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ABSTRACT

The Scanning NI till 	 Microwave Radiometer (SMMR) is a 5-frequency (6.(1, 10.7. 18, 21,

and 17GID dual polarized microwave radiometer which was launched in two separate satellites.

Nimbus-7 and Seasat n ► 1978. A formalism is developed which call 	 used to interpret the data in

terms of sea surface tcnnperatme, sea surface wind speed, and the atmospheric overburden of water

%apor and liquid water. It is slu.mn with reasonable instrun ► ental performance assumptions, these

paruneters call be 1cri%rd to useful accuracies. Although the algorithms are not derived for use in

rain; it is shown tl ► at, at least, token rain rates can be tolerated H ► thout invalidating the retrieved

geophysical paran ► eten.
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AN ALGOKI I IIM I OIZ R TRIFVAI. OF OCEAN SURFACE AND

\ IAI()' , 1'I II RI( PAR;U11 I I RS FROM I IIF )BSI- IZ\'A'TIONS 01 : THE

S( • ANNING MULTICIIANNFL Ntl('RO%'AVI-' RADIOMF.TIAZ (SNIMR)

SFC-I ION

IN FRODUCTION

I he Scanning	 Radiometer (S11\IlZ ► was carried aboard both the

Nimhus-7 and Seasat satcllites, bath of whtch were latim.hed in 1978. It is a 5 frcquency, dual

polarised microwave radiometer which scans an 80 cm reflector such that the antenna beats sweeps

a cortical arc of 50° with a cone migle of 42° measured at the spacecraft. This provides constant

incidence angle of approximately 49'' (liar ;ut 800 kill 	 at the Farth's surface when the cone

axis is aligned with the local vertical (its nominal orientation). 'The primary purpose of this instru-

mcnt is to measure the sea surface tentperattire, sea surface wind speed, and the atmospheric content

of water vapor and liquid water (clouds) under nearly all weather conditions. It is the purpose of

this paper to derive a formalism for extracting these parameters from the measuremcnts provided by

the SNINIR. A similar derivation was provided b y Chang ,utd Wilheit (1979) for interpretation of a

three channel system. We will refer to this paper far computational details and only repeat enough

for concepiti.tl self-sufficiency ill 	 pal-..-r. We \%III also draw heavily oil 	 articles by \\ illicit

(1978) and Wilheit et al. (1 9 78) for background discussions.

In Section II. we will treat the relationships between the geophysical variables and the brighi-

ness temperatures. ;\n approach for extracting the geophysical parameters from the brightness

temperature will be dc\eloped ill 	 III mid numbers will he calculated based on the models of

Section II. In Section IV we will develop an algoritlim for appr o mi ll sting rain intensity from the

radiometer measurements. III
	 V, we will examine the sensitivity of' these algorithms to rain

tilling all or part of the field of view. III 	 l we will gave computer programs for all the

retrievals and explanations of them.



BACKGROUND PHYSICS

Because of the validityof the Rayleigh Jeans aI)proximation in the microwave region, the Iaw of

radiative transfer may be expressed quite simply

dT B	 _ y ( TB - to)dx

where TB is the microwave radiance expressed as an equivalent black body temperature, -y is the ab-

sorption coefficient at the point x and t 11 is the therm(Aynamic temperature of the medium at that

point.

I - he derivative is along the direction of propagation. It must be emphasized that Y is only the

,attenuation due to loss mechanisms: scattering and reflection must be accounted for by appropriate

re-distribution of radiation among directions of propagation.

A typical Farth viewing geometry is shown in Figure 1. In order to calculate the brightness

temperature expected for such a situation one first divides the atmosphere up into a number of

layers each :)f which nnay be characterized by a uniform temperature and absorption coefficient.

Beginning with the YK cosmic background, the radiation is then propagated from the top down-

wards through each layer according to Equation 1. A fraction R (the reflectivity) is reflected from

the surface and the surface also radiates an amount Et NN here E is a quantity characteristic of the sur-

(ace, tile• emissivity , having a value between 0 and 1 and t is the thermodynamic tcntp., ratLite of the

surface. Arguments based on thermodynamic equilibrium show that F. and R are related by:

E + R = I
	

(2)

Since water is a polar molecule it has a very large dielectric constant at microwave frequencaes.

This n:sults in large reflectivity (low emissivity) for a liquid water surface such as the ocean. In

Figure _'. the emissivity, calculated for a smooth water surface using the dielectric constant data for

20T of Lane and Saxton (1952) and the Fresnel relations (Jackson 1962), is shown. Note that the

emissivity increases somewhat wiih frequency over the range, and that for viewing at an oblique

angle, the horizontal polarization yields a lower and vertical a higher emissivity than that for nadir

2
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dewing where the distinction between the two polarizations breaks down. "The emissivity was cal-

culated 'owth for fresh water acid for a 3.5', NaCl solution which is a reasonable approximation to

sea water; there is no consequential difference bct%^ccn fresh and sea water except at the very low

frequency end of the spectrum, below about 5 Gtiz. Since most solid surfaces have rmissivitics in

the range 0.8 to 0.95 and 0.5 is it value for water, there is a striking contrast between liquid

water surfaces such as lakes, rivers, and the oceans and solid surfaces such as land and sea ice. This

low emissivity of file sea surface also provides a good background for viewing the intervening

atmosphere.

The emissivitics shown ill 	 were calculated for a smooth water surface. however, when

the wind blows across the surface of the ocean, it generates roughness and foam. Some care is re-

quired in the quantitative definition of wind speed at the surface. There is a substantial vertical

gradient in the Hind speed Ill 	 boundary layer. A turhulent kind shear model for the marine

boundary layer has been developed by Cardone (1969). 
Ill 	 model, the details of the wind shear

depend on the wind speed and on the air/sea temperature difference. 
Ill 	 there is more shear

it' V". ocean is colder than the air (stable) than it' the ocean is warmer than the air (unstable). Wher-

ever possible wind speeds used in the derivation of the emissivity models defined as follows: The

wind speed is measured at any altitude within the marine boundary layer. Using the actuA air and

sea temperatures, the friction velocity (generally termed "U -Star" (U* )) is calculated with the Car-

done (1969) model. Thin, assuming neutral stability (air!sea ( L • nlperatLire equA ), the wind speed at

20 m attitude is calculated. This last step is merely a translation of U* into a more familiar Diu:Intity.

The results of Wilhcit ( i978 11) suggest that this is ;in appropriate definition. 'rhe effect of roughness

oil 	 emissivity ofthe water surface depends strongly on the viewing angle and polarization. For

viewing directly at n :ILllr where the distinction between vertical and horizontal polarizations dis-

appears, roughness has very little effect oil 	 for viewing in horizons:d polarization at angles

away from nadir, the roughness increases the emissivity and for vertical polarvation for view angles

hetween 0° (nadir) and 55 0 the rou ghness increases the emissivity while it decreases the emissivity

for view angles greater than about 55 0 , as was detemimed expermicnimiy oy iiviiiup.i i :97 i ;. Foam

3



cover, on tilt- other hand, always increases the cmissivity of the surface. Figure 3 shows the increase

in brightness temperature caused by a given wind speed as found by Nordberg et al. ( 197 1 ) for a

frequency of 19.35 (;H. and tier nadir viewing. They found no effect, in their case, for wind speeds

less than 7 ini% and an increase of around I°Ks/in above that. 1 -his relationship has been investigated

further b) Webster et al. ( 1975). They examined a frequency range of from 1.4 to 37 GHz and a

iew angle of 380 (both -olarizattons), figure 4 summ:uves their results. Here the rate of increase

of brightness temperature with increasing wind speed is shown for all frequencies observed. Note

first that vie%%mg in hotvotital polarization enhances and ^IL-Wing in vertical polarization decreases

the strength of the effect vis-a-vis nadir viewing. This is because in horizontal polarization the effect

of roughness and of foam both increase with increasing wind speed and because viewing in horizontal

polarisation decreases the emissivity of the undisturbed surface thereby increasing the emissivity

contr&O hetween the foam and open water with respect to nadir viewing. The converse argument

for foam anJ the relative weakness of the roughness effect account for the vertical polarization case.

Note also that the spectrum of the net ctfect is only weakly frequency dependent above about

10GHz but it decreases somewhat at low • i • r frequencies.

11'ilheit ( 1978 II) has examined the roughness effect isolated from the :atmosphere and foam

effects both in satellite data (Nimbus-6 Electrically Scanned Microwave Radiometer) and in ttte data

of I lollinger ( 197 1 ).

It was found that the surface could be treated as an ensemble of flat surfaces and the emissivity

colcul IMI for each mcmher of the ensemble as though it were an infinite plane surface. The rough

surface emissivity is then the ensemble average of the individual emissivities. It was found that tilt

distribution of surface ,lopes given by Cox and Munk ( i954) overestimated the roughness effect

below 35 GHz, but was acceptable at higher frequencies. In parti: ular it was found ;hat the variance

of surface dopes o' required to account for the microwave observations is given by:

a= _ (0.3 + 0.0' f (GHz)) o2 n	 f ^ 35 Gliz

a= = 
02

f > 35 GHr	 (3)
C111	 --

-t
L
r
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slope variance given by Cox and Munk

t vo :s). A composite surface mood wmcn mcmue% file meet of both roughness and foam was pro-

posed h) Wilhcit (1979). In this model, the rough surface described is partially of •scured by toam

(tor wind speeds greater than 7 fit/s) such that R, the reflectivity of the surface, is reduced by:

R \I 	 P) = ( I - tit R ItOUGIINI SS (0, P)
ONLY

K = all -e'^^^^)(w-7m/s)	 w>7m/s

R = 0	 w <7 m/s	 (4)

where IF is the observation frequency, w is file wind speed. t) the view angle, P the polarization and

= 0.006 S/m

ft, = 7.5 GHz
	

(5)

I'I ► c constituents of the atmosphere which make consequenti.il contributions to the brightness

temperatures observed in this spectral region are molecular oxygen water vapor and water droplets.

Molecular OxygL, ► has a series of resonances in the 50-70 (1Hz region and a single isolated tine at

11 14 GHz. The microwave properties of molecular oxygen in an mmosphcric context have been dis-

cussed by McAs and Lilly 11963) and by Carter et al. i 1908). A very clegant model which accounts

for the overlapping of the prcSsure broadened lines has been published by Roscnkrantz (1975).

Since the mixing ratio of oxygen is substantially constant and the absorption coctficient is only very

weakly temperature dcpendcnt, it contributcS only a constant 00'set to surface observations is the

140 (;Hz region. It must be included in calculations using any oi' the above models hit is sintplc

enough that it will not be dealt with further Isere.

Water vapor has it fairly weal: resonance at _"._' G11/ and very strong ones at 183 GHz and

higher FregU'ncie:,, the wingS of which hive significant contributions to the atmospheric opacity at

all trcquencies but particularly above about 10(,11/. The absorption coel'icicnt fur v.ater vapor

based on Staclin ( 1966) is given in Figure 5 for the 1962 U.S. stand;,rd it mosphcre (AF('RL, 1965 )

for sea level and 8 kin altitude. "rite absorption varies as a Function o1 alritudc because of pressure

broadening. Ilowever. file bulk of water vapor is tomid in the bottom few kilometers of the atnto-

sph ,_• rc. over which there is little ch;u ► gc in the pressure broadening. Thus, variations in the vertical

distribution of water vapor cause little difficulty in retrievi nc surface para, ► ictc,s.
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711e absorption due to non-raining liquid water clouds is wel! described h) the Rayleigh approx-

inmaIion I(Imm and I .ist 19.54) u.ang the dielectric data of Lane and Saxton (1` 52). In Figure 6, we

show the absorption coefficient for a cloud with a liquid water density of I gm/rn 3 at three different

temperatures (0"C. tZO'C). T1mc absorption coefficient is almost precisely quadratic in frequency

Aid varies by about a factor of three with temperature over the rang. shown. Since the spectrum is

preserved with this tcnmperatur. %ariatmon, the spectral characteristic may be used to correct for

clouds even though the absolute amount of liquid water would be uncertain by a temperature de-

pendent multiplicative factor. Additional discussion of the microwave properties of mol.cular

oxyger, writer vapor and clouds along %%ith numerical expressions for calculating absorption coetti-

cients can be found in Chang and Wilhcit I 1978).

l6in. on the other hand, provides a much more complicated situation. The particles arc large

enough compared it, a wavelength that resonant effects occur and the absorption is no longer simply

proportional to the net water content. Further, the spectrum (it the absorption coefficient depends

on the drop sim dist ribution and scattering, must be considered as well as absorption. A m(Ael for

calculating the upwelling brightness tcnmperature from a raining situation is discussed by Wilhcit et al.

(1077). Al present. Ihere is no adequate technique for correction of observations in the presence of

rain. In Section IV we will develop an algorilhnm for determining rainf,ill intensity and in Section V

we will Approximate the rain intcnsit^ through which the retrieval of surface parameters may be

pertornmcd within reasonable error limits.



SECTION III

RI:1RIhVAL OF GF01 1 1 ll'SK • A1 PARAMI=TI-RS

Microwave instruments are typically limited in their spatial resolution by diffraction in the an-

tenna aperture. Since in SM\IR all frequencies share a common atwrture, the spatial resolution with

which it views the Farth's surface at a given frequency is proportional to the wavelength. The SMMR

resolution varies from approximately 150 kill at 0,0GH/ to 25 kill at 37Gllz. If the various frequen-

cies are to he used together to arrive at surface parameters, they must he reduced to a common basis

so that all the measurements apply to flit s:une area. One is, therefore, limited lit the rrtrieva of any

given parameter to the spatial resolution of fli t• lowest frequency used. Since resolution is always to

be desired, it is necessary to reduce the S.%I%I R data to several bases at various resolutions. The

present scheme whiLh is indicated in figure 7 is to reduce SMNI R data to four grids, The first has a

resolution of 150 kill and has all five frequencies: it is used for surface temperature determination.

The grid 2 has a resolution of 90 kill and has all the frequencies except 6.6, it is used for wind speed

retrievals. In principle, it is possible to use the sea surface temperature derived at grid I to arrive at

:ill approximate sea surface temperature to use as aft additional input parameter in grid ' for refine-

ment of the wind speed determination. The retrieval algorithm presently discussed does not slake

use of this but the structure exists in both the NilllbUS and Seasat data processing schemes to do so.

it remains a possible algorithm refinement to be used as confidence ill 	 instrument and in the

" iinplcr retrievals !rows. Grid 3 has a resolution ol " approximately 60 kill at the three hipilcst Ire-

quencies and is used for the atmospheric water retrievals. Both the wind speed and sea surface tem-

perature can he used as additional input parameters ill I'mute algorithm versions. The fourth grid has

only 37 G117 data, but at a resolution of 30 kill. It is only used, in ocean applications, for providing

stru-,iuml information to the rain rate retrieval which depends primarily oil 	 I K GI Iz data. A

paper by Njoku ( 1979) describes the very difficult process of' reducing thy • SMNIP Outtputs to IheSe

conunon bases.

As call 	 seen from the previous section, the brightness !en lieratures which would he observed

upwclling from the atmosphere depend (,)it many geophysical variable,. Moreover, several of' the

k



variables t temperatrre, litimidity, and liquid water contcnt 1 are, in themselves, continuous functions

of height. Therefore, this problem has an infinite number of degrees of freedom. In the most gen-

eral scn%c, a retrieval of geophysical variables from a finite set of observations could never be per-

formed. We must resort to approximations and constramed solutions if we are to derive useful

information.

(Me technique for retneNing geophysical t;araineters is the statistical technique whicli was ap-

plied, quite successfully, by Waters et al. ( 1975) to the problem of approximating the atmospheric

tk , n,peratLire profile from microwave brightness temperature measurements in the inoleculai oxygen

hand (A = S nun). In this technique, which is schematically represented in Figure $, they begin with

a Statistical data base consisting of a large set of actual temperature soandings. For each of these

sounding•, they calculate the expected upwelling brightness temperature at all frequencies at which

measurements are made. I he temperatures at various heights are then regressed against the bright-

ness temperature or functions of the brightness temperature to determine the most probable (if the

statistics are Gaussian ) tk • niperature from each level.

If there is little information about a givt:n Ir:el in the brightness temperatures, then the retrieved

temperature %% III tend toward the a priori average of the statistical data set and the residual of the

regression will not be much smaller than the variance of the a priori data set. It is to be noted that

information about a given level can occur in a given measurement either directly through the equa-

tion of radiative transfer or indirectly through correlations inherent to the atmosphere itself.

	

This technique nta^ • be faulted in 	 any bias of the a priori data set is introduced into the

retrieval, When the brightness temperatures are strongl y related in a direct sense to the geophysical

parameters being retrieved. this would be of little consequence, but where the coupling is through

statistical correlations among the geophysical observables or when the retrieval offers only marginal

improvement over the a priori statistics and the retrieved values will tend strongly toward the com-

	

monplace situations. Whcn tested oil 	 data, this may well give average statistics which suggest

;i ^ cry good retrieval technique yet Five poor results in the extraordinary situation which is often of

the most interest. We. therefore, have modified this technique somewhat. We generate an artificial

8



,lata set subtending the approximate expected range in all the geophysical variables at issue and

force any correlations among them to be zero or at least much smaller than expected in nature. As

it by-product, thk relives us the necessity - ► f providing it true statistical data base for combinations

of parameters which have been measured sparsely or not at all. For each member of this ensemble,

we calculate the ten brightness temperature:+ (5 frequencies, 2 polarizations) as well as the geophys-

icai parameters of int,rest here, sea surface temperature, sea surface wind speed. the column densities

of water vapor and cloud liquid water and a correction tOr refraction by atmospheric water vapor

calculated accord .,g to Bean and Dutton (1966) which is used in interpreting the data from the

Seasat altimeter.

Although the retrieval problem contains, in principle, an infinite number of degrees of freedom,

there are four principal degrees of freedom here, sea surface tempemoure, sea surface wind speed and

the net atmospheric content of cloud liquid water and water v, nor. OOC would not expect details

of the tempertture profile of the atmosphere nor the vertical distribution of the two phases of atmo-

spheric water to have a large effect. In fact, the specific frequency choice for the ?1 GHz channel

being it 	 off the watt-r vapor resonance at 2-'.235 (;Hz was made, based on unpuhlished calcula-

tions by the authors, in order to reduce the minor dependence on the vertical distribution i)f water

.apor .o nevligible proportions. Similar calculations by Westwater ( 1078) arrived at a similar

conclusion.

The quasi-statistical data base used here consists of 90 surface models (10 wind speeds and 9

sea surface temper.ttures — see Table 1) and H 1 atmospheric models made by combining the 9 hand-

book atmospheric tenrper+ttire profiles in Table li (AFCRL 1965) with the') cloud models listed in

Table Ill. Chese cloud + ',,,Jels were simply invented for the present purpose. Observations of cloud

liquid water content arc almost non-existent. These were chosen to give a wide r:+nge in the nci

liquid water content and vertical distribution of water. The observations of Wilhcit an,t Fowler

( 1977) would suggest that these models are, at least, reasonably-_ The combination of all 90 surface

modek with all 81 atmospheric models provides a net data set with 7290 composite models. In

additioln tothe brightness temperatures and ge.+physical parameters another vari; , ble must be

9
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k0111%ldered. Rc.Il'.pacccraft tit, fit) . . IIAa11s fly tit their nominal all it title but may depart ilolll it by

several degrees In Pilch, toll, and/or yaw I hll- flit- angle at g litch Ills• sensor %wws the I arth's

stlllace 1.111 %.It-) .n it function oI 11111'' .Illd x ..ill posllloll. I l ► Is 'Ri'l'l Is Included 111 file caltIllations

b y .Illernately using 48" an' 50" as flit- vices al ► gle as the conl I'll taflon steps throueh flit- 81 different

A11110sl , heres. 1'hr View angle is Own treated as aft additional observable and is u ► , lulled nl the re..

gic%%loll like .111 Adtht1011.11 IN Iq-11flicss telllperM111v

I line n ► odels sublend the .ipproximitt y range cwt-Octl for each of the paranu-ters hilt flit- ex-

petted correlations are Icft out F%cn'.o al„uld .l combination is an arctic winter almo%phere over

All ot • ean with a trlllvcua .Ire is ! tl ' I"K IS int • lu(Ietl. 1111'. would tend It, 11I.ILe simulated retrieval re-

suit% somo%hat pt-%slmislic. A weak correlation is introduced between cloud Ilgrlld Hater and water

vapot contt-nl ill two warys I : irst. %tht-rever a cloud intioduced. ;he relative Immi lily is increased to

IllO' (%ilh respect to flit' liquid I , haw). This intlt,du,r'.some variability in the %erlical distr ► bufl,Ill

of \t.11er vapor over MA given b y the limidbook atmospheres which are generally rather smooth

Fliv '.wild clIt'd irl, • lid"d 1%spoill.111cous 1111deatlon I\l,imm 1 0 71). 1.1quld tiiatet dltlplets ul

child'. k.11111of he sllltt-r-coACil 1o11't-1 Illan -40 " C \tltholll ft't'e/Itlg. Since tee clouds are transpatt'tlt

ill tilt's'' IIctII It' n,' It' N. IIt' t l kit itI IttItitiI %k Iler colt Icnt is se  I 	 zero !or any le%cI if %%hu -h the It- IIII , eI a-

t urn is less thin , '3" , K.  falls redu:cs Ihr liquid water conl ,nl ►Or the colder, and Ilias drier.

atl!r0%I,hcrt-s.

I'lic repression I,', hnique is inherrrllly Inlrar but the prohirnl at hand has some mild non-

lillemilivs. 1'11r I , Irsent ' 11gorlthill use• two It-ellnl(lurs for n ► IIlg.ilulg Ihr 0 Tect of those non-

InleariIIes I'hc I'itsl has alread y heel alluded It , Ihr use of'fine tions of brightness temperalure

rallici thin Ill y hllt'lltlll's% Icilll ,t'tatlllr'. tht-lll'.elves. Olit' is fret' to choose any function of l,rlghtness

lonlicralurr for use in the regression. lht- ,ipproliriateness of any particular choice is determined I,y

Iht• residuals of flit- regression analyses. On the has ►s of hctlnsti: arguments by Wilhrit rt .II 1 1`'77)

ttr h:n. • chosen to use Iht- ttlnetit,n

1 : ('f lt ) -= In (.'.tio"K - Tit)

lit lieu of I , Ilph111C” I,'nlla• rature for the , llalulck most .Iflct-ted by the atmospheric consmucnts. IS.

21. and 3701/.

10

1

I



I

n .

The second approach fur dealing with non-linearilies is to iterate the solution. The application

of iterative solutions in the present context is Illustralcd in Figure 9. A set of re trieval matrices are

mad: usiit;: the entire ensemble and also variou% testricled : ­ 11mts of the ensemble of geophysical

models. 'The data are First interpreted using the relrieval hased on the entire ensemble and the ap-

proximate values for the geophysical parameters mk Ih;n used to select the matrix derived from the

most appropriate restricted ensemble. In principle, one could pr ►cede to even more and more re-

stricted en,etnhles. In the present algorithm, the application of this iler,Ition is linuted. The non-

linearity to he ad,hessed is the onset of foam generation al wind speeds of 7 m!s. This produces an

abrupt change ill the slope of brightness temperature ver, as wind ;peed. I he solution fur the sea

surt;tce paran ► clers (temperature and wind .peed) are signilicanli% affected by this abrcipt change.

I hus ill 11„01 cases tilk. solution is iterated once 11) decide whetltel the wind speed is. hove or hclow

7 m/s. The solution for atmospheric parameters is not particularly improved by such an iteration

Mid so the atmospheric retrievals are nol iterated. It was also found that the use of the 37 (d I/

channel only aided significantly in the case of cloud liquid water. So. to aid in III; isolation of po.-

sihle prohlems with real data, it was nol t.sed in any of III,- other retrievals.

The assumed noise values were based on performance measurements of the engineering model

of the SN1MR instrunient and approximations for the ell'ect of ' averaging over th; carious grids. As

a latter of judgement. no noise values less than 0.'"h \acre assumed. The values used are 0.2°h

I'M the gnd 1 and 2 retrievals aril 0.5 K for the grid 3 retrievals. I he assumed uncertainty in the

incidence angle is 0.2" of 'Ingle The resulting egrl.1lion. IM the It. If[Mil .ar e as (ollows:

Wind Speed Retrieval - N -id Speed Unkn;wn

WS (tu/s) = - 465.3 + .h! 1 h T lt 10.7 v

+ .2873 T it 1(). i 11 + 168.7 In (280. - ,T II t R y )

- 86.3 1 In 1280. - I ll I x u )

- 15.84 1n 1280. — " T I +, 1 \ )

17.18 In 0'80. - 'r,, 1 11 )

+2.357O j sN , . ( 1.8m's/ 12 m/s)	 (to)



Wind Speed <7 m/s

WS (1n /% i = - ' 23.9 -.222() ".1310.7v

+ .6056 'I Is i u.; it 	 130 3 Ill 280. -"I'll I eV )

-34.19 In (280. - 
. 1

"0I XIt

+ 10.24 In ( 280, - "
1'112 I V )

-32.75 In (280. - T621N )

	

1,14 
©INc : ( l .(, m/s / 1.'1 fit/%)	 (7)

111n,1 Speed > 7 m/s

WS On/s) _ -338.4 + .3115 Tu 
10-7v

+ •4501) 1 1i1o.71, + I I.x In (ZM). - 'I-1+1sv )

(280. - T IS 1 sn ) - --'(1.66 lit 280. - TB21 V )

+ 12.89 In ( 280. - T 1, 211 , ) + 1.432 O INC • ( I.0 m/% / 10.01111/0	 (8)

Sea Surface Teml)era(tire (WS : 7 m/s)

SS'r ( ) K) = -149.1 +- 1.077T	 + I oOO TIt 6.6 	 RG.Gl1

- .2767 r ls l u.7V - . 5540 I, I► I l	 11

+ 46,1 7 In ( 280 - Tk 18V ) + 3.097 Ill 280. - 'I' ll] sit )

416_' In I'ti0. - 11121V )- 12-54 In (280. - T1121t1)

- .5850 O INC 10.7°C / 8.(,°C) (9)

Sea Surface FcIIII).-ralure (WS > 7 m/s)

SST (° K) = 188.9 + 3.040 T IS(, h , - 1 .188 T1sr.G11

-.709 7 Is 1 0.7V + . 2405 TIj 10.71!

-6.114 In( -2x(1. - 1 1s1sV) +20.37 Ill (280.- 1 *131811)

-4.0031n(_'80.-,r,,I,.) +.4861n(28O.-Tls2tu)

-4.735 OINC• : ( 1 .5"C/8.6( C)

..._.	 7	 -	 ---
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Cloud Liquid Water

CLW t mg/cm 2 I = 246.1 - 51.72 In 1280. - 1 1 , 18V )

+134.4 In(-80.-TBtBtt) +40.14In(280.- T1321V)

+ 24.95 In (280. - I H2111 ) - 155.5 In (280. - 1 B37V )

-36.63 In (280. -TB37H ) - 3.391 O INC ; (4.5 mg/cm 2 / 23 mg /cm 2 )	 (1 I

Water Vapor

WV (gm1cm 2 ) = - 9.784

+6.927In(280.- IHIMV) +5.301 In(280.- 1Bt8tt)

- 4.518 In (280. - T B21 V ) - 6.081 In (280. - T B , iii )

+ .039 OiNC (.15 gm %c111 2 / 1.7 gm/cm 2 )	 ( 12)

Utimeter Wet Correction

Pi. (cm) .. - 51.95 + 34.37 In (280. - TBt 8V )

+ 37.15 In (280. - T B1814 ) - 22.64 In (280. - T B , t V )

-39.70In(280.-TB , i11 ) - . 18O INU ;Ocm/10cin)	 (13)

The numbers in parenthesis following each equation represent respectively the RNIS residual

error of the regression and the RMS variahility of the parameter in the original data set. Fortran IV

programs which execute these equations and iterations are given in Appendix I.
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SU.0 t ION IV

RAIN ALGORITHM

A model for ,luantitatively telatutg microwave brightness tvm1) attire to rain rats over ocean

area was dcveloped by Wilheit et al. (1977). In their model, the tarn is treated as a 4larshall-Palmer

11' 4S) distribution of ,+ater droplets extending from Ihr surface to Hit. fteezing level (0 0 C isolitennl

with approprtale water vapor and non-ranting cloud dtstnhutions. It is assumed that the watet above

the Ireezing level is frozen and thus essentially ittvistble to the frequencies of interest here. The full

!tie t 1 0081 ,, altering and absorption hrol , erties of the ensemhle of Oroplets are calculated and the

equation of radt.ttive transfer soll.ed with iteration to account for scatlm. • Q. The problem is domi-

nated by the microwave absorption by the rain with the spattering providing small corn ctinns.

here are two major problems in file application of this model to the i. terpt-clatton of measure-

nlents. 'The Tint is spatial resolution. I'he relationship between brightness temperature and rain r.tte

Much results from this model is highly non-linear Thus it' the rain !ntcnsitv varies over the radionl-

eter's instantaneous field of view, the brightness t. • tnperatme which the antenna averages over the

field (It'vicw in a linear manner „!II not yield an average rain rate but, lit general, a lesser rain ratc.

At the `i kill resolution of the Nunllus-5 Flectricalty Scanned Microwave Radiometer (ESMK), this

problem is serious, at the (,U kilt resolution of the 18GIl/ ch.tnnels of SSIMR, the problem „!ll he

much worse. Hie .t, GI I/  channets have a resolution of 30 kill but at rain rates on the order of

a stun ht or grealet. the atmosphcre is too opaque Io ^ told useful rant intensity estimates. I his rep-

resent; too low a LIvn.!mic r..ns • e to he useful. The 18 ( ;1Iz can measure rain rates up to about 20

111111 Ill. It nluclt more reasonable dyiwimc range.

The second problem is 111A knowledl-e of the frcci i nR level is required. l6o et A. ( 1 0 77), lit

producing .!it atlas (11' oceanic iamfall from the Nimbus-5 I • SNW data, used climatology to provide to

the nearest I kill a freciing level based on location and season. Since the freeing level was given in

I kilt mcremertts• changes lit the freezin g level produced abrupt changes in rain rates. A more serious

problem was found at hi g h altitudes where the climatological freezing levels were low (1 —2 km). It

was found that Ili s, • low ti'ceinlg Ic\els caosed the rainfall determinations to be clearly excessive.

1.1
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As an ad hoc solution. File treezing level was set to 3 kilt for these cases. Since tlrc maximum value

for freezing level is about 5 kilt it was decided that the error contribution would not be too severe it'

the assumed freezing level were fixed at 4 kill for the present. This can cause errors of ca. _'5', 
ill re-

trieved rain rate: the resolution problem can cause larger errors. The primary purpose of this rain

algorithm is to Ilag tltc retrievals when the rain rate is excessive rather th,m to provide ram data

per se. The effect of the rain on any ch:mncl depends first on the net opacity of the rain calumn at

that frequency so fixing the freezing le%el should not have too great an effect oil 	 rates derived

lot this purpose. A more sophisticated rain retrieval should he used to done rain data for climato-

logical 1

In the pres.nt algorithm, we use the brightness at ISCII/ (horizontal polawation) for the pri-

mary rain informal ion and 37 GHz to provide some help when the rain dues not till a grid 3 cell

untl'orn ► ly and to enhance the sensitivity to low rain rates. I he brightness temperatures as a Iunclion

of rain rate calculated by the Wilhcit ct al. ( 1 0 77) model are given ill 	 10. The :ell artictures

were .arranged such that fur each grid 3 cell Iherc are four coincident grid 4 cells. 'I he algorithm uses

as input the I hll brightness temperature at grid 3 and fur four correspondin t, (grid 4) 3711 hrighmess

Ienlhcrat'tres. Thee different cases may be defined.

1. All four 3711 brightness temperatures saturated (rain rate > 4 nun%hr).

In this case the rain rate is derived from Ilrc I All brightness only using a table corresponding to

Figure 10.

'. All tour 3711 hrtghtness yield meaningful rain rates train rates < 4 mm/hr).

All 5 intuit ^ aluesare converted to rain rates using t1w tabulated values and the resells are averaged.

3. Some. Nil not .ills of the 37 (it l/. brightnc,> y ield rneaningiul rain rates.

The meaningful rain rates for each of the grid 4 cells are converted to 1811 brightness lempt'ra-

tures using tabulated values. knowing these r.ilues and the average I till brightness for all four grid 4

cells (i.e.. the grid 3 measurcnicnl ) an 18 GI I/ hnchtness mul-crature and thus rani rate can he calcu-

laird for the toLd area of the saturated 37 Gllz IiIC'.ISIII'elll ell ts ai.d the net rain rate for the whole

grid 3 cell is calculated by appropriate averaging. A Fortran IV Program Much executes this calcu-

lation is included in Appcndi\ I.

15



SECTION V

SIMULATIONS 10 DETFRMINE Tf'.l "(AIN SENSITIVITY OF

THE GEOPHYSICAL ALGORITHMS

In order to test these algorithms for flit, sensitmty to rain, brightness temperatures were calcu-

lated according to the Wilheit et al. (1077) model for various rain rates and a few different surface

conditions. These brightness temperatures were then averaged with brightness temperatures for no

rain with variou, weights to simulate rain covering various percentages of the field of view. In Figure

11, we shoe t lie retrieved sea surface temperature as a function of rain rate averaged over the field

of view for rain covering 1, 3, 10, 30, and 100`/ of the field of view. Figures 12 and 13 are similar

representations of wind speed and water vapor retrievals. It can be seen that the retrieval errors in-

duced by rain become comparable to the net retrieval error due to all other causes, and thus unac-

ceptably large, in the neighborhood of 1.0, 0.75 and 0.5 nun/hr for sea surface temperature, sea sur-

face wind speed and atmospheric water vapor content respectively. This is somewhat better perfor-

nuance than was reported by Wilhcit et al. ( 1976). The algorithms were re-formulated, leaving out

the 37 GHz channels, specifically to mitigate this rain sensitivity.

This sensitivity to rain may be understood by considering two situations. If there is a nominal

rain rate, say I nett/hr, which covers the field of view uniforniiy the rain's contnhution to the bright-

ness temperature will be quite similar spectrally to that of non-raining clouds although much larger

in magnitude. Thus, the retrieval algorithm for all parameters other than cloud liquid water will be

only weakly affected 11', on the other hand there is a rain rate of 100 nutr?hr covering. 117 of the

field of view, although the average rain rate is the same, the situation is altogether different. The

rain column would he nearly opaque at all frequencies and would contribute similar brightness tem-

perature increases at all frequencies when averaged over the field of vi,-w. This apparent spectrum is

not similm to any in the data base from which the retrievals were derived and thus is not rejected

and can affect the retrieval of any parameter. Other rain rates and spatial distributions can provide

a wide range of apparent spectra. The strong dependence on th ,- spatial distribution within the field

of view suggests great difficulty to correcting for the rain.

1 6
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SIA I ION VI

CONCI USIONS

An algorithm has be:n derived for the retrieval of sea surface temperature, sea surface wind

speed and the atmospheric overburden of water in the liquid and v nor phases. A refraction correc-

tion for the altinicter has also heen derived. The achievable accuracies appear to be quite useful.

For wind speeds greater than 7 m/s the wind speed precision appear to be about I meter/second and

the sea surl'ace temperature retrieval precision appear to he about 1.5'C. For low wind speeds

(< 7 m/s) the wind speed retrieval degrades to 1 .h m /s which is not much improvement over sintp!y

knowing that the wind speed is less than 7 to Is and the sea surface temperature retrieval improves to

less than I" C.

At any wind speed, the water vapor content of the atmosphere can be retrieved to a precision

of 0.15 gm/cnt' wet path length contribution to less than I cm and liquid water content to about

4 mg/cm2.

1
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rabic I

Surface Models

Wind Speeds (m/s)	 Sea Surface Temperatures (°K)

271

	

2.	 276.

Low Wind	 4.	 280.

	

6.	 283.

	

8.	 286.

	

12.	 289.

	

17.	 Hint Wind	 292.

	

23.	 295.

	

30.	 299.

Tab',: 11

Model Atmospheres

Name Integrated Water Vapor

1, U.S. Standard 1.60 - 2.87 cm

3.88-6.70

4.23 - 6.95

2.1 2 - 3.71

2. Tropical

3. Subtropical Summer

4.	 Subtropical Winter

5. Mid-Latitude Summer 2.93 - 5.22

6. Mid-Latitude• Winter 0.87- 1.40

7. Subarctic Summer

8. Subarctic Winter (Cold)

2.07 - 3.11

0.43-0.64

9. Arctic Winter (Cold) 0.21 -0.32

NOTE: Relative hunudity set 10 100 wherever cloud liquid density is greater than zero.
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Table III

Cloud htodcls

Bottom (km) fop (km) lhIasity (gm/m 3 )

0.1

Max. Liquid Water (mg/cm' )

10?

i

0

2

8

0.3

0.1

i

30

80

7 8 0.2 10

l

1

3

3

0.04

0.08

8

16

2

6

-

4

8

–

0.02

0.2

4

40

0 0

NOTE: Density set to zero where atmospheiic temperature <40°C (limit of supercooled water).

T1 = RTi + Etsurt	 Tl

I

4

t.su r f	 R, E

R + E = 1

Figure 1. Typical Earth Viewing Geometry Showing the Effect of Reflection of a Microwave
Radiance Expressed as a Brightness Temperature Off a Surface such as the Ocean where T L is the

Downwelling Brightness Temperature, Tt the Upwelling Brightness Temperature and E, R and tsurf
the Finissivity, Reflectivity and Thermodynamic Temperature of the Surface Respectively
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—:z



T

6	 `0Np0`

. 4 R106V
45

5

FRESH

N pp^fi
3 5% NoCL

4

^'	 FRESH	
10NP0^pR17pS

	

35%  NaCL	 45
"A00070Nt A`

W 3

FRESH

3 5% NoCL

.2

WAVELENGTH (CM)	 1

	

6.0	 3.0	 2.0	 1.5	 1.0	 0.8	 0.6

0	 5	 10	 15	 20	 25	 30 35 40 45	 50
FREQUENCY (GHx)

Fitmure '. Fillissivity of .! Smooth W ► ter Surface at 000

24



X

30

X ATLANTIC, NORTH

• SALTON SEA

20

V
0

C13

4

10

10 20 30
WIND SPEED (m/sec)

Figure ?. !v.:rrase in !it i i , Iitness of IIit- Ocean Surfair tI't.url "t 1' 1 .35(11/ Ihir It  %% in, I til cckI

( Not dberg of aI. 1 1071 ))

111



f

4 2.0
(n
Cf) ~
w Zz^^
=w^0 UJ 41.0
^L0
co ml

w

Lu
^ a 0

Q w Z_
ui Cl-

C
U w
Z_ F-

1.0

• NADIR
VERTICAL (380)

+ HORIZONTAL (380)
*INFERRED

2	 6 10 14 18 22 26 30 34 38

FREQUENCY (GHz)
Figure 4. Spectrum of In. cease in Bril-htncss Temperature Caused by Wind it the Occan Surface

(Webster el al. ( 1975))



10	 15	 20	 25	 30	 35	 40
FREQUENCY (GHz)

Figure S. Microwave Absorption Cocfficictit for Atmospheric Wafer Vapor as a Function
of Frequelicy,

0.2

01

0.08

Y

00
° 0.04
z
0

a
D

w 0.02

t--
a

0.01

004

00?5

27



ABSORPTION
COEFFICIENT .01
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n
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l igury h. Microwave Absorption Coctli:irnt for l gm/in' C'011irntr3liun Of
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DATA FROM
SPACE CRAFT

i-
REGRIDDING

AND ANTENNA
CORRECTIONS

r

	GRID 1	 GRID 2	 GRID 3	 GRID 4
5 FREQUENCIES4 FREQUENCIES	 3 FREQUENCIES	 [37,GH:ONLY

	

150 KM	 90 KM	 60 KM	 30 KM

SEA

	

SURFACE	 RAIN RATE
TEMPERATURE

I-0- 1-11) SPEED
r-	 –	 EXCESS

ATMOSPHERIC	 HAIN FLAGS
WATERL PARAMETERS

Figure 7. Data Processing tichruie I'ur the SMNtIK Which was Launched oil Both Nimbus-6
anal Scasat-:A
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