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PREFACE 

The final report for "Meta Assembler Enhancements and Generalized Linkage 
Editor" is submitted to the National Aeronautics and Space Administration, 
George C. Ma,rshall Splace Flight Center in accordance with the plrovisions of 
the c~ntract number NAS8-32570. The report describes the results of the 
des i gn and impl ementat i on of an enhanced meta assembl er and genera 1 i zed 
linka£je editor to provide syntax resplonsive and tar£jet reconfigurable 
assembly, 1 inkage edit and 1 ibrary creation and maintenance capabil ity. 

If any additional information is desired, please contact any of the fQnowing 
McDonnell DQuglas or NASA representatives as appropriate: 

o Mr. Z. Jelinski, Project Manager (MDAc) 
Huntington Beach, CalifQrnia 
Telephone : 71 ,~-896-5060 

o Mr. K. V. Smith, Principal Investigator (MDAC) 
Huntington Beach, CalifQrnia 
Telephone: 714-896-2937 

o Mr. Geoffrey C. Hi ntze, PrQject COR (NASA) 
Marshall Space Flight Center, Alabama 
Telephone: 205-453-57Q9 
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Section 1 

INTRODUCTION 

McDonnell Douglas Astronautics Company-West (MDAC-W) has developed a Meta 

Assembler for NASA under previous contract efforts. Under contract NAS8-27202 

the initial development of the Meta Assembler for the SUMC was performed. 

The capabilities included assembly for both main and micro level programs. 

Contract NAS8-30907 provided support to NASA MSFC during a Pleriod 0f checkout 

and utilization to verify the performance of the t4eta Assembler. Under 

c0ntract NASIO-8434 and NASIO-8833 additional enhancements were made to the 

Meta Assembler which expanded the target computer family to inclucle archi

tectures represented by the PDP-ll, MODCOMP II, ancl Raytheon 706 c0mputers. 

1.1 PROBLEM STATEMENT 

In spite of its usefulness, the system had some seri0us shortcomings namely 

the Meta Assembler used a language indePlendent syntax for directives (pseuclo 

0pS), macros ancl labels because these features c0uld differ g"eatly fr0m one 

assembly 1 anguage to another. F0r thi s reason, existing assembly 1 anguage 

pr0grams had to either have the S0urce for these differences rewritten or a 

syntax preprocessor hacl to be written to change them. This j!lut an aclditi0nal 

burclen on the user because in rewriting the source he hacl to suIDstitute 

unfamil i ar symb01 s for 0nes that he was used to. If a new syntax preprocessor 

had to IDe written he usually had to seek ass i stance from the program ori gi nator 

which resulted in adclitional C0Sts and effort connected time delay. 

Aclditionally, if a user desired to link t0gether sepa,rately assemIDled modules, 

he was re<quired to lise whatever, if any, linkin§ support tools were available 

f0r the ta,rget machine or write hi sown. 

The alDove clisaclvanta§es pr0vided serious 0bstacles to s0ftware stanclardization. 

/ 



1.2 OBJECTIVES 

The primary objective of this effort was to standardize a NASA low cost 
Meta Assembler and Linkage Editor. The enhancements to the Meta Assembler 
defined for this contract include: the design and development of ~ 
User Oriented Syntax Definition capability and the design and development 
of a recognition capability to support these definitions in order to perform 
the assembly process. Also, the design and development of a generalized link-
age editor and 1 ibrary creation and maintenance function was defined. 

The result of this effort resulted in the establishment of a Meta 
Assembler program and Linkage Editor program which operates in the environment 
of a large scale host computer and supports software development for flight 

. and ground checkout computers (mini-computer class). 

Additionally, user and maintenance documentation was developed and the 
i'nherent capabi] ities of the program demonstrated. 

1.3 TECHNICAL APPROACH 
The--"tract called for 7 major tasks to be performed. 

Task 1 - User Oriented Syntax IDefi nition CapalDi 1 ity 
Task 2 - General i zation of the Procedure Language 
Task 3 - Improvement to the Meta AssemID1er Error Diagnostics and 

DYnamic Debug Features 
Task 4 - Meta AssemlDler IDocumentation 
Task !5 - IDevelopment of a Generalized Linkage [ditor 
Task 6 - NASA Goddard (GSFC) Delivery and Install ation for the NSSC-1 
Task 7 - Meta Translator Installation and Training at MSFC 

Of these seven tasks, tasks 2 and 3 were deleted through renegotiation due 
tID technical difficulty of task 1. Task 6 was deleted at the request of 
NASA and combinecl in pla,rt with task 7. 

1.3.1 Task 1 - User Oriented Syntax Definition Capabil ity 
The existing Meta Assen1ID1er is designed to translate symbolic assemID1er level 
instructions into machine language instructions for a wide variety of target 
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computers. The adaptabi 1 ity is achi eved vi a a set of target definiti on 
directives which parameterize the Meta Assembler for the subsequent assembly 
function. The target definition directives supply the architecture character
istics (e.g., word size, register descriptions, character set definition) 
as well as the instruction set definition (mnemonic, operand description). 

Additionally, the Meta Assembler has built in directives to perform assembly 
time functions (e.g., data definition, parameter definition, location counter 
control, listing control, conditional assembly c~ntrol, procedure definition 
and expansion). The syntax processing of the Meta Assembler directives is 
fixed (e.g., DATA, PROC, EQU, ORG) and at the instruction processing level 
flexibility is provided for ol'erand definition rather than syntax definitiQn. 
Therefore, the Meta Assembler represents equivalency in its assembly functiQn 
with a correlating target machine and assembler syntax compatibility is not 
maintained. This can have the effect Qf requiring programmers to learn the 
equivalent assembler language and directive syntax instead of using the 
familiar target assembler syntax. Additionally, maintenance of a prQgram 
cannot be performed by both the Meta Assembler and the target machine 
assembler due to the syntactical differences. 

This task alleviates the syntax incompatibility by providing the additional 
capa,bil ity to allow the user to define the syntax of the assembler lar.guage 
and directives a.nd the cQrrelating semantics of the statements (e.g., generate 
intermediate language, perform an assembly time function). This was 
accompl ished by designing a meta la,nguage for the purpQse of defining 
assembler languages, their syntax and translatiQn semantics. 

The I'rQcessors developed for thi s capabil i ty a're the meta 1 anguage prQcessor, 
the lexical processor and the generalized parser. The meta languaSe I'rocessor 
is a j!lre-assembly function which processes the meta linguistic definition 
of the assembler language and generates a dictionary data set containing the 
syntax and semantic tables to be uti:'ized by the generalized j!larser. 
This function need not be performed for each assembly. The generalized 
j!larser performs the first I'ass of the assembly utilizing the syntax and 
semantic tables I'roduced by the meta language I'rocessor. The first I'ass 
accomplishes the source statements tra'nslation into the Meta Assembler 
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intermediate language which can then be processed by the existing second pass 
of the Meta Assembler to perform object module generation. 

The design intent of this capability was not to replace the existing Meta 
Assembler target definition and first pass process but rather augment the 
Meta Assembler with the optionally invoked generalized parser function as 
illustrated in Figure 1. Host portability of the enhanced Meta Assembler was 
preserved. 

Under this task a complete meta linguistic definition of the NSSC-I assembler 
language was developed. This represents part of the delivery items 
relative to Task 6. 

1.3.2 Task 4 - Meta Assembler Documen1;ati0n 
A Detail Design Manual was pr0duced which fully d0cuments all 5ubr0utines 
and data areas of the Meta Assembler. This d0cument is intended to support 
maintenance funcHons pertaining to the Meta Assembler. Included in the 
Detail DeSign Manual is an appendix devoted to host c0mputer installaUon 
pr0cedures. 

The existing Meta Assembler Wser's Manual was updated to include the 
enhancements and modificati0ns Plerformed during this effort. Meta Assembler 
error diagnosUcs are listed with aIDpr0priate exp1anati0ns as an appendix 
to the User's Manual. 

1.3.3 Tilsk 5 - Develop a Generalized Linkage Edit0,r 
A general ized Linka!ije Editor functi·on was definecl, desi!ijned, clevelopecl, and 
validated with a,ppropriate documentati0n supp0rtin!ij each phase. It provides 
the capabil ity to util ize modular pro!ijramming techn'i~ues in the app1 icati0n 
0f the Meta Assembler by combinin!ij a user 1 ibra,ry 0f sepa,rate1y assembled 
0bject modules, produced by the Meta Assembler, into an absolute or re10catab1e 
l0ad module 0n a large scale h0st computer. Its pdmary processin!ij capability 
is to perform re10cation and external linkage functi'0ns on the 0bject m0dules 
processed. Toimp1 ement a system generatior ca,pabi 1 i ty the Li nka!ije ~ditor 
additionally may access 0bject m0dules from an object module library to satisfy 
undefi ned 91 oba 1 references (see Fi !ijure 2). 
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A critical aspect of the Linkage Editor will be its ability to respond to 
usel' defined parameters to fully utilize the resQurces of the target machine, 
specifically the NASA Standard Spacecraft Computer (NSSC-I), The resource 
parameters include the ability to optionally specify beginning addressf;s for 
some or all of the control sections represented in the object modules and 
to specify '"he order in which the control sections are to be loaded. 

The implementation of the Linkage Editor is in ASA FORTRAN IV, as is the 
Meta Assembler, to facilitate ease in transporting the function from one 
host computer to another. 

The absolute load module generation is in a standard format to maximize its 
applicability to a wide variety of target machines. This necessitates an 
output driver to be developed whenever a new target machine is interfaced. 
Under this task an output driver was developed to format the load module for 
loading and execution on the NSSC-I (see Figure 2). 

1.3.4 Task 7 - Meta Translator Installation and Training at MSFC 
For the exclusive purpose of maintaining the enhanced Meta Assemb1er,the 
MDAC proprietary Meta Translator was installed at MSFC on an IBM 360. This 
installation included the delivery of source p>rograms (tape), program listings, 
technical documentation and installation procedure description for the MDAC 
Meta Translator, the enhanced Meta Assembler and the generalized Linkage 
Editor (see Figure 3). 

Personnel training was conducted in the utilization of the Meta Translator. 

In addition, the NSSC-1 language definition and outp>ut driver were cle1ivered 
to MSFC. The GSFC furnished test cases were also delivered (see Figure 4). 

1.4 RESULTS 
The Meta Assembler was enhancecl to allow the user to define an assembler 
1 anguage syntax to be pt'ocessed. Thi s capabil i ty e1 imi nated source 1 anguage 
reformatting or ad hoc syntax recognizer cleve1Qpment in order to maintain 
comp>atibi1ity with a target machine assembler language syntax. 
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The original MetJ Assembler was regenerated using the latest version of the 

MDAC Meta Translator. This regeneration provided an increase in efficiency, 

both execution time and memory re<quirements, and a more extensive dynamic 

debug capability. 

These improved dynamic debug features wi 11 provide support in the mai ntenance 

of the Meta Assembler itself. 

A generalized Linkage Edit("r was developed as a standard post processor for 

the Meta Assembler. The function of the Linkage Editor is to link separately 

assembled relocatable and/or absolute object modules into an absolute or 

relocatable 10ad m0dule. The Linkage Editor was written in FORTRAN IV to 

coincicle with the h0st p0rtability re<quirements of the Meta Assembler. 

The NSSC-I c0mputer was the initial target c0mputer. The Meta Assembler 

ancl Linkage Ecli tor were c0nfi gurecl to accept NSSC-I assembl er 1 a,nguage syntax 

and procluce loacl m0dul es that fully util i ze the NSSC-I resources. 

The resultant Meta Assembler ancl Linkage Eclitor was installecl at NASA Marshall 

Space Fl ight Center to facil itate central izecl contr0l of these NASA standarcl 

pr0grams. 

T0 provicle NASA MSFC the cafjlability to maintain the Meta Assembler the MDAC 

pr0preitary Meta Tran,;',ator program was installecl at NASA MSFC and trai1ning 

was provided in its !jse. 
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1 

2.1 TEAM ORGANIZATION 

Section 2 
ADMINISTRATIVE DATA 

The overall responsibility for this project was assigned to Avionics Control and Information Systems (ACIS), headed by Mr. G.A. Johnston, Director and was performed by the Computer Science Branch. ACIS is an organization of information scientists and engineers dedicated to research, design, analysis, and testing of advanced software concepts and to the development of computer applications for scientific and military use (see Figure 5) 

MDAC Proj ect Manager Mr. Z. Jelinski MDAC Principal Investigator Mr. K. V. Smith MDAC Technical Staff Mr. J. B. Churchwell 
Ms. SOD Park NASA COR 
Mr. Geoffrey C. Hintze 

The original principal investigator of the Meta Assembler Enhancements a,nd General i zed Linkage Editor Project, Mr. A. J. Edwards, terminated employment with MDAC-W in Ja,nuary 1978. At that time, Mr. K. V. Smith was ass i gned the responsibility of principal investigator of this project. 

2.2 SCHEDULE/MILESTONES 
The schedule and milestones fer the "erformance ef the contract is contained in Appendix A. 

2.3 FACILITIES AND RESOURCES 
The development portion of this contract was performed at Huntington Beach, Ca 1 i forni a, Headquarters of the McDonnell Dougl as Astronautics Com"any-West (MDAC-W). The installation portion of the contract was performed at National Aeronautics and Space AdmiAistration, Geo,rge C. Marshall Space Flight Center, Marsha 11 Space Fl i ght Center, A 1 abama. 
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2.3.1 MDAC-W Huntington Beach. California 
The McDonnell Douglas Automation Company provided support to the project through 
the use of its facilities - the CDC Cyber 74 and DEC PDP-10 computers. 

The MDAC-W proprietary Meta Translator was one of the primary support 
software products used in the performance of this project. 

2.3.2 NASA Marshall Space Flight Center, Alabama 
The host computer for the installation of the delivered software was the 
IBM 360 located in building 470B. 
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Section 3 

TECHNICAL PERFORMANCE 

3.1 META ASSEMBLER IMPLEMENTATION 

This section contains the implementation results for the Meta Assembler exten

s i 0ns . 

3.1.1 Task 1 - User Oriented Syntax Definition Capabil ity 

The purpose of thi s task was to provide a user oriented cajDabil ity to syntacti

cally define an assembler language, machine instructions and directives, 

enabling the Meta Assembler to maintain syntax c0mpatibility with target com

puter assemblers. 

The objective of this task was to integrate a meta language defil'lition 0f an 

assembler language into the Meta Assembler technique such that the built-in 

semantic and support processing is available to the t:lser at the meta language 

level. The built-in semantic and support jDrocessing is rejDresented by: 

o eXjDression evaluation 

o assembler directive processing 

o intermediate language formatting 

o object generation 
o 1 is ti ng function 

The imjDlementation a'jDproach was to develop a meta language to define the 

assembler language syntax and correlating built-in semantic functions. 

This meta language is input to a staml-alone preprocess0r for tra,nslati0n 

int0 syntax and sema,ntic tables which will guide the first pass jDrocessing 

by the Meta Assembler. A generalized jDarser was developed, integral to the 

Meta Assembler, to jDerform the alternative first pass of the cross assembly. 

The output of the general ized parser is an intermediate language (IL) data 

set such that the existing seconcl pass of the Meta Assembler ca;n complete 

the cross assembly by converting the IL il'lto the mbject data file and 

generate a program listing (see Figure 6). 
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3.1.1.1 Assembler Level Language Definition Meta Language (ALLDEF) 
The purpose of the meta language, ALLDEF, is to provide an easy to use 
environment in which to describe an assembler language syntax and correlating 
semantic process. The design of ALLDEF is based on the OPAlDEF meta language 
developed by MDAC for the U.S. Army Armament Command, Frankford Arsenal. 

Key to the conce~t of ALLDEF is its correlution to a bottom-up operator 
precedence parsing function. This permits a simplistic meta language 
notation and results in efficient parsing. Basically, ALLOEF represents a 

"dictionary" definition concept where the symbols of the target assembler 
language are defined in terms of their spelling (lexically) and their mf:aning 
(semantics). The meanings are defined contextually, i.e., where the symbol 
may appear and translationally, i.e., what Meta Assembler built-in semant'ic 
function is to be performed. 

A statement in ALLDEF may take forms to define user types, parameter table 
entries, target machine characteristics, assembler language symbols, semantic 
functions ancl comments. The ALLDEF clefinitions are specifiecl in a free-form 
structure with the constrai nt that user type, parameter tabl e and target 
characteri st'j c clefi ni tions mus t precede thei r references. 

User Type 

A ty~e is 
uniquely. 
its type. 

inc 1 udi:ng: 

Defi niti on 
an attribute associated with a symbol which categorizes that symbol 
Thus, a symbol may be bound unambiguously to an operator based on 
A set of built-in types will be providecl to the ALLDEF language 

NUMBER 

VALUE 

a digit string 
a NUMBER symbol which has been converted 
to its binary representation. 

NAME 

LABEL 

ADDRESS 

a character string which satisfies a 
defi niti on of an assembler 1 evel 
mnemoni c or symbol nota ti on. 
a NAME symbol which is identified in 
the label field of a statement. 
a NAME symbol defined in the assembler 
symiDol table as an address value. 
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CHAR STRING 

SPECIAL 

SYMBOL 

a character string normally delimited 
and typed for text processing. 
a character string composed of special 
characters. 
a character string which cannot otherwise 
be typed as NUMBER, NAME, CHAR_STRING, or 
SPECIAL. 

The available built-in types are used to provide initial token classification 
and the set may be extended further via the TYPE statement in ALLDEF. This 
provides unique binding attributes for tokens defined in ALLDEF. 

Example: 

TYPE I REGISTER, I I MEMORY, I •••• $ 

Parameter Table Entry Defi nition 
A parameter table is available for utilization. Essentially, the entries 
in the parameter table are the translation time variables defined, optionally 
initialized, and used as desired. The parameter table is divided into two 
sections, a global a'nd a local section. The global section contains the 
variable entries that are initialized only at the start of the assembly. 
The local section contains the variable entries that are initialized at the 
start of each statement assembly. Additionally, all of the built-in 
translation parameters are available in fixed entries i1' the parameter table 
including: 

CURSOR 

CURSOR CHAR 

OPCODE 

BIT LENGTH 

current inpt!lt statement cursor position 
in the local section and i ni ti ali zed to 1. 
character under the CWRSOR position, 
in the globa 1 secti 'm. 
operaU('m code value for object generation, 
in the global section. 
bi t string 1 ength for oeject generation, 
in the gloeal section. 
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FIELDS 

LOCATION 

CTL-SECTION 

MEM-SIZE 
ADDRI[SS UNIT 
ACCESS UNIT 
ERROR SIZE 
VALUE SIZE 
OBJECT SIZI[ 

the number of fields to parse for a statement, 
in the local section and initialized to 3. 
assembly location counter, in the global section 
initialized to zero. 
current control section for LOCATION, in the 
global section initialized to 1. 

global section parameters correlating to the 
Meta Assembler SIZE directive 

The user may extend the parameter table via the GLOBAL and LOCAL statements 
in ALLDEF. 

I[xample: 

GLOBAL 

LOCAL 

'LEVEL ';1, 'NEST' .... $ 
Global section definitions LEVEL is initialized 
to 1 and NEST is initialized to zero by default. 

'SOURCE', 'DEST', 'STYPE' : DOUBLE ... $ 
Local section definitions SOURCE and DEST 
are initialized to zero by default and STYPE 
is initialized to DOUBLE (previously defined 
on a TYPE statement). 

Target Machine Characteristics 
The target machine characteristics are the parameters IlI!eded to perform the 
cross assembly function. Some of the characteristic parameters are 
maintained as fixed built-in entries in the parameter table (see paragraph 
2.1.1.2). 
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Assembl er LallgUi;lge Symb9l s 
The process of building an assembler language "dictionary" consists of defining 
the assembler language symbols, or tokens, and the correlating semantic 
fUnctions, i.e., object generation and assembler directive processing. ALLDEF 
statements are needed to define the assembler level tokens in terms of 
operator precedence rules for the syntactic processing, and the semantic functions 
to be performed. It is at this point that the essence of unique assembler 
language translation into Meta Assembler intermediate language occurs. 

ALLDEF Statement for Assembler Language Operator DefinitIon - ALLDEF statements 
are used to define the assembler language symbols, i.e., instruction mnemonics, 
directive mnemonics, and the special operators of the assembler language 
statements, creating the enviranment for an operator precedence syntax 
processing. The remaining task is to define the sYntactic meaning of the 
operator definitions. The syntactic meaning of an assembler level token 
defi ned in ALLDEF takes the form of: 

o definition of the results 
o definition of the operands allowed 
o definitIon of the operator precedence 
o parameter table action 
o semantic action 

The collective ALLDEF terms to define the assembler level symbols and their 
meaning comprise the ALLDEF statement. 

Assembler Level OjDerator Definition - The assembler level operator definiti,ons 
describe the verbs and special operators of the assembler language and provide 
the mechanism to perform a statement parse. The operator definitIon term 
occurs first in an ALLDEF statement. Machine instructions and directives 
are the action verbs of the assembler statements which result in a statement 
level semantic, i.e., object generation and directive funcUon. Special 
operators are the sub-statement identifi.ers that perform on the action verb 
opera.nds. Their associated semantics build towanj full statement recognition 
at assembly time. 
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Exampl es : 
INSTRUCTION 'MOV': 
DIRECTIVE 'EQU': } 
PREFIX OPERATOR'#': 

POSTFIX OPERATOR '@':} 
INFI X OPERATOR',': . 

action verbs 

special operators 

Definition of Results - A result is the mandatory type of information to be 
returned to the parsing process upon complete recognition of an operator 
(other than the action verbs INSTRUCTION and DIRECTIVE). A result is expressed 
in terms of ALLDEF types_ 

Example: 
RESUL T=REGISTER 

Definition of the Operands Allowed - Operands are defined in terms of their 
order, optionality, type, kind, and term or sublist structure. The order 
position of the operand is correlated to a left-to-right scan of the operands. 
The type must be an ALLDEF type. The kind refers to the built-in generic type 
used to further bind operands and operators, i.e., EXPRESSION. The sublist 
structure, SUBLIST, indicates a del imited term, i.e., a parenthesized notation. 
The keyword OPTIONAL defi nes the presence of an operand is a 11 owed but not 
requi red. 

Examples: 
OPERAND(l) ~ REGISTER SUBLIST 
OPERAND(2) = OPTIONAL ADDRESS EXPRESSION 

lDefinition of the Operator Precedence - The precedence specified in a defini
tion provides the priority for reducing an operator to its result. Default 
precedence is assigned to the various operators, however, the precedence 
may be explicitly specified. 

Exampl e: 
pr'~ 'EDENCE=50 
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Semantic Action - The semantics of an operator definition are described in a 
semantic clause which explicitly specifies semantic functions or refers to a 
separate semantic definition statement. 

Semantic actions occur at two different levels of processing. First, there 
are the assembler function semantics which perform statement level semantics, 
i.e., symbol table definition and object code generation. Second, there are 
syntacti c processi ng semantics which mani pul ate parameter tabl e variabl es and 
operands, i.e., building operand lists, in order to effect precise assembler language 
statement recognition. Additionally, decision making phrases and arithmetic 
operations are available to the semantic clause pl'oviding flexibility over the 
semantic definition. This consists of an IF-THEN-ELSE-END type of phrase 
structure and arithmetic function keywords. 

Action may be taken upon parameter table variables in the form of assignment 
statements. This is an immediate translation semantic available for use 
at the language defjner's discretion. 

Examp1 e: 
NLEVEL=NL[VEL+1 

The as semb 1 er functi on semanti cs are represented by directive processing, 
i.e., symbol table definitions, macro processing, literal pool processing and 
object generation. 

Examples: 
CREATE SYMBOL(OPERAN0(2}} \ 
CREATEJJATA( 'IDATA' ,OPERANID(l) } 
LITERAL( OPERAND( 3}} 

symbol table processing 

literal pool processing 

control section processing 
SECTION( 'IiJATA' } , I 
SECTION(OPERANID(l}} 
CREATE MNEMONIC(OPERAND(l}} I mnemonic clefinithm,ie. ,macro 
OBJ[CT(ADIDRESS _TYPE( LOCATION_COWNHR} ,FIELD( 0-3 }=} object code generation 

OPCOIDE,FIELID(4-7}=OPERAND(1 ,1} FIELIIl{8-15}
OPERAND(l ,2}} 
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The syntactic processing semantics perform actions upon the operands during 
the assembler level statement recognition process. 

Exampl e: 
LISTF{OPERAND{l),OPERAND*2),O'65') build an operand list composed 

of 3 elements 

The decision making phrase provides the capability to have alternate paths 
as well as establish the truth condition for the operator definition 
recognition. Available to the IF phrase is the ability to test: 

o operator kind, spelling or precedence 
o operand value 
U operand presence (optional testing) 
o parameter table va 1 ue 
o value of expressions 

Exampl e: 
IF{PRESENT{OPERAND{l))) 

IF{SYMBOL_TYPE{OPERANO{l)).EQ.REGISTER), 
CHK-REGl , 

ELSE, 
CHK-REG2, 

[ND, 
LISTF{OPERAND{l),OP[RAND{2)), 

END $ 

AL!,.DEF OjTJerator Semant;: Definition Example 
INSTRUCTION 'MOV': OPERAND{l )=REG_REG,R[SI.ILT=DOUBLE, 

SIEMANTIC=OPCODE=O' 01' ,BDL 16$ 
INFIX OPERATOR ',': RESUL T=REG REG 

OPERAND{l) = REGISTER, 
OPERAND(2) = REGISTER, 
SEMANTIC= 

SEMANTIC 'DBL16': 

CHK-REGS,USTF, 
END $ 
BIT LENGTH=16 
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OBJECT(ADDRESS_TYPE(lOCATION_COUNTER),FIElD(O-3)"OPCODE, 
FI ElD( 4-9) =OPERAND( 1 ,1 ) , 
FIElD(lO-15)=OPERAND(l,2»$ 

An example of NSSC-l assembly language is contained in Appendix B. 

3.1.1.2 Assembler level language lexical Meta language (AlllEX) 

lexical Analysis 

The lexical pr0cessing is performed by interpeting a meta definition of the 
lexicon to perform token identification in a top-down fashion. The meta 
language for defining the lexical processing is very similar to the meta 
1 anguage of the MDAC Meta Transl ator and is processed by a preprocess0r step 
subsequent to the AllDEF processing of the syntax meta definition. 

The primary purpose of the lexical meta definition is to define the assembly 
time token fetch and identification process. 

It became clear that a parameterized standard lexical function is prohibitive 
due to the context sensitive uniqueness found in assembler languages. This 
has led to the necessity of providing.) specialized meta language to adequately 
address the token fetch and identificati·on process. 

It is the responsibil ity of the lexical process to fetch a token and iclentify 
it as one of the bas k types: 

NUMBER 

VALUE 

NAME 

lABEL 

CHAR STRING 

a digit string token which can be 
convertecl to a bi nary value. 
a NUMBER token which has already been 
converted to its bi nary rejDresentati0n. 
a character string t0ken which has the 
pr0jDerties 0f an assembler level mnem0nic 
or symb0lic notati0n. 
a NAME t0ken which has been iclentified 
in the label fielcl. 
del imited character stri ng token 
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SPECIAL a token composed of special characters 
only as defined by meta language. 

SYMBOL a token which cannot be otherwize 
identified as a NUMBER,NAME,CHAR_STRING 
or SPECIAL. 

The lexical meta definition provides a top-down, recursive descent, goal 
oriented technique for token fetch and identification. 

The meta definition consists of productions developed to guide the lexical 
process by defining the following lexical situations: 

o what is a NUMBER token 
o what is a NAME token 
o what'j s a LABEL token 
o what is a CHAR STRING token 
0 what is a special character 
0 what is a subfield s elDa,ra tor 
0 what is parSe order for token identification 
0 what is the end of a statement field condition 
0 what is the end of statement condition 

The lexical meta language is a m0dified Backus Naur Format (BNF) notation 
which will provide the basic lDarse funcHons: 

o 

o 

o 

o 

o 

exclusive cursor control 
truth/false lDath prediction 
reoccurance processing 
recursive IDrocessing 
litrral string prediction 

The extended lexical parse functions include: 
o 

o 

built-in primitive definitions 
e.g. LETTER,lDIGIT,CHARACTER,etc. 

parse state conditional testing 
The ALLI'lEF PARAMETER table and Duilt-in global variables will 
De available for aSSignment and conditional testing (e.g., Cl!IRSOR, 

CURSOR_CHAR, FIELDS ,etc. ) 
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o token construction and assigning the initial identity (e.g., NUMBER, 
NAME, etc.) 

While there is a distinct separation of the lexical and syntactic parse 
functions, there is a common source of the overall statement recognition 
state. Through the ALLDEF parameter table and other built-in global 
variables, specia1izecl parse functions can be controlled, i.e., label field 
identification, end of stateme .. t detection, assembler processing modes 
for special lexical and syntactic clefinitions (macro ancl text functions). 

Example: 

<TOKEN>:= <NUMBER>II<NAME>II<SPECIAL>II<SYMBOL>$ 
<NUMBER>:= (IF'O',BASE=81IBASE=10), 

<DIGITSTRING> , 
(IF BASE EQ 8, TOKEN_VALUE=VALUE OF 
OCTAL<DIGITSTRING>//lOKEN_VALUE= 
VALUE OF <DIGITSTRING» ,TOKEN_TYPE=VALUE, 
I F NOT LETTER $ 

<DTGITSTRING>:= 1 to MANY DIGITS $ 
<~jAME>:= LETTER, 0 to MANY (LETTERIIDIGIT), 

TOKEN_TYPE=NAME$ 
<SPECIAL> :=(', 'I I'.' I I '+'1 I '-' II '*' I 1'/') ,TOKEN_TYPE=SPECIAL$ 
<SYMBOL>:= 1 TO MANY (IF NOT SPACE ,NOT < SPECIAL>, CHARACTER), TOKEN_TYPE 

=SYMBOL$ 

3.1.1.3 ALLDEF Meta Language Processor 
A meta 1 anguage processor was clevelopecl to process syntactic meta clefi ni tions 
into the ALLDEF clictionary composed of the syntax anGi semantic tables. The 
ALLOEF processor functions as a stancl-a1one preprocessor to the Meta Assembler. 
The ALLD[F cli cti onary fil e is preserved as an input fil e to the general i zecl 
pa'rser functi on 0f the Meta Assembler Which e1 tmi nates the need to execute 
the ALL DE!' processor for each cross assembly. 

The design of the ALLDEF processor is based on the OPALDEF processor developed 
by MQAC for the U. S. Army, as is the ALLDEF meta 1 anguage des i gn based upon 
the OPALDEF meta 1 anguage (see Figure 7). 
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3.1.1.4 ALLLEX Meta Language Processor 
A meta language processor was also developed to process lexical meta definitions 
into an existing :'\LLDEF dictionary. The ALLLEX processor functions as a 
post processor to the ALLDEF processor and a preprocessor to the Meta Assembler. 

The design of the ALLLEX processor is based on the MDAC Meta Translator. 

3.1.1.5 Generalized Parser (ALTRAN) 
The ALTRAN processor will be developed as an integral m0du1e 0f the Meta 
Assembler. It provides the alternative first pass pr0cessing of the Meta Assembler 
by translating assembler language S0urce statements int0 the Meta Assemble.r 
intermediate languafje structures and performing assen;Jler directive semantics 
via the ALLDEF dictionary (see Figure 8). 

ALLTRAN Pllrsing 
The parsing technique emp10yed in ALTRAN is a precedence analysis scheme 
util i zi ng a 1 eft-to-ri fjht scan. A reducti on of an 0pera tor and its 0perands 
to the defined result is made when another 0perator is rec0gnized of a 10wer 
or e~uivalent precedence value. Any semantic ass0ciated with the reduced 
operator is als0 effected at that time. The assembler directive semantics, 
i.e., symbol table manipulation and control secti0n activation, are perf0rmed 
immediatelY by built-in sUPP0rt routines. The object generation semantics 
build 11 list of intermediate language elements on the intermediate language file. 
During the parsinfj process of ALTRAN, the operators aml operands are placed 
0n stacks for evaluati0n. The bindinfj of operands to o.perators is perfclJrmed 
0n the basis 0f the ALLDEF operator definitions. The proper 0perat0r 
definition is detected by matching the available operands with the ALLDEF 
0perator definition which permits oplerator reducUon to ocwr. The 
is that multil~le definitIons 0f the same operator are permitted. 

3.2 META TRANSLATOR IMPLEMENTATION 
3.2.1 Meta Translator Descripti('jn 

impl icaUon 

The Meta Translator is a propreitary translator writing system (TWS) developed 
at MDAC-W that is a very effective t00l for t/;}e generation of languafje 
translators (see Fifjure 9). It is machine independent in the class of medium 
'and 1 arge seale computers that have an ASA FORTRAN IV compil er. 
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Every translator consists of a parser to recognize syntax. a procedure 
executor and a set of subroutines to perform semantic functions, a number 
of support routines that perform common functions, and a control driver to 
act as an executive, controlling the flow of operations. 

The parser and procedure executor are generated by the Meta Translator 
since they are language-dependent. The semantic procedures may invoke built
in or user supplied subroutines. The support routines are not generated 
but are provided as an adjunct to the generated code. The control driver 
is a short main program which initiates translation, and is written by the 
language definer in FORTRAN IV. 

The language definition is written in the meta language by the language definer 
(see Figure 10). It is this definition that is translatea into the parser 
and procedure executor by the Meta Transl ator. A supporti ng BLOCK DATA 
subroutine is also generated for initialization of syntax and semantic 
parameters. 

3.2.2 Meta Translator Appllication 
The Meta Translator was used to originally plroduce the Meta Assembler syntax 
proceSSing subroutines and is integral to the impllementation of the ALLDEF 
and ALL TRAN processors. Thi s techni !que uti] i zes a meta 1 angua!!Je for defi ni ng 
the syntax plrocessi ng a 1 !!Jorithms and greatly eases impl ementati on and ma i ntenance 
functions. 

To provide maintenance capamility to NASA, the Meta Translator was installed 
at MSFC and the Meta Assemmler meta language source was a deliverable item. 

3.3 GENERALIZED LINKAGE EDITOR 

3.3.1 Genera 1 Overv i,ew 
The Generalizea Lil'lkage Eaitor (GLE) is a multi-functioned utility cJesigned 
to aid the Meta Assembler user in the creation and maintenance of software 
sys tems bui It from Meta Assembler forma tted DIDj ect modu 1 es . 
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FORTRAN TRANSLATION EXAMPLE 

SDECLARA nVENAME . =SET CASE I • fODETERM'INiE DECLARATIVE TYPE 0' 
('DIMENSION'. 'I'NTEGER', 
'RiEAL', 'COMMON', 'DATA', 
'EOUIVALENCE', 'DOUBLE', 
'LOGICAL', 'COMPLEX', 
'IMPLICIT'). 

SDODEC'LARATIVE . .=CASE I OF fO PARSE THE DECLARATIVE 0' . 
w (SDIM'ENSION,SI'NTEGER, '" SREAL.SCOMMON,SDA TA, 

SEOUIVALENCE,SDOUBLE, 
SLOGICAL,SCOMPLEX, 
$IMPLlCIT). 

$DlMENSION .cTEXT/SDECLARATIVENAME: I, /" OUTPUT 'DIMENSION' 0' 
LIST OF HiJ(!)(!) '" PARSE THE ARRAY LIST 

., 
BEGIN 

$NAME, ,. PARSE AND OUTPUT ARRAY NAME "' TEXT/SNAMEI, 
SFINDDIMENSION, ,. PARSE AND OUTPUT PARENS AND "' $COMMA ,. SUBSCRIPTS. OUTPUT A COMMA. ., 

END. 
TEXT(;EJECT).. ,. PRINT AND PUNCH OUTPUT IrllAGE ., 

Figtl,re 10. Meta Tra'ns 1 ator Exampl e 
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Functionally, the GlE provides three basic services: creation and maintenance 
of libraries of ("lbject modules, binding of separately assembled modules to 
form a generalized load module. and cataloging of object modules, libraries 
and load modules to gather descriptive information. 

3.3.1.1 Library Creation ancl Maintenance 
This service provided by the GlE gives the Meta Assembler user the capability 
to create a new user/system library directly from the output of the Meta 
Assembler. Once a library has been created, it may then be updated using 
Meta Assembler output and the old library to create a new library. 

3.3.1.2 Binding of Modules 
This is the primary service of the GlE. Its function is to bind separately 
assembled modules. developed for a common target machine and residing on 
user and/or system libraries, into a generalized load module. The generalized 
load moclule is then available for transformation into the structure re!!juired 
by the specific target computer loacler. A wicle range of control is given to 
the user, through the use of directives, for determining which moclules and 
in what order wi 11 a.ppear in the resultant loacl moclul e. 

3.3.1.3 Cata10ging of Standard Meta Assembler System Outputs 
This capalilility gives the user a t00l to clisplay descriptive informaUon 
about each 0f the three r~eta Assemlill er syster.l outputs: object moclul es, 
library 0f object modules, ancl loacl m0clules. 

The available information includes: type of output, m0du1e name, moclule 
creation clate and Hme, medule versi0n, target c0mputer. 

3.3.2 Flow Through The GeAerg 1 izecl Li nkage Eclitor 
The flow 0f data thr0ugh the GlE is contr011ecl entirely lily user suppliecl 
clirectives which represeAt: inv0cati0A of a basic service, tasks fer a 
basic service tQ perform, ancl terminati0n of a basic service. 

It is expected that a c0uple of basic f10w paths will be performed again 
ancl again. With this in mincl, the followin,!) clescript.ions will outlinE these 
two Iilas i c flews (a macro flowchad appears in Fi gure 11). 
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3.3.2.1 Creation of a System Library for Genet'a1 Use 

In a production atmosphere, there usually exists a set of object modules 
that perform widely needed utility functions: input/output, mathematical 
functions, date and time, etc. Once these functions are coded and tested 
they should be put into a library that is available to all users. The GLE's 
library creation and maintenance function will create a system 
object modules uSing the assembled utility functions as input. 

1 i brary of 
This 

library of utility functions is now in a form that may be used by the linkage 
editor service to satisfy references to them. 

l~hen changes to the system 1 ibrary are necessary, the 1 ibrary service has 
capabilities to update the old system library against newly assembled modules, 

using directives, to create a new system library. 

3.3.2.2 Creation of a User Library and Load Module Generation 

The Meta Assembl er user wi 11 create a set of object modul es to lDerform a 
particular task. As new tasks are required or old tasks become unnecessary, 
the set of object m0dules will change to refl ect the current requirements. 

The GLE's library creation and maintenance function (LCMF) can model such a 
se~uence. Given an initial set of object modules, the LCMF can create a 
user library of object modules. As changes are made, the LCMF can make the 

requ i red changes to the user 1 i brary . 

Once a library is Duilt, the linkage editor service may then be invoked. 

The linkage editor service, using a user library and/or system library, 

will create a load module. 

35 



3.3.3 Use of the Generalized Linkage Editor 

Each service of the GLE is accessed by user directives. These directives 

control service invocation, service termination and service tasks to 

be performed. 

All directives are of the general format described below. 

3.3.3.1 Directive Coding Conventions 

Notation Used to Describe Directives 

The descriptive notation used to define the syntax of the ;,nput directives 

makes use of upper and lower case letters and the characters left bracket ([) 

right bracket (]), periods( ... ), and vertical bar (I). 

All keywords and other explicitly required symbols appear as upper-case or 

spe~ial characters. An implicit operand appears as a lower-case name which 

is described in a narrative subsequent to its usage. 

An optional operand is shown enclosed within brackets([J). Occasionally, 

more than one level of optional ity is required and is described in terms 

of brackets within brackets: 

MAP 
[ON 1 
OFF 

; describes MAP; or 

MAP ON; or 

MAP OFF: 

Choos i ng one of ali s t of operands is denoted by 1 is ti ng the operands 

vertically and encloSing them with vertical bars (I I): 
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ENTRY . module 
(ISymb011) 

addr 

describes ENTRY module; or 
ENTRY (symbol); or 
ENTRY (addr); 

Specifying a repetitive col1~ction of identical o'Jerands is described by 
following the operand with a triple dot ( ... ): 

name [,name ... ] describes name or 

Format of Directives 

name, name or 
name, ... ,name 

All GLE directives are formed according to the following rules and 
restrictions: 

o All directives Ir! free-form using columns 1-72 
o Blanks are ignored and are used for readability only 
o Each directive is terminated by a semicolon 
o All text between the strings /* and */ is ignored, this string may 

not contain intervening blanks. 
o More than one di rective may appear on a card 
o Directives may be contained on more than one card 

The following example illustrates the preceding points: 

72 73 $0 
LIBRARY DIR 001 
LIBRARY SERVICE FUNCTION */; DIR 002 
BEFORE A,B; /*PUT B BEFORE A, AND */ A DrR 003 
FTER C/*PUT / ,D; [ND; OI R 004 
LWKEDIT; INCLUDE A:SLI8(4000) OrR 005 

,51 (1),52(2);MAPON;CND;CATALOG ;IR 006 
;FILES-8,ULIB /*,*/,SLIB; /DIR 007 
*CATALOG END*/ENO; OIR 00$ 
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3.3.3.2 List of Generalized Linkage Editor Directives 
The directives listed below give a quick summary of capabil "ties for each 
basic service provided by the GLE. 

Library Creation and Maintenance Function Directives 
o LIBRARY Invoke Library Function 

: 1 

1 
• l 

o CREATE 
o NAME 

Build New Library from Meta Assembler Output On / 
Specify name of library 

o KIND 
o BEFORE 
o AFTER 
o DELETE 
o 

o 

IGNORE 
R[NAME 

o NO AIJTOREP 

o REPLACE 
o END 

Linkage Editor lDirec;tives 
o LINKEDH 
o FILES 
o RELOCATION 
o MODE 
o INCLUDE 

Specify kind of library 
Position for a new module 
Position for a neW module 
Delete modules from old library 
Ignore new module 
Give module t,'ew name 
Only processes new modules named on before, 
after and replace directives 
Allows select replacement of modules 
Terminate library function 

Invoke LINKAGE EDITOR 
Indicates file to be linked 
Specify address fields 
Force type of load module 

, .. 

I 
o EXCLUDE 

Force inclusi0n of a m0dule from a library 
F0rce exclusi0n of a m0dule fr0m l0ad m0dule 
F0rce exclusi'0n 0f entire user library 

.. i o NOULIB 
o NOSLIS 
o RENAME 
o ENTRY 
o NAME 
o MAP 
o GSECT 

o BOUNID 
o END 
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F0rce exclusion 0f entire system nbra,ry 
Cause external reference name change 
Specify executio,n sta,rt address 
Name l0ad module 
Turn link map listing 0n or off 
Cause assembly time contr0l sections to 
be loaded c0nsecutively 
Determine module bounding 
Terminate linkage edit0r functi0n 
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Catalog Dil"ectivE's 

CATALOG Invoke catalog service 

<, 

FJ LES 

END 

Spe~ify which filE's are to be cataloged 

Terminate catalog function 

3.3.3 J Use of the Library Creation and Maintenance Function 

An important function of the GLE is to be able to create and maintain two 

types of libl"al"ies; system and user, The purpose of a library in the GLE 

system is to provide the user \~ith a utility with which to manipulate 

assembled object modules and to pl"ovide the linkage editor with a set of 

object modules from whicb extel"nal references may be satisfied. 

Even though thel"" are t\~O distinct types of libraries, the only real 

difference bet\~een them is in the way they al"e usecl by the 1 inkage editor. 

Structura lly, a sys ten I and USel" 1 ibrary are equ iva 1 ent. 

~ll1des of Use 

The library Cl"eation and maintenance function (LCMF) operates in t\~O modes; 

creation and maintenance" 

Creation Node - TIl(' creation mode of the LCMF causes the object modules output 

from the meta assembler to be fonnatted into a standard librar.Y (see Figure 12). 

DUI"ing librar.Y cl"eation, the follO\~ing l"estl"ictions must be kept in mind: 
o 

o 

o 

o 

A libral"y may not contain modules witll duplicate names 

The CREATE directive is mandatory and must be the second directive 

NAME,KIND and PASSlvORD are the only othel" directives allowed 

The libral"y will contain the modules in the ol"der in which they 

are encountel"ed. 

~laintenance Mode - If the CREATE clil"ective is not the second directive 

encountel"ed then the illode is assumed to be the mai ntenance mode. Pl"ocessing 

of new modules is hanclled by t\~O basic pl"ocedures: implied autolllatic 

l"eplacement. and directeG replacement by use of directives. 

If no pl"ocessing Gil"ectives al"e given, then t.he LCMF Cl"eates a ne!< libl"al"Y 

hy I'leplacing the mDdules of the old library witl1moctules tllat have t.he same 
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TYPE 0F FILE· LIBRARY 

NAME 0F LIBRARY 

KIND 0F LIBRARY· USER/SYSTEM 

CREATI0N DA1'E I CREA Tl0N TIME 
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-, PTR 1'0 _ 

M0DULE INF0R 

, 
, 

M0DULE NAME 0F LAST M0DULE 
TPTAT0 _ 

M0eULEINF0 

FIRSTM0eULE INF0RMATI0N lesC, elCTIONARIES, PTR 1'0 0s:/ECT1'EXTl 

. 

, . 

LAST MOeULE INF0RMA1'ION 10SC, e!CTIONARIES, PTA 1'0 0BJECT 1'EXT) 

.. 

Figure 12. Standard Library Fonnat 
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name as output from the Meta Assembler. Any new modules will be written 

at the end of the new library. 

If processing directives are given then transcription of modules to the new 

library will take place according to the directives. 

A functional flowchart of the LCMF appearS in Figure 13. 

Detailed Description of LCMF Directives 

FORMAT 

LIBRARY; 

DESCRIPTION 

Thi s d1r'ecti ve must bJe I'lresent as the fi rst di rective to invoke the LCMF. 

FORMAT 

CREATE; 

DESCRIPTION 

This directive must be the second directive encountered in order to 

cause a new libJra,ry to be created, using Meta Assembler outl'lut only. 

If CREATE is not the second directive encountered then it is assumed 

that an olC'l user or system 1 ibrary is available to update against. 

FORt·tl!:r 

NAME=libJname; 

DESCRIPTION 

This directive uses the symbol string "libname" to !!live the library a 

flame. If this directive is absent for a creation mode then a default 

name of "LIBRARYl" is given to the 1 ibJra,ry. 

An ul'ldated libJrary retains its original name unless changed by the NAME 

directive. 

FORMAT 

KIND = USER I 
SYSTEM. 

41 



LCMF 

PUT DECODED 
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Figure 13. FunctionaJ Flowchart For the Ubrary Creation a:1d Maintenance Function 
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DESCRIPTION 

This directive provides the library with a kind attribute. If this 

directive is absent for a creation molile then a default kind of "USER" 

is given to the library. An updated library will retain its original 

kind unless changed by the KIND directive. 

FDR~1AT 

NOAUTOREP; 

DESCRIPTION 

This directive <!Ieclares that the LCMF function will not replace all 

modules from the old library with modules from the Meta Assembler havin§ 

identical names, but selectively replaced modules according to REPLACE, 

BEFORE and AFTER directives. 

FORMAT 

BEFORE oldmod, new mod l [. neW modi"']; 

DESCRIPTION 

This dil'ective causes the LCMF to insert the "newmocl" modules from the 

Meta AssemlDler befo;'e the specified "old mod" for transcription to the 

new libral'Y. This caouSeS automatic deletion of old modules having the 

same names from the old lilDrary. 

FORMAT 

AFTER 01 dmod, nel'imod 1 [, newmod i ... ] ; 

DESCRIPTION 

This directive causes the LCMF to insert the "newmod" modl11es frOIll 

the Meta Assembler after the specified "oldmod" on the old library for 

tramcription to the new library. Insertion of this type causes 

automatic deletion of old modules having the same names frolll the old 

1 i brary. 

FORMAT 

PASSWORD=pas5word; 

DESCRIPTION 

This direC1.ive specifies a Jilassword for the lilDrary. If this directive 

is absent then there is no default password given to the library. An 

updated libra,ry will retain its original pass~lord unless changed by the 

PASSWORD directive. 43 
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FORMAT 

DELETE oldmod2 [,oldmodi ",]; 
DES CR I PTI ON 
This directive causes the LCMF to not copy the "oldmod" modules from the 
old library to the new library, 
FORMAT 

IGNORE new mod l [,newmodi ",]; 
DESCRIPTION 
This directive causes the LCMF to ignore the "neM11od" m0dules from the 
meta assembler during processing, 
FORMAT 

RENAME oldnamel = newnamel [,oldname( newnamei",J; 
DESCRIPTION 
This directive assigns a new name to a module that will appear in the 
new 1 ibrary, If any other directives refer to this m0dule, the old name 
should still be used. 
FORMAT 

REPLACE neM11odl [,newmodi , .• ]; 
DESeRI PTI ON 
This directive is meaningful onl~, during the effect of a NOAUTOREP directive. 
It causes the "neM11od" modules to replace modules on the old libra,ry 
with the same names on the new library. 
FORMAT 

END; 

DESCRIPTION 
This directive causes termination of directive reading for the LCMF 
ancl initiates processing of the directives, 

Exampl es of LCMF Wse 

For the following examples assume the existance of two Meta Assembler generated 
files, A and B, of object modules containing moclules MA, MS, MC, MID and 
modules MD, MA. OX, OY, OZ respectively. 
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Example 1. Creation of a system library LIBl from file of modules B. 
Di recti ves; LIBRARY; 

CREATE; 
NAME=LIB1; KIND=SYSTEM; 
END; 

System Library LIBl contains MD, MA, OX, OY,OZ. 

Example 2. Automatic update of LIBl using file A to create user 
library LIB2. 
Directives; LIBRARY; KIND=USER, NAME=LIB2; END; 
User Library LIB2 contai ns; 

MD from A 
MA from A 
OX from LIB1 
OY from LIB1 
OZ from LIB1 
MB from A 
MC from A 

[xample 3. Restore MA from B on LIB2. 
Directives; LIBRARY; 

NOAUTOREP; 
REPLACE MA; 
END; 

User Li mrary LIB2 contains; 

or 

MD from LIB2 

MA from B 
OX from LIB2 
OY from LIB2 
OZ from LIB2 
MB from LIB2 
MC from LIB2 
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LIBRARY; 
IGNORE MD;OX,OY,OZ; 
END; 
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3.3.3.4 Use of LINKAGE EDITOR Function 

The most important service provided by the GLE is the LINKAGE EDITOR (LE). 

The LE service provides the i~eta Assembl er user with the means to generate 

a standard format load module (see !'"igure 14) by binding separately assembled 

modules that reside in user and/or system libraries. 

Since the LE must handle a variety of linkage editing re:quirements. a set 

of directives has been provided to give the user direct control over much of 

the load module generation process. The basic control features are: 
o specification of execution start address 

o order of module appearance in load module 

o link map generation 

Data !'"low through the LINKAGE EDlr.OR 

The LE expects as its primary inputs a user 1 ibrary of object modules from 

which to form a basis for a load mOdule. and an optional system library 

from which to satisfy external references. The LE then reads and decodes 

the user directives. if any. 

A "task" table is initialized with the decoded directives. Pertinent 

information includes: module order and start addresses supplied by "INCLl:ID[" 

directives. library to find module. and modules to exclude from the load 

module. If no service directives have been input then the "task" table is 

initialized by using the entire user library. 

The "task" table is then processed to determine all the modules that will appear 

in the load module. This processing includes sea,rching for definitions to 

a'ny undefi ned references. 

Once all the modules to be linked have been determined. addresses for all modules 

a'nd control sections can be assigned. This c0mpletes filling in the "task" 

ta'ble. If a link ma'p has been requested then the "task" table is used to 

create the map. 

All that remains to be done is to gene~'ate the standard load module. First. 

the header block is written. The user and/or the system libraries are then 
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I 

FILE TYPE - LOAD MOOULE I ERRORS-YIN 

LOAD MODULE NAME 

CREATION DATE I CREATION TIME 

LOA" MODULE KIN" - RELIABS 

TARGET COMPUTER 

LOAD MODULE LENGTH 

EXECUTION START ADDRESS 

END OF MODULE' YIN I LENGTH OF RECORO 

LOCATION COUNTER FOR FOLLOWING CODE 

RELOCATiON BIT MAP· YIN I LENGTi' OF MAP 

RELOCATION BIT MAP 

· · 
TEXT BIT STR I NGS 

· · · 
• 

• 

· 

Figure 14. Standard Load Module Format 
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read sequentially. As a new module is read, it is either skipped or processed. 
All the information necessary to do address location is available from the 
"task" table. When the libraries have both been processed the linkage edition 
is complete. Figure 15 contains a functional flowchart of the LINKAGE EDITOR. 
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Control of Load Module Generation 
The GLE gives the user a wide range of control over the load module creation 
process. This control is divided into four main sections; load module 
type, execution start address, modules that will appear in load module, 
and generation of a link map. 

General Directives 
These directives control ob>fious features in the LINKAGE EDITOR. 

0 

0 

o 

UNKEDITl 

Format 
LINKEDIT; 

Descri2tion 
This directive is r~quired tm invoke the LINKAGE EDITOR service. 

\'!AMEI 

Format 
NAME=lmmd; 

Oescri pti mn 
The user may supply a name to oe given to the gene!"ated load 
module. If the optional NAME directive is included, then the 
name of the load module will be 'lmod'. In the case where the 
directive is not inc]'uded, then the default name of 'LOAD 
MODULE l' will be supplied. 

Format 
END; 

Description 
This directive terminates service directive reading and causes 
the LINKAGE EDITOR to perform the requested services. 
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Load Module Generation Node 
The GLE will have the ability to produce load modules for a wide variety of 
target computers. The intent of the load module generation mode is to 
inte~face with various target machine loaders by producing absolute or 
relocatable load modules as required. 

• 

• 

i RELOCATICJ'] 

Fonnat 
RELOCATION=(startbit: endbit) [, (startbit: endbit), ... ]; 

D"!scriotion 
This directive provides the GLE with a specification of all 
the fi"!lds ~;hat may contain addresses during an assembly. 
This allows the load module to create a relocation bit 
map, based em the specified fields, SCI that a relocating 
loader will know which addresses will need a load bias 
added. The 'startbit' indicates the starting bit position 
and the 'endbit' indicates the ending bit position for a 

field. All fields are described left tCl right with 
bit 0 (zero) assumed tCl be on the extreme left. 

··LI· _________ ---' 
o n 

The relocation bit map will be created only if the load 
module mode is 'REL' (see the MOD~ directive). This 
directive is mandatory and must De the third linkage 
editor directive. 

J.MObEl 
'FDnnaj; 

MOIDE ABS 1 
REL ' 

Descriotion 

In the absence of the MODE directive, the mode of the load 
module will be relocatable unless: 

• the ENTRY directive is oiven 
o no teiocatable text is ,'oune 
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Execution Start Address Specification 
The starting address for execution of the load module produced by the GLE 
can be specified by the optional ENTRY directive. 

• IENTRV! 

Format 

ENTRY module 

( I symbol I ) 
addr I 

Descriotion 
A start address may be specified by giving the name of an 
ebject module. If the module has an end transfer address 
specified, then this address will be used, otherwise the 
default end transfer address as suppl ied by the Meta Assembler 
wi 11 be used. 

If a 'symbol' is used to specify the start address, then the 
definit~on of this symb0l, as supplied by the LINKAGE EDITDR, 
.will be used. 

The use of 'addr' gives the user the abil ity to specify an 
absolute address for the start err. execution. It must be 
descrIbed in the same base as the meta assembler output listing. 

M0dule Appea,rance in a Load Module 
The essence of module binding is the determination of the medules that will 
appear in the load module, the erder j'n which they will appea,r i,n the load 
modul e, and the types of addresses that may be bound. 

At this time, the LINKAGE EDITOR will be able to handle three addressing 
schemes provided by the Meta Assembler; direct memory add,ressing, base 
displaced addreSSing, and location ceunter relative addressing. 



There are several user directives available to determine which object modules 

will appear in a load m0dule; ULIB, SLIB, EXCLUDE, RENA...,E and INCLUDE. 

Even with the user directives, there are important assumptions that will be 

made when processing object modules using these directives. 

The fi rst assumption concerns the defaul t processing (of external references. 

If a module is needed for satisfaction 0f an external reference, then it 

will be searched f0r. The first Jlace to l00k will be the 'task' table to 

see if it is already linked. If it is not linked, then the us"r library 

will be searched. If the user library does not contain the m0dule, then 

the system library will De searched. If after searching the system library 

the m0dule is still n0t f0und, then the reference will remain unsatisfied. 

S0 we see the search hierarchy is: 

1) a 1 ready linked 

2) user 1 ib,rary 

3) system library 

The sea,rch hierarchy may be changed by use 0f the FILES,NOULIB,NOSLIB and 

EXCLUDE directives. 

o 

Format. 

FILES I [l!ISER]L][SYSHM]! ; 

Descripti0n 

This directive indicates the files to be used in order to create 

the l0ad m0dule. This directive is ma'ndatory and must be the 

second directive encountered. 
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o 

o 

IINCLUDEI 

F(mnat 

INCLUDE module [(msa)J[,csect(csa) ••• J[:I~ti:IJ; 
Description 

This directive causes the forced inclusion of 'module' from 
an optional library. The direc:ive also allows a starting 
address, 'msa " to be specified for the module. Additionally, 
assembly time control sect·jons, 'csect', may have starting 
addresses specified. This directive has the power tel determine 
not only order elf appearance but starting addresses as well. 

There are some restrictielns depending upon the memory allocation 
scheme of the Meta Assembler. If the mode of the load module 
is defined as the"section"mode and 'msa' is specified, there 
will be a warning. However, the control section address will 
l5e allelcated back-to-back felr the specified module. If the mode 
is" norma l" , . 'l1lsa' can be speC; fied but any control secti on 
address, 'csa', will be ignelred "If specified. 

If this directive is not included in the creation of the load 
module, then ALL the medul(!s frem the user library will be 
included as a default. 

All addresses must be specified in the base ef the Meta Assembler 
output listing. 

IE~CLIiI@EI 

Fermat 

EXCLI!IDE mednam[ ,IDeldnam .•. J'[: I ~m I J; 
Description 

This directiVe forces the exclusieln of particular modules frem 
appearance in the final lead module. If no library is specified, 
then the module is ignored ne matter whkh library it is found en. 
This affects the search hierarchy by implying which library may 
conta in the modul e. 
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o 

o 

o 

INOULIB! 

F0rmat 

NOULIB; 

Descriotion 

This directive forces exclusion of all modules in the user 

library from appearing in the final load module. This implies 

that the search hierarchy effectively becomes: 

1) already lir,ked 

2) system 1 i brary 

INosusl 

Fgnnat. 

NOS:"IB; 

Descriotion 

This directive forces exclusion of all modules in the system 

li!Jrary from appearing in the final load m0dule. Therefore. 

the search hierarchy effectively becomes: 

1) already 1 inked 

2) user li!Jrary 

IRENAMEi 

Format. 

ReNAME oldname=newname [.oldname=newname •... ]; 

Descriotion 

This directive causes external references to '01dname' to be 

satisfied !Jy the definition supplied by 'newname': If 'newname' 

is 0ne of the external references to a module.that has !Jeen 

mentioned on an EXCLUDE di"ective. then 'oldname' will not be 

renamed and will be 1 eft as undefi ned. 
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o 

o 

I liStcr l 

Format 

GSECT csect,csa [,bound]; 
Oescri pti on 

The GSECT directive causes text in control secti,on 'csect' 
from all linked modules to be linked consecutively into one 
gl0bal c0ntr0l secti0n, starting at address 'c:sa'; Opti,mally 
included is the bounding information, 'b0und', to be used to 
determine where to start. addresses in this secti0" when 
the next m0dule is encountered. 

If the mem0ry allocati0n scheme is defi,ned as the normal m0de, 
then this GSECT directive will cause the err0r of mem0ry 0ver
lapping. 

The address must be described in the base "f the Meta Assembl er 
0Utput listing. 

\80!1lND\ 

F0rmat 

BOUND start ['nextJ; 
Deseri Rtf on 

The optional bound directive cQntrQls lQcatiQn CQunter pr0cessing 
f0r m0dules that a,re nQt supplied with starting addresses. The 
default values WQuld cause mQdules to start at 10cati0n 0 and 
be butted up aga iost Qne another. 

The address must be described in the base of the Meta Assembler 
output listing. 
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Generation of a link Map 
The user has control over the inclusion or exclusion of a link map as par: 
of the LINKAG~ EDITOR outputs. This contrel is available through the 
optional MAP directive. 
o~ 

Fonnat 
MAP 

~
ON -I OfF . 
GLOBAL .' 
~lODULE~ 

DescriDtion 
If the MAP directive is included without an operand or is not 
included, then the default information will be generated with 
the unsatisfied external map. When ii link map is generated, the 
following fixed contents wiTT be available. All addresses wiTT be 
printej in the same base as the Meta Assembler output listing. 

o Default map 
o 

o 

o 

o 

tcho of input directives 
Error/warning messages 
load module header information 
o 

o 

o 

o 

Creation date and time 
liilad modu Ie hnd 
Load module length 
Executi on sta rt address 

Block assignment! 
o Name of module and control secticln 
o 

o 

o 

Start acldress 
Length 
Library from 

o Relocatien 
linked 
fields 

o Module map 
o 

o 

Externa 1 references 
External definitions 
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o Global cross-reference map 

o Name of defInition 

o Defined value 

o Module name defined 

o References to definition by module 

o Unsatisfied external 
o External references 

o Module name referenced 
o References to externals 

Example of Link Edit Use 

The directives described previously Imply a hi erarchy of ordedng on 

object modules and control sections. The simplest explanation of this 

hierarchy is through the use of an example. 

Example 1. Sh0W ordering hierarchy. 

·Assume the memory allocation scheme is the section mode and the 

base is acta 1. 

Let object modules PG1, PG2, PG3 and PG4 exist. 

PG1 contains A1, A3, B1 and B2 as control sections. 

PG2 c(mtains A1, AS, BO and B2 as control sections. 

PG3 contains AO, A2. A7 and B1 as control sections. 

PG4 contains AB as a control section. 

PG2 and PG4 are needed to satisfy external references. 

Given the following directives. show the starting aliidresses. 

UNKEIlHT; 

END; 

FILES USER; 

RELOCATION=(O:ll) ,(12:23); 

NAME=LMOD; 

MODE ABS; 

BOUND SQOO; 

GLOBAL A1 • }OO ,2 ; 

GLOBAL B 1 ,1000; 

INCLUDE PG1; 

INCLUDE PG3(200), A7(7000); 
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i . ; 
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UNKEIlHT; 

END; 

FILES USER; 

RELOCATION=(O:ll) ,(12:23); 
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100 200 1000 5000 8000 -
Al( PG1) AO(PG3) Bl(PG1) A2( PGl ) A7(PG3) 
Al(PG2) A2(PG3) Bl(PG3) B2(PG1) 

A5(PG2) 
BO(PG2) 
B2(PG2) 
A8(PG4) 
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3.3.3.5 Use of the Catalog Function 
During use of the Meta Assembler system, many files will be created along the 
path to load module generation. Some of these files, such as libraries, 
will be saved and used many times. To aid the user with configuration control, 
a catalog function is provided by the GlE. This function extracts descriptive 
information about the three basic Meta Assembler system outputs object 
modules, libraries of object modules, and load mGJdules. 

Summary of Catalog Directives 
o CATALOG Invoke catalog service 
o FILES Specify which files are to be cataloged 
o END Terminate catalog function 

Detailed Description of Catalog Directives 
o ICATAlOGi 

FGJrmat 
CATALOG; 

Description 
Mandatory directive required to invoke the CATALOG function. 

o lFrU::S! 

Format 
FILES = IF ilename I 

~ogica 1 uni t 
Description 

[I F] r I fi 1 ename \ L' logical unit 
[IF], ... ] ; 

During a talE run, several files a,re created. Before the LIBRARY 
function, a file of object medules generated by the Meta Assembler, 
knewn as OBJ, and opti@nally an @ld 1 j,brary ef ebject medules to 
update, kn@wn as OlIB, exist. After the lIBRARY function, a new 
library, knewn as NLIB, exi sts. Bef@re the LINKAGE EIDITOR functi on, 
a user and/er system library, known as UUS and SLIB, respectively, 
exist. After the LINKAGE EDITOR functi@n, a lead module, known 
as lMOD, exists. 
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So, at any of the described paints, several files with generic 
names are available for cataloging. In addition to their 
generic names, the files will also have a FORTRAN logical unit 
associated with them. The table below describes the 'filename' 
and its corresponding 'logical unit'· 

The '/F' indicates the full catalog for the file mentioned. 

FILENAME 
OBJ 
DUB 
NUB 
UUB 
SUB 
LMOD 

Format 
END; 

Qescription 

LOGICAL UNIT 
8 

7 

9 

9 

11 

12 

This directive causes the CATALOG function to perform the 
catalog of files. 

Available Information 

'(he information that is available for each of the three basic files is 
shown below. 

Object Module 
0 Object Module Descriptil!ln (DSC) 
0 Cl!lntrol Section Dictionary (CSD) , /F' only 
0 External Reference Directionary (ERD) '/F' only 
0 [xternal Definition Dictionary (EDD) '/F' only 
0 Vector SymbQ 1 Di cti onary (VSD) '/F' only 
0 Object Text (TXT) '/F' only 
0 Object Module End ( END) '/F' o.nly 
0 Object Module [OF (EOF) 
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Library of Object Modules 

• Library Header 

• Module Name List 'IF' only 

o Object Module Description (DSC) 

• Control Section Dictionary (CSD) 'IF' only 

• External Reference Dictionary (ERD) , IF' only 

• Vector Symbol Dictionary (VSD) 'IF' only 

• End Marker , IF' only 

• Object Text (TXT) 'IF' only 

• Object Module End (END) 'IF' only 

• Object Module EOF (EOF) 

Load MOdule 

• Load Module Header 

• Relocation Address Fields 

• Text Bit Stri,ngs with Relocation Bit Map 'IF' only 
• End of Load Module 

Exampl es of Catalog Use 

Example 1. Catalog all files after ],oad module generatien 

Directives: LIBRARY; 

CREATE; 

NANE=EXLIB ;KIND=l:1SER; 

END; 

LINKEr!!T; 

FILES USER; 

RELOCATION=( 0: 11 ) , (12: 23) ; 

ENTRY MAIN; 

INCLU!!E MAIN (0): ULIB; 

END; 

CATALOG; 

FILES;OBJ/F ,NUB ,9/F, LMOD; 

END; 

Nete: File aus is net cataleged because the library functien operated in 

a creatien nI~t a maintenance mode. 
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Example 2. Catalog of an unknown file on FORTRAN logical unit 8 to determine 
its type. 
Directives: CATALOG; 

FILES=8; 
END; 
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3.4 INSTALLATION AND TRAINING 
This section describes the delivery, installation and training procedures for 
the products developed under this contract. The facility utilized for 
installation and training was MSFC -t NASA request. 

3.4.1 Task 7 - NASA MSFC Delivery 
The enhanced Meta Assembler, developed under Task 1, and the Linkage Editor, 
developed under Task 5 was installed at NASA MSFC on an IBM 360 (see Figure 3). 
To provide system mai ntenance capabil ity at MSFC the MDAC proprietary Meta 
Translator was alos be installed on the IBM 360. The delivery consisted of 
the following: 

o Installation on the MSFC IBM 360 
o MSFC Installation Verification 
o Meta Assembler System/Meta Translator Demonstration 
o Personnel Training at MSFC 
o MS FC Del iverab 1 e Items 

3.4.2 Installation on the MSFC IBM 360 
THe MSFC IBM 360 was selected as the host machine for the installation of 
the enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver, and 
MDAC Meta Translator. The procedures to perform the installation of the 
enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver, 
and MDAC Meta Translator were: 

o to develop IBM 360 JCL for file creation, Meta Translation, 
FORTRAN compilation, link edit and execution of the components 
of the Meta Assembler system. 

o 

o 

to determine the overlay structure for the Meta Assembler 
to meta transl ate the Meta Assembl er component meta 1 anguage 
descriptions 

o to compile the Meta Assembler FORTRAN source 
o to link edit the Meta Assembler system object modules 
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3.4.3 MSFC Installation Verificaticn 
The installation verification was performed utilizing standard test cases 
for the Meta Assembler system and the meta language definition of the Meta 
Assembler for the Meta Translator. The verification procedure exercised 
each Meta Assembler system prograrn involving the NSSC-l assembler creation. 
The Meta Translator was verified by regenerating the Meta Assembler parsing 
subroutines via meta language processing. 

3.4.4 Meta Assembl er System/Meta Transl ator Demonstration 
The Meta Assembler system and the Meta Translator demonstration consisted 
of rept-(lduci ng the veri fi cation process util i zi ng the standard test cases 
anj the Meta Assembler meta language definition. 

3.4.5 Demonstration for the NSSC-I 
The system was demonstrated as fully supPQrting assembly level software 
development for the NSSC-I. This was performed via cross assembly of GSFC 
supplied NSSC-I programs, object module link edit, and load module formatting. 

The NSSC-I assembler language definition in ALLDEF and ALLLEX and pr0cessing 
by both the ALLDEF and ALLLEX pr'ocessors was al so demonstrated. Si nce a NSSC-I 
computer was not available at MSFC, actual execution could not be performed. 

3.4.6 Personnel Training at MSFC 
A period of one week was allocated for personnel training at MSFC. The 
primary thrust of this training period was toward Meta Assembler system 
maintenance_ Items addressed were; 

o ALLDEF jDrocessor des i gn and use 
o ALLLEX processor deSign ana use 
o Meta AssemlDler design and use 
o 

o 

Linkage Editor design and use 
Meta Translator Utilization 

3.4.7 MSFC Deliverable Items 
All installation support materials were included 1n the delivery as follows: 
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o Meta Assembler system FORTRAN source on magnetic tape 
o Meta Assembler system program listings 
o Meta Assembler meta language source on magnetic tape 
o Meta Translator FORTRAN source on magnetic tape 
o Meta Translator User's Manual 
o Installation procedure documentation 

Available Meta Assembler system user oriented documentation was delivered at 
this time. This delivery task, however, preceded the formal documentation 
development. All formal docum 91tation, Task 4, and fi nal product vers ions 
will be made available to MSFC for subsequent installation. 

3.4.8 GSFC Deliverable Items 
Due to the cancellati0n of the GSFC installation at NASA request, items which 
Were scheduled for this delivery were delivered to MSFC. These items, all on 
ma§netic tape were: 

o NSSC-l ALLDEF source 
o NSSC-l ALLLEX source 
o NSSC-l target output driver source 
o GSFC furnished test cases 

3.5 META ASSEMBLER 00CUMENTATION 
This section pertains to the Meta Assembler system documentation developed 
under Task 4. The two types of documentation I'lroduced are: 

o User Manua 1 s 
o Detail Design Manuals 

3.5.1 Wser Manuals 
Comprehensive user manuals were developed for each of the Meta Assemble.r 
system programs including: 

o ALLDEF User Manual 
o ALL LEX User Manual 
o Meta Assembler User Manual 
o Li nkage Editor USer Manual 
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The content of the user manuals is presented in a topical narrative fashion 
and thoroughly discusses the user interface considerations including: 

o product overview/capabilities 
o detailed presentation of user interface 

(control cards, 1 anguage statements, etc.) 
o extensive examples of user interface 
o assumptions and restrictions 
o diagnostics 

3.5.2 Detail I)esign Manuals 
To support the maintenance aSjilect of the l1eta Assembler system, detailed deSign 
docum61tation was deve10ped for thF: foUowing programs: 

o ,~LU)EF processor 
o ALLLEX proceSsor 
a 

o 

a 

Meta Assembler 
Linkage Edit0r 
NSSC-I target output driver 

The content of the detail design manuals is jilresented with a blend of t0pical 
narrative discussions and sUjilporting schematic representaHons including: 

a 

o 

a 

a 

a 

a 

a 

pr0gram capabilities 
functional flow cha'rt 
block structure diagram 
input/output description 
global data area description 
subroutine summary 

function description 
1 oca 1 data descri ption 
system interface requirements 

h0st installation procedures 
machine dejilendent consideratior;~ 
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ASSEMBLY LANG~A'GE OEF 1I~1 HaN C ALLOEF) 

I" OE~INITIRN or NSSc-l ~~SEMBLER " 

I" MACHINE mEscRrPTloN aNI EN¥IORNMENT "' 

OPTIoN , PAGE"LENGTH = 56, 
O~TE • !/11/78 ; 
C8MPUTER • NSSC:l • 
CINTIN.ATlaN • Qo , 
SIUNolNG • 'EO : 
ERROR"sl~E = 18 , 
UNDEFINEo'EXTERN'A'~S • YES, 
L I ST-S'ASE = B $ 

sii!~ , AOORESS.UNIT = la, 
AC(!;·ES-S-WNIT ~ 16: 
HEM>SIi!E • 4096 S 

," ~S~R OEFrNEO TYPES 0, 
TYPE .NO~IST','NoPROC' $ 
TY'P,!: ".'AJOR" 'MINOR' $ 
TY'?E "OIRECT'. 'INOIRCT, $ 
TYPE ''liT' $ 
TY'P!: • CaNTRIL -CO'1NTER', 'r.cv' s 

I" LOCAL ANn GLOBAL 'V,ARiMILE OEF'liN.lTI.ONS "/ 

OEFAU~T MNEHONI'C ~OATA'; 'NONE'S 
LOCA'L 'A'NSWER' • 0 S 
LOCAL "OEF' • 1 S 
LOCA'L "EXTER,NL' • 0 $ 
LOCAL 'INOIPECT' • ~ S 
LOCAL 'LIT-FLAG' i 
LOCA,L 'SEcTrON.S'AVE'. 'LociTION-SAVE' ! 
LOCA'L 'LlTERiA'L.SCAN" • 0 C 
GLOB'A~ 'DOLI AB.SEC' • 'OOLLi:R.LCC' S 
CL0,B'AL 'M'ACR,O~L I,Nt' • 0 S 
G~QAAL 'B~I.LD' $ 
GLOBAL 'FIRST~DARO' • 1 S 
GLOR'~L 'L4BtL~rl;ELo' $ 
GLOBAL 'STRrNG' $ 
GLOR,Al 'MS' $ 
GL.QB~L "ML' S 
CLOB'A~ 'Ps' $ 
GL.oBAt 'PL' so 
GLOB'AL 'STANO'ARO' = i' ,Sh~RC£~UBRAHY' 8 2. 

'REPI'AT>~RRAY' .3; 'M'A'CRO·EXPANQ' • 4. 
'LIT~RAL·pOOL.' • ,; ,otr.L.IT.POOL •• 6 S 

GLOB'~L 'NoRH'A'L' • l' 'SK I p' • ~. ·'R£P!:AT.r liLL.' • 3,. 
'HA,CRO-BUI Lo' • 4 , 

I· US~R OErYNEO SEHANTI~ iUNCTIONS ., 

SEH'ANtIC 'OEFLA,BEL' : 
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ASS£MBi. Y LANGUAGE DErlNHI0N (A'LLDEr) 

rr (PR{SrNTCOpE,R!.t."tO'(l);), 
IF (OYMS'OI.- TYPE I ~pERA,ND I 1) ) ,E~. UNDEr INED). 
ELSE. 

F.RROR I 35). 
END. 
G RE A T F _ S yMS·OL I OPER·.'NDI 1) ) • 
IF (EYTERNL.E~,l); 

CRFATE"RErO[ Fl aprRANOlll.DEF), 
"(<D. 

[N[:'J $ 
sErHNT[C 'HAJOP' , 

SIi'"LE,NGrH=18. 
OEPLA8ELCOPrRANOH)) • 
DBjECTIAOO~ESS·T'.EI(OiArION-COUNTER), 

r IrL 0 (~'s) =OP'c0nE, 
F IELnlsl'5). INaIriEeT, 
FIELOI6 11 7 1"OpERANO(2) $ 

SEMA·NtIC 'HINOP' I 
R I T'''LEfltG THeIS. 
DErLASEL{OPERAND{l)); 
DBjECT(AOD~ESS.T,pEI(OiATION"COUNTER), 

'I ELa !.0'1l)'0 ;FiE'I.D (12'17 ).,OPCOOE) $ 
S£H-ANTI C • ORGSEM' : 

ANS·WER • VA,LUEIQP[RANDll,l»). 
l'F (ANSWER, £'0. ~), 

SECTION{'O,ATA'), 
ELSE. 

I' IANSWER,EO'l', 
SEc nON,{ 'CODE' , , 

ELS'E: I 

F"AIL. 
E.NO, 

E:NO, 
SET"0RIGINIQPERANQI1;2j.o) $ 

to SPECIAL KINO'S 0, DEFINiTIONS .t 

GR·OUP BEGI N SYMHOL. '(' $ 
GR'O.Wp END SYMBOL. .,. $ 
END STATEMENT SYMBOL. ',Eoi',' SO 
END MOOWI.E S'MBOL "END' I S~W4NTIC • ENO-MODUL,E • 

SOURCE-MOCEIOErolIToPOOL. $ 

INSTR~€TION' .MACRO"CALL' : 
OPERAND 11) • OPTIONAL i'A'BEI. TERM. 
OPE'ilANOI2) • SYMB',L, TERM LIST, 
SEMANTIC 0 OErI.A·8ELCoprRANOll»), 

ST .C.-PiR;;( OI'ERA,NO (2)) , 
H'A CRO.L I NE,"l $ 

to 0 I BE€T I V'r. AND PSE:,~OO 0;' OEr I NI HONS _, 

OIRECfIV'E 'O'ATA' I 
OPrR,A,NO 11' • OPT I ON"'L i: A'BEL TERM, 

• ................ 1 
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ASSEMBLY LANGU~GE DEnNllTlON CAl.~DEn 

OP£R'AND'12' • ANy EXPRE~S! ON LI ST. 
SEM'~NT!C .oErIoA,aELlnPERA'NDH)', 

CREATE-o·ArAI·,DPER'ANO'12" $ , 
uNLABE~ED DIRECtivE 'ASS~MiLE' I 

OPER4NBll) • ~DOREsS TERM. 
SEMANTIC • STARTIO~E:~'ANOH». 

SECTION,i ·o'AlA'). 
SET·L1T~R'L·POOLI·OAT"). 

all REC; I VE • RES' 
OP['R'AND,I 1) • 
OP~RANQ.( 2) • 
SEMANTIC • 

SOI~RCE.M00E'SUNOARO S 
: 
oPTlaNA( ~A8EIo TERM. 
A'NY EXPR'E:~S IBN. 
oErio.BEi: I nPE" ANOII 1) ) • 
RESERVEIDi'ERANOCZ'.·.·) $ 

fllRECTiVE "E~U' I 
OPER'NOll'"IoASEL T~RM' 
OPERANO'I Z, ~ANy Ex,P~ES'S ION,. 

SEMANTICS· 
OEf"L,A'BELe,OPERANQ'i 1 i) .,EQUA TE I OPERANDe 11. QPER'ANO,I.21.11 S 

UNLlBi:LEO OIRECTI¥E 'LIT' : 
OPER'A'ND'll) • V,A'LUE E~PRESS!ON. 
SEM'ANTIC • ANS,WER'=oPrRANO'111.HOO.Z, 

1'1' I ANSwER. EQ,.,0). 
SET·U tE~,AL -POOl. I • DATA ") • 

ELSE, 
liF IANSWER"EQ.,1" 

S~T;L,I TER'A'L-POOL I "CODE' I, 
ELSE. 

FA Ii'. 
'E'NO, 

END S 
UNL,A8~LEO 01 RECT I vt • PA'ClE, 

SEMANTIC • EJECT'PAG~ 
UN.L,AB[LEO DrREcTIV'E '1oIST, 

SEHANHC • LlsTINGo1; 
uNLA8~LEO 0,1 REaT I V'E 'UNi:S I 

SEMANTIC • LISTING.~: 
MIRECrl VE 'PROC' I 

oprR'ANQ.( 1 )aLAaEL TERM. 

I 
5 
I 
PRINT(1) 5 
I 
PRINHs) $ 

SEH'A'NTI'C • pROCESS-MOOr-SK,IIP S 
uNIoA,etLEO OI~EcTIV'E 'ENO' I 

SEMiNTlc • If" IPROcESS-WOOE .EQ. SKIPI, 
pROCESS;M~O[ • NQRM4~. 

ELSE' 
FAIl.. 

END 5 
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ASSeMBLY lANGUAGE OEriN/TION (AUDErI 

E~SE, 
'AIL, 

ENO ~ 
UNLA'BrLED JIRECTIVE 'AORG. I 

oPrRANO(l) • ANY [XPRE~SION LIST, 
SE~"NT!C • IF (SYH80L-TYI'E(OPERA'ND(l,lP"EO,ABSOI.UTE,AND, 

SyHHOL. T y?E (DPERA'NO (1.2, ) ,EO, ABSOLUTE) • 
DRuSEH I npmAN.Q It», 

ELSE, 
fA iL, 

FNO $ 
UNLA8[LEO DI~ECTlvE 'RORG. I 
O~£HANO(l) • ANy EXP~ESSiQN LIST, 
SEMANTIC' IF ISYHBf'L-TYpEIOPERAtjO(l,l» ,[0 , A'BSDI.UTEl, 

OR'GSrM (OPERAND (1) ). 
E";E, 

FAi~: 
END $ 

ERROR MESSAGE 
NUMBER II 3:», 
LEvEL ;: l' 
,DUPLIcATE LABEl.' 5 

ERROR MESSAGE 
L • 11 
N • 2~, 
• I LI.EG'Al CONTROL sECT I;,N' 5 

NOUN .$' , 
RESULT_AOINESS 'ERH, 
S[HA,NTIC. IF ISUSf"lrLD,ED,OPERAND.rIEI.D). 

I' (SnURCE-MDDE,EQ,LITERAI..POD~,OR. 
SDHRCE"MOOE,EO.Ot'-I.IT-PDOL). 
~Er T ION-SAVE -Grl-SECT! ON. 
LQ~ATION.SAVE·LOCATION. 
tT~'SECTION'IOl.l.R.3EC. 
LO~.TIOM.GO~I.AR.LOC. 
RErURNCLOCATIONl. 
LO~A'ION.~DCATION~SAVE. 
~T[-SECTION·SECTION·StVt, 

ELSE, 
REtIRNCI.DC.TIONl. 

EN!)., 

E~SE ' 
rA II., 

END S 
INSTR,~CTION 'NONE I I 
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ASSeMBLY lANGUAGE OEriN/TION (AUDErI 

E~SE, 
'AIL, 

ENO ~ 
UNLA'BrLEO JIRECTIVE 'AORG. I 

oPrRANO(l) • ANY [XPRE~SION LIST, 
sE~,iNT!C • IF (SYH80L-TYI'E(OPERA'ND(l,lP"EO,ABSOI.UTE,AND, 

SyHHOL. T y?E (OPERA'NO (1,2, ) ,EO, ABSOLUTE) , 
DRuSEH I npmAN.Q It», 

ELSE, 
fA iL, 

FNO $ 
UNlA8[lEO OI~ECTlvE 'RORG. I 
O~£HANO(l) • ANy EXP~ESSiQN LIST, 
SEMANTIC' IF ISYHBf'L-TYpEIOPERAtjO(l,l» ,[0 , A'BSoI.UTEl, 

OR'GSrH (OPERAND (1) ), 

E";E, 
FAi~: 

END $ 
ERROR MESSAGE 

NUMBER II 3:», 
LEvEL ;: l' 
,DUPLIcATE LABEL' 5 

ERROR MESSAGE 
L • 11 
N • 2~, 
• I LI.EG'Al CONTROL sECT I;,N' 5 

NOUN .$' , 
RESULT_AOINESS 'ERH, 
S[HA,NTIC. IF ISUSf"lrlD,ED,OPERAND.rIEI.D). 

I' (SnURCE-MDDE,EQ,LITERAI..POD~,OR. 

ELSE, 

EN!)., 

E~SE ' 
rA II., 

END S 
INSTR,~CTION 'NONE' I 

SDIIRCE"MOO E, EO .0E'-1. IT-POOL) • 
~Er T ION-SAVE -GTl-SECT! ON. 
LQ~ATION.SAVE·LOCATION. 
tT~.SECTION~IOl.l.R-3EC. 
LO~.TIOM.Go~I.AR.LOC. 
RErURNCLOCATIDNl. 
LO~~'ION.~OCATION~SAVE. 
~T[-SECTIDN·SECTION·StVE' 

REtIRNCl.oGATIoNl. 
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ASSEMBLY ~ANG~AGE OEn.NII T I ON C A'LLDEFI 

/. EXECuTABLE INSTRUCTION DEFIN1TIONS ./ 

INSTHUCTION "FLP' : 
RBUL T • HI NOR, 
oPrR,A,NQ'(11 • QPTI~NAl LABEL TERH. 
SCM'AtH Ie • QPCOOE"o' 221. 

M,INOp (OpERA'NOU I) $ 
INSTRUCTION 'LOO' ; 

RESULT • wi NOP. 
OP£RANQ(11 • OPTIDN~L rAREL TERM. 
SEM~NTIC a OPC ODE.O'i3 f • 

MINOP(OpE~ANDC111 S 
INSTRUCTIoN "LOP, : 

RESULT • M1NOM. 
OPERAND (1) • OPT I aNAL i)BEL TERM,. 
SEM'.NTIC • opcOOE.,Q ';:21. 

H I'NOP' opEil·ANOH II S 
rNstRucTION ,NEG, : 

RESU~ T _ f!,I,NOR' 
aPER'.'NO '1 I • oPT I oN'Ai: i: A'BEL TERM,. 
SEH'ANTIC • OPCODE=o'~41. 

H I;NOP (,OpER,ANOH II S 
r~STR.CTION 'AOC, : 

RESUL T _ M,I'NOR. 
OP[R,.,ND-IlI _ oPTloN'AL- LA'BEL TERH,. 
SEMMTIC • OPCODE.o'~61. 

MtNOP(opE~ANDCII) i 
INSTRUCTION 'eMP' : 

RESULT • M.I,NOR, 
oprRANO'( 11- oPT! oN'.L t'ABEL TERM,. 
SEMA,NT IC • oPCOoE.o 'i~ I. 

MlNOO('OpE~'.NDCII I S 
rNSTR~CTION 'NoRM I 

RESU~ ToM I NOR·. 
opr RANO'(lI • oP'T!~N'kL j'A'BEL TERM. 
SEMANTIC • OPCOIE·o'i41. 

MI.Op(DpE~ANOll)1 5 
I NSTRUCTI ON 'A'eX' : 

R:E·SU~T = MINOR' 
OP[R'kN0'l11 0 oPT! oN'Ai: j' ABEL ,ERM" 
SEHA,NTIC • oPCOOE'O'25'. 

M,INOr (OPER,A'NeC 1)) S 
INSTRUCT10N 'XAx, : 

R.ESUL T • M I:NOP. 
oPi:RA'NOH I 0 OPT I oN'AL i:.'BEL TERM" 
SEMANTIC • oPCOoE·n'~5'. 

HI'NOP (OPERA'Ne C 1) I S 
I NSTRUCT! ON '~EA' : 

RESULT • MINOR, 
oprRANeH I • oPT! oN'Ai: j''''BE~ TERM, 
SEMANrlC • oPCOoEoO'26'. 

MI,NOP (OpEbND'lI)) S 
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'SSCMBi~Y LANGUAGE OEF"lN'lTION (A1.LQEFl 

IN'ST~UCTION 'XAE' ; 
Rt"SULT = ':IN·gr..', 
Or'~R~NO(l) = OPTl:NAL ~AS£L TERM, 
SEH/,,'Hrc = (YcOI)E::r,)126I, 

"INOoIQpE~AN~Il» $ 
INST~UcrION '[AX' : 

RESIJ!.l :: MI~O:;, 
(;')Pr.rt"H~D(l) :: {iI-lTI"lN'.\L i'AaEI. Tt:RM, 
SE~~,~TIC :: nPCO~E=n,,71, 

~INOP(Op(~ANIID(l» $ 
rNST~iU~riON 'nEVERSE ... EA'X" : 

RdjUL r :: liltJOr(I 
nPr.a.VH)(1. ) :: nPTI(",N~1. i'ABEL TERM, 
StMJ·i'ITIC :: ;)PcO'l'E::o';,7t, 

v. i NOo I O",E" '~D (1» $ INS Tf'WC II ON I HL T' : 
R;=S~tLT :: MINO,~, 
O?£ij4NDCt) :: GPTI~NAL l:AbEL TE~M, 
SFHAtlTIC :: f_PCOOE=O'~~I, 

,'IN·rn,dOpERA'NO(l» $ 
iNSTR~CTION ,NaP, : 

R'LSULT :: MINOr., 
OPERANDI I > • mPTIDNAL l'AGE~ TERM. 
SEMANTIC : oPCOOE=D'~2', 

~INaplopERAND(1» $ 
INSTRHCTION 'ExIT' r 

RESULT ~ HINO~, 
OPERM~D(1) • OPTI')"AI: i'ABE_ TERM. 
SEMA,~TIC u :jPCO'iJE=o'161, 

MINO-IQpERAND(1» $ 
INST'~CTION 'TOV, : 

RESWLT ~ ~I~O~, 
OPErlANDII> • OPTloNA'L i'ABE" TERM. 
SEH~~TIC • oPcOOE'n'~II, 

"JNa~(OpERA~D'l») $ 
INSrquCTIDN ,aP, : 

RESWLT ~ ~INO~, 
OPERANDI 1 > • OPTI~N'L rASE" TERM. 
SEMANTIC ~ OPCOJE=o'~31, 

:lINO,IQpERANO(l» • r NSTRUGT I ON ,TaP' : 
RESULT • HINO" 
np [RM18(l> • oPTlnfll'i L'ABEI. TERM. 
SEH~IJTrC ~ OPCOJE=n'~5', 

MINO~(QpEpAND(l» $ 
TNSTtWCTlON ,ROV, : 

REsULT = MINO~I' 
DPeR.NBCt) • OPTIoNAL j'AHE_ TERM. 
S-EMANT.IC c (,p-'C Oi)'E:::n'",7', 

"I'NO? IOpE~AN,D(l») S 
I NsrQ8GT J ON 'CPO' : 

REsULT • MJNO~. 
DPER· ... No (1) • oPT J ON'AL LA8E~ TERM. 
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SEMANTIC 

A'SSEMBL Y lANGUA'GE OEHN.JTION CALLOEfl 

• OPC,Ol!l£l:'n' 1:7', 
MINOPCOp,ER'ANOC1) i 

rNstNDcTIDN 'sr o' : 
AESUL T • MINOR, 
opr'R'ANO'Cl) • OPTlQNAl lABE~ TERM. 
SEMANTrc • oPcOOE=O'20', 

M I NOP COpERANO 11) :i 
INsTRUCTION 'rA-i!' I 

R'ES,~LT • MINOR. 
oPrRANo c 1) • oPT! aNAt: LABEL TEAM. 
SEMANTIC • aPcOoE.o'~l'. 

HINOp COP,ER,ANOHII :I 
INstRUCTION '_ED. : 

RESUL T • M I NO;;. 
OPERA,NO C 1) • oPT I ~NAL LABE~ TERM. 
SEMANTIC • oPCOoE.o'~3'. 

MINDPCopEtAN041) S 
INSTRUCTION .RIO, : 

R,E!UL T • HI NO~. 
OP~R'AND(1) • OPTION-A'L LA'8E~ T.RM. 
SEMANTIC • OPCOOE'O'~4'. 

H,I NOpC OpERANOH II S 
INSTRUCTION ,TlX, : 

,R,E SUl T • M,I NOR. 
OP[R.NOCll • OPTIONAL rABE~ TEAM. 
SEHANTIC • oPCOoE'o'll'. 

HI NOP C,OpER'ANOH)) S 
,TIE. : INSTRUCTIoN 

RESULT 
OPERANO(1) 
S£M'ANT Ie 

NOUN ,.' , 

• MilNOR, 
• OPT! oNAl L A8E~ TERM,. 
II aP'cOoEIIO' i51, 

HINOpCOpEilANO(1)) :I 

SEHA'NT 1 C • ,r (SUBr! '-LO. [Q. OPcoOE.rl'E~D,J. 
INOIRE~"l, 

Ei.SE. 
r A I;L; 

END $ 
INSTRUCTION 'LOA' : 

RESULT • M'AJOR. -
opi!:RA'Nml1)' OPTlON'At: i'ARE~ TERM,. 
oPrRAND'(2) • ANy EXPRE~SION,. 
SEM'ANTIC • oP~D'OE'n'23" 

IIAJOP (OPERA'NO (1). OPERA'NO(21) S 
INSTRUCTION ',LD~' : 

REsULT • MAJOR. 
OP~'RAND'(l1 • oPTlON'A'l i'ABEI. TERM. 
OP£RANO(2) • ANy rXPRESSION. 
S£M'ANTIC • OPCOoE'n '.0'. 

M AJDp CDpEji,AN 0-11 ) lOP ERAND,C 21) S 
INSTkUCTION 'LD,I' I 

RE!~LT • MAJOR. 
OP£RANDCll • oPTIoNAL LABEl. TERM,. 
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SEMANTIC 

A'SSEMBL Y lANGUA'GE OEHN.JTION CALLOEfl 

• OPC,Ol!l£l:'n' 1:7', 
MINOPCOp,ER'ANOC1) i 

rNstNDcTIDN 'sr o' : 
AESUL T • MINOR, 
opr'R'ANO'Cl) • OPTlQNAl lABE~ TERM. 
SEMANTrc • oPc OOE=O'20', 

M I NOP COpERANO 11) :i 
INsTRUCTION 'rA-i!' I 

R'ES,~LT • MINOR. 
oPrRANo c 1) • oPT! aNAt: LABEL TEAM. 
SEMANTIC • aPcOoE.o'~l'. 

HINOp COP,ER,ANOHII :I 
INstRUCTION '_ED. : 

RESUL T • M I NO;;. 
OPERA,NO C 1) • oPT I ~NAL LABE~ TERM. 
SEMANTIC • oPCOoE.o'~3'. 

MINDPCopEtAN041) S 
INSTRUCTION .RIO, : 

R,E!UL T • HI NO~. 
OP~R'ANO(1) • OPTION-A'L LA'8E~ T.RM. 
SEMANTIC • OPC,OOE'O'~4'. 

H,I NOpC OpERANOH II S 
INSTRUCTION ,TIX, : 

,R,E SUl T • M,I NOR. 
OP[R.NOCll • OPTIONAL rABE~ TEAM. 
SEHANTIC • oPCOoE'o'll'. 

HI NOP C,OpER'ANOH)) S 
,TIE. : INSTRUCTIoN 

RESULT 
OPERANO(1) 
SEM'ANT Ie 

NOUN ,.' , 

• MilNOR, 
• OPT! oNAl L A8E~ TERM,. 
II aP'cOoEIIO' i51, 

HINOpCOpEilANO(1)) :I 

SEHA'NT 1 C • ,r (SUBr! '-LO. [Q. OPcoOE.rl'E~D,J. 
INOIRE~Tol, 

Ei.SE. 
r A I;L; 

END $ 
INSTRUCTION 'LOA' : 

RESULT • M'AJOR. -
opi!:RA'Nml1)' OPTlON'At: i'ARE~ TERM,. 
oPrRAND'(2) • ANy EXPRE~SION,. 
SEM'ANTIC • oP~D'OE'n'23" 

IIAJOP (OPERA'NO (1). OPERA'NO(21) S 
INSTRUCTION ',LD~' : 

REsULT • MAJOR. 
OP~'RAND'(l1 • oPTlON'A'l i'ABEI. TERM. 
OP£RANO(2) • ANy rXPRESSION. 
SEM'ANTIC • OPCOoE'n '.0'. 

M AJDp CDpEji,AN 0-11 ) lOP ERAND,C 21) S 
INSTkUCTION 'LD,I' I 

RE!~LT • MAJOR. 
OP£RANDCll • oPTIoNAL LABEl. TERM,. 
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'SSI.M81~y LANGUAGE DEF"lNH10N IA!.LOEFI 

OprHANQ(2) = ANy CXP~E~SlON, 
SEM~NTrC a DPCQDE~nli2', 

"AJOp I OPERAND I 1 I. OPERANO{2 I) $ 
'LrnE' : INSTRHCTlON 

REsllL T 
oPrP.ANO(l) 
QI-rRANQ 12) 
SEHAIHIC 

= MAJO." 
= OPTlSnAL l'ARE~ TERM. 
= ANy EXPRE~SI0N, 
II OPCO[JE~,~ I 521, 

M'JOp IOpEoiANOlll.QPERANOI21 I $ 
INSTf1~CTION 'LOX' ! 

RESULT • pAJnll, 
OPERA'D 1l) • rPTIUNAL rAaE~ TERM. 
QPrRANQI21 • ANy EXPRE~SION. 
SEMANTIC = oPC0nE~rn'~4f, 

MAJOpIOPERANOI1I.OPERANOI211 5 
I NST~UCT I ON 'STA' : 

R,ES,ULT = ~IAJtD'Il 

QP£'RANQ{l) C OPTJ~NA~ i,'ABEL TERM, 
nPrRANO(2) = ANY ~X~~E~StQN, 
SEMANTIC • nPCOoE=n'~~', 

MAJOpIOpI;RANOI1I.OPERANOI211 $ 
INS'''UCTION 'sTl' : 

RESULT a MAJO,~, 
OPERANDI) I • Onl0NAI j'AHE!. TERM, 
OPrRANOl21 • ANy EXPRESSION, 
SEMANTIC = OPCGOEcn'321, 

"A J Oo IO pERANO(1)'OPERANO'1211 $ 
INStRUCTION ,STE, , 

RE~~LT = MAJO~, 
OPERA~OI11 • aPTloNAL rARE!. TE~H. 
OPERAND I 21 • ANy EXPREISION. 
sEH.N'IG = oPC00E=O'{0 1, 

~AJOp I OPERANO'I 1). OPERANCI 21 I S 
INSTRUCTION 'STX' : 

RlsuLT • MAJOR, 
O"ERANOltl • DPTloN*( rABEL TERM. 
oPrRA~OI7.) • ANy EXPRE~SloN. 
SEM'4NIIC • ~pcmruE:n'74" 

MAJOPIOpEFiANO(1),OPERANOI2») S 
INSTRUCTION 'AOX' : 

REsULT ~ MAJOR' 
OPrRANOlll • CPTlONA( j'ABEI. TERH. 
OP[HANOI2) • ANy EXPRE~'ION. 
SEH,A'NTIC • OPCODE=O'~2" 

MAJOI' I OpER,A'N0 I 11. OPER'ANOI 2 I) S 
INSTRWCTlON 'ADD' , 

R£~WLT C MAJrnR' 
OPERANDI11 • OPTioNAL rA8E~ TERM. 
QPrRANQI21 • ANY EXPRESSION, 
SEMANTIC ~ oPCQnE:n'~4', 

MAJop I Op[iANOI1I'OPERANO(2») s 
INSTRuCTION .suB, , 

RESWLT • MAJOR. 
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OPi:RAND(11 
oprRAND(21 
SEHA'NT/C 

ASSEHBLY LANGUAGE DEriNIHON CALLOEf"l 

- oPTloN'At: LABEL TERH. 
• ANy EXPRE~SION. 
• oPCOOE=o "24', 

MAJOP(OpEliANO'1 1.1. OPERAND C 211 S INSTRUCHON "MUL' I 
RtSULT • MAJOR. 
nP£RAND'(ll • oPTloN'AL i:A'BEL TERM. 
Ol'rRA NO( 2'1 • A'Ny EXPREqS ION., 
SEHANTIC • OPCOOEoO'44" 

MAJOPIOpERANO'C 11. OPER'ANO 1211 S INSTR,0cTlON "DIV' : 
~EsULT • MAJOR' 
[lPrR.A'ND'I11 • oPT! ON'AL j' A'aEL TERM" 
Of'ER'AND 121 • ~Ny eXPREsS IoN., 
SEMA'NT Ie. OPCODE-o' 64'. 

HAJOp-lOPER'A'ND 11" OP£RANO'CzII S INSTHUCTION 'ETR' : 
RESUL T • MAJOR' 
OPERANDHI • oPT/ON'At' i.'A'BEL TERM. 
OPr,RAND I 21 • A,Ny E XPRE!S ION,. 
SEMANTIC • oPcOOE,o'2m', 

NAJOP ('OpERANO,C 11, OPER'ANO'C,ZII S 
• A'NO' : rNsTRiJcTloN 

RESULT 
nPERAND(1 1 
oprRA'ND'(21 
sEMANTIC 

• MAJOR. 
• OPTION'AL LABEL T.ERM. 
• ANy EXPRE~SION. 
• oPCOOE'n'2~" 

NAJaI'I OPEFiANDI 11. OPER'A'NDo(211 S 
INSTRUCT! ON 'MRG' : 

RES~LT • MAJOR, 
OPE,RAND'lll • OPT/ON'Al i.'A,eEL TERM" 
OPr.RANO'(21 • AN'y EXPRE~S ION,. 
SEM'ANT I C • oPCODE-n' 5~'" 

MAJOp (OPERA'NOH I.OPERANDI(2) I S rNSTHUCTI ON • OR' I 
RESULT • MAJOR. 
OPER'AND l l1 • oPTloN'~'L i:AREL TERM. 
OPF:RANO'121 • ANY EXPRE~SION, 
SEM,ANTIC • OPCODE'o'~0'" 

MAJap(OPEirA'NDC11.0PER~NDiC2) I S rNSTRUCTloN 'EOR' I 
REsuLT • MAJOR, 
OPE'R'ANoll1 • GPTlONA{ i:~BEL T.RH, 
OP~R'A'NG'121 • ANY EXPR,EsSION. 
sEMANTIC • aPCOQE'o'j0' • 

M'AJOp (OpERAND'C 11.,OPER'A'NDIC211 S INstRUCTION 'opT' : 
RES~LT • HAJOp, 
OP£'RANOll1 • oPTlflN'~L' i)'BEL TERM, 
OPER'AND'( 21 • ANy EXPAEgSUN. 
sEMANT Ie • opcoaE.o' 16'. 

MAJOPI OpEiiAND'! 11. OPERAND(2) I S 
INSTRUCTION 'IP" I 

17-/iPR-79 16l4a P.~' 9 
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f 

RES liLT 
O~[RA~D(1) 

oprRANO(?) 
SEMA'TIC 

~SSEM8LY L'NGa~GE DEFINITION IkLLDEf) 

:I Mlo JOr.:, 
::I nPTl :IN,A'L j'AREL TERM, 
• 4Ny l~PRE~SION, 
• oPC OnE=n"·6 1• 

,-AjOp(OpERANO(1).OPERA,NQ,(2)i 5 
INSTkllCTlON 'SH" : 

REsULT g MAJOR, 
OPr.HA 'IQ(l) = "PTlQN'A'l l'A,8[1. TERM. 
O"ERANO(?) • A~y CXPRE~SIJN. 
~EM'ANTJC ::I 0PCoQE=n'i41, 

MAjOr (OpE/i.A'NO( 1) .@PERANO'I 2» $ 
INSTRIICTION 'OSH- : 

RESULT = MAJOq. 
OPE~'NO(l) • oPTIoNAL LABEl. TERM. 
OPERAND(?) • ANy EXPRE~SloN. 
SE~ANTIC • OPCOoE=O'361. 

IN'STRUc110N 'DC" 
M,AjOp(@pER'ANO(1).OPERANDI2» '5 

RESWI T : MAJO'R, 
UPERiND11) • ~PTjoiAL LABEL TERM. 
OPERAN~(2) c ANY Ex?~~SSI0NJ 
SEMANTIC = oP€~Dr • 0'56', 

H'jO~(OPERANO(1).OPER'NO(2) 5 
INSTRIICTION 'CyC' 

REsULT ::I ~AJO,~. 
QPr.RANQ(ll • uPTinN,A'L i'A,an TERM. 
OP~RANo(2) • ANy ,XPRERS!9N. 
SEMANTIC • OPCODE •• ·~41 • 

• AJOpCOpE~'ND(1)'OPERANC(2» $ 
INST'lIICTl8N ,BRM, ; 

RlSIiJL T :I M,Aj.OH, 
DPEILlNO(1) • n~Tl"N'AL I~AaEL TERM. 
oprRANo(2) • ANy ~XPRE~SIUN. 
sEH,ANTIC • [)P'COoE::I(.'J't'l6 1, 

l'IAJDo(OpER'ANO(1).OPERAND'(2» S 
INSTRIICTION 'BRU' : 

RE.S,WL r = I"AJCJ1fr 
Opr RANQ(l) • OPTiCINAi i'ABEL TE:RM. 
O'P£,RMHll(2) I: ANY c:)('PRE!::::SION, 
SEH~NTIC p oPC0DE~n'~2', 

r AJO?(OPER'AND(l) .OPERAND'(2/) S 
rNsrr{IlJ.cTIfZlN 'B'RO' : 

RESULT a MAJO~, 

oprRANO(ll = oPTlnN'~L i:ABE~ TERM. 
OPERANCe,) • ANy E.PRE~SIDN. 
S'[,""MH I C rI OP'C0l,)'Ee,o t 4.2 1 , 

NAjQp tDpER,AND (1), oPERANO(2» $ 
INSTR,wCTIQN 'TIN' : 

RES~LT • MAJO~. 
OPfRANO(\) • oPl IONA( ~.BE~ TERM. 
GPtRAND'(2l a AN'Y E.X.pR.EsSI'JN, 
SEMANTIC • Op;00E"0·,2'. 

MAJ,Op(OpERA'NO(l) ,oPER'AND(2» S 
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INSTRUCTION 'TX~E' I 
RESULT • MAJOR, 
aPER_NOIII 0 OPTIoNAL CARE~ TERM. 
nP[RANOI21 0 ANY E~PRE~SION, 
SEMANTIC .OPCOoEon'22'. 

MAJOp"OpE~ANDll)'OPER'ANDI2)l S 
INSTRWCTION 'TA~' : 

RESWLT • M~JO~, 
OPERA·NO 11) • oPT! ONAl L'A'8E~ TERM, 
OP~RANO(2) • ANy EXPREtSIOM, 
SEM·ANT I C • OPODQE""' ~6', 

11 AJDpIoPERANDI1) ,OPERAND'(2» S 
I-NSTRUCTI& •• 'TA·[I : 

RESULT • MAJOR. 
OPERANOII) • oPTIoNAL rABE~ TERH, 
ePERANo(2) • ANy EXPRESSION, 
SEM,ANT I'C • uPCOoE:n' 4·6', 

M,AJDp I OPERANDI 1 : ,oPER.ANO'(2» S 
I'NSTRUCTIoN ,HG, I 

~ESULT • MAJOR, 
oPERANDIl) • DPTloN~'L LA'PE~ TERM, 
OPEFtI,NQ(2) • ANy EX'PRE~SIDN, 
SE~AN"C • oPCOoEon'66', 

. MAJOpIOpERANOll),OPERAND'12» S 

" SYMBOL. DrrtNJrIONS TO i;WP·PORT ASSEH'~LV ., 

pRrr I X OPER,AToR d' : 
REsUL T • AN·Y EXPREsSION, 
oprRANOll) • LIT, 
5EM,ANTIC • ANS'WERccH~CKOPIKIND.ll. 

11-1pR-19 1614~ PtG£ 11 

I' I ANSWER. [Q, I NSTRUCTI ON. OR, ",SWER. EO" 0·1 REeT I VE), 
~ I TER,Ai' ( t'oA TA' • OPi:R·ANC I iI, <', L I T·'~AGI, 
RETURN i·QPERANO I 1) I • 

ELSE. 
rAIL; 

END $ 

pREfiX OPERATOR .51' I 
RESWLT • cONTqOL.chvNTER. 
PRECEDENcE • 1~. 
oPrR·ANO III • CCV, 
SEHA,NT Ie. ANSWER. V,ALUE (OPER'ANOH II, 

IrC.NSwEi.EQ,0), 
SECTiONI l'oATA'), 

E~SE. 
IF IA,NS·WER,EQ,l). 

s~ctIONt'COOE'I. 
ELSE. 

ERRoR 1;2' I. 
,Ali:. 

END, 

•••••••••• ~U;RN,J NG •••••••••• 
PRECEDENCE NoT SPEClnEO 21 USED 
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INSTRUCTION 'TX~E' I 
RESULT • MAJOR, 
aPER_NOIII 0 OPTIoNAL CARE~ TERM. 
nP[RANOI21 0 ANY E~PRE~SION, 
SEMANTIC .OPCOoEon'22'. 

MAJOp"OpE~AND(1)'OPER'ANDI2)l S 
INSTRWCTION 'TA~' : 

RESWLT • M~JO~, 
OPERA·NO 11) • oPT! ONAl L'A'8E~ TERM, 
OP~RANO(2) • ANy EXPREtSIOM, 
SEM·ANT I 0 • OPOOQE""' ~6', 

11 AJOPCOPERANOI1) ,OPERAND'(2» S 
I-NSTRUCTI& •• 'TA·[I : 

RESULT • MAJOR. 
OPERANOII) • oPTIoNAL rABE~ TERH, 
aprRANO(2) • ANy EXPRESSION, 
SEM,ANT I'C • uPOOoE:n' 4·6', 

M,AJOp C OPERANDI 1 : 'OPER.ANO'(2» S 
,T .t.,G, r I'NSTRUCT I ON 

~ESULT 
OPERANOIl) 
OprFtI,ND( 2) 

SE~AN"C 

• MAJOH, 
• DPTlON~'L LA'PE~ TERM, 
• ANy EX'PRE~S ION, 
• OPCOOEo n'66 ', 

MAJOpCOpERANDll),OPERAND'12» S 

" SYMBOL. DrrtNJrIONS TO i;WP·PORT ASSEH'~LV ., 

pRrr I X OPER,ATDR d' : 
REsUL T • AN·Y EXPRESSION, 
DPrRANOll) • LIT, 
SEM,ANTIC • ANS'WERccH~CKOPIKINo.ll. 

11-1pR-19 1614~ PtG£ 11 

I' C ANSWER. [0, I NSTRUCTI ON. OR, ",SWER. EO" 0·1 REeT I VE), 
~ I TER,Ai' ( t'DA TA' • QPi:R·ANC I iI, <', L I T·;~AGI, 
RETURN i·Dp·ERANO I 1) I • 

ELSE. 
;AIl; 

END $ 

pREfiX OPERATOR .51' I 
RESWLT • cONTqOL.chvNTER. 
PRECEDENcE • 1~. 
oPrR·ANrn III • CCV, 
SEHA,NT Ie. ANSWER. V,ALUE I OPER'ANOIl II, 

I;C.NSwER.EQ,0), 
SECTiONI "oATA'), 

E~SE. 
IF IA,NS·WER,EQ.l). 

s~ctIONt·COOE·I. 
ELSE. 

ERROR 1;2' I. 
,Ali:. 

END, 

•••••••••• ~u;RN,J NG •••••••••• 
PRECEDENCE NOT SPEClnEO 21 USED 

" • ~ " • 
, 

~" .... -,---. 



~ 
'" 

r--

t-

~SS[HBI Y LANGUA~E DEF"INHION IALL~En 

END $ 
pOSTFix OPEraToR III I 

RESULT = CCV, 
M'E'iA'O(1) • ANY EXPREsSIoN" 
S£MA~TtC • IF IcHE~K;nPISPEL,LING'll,tQ,,'S(!I, 

~'ETURN(OP£RANe'll) I, 
ELS,E, 

r AlL; 
END $ 

INFIX OPERATO'R ',' I 
RlSULl = [kSEL TrR~, 
pn[CEOENeE • 10' 
OPEnANOIII • CONTqOL.CnUNTER, 
OPERANOI?I ; lA'BEl T,"M, 
SEM,ANTtc • R!.TU~NIOPERAND'(21) $ 

pOSTFix OPERATOR')' I 
RESULT • LIT, 
np~RANDIII • SYH8vL T['RM, 
SEMANTIC • RETUil'N I oPrRAND 111 I $ 

pOSTFiX OPE"ATOR '.f I 
RESUl T = LA'Bi;L TEHM, 
OPERANOII) • LABEL TrR~' 
SEM·MiTre = EXTE~'NL.l; 

RETURNloP~RANOllI1 $ 

INFtX QP1R,ArOR I.' I 
Rl~ULT • ANy E~PRE~SION, 
OPERAND(I) • ANy E.PR[~SIUN, 
Of'ERANO(?) • ANY EXPRESSIoN, 
Pk~CE'()ENr.( 1: <'~, 
SEM.NTIC • RETU.N(nprRAND(1)+OPERANO(21) 5 

INFI>- OPER~TOR I.' I 
REsol T • ANy cXPR,E~SION" 
np,RANgII) • ANY EXPRE~SION, 
OP,RANOC21 • ANY E.PRE~SION, 
p"rCEOENr.E c 4'~, 
St:MA;;JIC 'RET~HN(nPrRlNO(11-0PER'A'NO'(2») S 

p'REF'I)( OPERATOR I.' 
Re SUL T • AN Y ~ XPRBS ION" 
oP'rR4NO(1I • ANY EXPR,ESSION, 
PkF:CEOENCE c 4'~, 
SEMANTIC • RET~~N{oPrRlNDll)IS 

PREFIX OPERaTOR '-' 
RlSULT • ANY EXPRESSION' 
OPERAND(1) • ANy EXPRESS10N, 
PII,CEO[NCE • 4., 
SEMANTIC • RETURNC~-nPER.NOCiIIS 

INFIX OPERATOR I.! 1 

-., ,-.~~ '-'-""_~"""'''''J'"",,-,,,,,,~_,-~,_,,_" ____ , 

~. -. 
17-lPR-79 16143 PAGE 12 
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PRECEDENCE NOT SPECIFIED lU0 uSED 
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ASS(MBLY LANGUAGE OErINITION IAl.l.DEn 

qESUI.T • ANy E~PREsSION, 
OP£RANID Cll • AN,y EXPRE~SION,. 
OI'£RANQ ( 2) • ANY [XPRES'SION. 
PRECEDENCE = ~~l 
SEM,ANTIC • nCiURNcoPrRANO(1)DOPER'AND'C2>1S 

c NFl X OPER,ATOR ';' I 
RES~L T • AN'y EXPREsSION. 
OPERAND(1) • ANY EXPRESSION. 
OPERANQ(2) • ANy E.PRE~SION. 
PR~CEDENCE • 50. 
SEMANTIC • RET~ANCoPrRANO(1)/OPER'NOC2)IS 

INFIX OPER,ATOR '.-' , 
RESULT • "NY EXPR,E~SION'. 
OP[RANro(1) • ANy EXPRESSION, 
OPERAND(2) • ANy E.PRE~SION, 
PRECEDENCE • 20, 
SEMANTIC • RETURN'CoPr.'RAND(1).~OR.QPER'A'NO'12)IS 

INFIX OPERATOR '>' I 
R[SUI.T • ANy EXPRESSION. 
OPERAND ( 1) • ANY EXPRESSION. 
OPERAND(2) • ANy EXPREsSION, 
PRECEDENCE • 1~' 
SEMANTIC • RETURN'lnprRANOI11.GT.OPER'AND.(21)1 

I NF I X OPER,ATOR '<' I 
R(S~L T • AN'Y EXPREgS I ON, 
OPERAND(1) • ANy EX'PREsS ION., 
OPERANO(2) • ANy E~PREsSION, 
PRECEOENCE • 1~. 
SEMANTIC • RETUR,NIOprR4N0(1)'I.T.OPER'Arin'C21)S 

I NF I X OPERATOR '.' I 
RES~LT • ANY EXPRE.SION, 
OPERANC(1) • ANy tXPREsSION, 
oprRANQ(2) • ,Ny EXPREgSIGN, 
P~ECEDENCE • 1~, 
SEM,ANTIC • RETURN'loPrRkNO(1) .EO.OPER'ANO'12J)1 

INFix OPER·ATOR '.1.' I 
RESWLT • ANY EXPRESSION, 
nPERANU l l1 • ANY EXPRE~SION. 
OPERANQ(2) • ANy E.PRE~SIDN. 
PRtCEOENCE • 6", 
SEMANTIC • RETURN(,:S~L', IOPERAND III .DP£R,~NO'(21) 1'1 

INFIX OPERATOR '.-. : 
R'EsuLT • ANy EXPRESSiON, 
OPERA,NOCll • ANy EXPREsS';"N" 
OPERANO'(2) • ANy EXPRESSION, 
PRECEDENCE • 6", 
SEM-ANTiC • RETURNloPrRANC(1),C10 .. 0PER·ANDC21)$ 

INFIX OPER'ATOR '.-' I 
RES~LT • ANY EXPREsSIoN. 
OP~RAND'I 1) • ANy EXPREsS ION, 
OP~RANO(2) • ANy EXPREsSION. 
PRrCEDENcE • 6", 
SEMANTIC • RETURNCoprR'ANOH)l10"OP£RANO'I~))S 
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ASSE~BLY LANGU.GE DEflNITIDN IALLDEf) 

INFtx OPERATOR '~.I 
RlsULf ~ ANY ~PRE~StON, 
npE~UN(l)(1> :: ANy X'PR,EsSIIJN" 
~PfRANO(2) • ANY XP~E~SION, 

Pk'r..CE!lENCE = 3'~, 
5'EHAlnIC = RETURN(OPr.RA,N0(1) .AND.OPERANO'(2»$ 

INFIX OPER·AraR ' •• ' 
RESILT = ANY EXPRERSloN, 
(!)PrRAND(l) :2 J.NY E)(IPRE~SlUN, 
npr RANn(7) z ANy E~PRE~SI0N" 

PKECEOENCE = 2", 
SEMANTIC • RETURN(oPrRAND(1).OR.OPERANO'12»$ 

INrrx OPER,ATOR '.1_' I 
ReSULT • AN'Y EXPQ[SSI0N, 
O>,,,RANQ(ll • A'NY EXPRESsI,)N' 
GPERANO(?)= A'NY ExPRESsIO~, 
PRECEDENcE " 6"' 
SEMM,T IC = R'E TURN( ','SilR, (OP-E'RA~JD (1) ,OPERANC( 2) ) ) $ 

INfIX OPERATOR ',': 
RESULT = SYMBUL tERM LIsT, 
OPERAND(1) = SYMBJL tERM LIST,' 
OPERkMD(2) = bYMSUL TE~M, 
PRECEDENCE • 1l, 
SEMANTIC = LISTF(OpEI',ANG!1),aPERANOI2» $ 

INFIX OPERATOR ',' I 
RESULT = ANy EXPHsSION LIST, 
Of'ERAND(1) = ANy EXPRr.~'I~N LIST, 
OP[RANO(2) • ANY EXp'REsSION, 
PRF:CEOENr.E = ll, 
SEM'ANTrC = LlSTF(OpERANO(l) ,OPER'A,N~(2)) S 

END ~r ALlO,F OEFINITION $ 

t... __ ".,'. 
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~EXICAL rIDK-EN DEtlNITlON 17-APR-19 1614-9PA-GE 

BEGIN LEXIG-AL BrrINITrON $ 
<LEXICON) :-

IIi 

IF FIRST.CARD N~ ~, 
<f'IR-STcARO) 

IF 11-ACROS EO 9 
II <MArROpREPASS>, 

M-ACROS.,B, 
C~RsOR"l 

i , 
iF SUBFIELD ~E F!ELO~, 
i 

IF' NnT , ,~, 
J F' NOT I ,_t., 
(TOK-EN> , 
( 

,. CHECK FIDR ASSEMBLE CARD ./ 

/. I S A M-ACRO PASS NEEDED ., 
,. GET A~L M*CROS ./ 

/" UNTIL ALL F![~IDS "' 

'" NEXT F! [LO IF BLANK OR "' /-. COHMENT "/ 
/" GET A TOKEN "' 

IF MN Et10Nic EQ ~, /" ONLY FOR ACTURL '1 TOKEN"START.POSITION OF (TOKEN)., 
TOKEN·SI~E.SIlE OF <TO~EN> 

1/ NuLL 
) 

1/ IF SUeFlnB EO L '" CHECK FOR NULL LINE ., SCAN, 
( , . , , 
CURsOR'LENCTW 

II IF CURSORoCH'iR EO -999 
) , 
MNEMONIc.a, 
TnKENoTY'PEoNAME; 
SUJBfI'ELO.?, 

/I SCA-N" 

42 

( , , . , 
r.URSOR~LENCTH 

II IF CUR~OR~CHAR EO -999 
II suer !;ELo.s'Uanv.LO.l 
) , 
<LExICON) 

1/ CuRSDrtoLrNriTH, 

(TOKEN> I. 
TOK-EN,. TYpE.ENo·or-L INE 

'0 GET NEXT fiELD "I 
,. !GNORE REST If COMMENT .1 

'" OR REA-CHEO END or LI NE "/ 
'" REACHED NEXT rlELO '1 

'" CONTINuE WITH NEw ,OKEN 01 

'" J~ST Gn our !,r TOO 01 
'" M'ANY FIELDS 0/ 

S 

,> PARAMETER SUaSTITUTION "I 
iF SOURCE_MODE EO MA~RO-EXP*NO. 
',F MACRO"L!NE EQ ~; I" MUST BEF!RST L!NE .1 f SUBFIELO Eo 3, 
(MA,i;ROARC> , 
tOKEN"TYPE"SYM8 0L I' IF PROr.ESS'MOOE EO SKIP, 

(SKIPMAcRIDTEXr) 
I' rr LlTrRAL"SCAN Eo i.; 

~~EROLE~ELPAREN>, 

,. IN ARGUMENT FIELD 0' I' RETURN AS A SY'HBOL 0' 
'" IGNORE rEXT Of HA-eRO "' 
'" PARSE L. 1'ER'A'L '1 

1 

, 
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LEXICA( 'OKEN DEFIN1TION 

l'I fERAe "SC-A'N,r.-:, 
rOK.EN°' 'PEO,SY .. JoL 

II IF LETTER, 
(N·AH£> • 
( 

IF SYSFLELD EO 1, 
1 OKF NoTY'pE.LASEi: 

" TOKFN·TYpE~N*ME 
I 

" iF DIGIT. 
(NW1B,£R> 

" iF SPECI AL, 
(SPEC [,\ L). 
tOKEN-1YPE:SPECIAL 

II iF ALMF~ICI 
<SYMBOL>. 
tOKEN°TYPE"SYMBOL 

/I iF CURSoRoCH,AR EQ ;909, 
cl!JRSoR:,c·WR,s,QR+l, 
TOKENoTYPE"ENDo.Fo(liE 5 

<NUMBER> :. 

" 

iF SUSrIEI.O EQ 2. 
MNEMONIC=1, 
T@KEN to IYPf..9NAM£, 

QUR SOR'C URSOR-l 

IF till t • 

(!:Ie T), 
tOKEN"~.LU£.VALHE OF OCTAL (OCT) 

1/ (INT>. 
TOKEN"vALUE=VA'LuE OF <lNT> 
I. 
TOKEN"TyPElvALUE $ 

<MACR.O.ARG> :. 
1 TO 20 
I 

1 F NO T ' ,. 
IF" NOr ,;': 
CH'IRACTER 

) $ 
(SKIPM'A·CRO'TEXT) I,. 

I 
I F sus' 1 FLffi EQ 1., 
(NA'HE), 
Sel'N, 
SuBFIELU.2 

/I NuLL 
) , 
I 

IF SUS'IELi EQ 2. 
IF CURSOR"iH*R NE -999. 
IF NOT 'rN5 '. 
CUR·SOR':LENcTW. 

17-APR-79 16145PA,G£ 2 

It CHECK FOR A NAME ., 
/. IS THIS A LASEL ./ 

/0 NO. JU.5T A NAME ., 
/. CwECK FOR A NUMBER ./ 

/0 CHECK FOR SPECIALS 0' 

/'0 UNK'NOHN SY'MBOL 0/ 

'0 EN0 of LINE TOKEN ./ 

/. A LEADING ~ MEANS OCTAL ., 
'0 I,' NOT THEN DEcJH'~L 0/ 
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~EXICA[ tO~EN 0ErtN1TION 

MNEMONIC.'Z; 
TOKEN_TYpE.N'A'M£ 

II I,r s.Usf' I £ Lli NE c 
) $ 

<SYMSOl:) I. 
1 TO M6NY 'LMERles i 

<INn j" 
i TO 12 OI'CITS $ 

<OCT> j. 
i TO 12 OCTA~S $ 

(N~'H£> :" 
1 TO 6 LETMERICS $ 

<SPECIAL) I" ,.' , 
f 

, I' • 
! 

,+ , 
II ,-I 
I 

it '+' 
II '.' 
II '0' 
1/ N~Ll 
I 

II ,/', 
f 

'I' 
1/ NuLl 
I 

II ''''', 
f 

'+ ' 
1/ NuL, 
i 

1/ .f .. I, 
, -' 

II NULl. 
I 

1/ if SuBrlELO Em 1, 
f $ ( I 

1/ iF su8rlELO EQ 3. 

f ( , , 

i 
IF IMAGECCURSOR;Zi Em ~ 

II Ir IMAGECCURSOR;Zj EO -11 
I • 
[I TERAI..SCA'N.l 

/I SPECIAl. $ 
<M'ACRO"REPASS) I' 

17-APR-79 16,.5PAGE 

,- LETTERS ANO'OR DIGITS 

/. CECr"AL DIGITS 

/. OCTAL DIGITS 

,. LETTER ANO LETTERS 
/. ANO'OR DIGITS 

./ 

*' 
*' ., ., 

,. A SH InEO LEn N PLACES */ ,* A SHIfTED RIGHT N PI.ACES *' 
,. A HUL T I PLIED 8Y 10.o N '/ 
,. A MULTIPLIED BY lI10o'N "' 
" LOGICAL A'NO ., ,. MULTIPLICATION */ 

,. REMAINDER D. liN 
,- DIVISION 

,. LOGICAL OR 
,. ADO IT I·ON 

,. Ex'eLUSIVE OR '* SURTRACTION 

*/ ., 

*' 0' 

*' 0' 
,. CONTROL SECTION INO,ICATOR" 

'* CHECK IF AR,GuMENT .IELO ., 
,. THEN POSSlBLE LITERAL "' 
I' LEn PA,REN FOLLOWED BY *' 
,. A BLANK' OR 
/. ~ COMM'A 

./ 

*' 
,. R~LAT!,ONA~ OPER,ATORS ETC." 

3 
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,-
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eYC~E 
I 

k£XICAC iO~EN ~EFINITION 

C0RSQR=1, 
IF C~RSeR·c~aR NE -99~. 
SCAN, 
I 

IF C~RSOR EO l' 
<LA1SE:L>:, • 
I ABE~_FI'f:lO:1 

II J ABEIo_fJ'ELO::12J 
) . 
SCAN. 
I 

'PReC', 
<LEGAL>' 
IF lAaEl"FIE(O EQ 1. 

17-APR-79 16 I 45PA'eE 

10 UNTIL END OF INP~T 

/0 CHECK ~A8E~ FIE~O 

/0 MAcRO OEFINITION 

/. HUST HAVE ~AaEL F" 1E~0 
/. NESTED NOT Al~OWEO 
/. SAVE H'ACRO NA'~E 

"' 
"/ 

"I 

"/ 
0' 
./ 

IF 8,U'ILO ~E 1. 
~S:pOsITI~N OF <~A8~~>. 
"leStrE OF <[~~E~>I 
PS~M5, /* AND PARAMETER NAME "' 

I. 

p.L=Mi.. 
A NS WER 'ST A'R TM'ACRO'! MS .HL • PS • P~ I • 
R·~Ilrn.l 

1/ 'ENO':, 
<LEG4'L>, 
Ir- 8UIl.0 EQ 1. 
IF LABEl_FIELO EQ 0. 
F,:NO, .. M!ACR,O, 
8ull o .• ~ 

II IF ~Ul~D EO 1. 
Cl!JRSOR lll l. 
STRINe·cUHSOR. 
ST'RT_BOOy·~tN~. 
<·aUI'I.DE~EMENTS> 

/I ~U~l 
) . 
NEXT-IHA'C E 

R,ESET-iNPuT. 
JINEXT_IHAGEl ~ 

(i!EROLEV'ELPAREN) ,. 
t S'CAN roR '!1 f 

A~SWER:I.TSCAN 
/1 AN,SWERz:''' 
I. 
I 

SCAN FeR ~I • 
/' SCAN reR 'l" ,. -. 
cURSOR.,L TSCAN. 
i IF ANSwER eT 0. 

IF ANswER ~ T I. TSCiN" 
L IT-'I.led 

/. END OF M,ACRO 

/. MUST BE IN A MACRO '0 MUST NOT H'AVE A ~A8EL 

'0 MACRO BOOY 

'0 BUII.O PI:ECES OF ~lN£ 

'" Rt-POSITION INPUT 

., 
"/ 
"' 
"I 

0/ 

01 

... ~ . ...:,! 
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, , 
00 
"'.:t/ 

C 
.,.. 

'l7J;) 
o~ 
~~ ( 

00" !i:".::;; 
I t~ 

:<;;; ( 

(. 

( 

c 

~[X·IC"~ TOKEN OEfliNlTlON 

II LIT"F'L4-G'.~ 
, $ 

(I. [,GA'L) : a 
I • 

II I,' $ 
(LABEL) " 

i Te 4 AL~ERlcS. 
fir ' , S 

(.BU'ILDELEHEN r s> '" 
SCAN.fnR.p'.'RM. 

iF I.rscAN GT e,. 
cURsaR':L TSC'A,N. 
i 

CURsaR.CuRSORoP(. 
ANSwER.0. 
, ( f , 

(~UHBER>. 
'I' 
TOKr,N,·yAL UE·'TOKEN;YALUEo~,. 
ANSwE'Rol" 

1/ 
NOT NUL~ 
I, ANswER EO 1. 
<NON,S~B> • 
A'NSWE'R.SUBPARMNUMii TOKEN-V "LUE I. 
CURSOR.CURSORoPC. , ( , , 
<NUMBER>. 
I ) t t 

/1 
STRINCaCWRSOR 
CURSORaCWRSORoPL , . 

cBU!t.DFLEMENTS> 
// cWR,seR"cENCTH. 

<N0NSUR) S 
<NONS~e> ; • 

(F STRING GE CURSOR 

'/ A'NSWER:NONS~H! SyR'1 NC: CURSOR-STR I NG, I 
sTRINC_"~RSOR $ 

(rIRS TCARO,> " 
If F I RSY"CA'RD EQ 1.: 
, I I , 

SCA,N. 
S!t!JBFTELrn'!2" 
TOKE~j.S TA'RT .CURSOR: 
I A'SSEMBLE I , 

reK'EN·S 1 ~E"8" 
TaKEN-TyPE ON'A'ME. 
'IRST·CARO".2 

/'I i'F FIRST.C'ARD EQ 2. 

• -.-,-.. 

S,CA,N. 
<N'~ME>. 

.-. ~-, ~ .... I 

17-A'pR-79 1·6J,45P"GE 

/* BLANK AND COMMENT */ 
/0 "RE ONLY LEGAL TOKEN 0/ 

,. MiCRO NAME IS fOUR ., 
'* LETTERs ANOIOR DIGITS ., 
/. LOOK A'HEAD FOR A SUB- ./ 
/. STlTUTION 01 ,. ,r IT IS FOUND ./ 
/. MOVE TO THE P"RAMElER ., 
,~ MOVE PAST PARAMETER ., 
/. DETERM'INE PARAMETER ., 
/. NUMBER ./ 

,- PUT IN NON-SUBSrIT-UTA'BI.E ./ 
/. PIIRT 0, THE H',~H LI,NE ./ 
/. PUT IN ,.R'AHE1CR NUMBER 0/ 

,. NOT A PARA-MEltR. IGNORE 

/. SCAN OFF REST OF LI·NE 
,. AND OUT-PUT 

,. NON-SUBSTITUTABLE CoDE 
/. ONLY PUT OIlT I', TH[RE 

~.- ... ~ I ---..:. 

0, 
., ., 
0' 0, 

. , 

.~ 

5 
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I, 

C' 

LEXICAL ,e~EN DEfINITION 

S~18'1 ELe.". 
T0KEN·TyPE~N*HE, 
TOKE~.SI~E·SIlE aF <NAME>. 
TnKEN,·START=P0 S I T I ON eP <NAME>, 
L1STING.l, 
MACRoSal. 
o TO 2 
( 

SCAN. 
t 

• {NOLlSTI', LIsTING.m 
1/ I (lJOPROCI', 'MAr.ROS"3 I 

I, 
r I'RST"C'AR0,a~ 

1/ SCAN, 
IF CDRSoR.CHAn ~o :999. 
C~RS8R'·CUR,SOR.~ , 
TOK·EN. T yPE~ENo·e"·i.·1 NE. 
FIRST.CARo'·'m $ 

ENO OF LEXICA'L o~fINITION S 

••. " I 

17-APR-79 16H~P~GE 6 
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