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ABSTRACT

This is the study of environmental conditions prior to convective
development on the Great Plains of the U.S. on one case study day, 24
August, 1975. The tool used was the High-resolution Infrared Radiztion
Sounder (HIRS) on Nimbus 6. A dual-retrieval scheme was developed to
retrieve both lower tropospheric moisture and temperature parameters from
the HIRS radiances. Total precipitable water, surface dew point tempera-
tures, and stability indices were analyzed at a resolution of up to 30 Km
on this day. Correlations with interpolated NWS rawinsonde values were
high and intrinsic noise levels were low. The true quality of the meso-
scale analyses, however, is only seen by examining the small scale fea-
tures at a scale of approximately 100 Km, Perturbations on the dry line
feature for this day were seen in the satellite data, although the dry
line position was just as easily picked up by surface observations. Con-
vective development 2% hours later did seem to correlate well with the
local maxima of moisture and instability seen in the satellite analyses.
Results of this one case study day, therefore, show the need for more
analysis and development of this method of using satellite soundings at

the mesoscale.
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1.0 INTRODUCTION

The determination of the quantitative structure of the temperature
and moisture environment necessary for severe storm development is a
desirable goal. Temperature gradients are important precursors for
mechanisms related to severe storm formation. Mixing of atmospheric
masses of differing stability may lead to release of potential energy.

In a similar manner moisture sources are necessary for the release of
latent heat through condensation. Both moist areas of latent energy and
the overlying or adjacent dry regions are therefore known to be environ-
mental severe storm indicators. In many cases these indicators are only
qualitatively known, since quantitative information about mesoscale

(25 + 250 km) weather is scarce except for limited experimental monitoring
associated with such programs as the Severe Environmental Storms and
Mesoscale Experiment (Project SESAME 1976, Lilly 1975 and 1977).

The first goal of the SESAME project relates directly to determination
of such environmental parameters mentioned above and their relation to
intensity of severe storm development. A second goal is to test the
ability of new remote sensing systems ar applied to such mesoscale prob-
lems. The satellite data used in this study is such a remote sensing
system which has been around for several years. Supposed failures of using
satellite soundings in many cases (Tracton and McPherson 1977) may be
due to its improper use (Kelly, et al 1978). The development and use of
high-resolution temperature and moisture fields as derived from satellite
soundings for mesoscale applications may be a proper use of such infor-
mation. The satellite sounder inherently provides better horizontal
resolution and coverage than its counterpart the rawinsonde. Therefore

it is reasonable to use the satellite data in such a high-resolution mode



to test its true ability as an instrument to provide mesoscale weather

parameters.

2.0 FOCUS OF RESEARCH

The original iutent of this research proposal was to focus on known
severe storm environments. Satellite data such as obtained from the
Vertical Temperature Profile Radiomecer (VTPR), an early 1970's instru-
ment, would be simulated to determine how this data could be better inter-
preted in such situations. However, the early results of such simulation
proved as confusing as the data in actual severe storm cases. The con=-
fusion lies in the inability to determine both temperature and moisture
parameters from a basically temperature-only sensing instrument (only
one H20 and one window channel in the VTPR). The further improvement of
satellite instruments in the late 1970's has introduced the Nimbus-6
High-resolution Infrared Radiation Sounder, HIRS (Smith, et al., 1975),
with at least 2 water vapor channels and 2 infrared window channels.

The radiances in these spectral regions are predominant in the moisture
determination process. Since the use of this new instrument made the
older generation data obsolete, it was decided to explore this new data
set.

The HIRS instrument has the capability of determining both tempera-
ture and moisture parameters from separate but not independent spectral
regions. Therefore, the use of this data was explored. Part of the
process required the development of a dual retrieval scheme designed for
this type of instrument but not exclusively for this instrument. Such
a scheme or algorithm can be applied to TIROS-N/HIRS-2 sounding data

(Schwalb 1978) which as of fall 1978 is the operational polar-orbiting

sounder replacing the older NOAA/VTPR series of sounders.



It must also be remembered that working with real data at the
mesoscale has its merits in that only a few studies have been done in
that area (Smith et al., 1978)(Wark, et al., 1974). Much simulation has
been done to select the channels for such an instrument as HIRS. It is
now necessary to determine the basic limitations of such an instrument.
Limitations in terms of noise levels of derived parameters and the reso-
lution necessary for adequate temperature and moisture descriminacion'have
been accomplished for the VIPR instrument (Hillger and Vonder Haar, 1979).
These results show that the satellite sounder is capable of detecting the
same tempe-ature gradient information as mososcale rawinsonde soundings.
However, the VIPR instrument was inadequate for mesoscale moisture de-
termination compared to mesoscale rawinsondes. The nigher vertical reso-
lution of the rawinsonde soundings was their main advantage. The deter-
mination of mesoscale moisture from VTPR data is only possible if the
temperature structure is known beforehand.

The same study of basic limitations in real cése-study data has been
accomplished here for fields of temperature and moisture information de-
rived from the HIRS satellite sounder. The number of case study days

is not large but the results are encouraging.

3.0 HIRS DUAL RETRIEVAL SCHEME

The problem of not being able to determine both the temperature and
moisture structure from a set of CO2 radiances from the VTPR instrument
was its most basic limitation. In trying to derive the temperature
structure or gradient across a field of data the undetermined effect of
hidden moisture gradients was a problem. There was no way of easily
determining whether one region was actually warmer or drier than an ad-

jacent region, since the two effects were similarily sensed by the




observed radiances. This same problem appears in surface temperature
determination, which is part of the task here. In order to determine

the surface temperature the amount of the absorbing gas (mostly water
vapor in the case of window channels) must be known, or to determine the
absorbing gas content the underlying surface temperature must be known.
The problem does have a solution if enough pieces of partially-independent
information are available. Groundwork for such methods is not new.
(Smith, 1970). However, as applied to this problem we must get down to
specifics.

Basically three things were desired to be known from the satellite-
sensed radiances. The temperature profile, moisture profile, and the
surface temperatuve are all major influences upon the radiances. The
determination of these three things required radiances from both a mole-
cular absorbcion band of constant mixing ratio such as CU2 and an H20
band where the amount of absorber is desired, as well as a window chan-
nel which is fairly free of any molecular absorption. These three re-
quirements were met by the HIRS instrument with a set of 15 um C()2
channels (or alternately 4.3 um CPZ channels); a 6.7 ym and an 8.2 um
H20 channel as well as two window channels at 3.7 pm and 11 um, While
the CO2 channels were used for temperature determination, the qu channels
provided moisture determination in at least two levels roughly separated
by the 600 mb level. The window channel, however, was of primary im-
portance in determining the background surface term in the radiative
transfer calculation. This is especially true in determining tempera-
ture and moisture parameters from spectral regions with large trans-
mittances at the surface (low absorbtionj}.

The HIRS channels are shown in Figure 1 and are listed in Table 1.

In using the information from these channels a priority system had to be
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Table 1.
(The Nimbus-6 User's Guide)

Functions of the HIRS Channels

Channel Contesl Principal Level of
Channel | Central Wavelength Absorbing | Peak Energy Purpose of the
Number Wave- Constit- Contri- Radiance Observation
number (um) uents bution
1 668 15.0 €O, 30mb | Temperature Sounding. The 15
b 679 14.7 o, 60 mb um band channels provide better
3 690 144 ('0; 100 mb sensitivity to the temperature of
4 702 14.2 co, 250 mb | relatively cold regions of the at-
L 716 14.0 o, 500 mb | mosphere than can be achieved
6 733 136 €0,/1,0 750 mb | with the 4.3 um band channels.
7 749 134 CO,/H,0 900 mb Radiances in Channels §, 6, and
i 7 are also used to calculate the
heights and amounts of ¢loud
within the HIRS field of view,
8 900 11.0 Window Surface Surface Temperature and cloud
detection.
9 1224 8.2 H,0 900 mb | Water Vapor Sounding. Provide
10 1496 6.7 H,0 400 mb | water vapor corrections for CO,
. and window channels. The 6.7
pm channel is also used to detect
thin cirrus cloud.
11 2190 4.57 N,0 950 mb | Temperature Sounding. The 4.3
12 2212 4.52 N,O 850 mb um band channels provide better
13 2242 4.46 (.'0sz20 700 mb | sensitivity to the temperature of
14 2275 4.40 C0,/N,0 600 mb | relatively warm regions of the
15 2357 4.24 co, 5mb | atmosphere than can be achieved
g with the 15 ym band channels.
Also, the short-wavelength radi-
ances are less sensitive to clouds
than those for the 15 um region,
16 2692 3N Window Surface | Surface Temperature. Much less
sensitive to clouds and H,0 than
1 gm window. Used with 11 um
channel to detect cloud contami-
nation and derive surface tem-
perature under partly cloudy sky
conditions _{
17 14,443 0.69 Window Cloud Cloud Desection. Used during the

day with 3.7 gmand 11 pm win-
dow channels to define clear fields
of view and to specify any reflected
solar contributions to the 3.7 pm
channel

—_— el




followed. The determination of the surface boundary term was considered
the most important and could be easily accomplished using the highly
transparent 3.7 um window channel. To do this a temperature profile was
assumed (initial guess) and the surface term was determined as a residual
to match the observed window channel radiance. The next step was to
adjust the initial guess moisture content and therefore the transmittance
according to the observed radiances in the two HZO channels., The third
step then involved adjusting the initial guess temperature profile ac-
cording to the CO2 channels. The last two steps were then repeated as
long as convergence was assured. Usually as few as 2 to 3 complete cycles
or iterations were required to obtain a temperature and moisture profile
which provided radiances throuyl radiative transfer calculations similar
to those observed. The residuals between observed and calculated radiances
were required to decrease as a convergence criteria., This scheme is
basically iterative and is much faster than previous schenes used with
VTPR data (Hillger and Vonder Haar, 1977) which determined primarily
temperature profiles and total precipitable water secondarily as a resi-
dual in the process.

The determiiation of the surface temperature as a residual in the
radiative transfer calculations follows a formula which was applied only
once as the first step in the retrieval of atmosphere parameters for each
scan spot of the satellite.

B(T;fc' V) = B(Tgeer V) + Ry = Rog1ed/Tg (Vs T(%),Q,(x)) (1)

By inverting this equation we can see that the desired surface tempera-
ture T;fv is the correct factor to make the calculated radiance, Rr11(.
in the window channel at wavenumber v equal the observed radiance, R

ohs,

This assumes that the atmospheric temperature and moisture structure are
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either correct or that unknown small differences are of minor signifi-
cance. The idea, therefore, was to have good initial guess temperature,
To(x). and mixing ratio, Qo(x) profiles, where x is some vertical coordi-
nate, in order to initially determine the approximate atmospheric trans-
mittance at the surface, T In the case here a composite rawinsonde
from a time period near the satellite pass was used,

Moisture feedback was accomplished through the relaxation formula

for iteration n + 1

2 R
o™ () = 0™ (x) | 1=z _%%%;l -1 w:?i) 2 (n) (2)
=1 & W, (x)
calc, i L

i=]

and applies to the mixing ratio Q(x) at any level x. There are two H20
channels represented by the subscript i, and the weight wl applied to
each radiance channel is just the derivative of the transmittance of that

level 1(x). Each H,0 channel will perturb the mixing ratio profile Q(x)

2
at the levels x where its weighting function W(x) is the non-zero. The
factor * is necessary because of the change in units from radiance to
mixing ratio. It approximates 49 X or ﬁAQ. In this case a factor

Q AR ZAR
of 5 was chosen to approximate this change in units and to speed con-
vergence. The negative sign in cquation 2 says that an increase in
radiance is associated with a decrease in moisture.

In a similar manner the temperature feedback followed a modified

relaxation formula of Smith's (1970).

4 (R (n)
Br™y) = sa®wy |1+ [ )wio S () .
(n) i -«
i=1\ R LW, (x)
calc,i j=1 *

For one channel this formula reduces directly to that of Smith, but

his method averaged the resulting independent temperature determinations



from each crannel in a similar manner to the way the blackbody radiances
are averaged here, This short cut greatly reduced the number of calcu-
lations. The four most transparent 15 um CO2 absorption channels were
used to try to retrieve tlie tropospheric temperature profile for each
szan spot.

These last two iterative relaxation formulas were applied alternately
a8 long as convergence is maintained. A decrease in the root mean square

radiance residual between observed and calculated radiance is the necessary

criteria.
N y
(n) _ _ pin) s
Aers 151 Robs.i Rcalc,i N (4)

The number of channels N included the 2 window, 2 Hzo, and 4 CO2 channels
which wer . ] in the retrieval process. Only the 4 most transparent
CO2 channels were used in the retrieval scheme because mainly lower tro-
pospheric temperature and moisture variables were desired. These 4
channels each have weighting function maxima below the tropopause as do

the 2 H20 channels.

4.0 MESOSCALE APPLICATIONS

In developing and applying this dual retrieval scheme there were
two objectives in mind. One was to determine parameters which could aid
in severe storm forecasting. The second was to determine these parameters
at a scale which would be useful for mesoscale applications. The first
objective was met by emphasising the retrieval of surface and lower tro-
pospheric parameters from the HIRS radiances. The second was accomplished

by determining these parameters at the full resolution of the VIPR instru-

ment of about 30 Km.
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The analysis and forecasting parameters which proved to be the
essiest to determine from the satellite sounding radiances were the
total precipitable water and the atmospheric stobility of the sounded
column, The total precipitable water gives a measure of the amount of
latent energy in severe storm situations. Few storms develop to the
severe stage without a sufficient energy source in terms of adequate
low-level moisture. Likewise, atmospheric stability indices such as the
tectals indices have been used for many years (Miller 1972) as good indi-
cators of severe weather potential. These indices are measures of sur-
face heating and moisture as well as atmospheric instability or the po-
tential for reiease of such sources of sensible and latent energy. The
total precipitable *iter was determined from satellite radiances in the
two HZO channels which can sense moisture in two layers roughly separated
by the 600 mb level. These two channels were then used as a pair to
determine the total atmospheric water. The procedure is through the
changing of the initial guess mixing ratio profile where the two H?O
weighting functions are non-zero. The amount of change for each channel
depends on the amplitude of the weighted function, with maximum change
occuring at the weighting function maxima for each channel. However,
since the weighting functions are broad the aange occurs over a large
vertical depth, and this approximates a change in the total precipitable
water in two layers.

The determination of stability indices was a by-product of the dual
retrieval process. The atmospheric stability indices to be determined
depend only on temperature and moisture parameters at various standard
levels. Both the totals indcx and the K value rely on temperature and

dew point temperature at the 850 mb level and the 500 mb temperature.
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The K value also incorporates the 700 mb temperature and dew point tem-

perature. Their formulas follow,

Vertical Total = TBSO - T500 (5)
Cross Total = TdBSO-TSOO (6)
Total Totals = Vertical Total + Cross Total (7)
K Value = TSSO + Td850

“(T700 = T700” =~ Ts00 (8)

The five desired parameters are the temperatures at 850, 700, and 500
mb (TBSO’ TTOO' and TSOO) and the dew point temperatures at 850 and 700
). The derived temperatures at the standard levels

mb (Td and Td.

850 700
are a result of perturbations on the initial guess temperature profile.
The temperature determination at any level is basically a cowbination

of the contribution from each of the tempe.ature-sensing CO2 channels.
The dew point temperatures, on the other hand, were directly computed
from the retrieved mixing ratio proiile for each sounding column.

Besides determining these analysis and forecasting parameters, their
distribution in space must be known. Storms usually develop along lines
which are perpendicular to gradients in temperature or moisture, such as
the dry line. From conventional data sources these lines for potential
development may appear to be rather uniform, but smaller scale variations
along the lines are observed at higher resolution. An objective of this
study was to examine the potential for determining these small scale
variations from satellite soundings. The satellite data will, therefore,

be applied at the mesoscale where its advantage of high-horizontal reso-

lution may be realized.
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5.0 CASE STUDY DAY - 24 AUGUST 1975

The first HIRS radiances available for study were obtained during
the data systems test (DST) period in August and September of 1975 (Cary,
1977). This was shortly after the launch of Nimbus-6. Of these days,
one was chosen here for intensive meso-analysis. At least 2 other days
in this period had similar near nadir views f.om Nimbus 6 and could also
be studied at a later date.

The region for study is centered on the SESAME mesoscale sounding
network in western Oklahoma. The size of the region for study was chosen
to be 10° latitude by 10° longitude (30°-40°N and 95°-105"W). This repre-
sents an area of approximately 1000 km on a side. This size allows a
study of mesoscale weather over a large region covering most of Kansas,
Oklahoma, and northern Texas as shown in Figure 2. The state outlines
are shown along with the surface pressure at various points. These
surface pressures were calculated by hydrostatic reduction of sea level
pressure depending on the terrain elecation above sea level. Each o5*
latitude-longitude box had a mean terrain elevation and therefore an
equivalent surface pressure assigned to it.

The Nimbus-6 satellite is a polar orbiting satellite with an approxi-
mate local noon equator crossing time. At the latitude of study the
time on this case study day was 1801 GMT (1201 CST). This time provided
a good indication at mid-day weather for subsequent connective activity
later in the day. The orbit is ascending and the sub-satellite track
falls over the Texas panhandle. Radiances were then sensed in 21 spots
on each side of the sub-satellite track at a resolution of approximately
30 km at nadir. Figure 2 shows the spots which fall within the specified
boundary. The gap through northern Texas and Oklahoma is a calibration

period of the satellite which occurs every 20 scan lines.
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The other missing data in Figure 2 is due to a cloudy situation in
eastern Texas. This is also shown in Figure 3, which is a Synchronous
Meteorological Satellite (SMS) visible image at 1745 GMT on this day.

No effort was made in this study to sound in cloudy columns. The addi-
tion of a cloud model on the incorporation of microwave sounding could be
a useful addition. Therefore, only clear columns were chosen for tem-
perature and moisture retrieval,

Two methods were used for cloud detection. The visible channel of
HIRS at .69um was used to sense reflected solar radiation from the sur-
face of the earth or clouds. 1If the visible channel radiance exceeded
a 4.5 mH/(m2 sr cm-l) threshold, clouds were assumed. On this day a
maximum of about 20 mW/(mz sr cm-l) was detected, and theoretical cal-
culations indicate that a value of about 25 mw/(m2 ST cm-l) would be
equivalent to a surface reflectivity or albedo of unity. So the 4.5 value
represents an albedo of approximately 20%. This value was also empirically
found to be a good threshold by comparison with clouds seen in the SMS
visible image.

A second method for detection of cloud or broken surface characteris-
tics was also used. This method relied on the fact that the two HIRS
window channels at 3.7 and 11 um respond as different powers of temper-
ature. A uniform field of view in the sounded column would produce an
equivalent radiative temperature in each channel, but a non-uniform field
of view would produce different equivalent radiative temperatures (Smith
et al., 1974)., The difference in brightness temperatures was allowed to
be as great as 150C before clouds were considered to be within the field
of view. This value allows for the differing atmospheric absorption and

emission characteristics in each spectral interval. The use of this



Figure 3 SMS visible image at 1745 GMT (1145 CST) on 24 August 1975,
Note almost perfectly clear skies at the time of the Nimbus
6 HIRS soundings.
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method determined approximately the same cloudy fields of view as the
first method but didn't detect small clouds or clouds with fairly uni-
form cloud tops.

The HIRS visible channel was also used to determine the effect of
reflected encrgy in the 3.7 um infrared window channel. Calculations
show that the amount of solar energy reflected from the surface at 3.7 um
is approximately equal to that lost by the fact that the emissivity of
the surface is not unity. Therefore, the problem is not considered sig-
nificant. A possible effect of an erroneous assumption would be that

surface temperature would be too high.

6.0 ANALYSIS OF VARIABLES

The derived variables from the Nimbus-6 radiances are listed in
Table 2. These parameters were compared to the same variables inter-
polated at 1800 GMT from the bordering synoptic NWS rawinsonde sounding
times of 1200 GMT before and 0000 GMT after the satellite pass. The
correlations are also listed in Table 2. The number of points for com-
parison is a maximum of 7, one for each rawinsonde site within the region
of study, therefore, these numbers should not carry too much weight.

In spite of this, the correlations are fairly high especially for the
moisture and stability variables. The only gross failure was the 500 mb
temperatures which showed little structure in the field above the noise
level for this variable,

The noise levels in Table 2 were obtained from a structure function
analysis (Gandin 1963) of all the measurements in the area of study.

The analysis method was the same as that used by the authors in a pre-
vious study of VTPR satellite soundings (Hillger and Vonder Haar, 1979).

There were approximately 600 retrieved satellite measurements for each
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Table 2

Variable Correclation and Noise

Correlation: Std. Deviation
1800 GMT interpolated RMS of Field Signal/
Variable vs 1800 GMT HIRS Noise _(Signal) Noise
Total PW .90 2,21 mm 11.66 mm 5.3
PW above 600 mb 47 .34 mm 1.52 mm 4.5
Temperatures
~ surface « 75 .93% 3.67°C 4.0
- 850 mb .63 .711% 1.52°% 2.1
- 700 mb .68 .46°C .78%¢ 1.7
- 500 mb -.62 .38% .61°%C 1.6
Mixing Ratios
- sfc .99 .93 g/kg 4.55 gl/kg 4.9
- 850 mb .75 .68 g/kg 2.53 gl/kg 3.7
=700 mb .70 41 glkg 1.47 g/kg 3.6
$fc Dew Point Temp .99 1.27% 6.88°C 5.4
Vertical Total .60 .24°% .35% 1.5
Cross Total .80 1.12% 4.33% 3.9
Total Totals .88 1.20°C 4.48°C i3

K value .88 2.24% 8.46°C 3.8
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variable even with cloudy fields of view eliminated from the area of
study. So the statistical base for the structure analysis was large.
The theory behind determining the noise level for closely spaced data is
to extrapolate the difference between the individual measurements as the
separation between the measurements is decreased. With 600 points at
approximately 30 Km resolution the number of possible pairs of measure-
ments at the minimum separation distance of 30 Km is about 1200 pair.
The values listed in Table 2 are the rms differences at this minimum
separation distance without extrapolation to zero separation distance.
The reason for not extrapolating is that there is no assurance that the
difference between the measurements will decrease bevond its value of
this minimum separation distance. In other words, the intrinsic noise
level may have been obtained regardless of how closely spared the measure-
ments are.

The values in Table 2 show that temperatures were obtained with
a noise level of less than 1°C. This rms noise level, however, does
not indicate any bias which might be present in the measurements.
These rms noise leve's therefore indicate the maximum capabilities of
this retrieval scheme as used on HIRS radiance information. These noise
levels, however, should be compared to the standard deviation of all
the variables in the field in Table 2. These values show the amount of
variability in the derived f!eld. The amount of variability depends on
both the true variability and the ability to detect that variability,
such as gradients in the field. Only if the variability is larger than
the noise level for that field will there be significant information in
that field, unless, of course, if the true field is flat. There appears

to be significant signal above noise for all variables except possibly



19

the 700 and 500 mb temperature fields and the vertical total index.

For these variables the signal to noise ratio is less than 2. All these
point to a lack of temperature retrieval ability when compared to the
signal above noise for the moisture variables. This is possibly due to
the iterative retrieval scheme design which adjusts the initial guess
moisture before the temperatures are adjusted. This could possibly make
the moisture results improve at the expense of the temperature retrievals.
Another explanation is that there is basically much more moisture signal
in mesoscale situations than there is a temperature signal, so this re-
trieval method may be justified. Small scale moisture variations is what

is desired in mesoscale prediction where they may be the main predictor.

7.0 MESOSCALE ANALYSIS - 24 AUGUST 1975

Fields of several analysis and forecasting variables will be shown
for 1801 GMT on 24 August 1975. The precipitable water analysis in
Figure 4 shows a general northwest to southeast moisture gradient, but
a secondary maximum does exist in the western part of the Texas panhandle.
Nearby gaps in measurements do tell of the existence of some cloudiness
at the time of the satellite soundings. However, local maxima of pre-
cipitable water do extend up into central Kansas. For comparison the
1801 GMT interpolated rawinsonde precipitable water field is shown in
Figure 5. No secondary maxima is shown in this coarser resolution data.
It is possible that the resolution difference causes the rawinsonde data
to not contain the amount of detail that is in the satellite data. One
indication in the rawinsonde soundings in Figure 5 is the large 1I hcur
precipitable water increase at Midland TX (MAF) which hints that the

local maximum in the Texas panhandle at 1801 GMT does still exist at

0000 GMT.
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.

Total precipitable water analysis (mm) from retrieved
HIRS soundings at 1801 GMT on 24 August 1975, Note the
moisture maximum along the western edge of the Texas
panhandle. Contours are every 4 mm.
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PRECIPITABLE WATER (mm)

Figure 5. Total precipitable water analysis from 1800 GMT inter-
polated values on 24 August 1975 from synoptic rawin-
sondes at 1200 and 0000 GMT. Upper value is precipitable
water, lower value is 12 hour change.
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An analysis of the satellite-derived surface dew point temperatures
in Figure 6 shows the same local maximum in the western Texas panhandle
with other maxima extending along a line up through central Kansas. The
tightest surface moisture gradient seems to be in northwestern Kansas
just to thz west of a local surface moisture maximum, The same field of
1800 GMT dew point temperatures are analyzed from surface observing sta-
tions is shown in Figure 7. This figure shows a very similar analysis
with a general gradient from northwest to southeast. Again the strongest
gradient appears to be in the region of northwestern Kansas. This strong
gradient is probably the best indication of the dry line feature which
frequently exists in the high plains during many days in the summer (Rhea,
1966). Schaefer (1973 and 1974) defined the dry line as the 9g/Kg mixing
ratio line which is consistently near the center of the zone of sharpest
mixing ratio gradient, The equivalent dew point temperuture for satura-
tion at 9g/Kg is about 12°C. This line appears to be in ihe same position
in the analysis for both the satellite and surface data. Also, a bulge
or bow in the surface dew point lines in southwest New Mexico as seen
from surface observations coes give some indication of the secondary
maximum in the satellite-derived dew point temperatures.

The satellite analysis seems to show the same general dry line posi-
tion as the surface observations but with possible local perturbations
of maxima such as in the Texas panhandle. To the east of this dry line
there later does develop some moderate convection as shown on the 2030
GMT SMS visible image in Figure 8. This occurred abecut 25 hours after
the satellite soundings. The convection appears to be the heaviest in
the Texas panhandle near or just north of the satellite-derived dew

point secondary maximum. Little or no convection occurs benind the dry



Figure 6. Surface dew point temperature analysis (“c) from retrieved
HIRS soundings at 1801 GMT on 24 August 1975. Note the
moisture maximum in the same position as in the P¥ analysis
in Figure 4. Contours are every 49C.
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24 AUG 75
1800 GMT

DEW PT. TEMPS (°C)
SURFACE 53

Figure 7. Dew point temperature analysis from surface observations
at 1800 GMT (1200 CST) on 24 August 1975. The 9g/kg mixing
ratio isohume, usually associated with dry line pos. -ion,
is appruximately equivalent to the 12YC dew point isodro-
sotherm,



Figure 8 SMS visible image at 2030 GMT (1430 CST) on 24 August 1975.
Note the line of clouds through the Texas panhandle with
convective cells in the central panhandle.



line in the position indicated in both dew point analyses. The 2035 GMT
NWS radar summary in Figure 9 shows the maxima thunderstorm tops in the
Texas panhandle at 10400 neters (34000 ft). This convection does exist
through 2335 GMT (not shown) with the maximum intensity then mostly near
the southern of the two cells in the 2035 GMT radar summary.

The other main indications from satellite-derived parameters of the
possibility of severe weather or of any convection in this region are the
stability indices. The satellite-derived cross total analysis in Figure
10 shows a local maximum in the Texas panhandle near where the maximum
convection does occur., A line of high instability with local perturba-
tions extends up into central Kansas. Similarily, the satellite-derived
K value stability index in Figure 11 shows the same features. Here,
however, the maxima show up better because of a larger gradient in the
whole field. So, these areas of maximum instability do correlate with
a general line of convective activity shown in the SMS visible image in
Figure 8. Quite strong evidence does therefore exist of the ability of
satellite soundings to detect mesoscale conditions at a resolution at
least as good as that of surface stations. The rawinsonde stability
indices do not show any local maxima as indicated in the satellite data.
The rawinsonde K value stability analysis in Figure 12 shows only the
general gradient of stability from northwest to southeast associated with

increasing low level moisture in this direction.

8.0 CONCLUSIONS

Possibly some of the biggest strides in weather analysis and fore-
casting in the next few years will be at the mesoscale (25-250 Km). This
scale deals with the environmental conditions around severe storms or

systems of such storms., Features to be studied usually have some type



24 AUG 75
2035 GMT
RADAR SUMMARY

Figure 9. Radar summary at 2035 GMT (1435 CS 'Y on 24 August 1975.
Note the moderate size but growing thunderstorms in the
lexas panhandle.



Figure 10.

Cross total stability analysis from retrieved HIRS
soundings at 1801 GMT on 24 August 1975. Note the
line of instability extending through the Texas pan-
handle and into central Kansas. Contours are every

0.
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Figure 11.
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K value stability analysis from retrieved HIRS
soundings at 1801 GMT on 24 August 1975. Note

satellite
the same

line of instability as shown in Figure 10. Contours are

every 4°C,
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Figure 12. K value stability analysis from 1800 GMT interpolated
values on 24 August 1975 from synoptic rawinsondes at
1200 and 0000 GMT. Upper value is K value, lower value
is 12 hour change.
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of organization such as along a dry line or mesoscale frontal feature.

The actual temperature and moisture structure of those mesoscale features
is not very well known. Therefore, the recent emphasis on such programs
as SESAME which call for both this type of mesoscale investigation of
severe storm situations and a study of tools which will provide what needs
to be known.

The HIRS satellite soundings in this study were used at their full
resolution of 30 Km (barring clouds). Radiances from the HIRS instrument
are capable of producing mesoscale analysis and forecasting parameters
necessary for severe storm research. The use of such new tceuls is a
goal of SESAME.

The dual r2»trieval scheme used here was designed specifically to
extract the lower tropospheric parameters necessary for severe storm
forecasting. Parameters such as total precipitable water, surface dew
point temperatuers, and stability indices were successfully retrieved.
These satellite-derived parameters were well correlated with their inter-
polated counterparts from NWS rawinsondes. This, of course, is not a
reliable indication of the true quality of the mcsoscale analyses which
were derived from the satellite radiances. The intrinsic noise leveis of
the derived parameters by structure function analysis were also very low.
This gives an indication of the quality of the mesoscale analyses. The
true value of satellite data will only be shown in mesoscale situations
where their high horizontal resolution is an advantage. In this role the
analyses seem to show small-scale features on the order of 100 km. These
perturbations on the mesoscale dry line for this one case study day,

24 August 1975, do appear to be associated with the location of later

convective developments., The dry line is located by the satellite
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moisture analysis with the same precision as surface observations, but
smaller local maxima of precipitable water and pockets of instability
are seen only in the satellite data, These local maxima do corre late
with the most intense areas of convective development 2% hours later,
even though this is a rather suppressed day for activity in this region.
The results do seem to be valuable, but further testing will be
needed, By applying this type of analysis to more situations a confi-
dence should be built up in the usefulness of satellite-derived para-
meters at the mesoscale. Further testing and improvements could include
a cloud model to avoid the present limitation of only clear soundings
being available. Other than that main improvement, there is the possibi-
lity of using more of the information which is available from the unused
HIRS radiances, such as the partly redurcant shortwave CO2 channels which
were not used in this retrieval scheme. Likewise similar improvements
may be possible by using other pieces of information from new satellite
instruments. To be able to use the extra channels available on TIROS-N,
wiiich was launched in fall 1978, will require only slight modification
of the retrieval scheme. An increase in the number of independent or

partially independent piecer of information can hcpefully improve results.
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