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SUMMARY

Lumped volume dynamic equations are derived using an energy-state formu-
lation. This technique requires that kinetic and potential energy state functions
be written for the physical svstem being investigated. To account for losses in
the system, a Rayleigh dissipation function is also formed. Using these func-
tions, a Lagrangian is formed and using Lagrange's equation, the equations of
motion for the system are derived. The results of the application of this technique
to a lumped volume are used to derive a model for the free-piston Stirling en-
gine. The model was simplified and programmed on an analog computer. Re-
sults are given comparing the model resporse with experimental data.

INTRODUCTION

A general problem presented to many engineers is: given a physical sys-
tem, model it, simulate it, compare results with the physical system, and
predict performance. The specific nroblem of modeling the system usually
leads to either a lumped volime or a distributed parameter model. Once the
particular model tyvpe is selected, the equations of motion that ¢ ~scribe the
system must be generated conducive to the model type.

Engineering systems are generally quite large. They are usually made up
of more than one type of system. For example, the Stirling Fngine consists
of thermodynamie, fluid, and mechanical processes. Thus, the engineer must
not only generate the equations of motion for the different types of systems
bat also the coupling equations between the systems. There are many methods
used to derive the equations of motion.  For a lumped volume model, partial
differential equations describing the flow process can be taken from rveference 1,
and using approximations, simplified volume dynamic equations can be gen-

crated. This was done for a compressor in reference 2. For mechaniceal sys-



tems  [ree-body diagrams can be used. In these cases all forces are summed on
the free bodies and the resulting equations of motion can be generated. In these
cases however, any combination of the different types of systems requires a
separate generation of the coupling equations. A more unified approach is to use
an encrgy-state formulation of the system. This formulation (ref. 3) requires
kinetic energy, potential energy, and loss functions to be written for the whole
system. These functions are comprised of terms from all the various types of
processes contained in the physical system. Once these functions are formed,

a Lagrangian and a Rayleigh Jdissipation function are formed. The equations of
motion for the system are then derived from these functions by Lagrange's
equation, From this method, the coupling between the various systems falls out
directly as opposcd to deriving it separately.

This paper applies the energy-state formulation to the lumped volume technique,
Using the results, the equations of motion for the free-piston Stirling engine are
derived. The resultant model was then simplified to mateh an experimental test
sctup run at Lewis Research Center. The model was programmed on an analog
computer. A comparison between the model and the experimental data is given.

STIRLING CYCLE

Before describing the encrgy-state approach to the free-piston volume dynamics,
a brief discussion of the Stirling cycle will be given. A complete treatment can
be found in reference 4. Idealized P-V and T-8 diagrams are given in figure 1.
The cycle consists of two isothermal and two constant volume processes. Practi-
cal implementation of the cycle uses two pistons separated by a regenerator
(fig 2). A regenerator is a porous material which alternately stores or rejects
heat to a working fluid.  The piston phasing is set by the cycle dynamics and the
relative masses of the pistons. The volume between piston 1 and the regenerator
15 the expansion volume. This volume is kept hot through heat addition o L—
on fig. 1). The other space is called the compression space and it is kept cold
by heat extraction. The combination of heat addition and extraction maintain a
temperature gradient across the machine.

From figure 1, the cyele is generated by

(1) With piston 2 at full stroge and piston 1 at minimum stroke, all the working
flurd is 1n the compression space. The volume is at its maximum value while
pressure and temperature are at minimum values,

(2) Piston 2 is then moved in while piston 1 remains fixed. Volume decreases
and pressure rises since the working fluid 1s compressed. Temperature remains

at 1 (process 1 - 2).

min



(1) For the process (2 - 1) both pistons are moved to the left in such a man-
ner that the volume remains constant.  The regenervator gives off heat to the
cold working fluid, thus the temperature and pressure rise.

() When piston 2 reaches minimum stroke, it stops but piston 1 continues
to move.  Since volume increases, pressure decreases because of expansion.
The temperature remains constant since heat 1s added (process 3 - 4),

(5) Finally, both pistons move together (constant volume) back to the original
positions.  The hot working fluid gives oft heat to the regenerator, and pressure
and temperature decrease.

The cyele shown in higure 1 s ideal. Generally the cycles are more rounded.
The eyele thus accepts heat, converts some of the heat to work, then rejects the
residual heat.

FREE-PISTON STIRLING ENGINFE

A lree piston engine is one in which the gas dynamics rather than mechanical
linkage determines the relative phase between the two pistons - one of which is
calied the displacer pisten and the other, the power piston.  Much of the free
piston stirhng engine development is attributed to Beale (ref. 5). Figure 3 shows
a schemaue of a dual free piston engine.  The dual aspect of the engine is to
provide torce balancing for the large power pistons. A good explanation of the
working of free piston Stivling engines is given in reference 40 Bretly, the
bounce spaces tunction as gas springs for the displacer and power mstons.  As
the expansion space gas is heated, pressure inereases and the pistons move out
until therr respective bounce space pressure forces get larger than the combined
driving pressures and the piston inertia forces.  The method of having one prston
move winle the other remains stationary 1s accomplished by having the power
piston more wassive than the displacer piston,  Thus, the displacer moves much
taster and moves the working flurd back and forth through the regenerator from
the expansion snace to the compression space.  The rescitant pressure changes
in the working space caused by eyelie heat addition and rejection together with

the tuned response of the pressures in the bounce spaces keep the system running,

MODI]

e encrgy- state tormulation is apphed to a lumped volume model of the
lree prston stivrhing encine,  The formulation requires that kinetie, potential, and
loss energies be dervived for the ontive system. The resultant energy state terms
are used to torm a Lagrangian and a Rayvleigh dissipation tunction. Once these
tunciions are formed, Lagrange's Fquation is used to derive the equations of

motion tor the system.  These energy terms must be o cene calized coordinates



and the forces acting on the system must be generalized. The generalized coor-
dinates are those which are mutually independent. The number of generalized
coordinates 1s equal to the number of degrees of freedom for the system. Typical
systems and their respective generalized coordinates are given in reference 6,
For a free-piston Stirling engine, there are thermodynamic, fluid, and mechanical
processes involved. Their respective coordinates are entropy, volume, and dis-
placement.

Thermodynamic processes require the use of very complex energy- state
functions. Reference 6 gives a presentation of such functions and shows that the
perfect gas law is an incomplete description of the state of a gas. Rather than
use the complex energy-state functions some simplifying assumptions are made:

(1) Since for this application, the fluid velocities and hence the Mach numbers
are low, the compliance of the fluid will be considered as a simple spring, that
1s, pressure is proportional to volume. This assumption is justified in reference 7
for small pressure differentials.

(2) Differential temperature changes are calculated from a separately im-
posed energy equation.

While these assumptions seem constraining, it will be shown that the technique
leads to an equation set equivalent to the equations commonly used to model volume
dynamics.

State Functions

In order to simulate the fluid dynamics, the fluid system is considered as a
collection of discrete lumps (lumping). Once the lumping is done, energy, co-
energy state functions and a loss function can be derived in order to use the energy-
state formulation. These functions result in inductive, capacitive, and resistive
terms in the equations of motion (ref. 6). These terms will be derived for a fiuid
dvnamic process in the following sections.

Figure 4 shows a string of control volumes representing the discretized fluid
system.  Between the lumps a spring is used to represent a capacitive or energy
storage term and wall friction is used to represent a loss term. Each flow
volume has an associated mass of fluid and a displacement volume flow rate
represented by V and Q respectively.

Kinetic Energy

The kinetic energy for the system results from the fluid inductance. From
relerence 6, the pressure momentum is defined as:



on

l‘p =1Q (1)
All symbols are given in Appendix A, 1 is the fluid inertia, Figure 5 shows the
kinetic energy and coenergy fields. From the figure, the kinetic energy is:

]

p
'l‘f(l‘p) - Q'(l‘;)) d l’;’ (2

where tae primes indicate a variable of integration. The Kinetic coenergy is:

Q= [ PLQ)dQ @)
0

Using oq. (1) and assuming a linear inductance:

TpQ = 1L )

9

Eq. (1 gives the Kinetic coenergy function needed. Next the inertia must
be defined. Figure 6 shows a pipe with fluid flowing through it. The fluid is

driven by the pressure difference. Thus:

et d ﬂ) = pl - P, (5)
g dt \ A -

The use of Q/A as the velocity assumes that a well defined veloeity profile
is known at cach cross section of the pipe. Also the fluid lumps are assumed to
move as rigid bodies.  Thus, the inertia is:

1 =Ll (6)
Ag

Hence, the Kinetic energy for a typical lump of fluid volume in the coordinates of

this study is:

2]
fradl &

Ag 2 -
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Potential Energy

The potential energy is not easily described. From figure 4, if the lumps of
fluid mass move at different rates, potential energy can be stored in the control
volume in the form of an increase in pressure. For small density changes an
average density is sufficient, and a linear capacitor can be used to model the
compressibility effects. From reference 6, for fluid dynamics:

p=2lvy (8)

K

where K is the (spring) compliance (reciprocal of the spring constant), V the
volume, and P the pressure. Since the equations derived in this analysis will
be used for a gas, it is of interest to derive the compliance for a gas under gen-
eral conditions an'. compare the result with eq. (8).

FFor a general thermodynamic polytropic process:

PV? = Constant (9)
Differentiating:
Vide +npv*lgv =0

ap=-2EF 4y (10)

Vv

This relation is shown in figure . Comparing eqs. (8) and (10) gives:

K:__V_ (11}
npP

Next, for an average pressure and volume, a straight line approximation is
drawn. Thus:

Ko i
nkb

Figure 7 can be inverted and translated as is done in figure 8 to show the potential
energy and coenergy fields. For an isothermal process, n equals 1 and:

R X 1>
l}

If the process is isentropic, then n =1y, the ratio of specific heats and:



Koo te
v P
If displacement coordinates this is equivalent to the reciprocal of the spring
constant normally seen for gas volumes for free piston engines, for example:

K':-sz
\’F

This constant is given in reference 4 where K' is the spring constant. Since:
AQ=KAP

anc
AVv=KAP (13)

The potential energy using figure 8 is

-AV
,2)
\'f(AV) = AP'(AV)dAV!' = _i_ AV
K 2
0
or
2
== e (11)
K 2

Finally, n is taken as 1 when formulating the potential energy terms for

the flow process.

Resistance

A Rayleigh dissipation function can be written for the flow losses in the sys-
tem. In figure 4, the losses are indicated as wall frictions. This behavior can
be expressed as:

AP = RQ (15)

where R is the fluid resistance. The defining fields for the Rayleigh and
co- Rayleigh dissipation functions are shown in figure 9. For the Rayleigh func-
tion:



M
l°'f j APHQNYdQ!' (16)
0
Using eq. (15):
g
l-'f = RQ” 17
9

ANALYSIS OF STIRLING FREE PISTON SYSTEM

The system analyzed in this paper contains fluid, mechanical, and thermal
elements. The previous sections have determined the various energy forms for
tire fluid system. Here these results will be combined with the mechanical
counterparts and later with the energy equation (thermodynamic elements) to
yield the complete system equations.

Combined Mechanical and Fluid Systems

Now, the energy formulation is applied to a combined mechanical and fluid
dynamic system. Figure 10 shows two pistons exerting forces on a contained fluid.
for a lincar mechanical system, the kinetic and potential energies and the loss func-
tion are well known and are:

\
m
™ = : Mlk'f
m-/ ;7
i1
(
E
Vo, = - :'i > (18)




Since the displacement coordinate for the fluid system is volume, here let:

"’l - Api o
(19)
8§ Apl "y
Substituting into eq. (18) yields
m 3
M2
T = 5
m 2
2 A°
Py
i=1
{
2
v, = _..._E.i._.... (20)
m 5 =
2A° K
Api L
=1
m
D, ;2
F o= i
m 9
2 A°
Pi
i=1 y

Now for the complete system on figure 10, the total kinetic, potential and dis-
sipative energies for the fluid and piston are given by using eqs. (7), (14),

(17) and (20) with Vi ™ 0
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n 3
k 21 M2 M2
g 19 |, M8 | Maba
9 sad 343
/ N pl . Po
i=1
n
T | wad 2
. ( ji* ) +(f,1_- D n- £y) ; -
2 Kilin o 2Kpe2
=1
n
2] p:2 pgl
- Ry, Dify | Dby
2 548 gl
B .

Note that in the potential energy function that the spring compliance I has the

square of the area in it.

Lagrangian
The Lagrangian form (ref. 3) for the energy forms used are given by

. . * . .
C;{(Ql- -inélvggnvl'- 'vn»gl’&z) =T (Ql "Qn’£1’£2) - \'(vl-'-\'nlgly-‘g)

The Lagrangian is

n
2 ‘2 °2
57 19 " Mty . Maba
9 2 9
- 2 A° 2 A°
-1 "1 P2
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Lagrange's equation is

4 g(&,.a,» N @0 + 2L @) = ¥
dt f 90, ac, ol
i=1,2,..n+2
specifically

a = Vl, 2...Vn.£1,£2

@ =Q),Q,...Qp.4,,4,

(23)

The system of equations represented by eq. (23) are the equations of motica for
the system and are the mathematical description of the fluid and mechanical be-
havior. The various partials in eq., (23) are now determined. The inductance

terms determined by 8&/8511 are

ot My )
%, Aﬁl
g:iszzéz
9, Aiz

a.
j = InQn

aQ .

)

Similarly, the capacitive terms, E——f are given by
a
i

(24)



\
ol &y-Vp
%, K1
d (vn - 52’
3%, K .,
D ¥ =
aZ_ |-V  (V;-4§y) > e
= - +
iy R R1el
gé____ (Vp - &2) N Vi = Vg)
BVn Kn—-2 n-1-n
e

For the resistive term

i)
aF _ D1t
£ A2
P
arF Dot
3y A2
Po \
) (26)
BQl
AF _rQ
n'n
aQn )
Next, using Lagrange's equation (eq. (23)), for the 51 coordinate
M (c = ‘r ) D .
1 51”7 Y1) Dyé
2 E1 * K . ->1 =0 @n
A 1-1 A°
Py Py

Finally, substitute in eq. (19) and multiply through by the piston area
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A x - V)A
(Plxl 1) Py

Mlxl + = + Dlxl =0
1-1
: AV
Since — 1is pressure, we can write
K
. . o o
Nllx1 + Dlx1 PlApl (28)

Eq. (28) is the equation of motion for the piston. Note that the force PlA
oppeses the piston motion and is the coupling force between the mechanical and!
fluid systems. This coupling comes naturally from the energy-state formulation.
While this example is somewhat simple, it still illustrates the value of the method
when more than one type of system is contained in a physical process.

Finally, if a force is exerted on left piston, the equation of motion would be
the same except for the generalized force. If a force f is exerted on the piston
in the x direction, then all the generalized force components are

; 3
q =
e |
q"‘z =0
2 h
Qy, =0 > “9)
Yy
gy, =0
Vn )
The generalized forces for the equations of motion are
Ix Ix, CAY CAY
;l-‘:qx _1.+qx...._"'+qv_1+,,,qv___r.!. (30)
l'éir:lfl 2&){1!l iaotl naﬂfl

However, since all generalized coordinates are independent, the generalized
forces are the actual forces in their coordinate system

Q:l = t'/Apl

J:2=3';,1= ...D:“\.n-o

(31)

Thus, the equation of motion for the piston with force f in the x direction is

(32)
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Ml“l + I)lx1 =fa l'lApl

The equation of motion for the {,, coordinate is
M,X, + DX, = P A

n“p,

IFor the flow coordinate V 1

; (\'l -V, €y - \'1"
LD W i 55 s tR,Q, =~ 0
171 K ® 171
l—oz l*.l

Using the average density approximation, eq. (34) becomes

L s end |
e W 4 w, = P, - Py
AIK 1 1.1 1 2

Thus, the flow equations derived from the Lagrangian formulation are fully
equivalent to those which would be derived from ditferential methods.

FREE PISTON FQUATIONS

A schematic of the free piston engine is shown in figure 11,

(32)

(33)

(34

35)

Only half of

the engine was modeled due to component constraints on the analog computer.

I'rom this figure, there are seven volumes and two pistons.

Thes there arve

cight equations of motion. Using the results of egs. (32) and (35), the equations

of motion are

d 1
w, +tRiw. =P -P

Ag 1 11 e 11

1

f‘) v v
—w, +tRiW, = P,, - P
Ag ° 2 2 [} l{.l
L,

e e O - P P
Ang 37373 R,y R,
—_—w, +R,W P, -P
A.lg 4 474 Il:, |

(16)

(37)

(38)

(3



M X
dc

Mpxp +D x

P

The energy equation is derived in Appendix B.  The general form of the

derived equation is

\\'HT‘ = Wi fy'T

where

I .
upstream

o -
in )=

5 o '
We + ReW. =P
1 B
t\5l-'. ) )
(
S & +R\Ww
A g (' l"
(i

A - A

= p
p I’B.J P

for

for negative w

fon

for

out" lml! -

6~ PcoLp~ Yo

p1

T +

* positive

© positive

s negative

- P
)= 1 l’Bl(A|

p t Dl.|xii - l‘DBAdr N vad ¥ pc(Ad - Al|l‘)

-A )-PA
)y ™ ¢p

-

in

in

w
out

‘uul

(10)

(41)

(42)

(43)

The reason for the switching is the bidirectional flow characteristic of the

in \=
|
out
T
downstream
machine.

considered.

ideal gas law.

Finally, both regenerator segments were modeled as thermal lags.

example for the first regenerator

\\'ll“l © C,,
\

and w
m

are dependent on the regenerator material,

These seven temperature equations correspond to the seven volumes
|

The temperatures were coupled to the flow equations through the
I

(-dD)
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SIMPLIFIED FREE PISTON ENGINE MODEL

The free piston engine shown in figure 3 was run at Lewis Research Center.
For part of the test, the power pistons were locked in their forward most positions,
and the displacers were stroked up and down by oscillating the pressures in their
bounce spaces. This was done to study the thermodynamic flow process in the
machine.

The simulation was set up to match this experiment. This was done by using
only the temperature and flow equations. The displacer was externally driven, thus
eqs. (42) and (43) were not programmed. [ urther, since the inductance terms
were very small, they were set to zero in eqs. (36) to (41). This also had the
desirable effect of reducing th2 number of analog components.

Figure 12 shows a comparison of the model results with the experimental
data. Note that the compartson was quite good for the pressure profile. For the
temperature profile, however, the amplitude swing of the wave shape 1s good but
the transient comparison is not good. The reason for this is still not completely
understood but i1s believed related to gas thermocouples intermittently touching
the expansion space wall. The experimental stored mass compares well with the
analytical. The experimental values were calculated by using the pressure and
temperature proliles shown, calculating the volume of the expansion space a¢ a
function of the displacer position, and then applying the perfect gas law. 1 mean
value of the stored mass 1s somewhat higher for the simulation, but that 1s cue to
the slightly higher mean pressure for the simulation and the discrepancy betvieen
the analog and experimental temperature profiles, That pressure and mass
compare while temperature does not is possible because of the large DC values
of temperature (not shown),

REMARKS AND CONCLUSIONS

The energy-state formulation was used to derive the equations of motion for
a fluid- mechanical-thermal system. By appropriate assumptions, the procedure
was shown to lead to commonly used equations for volume dynamics. The pro-
cedure also afforded a unified approach in deriving the equations of motion where
more than one type of process is contained in the physical system.

The equations of motion for the free piston Stirling engine were derived
using the energy-state approach. These equations were simplified and programmed
on an analog computer. Results from the experimental data and simulation agree
reasonably well.

The structures which were used in this formulation were chosen to give re-
sults consistent with those which would be derived by standard differential tech-

niques. It is to be hoped that with more experience with the approach that some
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oi the assumptions made in this paper might be relaxed and yet yield forms which
can be readily simulated and extend the validity range of the model.

Finally, the energy equation was separately derived for this paper. It would
be worthwhile to attempt a complete Lagrangian approach which would handle both
the flutd mechanical aspects and the thermodynamic aspects as well.,
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APPENDIX A
SYMBOLS

area, mz; 1!‘12)

displacer area, m2', (ftg)

displacer rod area, mg; (ftz)

power piston area, mg; {[12)

power piston area, mg; ([tg)

powe. piston area, m?‘-. (flg)

power piston rod area, mz; (ftz)

specific heat at constant pressure, J/(kg-K); (Btu/{lbm—om)
specific heat at constant volume, J/ (kg-K); \Btu/(lbm-c[l))
specific heat of the mesh, J/(kg-K); (Btu/(Ibm-“R))

piston friction

change in

Rayleigh Dissipation Function

Co-Rayleigh Dissipation Function

Generalized force

force, N; (1bh

gravity, 1.0 (kg-m)/N- socz)-, (32.2 (lbm-ft)/(lbf-secz))
enthalpy, J/kg; (Btu/lbm)

)
regenerator heat transfer coefficient, J/(sec-m~=K);

20
(Btu/ (sec-t7-"R))

fluid inertia, (N-s¢=c2)/(1115); ((lbf—secg)/(ftsn

mechanical equivalent of heat, 1.0 (N-m/J); (778.3 (ft-1bf)/Btu)
reciprocal of compliance, m5/N; (fts/lbl)

spring constant, N/m5; (]bf/fts)

Lagrangian

length, m; (ft)

mass, kg, (lbm)

polytropic constant

9 9
pressure, N/m=; (Ibf/ft%)
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displacer bounce space pressure, N/mz; (lbf/ft?')
pressure momentum, (N- svvi/mg; (llbf-sc'rl/ftg)
power piston bounce space pressure, N./mg; (lbl/f12)
power piston bounce space pressure, N/mz; (lbf/flg)
volume flow rate, m:{/svc; lfls/suc\

heat, J; (Btu)

heat low rate, J/sec, (Btu/sec)

generalized force component

resistance, (N-sec)/ |115. ((Ibf- svt‘)/lls)

translformed resistance, (N- 5ec)/(kg-m2); ulb[-soc)/(lbm-ftg))
entropy, J/(kg-K); (Btu/(1bm-"R))

Kinetic Energy Function, N-m; (Ibf-ft)

Kinetic Co- Energy Function, N-m; (1bf-ft)
temperature, K, (“R)

time, sec

internal energy, J/kg, (Btu/1bm)

displacement volume, m:;, (1'13)

Potential Energy Function, N-m: (Ibf-{t)

work, J, (Btu)

mass, kg. (lhm)

stored mass. kg, (1bm)

regenerator mass, kg, (Ibm)

mass flow rate, kg/see; (lbm/sec)

mass [low acceleration, kg/so(~2; (1[):11/50('2)

linear displacement, m; (It

generalized coordinates

linear displacement coordinate transformation

ratio of specific heats

change in

density, k;:,»"m:‘; (lbm/ i'l:‘l

variable of integration



d/ dt
o/ 9x

derivative with respect to time

partial derivative with respect to x

Subscripts:

1-6
c

COLD

e

in
m

out

R
R

w

variable designation
compression volume
cooler volume

displacer

expansion volume

fluid

heater volume
intermediate volume
index

into a volume
mechanical

out of a volume

power piston
regenerator

first regenerator volume
second regenerator volume

mesh



APPENDIX I
ENERGY EQUATION

The change of stored energy for a control volume is considered. A typical
volume is shown on figure 13, Now for low velocity gas flow, Kinetic and potential
energies can be neglected. Then the change in internal energy is given by:

d(wﬁU - dQ‘— dw + hin“ in~ houtwout

Now the following substitutions are made, for equilibrium process

— )
U=ge,T, h=ec 'I dW—— dv
\V p J
giving
i(uc'l‘-d-——fw ¢cT, -w_.c T
dt J dt Mo pin out p out
And since W =W - Woat and y = i
\!

'l)+.&__l_)__..

J dt
Cv Cy

W T - “mwli‘in «0) = W':)utw'I out =

It is to be noted that, since the Stirling engine flow directions oscillate (through
zero) due to the nature of the cycle, switching logic on temperatures and flows
1s necessary to implement the energy equation correctly in each flow direction.
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Figure 10. - Combined fluid and mechanical systems
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Figure 11, - Free piston schematic
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