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SUMMARY

l.um,,ed volume dynamic equations are derived using an energy-state formu-
lation. This technique requires that kinetic and potential energy state functions
be written for the physical s,,stem being investigated. To account for losses in
the system, a Rayleili ► dissipation function is also formed t'sing these func-

n	 tions, a Lagrangian is formed and using l.agrangr'S equation, the equations ofN
°	 motion for the SN . Steni are derived. The reSU1tS of the application of tilts technMtue

to a luniped volume arc USed to derive a model for the free-piston Stirling en-
gine. ' 1 1 10 model was simplified and programmed oil 	 analog cu ► nputcr. RC-

salts are given comb; ► ring the model response with experimental dat;i

IN-M )RUCTION

A general problem presented to niany engineers is: given a physical sys-
tem, model it, simulate it, compare resURS with the physical system, and
predict perfornuince. The specific nroblem of modeling the system usuallY
leads to either a lumped vollime or a distributed parameter model. Once the
particular model type is selectod, the equations of motion that 0 ,scribe the
syslen ► must be generated eoncluc i ve to the model type.

Engineering systems are generally quite large. They are uSUally made ut-)
of more than one type of system. For example, the Stirling Fngi ►te consists
of thermodynamic, fluid, and mech;wical processes. Thus, the engineer must
not only generate the equations of motion for the different t ypes of systems
butt 1160 the coupling equations between the systems. 'There arc mmn .\ methods
used to derive the equations of motion. For a lumped volun ► c model, partial
diffcrent ► al equations describing the floe' process c•an be taken t rom reference 1,
and using approximations, simplified volun ► c dynamic equations can he gcn-
crated. 'Phis was clone for a compressor in reference ?. For mechanical sys-



toms free-body diagrams can be used. In these cases all forces are summed on
the free bodies and the resulting cxivations of motion can he generated. In these
cases however, any combination of tic: different types of systems requires a
separate generation of the coupling equations. A more unified approach is to ube
an energy-state formulation of tale system. This formulation (ref. 3) requires
kinetic energy, potential ener€,y, and loss functions to be written for the whole
system. 'These functions are comprised of terms fiom all the various types of
processes contained in the physical system. Once these functions are formed,
a Lagranginn and a Rayleigh .iissipation function are formed. The equations of
motion for the system arc then derived from these functions by Lagrange's
01LIM1011. from this method, the coupling between the various systems f:ills out
directly as oppns.xt to deriving it separately.

This paper applies the energy-state formulation to the lumped volume lechnnlue.
Using the results, the ccluations of motion for the free-piston Stirling engine are
derived. The resultant model was then simplified to match an experimental test
setup rinl at Lewis Research Center. The model was programmed on an analog
computer. A comparison between the modal and' the experimental data is given.

STIRLING CYCLF

Before describing the energy-state approach to the freo-piston %olume dynamics,
a brief discussion of the Stirling cycle will be given. A complete treatment can
be found in reference .1. Idealized 1'-V and T-S diagrams are given in figure 1.
The cycle consists of two isothermal and two constant volume processes. Practi-
cal implementation of the cycle uses two pistons separated by a regenerator
(fig 2). A regenerator is a porous material which alternately stores or rejects
heat to a w01'lcing 17uid. The piston phasing is set by the cycle dynamics and the
relative masses of the pistons. The volume between piston 1 and the regenerator
is the expansion volume. This volume is kept hot through heat addition (Tm:1x
on fig. 1). The other space is called the compression space and it is kept cold
by heat extraction. 'I'll( , combination of heat addition and extraction maintain a
temperature gradient across the machine.

From figure 1, the cycle is generated by
(1) With piston 2 at full str(,Ae and piston 1 at minimum stroke, all the working

fluid is in the compression space. The volume is at its maximum value while
pressure and temperature are at minimum values.

(2) Piston 2 is then moved in while piston 1 remains fixed. Volume decreases
and pressure rises since the working fluid is compressed. Temperarure remains
at T 111111 (process 1 - 2).
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For the process (2 - :t) h,,th pistons are moved to till- left in such :1 man-

rler that the	 rt,mairls constant. The regenerator gives oil heat to Iht'

cold %%orking fluid . thus till- tcnlpl-rahire ;111(1 pressure rir'c
(1) \\'hell piston'' reaches minimum stroke, it stops but piston 1 continues

to move. bidet, rolunic increases, pressure decreases because of e\panston.

1'ht- tcnlpt,rature remnins constant since heat is i hied (proves, :1 _ 4).

(5) I • 'utallY, ho li pistons more tOgethl-r (constant volumel hack to the original

lxlsitions. Thn lwl l%orkulg flout glues Ott heat to the rl-gencr: ltor• , ant} p(rl-ssurl-

and tenlp4.rature dl-t'rcase.

The cvelc shown in figure I is ideal. Gencrall .\ the cYcles arc more rounkit.d.

Tile cYcle thus accepts heat, converts sonll- Of tilt , heat to work, then rejects the

residual heat.

FitFF-- I I I .TON 5'rl is ING ENCINF

A frev piston t,nglnc 1s onn in Odch tilt , gas dYnanucs rather Ilmn mechcuucal

linkagt, (Intt'lnllncs tilt, 	 pli ist , 	 the Into pistons - t,ne of ^^hlch is

calico tilt , tllsplat • cr pistt n and the ol11er, lilt , p (m cr piston. Much of the I rec

piston bill-ling engine (h . velopmcnt is attribulvd 1^) Beale (ref. 5)	 FIgurt, :1 shOWS

;I schematic of a (111,1 I rce piston t,nginc. 'Till- dual aspect of the ongine is to

pr•oride 101TO I ►al:uu]ng for the large power pistons. A good \planation of tilt,

working of I rt'e piston b11 1 • lrng englncs is ^ ,̂ ivcn ul reference •1.	 the

bounce spaces function :Is gas sprints for the tllsplacer :md lum-or wstons. As

the t,xpallr, trl space gas is heated, prossure Increases Intl the pistmis Illoxv out

until 1114 . 11 . rl-spl-t • t((	 houru • c space pressure forces tit largvl . 11i ' m till- conibirled

driving pressure, :Intl the pistols inert a forces	 Tlit , method of lm%i tg one piston

more tilde tilt , other relllallis stationary ]s accomplished by tint Ing the power

piston nlort ,,,,ISSC n di ' m till- displacel • pishm, 'Thus, the (h ,;placer nIm os n111(•h

taster :111(1 moves the working fluid hack and forth through till , regenerator from

tilt , e\pallsloll space to the compression space. The res'.:italll pros re changes

111 till- working space caused hY t 1'cllc he:ll Addition :;nil 1 .e.leet`0ll logt'thcl . \t Ith

the tully d response of the pressures ul the hounce sp:wvs keep tilt' sYstl-nl running.

Alts l )I' l ,

'I'hc l-nergN , state fornl;J:ltion is applied to ;1 lunlpcd rtllulllc mo(it,1 of till-

free plstoll Stirling vii"mc. The for mil Ill loll r( t}turn that kill( tic, potential, anti

loss vilergit's be deri\ed for the ( ntirt , sYstt,nl, 'I'ht, result:ttlt encro state tor ► ns

are us4.t1 to form :1 I.agrallginn a11(1 .1 RaYlcigh dissipation function. Once thest,

It'nctions are loll • llled, I.ngrange's Equatr(ul is used to 1 I 4 ,r \ c rill- equations of

111"tlon for lilt' ^l tilt'rtl	 These vile -gy tertll ., 11111 1 lit	 I	 ( :tltLed coordinates



4

and the forces acting on the system must be generalized. The generalized coor-
dinates are those which are mutuall y independent. The number of generalized
coordinates is equal to the number of degrees of freedom for the system. Typical
systems and their respective generalized coordinates are given in reference 6.
For a tree-piston Stirling engine, there are thermodynamic, fluid, and mechanical
processes involved. Their respective coordinates are entropy, volume, and dis-
placement.

Thermodynamic processes require the use of very complex energy-state
functions Itelerence 6 gives a presentation of such functions ant, shows that the
perfect gas law is an tncon)plete description of the state of a gas. Rather than
use the complex energy-state functions some simplifying assumptions are made:

(1) Since for this application, the fluid velocities and hence the Mach numbers
are low, the compliance of the fluid will be considered as a siniple spring, that
is, pressure is proportional to volume. This assumption is justified ill reference 7
for small pressure differentials.

(2) Differential temperature changes are calculated from a separately rnl-
Ix)sed energy equation.

While these assumptions seem constraining, it will he shorn that the technique
leads to an equation set equivalent to the equations commonly used to model volunlO
dynamics.

State Function,

In order to simulate the fluid dynamics, the f1a1d system is considered as a
collection of discrete 111111I)S (]unllring). Once the lumping is done, energy, co-
energy state functions anid n loss funCtioil can he derived in order to use the energy-
state formulation. These fculctions result in inductive, capacitive, and resistive
terms in the equations of motion (ref. 6). These terms will be derived for a fluid
dynamic process in the following sections.

Figure 4 shows a string of control volumes representing the discretized fluid
system. Between the lumps a spring is used to represent a capacitive or energy
storage term and wall friction is used to represent a loss term. Each flow
volume has an associated mass of fluid and a displacement volume floe rate
represented by V and Q respectively.

Kinctic Energy

The kinetic energy for the system results from the fluid inductance. From
reference 6, the pressure momentum is defined as:

I
I
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111) = Ind	 (1)

All s mbols are given in Appendix A. I is the fluid inertia. Figure 5 shows the
kinetic energy and coenergY fields. From the figure, the kinetic energy is:

1'

.1,f(1)p)	

Q,(1);,) cl I'll,	 (w)

J„

%%-here Cie primes indicate a variable of integration. The kinetic coenergy is-

f
I' 1'(Q) °	 1)^(Q1) (1Q I 	 (3)

U

I, ► nl; eq. (1) and assuming .1 linea r ► nductmice:

0

	

"I' f l^^l = IQ_
	

(4)

Eq. (4) gives the kinetic coenergy function needed. Next the inertia mint
be deffned. Figure 6 shows a pipe with fluid n0Wing through it. The fluid is

driven by the pressure difference. 'Thus:

a cI (
	

-- 1' I - 1' 	 (5)
g eft	 1

The use of Q/A as the velocity assumes Ihat :a \^('Il defined velocity prolalt,

is 1,11OW11 at each cross section of the 141w. Also the fluid lumps are assu ►ned to

move as rigid bodies. 'Thus, the inertia is:

I-^
	

(6)
Ag

Hence, the kinetic energy for a tYl)ic:al lump of fluid volume in the coordimovs of

Ihis stkldl is:

+
LF Q2.I,i 	

2

	 (7)

F

I
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Potential Energy

Tie potential energy is not easily described. From figure 4, if the lumps of
fluid mass move at different rates, potential energy can be stored in the control
volume in the form of an increase in pressure. For small density changes an
average density is sufficient, and a linear capacitor can be used to model the
compressibility effects. From reference 6, for fluid dynamics:

I' = 1 V	 (8)
K

µ•here K is the (spring) compliance (reciprocal of the spring constant), V the
volume, and P the pressure. Since the equations derived in this analysis will
be used for a gas, i t is of interest to derive the compliance for a gas under gen-
eral conditions an-. compare the result with eq. (8).

For n general thermodynamic polytropic process:

1, ,n = Constant	 (9)

Differentiating:

Vndd + nPVn-1 d  = 0

dP=- ndV	 (10)
V

This relation is shown in figure 'i. Comparing eqs. (8) cuid (10) gives:

K=-	 (11)
(Il I^

Next, for :ui average pressure and volume, a straight line approximation is
drawn. Thus:

n l'

Figure 7 can be inverted and translated as is done ill figure 8 to show the potential
energy and coenergy fields. For an isothermal process, n equals 1 and:

I'

If the process is isentropic, then n = ; , the ratio of specific heats and:



Kam_ \.

If displacement coordinates this is equivalent to the reciprocal of the spring
constant normally seen for gas volumes for free piston engines, for example:

rA"11

V

This constant is liven in reference 4 where K I is the sprint; constant. Since:

AQ = KaP

an('

AV = KAP	 (la)

The potential energy using figure 8 is

-AV

VfWO=	 API(AV')dAV' = 1 ^^"^
K `?

U

01'

9
V _ 1 Ay

f

	

	 (14)
K 2

Finally, n is taken as 1 when fo I'M al,1ting the potenti:i1 energy terms for

the flo%% process.

Resistance

A Rayleigh dissipation function can be written for the flow losses in the sys-
tem. In figure 4, the losses are indicated as wall frictions. This behavior can
be expressed as:

AID = RQ
	

(15)

where It is the fluid resistance. The defining fields for the Rayleigh and
co-Rayleigh dissipation functions are shown in figure 9. For the Rayleigh func-

tion:

F
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f j 
0

Using eq. (15):

F f = 11Q2	 (17)2

ANALYSIS OF STIRLING FREE PISTON SYSTEM

The system analyzed in this pa1wr conlafns fluid, mechanical, and thermal
elements. The ,irevious sections have determined the various energy forms for
6, e fluid system. Here these results will be combined with the mechanical
counterparts and later with the energy equation (thermodynamic elements) to
yield the complete system equations.

Combined mechanical anti fluid bystems

Now, the energy formulation is applied to a combined mechanical and fluid
dynamic system. Figure 10 shows two pistons exerting; forces on a contained fluid.
for a linear mcch.mic• al system, the kinetic and potential ener),ries and the loss func-
tion are well known and are:

►n

T*

	

m	 ,

i= I

f
0

x`

	

v =	 1 -
m 2 

Ill i

i=1

ni

I).^.

►
n ^ 3

i=1

I

n

(18)

I
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Since the displacement coordinate for the fluid system is Volume, here let:

i = A pp xi

A p xi
i

Substituting into cad. (18) yields

m .2

m
°_ A-

PiE
	 (20)_	 im	 ,,

APl hmi

i=1

m

	

m	 7
2A -

1't
i=1

Now for the complete system on figure 10, the total kinetic, potential and dis-
sipative energies for the flitid and piaton are given by using eqs. (7), (14),
(17) and (20) with vin = 0

(19)



i i i r 1 1 ^ A1^ o
i	 t

_

/
9^ 

A
7

2 A2P 
1

i=1

n

(Vi - ;', +1 ) 2
 1	 -	 x' 1 ) 2 n - s'')	 o

2 K 1- 2 K Krr ► 2

1=1

n

Itic1^ Di ; 1 D,E 2! F	 +

2A2 2A-
P 1 P')

1=1

Note that in the potential energy function that the sprint; compliance	 K	 has the
square of the area in it.

10

Lagrangian

The Lagrangian farm (ref. 3) for the energy forms used are given by

(Q 1 ...Qn , 1>y2,1'1...Vn,yi^^^) = Z' (Qi...n,^1,y21 - v(V1...Vn,^l,f^)

The Lagrangian is

n

'	 +	 +

2A2	2A2

i=1
	 P1	 P.)

n
(Vi - Vi+1)- 

	1 - V1)"	 n- 
s ,)
	

(22)

—J	
Kiwi ^l	 2 E 1- ► 1	 3 K n- 2

f=1
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Lagrange ' s equation is

cl

dt[aa, (^i' 4 if	
a	

(o i +^ i) +^ (0! 1) ^t	
(23)t	 i

i= 1,2• .n +2

specifically

a V1 , V2... Vn , 41"2

= Q1,Q2...Qn,41,49

The system of equations re presented by eq. (23) are the equations of Mont! for
the system and are the mathematical description of the fluid and mechanical be-
havior. The various partials inc q. (23) are flow determined. The inductanceterms determined by a'^/a^ i are

a^ r,zl; 1
d^ 

1	 A2
pl

a4 2 A2

P2

(24)

I1Q1
aQl

a.
a = InQn

n

Similarly, the capacitive terms are gi ven by
aa.
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a-e	 (4, - \11)

	

a4 1	 h1--1

	

a.oe	 n - 42)

	

a^ z	 h ►} •2

+ ^Vj	 1)]

^i	 (Vn - 42)	 'un - \n-1
aVh t1" )	 hn-lYn

For the resistive term

3F _ D141

a41	 A2
1

O _ D2 ^ 2

Z)4 2	 A?

(26)

aF -RQ

aQi	
1 1

1

aF = RnQn

aQn

Next, using Lagrange's equation (eq. (23)), for 'tic 41 
coordinate

I	 m	 (1 - V1) D
U

A2	 1 f	 1^ 1 1	 + 1 , 1- 	 (27)

P1	 i)l

Finally, substitute in eq. (19) -nd mUltiply throutit by the piston area

I

L
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1At ^ `1	 `1/At^\l l zl +	 f _	
f	

1 + lll ^c 1 = 0

Kl •1

since AV— is pressure, we can write
f:

M1x1 + DI x 1 = -PIAp
1

Eq. (28) is the equation of motion for the piston. Note that the force 1'1Ap
opposes the piston motion and is the coupling force between the me0hanical and f
fluid systems. This coupling comes naturally from the . energy-state formulation.
While this example is somewhat simple, It still illustrates the value of the method
Mien more than one type of system is contained in a physical process.

Finally, if a force is exerted on left piston, the equation of motion would be
the same except for the genei • alieed force. If a force f is exerted on the piston
in the x direction, then all the generalized force components are

	

q	 fx = 
1

q ,2 = 0

	

qV1 = 0	 (2 0)

q `, = 0
n

The generalized forces for the equations of motion are

ax	 ax	 av	 av
nq  1 + q 	 2 + q \,	 1 + ... q 	 (30)

n do I

However, since all generalized coordinates are independent, the generalized
forces are the actual forces in their coordinate system

1 = f/Ap
1

(31)

	

1	 n

Thus, the equation of motion for the piston wi l l, force f in the x direction is

(32)

i

(28)



14

hi 1 x1 + D I X 1 = f - I 1 I :1 1	 (:32)
1

I'hc oluation of m , )tion for the y., coordinate is

t11.,., + I),,ic,Y - 1 11 A 1 ^^	 (:t: ► )

For the flow coordinate V1

IC I 	 K1^1

1'eing the average dviisity appro\imalicnl, eq. (:34) bec onivs

( 1	 ..	 1 .
. — 11	 #_I 	 11 1 11 1 = l' 1 - 1'.,	 13 5)
A19

Thus. the now crluaticma de1'ivect t'rom the Lagrangian formulation :Iry filly

Ctluilalc • nt to those Ilhieh 11oclld bc derived froln difteret.tial Inc clods.

I•'ItVV 1'l&l'ON FQUA'1'IONS

A sehcnl:Ilic • of tilt , five piston engine is slum 11 in fit,ure 11. (h11Y 11 :111' of

the engine was modeled duc to component constr:Iints on (hc • : ► nalog computer.

Fit)m this tigitiv, lherc , arc • seven volumes ,1111 1110 { pistons. I'llus there :Irc

eight equations of motion. l sing thr results of cqs. (32) ;md (35), thr r•ctuations
of motion :11-c

t 
I 11' 1 + It11v 1 _ 1' c - 11 it(36)

A19

C,

A., 1;	 1

11 • .1 + It^;11a - 1) It - 11 ► 	 (:Is)
A	 1

t 11 I + It I 	 { = l^li. - i' 1	(3;))
A 9

--.



A g w5
 + Its 5 - 1'1	 COLD

r^

t t'  ii 
G 

+li t \\ 
ti - "Col. 1)	

1'C

Aug

N1 11 \ El + Ddx(I - 1)DI3Adr - 1)cAd V 1' c .(Ad - 
A(11)

11I PX p + D1)xp = 1) 1 , 13y (A P) - "xIff	 1' 1 ,
111 

( A 11y - A^ )1 ) - 1)cAI)

Th1 , ellerl;.v equation is derived in Appendix It. The general form of the
derived equation is

\\ T = ir. O'T	 - "I'1s	 ut	 1n	 out	 out	 i	
eV	 ! 	 dt

where

I'
I'	 for positive Wul„t r^ • ant	 in

_
In

I'	 for negative \v in

for positive U, out
i'

ol^t

1do\\n,lrcanl	 for ne"atlX; \'%'uut

The re;tsort fur the s\rilehino is Ow Itidli-ectiun:ll How of the
III :lehine. 'These .e\ell teIII per: lure ctlu:ltioI 'S eo ► • respolld it) the seven volumes
considt • red. The tenlperatures \\ • ere coul)led to the flu\\' c"Elu: p ions tllruuOt the
ideal gas law.

Vin:llh. both regenerator segniclits were modeled as thert)t:11 lags. For
example fur the first regenerator

L ^^	 -	 1i1^ , l{	 li	 - "1' \\ 1 dt	 (•15)
l	 i	 ^•	 \\	 1	 l !

J

•\here v 	 and \\^	 :ire dependent on the reivener:ttor nl;ltert;ll.
Ill	 111

(10)

(41)

(42)

(42)

(44)
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^IMFI.I t 11 1) 1 M. A. 1 1 11hTON ENCINE MODEL

The free piston engine shown in figure .1 was run at Lewis Research Center.
For part of the test, the power pistons were lucked in their fo ►-+• ard most positions,
and the displacers were stroked up and down by oscillating the pressures in their
bounce spaces. This was done to study the thermodynamic flow process in the
machine.

The simulation was set up to match this experiment. This was done by using
only the temperature and flo g+ • equations. Tho disp)acer %%as externally driven, thus
e(Is. (42) and (•la) were not programnivd. 1 ur •ther, since the inductance terms
were very small, they were set to zero in eqs. (36) to (41). This also had the
desirahle effect of reducing the number of analog componentb.

Figure 13 shows a comparison of the model results with the exiwriniental
data. Note that the comparison was quite good fur the pressure profile. For the
temperahrre profile, however, the amplitude swing of the wa g e shape is good but
the transient comparison is not good. The reason for this is still not completely
understood but is believed related to gas thermocouples intermittently touching
the expansion space wall. The experimental stored mass compares well with the
analytical. The experimental values were calculated by using the pressure and
temperature profiles shown, calculating the VOIIIRie of the expansion space aY a
function of the displaces position, and then applying the perfect. gas law. V mean
value of the stored mass is somewhat higher for the simulation, but that is due to
the slightly higher mean pressure for the sinnrlation and the discrepancy between
the analog and experimental temperature profiles. 'That pressure and mass
compare while temperature does not is possible because of the large DC values
of temperature (not shown).

RLMARKS AND CO NCI.1TSIONS

The energy-state formulation Was used to derive the equations of motion for
a fluid-mechanical-thermal system. By appropriate assumptions, the procedure
was shown to lead to commonly used equations for 10Jumc dynamics, The pro-
cedure also afforded a unified approach in deriving the equations of motion where
more than one type of process is contained in the physical system.

The equations of motion for the free piston Stirling engine were derived
using the energy-state approach. 'These equations were simplified and programm_;,d
on an analog computer. Results from the experimental data and simulation agree
reasonably well.

The structures which were used in this formulation were chosen to give rf_-
sults consistent with those which would he derived b y standard differential tech-
niques. It is to be hoped that with more experience with the- approach that sonic

r
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of the issumptions made in this paper nught he relaxed and yet yield forms which
ran be readily sin ► ulated and extend the validity range of the model.

l•' ► nall}', tilt' energy equation was separately derived for this paper. it would
be % orthwhtle to attempt a complete Lagt'angian approach '.Much Would handit . both
the fluid n ► ech:uiical aspects and the mermodynan ► ic aspects as well.

kk_
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APPENDIX A

SYN113OLS

A
0	 0

area,	 nr-;	 (ft-)

Ad displaces area, m2 ; (ft")

A c1 ^, displacer rod area,	 ill 2 ;	 (ft")

A 
power piston area, m - ; (ft")

A 1
power piston area, m 2 ; (ft")

A pow _ piston area, m 2 ; (ft2)
Pq

A pr power piston rod area, m^; (ft-)
r

c p specific heat at constant prvCssure, J/(kg-K); (Btu/(Ihm-°lit)

e V specific heat at constant volume, J/(kg-K); 	 (Btu%(lbni-`'It))

c V
m

specific heat of the mesh, J/(kg K); (Btu/(lbm--°R))

D piston friction

d change in

F Rayleigh Dissipation Function

I' * Co-ltayleil;h Dissipation Function

Generalized force

f	 force, N; (lbf)

gravity, 1.0 (kg-m)/N-sec 2 ); (32.2 (lbn ►-ft)/(lbf-sec 2))

h	 enthalpy, J/kg; (Btu/lb ► n)

1)	 regenerator heat transfer coefficient, J/(sec- m--ti);
(Btu/(see-ft2-°R))

I	 fluid inertia, (N-see t)/(nr ); ((lbf-sec2Oft ))

J	 mechanical equivalent of heat, 1.0 (N- nr/J); (778 - 3 (ftrlbf)/Btu)

K	 reciprocal of compliance, ill s/N; (ft 5/lbt)

le'	 sprint; constant, N/m`'; dbf/ft5)

I.agrangl in

f	 length, n-.; (ft)

Al	 mass, kg; (lbm)

n	 polytropic constant

1'	 pressure, N /m2 , llbf/ft2

k-_
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1 , I lB cllsplacer tx)unee space pressure. N/ m"; (lbf / ft")

I'p pressure motnenlunl,	 (N- sec)/nt2 ;	 ((lbf- sec)/ft2)

p1'll power piston holtnce space pressure, Win 	 (lhf/ft2)
1

1' 11B, t	 Ex)WC I' p1St011 bxlllllce SJXIC'e P ressure,	 N/nl2 ;	 Obl /ft2)

volunie flow rate, 	 nl •1/sec;	 (ft 3/sec)

Q heat, J;	 (Btu)

heat flow rate, J/sec; (Btu/sec)

y generall/.ed force comix)nent

It resistance.	 ( N-sec)/ nl5 , ((lbf-sec)/ft5

It' transformed reslst.ulce,	 (N	 sec)/(kf;'-nl");	 ((lbf - sec)/Ilhnt - ft"))

S c•n(ropy, J/(kf;-K); 	 (BW(]hnl- °It))

I' Kinetic Energy F uuc Lion, N- m, 	 dbf-ft)

T kinetic Co- Energy Function, N- nl; (lbf-ft)
71' temperature,	 K,	 (ol1)

t time, sec

tJ Internal energy, J/kg. (11tu/)bm)

displacentc m volume. m 3 , (ft3)

Potential Energy function,	 N- nl;	 (114-ft)

W work,	 J;	 (11tu)

N' ^;	 (Ibm)i1l.1sS,	 li^,

ws stored mass. kg, Ohm)

%V
S

regenerator mass, kg, (lhnl)
III

w mass Il,^\v rate, kg/sec; (lbm/sce)
1

mass flow acceleration. k91sec^; (lbm/sec9)

x linear displac • t nwnt,	 nl;	 (ft)

cr generalized coordinates

lineal- displacement coordtn;11t . trallsfol-Ili lllon

y ratio of specific heats

change in

p density.	 kg-/m' 1 ;	 (lbm/fl';)

`^

	 T

I

variable of mtepratlon



U

d/dt derivative with respect to time

J/ax partial derivative with respect to x

subscripts:

1	 -	 6 variable designation

C compression volume

COLD cooler volume

d displacer

e expansion volume

t fluid

11 heater volume

l Intermediate volume

i index

in into a volume

III mechanical

out out of a volume

p	 lower piston

it	 regenerator

It 	 first regenerator volume

R2	 second regenerator volume

w	 mesh
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APPENDIX 13

ENERGY EQUATION

The change of stored energy for a control volume is considered. A typical
volume is shown on figure 1:3. Now for low velocity gas flow, kinetic and potential
energies can be neglected. Then the change in internal energy is given by:

d(w6 U) = dk- dW + h in"in - h Out wOut

ow the following substitutions are made, for Ccluilibrium process

U = c VT, h = c pT, dW = — dV
J

giving

d (W c`,1% = 
Q- I (IV t W c 'f - w	 c•—I'

(it	 J dt	 'n p in	 out p out

c
And since ws - win - wout and y	 p

cV

W 'I' _ ^^ . (y'I'	 - 'I') - ti	 (^' 1'	 - T) + ^L _ I'_ d\'6 1
 ui	 in	 out	 out	

C 	 Jc Li t

It is to be noted that, since the Stirling engine flow directions oscillate (througi ►
zero) due to the nature of the cycle, switching logic on temperatures and flows
is necessary to implement the energy equation correctly in each flow Ali i'vetion.
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