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SATELLITE PASSIVE REMOTE SENSING OF OFF-SHORE POLLUTANTS

INTRODUCTION

In this report we discuss satellite detection and monitoring of off-shore

dumped pollutants, other than oil. 	 Following EPA guidelines, we divide

the pollutants into four categories:

• acid waste

• industrial waste

• sewa ge sludge

• dredge material

Off-shore dumps consist of material that sink, or at the very least do

not remain on the water surface. Of the three portions of the spectrum,

visible, infrared and microwave, only the first that penetrates the water

can sense waste concentration. The major problem in the visible band is

to get around weather and atmospheric haze.

I	 The results of the analyses in this report confirm the intuitive notion

► 	 that all three satellite based sensors have the required sensitivity to

do the job, but only the visible has sufficient spatial resolution. How-

ever, none of the sensing techniques allow a clean cut extraction of the

pollutant signature from the background. We assert that the problem of

pollution monitoring is not a sensor problem but a problem of mathemati -

cal modeling and data processing.

Part 1 of this report presents summaries of satellite sensor performance in

three spectral bands, visible, infrared, and microwave. Part 2, the bulk

of the report gives all the calculations, trade-offs and limitations of the

1	 three sensor systems.
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PART l: JUMMARY OF SATELLITE PASSIVE SENSORS
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In the following we present the results of our trade-off between sensitiv-

ity and resolution for three satellite based sensors

,L

• visible imaging radiometer

o infrared scanning radiometer

s. micrcwave scanning radiometer

N i

i
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1	 1.0	 OPTICAL RADIOMETRY

We have studied satellite sensors to investigate the feasibility of see-

ing low - contrast patterns in color en the sea surface. The feasibility

divides into two questions. First, what existing or planned sattelites

provide a ;apability suitable for a demonstraticn. The short answer

is that NASA LandSat 0 scheduled for launch in 1983 should provide 3A

contrast in a 30 x 30 meter pixel, slightly smeared in the crosstrack

direction by limited electronic response time.

The second question is, What capability can to achieved in a satellite

package optimized for pollution detection? In this case NASA's present

radiometric methods are inappropriate because they have traded off con-

trast and resolution in order to achieve absolute radiometric calibration.

If we foreco absolute measurements, it is possible to optimize for recog-

nition of low-contrast patterns that .-epresent spilled pollutant. This

leads to a sensc r that performs more like a lcw-light-level tel-vision

system.

The following sections address the two questions. The first describes

the radiometer aboard LandSat D, and the second describes possibilities

for a system dedicated to the pollution detection problem.

1.1	 LandSat D: Thematic Maooer

This satellite carries a radiometer that scans a swath 100 nautical miles

wide on the earth's surface. In the visible range of interest are two

color bands, a blue-green one from 450 to 520 nm and yellow-oran g e frcm

520 to 600 nm. Each band uses an array of 16 silicon photodiodes as de-

tectors. A mechanical scanner sweeps the crosstrack direction while or-

bital motion scans along track.

The relevant properties of the LandSat D radiometer appear- in Table 1

#	 along with the symbols used to denote these quantities in the equations

I
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I	 TABLE 1: PROPERTIES OF LandSat 0

I	 Swath width: S - 165 km

Altitude: H = 1 Mm

Velocity, equi-alent surface: V = 6.6 k„i/sec

Cetectors in array: N - 16

Footprint (s quare pixel) size:	 _ = 30 maters

Cwell time:	 -	 10i:sec

Spectral radiance of the sea: L, = 0.035 'W/sr/m2/nm

Filter pass, Band l: b - 80 nm

elescope efficiency: n = 0.2

Aperture diameter: d = 40 cm

Cetector responsivity: 7 = 0.6/volt

Thermal noise, spectral density: kT = 4 x 10 -21 watt/Hz

(T = 290 kelvin)

Electron's charge: e = 1.6 x 10 19 coulomb

Detector/amplifier bandwidth: B = 50 kHz

Noise resistance: R = 1.0 x 10 9 ohms

(feedback resistor for transimpedance amplifier)

I
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that follow. The area coverage rate is the product of velocity V by

swath width S:

A = VS - 1220 km
2
 /sec,

-rom tnis we derive theJwell	 fire	 that one of the 16 senscrs inspects

each pixel (5 by 6) on the sea surfa--e:

- N6 2/A = lOusec

Note that ,V7 is the footprint of the N sensors on tae earth surface.

The scene (sea and air above it) has a certain radiance L (watt/m
2
/sterad-

ian) that is focused on the detector where power p produces current I:

p = L (efficiency) (ar ea) (solid ana.^)

(solid angle) = (aperture area/alti^ude 2 )
	

-Td 2/4H2

p = Ln6 2 (id`i4H2)

2
`	 L 4

	
n / = 22.6 x 10 -12 m2	(1)

r

	

	
The light detector is a silicon photodiode that converts electric current

with typical responsivity R = 0.6 amps/watt. To facilitate calculations

that follow, we use one factor K to convert sea radiance to detector cur-

rent I:

K -	 = P P-= 	 R P- = 13.6 x 10 -12 m2 sr/volt	 (2)

We shall estimate the noise current i n in the detector and use K to con-

vert it to a minimum de`.ectable radiance (MOL) on the sea surface:

MDL = i n/K
	

(3)
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Two types of roise limit perfor-rance of the system, shot and thernal

(Johnson), given by the follcwing:

i5	 2eIB	 (1a)

i t = 4kTB/R	 (1b)

i n = is+ 	 it	 (5)

Here R is the load resistance across the photodiode, or the feedback

resistance in the case of a circuit with a transimpedance amplifier.

Normally thermal noise would limit the performance of a photodiode,

but in this case NASA has used a newly developed sensor with a trans-

impedance amplifier. The equivalent noise resistance is remarkably

high, R = 10 9 ohms.

Substituting Eqs. -la and 4b in 5, and using --qs. 2 and 3 gives

MDL =	 (C 1 + C 2 L) B	 (6)

where

Cl = 4kT/K2 R	 C2 = 2e/K	 (7)

and

C 
I 
B = 4.35 x 10 -3 (W/m2/sr)2

(8)

C 2 8 = 1.18 x 10 -3 W/m2/sr

11

s

We have plotted Eq. 6 in Figure 1 in the form MDL

mum detectable contrast. One point on this curve

nificant at a radiance of L s = 2.8 W/m`/sr. This

scene radiance looking at open ocean (no clouds).

/L, •.,rhich is the mini-

is particularly sig-

value is typical of

The minimum detectable

9



?radiance, W/,Z,'sr

Fig. 1. Minim= detecta:.• le ccnt-ast in
thematic ma Vie_ , Land -S at 0
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contrast i s 3.1;, and its reciprocal is the signal-to-noise ratio in

terms of photocurrent (I/i n ), n3.,.eIy	 It happens t hat "NASA has

specified this same signal-to-noise ratio at the same radiance in its

contract with Hughes Santa ?arbara Research Center. The saturation

radiance is 10 W/m
2
/sr at which the specified signal-to-noise is ?5,

a bit higher than our estivate of 79 (reciprocal of 1.3% in Figure 1).

We est'.::^ated the radiance of the sea by first averaging its spectral

radiance (sei in Figures 12, 13 and 14 of Roswell Austin's paper in

Optical Aspects of Oceanography, edited by Jerlov and Nielsen and

reproduced in the Appendix).	 The average spectral radiance L. =

0.035 W/ 2m/sr/nm, multiplied by the filter pass hand, b = 80 nm, then

gives the result we used:

L. s = Li b = 2.3 W/m2 /sr.	 (in the b'ue-green)

The same ^ranhs indicate that only 14`; (a seventh) of the light comes

from the	 I urface; the rest is backscattered by air. Of the part

from the sea, about a third is surface reflection. Thus 10 of the

radiance at the radiometer is light that has penetrated the sea. Pre-

sumably this percentage is improved by avoiding sun glint.

Finally, the frequency response of the thematic mapper rolls off at

B = 5OkHz = 1/27, and so the radiance in one pixel spills over a bit

into the next one or two pixels in the crosstrack scan direction.

1.2	 Dedicated Imaainy Sensor

This section discusses a satelli`e package dedicated to those applica-

tions in which the main problem is to see low-contrast patterns. The

best approach is to use a large array of sensors to increase the dwell

time on each pixel (compared to LandSat D). 4n ordinary television

camera has in el:fect an array of about 2-50,000 sensors occupying a total

area of about one square inch. 	 It would be reasonable to assume a total

photosensitive area as large as 100 cm ` , which can be divided into var4.-



ous numbers of pixels (1'V lines) depending on the trace-off between con-

trast and resoluticn. If ccrmcn television camera tubes were used, 17

of them would to required to achieve this area in each color Land i.e.

51 fo g• a tri-color system. However, oversized tubes or some other ad-

vanced solid-state ima g e sensor would reduce the total number of devices.

'pie snall leave the question of size open and denote the photosensitive

area by a.

A wide swath is very desirable to catcn as many breaks in the clouds as

possible. We assume that the width equals the altitude, i.e.

X = H = 1 Mm

as shown in Figure 2.	 In the direction along track, the field of view

is smaller to avoid excessive photosensitive area,

a = Y;,

(see Figure 2). If Y denotes the dimension of the field of view along

track, then the dwell time is

T = Y/V

It will be advantageous to make this time as long as possible, evrn

10 seconds or more, to average out cl.,tter from the sea surface. This

feature requires some form of motion ccmpen;ation, but the result is

rewarding because it will very thoroughly remove statistical fluctua-

tions in sun glint, and to some extent tl„^ie due to patches of foam.

Depending on sea state and wind, this can be a great advanta ge over

previous NASA radiometers that essentially "freeze" the instantaneous

lclutter in each pixe*

Let us assume a fairly advanced system ,vith fast optics, say a focal

ratio of two:

^.	
s

12

L 

(4)

(l0)



.I

k
	

13

Witx

i
I
I

.J

sI

1
4

1
d

iJul

r-^U..rwONTCsr

.
y



i	 f/d	 2.	 (12)

Any faster cptics would not work well with an interference filter to

limit the band to n - b. Equation 12 determines the solid anale of

rays into one point on the focal plane:

(T/4) (d/f) 2	-T/16	 (13)

Apart from an optical efficiency factor n o , the i,-age has the same radi-

ance as the object, namely

L_
5
 = L, b	 (14)

.^

where L, is the spectral radiance and b the filter bandwidth. Thus the

number of photons collected in the entire field of view is

N^ = (L s /hv)n 0a, T	 (15)

I

and the number in each pixel is

Nd 2 	^L	 2
o s	 a6	 (16)na	

XY	 lb	 b y	 VH

where Equations 9, 11, 13 and 15 have been used.

The mean number of detection events in each pixel of the photosensitive

surface is

n 
	 = n 

q 
n	 ,	 (17)

where n  is quantum efficiency, and the standard deviation in this num-

ber is

I	 ,end = ,n d	 (18)

I	 ^	 ^

I
14



IThese equations combine to give the minimum detectable contrast

I	 MOC = 
`' n d	 1

n wnqn

Substituting Eq. 14 in 16 in 19 gives

h10C	
j 116	 h,,	 V 	 1	

( 20 )
H o n g bL^ ^^a

Curiously, the collecting aperture d has dropped out of this expression

because it is tied to f through the focal ratio, Eq. 12, and to other

factors through the geometry of Figure 2.

For plotting this expression, it is convenient to put

A
	

(21)

where .% is the peak spectral radiance when the sky is clear	 , the sun

is high,

A - .035 W/m2/sr/nm,

and 2 represents all environmental losses of illumination due to sun

angle, hydrometeors, or whatever. 	 Finally we lump all losses of light

together, whether in the environment or the equipment and put

n = kno n d .	 (22)

For example, we mi g ht have

optical transparency - .5 (mostly in the filter)

20 .̀a aperture observation - .8

detector quantum efficiency - .15

'	 l

(19)

15	 ^*



sun angle - .5

haze and Rayleigh scattering - .33

product:	 -I = .01

In this form, Eq. (2) Leccmes

MCC	 16	 b y V 	 1

	

s	 -)Ab	 bS ► a

Figure 3 shows MCC versus 5-a (S in meters and .a in cct) with n as a

parameter.

For example, when

a = 100 cm  (10 by 10 detector surface),

S = 30 m,	 n=10

then MCC = 3.9 x 10- q.

Quite clearly this is less than the natural contrast noise on the sea due

to patches of foam, seaweed, windrows, and the like. Therefore, we desire

a long dwell time on each resolution cell to average out these factors as

much as possible. Equation 11 gives

T = Y/V = (y/f) ( H /V)	 (24)

where we have used

Y/H = y/f	 (25)

which results from similar triangles in Figure 2. The factor y/f in Eq.

I
24 cannot in practice be made arbitrarily lar g e to attain a long dwell

time because the motion compensation becomes nonlinear and complicated

as the angles involved grow lar ge. It is beyond the scope of this study

to solve such details, but for the sake of illus-^ration, suppose

r	 -

I

	

6 --	 --	 – —	 -.

(23)
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Figure 3. Minimum Detectable Contrast or Visible radiometer
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y/f = 1/4,
	 (26)

which keeps the angles quite small (< 7 0	arctan y/2f). Then 

gives T - 33 sec, a nice long period that averages out nearlv all foam

statistics as well as sun gl'^*.. Moreover, using x = f (Figure 2) and

xy = a (Eq. 10), we find that

f-2va

.f a - 100 cm2 (previous example) then

f- x- 2 0 cm

ya/x=5cm

df/2 = 10 cm,

all very small and reasonable.

For the case of an aircraft platform, we have not plotted the MCC as in

Figure 3 because it is so _,.Hall that it is meaningless, i.e. the product

VH in Eqs. 20 and 23 is even smaller. However, .he dwell time for aver-

aging out clutter is not as long. Assuming

H = 3 km (9840 ft)

V = 160 m/s

Equations 26 and 24 give T = 5 sec, lon g enough to avera ge out sun glint,

but not much else.

l.1;
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2.0	 INFRARED SCANN I.NG RADIOMETRY

;or our purposes, "infrared" means wavelengths from 3 to 20--m. Radiation

from sea and clouds in this band consists almost entirely of thermal emis-

sion, reflected and scattered sunlight being negligitle. The so-called
it

	 infrared, wavelengths near 1•-m, should be classed with visi-

ble li g ht for our purposes, because this band is a component of sunlight,

and so radiometry works only during the day. Within the band of interest,

there are two particularly clear "windows", one at 10.6,:m and the other

at 3.8.:m, as shown in Figure 4. The 10.6um band (:?.6 to 11.6) is the bet-

ter for three reasons. First, it provides 200 times as many photons, which

overpower noise in the sensor and provide more sensitivity. Second, the

long wavelength has minimum sensitivity to small particles, haze and such,

because Rayleigh scattering decreases as x 4 . Finally, this window has the

least atmospneric absorption (from gasses and vapors) of any optical band

(including visible and ultraviolet).

When the radiometer looks vertically down at the sea, it provides an almost

' pure measure of the temperature of the sea surface uncorrupted by other fac-

tors. Reflected sky radiance comprises onlZ 1 or 2'0 of the signal at inci-

dence anele of--O to 30 0 , but this increases to 100'0 at grazing incidence;

f_

	

	 see Figure 5. fhe observed radiance originates very close to the surface,

the mean distances being

;(3.8) = 60um = 16X

;(10.6) = ll;:m = 1.X	
(27)

I This means that the radiometer is very sensitive to any floating pollutant,

such as an oil spill that inhibits evaporation at the surface. At the very

least. a coating chances the temoeratire by 0.5K, which is the temoerature

chance through the so-called conduction laver, approximately the top 1.5 mm

of the sea. This is a relatively large signal, but of course it is diluted

with the si gnal from normal water wherever the film is thin and breaking up.

1
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I

A sensitivity goal of one fiftieth this amount, i.e. 10 :nK is probably ap-

propriate. We show that an advanced satellite radiometer at 10.6Lm can see

j	
a (1C0 ,^) 2 resolution cell with this :emperatjre sensitivity providin

has 100 detectors in array. A radiometer at 3.8--m would only resolve 	 ut

(240 m) 2 . An airborne radiometer of the same design would be ove , kill, i.e.

orders of :magnitude excessive performance capability.

We doubt if the infrared radiometer has :Huth sensitivity to pollutants that

:nix into bulk water, for then the surface effect is very small. There may

be exceptions when the sun is shining on the water and the pollutant dis-

colors it enough to raise the temperature by absorbing sunlight. Also,

must cheiicals release or absorb heat upon dilution, but this heat is a

transient occurrence observable only when the dump is quite fresh.

Z.1	 Blackbody Formulas

The sea is very nearly a blackbody in the infrared with emissivity

`'0 = 1 - R o = .98 to .99

at normal incidence as discussed in connection with Figure 5. Thus it is

appropriate to express radiance in tern;  of the blackbody function B:

L(a) = eB(a,T) power/area/steradian

However, for reasons discussed in Section 2.3, it is more appropriate to ex-

press blackbody radiation in terms of photons instead of the tradi..ona',

formulas for power. We denote this change by using the symbol Q instead of

B:

eB - eQ, photons/sec/area/steradian

We also denote spectral radiance with a subscript a:

Q, = Q/b, ph/sec/area /sr,`..m 	 (28)

22
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where b is the spectral bandwidth in micrometers.

In these terms, the Planck radiaticn formula is

Q^	 Q eXp (- ^e)	 (25)

where

Cq = 2c - 6.OE25 photons • ,m3/sec/m2/sr

(30)

C e = he/k - 143SSLm - kelvin

Quantities useful for evaluating Equatio:,s 29, 29, and 30 in the two bands

of interest appear in Table 2 above the dashed line. Those quantities in-

volving temperature are evaluated at 295 kelvin. The choice of bandwidth

b (fifth in the list) is governed by the need to avoid absorption lines in

the air spectrum, Figure 4.

1

	

	 In all infrared radiometers, it is traditional to express the observed radi-

ance in temperature units, i.e. the temperature of a blackbody that would

give the same radiance as the observed value. This is quite natural because

radiometers are calibrated by looking at a blackbody at a known temperature.

Thus we need a formula to express a radiance increment -Q in terms r the

equivalent temperature increment:

aT = AQ/Q'	 (31)

where Q' = 3Q/3T. Differentiating Equation 29 gives the requi,-ed expres-

sion:

rQ1 --

Q	 In Q a3T

	

	 2
AT

or with the aid of Equation 31.

23
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TABLE 2 USEFUL RAOIOME'RIC QUANTIFIES

evaluated at t%,o Aavelengt hs and ' - 295 Kelvin

Cuanti ty Uni is 3. d-,m 10.5' m

Ce!\ = by/k kelvin 3786 1357

Ce/\T	 by/kT (di,rensionless) 12.83 4.601

Cq/\ 4	X/\4 photons/s/m2/sr/::m 2.88E24 4.75E22

QX	 (Eq.	 29	 ) ph/sec;m2/sr/:.m 7.67E18 4.77E20

b	 (suitable	 in	 air) um 0.6 2.0

Q(295,'^)	 Qx b ph/sec/m2Isr 4.6E18 9.SE20

•	 Q/Q'	 =	 kT2/hv

----------------------------------------------------------------------------

kelvin 23.0 64.1

R 
	 (nomal	 incidence) a 2.40 0.83

R o Q/Q' millikelO n 552 532

L—	 note only

difference

i
24

a.,,,.
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or

T -Q ( CT )	
(kT) (3a)

e

The ratio Q/Q' for Equation 33 is listed below the dashed line in Table 2.

2.2	 `natural Backaround Fluctuations

The last item in Taole 2 gives	 particularly interesting special case,

maximum effect that sky can have on the apparent temperature of the sea.

Suppose the sky is completely overcast, anu a radiometer beneath the over-

cast looks directly down at the sea. (or else a satellite radiometer looks

through a small hole in the overcast) Also suppose that the temperature of

the overcast is not too di=ferent from that of the sea. (A si,iall difference,

say 5K, does not matter much since the sky contributes only 1 or 20 of the

radiance.) Then the sea and sky in effect form an isothermal enclosure,

and the radiometer necessarily sees the thermodynamic temperature of bo_h:

Qcloudy - Q(T)

But wnen the sky is clear

Q -clear	
-Q(T) = (1 - Ro ) Q(T)

r

AQ	 Qcloudy	 Qclear	 R0Q(T)

=	 and finally, using Equation 31,

w'

aT= Q = Ro 
Q 

540 mK
	

(35)

1



as listed in Table 2. :f the sky is partly cloudy, then the temperature

increment is

^jT(r") = f ( Ro Q/Q')	 (=6)

where f is the fraction of cloud cover. It is not easy to determine f

accurately. Since the radiometer sees a blurred image of the sky in the

wind-roughened sea, one cannot say exactly hew ;Huth of the .ky it is see-

ing nor to what degree.	 If an estimate of f is in error 10 00', 	 the cor-

resocndina error in temrerature is

AT = 0.1 R0Q/Q' = 50 mK,	 (37)

wnicn is about the maximum natural noise level ;or broken clouds, unles.:

an auxiliary sky radiometer is used to make a correction.

If radiometric temperature is measured at both 3.8 and 10.6um, then there

are two Equations 36 wh',-h in principle be solved for two unknowns, water

temperature and fractional cloud cover. out a curious coincidence occurs

as shown in Fi g ure 6. Tne x and y axes represent the t ,,.!o unknowns, and

the locus of possible values is plotted for each radiometric measurement.

The intersection that fixes f and T I	 has such an extremely small angle

that the solution is worthless in the presence of expected noise.

If the two radiometric temperatures, T(3.8) and T(10.6), are substracted,

then both of the principal effects, i.e. 
Tsea 

and T sky , are eliminated and

some other residual effect remains. We do not know what the principal con-

tribution is, but it is not roughness, as our computer simulations have

snown.	 It may turn out that the residual is very sensitive to pollution.

Perhaps it is the temperature difference resulting from different skin

depths in the two bands, Equation 27. The thermal gradient from evapora-

tion and 'neat conduction at the sea surface is T = 3T /'z = .33 K/m, which

gives

r	 '
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A T(3.3)	 20 MK

(38)

	

T(10.6) _ 4 MK	 l
..	 9

I1 : the sea is riot too calm, say sea state 2 or greater, then the fluctua-

tions due to clouds, AT = 50 mK, Equation 31 occur over larai distances,

comparable to the altitude of the cloud because the cloud image in the sea

is blurred over about a radian. This may not interfere with the observa-

tion of po11uticn plumes on a sma11 or scale, say a few hundred meters.

Over these distances the natural background noise has a variance spectrum

give-i very roughly by

:(3E-3 cycles/m) = 3E-3 K`m"

(3°)

:(0.3 cycles/meter) = 2.3E-3 K2m2

(linear interpolation (ex rapoIation) may be used for other frequencies).

These val%iet; are very rough because they were derived from a 1-dimensional

cut through space time (a ship moving at a fixed speed) in a constant field

of view, and so we could only assume that the fluctuations were frozen in

the sea surface as the ship moved through. In a spacial bandwidth, AV  by

Avy , the temperature variance is

oT2 = ,AV 9v
X y

If we want the temperature variance in a (10 meter) 2 resolution cell, it

is reasonable to take

Av x = AV = 1J	 cle = .05 cycles/metery 	 (11)

Then Equation 40 gives

I	 'Di	 5E-3 K2
 
	 x .OS m 	 mK	 (42)

a much reduced natural background.

i
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2.3	 Radiometer Sensitivity

A satellite r •adiocreter ,must be quite sophisticated ccrrpared to an aircraft

radiometer. The satellite sensor col locts relatively few photons from each

resolution cell on the sea surface because of its high altitude and short

d+sell time. We assume that the satellite radiometer employs low-noise am-

plifiers of the type used in LandSat D and discussed in Section l.l.	 In

this case, the sensitivity is 1imitod by shot noise (photon statistics)

which overpowers other sources of noiso, mainly thermal noise in the ampli -

fier.	 (Considerably more photons are received in the infrared `han a simi-

lar- r • ad'ea,eter • for visible li g ht.)	 We assume that the infrared radiometer

employs cold stops and a cold filter so that radiation fr;,m warn parts with-

in 'he radiometer cannot reach the detector. Thus the only shot noise is

that from the field of view.

The performance of infrared detoetors and radiometers has traditionally been

expressed in power units using figures of merit such as \EP, D and D 	 How-

ever, since the shot noise limit is both feasible and required, it is approp-

riate to bypass these quantities complete'y and discuss sensitivity in terms

n

	

	
of photon statistics alone. 	 It is for this reason that the preceding forTu-

las were expressed in torms of photon flux instead of power conirencina with

Equation 28.

A straightforward range equation gives the number of photons col l ected from

each resolution cell on the sea surface:

n^ = 
Q( , ) (dwell) (Lelj^ solid angle sub t ended

timelJarea 11 ^o r• adiome*_er- a erturel

2	 ^~J)

' 4)
n = Q(	

2	 (_jd

H`

where d is aperture diameter and H the radiometer's altitude. The number

of detection events per all is given by

29



L
ne = r,n_	 (1y)

wnere 7 is an overall efficiency that includes optical tr• inspar•ency, aper-

ture Jbsc u •aticn, and detector efficiency, the last being the efficiency

in converting photons to charge carriers.

,.,!11 tim_ r depends on N d , the number of detectors in array; the more there

are, the Tore time each detector can spend cn one cell. Assuming an effici-

ent scan pattern, i.e. each detector is always looking at a call within the

swath of interest, the dwell time is

area exam i ned at any instant3
area scan rate

N 
d 
6 2

SV
	

(45)

where S denotes swath width and V the platform velocity. Substituting Equa-

tion 45 into 43 into 44 gives

,r nN d Q	 dS ` 2

ne 
_
 4	 SV	 ( H )

(46)

Note the extreme sensitivity to resolution 3. This is because `2 enters

into both the emission area and the dwell time.

Receiver sensitivity derives from the well known formula for the variance

of photon (Poisson) statistics:

(.^n e ) 2 = n e	 (47)

Conv`rtiro to radiometric temperature uncertainty iT gives

_^n ,̂	1
T(48)

n	 n	 Q	 T	 .1T)	 (^^)
e	 e
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I
where E4uation 47 was used in the first steo, 46 in -ne second, and ':quaticn

33 in the last step.	 Solving for ,T gives

T	 C.n
e	 e

AT _ AT	 3	 SV	 H	 (_0)
T	 t a	 T ;rydo
	 d6L

:Je have plotted this equation in Figure 31 in the fcr:n ;T versus 5 with

yd as a parameter. Even though aT is riot very sensitive to .4 d , we chose

it as a variable because the number of detectors varies so greatly in diF-

ferent arrays, all the way from 1 to 200 in a recent NASA development.

Reasonable values assumed for other quantities are the following:

T = 295 kelvin

C e/J,  Q - See Table 2

S = H = 1 Mm

V = 6.6 km/sec

I = 0.5

d = 30 cm

Fi g ure 7 shows that a 100-element array at 10.6,m (solid line) arovides 100-

meter resolution and 10 mK sensitivity. At 3.3;:m (dashed lines) the perform-

ance is marginal, and either sensitivity, resolution, or both have to be

compromised. On the left side of the graph the dashed lines are discontinued

where the assumption of shot-noise-limited performance begins to fail.

I	 }
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3.0	 MICROWA`'E RAOIC'METRY

.^e foresee a limited application of microwave radiometry for pollution sens-

ing from satellites, althou gh there may be score application from aircraft

providing they fly beneath the clouds. The reasoning behind this conclusion

follows.	 First, the requirement for annular resolution forces t"e choice

of a short wavelength on the order of	 = 1 cm (F = 30 GHz). Out the radiome-

ter is sensitive to clouds at this wavelength, and so its use on a satellite

is limited to areas with clear skys. Moreover, at these hi g h frequencies,

the radicrneter is quite insensitive to sea temperature and conductivity (sal-

inity), as discussed later. The main sensitivity that remains is surface

roughness which is of great interest for detection and monitoring of oil

slicks.

however, the measurement of rouchness puts radiometry into direct competi-

ti on with radar scattE^ometry, which measures the same thing. Radar has

most of the advantages:

1. penetrates clouds

2. high resolution available by range gating and synthetic

aperture

3. no problem with reflected cloud radiance

4. lower frequencies (e.g. L-band) usable if synthetic

aperture used for angular resolution

5. cross polarization data

The cnly advantages for radiometry are:

6	 no transmitter power

7. no clutter statistics (random interference effects)

In case of a satellite, Items 1 and 2 appear to be the driving factors.

The cloud penetration (1) is very important because 70 to 30°0 of the ocean

is covered by clouds.	 Also resolution (Item 2) is critical in the satellite

r 
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case as ',tie show in Section 3.3. 	 Item 3, problems with reflected cloud radi-

ance is severe because reflectivity is on the order of 50 1:, depending on

fre ,,uency and look angle. This may _ip the balance in favor of racr.r even

in the aircraft case. The fact that radar requires transmitter power- and

has problems with clutter statistics (implied by Items 6 and 7) is Just sore-

thing we shall have o work around. These ,attars are described in the fol-

lowing sections and summarized briefly in Table 3, a sort of 4-dimensional

microwave matrix that considers:

O platform: satellite, aircraft

e mode: active (radar), passive (radiometer)

o sky: clear, cloudy

o sensitivity to water condition: 	 r •ouanness, salinity,

temperature

3.i	 Radiomet,-ic Temperature of Seawater

The intensity of radiation recovered in a microwave radicmeter is custom-

arily expressed as radiometric temperature T. This would be the same as

thermodynamic temperature if the radiometer were pointed at a perfect ab-

sorter, but seawater is not, and so a radiometer looking at the sea sees

a complicated mix of water and sky radiance reflected from various direc-

tions. The results in the case of a clear skv is that the radiometric

temperature depends very little on the water temperature except at low

frequencies; Stogryn [IEEE Transactions	 p. 278 (Mar 67)] ccnfirms

it in a classic paper, for F = 19.4 GHz (a - 1.5 cm), windspeeds 0 and

7 m%sec and nadir angles 0 and 50 0 , as shown in Figure °. Other investi-

gators have found similar results, e. g . a group at Texas A&M, Figures 9

10, and 11. Figure 9 shows consider a ble dependence on sea temperature at

9.3 GHz	 3.2 cm), but as discussed later, this frequency provides too

little an g ular resolutions.	 = icures 9, 10, and 11 also show that the

radiometer does net respond effectively to salinity, which might 'e import-

ant in some pollution studies.

r
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I
A -nicrcwave radiometer looking at the sea is sensitive to t^e ancle of t"e

,,vater surface, and hence to wind that roucrens the surface. Th i s effect

appears in curves by Stog ryn reproduced here as Fi g ures 12, 13, and 14'.

3.2	 Clouds

Fi g ures 12 and 14 snow that temperature sensitivity on the order of

AT = 1 Kelvin

is needed to sense small chances in surface roughness. This in turn limits

.ne amount of interference that can be tolerated from clouds, .17 
C* 

This

interference is proportional to the fractional absorption A:

AT cloudAT 

'ssuming Tc = 300 Kelvin gives A = .003. Comparing to Figure 15 shows that

:ra light cloud causes appreciable interference at frequencies 10 GHz

or higher. But frequencies this hi gh (see Section 3.3) are required to

attain reasonable anaular resolution, and so the :microwave radiometer, un-

like radar, simply will not be very useful in seeing th. ,.ugh clouds.

3.3	 Instrumental Limitations

The sensitivity of a microwave radiometer to temperature chances is given

by

2 T
AT =	 n

Yg,

where T  is the receiver noise temoer•ature, S its bandwidth, and -, the

1	
dwell time. The factor of 2 applies strictly to a Dicke radiometer, and

1	 varies slightly with other schemes used to stabilise the gain. The 4 well

time needed for Equation 1 depends on platform velocity V and geometrical

'actor's

1

3 1
^i

(51)
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resolution area
area search rate
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( 52 )

where S is the swath width and 3 the dimension of a resolution cell (pre-

sumed square). At nadir, the resolution is approximately:

I
a = ah/d
	

(53)

where h is altitude and d aperture diameter. This equation expresses a

severe bind: % should be short for good resolution, but long -,o avoid

e;:cessive sensitivity to thin clouds or fog. The best one can do .s use

large apertures as listed in Table 4 alon g with assumed x, h and resulting

o. The value o = 1 km in the satellite column is adequate for mapping a

larg e oil spill, but too farce for many smaller dumps. Other reasonacle

assumptions are listed in this *able along with the results r"rcm Equations

51, 52, and 53. These results show that the sensitivity is quite adequate.

The real crunch is in resolution and sensitivity to clouds.
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TABLE 4	 RAD10IMETER ASSUMPTIONS AND RESULTS

'	 ,assumptions Satellite Aircraft

Altitude H 1	 Mm 3 km

Swath S - H 1	 Min 3 km

.	 Velocity	 V 7 km/sec 160 m/s

Wavelength	 X 1	 Cm 3 cm

Frequency F 30 GHz 10 GHz

B	 - F110 3 GHz 1	 GHz

aperture diameter d 1 C = 1000a 1	 meter =	 33,\

Noise temperature T  1 SO 1-40K

Results

Resolution S 1	 km 100 m

Dwelling	 time 1AOus 20 cosec

Sensitivity AT 0.46K .067K

I^
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