8.1 

6 2 4.4 4.0 4.0 4.1 4.2 3.2 4.3 3.3 2.1 3.3 2.1 3.3 1.9 5.0 6.9 6.5 6.4 6.6 6.6 5.8 6.2 

3 3.3 3.5 3.3 3.1 2.9 2.8 4.4 2.2 1.9 2.2 1.7 1.9 1.5 4.8 5.7 6.0 5.8 5.6 5.6 5.0 6.5 

4 1.0 2.4 1.9 1.4 1.3 2.3 - 1.0 0.8 1.2 0.5 0.5 1.3 - 2.3 4.5 4.0 3.3 2.9 4.5 -

1/2 - 2.5 2.1 3.2 3.1 3.2 - - 5.2 4.2 4.5 4.0 6.4 - - 3.2 2.6 4.2 3.9 5.4. -

1 2.2 2.0 1.5 2.6 2.3 3.2 6.2 4.5 3.8 3.3 2.8 2.5 5.1 10.4 2.6 2.8 2.2 3.4 3.1 4.6 4.4 

7 2 1.3 1.4 1.0 2.0 1.9 2.6 3.2 2.0 2.1 1.6 2.2 1.8 3.0 5.2 1.6 1.9 1.7 2.6 2.2 3.8 2.8 

3 0.7 0.8 0.5 1.3 1.3 1.8 2.9 1.1 0.7 0.4 1.2 1.8 2.4 4.9. 0.8 1.5 1.2 1.7 1.7 3.1 2.7 

4 0.6 0.6 0.4 0.7 0.8 1.6 - 1.0 0.3 0.1 0.1 0.2 1.9 - 0.6 1.2 0.9 1.0 0.8 2,6 -



spectral and seasonal independence. The results are shown in Table 16 and in­
dicate that all the effects are significant except for the triple interaction among 
the bit. rate, spectral band, and season. In this case, the compression approach 
and bit rate account for half of the variation, while error, spectral effects, 
and seasonal effects account for the other half of the variation. 

Next, the mutual information was used to compute the percent informa­
tion transmitted from the original image data to the reconstructed image data. 
This computation is a measure of the linearity of the joint distribution between 
the original and the reconstructed image. If the reconstructed image were 
identical to the original image, the joint histogram would be a straight line 
passing through the origin and having a slope of one. Table 17 shows the 
percent information transmitted for the compression approaches as a function 
of bit rate, spectral band, and season. The measure appears consistent since 

the information transmitted increases with the bits per pel per band. Table 18 
shows the ANOVA for the percent information transmitted and indicates that all 
of the effects are significant except for the bit rate and spectral band interaction 
and the bit rate, spectral band, and season triple interaction. In this case, 
the compression approach and bit rate account for 92 percent of the variation. 
However, the F test indicates that the measure is not a good criterion since ­

even though the percent variations are small - the effects due to spectral band, 
season, and their interactions cannot be ignored. 

The final criterion is the percent normalized mean square error. The 
results for the compression approaches are shown in Table 19. The measure 
also appears consistent in that the error decreases as the bits per pel per band 

increase. The ANOVA for the error is shown in Table 20, and all of the effects 
are significant except for the bit rate, spectral band, and season triple inter­
action. For this case, the compression approach and bit rate account for 70 
percent of the variation, but the other effects still cannot be neglected. 
However, an attempt was made to predict the percent normalized mean square 
error by comparing the spectral band means, variances, and regression coef­
ficients of the original and reconstructed spectral bands. The means were 
essentially unchanged, the variances changed more, and the regression coeffi­
cients changed the most. The normalized mean square error contains all of 
these quantities when it is rewritten slightly. If x is the original image data 
and y is the reconstructed data, the mean square error can be written as 

A2 2 = _( 2.= (x -y x 2 xy 
a A + 2 (24)5 
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3 
TABLE 16. ANALYSIS OF VARIANCE FOR COMPRESSION APPROACHES USING (X2 / N) 1 / 

Source of 

Variation 


Approach 


Bits 

Band 


Season 


Bits/Band 

Bits/Season 


Band/Season 


Bits/Band/Season 

Error 


Total. 

Degrees of 

Freedom 


6 


4 


3 


2 


12 


8 


6 


24 


319 


384 


Sum of Squares 

322.66 

839.10 

477.68 


51.62 


65.18 


111.46 


211.45 


52.34 

258.10 


2 391.59 

Percent
 
Variation 

13.58 

35.09 

19.97 


2.16 


2.73 


4.66 


8.44 


2.19 

10.79 


Mean Square 


54.11
 

20Q.78
 

159.23
 

25.81
 

5.43
 

13.93
 

35.24
 

2.18 

0.81
 

F Test 

Not Significant 



TABLE 17. PERCENT INFORMATION TRANSMITTED FOR THE COMUPRESSION APPROACHES
 

Date 

Technique 

Band Bits/ 
Pei/ 

Band 

ADPCM 211 

10/22/75 

2C HH HqC cCA 

101/02/76 

Blob ADPCM 2H 2C HE HC CCA Blob AIDPCM 2H 

05/06/76 

2C HH HC CCA Blob 

1/2 - 27 30 20 22 26 - 27 32 23 23 25 - 31 36 22 25 29 

4 

• 1 

2 

3 

4 

29 

,54 

71 

as 

36 

50 

68 

82 

39 

,54 

72 

as 

32 

48 

66 

89 

34 

47 

66 

88 

38 

54 

59 

66 

17 

30 

32 

-

30 

64 

83 

9 

40 

57 

al 

97 

41 

60 

86 

97 

35 

54 

75 

97 

36 

52 

73 

97 

38 

58 

62 

R6 

16 

29 

34 

-

:14 

,6 

72 

s 

38 

53 

65 

78 

44 

57 

69 

80 

22 

45 

63 

78 

35 

46 

64 

79 

42 

55 

60 

63 

24 

31 

33 

5 

1/2 

1 

2 

3 

-

34 

56 

72 

29 

38 

53 

66 

35 

44 

58 

72 

24 

36 

62 

79 

27 

41 

62 

79 

30 

45 

61 

64 

-

19 

31 

33 

33 

62 

78 

31 

41 

57 

76 

35 

44 

59 

79 

27 

40 

68 

91 

so 

44 

67 

90 

30 

46 

63 

66 

-

18 

31 

55 

:12 

,52 

68 

29 

36 

48 

59 

34 

40 

53 

63 

23 

32 

53 

68 

25 

37 

53 

68 

28 

41 

57 

60 

23 

30 

31 

4 91 77 86 93 94 70 - 88 92 95 98 97 71 -82 68 73 so 82 64 

6 

1/2 

1 

2 

3 

4 

-

34 

55 

70 

91 

30 

38 

51 

64 

84 

35 

42 

55 

69 

82 

23 

32 

54 

71 

89 

25 

36 

55 

73 

90 

30 

47 

63 

65 

71 

-

20 

32 

33 

-

27 

51 

69 

90 

26 

35 

so 

72 

89 

29 

37 

52 

73 

89 

22 

30 

56 

77 

97 

24 

31 

55 

76 

97 

28 

45 

61 

63 

69 

-

16 

26 

29 

-88 

:12 

54 

72 

28 

35 

48 

62 

74 

32 

39 

52 

65 

77 

21 

21 

52 

70 

83 

23 

33 

53 

70 

-84 

25 

37 

53 

57 

64 

24 

30 

32 

7 

1/2 

1 

2 

a 

4 

48 

71 

so 

92 

42 

52 

69 

84 

93 

49 

58 

76 

92 

97 

28 

35 

51 

74 

94 

31 

39 

56 

75 

95 

36 

48 

56 

63 

68 

25 

42 

45 

-

-

40 

66 

88 

91 

35 

46 

69 

91 

99 

40 

so 

73 

95 

100 

29 

25 

51 

0 

IW 

30 

35 

52 

75 

99 

29 

33 

47 

54 

62 

21 

35 

39 

-

42 

64 

88 

94 

34 

41 

56 

68 

80 

40 

48 

62 

' 76 

87 

22 

29 

43 

62 

83 

Z4 

33 

48 

65 

86 

27 

37 

48 

6 

62 

28 

37 

59 

"-.1 



00 TABLE 18. ANALYSIS OF VARIANCE FOR COMPRESSION APPROACHES USING 

PERCENT INFORMATION TRANSMITTED
 

Source of 

Variation 


Approach 

Bits 


Band 

Season 


Bits/Band 

Bits/Season 

Band/Season 

-Bits/Band/Season 

Error 

Total 

Degrees of 
Freedom 

6 


4 


3 


2 


12 


8 


6 


24 


319 


384 


Sum of Squares 

31 883 


145 835 


2 187 


2 020 


200 


1 307 


1 052 


197 


8 261 


192 940
 

Percent
 
Variation 


16.52 

75.59 


1.1 

1.05 

0.10 

0.68 

0.55 

0.10 

4.28 

Mean Square 

5 313.8 

36 458.7 

728.9 

1 010.2 

16.6 

163.4 

175. 3
 

8.18 

25.9 

F Test 

Not Significant 

Not Significant 



TABLE 19. PERCENT NORMALIZED MEAN SQUARE ERROR FOR THE COMPRESSION APPROACHES 

Date 10/22/75 01/02/76 05/06/76 

Technique ADPCM 2H 2C Bit HC CCA Blob ADPCM 2H .2C HH HC CCA Blob ADPCM 2H 2C HH HC CCA Blob 

Band 'Bits/ 
Pol/ 

Band 

1/2 - 24 20 38 32 25 - - 35 30 45 44 36 - - 14 9.6 26 22 16 ­

1 27 14 12 19 17 14 48 40 21 20 27 26 21 57 12 8.1 5.5 13 10 6.7 27 

4 2 6.3 6,8 5,6 8.3 8.7 5,7 23 9.1 11 9,6 lu 15 8.5 34 2,5 2.9 2,2 5.0 4.5 2.8 16 

3 2.5 2.7 2.1 2.0 3.1 4.4 20 3.4 2.8 2.0 4.5 5.1 7.4 29 0.8 1.2 0.9 1.5 1.4 2.1 13 

4 1.0 1.0 0.6 0.7 0.7 3.1 - 2.2 0.2 0.2 0.3 0.3 5.5 - 0.2 0.5 0.4 0.5 0.5 1.5 ­

1/2 - 16 11 23 19 16 - - 22 18 23 24 23 - - 12 8.2 21 17 14 ­

1 14 9.1 6.4 11 8.0 6.6 41 24 13 12 14 12 10 46 9,9 18 4.8 9.3 6,4 4.8 27 

5 2 3.3 3.8 2.8 2.6 2.6 2.5 16 5.9 6.2 5.6 3.7 3.9 4.1 23 1.9 2.4 1.7 1.7 1.6 1.4 15 

3 1.3 1.7 1.2 1.0 1.0 2.0 14 2.4 2.1 1.8 0.6 0.7 3.7 19 0.6 1.0 0.7 0.6 0.5 1.2 13 

4 0.4 0.8 0.4 0.4 0.4 1,4 - 1.2 0,5 0.3 0.1 0.1 2.7 - 0.2 0,5 0.4 0,2 0.2 0,8 ­

1/2 - 12 , 9.2 22 19 13 - - 22 19 28 25 20 - - 17 13 29 24 23 ­

1 11 7.2 5.6 12 9.1 4.6 35 29 13 12 18 17 8.3 45 14 11 '7.5 15 ' 12 10 26 

6 2 2.7 3.1 2.4 2.9 2.7 1.5 13 6.7 6.4 5.7 4.9 5.3 3.7 23 2.9 4.0 3.2 3.2 2.9. 3.4 17 

3 1.0 1.4 1.0 1.2 1.0 1.4 12 2.7 2.1 1.9 1.5 1.6 3.2 20 0,9 1.6 1,3 1,0 0.9 2,7 14 

4 0.3 0.7 0.4 0.5 0.4 0.9 - 0.9 0.5 0.5 0.1 0.1 2.4 - 0.3 0.7 0.6 0.4 0.4 1.8 ­

1/2 - 11 7.8 25 21 14 - - 27 23 34 34 32 - - 15 10 31 27 26 ­

1 8.9 5.3 4.9 17 14 8.2 34 27 18 16 28 29 28 49 9.8 10 6.6 20 15 15 25 

7 2 2.8 2.9 1.9 7. 6.0 5.4 13 9.1 7.4' 6.3 16 16 18 27 2.8 4.2 3.0 8,9 6.4 7.9 15 

3 0.7 1.1 0.5 2.5 2.4 3.9 12 2.2 1.4 0.8 4.4 5.8 14 24 0.8 2.1 1.5 2.9 2.5 5.4 13 
4 0.5 0.4 0.2 0.6 0.5 3.0 - 1.5 0.1 0.01 0.1 0.2 10 0.3 1.1 0.8 0.9 0.7 3.7 ­

en 
cc 



o TABLE 20. ANALYSIS OF VARIANCE FOR COMPRESSION APPROACHES USING PERCENT 
NORMALIZED MEAN SQUARE ERROR
 

Source of 

Variation 


Approach 


Bits 

Band 


Season 


Bits/Band 

Bits/Season 

Band/Season 


Bits/ Band/ Season 

Error 


Total 

Degrees of 

Freedom 


6 


4 


3 


2 


12 


8 


6 


24 


319 


384 


Sum of Squares 


10 037 


23 196 


1419 


3 468 


590 


1 403 


1 066 


531 


5 567 


47 268
 

Percent
 
Variation 


21.23 

49.06 


3.00 

7.33 

1.25 

2.97 

2.25 


1.12 

11.77 


Mean Square 

1 672.8
 

5 799.1 

472.9
 

1 734.1 

49.2 

175.4
 

177.7
 

22.1 

17.45
 

F Test 

Not Significant 



This equation can also be rewritten in terms of the variances and covariance 
by direct substitution to give 

=A2 . 2 2 (W-y) 2 . (25) 
x y XY 

Since the mean values are essentially the same in the original and reconstructed 
images, normalizing by the variance of the original image gives 

A2 2 = ,(26) 1 + zp 
0 0 1
 

x x
 

where p is the regression coefficient. Because a'2 can-be calculated from the 
x 

original data, the only two quantities that have to be predicted are o-2 and p.
Y2The variance u- could be predicted reasonably accurately and was equal to or 

less than o2 ; however, p was difficult to accurately predict, a result which 
x 

caused difficulty in predicting the normalized mean square error. 

As far as image reconstruction is concerned, the evaluation criteria 
behave correctly in that the error decreases as the bits per pel per band 
increase. However, the criteria are inadequate for predicting how a particular 
compression approach will affect an image or for even comparing one com­
pression approach with another. The main problems are that the criteria are 
easily affected by spectral band and seasonal effects - and test sites, and these 
effects are sometimes larger than the effects produced by compression approach 
and bit rate. In the ANOVA tables, the percent variation can sometimes be 
misleading because the degrees of freedom can be different for different effects. 
A more equitable estimate could have been obtained if seven different bit rates, 
seven different spectral bands, and seven different image dates had been avail­
able for the seven different compression approaches. This would have resulted 
in a lowering of the percent variation caused by the compression approach and 
bit rate. The different degrees of freedom are accounted for in the mean 
square of the ANOVA table, a result which makes the F test more credible in 
identifying a significant effect even though the percent variation is relatively 
small. 

61 



Figures 19, 20, and 21 show the effects of compressing the image data 

at 1 bit per pel per band on the distribution of band 4 versus band 6 data for the 
ADPCM, Blob, and CCA compression techniques. These figures can be com­
pared with the distribution of the original data (Fig. 8) and with the effects 
produced by registration (Figs. 9 and 10) on the original data. It is observed 
that the compression techniques which do not use clustering produce an effect 
very similar to the registration techniques that use spatial averaging. The 
result is that the distributions appear to be smoothed by averaging. The 
compression techniques that use clustering (CCA and Blob) tend to produce an 
opposite effect of condensing the distribution. 

At low bit rates the compression techniques introduce artificial effects 
that can be seen in the reconstructed images. The effects tend to appear as a 
block-like representation of the original image. Absolute value image differences 
between the original and reconstructed image were created to determine if these 
artificial effects occurred with any regularity. For comparison with the 
absolute value image differences, a grey scale image of the original data from 
band 6 is shown in Figure 22, using rectangular symbols whose size varies 
with reflectance brightness. 

Figures 23 through 29 show the absolute value image differences at 1 
bit per pel per band for the ADPCM, 2C, CCA, 2H, HC, HH, and Blob algorithm. 
Rectangular symbols whose size increases with increasing absolute value grey 
scale difference is used. No symbol indicates no grey scale difference, whereas 

the largest symbol indicates an absolute value difference of five or more grey 
scales. Thus, a lighter image would apparently correspond to less error, 
whereas a darker image would correspond to more error. There appears to be 
no regular patterns of error in the absolute value images, but it is interesting 
to compare what the eye perceives as error with a numerical calculation such 
as the normalized mean square error. Several individuals participated in 
arranging the absolute value image differences in order of increasing error or 
darkness. The most consistent arrangement has already been used in Figures 
23 through 29. Although there was some confusion concerning the ordering of 
the 2H, HC, and HH images, there was no doubt concerning the arrangement 
of the ADPCM, 2C, CCA, or Blob images. According to the normalized mean 
square error, the ordering of the images remains the same except that ADPCM 
is removed from being in first place and is inserted in fifth place between the 
HC and H rankings. The explanation is that even though the ADPCM image is 
the lightest image, the large errors that occur tend to be of greater magnitude 
than the large, but often more numerous, errors produced by the other 
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compression techniques. Thus, the normalized mean square error and visual 
inspection tend to agree, provided the magnitude of the error is truncated. 
The other evaluation criteria do not exhibit this agreement. As far as image 
reconstruction is concerned, the choice of a best compression technique is 
still not obvious and is subject to argument. 
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Figure 22. Band 6 grey scale Liage of original dat. 
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Figure 23. ADPCM absolute value image difference. 
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5.0 	 EFFECTS OF COMBINED REGISTRATION AND COMPRESSION 
ON IMAGE DATA 

Three examples were selected to demonstrate the combined effects of 
registration and compression on image data using the May 6, 1976, supersite 
pass. The examples consisted of using the BC registration approach in com­
bination with the ADPCM and CCA conpression approaches. In one case, the 
order of performing BC and ADPCM was reversed. The original image is 
196 pels wide, 117 scans long, and contains 8039 unique vectors. When ADPCM 
is performed first, the result is an image that is 192 pels wide and 112 scans 
long. ADPCM operates on strings of picture elements that are 16 in length, 
and 192 and 112 are the largest integer multiples of picture elements that are 
available. When BC is performed after ADPCM, the result is an image that is­
191 pels wide, 160 scans long, and contains 9981 zero valued'picture elements. 
The resolution of the registered image is the average resolution of the Landsat 
image (discussed in Section 3. 0). When BC is performed first, the result is 
an image that is 196 pels wide and 167 scans long. Performing ADPCM on the 
BC corrected image results in an image that is 192 pels wide and 167 scans 
long. Performing CCA on the BC corrected image results in an image that 

remains 196 pels wide and 167 scans long. Both compression approaches 
were used at 1 bit per pel per band. In the case of CCA, there were eight 
clusters per 18 x 12 picture element array, and zero valued picture elements 
were present in the margins of the BC registered image, which was input to 
CCA. Adding zeroes to an image does not affect the CCA results, except for 
the fact that a zero vector usually ends up being selected as a cluster centroid. 
ADPCM, however, attempts to approximate the data at the edge of the corrected 
image data which changes abruptly from zero to some larger value. The 

2 1/3
difficulty of approximating an abrupt change appears in the (X /N) values 
of Table 21 for the case of performing BC first and then ADPCM. The values 

are much smaller when ADPCM is performed first, Table 21 also shows the 
number of pels and unique vectors that are contained in the registered and 
compressed images. In each case, one of the vectors is a zero vector. Except 

for the case of performing ADPCIV last, the (X2/N) 1/3 values are typical of 

the values obtained when the data are compressed only or registered only. 
However, none of the values are statistically significant, but indicate that the 
resulting spectral band distributions are considerably different from the original 
distributions. 

Figure 30 shows the distribution of unique vectors for the three 
examples. The results are similar to those observed when the data are com­
pressed only or registered only, except that the effects are more pronounced. 
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TABLE 21. 
2 1/3(x IN) VALUES FOR COMBINED REGISTRATION-

COMPRESSION APPROACHES 

Date of Data Acquisition 05/06/78 
Number of Number of Zero Vector 

Band 4 5 6 7 Pixels Vectors Occurrences 

Approach 

ADPCM-BC 5.94 4.89 8.25 1.85 30 560 16 137 9 981' 

BC-CCA 6.61 6.03 8.62 4.36 32 732 864 10 746 

BC-ADPCM 23.93 18.03 26.19 25.62 32 064 21 800 4 474 
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Figure 30. Number of unique vectors versus number of occurrences 
for combined registration and compression approaches. 
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Again there are more vectors occurring only once in the BC-ADPCM and 
ADPCM-BC images than there are total vectors in the original data and the 
curves become steeper. The BC-CCA combination considerably reduces the 
number of unique vectors occurring a few times and considerably increases 

the number of vectors occurring a larger number of times. In this case, the 

number of unique vectors occurring only once has been reduced by a factor of 

nearly 400. 

Figures 31, 32, and 33 show the combination of registration and com­

pression effects on the distribution of band 4 versus band 6. If there are 

abrupt changes-in the image, Figures 31 and 33 illustrate that the resulting 
vectors can end up almost anywhere when spatial averaging or an equivalent is 
used. Clustering approaches, however, are designed to work best when there 

are abrupt changes in the data. The main effect of combining registration and 

compression processes is to compound the individual effects when both pro­

cesses involve spatial averaging. The effects are not compounded when the NN 

registration approach and a pure spectral clustering approach are used. 
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6.0 CLASSIFICATION EVALUATION' 

6.1 Introduction 

Classification is an attempt to perform photo-interpretation with the 
and it is also aaid of a computer, it is an information extraction process, 

form of data compression. Photo-interpretation is a long established infor­

mation extraction process using. remotely sensed data, although a somewhat 

slow and subjective process involving human decision making. The develop­

ment of computers, multispectral scanners, and photo-digitizers presented 

the potential of speeding up the information extraction, getting more exact 

-numbers, and making less subjective decisions while sacrificing human clever­

ness. As a result, the most commonly accepted classification programs are 

developed along the guidelines of photo-interpretation. An analyst interprets 

an image and selects data from features that are of interest. The classification 

scheme is programmed to train on the data, and, by using mathematically 

programmed decision logic, the classification scheme is designed to map and 

count all of the data belonging to the features of interest. Classification is also 

a form of noninformation-preserving data compression because it replaces the 

original data with a symbolic representation of image features. 

There are many different classification routines in existence: some 

faster, some slower, some better, and some worse. The intent of the evalua­

tidn is to focus on the decision logic that is used and the speed of a particular 

classification scheme. Although it is realized that there is usually a tradeoff 

between accuracy and speed, the results have to be acceptably accurate before 

being fast. The three approaches that are evaluated are a linear decision 

logic, a quadratic decision logic, and a quadratic decision logic with a priori 

probabilities. The classification effects of reformatting and approximating 

the data are also evaluated. 

6.2 Classification Approaches 

With multispectral data, the decision logic is eipressed in terms of an 

equation of a hyper-surface or multidimensional surface. For a linear decision 

the equation of a hyperplane is used, and the coefficients of the equation are 

developed from training data representing a particular feature. (Usually, there 

are at least n-1 hyperplanes for n different features of interest. ) Other data 

are substituted into the equation, and when the numerical results are equal to 

or greater than zero, for example, the data are usually said to belong to that 

particular feature. If the result had been negative, the data would not have 
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belonged to that feature. Sometimes several hyperplanes per feature are used 
to provide more constraints for the decision or to improve the chances that 
the decision will be correct. The quadratic decision uses a closed hyper­
surface, usually in the form of a multidimensional ellipse. Again the coeffic­
ients of the equation are determined from the training data, and a certain 
range of numerical results indicates that the data are on or inside a chosen 
surface, which also indicates that the data probably belong to the particular 
training feature. If the percentages of occurrences of different ground scene 
features are known prior to classification or can be estimated by iteration, 
then these a priori probabilities can be used in the decision logic. For example, 
if one particular feature is known to occur a large percentage of the time, the 
a priori probability can be used to proportionately increase the size of the 

multidimensional closed decision surface. Thus, the extent of the decision 
space for each feature can be made proportional to its probability of occurrence. 

6.2.1 Linear Decision Logic 

Training areas are selected that represent the various features of 
interest, and the data from the areas are used to calculate the discriminant 
function. The linear functions are used to discriminate between the multi­
spectral vectors contained in a particular training area and the multispectral 
vectors contained in all the other training areas that represent any-other 
different feature or class. A measure of mathematical separability between 
different ground scene features can be obtained by summing the distances of 
the data vectors from the hyperplanes. Those vectors which are correctly 
separated by the hyperplane are assigned positive distances, and those 
incorrectly separated are assigned negative. These distances are then used 
to define the order of the classification procedure. For example, each multi­
spectral vector is examined to determine if it belongs to the class having the 
largest vector-hyperplane distance. If the vector belongs tothat class, the 

classification procedure for that vector is halted, and the next vector is 
examined. If the vector did not belong to the class having the largest distance, 
the vector would be examined to determine if it could belong to the class with 
the next largest distance. This procedure is repeated until all of the multi­
spectral vectors have been classified. 

The equation that determines whether or not a particular vector belongs 
to a class or a ground scene feature is given by 

G= W0+Wl x 1+W x 2....... +W n n
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where x. are the data values for a picture element in the different spectralI 

bands. The W' s are coefficients that are determined from the training data. 
The Wts are calculated using a least squares approach for minimizing the 

vector-hyperplane distances, and there is one equation for each ground scene 
feature of interest. 

6. 2.2 Quadratic Decision Logic with a Priori Probabilities 

The most commonly used quadratic decision logic is the Gaussian 
Maximum Likelihood classifier. The data are assummed to be normally 
distributed, and the equations take longer to compute because first and second 
order statistics (means and variances) are calculated. In contrast, the linear 
classifier calculates only first order statistics. For a quadratic decision, 
first order statistics are used to define the location of the surface, second 
order statistics are used to define the shape of the closed surfaces, and constants 
(zero order statistics) are used to define the extent of the volume enclosed by 
the surface. For the linear classifier, constants were used for positioning 
the hyperplane, and first order statistics were used for determining the tilt 
of the hyperplane. 

As with the linear classifier, data are extracted from training areas 
representing various ground scene features of interest and used in the decisiofn 
equation for the maximum likelihood which is given by 

P (x1 ,x ., x) - 2 -- ­ 2x( M I 1(x. M)i 
112' .D n 

(28) 

P. is the probability that a spectral vector (fromI a picture element with values 

x. in the different spectral bands) belongs to class j. P is also the product 

of two other probabilities. One of those probabilities is "pj which is the 

probability that class j occurs, pj is called the a priori probability. The 

remainder of the expression on the right hand side of the equation is the proba­
bility of finding the spectral vector from a particular picture element in the 

distribution of spectral vectors belonging to class j, assuming that the spectral 

vectors for a class are normally distributed. In the expression, (X-M) T is the 
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row vector fx1 - Mi, x 2 - m 2 .... , xn - m n} , where the m's are the 

spectral components of the mean vector for class j, and the x' s are the 
spectral band components of a picture element vector. K. is the covariance 

matrix, and D.j is the determinant of the covariance matrix. For faster compu-II 

tation, the logarithm of the equation is used and the decision logic becomes 

,~ 1 T -1 
G. = In (p) - (D.) (X.-M)KM (29)

j 2 3 2 (x-M). 

The factor of 27r is sometimes omitted since it occurs in all the class equations 
and does not contribute to the discrimination of the different ground scene 
features. Once the mean vectors, covariance matrices, and determinants of 
the covarlance matrices have been determined from the training data for the 
different ground scene features, the spectral vectors are substituted into the 
logarithmic equation and are assigned to class for which they produce.the 
highest probability or maximum likelihood of occurrence. 

6.2. 3 Quadratic Decision Logic with Equal Probabilities 

Usually, an investigator classifies an image to determine how often a 
particular ground scene feature occurs, which is another way of stating that 
the a priori probabilities are usually not known. In this case, the a priori 
probabilities are usually omitted from the logarithmic equation, an omission 
which is tantamount to assumming that all the ground scene features occur with 
equal probability. However, a priori probabilities can be generated and used 
to possibly improve the classification results by performing the classification 
iteratively. For the first classification, the a priori probabilities could be 
omitted. The inventory of the first classification could then be used as esti­
mates of the a priori probabilities for a second classification, and this pro­
cedure could be repeated as desired. 

6.2.4 Vector Classification 

All of the previously described classification approaches perform by 
operating on a multispectral vector at each picture element location. Using 
this approach, the classification time will be proportional to the number of 
classes and the number of picture elements. If the processing costs are to be 
reduced, then it should be recognized that if a particular vector occurs a 
thousand times in an image, it is not necessary to process that vector a thousand 
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times. Instead, the vector should only be processed once, and the answer that 

is obtained should be applied a thousand times. Using this approach reduces 

the computational effort for that particular vector by a factor of a thousand. 

In this case, the classification time will be proportional to the number of 

classes and the number of unique multispectral vectors in an image. The 

number of unique vectors will always be equal to or less than the number of 

picture elements; and for large images, there are typically 20 to 50 times 

fewer vectors than picture elements. The approach used in vector classification 

is to extract all of the unique vectors and the number of times they occur from 

an image and label the picture element locations with one number that identifies 

the vector that belongs there. Any classification approach can be used to 

obtain a classification inventory from the table of vectors, and a classification 

map can be produced by replacing each picture element vector number with 

the corresponding class number. 

6.2. 5 Reduced Vector Classification 

There are tens of thousands of unique multispectral vectors in an image, 

and the most costly vectors to process are those that only occur once. Un­

fortunately, the vectors that occur only once are the largest set of vectors, and, 

typically, 70 percent of the unique vectors in an image will occur only 15 times 

or less. Since an investigator uses an analysis process that combines these 

tens of thousands of vectors into a relatively small number or classes anyway, 

some preanalysis vector combining is well justified. Also, reducing the number 

of unique vectors in an image is an obvious way to reduce classification cost. 

Since the vectors that occur the fewest number of times are the most costly 

to process and since they typically occupy 3 to 5 percent of the image scene, 

they appear to be the best candidates for combining with other vectors. A 

relatively simple approach for combining rarely occurring vectors in a NN 

manner is, for example, to add one to the components of only the rarely 

'occurring unique vectors, integer divide the components by three, and then 

*multiplythe integer quotient by three. Vectors whose components were 

divisible by three will remain unchanged, and other vectors will have their 

components changed by 41 grey scale. The results are that the number of 

unique vectors in an image will be reduced, the classification cost will be 

reduced, and a minimum amount and magnitude of change will have occurred 

in the image. 

6.2.6 Fractional Pixel Accuracy 

Classification accuracy is determined by comparing a digital classifi­

cation map (CM) with a digital ground truth map (GTM) on a picture element 
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by picture element basis and by counting the number of picture elements that 
were correctly classified. Conversely, it is a common practice to consider 
two types of classification error. One type of error is the misclassification 
of a picture element whose surrounding picture elements on the GTM belong 
to a particular feature, while the other type of error is the misclassification 
of a picture element located at a boundary between two or more different 
features. In the latter case, such a picture element might be a combination.of 
two or more different features. In any particular image, it is not uncommon 
to find that 30 to 50 percent of the picture elements occur at boundaries between 
two or more different features. Thus, there is the possibility that a mis­
classified picture element at a boundary may not be entirely in error, but only 
partially wrong, particularly if there is some registration error between the 
CM and GTM. To determine if there is a signficant effect due to a possible 
mixture of features at a boundary between two or more different features, 
the GTM was digitized at a higher resolution than the CM. This procedure 
allowed the classification accuracy to be computed in terms of a fraction of a 
picture element of the CM. In the particular example used, the GTM was 
digitized at three times the resolution of the CM, and a 3 x 3array or a total 
of nine picture elements on the GTM corresponded to one picture element on the 
CM. In this case, a classified picture element could be considered partially 
right or partially wrong instead of only right or wrong. 

6.3 Data Description and Classification Procedure 

The LACIE test site data were not used for the classification evaluation 
because the test site essentially contains only two classes: growing vegetation 
with good canopy cover and soil background (Figs. 16 and 17). Instead, a 
land use scene in southern Alabama was used for the classification evaluation. 
The test site was 1200 picture elements wide and 1200 scans long. After 
geographic correction to the GTM at 50-m resolution, the test site contained 
a total of 1. 36 million picture elements. The site extended from a little north 
of the city of Mobile, Alabama, to the Gulf of Mexico in the north-south direction 
and from the middle of Mobile Bay to slightly west of the Alabama-Mississippi 
state line in the east-west direction. A land use map of the area was obtained 
from the U. S. Geological Survey, digitized at 50-m resolution, and labeled 
according to the following Level I categories: urban (U), agriculture (A), 
forest (F), water (W), nonforested wetland (NFW), and barren land (B). 
Nonforested wetlands were marshy areas that contained no trees, but could 
contain other types of vegetation. Barren land consisted of beaches, exposed 
rock, abandoned pits, and quarries. According to the GTM, the test area was 
10 percent urban, 15 percent agriculture, 38 percent forest, 29 percent water, 
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'6. 6 percent wetland, and 0. 82 percent barren. Three different seasonal 
passes (10/17/72, 12/5/ 73, 4/10/74) were used to determine if there were 
any seasonal effects on the land use classification. All of the passes were 
classed free except for the 10/17/72 scene. A total of 1200 picture elements 
were used in the training data with each feature represented by 200 picture 
elements. The 200 picture elements per feature were obtained from four to 
eight different locations per feature. For comparison with the GTM, the CM 
were geographically corrected using the NN registration approach. The test 
areas were extracted from the same geographical areas to assure that the 
training data were acquired from the same ground scene location on all of the 
seasonal passes. 

6.4 Classification Results 

Table 22 presents the classification times for the linear classifier (LIN), 
the Gaussian Maximum Likelihood classifier with equal class probabilities 
(MLEQ) and the Gaussian Maximum Likelihood classifier with a priori class 
probabilities (MLAP) for the 1 440 000 picture element test site. The linear 
classifier is approximately six to seven times faster than the maximum likeli­
hood classifier. However, the likelihood classifier can probably be made to 
run as fast as the linear classifier if a table look-up procedure is used, such 
as the one developed by Eppler and used in a program called ELLTAB [ 5]. 

TABLE 22. CLASSIFIER EXECUTION TIMES 

Date of Acquisition 10/17/72 12/05/ 73 04/10/74 

Classifier CPU Time (see) 

LIN 347 324 356
 

ML(EQ) 2090 2176 2482 

IMIL(AP) 2108 2241 2345 

Table 23 shows the total number of correctly classified picture elements and 
the number of correctly classified picture elements per feature expressed as 
percent accuracy for the three classifiers and three seasonal passes. The 
GTM contained a total of 1. 36 million picture elements. The effects of clouds 
can be seen in the October results in that the classification accuracy is lower 
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TABLE 23. CLASSIFICATION ACCURACIES 

Feature 
U A F W NFW B 

Date Classifier Percent Correctly Classified Picture Elements Total 

LIN 28.04 56.21 59.07 91.33 25.47 5.99 62.26 

10/17/72 IVL(EQ) 28.75 41.60 67.90 85.19 29.58 7.77 61.98 

ML(AP) 22.47 42.81 75.98 87.28 22.93 6.36 64.80 

LIN 34.26 58.28 75.62 97.77 45.26 14.63 72.93 

12/05/73 ML(EQ) 32.62 55.63 79.73 97.33 47.06 22,17 73.83 

ML(AP) 26.81 55.86 86.54 97.41 43.30 18.48 75.65 

LIN 35.93 71.87 68.41 97.79 40.21 10.22 71.90 

04/10/74 ML(EQ) 40.28 69.02 68.59 97.41 41.09 13.28 71.95 

ML(AP) 32.69 71.56 75.55 97.62 35.75 12.21 73.94 

Average 31.32 58.09 73.04 94.35 36.74 12.35 69.92 
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by approximately 10 percent. One question that might be asked is "How typical 
are the classification results ?" The results from 224 Landsat investigations 1 

reveal that in the land use discipline the average classification accuracy was 
urban (30 percent), agriculture (55 percent), forest (75 percent) and water 
(86 percent). Except for the October data, which contained clouds, the results 
are slightly better than expected. One reason is that most of the classification 
results reported come from test sites that are usually much smaller than 1.44 
million picture elements; to a certain extent, classification accuracy tends to 
increase with test site size. The second reason is that the water bodies in the 
image are rather large instead of being narrow winding rivulets or ponds, and 
water is relatively easy to classify. 

Table 24 shows the inventories for each feature as a function of classi­
fier. In this case, it does not matter whether or not a picture element was 
correctly classified; it only matters how well the total number of picture ele­
ments classified per feature agree with the total number of picture elements 
per feature on the GTM. Table 24 also shows the inventory according to the 
GTM and the total inventory accuracy. The total inventory accuracy was com­
puted by taking the smaller of the class inventory or ground truth inventory for 
a feature, adding the results for all the features, dividing the total by the total 
number of picture element, and multiplying by 100. 

Tables 25 and 26 show the analysis of variance results for the total 
classification accuracy and the total inventory accuracy. The analysis of 
variance indicates that there is no significant effect at the 0. 05 or 0. 01 level 
due to classification approach or to season on the total classification or inventory 
accuracy. There is the possibility that there are some effects, although they 
must be small in magnitude, which were masked by the classification result 
variations due to clouds in the October data. For example, using a priori 
probabilities tended to increase the classification accuracy by approximately 
2 percent and, in most cases, reduced the inventory accuracy. This result 
might be expected because total inventory accuracies tend to be 10 to 20 percent 
higher than total classification accuracies. In an inventory, it does not matter 
whether or not a picture element is correctly classified, and the errors tend to 
be random and cancel. When a priori probabilities are used, the errors can no 
longer be quite as random, therefore, the total inventory accuracy will tend to 
decrease. Comparing the inventory accuracies with the classification accuracies 
indicates that although the area occupied by various features can be quantified, 
in most cases, with acceptable accuracy, it is not possible to construct an 
acceptably accurate feature map from the classification results. 

Dr. Peter A. CastrucciO, Personal Communication, ECO Systems
 
International Inc., P. 0. Box 225, .Gambrills, Maryland 21504.
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TABLE 24. INVENTORY ACCURACIES
 

Feature U A F W NFW B 

Date Classifier Percent Classified Picture Elements Per Feature Accuracy 

LIN 9.66 23.24 31.26 27.42 5.06 3.35 89.52 

10/17/72 ML(EQ) 4.48 14.98 37.02 25.39 8.16 4.96 94.25 

ML(AP) 6.70 14.97 43.18 26.12 4.99 4.02 91.89 

LIN 10.11 16.60 36.92 29.30 6.63 0.44 98.23 

12/05/73 ML(EQ) 9.06 14.50 40.02 28.69 7.04 0.68 97.79 

ML(AP) 6.37 14.09 45.14 28.74 5.17 0.48 93.15 

LIN 9.08 23.42 32.74 29.03 5.42 0.31 91.87 

04/10/74 ML(EQ) 10.01 22.52 32.58 28.80 5.60 0.50 92.77 

ML(AP) 7.17 22.30 27.01 28.91 4.21 0.40 92.99 

GTM 9.86 15.08 38.21 29.40 6.63 0.82 - 100.00 
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TABLE 25. ANOVA FOR TOTAL CLASSIFICATION ACCURACY
 

Source of Degrees of Sum of Mean F 
Variation Freedom Squares Square Test 

Classifier 2 11.72 5.86 Neither 

Date 2 114.08 57.04 Significant 

Error 4 100.93 25.23 

Total 8 226.72 

TABLE 26. ANOVA FOR TOTAL INVENTORY ACCURACY 

Source of Degrees of Sum of Mean F 
Variation Freedom Squares Square Test 

Classifier 2 8.37 4.19 Neither 

35. 56 17.78 SignificantDate 2 

Error 4 19.40 4.85 

Total 8 63.33 

The previous classification results were obtained by classifying a 
multispectral vector at each picture element. Thus, the classification times 
as shown in Table 21 depend upon the number of classes and the number of 
picture elements. The classification time can be significantly reduced if the 
unique vectors and the number of times that they occur are extracted from the 
image for an inventory. A CM can also be constructed by replacing the multi­
spectral vector at each picture element with one number that identifies the 
vector that belongs there, and then by replacing the vector number with the 
class number to which that vector was assigned using a table look-up procedure. 
Thus, each unique vector is only processed once, and the answer may be 
applied many times. The classification time will then depend more on the 
number of unique vectors in an image instead of the number of picture elements. 
For the December data containing 1 440 000 picture elements, there were a 
total of 27 696 unique vectors. 
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Table 27 shows the times that it takes to extract the unique vectors, 
determine how many times they occur, and to label the picture elements with 
the corresponding vector numbers; to classify the unique vectors; and to .con­
vert the vector numbers to a class number for each picture element. The 
vast majority of the time is spent extracting the vectors and labeling the 
picture elements, but the total process is still 1. 5 times faster than using the 
linear classifier to classify a vector at every picture element. The classifi­
cation inventory time is 36 times faster with the vectors extracted, and the 
time required to classify and produce a feature map is 18 times less. Thus, 
the most significant processing savings could be achieved if the multispectral 
data were provided with the vectors extracted and the picture elements labeled 
with vector numbers. The image could be reconstructed with vectors at a 
minimum cost for display and training area selection. Any type of processing 
that does not involve spatial averaging (density stretching, band ratioing, 
band differencing, principal axis transformation, classification) could be 
performed at a fraction of the existing cost. 

TABLE 27. VECTOR PROCESSING TIMES 

Procedure CPU Time 
(see)
 

Vector and Population Extraction, 195 
Pixel Labelling 

Linear Classification 9 

Classification Map Reconstruction 18 

Total Time 222 

The most obvious way to further reduce processing costs is to approxi­
mate the multispectral imagery by reducing the number of unique vectors con­
tained in the imagery. The effects of such a reduction on processing costs 
and classification results were examined by combining vectors that occurred a 

certain number of times or less with their neighbors. The reduction was 
accomplished such that vectors whose components were divisible by three 
remained unchanged and such that vectors whose components differed by :1 
from an integer multiple of three were changed to that multiple of three. Thus, 

each vector whose four components are an integer multiple of three have a total 
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of 80 possible spectral neighbors that would have their vector components 
changed by +1 to also make the neighbor vector components integer multiples 
bf three. If the distribution of unique vectors and the variances per spectral 
band are known, it is possible to predict quite accurately the average mean 
square error per band and estimate the percent normalized mean square error 
per band. For example, if the vectors that occur 15 times or less are changed 
to modulo three vectors, the average mean square error per band is calculated 
in the following manner. The distribution of unique vectors tells how many 
vectors occur one, two, three, ... , n times. Multiplying the number of vectors 
that occur n times by n, for n ranging from 1 to 15, gives the maximum 
number of picture elements that will be affected by the modulo three vector 
reduction for vectors that occur 15 times or less. On a per band basis and 
on the average, approximately two-thirds of the numbers in the spectral 
distributions will change by an absolute value magnitude of one. Thus two­
thirds of the maximum number of picture elements affected times the absolute 
Value change divided by the total number of picture elements gives the average 
me an square error per band. The percent normalized mean square error per 
band is estimated by dividing the average mean square error by the variance 
per band and multiplying by 100. 

Table 28 shows the predicted and actual average mean square error 
per band, the predicted and actual percent normalized mean square error per 
band, and the number of vectors left after the reduction for the cases of not 
reducing any vectors, for reducing vectors that occur 15, 30, and 45 times or 
less, and for making all of the vectors modulo three. The computer time for 
completing the vector reduction after the vectors had been extracted from the 
imagery ranged from 22 to 26 sec. 

Table 29 shows the inventory per feature, total accuracy, and computer 
time for the five vector reduction cases compared to-the GTM results. Table 
30 shows the classification accuracy for the same vector reduction cases. 
For each case, it takes 18 see to reconstruct a CM from the vector table and 
classification inventory. Both tables indicate a significant reduction in pro­
pessing costs with very little impact on the classification results. The tables 
also indicate that as much as 90 percent of the unique vectors might be con­
sidered noise as far as the classification results are concerned. 

As a final evaluation of the classification results, the GTVI was digitized 
at three times the current resolution. In this case, nine picture elements on 
the GTM corresponded to one picture element on the CM. Instead of a picture 
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TABLE 28. PREDICTED VERSUS ACTUAL ERROR FOR MODULO THREE VECTOR REDUCTION 

Percent Normalized Mean Square ErrorVector Number Average Mean Square 	 Per Band-Actual/ Predicted
 
Per Band-Actual/ Predicted
Error Per BandOccurrence of 

Reduction Vectors Actual/ Predicted Band 4 Band 5 Band 6 Band 7 

0 27 696 0/0 	 0/0 0/0 0/0 0/0 

15 8525 0.0315/0.0314 0.308/0.294 0.202/0.205 0.045/0.046 0.096/0.097 

30 6694 0.0501/0.0502 0.493/0.469 0.319/0.327 0.072/0.074 0.153/0.155 

45 5856 0.0648/0.0649 0.631/0.607 0.415/0.429 0.093/0.095 0.198/0.200 

All 	 2 420 0.671/0.667 6.45/6.23 4.28/4.35 1.06/0.979 1.89/2.06 

co 
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TABLE 29. CLASSIFICATION INVENTORY FOR MODULO THREE VECTOR REDUCTION
 

Vector Featur Inventory 
Occurrence e Inventory Total CPU Time 
Reduction U A F W NFW B Accuracy (sec) 

0 10.24 16.81 37.05 29.01 6.50 0.39 98.24 9 

15 10.59 16.52 36.93 28.96 6.56 0.44 98.18 3 

30 10.83 16.34 36.90 28.94 6.57 0.43 98.11 2 

45 10.76 16.31 36.88 28.94 6.69 0.43 98.10 2 

All 14.51 15.01 35.55 28.92 5.55 0.46 95.49 1 

GTM 9.86 15.08 38.21 29.40 6.63 0.82 100 



element being classified either correctly or incorrectly, it was possible for a 
picture element to be considered as partially correct-especially at boundaries 
between two or more different features. The increased resolution did improve 
the classification results, but only by a barely discernible amount. The 
inventory accuracy improved by a 0.01 percent while the classification"accuracy 
improved by 0.08 percent. 

TABLE 30. CLASSIFICATION ACCURACY FOR MODULO 
THREE VECTOR REDUCTION 

Vector Feature Classification Accuracy 
Occurrence Total 
Reduction U A F W NFW B Accuracy 

0 34.34 57.78 75.34 97.69 43.50 13.80 72.46 

15 34.41 57.35 72.23 97.76 44.20 14.68 72.43 

30 34.60 56.58 75.20 97.73 44.30 14.29 72.32 

45 34.16 56.54 75.15 97.74 44.49 14.14 72.26 

All 38.29 50.02 72.35 97.68 40.68 15.90 70.35 
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7.0 EFFECTS OF REGISTRATION ON CLASSIFICATION 

Instead of geographically correcting a CM to a GTM using the NN 
registration approach, the original image data were geographically corrected, 
first and then classified. The -December Mobile Bay data set was geographi­
cally corrected using the NN, BL interpolation, and BC interpolation registra­
tion approaches. Each of the three geographically corrected images was then 
classified using the linear classifier, the Gaussian Maximum Likelihood 
classifier with equal probabilities and the Gaussian Maximum Likelihood 
classifier with a priori probabilities. Again, the same training areas were 
used as in Section 6. 3 except that the training areas were in the geographically 
corrected coordinate system. 

Table 31 shows the classification accuracies as a function of feature, 
resampler, and classifier. Table 32 shows the analysis of variance for the 
total classification accuracies. There are some consistent effects at the 0. 05 
and 0.01 level on the total classification accuracy due to the classifier and 
resampling approach; although the magnitude of the effect is less than 2 percent 
for registration and less than 3 percent for classification. The linear classifier 
consistently gives the lowest total classification accuracy, while the maximum 
likelihood with a priori probability gives the highest. The BC interpolation 
consistently gives the lowest total classification accuracy, while the BL approach 
gives the highest. On a per feature basis, the classification accuracy is not 
very consistent. Comparing Table 31 with Table 23 shows, as expected, that 
there is very little difference in the order of performing NN correction and 
classification. 

Table 33 shows the inventory accuracies as a function of feature, re­
sampler and classifier, and Table 34 shows the analysis of variance for the 
total inventory accuracies. There is no consistent effect on the total inventory 
accuracy due to the registration approach but there is a small effect, due to the 
classifier. The use of a priori probabilities tend to decrease the total inventory 
accuracy by approximately 4 percent. Again, the effects on a per feature basis 
are not very consistent. Comparing Table 33 with Table 24 shows that there is 
little difference in the total inventory accuracy concerning the order of per­
forming NN correction and classification. 
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TABLE 31. EFFECTS OF REGISTRATION ON CLASSIFICATION ACCURACY
 

Feature U A F W INFWI B 

Classifier Registration Total 
Approach Approach Classification Accuracy Accuracy 

LIN NN 35.04 55.76 76.36 97.82 42.09 14.33 72.57 

LIN BL 37.48 56.63 79.06 97.60 46.15 12.28 74.16 

LIN BC 36.63 53.68 76.13 97.75 44.36 11.88 72.43 

ML(EQ) NN 31.56 56.50 79.04 97.04 47.46 19.31 73,52 

ML(EQ) BL 35.16 62.45 79.26 96.83 48.91 15.14 74.87 

ML(EQ) BC 34.01 57.58 77.31 97.11 47.42 13.65 73.24 

ML(AP) NN 26.81 56.78 85.61 97.22 43.04 16.72 75.34 

ML(AP) BL 29.32 63.42 85.08 96.94 45.36 13.83 76.46 

ML(AP) BC 28.18 59.21 84.01 97.23 42.83 12.17 75.19 

cD 
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TABLE 32. ANOVA FOR REGISTRATION AND TOTAL CLASSIFICATION ACCURACY 

Source of Degrees of Mean F 
Variation Freedom Sum of Squares Square Test 

Classifier 2 10.69 5.34 Both 

Resampler 2 4.23 2.12 Significant 

Error 4 0.08 0.02 

Total 8 15.00 



TABLE 33. EFFECTS OF REGISTRATION ON INVENTORY
 

Feature U A F W NFW B 
Classifier Registration Inventory 
Approach Approach Feature Inventory Accuracy 

LIN NN 10.48 15.85 37.76 29.15 6.28 0.48 98.87 

LIN BL 10.34 15.18 38.80 28.92 6.46 0.29 99.14 

LIN BC 11.13 15.08 37.61 29.05 6.84 0.29 98.58 

ML(EQ) NN 8.54 15.36 39.76 28.64 7.06 0.64 97.97 

ML(EQ) BL 8.74 16.52 39.15 28.51 6.71 0.37 97.76 

ML(EQ) BC 9.47 15.85 38.60 28.66 7.10 0.33 98.60 

ML(AP) NN 6.38 14.85 44.48 28.73 5.10 0.46 93.81 

ML(AP) BL 6.34 16.38 43.18 28.56 5.23 0.32 94.03 

ML(AP) BC 6.79 15.90 43.17 28.72 5.14 0.28 94.51 

GTM 10.00 15.29 38.29 29.05 6.56 0.81 100.00 
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TABLE 34. ANOVA FOR REGISTRATION AND TOTAL INVENTORY ACCURACY 

Source of 
Variation 

Degrees of 
Freedom 

Sum of Squares Mean 
Square 

F 
Test 

Classifier 2 39.05 19.52 Significant 

Resampler 

Error 

2 

4 

0.14 

0.66 

0.07 

0.17 

Not 
Significant 

Total 8 39.84 



8.0 EFFECTS OF COMPRESSION ON CLASSIFICATION 

The December Mobile Bay data set was compressed at 1 bit per pel 
per band using the 2H Hadamard, the EI-I, adaptive delta pulse code modulation, 

the HC and the CCA. The resulting five images were classified three times 
each using the three different classifiers, and the CM was NN corrected for 
comparison with the GTM. The same training area coordinates were used 

for all of the compressed images, and the 2C and Blob algorithm were not 

used because of the magnitude of the projected running times on the.l 440 000 

picture element image. Table 35 shows the execution times for the compression 
approaches, and, as before, two iterations were used with the CCA. Table 36 

shows the classification accuracy as a function of feature, compressor and 

classifier, and Table 37 shows the inventory accuracy in the same manner. 
The analysis of variances for the total classification and inventory accuracies 
are shown in Tables 38 and 39. These tables indicate that there is no signifi­
cant effect on the total inventory accuracy by either the compression or classi­
fication approaches, but that there might be a significant effect on the total 

classification accuracy by both the compression and classification approaches. 
The total classification accuracy for the cluster coded compressed image is 

consistently higher than for any of the other compression approaches, while 
the ADPCM and 2H compressed images result in consistently lower total 

classification accuracies. 

TABLE 35. EXECUTION TIMES FOR THE COMPRESSION APPROACHES 

Pixels 

Compression CPU Time Per 
Approach (sec) (sec) 

HC 4488 321 

2H 3139 459 

ADPCM 2230 646 

HH 1946 740 

CCA 1890 762 

Tables 40 and 41 show the effects of bit rate on classification accuracy 

and inventory for ADPCM and the transform compression approaches. The 

results indicate that there is very little effect by bit rate on the classification 

products, and in general it appears .reasonable to approximate 6 or 7 bit data 

with as little as 1 bit. 
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TABLE 36. EFFECTS OF COMPRESSION ON CLASSIFICATICN ACCURACY
 

Feature U A F W NFW B 
Classifier Compression Total 
Approach Approach Classification Accuracy Accuracy 

LIN 2H 35.10 58.93 75. 52 97.67 48.54 16.88 73.28 
LIN 11H 36.65 56.29 76.75 96.28 48.26 18.69 72.94 
LIN ADPCM 37.14 50.41 71.47 97.28 44.49 18.21 70.11 

LIN HC 37.73 57.32 74.73 96.88 46.36 15.88 72.46 

LIN CCA 30.94 69.34 80.37 97.65 43.88 14.80 75.84 

ML(EQ) 2H 36.76 57.05 72.24 96.01 51.54 25,91 71.69 

ML(EQ) EH 35.27 56.52 79.90 95.45 49.64 17.43 73.89 
ML(EQ) ADPCM 37.65 49.05 74.49 95.89 49.31 23.50 71.07 
ML(EQ) HC 37.47 55.84 78.16 96.13 49.05 12.58 73.46 

ML(EQ) CCA 31.83 68.60 80.33 96.97 48.17 11.29 75.85 

ML(AP) 211 30.70 61.23 80.22 96.22 47.39 21.54 74.39 
ML(AP) HH 30.48 56.77 85.78 95.69 46.11 12.60 75.50 
ML(AP) ADPCM 30.60 53.21 83.21 96.27 43.37 19.51 74.02 
ML(AP) HC 31.17 56.23 85.09 96.32 45.37 10.95 75.34 
ML(AP) CCA 28.52 64.94 86.27 97.30 44.55 10.99 77.09 



TABLE 37. EFFECTS OF COMPRESSION ON INVENTORY 

Feature U A F W NFW B 
Classifier Compression Inventory 
Approach Approach Feature Inventory Accuracy 

LIN 2H 10.36 16.48 36.41 29.27 7.00 0.48 97.72 
LIN HH 10.92 15.43 37.54 28.39 7.05 0.68 98.45 
LIN ADPCM 13.45 14.78 34.93 28.86 7.45 0.52 95.65 
LIN HC 11.37 16.32 36.29 28.65 6.89 0;47 97.26 
LIN CCA 5.72 18.85 40.10 28.88 5.96 0.48 94.63 

ML(EQ) 2H 12.28 15.34 35.18 28.52 7.82 0.86 96.08 
ML(EQ) HI 9.65 14.78 39.68 27.99 7.23 0.68 97.94 
ML(EQ) ADPCM 12.31 13.20 36.95 28.19 8.47 0.87 95.71 
ML(EQ) HC 10.77 14.76 38.64 28.22 7.18 0.43 98.25 
ML(EQ) CCA 5.89 18.12 40.23 28.56 6.73 0.48 95.06 

ML(AP) 2H 8.38 16.60 40.16 28.25 6.01 0.59 96.82 
ML(AP) HH 7.46 14.43 44.00 28.08 5.60 0.44 94.30 
ML(AP) ADPCM 8.40 14.24 42.73 28.33 5.70 0.60 95.56 
ML(AP) HC 7.95 14.28 43.62 28.30 5.51 0.33 94.67 
ML(AP) CCA 4.98 16.39 44.58 28.68 4.97 0.40 92.61 

Ground Truth Map 9.86 15.08 38.21 29.40 6.63 0.82 100 



TABLE 38. 


Source of 
Variation 

Classifier 

Compressor 

Error 


Total 

TABLE 39. 

Source of 
Variation 

Classifier 

Compressor 

Error 

Total 

ANOVA FOR COMPRESSION AND TOTAL CLASSIFICATION ACCURACY
 

Degrees of Sum of Squares Mean F 
Freedom Square Test 

2 50.75 25.38 Both are Significant 
at 0.05 but 

4 96.12 24.03 Not Significant 
at 0.01 

8 37.35 4.67 

14 184.22 

ANOVA FOR COMPRESSION AND TOTAL INVENTORY ACCURACY 

Degrees of Sum of Squares Mean F 
Freedom Square Test 

2 10.23 5.11 Not Significant 

4 26.43 6.61 

8 54.62 6.83 

14 91.28
 



TABLE 40. EFFECT OF BIT RATE ON CLASSIFICATION ACCURACY 

Classification Accuracy 
Compression Bit Total 
Approach Rate U A F W NFW B Accuracy 

2H 1 35.10 58.93 75.52 97.67 48.54 16.88 73.28 

2 36.10 54.32 74.99 97.63 45.01 15.24 72.07 

3 35.57 55.36 75.34 97.68 43.66 14.47 72.24 

HH 1 36.65 56.29 76.75 96.28 48.26 18.69 72.94 

2 35.95 55.02 73.56 97.00 45.53 15.96 71.47 

3 35.70 57.12 74.90 97.21 43.66 13.58 72.20 

ADPCM 1 37.14 50.41 71.47 97.28 44.49 18.21 70.11 

2 36.68 52.83 74.35 97.61 44.18 15.51 71.59 

3 35.50 55.60 76.19 97.65 44.16 14.76 72.61 

HC 1 37.73 57.32 74.73 96.88 46.36 15.88 72.46 

2 35.80 56.35 73.17 97.21 44.46 14.17 71.48 

3 35.20 56.61 74.53 97.37 43.92 13.26- 71.99 



Q TABLE 41. EFFECT OF BIT RATE ON CLASSIFICATION INVENTORY 

Compression 
Approach 

Bit 
Rate U 

Classification Inventory 

A F W NFW B 
Inventory 
Accuracy 

2H 1 

2 

3 

10.36 

11.30 

10.86 

16,48 

15.72 

15.96 

36.41 

36.71 

37.09. 

29.27 

28.98 

29.02 

7.00 

6.85 

6.66 

0.48 

0.44 

0.42 

97.72 

97.97 

98.37 

HH 1 

2 

10.92 

11.87 

15.43 

15.85 

37.54 

36.00 

28.39 

28.69 

7.05 

7.08 

0.68 

0.50 

98.45 

97.05 

3 10.93 16.51 36.74 28.79 6.62 0.42 97.79 

ADPCM 1 

2 

13.45 

12.64 

14.78 

15.26 

34.93 

36.24 

28.86 

28.96 

7.45 

6.46 

0.52 

0.44 

95.65 

97.36 

3 10.82 15.66 37.48 28.97 6.65 0.41 98.72 

HC 1 7.95 14.28 43.62 28.30 5.51 0.33 94.67 

2 

3 

11.74 

11.00 

16.63 

16.44 

35.74 

36.53 

28.79 

28.90 

6.70 

6.75 

0.40 

0.38 
1 

96.78 

97.66 



9.0 	 EFFECTS OF COMBINED REGISTRATION AND COMPRESSION 
ON CLASSIFICATION 

The most extreme effects are produced on image data when an image 
is processed using a spatial averaging approach. For this reason, the BC 
registration approach and the ADPCM compression approach were used in 
serial on the December Mobile Bay data set. In one case, the image was geo­
graphically corrected and then compressed at 2 bits per pel per band. In the 
other case, the ,image was compressed first and then geographically corrected. 
The resulting two images were then classified using the linear classifier and 
the same corresponding training areas that were used previously. Table 42 
shows the classification and inventory accuracy as a function of feature and 
order of performing registration and compression. The accuracies indicate 
that the order of performing the two spatial averages produces no significant 
difference and that the results are very consistent with all of those previously 
obtained.
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H TABLE 42. COMBINED EFFECTS OF REGISTRATION AND COMPRESSION 
o ON CLASSIFICATION AND IVENTORY ACCURACY 

Feature U AF W NF
 
ApproachI 
 I Total 

Order Classification Accuracy Accuracy 

BC-ADPCM 36.39 54.36 74.62 97.70 44.79 12.41 71.94-

ADPCM-BC 27.26 53.81 73.68 97.63 44.51 12.61 71.56 

Approach
 
Order Feature Inventory 

BC-ADPCM 11.46 15.78 36.57 29.01 6.87 - 0.30 97.73 

ADPCM-BC 12.62 15.61 35.82 28.97 6.68 0.30 96.94 

GTM 10.00 15.29 38.29 29.05 6.56 0.81 100.00 



10.0 CONCLUSIONS 

The information carrier in a Landsat image is the multispectral vector. 
It not only carries an inherent amount of spectral information that is character­
istic of the sensor and ground' scene, but it also provides spatial information 
based upon where and how many times it occurs in the image. Image process­
ing algorithms can be categorized according to whether they operate mainly on 
spectral information or whether they operate on spectral and spatial informa­
tion. For example, algorithms such as radiometric correction, band ratioing, 
principal axis transformation, density stretching and classification operate 
principally on the spectral information; while such algorithms as Sun angle 
correction, scan angle correction, registration, texture analysis, and.image 
compression are both spatially and spectrally oriented processing approaches. 
The dominant factor in determining processing costs for algorithms that utilize 
spatial information is the number of picture elements, while the dominant 
factor for spectrally oriented processing algorithms is the number of unique 
multispectral vectors. It has been the common practice to treat all image 
processing algorithms as if they were both spectral and spatial information 
processors, and by doing so, significant processing cost savings that are avail­

able-for spectrally oriented processing have been neglected. This cost savings 
availability is evidenced in the observation that there are many times more 

picture elements in an image than there are unique multispectral vectors. This 
cost skvings availability is also destroyed when an image is processed by an 
algorithm that uses spatial averaging or an equivalent, a process that artifically 
creates new unique vectors resulting in a dramatic increase in the total number 
of unique vectors. Furthermore, there already are thousands of times more 
unique vectors in an image than there are identifiable features. This observa­
tion strongly suggests that the number of unique vectors in an image can be 
significantly reduced, a suggestion which produces significantly more process­
ing cost savings with an anticipated small loss of information. The suggestion 

intuitively appears justifiable, especially from the point of view of feature 
extraction, a process which reduces all of the unique vectors to a relatively 
small number of features. If image processing algorithms are examined in 
terms of the preceding discussion and if the unique vectors are extracted from 
the multispectral image and the picture elements are labeled according to the 
vector that belongs there, the choice of the most cost effective algorithms is 
clear. 

In the case of image registration the obvious, most cost effective choice 
is the NN approach. The NN approach does not create any new vectors even 
though the resolution of the corrected image may be different from the resolution 
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of the original image, and the characteristics of the distributions in the original 
data are preserved under the correction. The NN approach is twice as fast as 
the BL interpolation approach and four to five times faster than the BC inter­
polation approach. The interpolation approaches, however, act as filters and 
smooth the distributions of the original data, a filtering that produces thousands 
of new unique vectors that will occur a marginal number of times in the entire 
image. Although the BC interpolation approach is theoretically the most de­
sirable, none of the registration approaches exhibit any distinct advantages 
over the other registration approaches in terms of classification accuracy. 

In the case of image compression, the same arguments apply. The 
transform and difference methods create thousands of new unique vectors that 
occur a marginal number of times in the entire image, and the transform 
approaches that apply trigonometric functions are the most costly to use. The 
clustering approaches, such as the Blob and CCA, reduce the number of unique 
vectors providing potentially more processing cost savings than were present 
in the original data. All of the compression approaches degrade the resolution 
of the original imagery to some extent because some form of averaging is 
present in all of the approaches. The Blob algorithm, however, has the most 
direct attack on destroying resolution by averaging the vectors in every 2 X 2 
picture element array. In terms of computer time, the Blob algorithm is one 
of the most costly compression approaches to use. The CCA, however, is one 
of the least costly compression approaches to use, plus it also has the least 
direct approach on destroying resolution. The averaging is performed entirely 
in the spectral domain by combining vectors that are spectrally similar, and 
the spectral averaging tends to consistently improve the total classification 
accuracy by at least 2 percent or 3 percent. Thus, the CCA appears to be the 
best choice of the existing compression approaches. 

If compression approaches are evaluated from the viewpoint of image 
reconstruction quality there is no commonly accepted clear cut choice. The 
most commonly used error criteria (chi-square, mutual information and mean 
square error) do not exhibit a behavior that is consistent enough to allow a 
confident prediction of how a particular compression approach will perform at a 
given bit rate on a particular image. Part of the problem is that all the error 
criteria have a common origin. That is, all three criteria can be computed 
from the joint distribution of the original image and the compressed-reconstructed 
image. If the joint distribution cannot be predicted, then neither can the behavior 
of the error criteria. The other part of the problem is that none of the criteria 
account for the spatial arrangement of the data in the image, whereas the 
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compression approaches utilize spatial information to varying degrees. To 
obtain a consistent relationship between a compression approach and an error 
criteria, two choices readily appear. One choice is to develop a compression 
approach based on the error criteria. An example of this type choice is the 
vector reduction discussed in Sections 6.2. 5 and 6.4 and the mean square 
error. Extracting the upique vectors from the image data and reformatting 
the data can reduce the data volume by approximately two. Reducing the 
number of vectors, in the manner described, has a predictable effect on the 
mean square error, provides additional processing cost savings, and reduces 
the data volume further. However, additional effort is needed on this type 
approach to determine if significant data volume reductions (a factor of four 
to six) can be achieved. The other choice is to adapt an error criteria to each 
compression approach so that error can be predicted. This choice runs the 
risk that such an adaptation would result in being more costly for predicting 
the error than compressing the image, reconstructing the image and computing 
the resulting error. 

The classification results tend to indicate that there is very little 
difference in the accuracies achieved with different approaches, and that Landsat 
data can withstand a considerable amount of modification or abuse, depending 
upon one's point of view, without significantly affecting the accuracy. The 
dominant factors affecting accuracy appear to be the choices of data set, train­
ing areas, application.and, more importantly, the data itself. Landsat data 
are discretely continuous and exhibit no visibly obvious feature separation, 

with the possible exception of water and vegetation. Reduction of the number 
of unique vectors in the image, even by significant amounts, tends to indicate 
that the majority of the data are noise since there is no significant effect on 
classification accuracy. All of the classification approaches are designed to 

work on data that exhibit a perceptible degree of feature separation; in this 
context, the data processing techniques are more advanced than the data they 
are being used on. Thus, it would appear more profitable to expend effort on 
improving the data set instead of making minor improvements on existing pro­
cessing approaches, especially since it appears that investigators are reaching 
a limit on how much information they can extract from the existing data. 

As far as minimizing data handling costs is concerned, there appears to 

be a clear cut approach to follow. The first step is to reformat Landsat data by 
extracting the unique vectors from the multispectral imagery and replacing 
the picture elements with labels that identify the unique vectors that belong 
there. The cost of extracting the vectors, which only has to be done once, is 
minimal compared to other processes performed a picture element at a time. 
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The cost of reconstructing all or parts of the image to form pictures is minimal 

compared to extracting the vectors. Any processing approach which creates 
new unique vectors should then be avoided. For registration, the NN approach 

should be used, especially since it is the fastest approach and the other registra­

tion approaches provide no distinct improvement in classification accuracy. To 

take advantage of additional processing cost savings and data volume reduction, 
some form of cluster compression or unique vector reduction is warranted and 

justified based upon the negligible classification accuracy effects. Finally, a 

linear classifier is adequate, although most investigators will probably still 
prefer a maximum likelihood approach. 
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