
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-161255) ENHAHCE"ENTS AND GENERALIZED LINKAGE EDITOR Final Report ("cDonnell-Douglas Astronautics co., 98 p !lC 105/"F 101 CSCL 09B

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

/'
MCDONNELL DOUGL~

CO.~"AT'ON

r~/
MCDONNELL.)0;,1"';10-
DOUGLAS '-..7

META ASSEMBLER ENHANCEMENTS AND
GENERALIZED LINKAGE EDITOR

(CONTRACT NAS8-32570)

Final Report

JUNE 1979 MDe GB027

PREPARED FOR,

PREPARED BY ,

GEORGE C, MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER
ALABAMA 35812

MCDONNELL DOUGLAS ASTRONAUTICS CO-WEST
AVIONICS CONTROL AND INFORMATI DN SYSTEMS
HUNTINGTON BEACH, CALIFORNIA 92647

MCDONNELL DOUGLAS ASTRONAUT'CS; COM_Y-HUNT'NGTON BEACH

5301 Bolsa Avenue, Huntingron Beach, CA 9264 7

r:-l MCDONNELL. "",,",,,,' _ _
DOUGLAS "-..../

META ASSEMBLER ENHANCEMENTS AND
GENERALIZED LINKAGE EDITOR

(CONTRACT NASB-32570)

Final Report

JUNE 1979 MDe GB027

PREPARED FOR ,

PR EPARED BY ,

GEORGE C, MARSHALL SPACE FLI GHT CENTER
MARSHA LL SPAC E FLIGHT CENTER
ALABAMA 35812

MCDONNELL DOUG LAS ASTRONAUTICS CO-WEST
AVIONICS CONTRO L AND INFORMATIDN SYSTEMS
HUNTINGTON BEACH, CALIFORNIA 92647

MCDONNELL DOUGLAS ASTRONAUTIC$ COMPANY- HUNTINGTON BEACH

5301 Bolsa Avenue, Hunting ton Beach, CA 9264 7

,

PREFACE

The final report for "Meta Assembler Enhancements and Generalized Linkage
Editor" is submitted to the National Aeronautics and Space Administration,
George C. Ma,rshall Splace Flight Center in accordance with the plrovisions of
the c~ntract number NAS8-32570. The report describes the results of the
des i gn and impl ementat i on of an enhanced meta assembl er and genera 1 i zed
linka£je editor to provide syntax resplonsive and tar£jet reconfigurable
assembly, 1 inkage edit and 1 ibrary creation and maintenance capabil ity.

If any additional information is desired, please contact any of the fQnowing
McDonnell DQuglas or NASA representatives as appropriate:

o Mr. Z. Jelinski, Project Manager (MDAc)
Huntington Beach, CalifQrnia
Telephone : 71 ,~-896-5060

o Mr. K. V. Smith, Principal Investigator (MDAC)
Huntington Beach, CalifQrnia
Telephone: 714-896-2937

o Mr. Geoffrey C. Hi ntze, PrQject COR (NASA)
Marshall Space Flight Center, Alabama
Telephone: 205-453-57Q9

iii

/

Page intentionally left blank

1

2

3

PREFACE

INTRODUCTI ON

TABLE OF CONTENTS

iii

1

1.1 Problem Statement 1 1.2 Objectives 2 1.3 Technical Approach 2 1.3.1 Task 1 - User Oriented Syntax Definition
Capability 2 1.3.2 Task 4 - Meta Assembler Documentation 4 1.3.3 Task 5 - Develop a Generalized Linkage Editor 4 1.3.4 Task 7 - Meta Translator Installation and
Training at MSFC 7 1.4 Results 7

ADMINISTRATIVE DATA 11
2.1 Team Organization 11 2.2 Schedule/Milestones 11 2.3 Facilities and Resources 11 2.3.1 MDAC-W Huntington Beach, California 13 2.3.2 NASA Marshall Space Flight Center, Alabama 13
TECHNICAL PERFORMANCE 15
3.1 Meta AssemiD1er Implementation 15 3.1.1 Task 1 - User Oriented Syntax Definition

Capability 15 3.1.1.1 Assembler Level Language Definition
Meta Language (ALLDEF) 17 3.1.1.2 Assembler Level Language Lexical
Meta Language (ALLLEX) 24 3.1.1.3 ALLDEF Meta Language Processor 26 3.1.1.4 ALLLEX Meta Language Processor 28 3.1. 1. 5 General i zed Parser (ALTRAN) 28 3.2 Meta Translator Implementation 28 3.2.1 Meta Translator IDescription 28 3.2.2 Meta Translator Application 31 3.3 Generalized Linkage Editor 31 3.3.1 General Overview 31 3.3.1.1 Ubratory Creati0n and Maintenance 33 3.3.1.2 Binding of Modules 33 3.3.1.3 Cataloging of Standard Meta Assembler
System Outputs 33 3.3.2 Flow Through the Generalized Linkage Editor 33 3.3.2.1 Creation of a System LiiDratory for
General Use 35

v

/

3.3.2.2 Creation of a User Library and
Load Module Generation

3.3.3 Use of the Generalized Linkage Editor
3.3.3.1 Directive Coding Conventions
3.3.3.2 List of Generalized Linkage Editor

Directives
3.3.3.3 Use of the Library Creation and

Maintenance Function
3.3.3.4 l!Jse of Linkage Editor Function
3.3.3.5 Use of the Catalog Function

3.4 Installation and Training
3.4.1 Task 7 - NASA MSFC Delivery
3.4.2 Installation 0n the MSFC IBM 360
3.4.3 MSFC Installation Verification
3.4.4 Meta Assembler System/Meta Translator

Demonstrati0n
3.4.5 Dem0nstration f0r the NSSC-I
3.4.6 Personnel Trai1ning at MSFC
3.4.7 MSFC Deliverable Items
3.4.8 GSFC IDel i verab le Items

3.5 Meta Assembler Documentati0n
3.5.1 User Manuals
3.5.2 Detail IDesign Manuals

APPENDIX A SCHEIDULI1/MILESTONES

APPENDIX B ALLDEF NSSC-I DEFINITION

APPENDIX C ALLLEX NSSC-I DEFINITION

vi

~, ;.

PAGE

35
36
36

38

39
4.6
60
64
64
64
65

65
65
65
65
66
66
66
67

A-l

B-1

C-l

Section 1

INTRODUCTION

McDonnell Douglas Astronautics Company-West (MDAC-W) has developed a Meta

Assembler for NASA under previous contract efforts. Under contract NAS8-27202

the initial development of the Meta Assembler for the SUMC was performed.

The capabilities included assembly for both main and micro level programs.

Contract NAS8-30907 provided support to NASA MSFC during a Pleriod 0f checkout

and utilization to verify the performance of the t4eta Assembler. Under

c0ntract NASIO-8434 and NASIO-8833 additional enhancements were made to the

Meta Assembler which expanded the target computer family to inclucle archi

tectures represented by the PDP-ll, MODCOMP II, ancl Raytheon 706 c0mputers.

1.1 PROBLEM STATEMENT

In spite of its usefulness, the system had some seri0us shortcomings namely

the Meta Assembler used a language indePlendent syntax for directives (pseuclo

0pS), macros ancl labels because these features c0uld differ g"eatly fr0m one

assembly 1 anguage to another. F0r thi s reason, existing assembly 1 anguage

pr0grams had to either have the S0urce for these differences rewritten or a

syntax preprocessor hacl to be written to change them. This j!lut an aclditi0nal

burclen on the user because in rewriting the source he hacl to suIDstitute

unfamil i ar symb01 s for 0nes that he was used to. If a new syntax preprocessor

had to IDe written he usually had to seek ass i stance from the program ori gi nator

which resulted in adclitional C0Sts and effort connected time delay.

Aclditionally, if a user desired to link t0gether sepa,rately assemIDled modules,

he was re<quired to lise whatever, if any, linkin§ support tools were available

f0r the ta,rget machine or write hi sown.

The alDove clisaclvanta§es pr0vided serious 0bstacles to s0ftware stanclardization.

/

1.2 OBJECTIVES

The primary objective of this effort was to standardize a NASA low cost
Meta Assembler and Linkage Editor. The enhancements to the Meta Assembler
defined for this contract include: the design and development of ~
User Oriented Syntax Definition capability and the design and development
of a recognition capability to support these definitions in order to perform
the assembly process. Also, the design and development of a generalized link-
age editor and 1 ibrary creation and maintenance function was defined.

The result of this effort resulted in the establishment of a Meta
Assembler program and Linkage Editor program which operates in the environment
of a large scale host computer and supports software development for flight

. and ground checkout computers (mini-computer class).

Additionally, user and maintenance documentation was developed and the
i'nherent capabi] ities of the program demonstrated.

1.3 TECHNICAL APPROACH
The--"tract called for 7 major tasks to be performed.

Task 1 - User Oriented Syntax IDefi nition CapalDi 1 ity
Task 2 - General i zation of the Procedure Language
Task 3 - Improvement to the Meta AssemID1er Error Diagnostics and

DYnamic Debug Features
Task 4 - Meta AssemlDler IDocumentation
Task !5 - IDevelopment of a Generalized Linkage [ditor
Task 6 - NASA Goddard (GSFC) Delivery and Install ation for the NSSC-1
Task 7 - Meta Translator Installation and Training at MSFC

Of these seven tasks, tasks 2 and 3 were deleted through renegotiation due
tID technical difficulty of task 1. Task 6 was deleted at the request of
NASA and combinecl in pla,rt with task 7.

1.3.1 Task 1 - User Oriented Syntax Definition Capabil ity
The existing Meta Assen1ID1er is designed to translate symbolic assemID1er level
instructions into machine language instructions for a wide variety of target

2

" ,-.,/,

computers. The adaptabi 1 ity is achi eved vi a a set of target definiti on
directives which parameterize the Meta Assembler for the subsequent assembly
function. The target definition directives supply the architecture character
istics (e.g., word size, register descriptions, character set definition)
as well as the instruction set definition (mnemonic, operand description).

Additionally, the Meta Assembler has built in directives to perform assembly
time functions (e.g., data definition, parameter definition, location counter
control, listing control, conditional assembly c~ntrol, procedure definition
and expansion). The syntax processing of the Meta Assembler directives is
fixed (e.g., DATA, PROC, EQU, ORG) and at the instruction processing level
flexibility is provided for ol'erand definition rather than syntax definitiQn.
Therefore, the Meta Assembler represents equivalency in its assembly functiQn
with a correlating target machine and assembler syntax compatibility is not
maintained. This can have the effect Qf requiring programmers to learn the
equivalent assembler language and directive syntax instead of using the
familiar target assembler syntax. Additionally, maintenance of a prQgram
cannot be performed by both the Meta Assembler and the target machine
assembler due to the syntactical differences.

This task alleviates the syntax incompatibility by providing the additional
capa,bil ity to allow the user to define the syntax of the assembler lar.guage
and directives a.nd the cQrrelating semantics of the statements (e.g., generate
intermediate language, perform an assembly time function). This was
accompl ished by designing a meta la,nguage for the purpQse of defining
assembler languages, their syntax and translatiQn semantics.

The I'rQcessors developed for thi s capabil i ty a're the meta 1 anguage prQcessor,
the lexical processor and the generalized parser. The meta languaSe I'rocessor
is a j!lre-assembly function which processes the meta linguistic definition
of the assembler language and generates a dictionary data set containing the
syntax and semantic tables to be uti:'ized by the generalized j!larser.
This function need not be performed for each assembly. The generalized
j!larser performs the first I'ass of the assembly utilizing the syntax and
semantic tables I'roduced by the meta language I'rocessor. The first I'ass
accomplishes the source statements tra'nslation into the Meta Assembler

3

intermediate language which can then be processed by the existing second pass
of the Meta Assembler to perform object module generation.

The design intent of this capability was not to replace the existing Meta
Assembler target definition and first pass process but rather augment the
Meta Assembler with the optionally invoked generalized parser function as
illustrated in Figure 1. Host portability of the enhanced Meta Assembler was
preserved.

Under this task a complete meta linguistic definition of the NSSC-I assembler
language was developed. This represents part of the delivery items
relative to Task 6.

1.3.2 Task 4 - Meta Assembler Documen1;ati0n
A Detail Design Manual was pr0duced which fully d0cuments all 5ubr0utines
and data areas of the Meta Assembler. This d0cument is intended to support
maintenance funcHons pertaining to the Meta Assembler. Included in the
Detail DeSign Manual is an appendix devoted to host c0mputer installaUon
pr0cedures.

The existing Meta Assembler Wser's Manual was updated to include the
enhancements and modificati0ns Plerformed during this effort. Meta Assembler
error diagnosUcs are listed with aIDpr0priate exp1anati0ns as an appendix
to the User's Manual.

1.3.3 Tilsk 5 - Develop a Generalized Linkage Edit0,r
A general ized Linka!ije Editor functi·on was definecl, desi!ijned, clevelopecl, and
validated with a,ppropriate documentati0n supp0rtin!ij each phase. It provides
the capabil ity to util ize modular pro!ijramming techn'i~ues in the app1 icati0n
0f the Meta Assembler by combinin!ij a user 1 ibra,ry 0f sepa,rate1y assembled
0bject modules, produced by the Meta Assembler, into an absolute or re10catab1e
l0ad module 0n a large scale h0st computer. Its pdmary processin!ij capability
is to perform re10cation and external linkage functi'0ns on the 0bject m0dules
processed. Toimp1 ement a system generatior ca,pabi 1 i ty the Li nka!ije ~ditor
additionally may access 0bject m0dules from an object module library to satisfy
undefi ned 91 oba 1 references (see Fi !ijure 2).

4

/

'"

,

- - --
USER ORIENifE" S-"WrAX "EFINliTION EXTENSION

SYN'I"AX
"EFINliTION

SEMANTIC
QEFINITION.

- - ,- -- -----

ASSEMBLER i
LANGCJAGE I

I-J I
I
I
I
I
I
I
I
I
I
L

META
LANGCJAGE
PROCESSQR

QICTI0NARY

-1
r--, __ -__ -__ .-__ ---, I

'SYN'TAX I
TABLES I

SEMANnc:
T"BLES

I
I
I
I
I ___ J

GENERALiZEQ
PARSER

Figure 1 'IMeta A~~';'bi;'~ Co~fiou~~ti;r. -

CURRENiT META- ASSEMBLER

TARGET
flEFINITION

ASSEMBLER
LANGUAGE

PASS I

PASS 2

META
ASSEMBLER

"

!
I
~

en

USER
OBJECT
LlBRPlRY

---,

~.
U

• •
• •

@

I

I
1

[,
,

.~.

1
1

'I

I
1

I
I
I
I
I
I
I

L __ _ _____ 1

LINKAGE I
~ EOlmOR

I O~iJ7PUT
DRIVER

, .,
•

H0ST MPICHINE '

·USER GENERATEO 0BJECT M00ULES PlNO THE 0BJECT M00WLES
, 0N THE SYS;rEM OBJECT LIBRARY PlAE PA00WCEO BY THE META
, ASSEMBLER

Figu;e :2. -G"eneru'.ized"Linkaga Edit~-;:- I

I TARGET
I MACHINE

A critical aspect of the Linkage Editor will be its ability to respond to
usel' defined parameters to fully utilize the resQurces of the target machine,
specifically the NASA Standard Spacecraft Computer (NSSC-I), The resource
parameters include the ability to optionally specify beginning addressf;s for
some or all of the control sections represented in the object modules and
to specify '"he order in which the control sections are to be loaded.

The implementation of the Linkage Editor is in ASA FORTRAN IV, as is the
Meta Assembler, to facilitate ease in transporting the function from one
host computer to another.

The absolute load module generation is in a standard format to maximize its
applicability to a wide variety of target machines. This necessitates an
output driver to be developed whenever a new target machine is interfaced.
Under this task an output driver was developed to format the load module for
loading and execution on the NSSC-I (see Figure 2).

1.3.4 Task 7 - Meta Translator Installation and Training at MSFC
For the exclusive purpose of maintaining the enhanced Meta Assemb1er,the
MDAC proprietary Meta Translator was installed at MSFC on an IBM 360. This
installation included the delivery of source p>rograms (tape), program listings,
technical documentation and installation procedure description for the MDAC
Meta Translator, the enhanced Meta Assembler and the generalized Linkage
Editor (see Figure 3).

Personnel training was conducted in the utilization of the Meta Translator.

In addition, the NSSC-1 language definition and outp>ut driver were cle1ivered
to MSFC. The GSFC furnished test cases were also delivered (see Figure 4).

1.4 RESULTS
The Meta Assembler was enhancecl to allow the user to define an assembler
1 anguage syntax to be pt'ocessed. Thi s capabil i ty e1 imi nated source 1 anguage
reformatting or ad hoc syntax recognizer cleve1Qpment in order to maintain
comp>atibi1ity with a target machine assembler language syntax.

7

META ASSEMBLER
- -~ ~.- .. _---- META ASSEMOieR META LANGl!JAGE Ml'lAC PARSERS ASA

l'lEFINlil'ION META liAANSLA lieR FOR-liRA:N IV
Sl'll!JRCE

......-

META ASSEMBLE:Il- .. -'- _.
St~PP0RT 1l0l!J1'INES "BM 360
ASA 'FBAliAAN IV -. FGAliAAN '
S0UllCE COMPILER

........

CD ()

Figure 3 MSFC Inst.llaii~n·~ IBM360·

to

,

NSSC-I·

SYNTAX I
,flEFINITION I

SEM"N'TIC I
OEFINITION I

NSSC-I
ASSEMBUR
LANGUAGE

Figurell GSFC Installa-'ion-- -IBM 360

'META I
, LANGUAGE 1

; PROCESSOR I

DICnONARY

r-- -l , I
I
I
I
I
I
I
I ,

: SYNTAX I

TABLES

~ SEMANTIC
TABLES

I
I
I
I
I
I ,

L __ __ J

I GENERALIZED! 1-1 __ oJ
i PARSER I

I META I

ASSEMBLEA
: PASS I

,- --
META I

I ASSEMBLER.
, PASS II I

I LINKAGE
EDITOR

~ NSSC-I
I fJ)ljiJiPUif
I GRrVER

.... -.. , ,.

I NSSC-I~' LeAD
;M00U~E

The original MetJ Assembler was regenerated using the latest version of the

MDAC Meta Translator. This regeneration provided an increase in efficiency,

both execution time and memory re<quirements, and a more extensive dynamic

debug capability.

These improved dynamic debug features wi 11 provide support in the mai ntenance

of the Meta Assembler itself.

A generalized Linkage Edit("r was developed as a standard post processor for

the Meta Assembler. The function of the Linkage Editor is to link separately

assembled relocatable and/or absolute object modules into an absolute or

relocatable 10ad m0dule. The Linkage Editor was written in FORTRAN IV to

coincicle with the h0st p0rtability re<quirements of the Meta Assembler.

The NSSC-I c0mputer was the initial target c0mputer. The Meta Assembler

ancl Linkage Ecli tor were c0nfi gurecl to accept NSSC-I assembl er 1 a,nguage syntax

and procluce loacl m0dul es that fully util i ze the NSSC-I resources.

The resultant Meta Assembler ancl Linkage Eclitor was installecl at NASA Marshall

Space Fl ight Center to facil itate central izecl contr0l of these NASA standarcl

pr0grams.

T0 provicle NASA MSFC the cafjlability to maintain the Meta Assembler the MDAC

pr0preitary Meta Tran,;',ator program was installecl at NASA MSFC and trai1ning

was provided in its !jse.

10

l ..

!
1

2.1 TEAM ORGANIZATION

Section 2
ADMINISTRATIVE DATA

The overall responsibility for this project was assigned to Avionics Control and Information Systems (ACIS), headed by Mr. G.A. Johnston, Director and was performed by the Computer Science Branch. ACIS is an organization of information scientists and engineers dedicated to research, design, analysis, and testing of advanced software concepts and to the development of computer applications for scientific and military use (see Figure 5)

MDAC Proj ect Manager Mr. Z. Jelinski MDAC Principal Investigator Mr. K. V. Smith MDAC Technical Staff Mr. J. B. Churchwell
Ms. SOD Park NASA COR
Mr. Geoffrey C. Hintze

The original principal investigator of the Meta Assembler Enhancements a,nd General i zed Linkage Editor Project, Mr. A. J. Edwards, terminated employment with MDAC-W in Ja,nuary 1978. At that time, Mr. K. V. Smith was ass i gned the responsibility of principal investigator of this project.

2.2 SCHEDULE/MILESTONES
The schedule and milestones fer the "erformance ef the contract is contained in Appendix A.

2.3 FACILITIES AND RESOURCES
The development portion of this contract was performed at Huntington Beach, Ca 1 i forni a, Headquarters of the McDonnell Dougl as Astronautics Com"any-West (MDAC-W). The installation portion of the contract was performed at National Aeronautics and Space AdmiAistration, Geo,rge C. Marshall Space Flight Center, Marsha 11 Space Fl i ght Center, A 1 abama.

11

. ;

~

~~ .~

VICE PRESIIilENT I ..
ENGINEERING

C. J. IilORAENSACHER
-- - -

~ ~ ~ ..
AVIONICS CONTROL AND I

INFORMATION !
SYSTEMS ,

I DIAECl'OR i -----

G. A. JOHNSTI>N ,
~

DATA €I>Nl'ROL ANI> PRI>CESSING

SUBSYSTEMS ----
CHIEF ENGINEER: . ~

R. R. ERKENEFF~

COMPUTER S6eNCE '
-~

BRANCH CHIEF

Z. JELINSKI

~-

META ASSEMBLER.

PROJECT

MANAGER , .

Z. JeHmski

Fjgu'r~ £" PQsiti~n of Contract Within Company

12

2.3.1 MDAC-W Huntington Beach. California
The McDonnell Douglas Automation Company provided support to the project through
the use of its facilities - the CDC Cyber 74 and DEC PDP-10 computers.

The MDAC-W proprietary Meta Translator was one of the primary support
software products used in the performance of this project.

2.3.2 NASA Marshall Space Flight Center, Alabama
The host computer for the installation of the delivered software was the
IBM 360 located in building 470B.

13

Section 3

TECHNICAL PERFORMANCE

3.1 META ASSEMBLER IMPLEMENTATION

This section contains the implementation results for the Meta Assembler exten

s i 0ns .

3.1.1 Task 1 - User Oriented Syntax Definition Capabil ity

The purpose of thi s task was to provide a user oriented cajDabil ity to syntacti

cally define an assembler language, machine instructions and directives,

enabling the Meta Assembler to maintain syntax c0mpatibility with target com

puter assemblers.

The objective of this task was to integrate a meta language defil'lition 0f an

assembler language into the Meta Assembler technique such that the built-in

semantic and support processing is available to the t:lser at the meta language

level. The built-in semantic and support jDrocessing is rejDresented by:

o eXjDression evaluation

o assembler directive processing

o intermediate language formatting

o object generation
o 1 is ti ng function

The imjDlementation a'jDproach was to develop a meta language to define the

assembler language syntax and correlating built-in semantic functions.

This meta language is input to a staml-alone preprocess0r for tra,nslati0n

int0 syntax and sema,ntic tables which will guide the first pass jDrocessing

by the Meta Assembler. A generalized jDarser was developed, integral to the

Meta Assembler, to jDerform the alternative first pass of the cross assembly.

The output of the general ized parser is an intermediate language (IL) data

set such that the existing seconcl pass of the Meta Assembler ca;n complete

the cross assembly by converting the IL il'lto the mbject data file and

generate a program listing (see Figure 6).

15

FORTRJliN LIil§ ica 1 u~ i t 10

...,
r-...

AlLlNT ., Sl~e 1 etliln ALLDEF
Dkti'lil~alry

...... --- FORTRAN Llilgica 1 Uni t 10
. ,II

I" AlLOE'F meta-
" 1 a'~§wa'§e AUDEF , Dictilill!a1ry clill!tain-definiUlil1il i ng. AlLDEF defi ~.;....

FORTRAN Logical Uni1 10 , 'I ,II ... ULEX meta-la1ngl!l- C0m~ I ete ~LLJ:lEF a,§e descri ~UOr:l Iilf .. ALLLEX ... di cUlilna,ry de- ' SQl!llrce lal~§ua'§e .., - scribes SQl!lrce t0kens la1nguage and
semalr:ltics

0>

.......
I

FORTRAN LQgical Ur:lit 8
/ Assembly , t... c:::. ::: lal!§ua!je

Versiolil 2 S0urce
mQdl!lles

. Meta Assembler Object
(ALTRAN) Mlildl!lles

J,

Assembly
Listi I!gs

........
Fi gl!llre 6

Assembler

~,~_--..J (._. _ '

3.1.1.1 Assembler Level Language Definition Meta Language (ALLDEF)
The purpose of the meta language, ALLDEF, is to provide an easy to use
environment in which to describe an assembler language syntax and correlating
semantic process. The design of ALLDEF is based on the OPAlDEF meta language
developed by MDAC for the U.S. Army Armament Command, Frankford Arsenal.

Key to the conce~t of ALLDEF is its correlution to a bottom-up operator
precedence parsing function. This permits a simplistic meta language
notation and results in efficient parsing. Basically, ALLOEF represents a

"dictionary" definition concept where the symbols of the target assembler
language are defined in terms of their spelling (lexically) and their mf:aning
(semantics). The meanings are defined contextually, i.e., where the symbol
may appear and translationally, i.e., what Meta Assembler built-in semant'ic
function is to be performed.

A statement in ALLDEF may take forms to define user types, parameter table
entries, target machine characteristics, assembler language symbols, semantic
functions ancl comments. The ALLDEF clefinitions are specifiecl in a free-form
structure with the constrai nt that user type, parameter tabl e and target
characteri st'j c clefi ni tions mus t precede thei r references.

User Type

A ty~e is
uniquely.
its type.

inc 1 udi:ng:

Defi niti on
an attribute associated with a symbol which categorizes that symbol
Thus, a symbol may be bound unambiguously to an operator based on
A set of built-in types will be providecl to the ALLDEF language

NUMBER

VALUE

a digit string
a NUMBER symbol which has been converted
to its binary representation.

NAME

LABEL

ADDRESS

a character string which satisfies a
defi niti on of an assembler 1 evel
mnemoni c or symbol nota ti on.
a NAME symbol which is identified in
the label field of a statement.
a NAME symbol defined in the assembler
symiDol table as an address value.

17

CHAR STRING

SPECIAL

SYMBOL

a character string normally delimited
and typed for text processing.
a character string composed of special
characters.
a character string which cannot otherwise
be typed as NUMBER, NAME, CHAR_STRING, or
SPECIAL.

The available built-in types are used to provide initial token classification
and the set may be extended further via the TYPE statement in ALLDEF. This
provides unique binding attributes for tokens defined in ALLDEF.

Example:

TYPE I REGISTER, I I MEMORY, I •••• $

Parameter Table Entry Defi nition
A parameter table is available for utilization. Essentially, the entries
in the parameter table are the translation time variables defined, optionally
initialized, and used as desired. The parameter table is divided into two
sections, a global a'nd a local section. The global section contains the
variable entries that are initialized only at the start of the assembly.
The local section contains the variable entries that are initialized at the
start of each statement assembly. Additionally, all of the built-in
translation parameters are available in fixed entries i1' the parameter table
including:

CURSOR

CURSOR CHAR

OPCODE

BIT LENGTH

current inpt!lt statement cursor position
in the local section and i ni ti ali zed to 1.
character under the CWRSOR position,
in the globa 1 secti 'm.
operaU('m code value for object generation,
in the global section.
bi t string 1 ength for oeject generation,
in the gloeal section.

18

FIELDS

LOCATION

CTL-SECTION

MEM-SIZE
ADDRI[SS UNIT
ACCESS UNIT
ERROR SIZE
VALUE SIZE
OBJECT SIZI[

the number of fields to parse for a statement,
in the local section and initialized to 3.
assembly location counter, in the global section
initialized to zero.
current control section for LOCATION, in the
global section initialized to 1.

global section parameters correlating to the
Meta Assembler SIZE directive

The user may extend the parameter table via the GLOBAL and LOCAL statements
in ALLDEF.

I[xample:

GLOBAL

LOCAL

'LEVEL ';1, 'NEST' $
Global section definitions LEVEL is initialized
to 1 and NEST is initialized to zero by default.

'SOURCE', 'DEST', 'STYPE' : DOUBLE ... $
Local section definitions SOURCE and DEST
are initialized to zero by default and STYPE
is initialized to DOUBLE (previously defined
on a TYPE statement).

Target Machine Characteristics
The target machine characteristics are the parameters IlI!eded to perform the
cross assembly function. Some of the characteristic parameters are
maintained as fixed built-in entries in the parameter table (see paragraph
2.1.1.2).

19

Assembl er LallgUi;lge Symb9l s
The process of building an assembler language "dictionary" consists of defining
the assembler language symbols, or tokens, and the correlating semantic
fUnctions, i.e., object generation and assembler directive processing. ALLDEF
statements are needed to define the assembler level tokens in terms of
operator precedence rules for the syntactic processing, and the semantic functions
to be performed. It is at this point that the essence of unique assembler
language translation into Meta Assembler intermediate language occurs.

ALLDEF Statement for Assembler Language Operator DefinitIon - ALLDEF statements
are used to define the assembler language symbols, i.e., instruction mnemonics,
directive mnemonics, and the special operators of the assembler language
statements, creating the enviranment for an operator precedence syntax
processing. The remaining task is to define the sYntactic meaning of the
operator definitions. The syntactic meaning of an assembler level token
defi ned in ALLDEF takes the form of:

o definition of the results
o definition of the operands allowed
o definitIon of the operator precedence
o parameter table action
o semantic action

The collective ALLDEF terms to define the assembler level symbols and their
meaning comprise the ALLDEF statement.

Assembler Level OjDerator Definition - The assembler level operator definiti,ons
describe the verbs and special operators of the assembler language and provide
the mechanism to perform a statement parse. The operator definitIon term
occurs first in an ALLDEF statement. Machine instructions and directives
are the action verbs of the assembler statements which result in a statement
level semantic, i.e., object generation and directive funcUon. Special
operators are the sub-statement identifi.ers that perform on the action verb
opera.nds. Their associated semantics build towanj full statement recognition
at assembly time.

20

!
" . ,

i
.)

Exampl es :
INSTRUCTION 'MOV':
DIRECTIVE 'EQU': }
PREFIX OPERATOR'#':

POSTFIX OPERATOR '@':}
INFI X OPERATOR',': .

action verbs

special operators

Definition of Results - A result is the mandatory type of information to be
returned to the parsing process upon complete recognition of an operator
(other than the action verbs INSTRUCTION and DIRECTIVE). A result is expressed
in terms of ALLDEF types_

Example:
RESUL T=REGISTER

Definition of the Operands Allowed - Operands are defined in terms of their
order, optionality, type, kind, and term or sublist structure. The order
position of the operand is correlated to a left-to-right scan of the operands.
The type must be an ALLDEF type. The kind refers to the built-in generic type
used to further bind operands and operators, i.e., EXPRESSION. The sublist
structure, SUBLIST, indicates a del imited term, i.e., a parenthesized notation.
The keyword OPTIONAL defi nes the presence of an operand is a 11 owed but not
requi red.

Examples:
OPERAND(l) ~ REGISTER SUBLIST
OPERAND(2) = OPTIONAL ADDRESS EXPRESSION

lDefinition of the Operator Precedence - The precedence specified in a defini
tion provides the priority for reducing an operator to its result. Default
precedence is assigned to the various operators, however, the precedence
may be explicitly specified.

Exampl e:
pr'~ 'EDENCE=50

21

Semantic Action - The semantics of an operator definition are described in a
semantic clause which explicitly specifies semantic functions or refers to a
separate semantic definition statement.

Semantic actions occur at two different levels of processing. First, there
are the assembler function semantics which perform statement level semantics,
i.e., symbol table definition and object code generation. Second, there are
syntacti c processi ng semantics which mani pul ate parameter tabl e variabl es and
operands, i.e., building operand lists, in order to effect precise assembler language
statement recognition. Additionally, decision making phrases and arithmetic
operations are available to the semantic clause pl'oviding flexibility over the
semantic definition. This consists of an IF-THEN-ELSE-END type of phrase
structure and arithmetic function keywords.

Action may be taken upon parameter table variables in the form of assignment
statements. This is an immediate translation semantic available for use
at the language defjner's discretion.

Examp1 e:
NLEVEL=NL[VEL+1

The as semb 1 er functi on semanti cs are represented by directive processing,
i.e., symbol table definitions, macro processing, literal pool processing and
object generation.

Examples:
CREATE SYMBOL(OPERAN0(2}} \
CREATEJJATA('IDATA' ,OPERANID(l) }
LITERAL(OPERAND(3}}

symbol table processing

literal pool processing

control section processing
SECTION('IiJATA' } , I
SECTION(OPERANID(l}}
CREATE MNEMONIC(OPERAND(l}} I mnemonic clefinithm,ie. ,macro
OBJ[CT(ADIDRESS _TYPE(LOCATION_COWNHR} ,FIELD(0-3 }=} object code generation

OPCOIDE,FIELID(4-7}=OPERAND(1 ,1} FIELIIl{8-15}
OPERAND(l ,2}}

22

I
\

, !

- ,

\

J
!

I
t.

l

r ,

The syntactic processing semantics perform actions upon the operands during
the assembler level statement recognition process.

Exampl e:
LISTF{OPERAND{l),OPERAND*2),O'65') build an operand list composed

of 3 elements

The decision making phrase provides the capability to have alternate paths
as well as establish the truth condition for the operator definition
recognition. Available to the IF phrase is the ability to test:

o operator kind, spelling or precedence
o operand value
U operand presence (optional testing)
o parameter table va 1 ue
o value of expressions

Exampl e:
IF{PRESENT{OPERAND{l)))

IF{SYMBOL_TYPE{OPERANO{l)).EQ.REGISTER),
CHK-REGl ,

ELSE,
CHK-REG2,

[ND,
LISTF{OPERAND{l),OP[RAND{2)),

END $

AL!,.DEF OjTJerator Semant;: Definition Example
INSTRUCTION 'MOV': OPERAND{l)=REG_REG,R[SI.ILT=DOUBLE,

SIEMANTIC=OPCODE=O' 01' ,BDL 16$
INFIX OPERATOR ',': RESUL T=REG REG

OPERAND{l) = REGISTER,
OPERAND(2) = REGISTER,
SEMANTIC=

SEMANTIC 'DBL16':

CHK-REGS,USTF,
END $
BIT LENGTH=16

23

OBJECT(ADDRESS_TYPE(lOCATION_COUNTER),FIElD(O-3)"OPCODE,
FI ElD(4-9) =OPERAND(1 ,1) ,
FIElD(lO-15)=OPERAND(l,2»$

An example of NSSC-l assembly language is contained in Appendix B.

3.1.1.2 Assembler level language lexical Meta language (AlllEX)

lexical Analysis

The lexical pr0cessing is performed by interpeting a meta definition of the
lexicon to perform token identification in a top-down fashion. The meta
language for defining the lexical processing is very similar to the meta
1 anguage of the MDAC Meta Transl ator and is processed by a preprocess0r step
subsequent to the AllDEF processing of the syntax meta definition.

The primary purpose of the lexical meta definition is to define the assembly
time token fetch and identification process.

It became clear that a parameterized standard lexical function is prohibitive
due to the context sensitive uniqueness found in assembler languages. This
has led to the necessity of providing.) specialized meta language to adequately
address the token fetch and identificati·on process.

It is the responsibil ity of the lexical process to fetch a token and iclentify
it as one of the bas k types:

NUMBER

VALUE

NAME

lABEL

CHAR STRING

a digit string token which can be
convertecl to a bi nary value.
a NUMBER token which has already been
converted to its bi nary rejDresentati0n.
a character string t0ken which has the
pr0jDerties 0f an assembler level mnem0nic
or symb0lic notati0n.
a NAME t0ken which has been iclentified
in the label fielcl.
del imited character stri ng token

24

SPECIAL a token composed of special characters
only as defined by meta language.

SYMBOL a token which cannot be otherwize
identified as a NUMBER,NAME,CHAR_STRING
or SPECIAL.

The lexical meta definition provides a top-down, recursive descent, goal
oriented technique for token fetch and identification.

The meta definition consists of productions developed to guide the lexical
process by defining the following lexical situations:

o what is a NUMBER token
o what is a NAME token
o what'j s a LABEL token
o what is a CHAR STRING token
0 what is a special character
0 what is a subfield s elDa,ra tor
0 what is parSe order for token identification
0 what is the end of a statement field condition
0 what is the end of statement condition

The lexical meta language is a m0dified Backus Naur Format (BNF) notation
which will provide the basic lDarse funcHons:

o

o

o

o

o

exclusive cursor control
truth/false lDath prediction
reoccurance processing
recursive IDrocessing
litrral string prediction

The extended lexical parse functions include:
o

o

built-in primitive definitions
e.g. LETTER,lDIGIT,CHARACTER,etc.

parse state conditional testing
The ALLI'lEF PARAMETER table and Duilt-in global variables will
De available for aSSignment and conditional testing (e.g., Cl!IRSOR,

CURSOR_CHAR, FIELDS ,etc.)

25

o token construction and assigning the initial identity (e.g., NUMBER,
NAME, etc.)

While there is a distinct separation of the lexical and syntactic parse
functions, there is a common source of the overall statement recognition
state. Through the ALLDEF parameter table and other built-in global
variables, specia1izecl parse functions can be controlled, i.e., label field
identification, end of stateme .. t detection, assembler processing modes
for special lexical and syntactic clefinitions (macro ancl text functions).

Example:

<TOKEN>:= <NUMBER>II<NAME>II<SPECIAL>II<SYMBOL>$
<NUMBER>:= (IF'O',BASE=81IBASE=10),

<DIGITSTRING> ,
(IF BASE EQ 8, TOKEN_VALUE=VALUE OF
OCTAL<DIGITSTRING>//lOKEN_VALUE=
VALUE OF <DIGITSTRING» ,TOKEN_TYPE=VALUE,
I F NOT LETTER $

<DTGITSTRING>:= 1 to MANY DIGITS $
<~jAME>:= LETTER, 0 to MANY (LETTERIIDIGIT),

TOKEN_TYPE=NAME$
<SPECIAL> :=(', 'I I'.' I I '+'1 I '-' II '*' I 1'/') ,TOKEN_TYPE=SPECIAL$
<SYMBOL>:= 1 TO MANY (IF NOT SPACE ,NOT < SPECIAL>, CHARACTER), TOKEN_TYPE

=SYMBOL$

3.1.1.3 ALLDEF Meta Language Processor
A meta 1 anguage processor was clevelopecl to process syntactic meta clefi ni tions
into the ALLDEF clictionary composed of the syntax anGi semantic tables. The
ALLOEF processor functions as a stancl-a1one preprocessor to the Meta Assembler.
The ALLD[F cli cti onary fil e is preserved as an input fil e to the general i zecl
pa'rser functi on 0f the Meta Assembler Which e1 tmi nates the need to execute
the ALL DE!' processor for each cross assembly.

The design of the ALLDEF processor is based on the OPALDEF processor developed
by MQAC for the U. S. Army, as is the ALLDEF meta 1 anguage des i gn based upon
the OPALDEF meta 1 anguage (see Figure 7).

26

r

r
I

MODIFIED BNF I DESCRIPTION
OF LEXICAL , .
SCANNEP.

I
I
I
I
I
I

ALLOEF I DESCRIPTION
OF ASSEMBLER I

SYMBOLS AND
,.

THEIR MEANING I
L

Figure 7. ALLDEF Processor

ALLDEF
PROCESSOR

--- --, ,
!

WI LEXICAL
PROCESSOR

l- I
I

I
I
I
I
I

'- I
SYMBOL c....,

,
PROCESSOR

I
I

- -- ---- ...J

27

I
I
(

I
I
I

I
I
I
I
I
I
I
I

I

ASSEMBLER
DICTIONARY _. --1

IN:rERPRETlVE
TABLE OF
LEXICAL
SYNTAX

r- - - - -- --
INTERPRETIVE
TABLE OF
LEXICAL
SEMANTICS

DICTIONARY ENTRY
FOR EACH SYMBOL
ALONG WITH TH E
ASSOCIATED PARSING

1---- -- -. -
INFORMATION
SEMANTIC DIRECTIVES
ASSOCIATED WITH
EACH SYMBOL

I
I
I
I
I
I
I
I
I
I

I
I
I L _____ ~

MODIFIED BNF
DESCRIPTION
OF LEXICAL
SCANNEP.

ALLOEF
DESCRIPTION
OF ASSEMBLER
SYMBOLS AND
THEIR MEANING

Figure 7. ALLDEF Processor

ALLDEF
PROCESSOR

r-- - --, ,
I !
I _ ..JI LEXICAL

PROCESSOR , .. - I
I I
I

T I
I I

I I I
I u! I
1 SYMBOL n; TCP PROCESSOR

I
L - -- __ ...J

27

I
I
I
I
I

T"

I
I
I
I
I
I
I.
,~

I

ASSEMBLER
DICTIONARY

---1

IN:rERPRETlVE
TABLE OF
LEXICAL
SYNTAX

~- - - - -- --
INTERPRETIVE
TABLE OF
LEXICAL
SEMANTICS

DICTIONARY ENTRY
FOR EACH SYMBOL
ALONG WITH TH E
ASSOCIATED PARSING

'---- -- -. -
INFORMATION
SEMANTIC DIRECTIVES
ASSOCIATED WITH
EACH SYMBOL

I
I
I
I
I
I
I
I
I
I

I
I
I L _____ ~

3.1.1.4 ALLLEX Meta Language Processor
A meta language processor was also developed to process lexical meta definitions
into an existing :'\LLDEF dictionary. The ALLLEX processor functions as a
post processor to the ALLDEF processor and a preprocessor to the Meta Assembler.

The design of the ALLLEX processor is based on the MDAC Meta Translator.

3.1.1.5 Generalized Parser (ALTRAN)
The ALTRAN processor will be developed as an integral m0du1e 0f the Meta
Assembler. It provides the alternative first pass pr0cessing of the Meta Assembler
by translating assembler language S0urce statements int0 the Meta Assemble.r
intermediate languafje structures and performing assen;Jler directive semantics
via the ALLDEF dictionary (see Figure 8).

ALLTRAN Pllrsing
The parsing technique emp10yed in ALTRAN is a precedence analysis scheme
util i zi ng a 1 eft-to-ri fjht scan. A reducti on of an 0pera tor and its 0perands
to the defined result is made when another 0perator is rec0gnized of a 10wer
or e~uivalent precedence value. Any semantic ass0ciated with the reduced
operator is als0 effected at that time. The assembler directive semantics,
i.e., symbol table manipulation and control secti0n activation, are perf0rmed
immediatelY by built-in sUPP0rt routines. The object generation semantics
build 11 list of intermediate language elements on the intermediate language file.
During the parsinfj process of ALTRAN, the operators aml operands are placed
0n stacks for evaluati0n. The bindinfj of operands to o.perators is perfclJrmed
0n the basis 0f the ALLDEF operator definitions. The proper 0perat0r
definition is detected by matching the available operands with the ALLDEF
0perator definition which permits oplerator reducUon to ocwr. The
is that multil~le definitIons 0f the same operator are permitted.

3.2 META TRANSLATOR IMPLEMENTATION
3.2.1 Meta Translator Descripti('jn

impl icaUon

The Meta Translator is a propreitary translator writing system (TWS) developed
at MDAC-W that is a very effective t00l for t/;}e generation of languafje
translators (see Fifjure 9). It is machine independent in the class of medium
'and 1 arge seale computers that have an ASA FORTRAN IV compil er.

28

I
1 · ~

-i
I .-
I

· f

· ..

.- 1

(DICTIONARY

-GPt:RATOR
STACK

J .'----
LEXICAL
SCANNER

+
CLASSIFIER

+
PARSER

I I

"

:

OPERAND
STACK

.. REDUCER

rT ~ ,

SEMANTIC
STACK

Figure 8, ALLTRAN Processor

29

BUILT IN
SEM.:"NTJC FUNCTIONS

-+I. I

-+!: I
..... 1 I

-+r I

.J
DICTIONARY

,

-GPt:RATOR
STACK

-,

.-----"
LEXICAL
SCANNER

i
CLASSIFIER

l
PARSER

f r

:

OPERAND
STACK

,. REDUCER

T i'

,

SEMANTIC
STACK

Figure 8. ALLTRAN Processor

29

BUILT IN
SEM.:"NTJC FUNCTIONS

r+!. I

~ I
~I I

-+j I

w
o

AUTOMATED LANGUAGE
PARSER DEVELOPMENT

METRAN
(HOST FORTRAN)

LANGUAGE
DESCRIPTION
(IN METALANGUAGE)

I
'\
~

MDAC LANGUAGE DES IGNER

.~--.

I
I

METRAN USAGE
GENERAL AP'PUCA nON

L ANGUAGE PARSER USAGE

1,

LANGUAGE
......
? PARSER

~HOST FORTRAN)

20332

USER PROGRAMS
(I N DESCR I BED
LANGUAGE)
-

PLfI
COBOL
FORTRAN .

.

TRANSLATED
- .. OUTPUT

MODIFIED SOURCE
SYMBOLIC ASSEMBLY CODE

Fi~u,re 9. t1eta TraRslatar General Applkathm

-'
,--

w
o

AUTOMATED LANGUAGE
PARSER DEVELOPMENT

METRAN
(HOST FORTRAN)

LANGUAGE
DESCRIPTION
(IN METALANGUAGE)

I " ~
MDAC LANGUAGE DES IGNER

METRAN USAGE
GENERAL AP'PUCA nON

LANGUAGE PARSER USAGE

>
LANGUAGE
PARSER
~HOST FORTRAN)

20332

USER PROGRAMS
(I N DESCR I BED
LANGUAGE)

'---------'

PLfI
COBOL
FORTRAN

TRANSLATED
OUTPUT

MODIFIED SOURCE
SYMBOLIC ASSEMBLY CODE

Fi~u,re 9. t1eta TraRslatar General Applkathm

• I • ; f -. 1

l
Every translator consists of a parser to recognize syntax. a procedure
executor and a set of subroutines to perform semantic functions, a number
of support routines that perform common functions, and a control driver to
act as an executive, controlling the flow of operations.

The parser and procedure executor are generated by the Meta Translator
since they are language-dependent. The semantic procedures may invoke built
in or user supplied subroutines. The support routines are not generated
but are provided as an adjunct to the generated code. The control driver
is a short main program which initiates translation, and is written by the
language definer in FORTRAN IV.

The language definition is written in the meta language by the language definer
(see Figure 10). It is this definition that is translatea into the parser
and procedure executor by the Meta Transl ator. A supporti ng BLOCK DATA
subroutine is also generated for initialization of syntax and semantic
parameters.

3.2.2 Meta Translator Appllication
The Meta Translator was used to originally plroduce the Meta Assembler syntax
proceSSing subroutines and is integral to the impllementation of the ALLDEF
and ALL TRAN processors. Thi s techni !que uti] i zes a meta 1 angua!!Je for defi ni ng
the syntax plrocessi ng a 1 !!Jorithms and greatly eases impl ementati on and ma i ntenance
functions.

To provide maintenance capamility to NASA, the Meta Translator was installed
at MSFC and the Meta Assemmler meta language source was a deliverable item.

3.3 GENERALIZED LINKAGE EDITOR

3.3.1 Genera 1 Overv i,ew
The Generalizea Lil'lkage Eaitor (GLE) is a multi-functioned utility cJesigned
to aid the Meta Assembler user in the creation and maintenance of software
sys tems bui It from Meta Assembler forma tted DIDj ect modu 1 es .

31

20834

FORTRAN TRANSLATION EXAMPLE

SDECLARA nVENAME . =SET CASE I • fODETERM'INiE DECLARATIVE TYPE 0'
('DIMENSION'. 'I'NTEGER',
'RiEAL', 'COMMON', 'DATA',
'EOUIVALENCE', 'DOUBLE',
'LOGICAL', 'COMPLEX',
'IMPLICIT').

SDODEC'LARATIVE . .=CASE I OF fO PARSE THE DECLARATIVE 0' .
w (SDIM'ENSION,SI'NTEGER, '" SREAL.SCOMMON,SDA TA,

SEOUIVALENCE,SDOUBLE,
SLOGICAL,SCOMPLEX,
$IMPLlCIT).

$DlMENSION .cTEXT/SDECLARATIVENAME: I, /" OUTPUT 'DIMENSION' 0'
LIST OF HiJ(!)(!) '" PARSE THE ARRAY LIST

.,
BEGIN

$NAME, ,. PARSE AND OUTPUT ARRAY NAME "' TEXT/SNAMEI,
SFINDDIMENSION, ,. PARSE AND OUTPUT PARENS AND "' $COMMA ,. SUBSCRIPTS. OUTPUT A COMMA. .,

END.
TEXT(;EJECT).. ,. PRINT AND PUNCH OUTPUT IrllAGE .,

Figtl,re 10. Meta Tra'ns 1 ator Exampl e

20834

FORTRAN TRANSLATION EXAMPLE

SDECLARA nVENAME . =SET CASE I • fODETERM'INiE DECLARATIVE TYPE 0'
('DIMENSION'. 'I'NTEGER',
'RiEAL', 'COMMON', 'DATA',
'EOUIVALENCE', 'DOUBLE',
'LOGICAL', 'COMPLEX',
'IMPLICIT').

SDODEC'LARATIVE .=CASE I OF fO PARSE THE DECLARATIVE 0' .
w (SDIM'ENSION,SI'NTEGER, '" SREAL.SCOMMON,SDA TA,

SEOUIVALENCE,SDOUBLE,
SLOGICAL,SCOMPLEX,
$IMPLlCIT).

$DlMENSION .cTEXT/SDECLARATIVENAME: I, I" OUTPUT 'DIMENSION' 0'
LIST OF HiJ(!)(!) ," PARSE THE ARRAY LIST .,

BEGIN
$NAME, ,. PARSE AND OUTPUT ARRAY NAME "' TEXT/SNAMEI,
SFINDDIMENSION, ,. PARSE AND OUTPUT PARENS AND "' $COMMA ,. SUBSCRIPTS. OUTPUT A COMMA. .,

END.
TEXT(;EJECT).. ,. PRINT AND PUNCH OUTPUT IrllAGE .,

Figtl,re 10. Meta Tra'ns 1 ator Exampl e

'i , .
Functionally, the GlE provides three basic services: creation and maintenance
of libraries of ("lbject modules, binding of separately assembled modules to
form a generalized load module. and cataloging of object modules, libraries
and load modules to gather descriptive information.

3.3.1.1 Library Creation ancl Maintenance
This service provided by the GlE gives the Meta Assembler user the capability
to create a new user/system library directly from the output of the Meta
Assembler. Once a library has been created, it may then be updated using
Meta Assembler output and the old library to create a new library.

3.3.1.2 Binding of Modules
This is the primary service of the GlE. Its function is to bind separately
assembled modules. developed for a common target machine and residing on
user and/or system libraries, into a generalized load module. The generalized
load moclule is then available for transformation into the structure re!!juired
by the specific target computer loacler. A wicle range of control is given to
the user, through the use of directives, for determining which moclules and
in what order wi 11 a.ppear in the resultant loacl moclul e.

3.3.1.3 Cata10ging of Standard Meta Assembler System Outputs
This capalilility gives the user a t00l to clisplay descriptive informaUon
about each 0f the three r~eta Assemlill er syster.l outputs: object moclul es,
library 0f object modules, ancl loacl m0clules.

The available information includes: type of output, m0du1e name, moclule
creation clate and Hme, medule versi0n, target c0mputer.

3.3.2 Flow Through The GeAerg 1 izecl Li nkage Eclitor
The flow 0f data thr0ugh the GlE is contr011ecl entirely lily user suppliecl
clirectives which represeAt: inv0cati0A of a basic service, tasks fer a
basic service tQ perform, ancl terminati0n of a basic service.

It is expected that a c0uple of basic f10w paths will be performed again
ancl again. With this in mincl, the followin,!) clescript.ions will outlinE these
two Iilas i c flews (a macro flowchad appears in Fi gure 11).

33

TARGETCOMPUTER
ASSEMBLY
LANGUAGE .-

META
ASSEMBLER

'"
"'- .-'

...... OBJECTA ---
~

OBJECTB
.-'

t-.... • • e·

OBJECTY
~. ...;

- - - - OBJECTZ ~- LIBRARY
DIRECTIVES ~

LIBRARY
eREATION AND ".. :: MAINl'ENANCE "-FUNCTION EXISTING

SYSTEM
OR

C • USER

"- LIBRARY
~

NEW OR
UPDAtED
SYStEM
OR USER
LIBRARY

....... --
- - - - - -- - - -

t::... t-... ~

• •
EXISTING STANDARD
USER OR LINKAGE LOAD
SYSTEM

EDITOR
MOOULE

LIBRARY

\..... .-' "- ...;

ASSEMBLY

- -- -

• ERROR MESSAGES
AND CATALOG
OF RESULTAN'T
LIBRARY -

LIBRARY PROCESSING

NOl'E: CATALOGING M AY BE
OR DONE BEFORE

AFl'ER ... NY STE P

-- - --
LINK EDITING

ERROR MESSAGES
AND . LINK MAP , -"-

~i

"IF TWO LIBRARIES ARE MAOE AVAILABLE TO "HE LINKAGE EDI1'OR
l'HEN THEY MUST NOT BE OF THE SAME TYPE.

Figu ... 11. Flow Through the Generalized Linkage Editor

34

3.3.2.1 Creation of a System Library for Genet'a1 Use

In a production atmosphere, there usually exists a set of object modules
that perform widely needed utility functions: input/output, mathematical
functions, date and time, etc. Once these functions are coded and tested
they should be put into a library that is available to all users. The GLE's
library creation and maintenance function will create a system
object modules uSing the assembled utility functions as input.

1 i brary of
This

library of utility functions is now in a form that may be used by the linkage
editor service to satisfy references to them.

l~hen changes to the system 1 ibrary are necessary, the 1 ibrary service has
capabilities to update the old system library against newly assembled modules,

using directives, to create a new system library.

3.3.2.2 Creation of a User Library and Load Module Generation

The Meta Assembl er user wi 11 create a set of object modul es to lDerform a
particular task. As new tasks are required or old tasks become unnecessary,
the set of object m0dules will change to refl ect the current requirements.

The GLE's library creation and maintenance function (LCMF) can model such a
se~uence. Given an initial set of object modules, the LCMF can create a
user library of object modules. As changes are made, the LCMF can make the

requ i red changes to the user 1 i brary .

Once a library is Duilt, the linkage editor service may then be invoked.

The linkage editor service, using a user library and/or system library,

will create a load module.

35

3.3.3 Use of the Generalized Linkage Editor

Each service of the GLE is accessed by user directives. These directives

control service invocation, service termination and service tasks to

be performed.

All directives are of the general format described below.

3.3.3.1 Directive Coding Conventions

Notation Used to Describe Directives

The descriptive notation used to define the syntax of the ;,nput directives

makes use of upper and lower case letters and the characters left bracket ([)

right bracket (]), periods(...), and vertical bar (I).

All keywords and other explicitly required symbols appear as upper-case or

spe~ial characters. An implicit operand appears as a lower-case name which

is described in a narrative subsequent to its usage.

An optional operand is shown enclosed within brackets([J). Occasionally,

more than one level of optional ity is required and is described in terms

of brackets within brackets:

MAP
[ON 1
OFF

; describes MAP; or

MAP ON; or

MAP OFF:

Choos i ng one of ali s t of operands is denoted by 1 is ti ng the operands

vertically and encloSing them with vertical bars (I I):

36

ENTRY . module
(ISymb011)

addr

describes ENTRY module; or
ENTRY (symbol); or
ENTRY (addr);

Specifying a repetitive col1~ction of identical o'Jerands is described by
following the operand with a triple dot (...):

name [,name ...] describes name or

Format of Directives

name, name or
name, ... ,name

All GLE directives are formed according to the following rules and
restrictions:

o All directives Ir! free-form using columns 1-72
o Blanks are ignored and are used for readability only
o Each directive is terminated by a semicolon
o All text between the strings /* and */ is ignored, this string may

not contain intervening blanks.
o More than one di rective may appear on a card
o Directives may be contained on more than one card

The following example illustrates the preceding points:

72 73 $0
LIBRARY DIR 001
LIBRARY SERVICE FUNCTION */; DIR 002
BEFORE A,B; /*PUT B BEFORE A, AND */ A DrR 003
FTER C/*PUT / ,D; [ND; OI R 004
LWKEDIT; INCLUDE A:SLI8(4000) OrR 005

,51 (1),52(2);MAPON;CND;CATALOG ;IR 006
;FILES-8,ULIB /*,*/,SLIB; /DIR 007
CATALOG END/ENO; OIR 00$

37

3.3.3.2 List of Generalized Linkage Editor Directives
The directives listed below give a quick summary of capabil "ties for each
basic service provided by the GLE.

Library Creation and Maintenance Function Directives
o LIBRARY Invoke Library Function

: 1

1
• l

o CREATE
o NAME

Build New Library from Meta Assembler Output On /
Specify name of library

o KIND
o BEFORE
o AFTER
o DELETE
o

o

IGNORE
R[NAME

o NO AIJTOREP

o REPLACE
o END

Linkage Editor lDirec;tives
o LINKEDH
o FILES
o RELOCATION
o MODE
o INCLUDE

Specify kind of library
Position for a new module
Position for a neW module
Delete modules from old library
Ignore new module
Give module t,'ew name
Only processes new modules named on before,
after and replace directives
Allows select replacement of modules
Terminate library function

Invoke LINKAGE EDITOR
Indicates file to be linked
Specify address fields
Force type of load module

, ..

I
o EXCLUDE

Force inclusi0n of a m0dule from a library
F0rce exclusi0n of a m0dule fr0m l0ad m0dule
F0rce exclusi'0n 0f entire user library

.. i o NOULIB
o NOSLIS
o RENAME
o ENTRY
o NAME
o MAP
o GSECT

o BOUNID
o END

38

F0rce exclusion 0f entire system nbra,ry
Cause external reference name change
Specify executio,n sta,rt address
Name l0ad module
Turn link map listing 0n or off
Cause assembly time contr0l sections to
be loaded c0nsecutively
Determine module bounding
Terminate linkage edit0r functi0n

, ,

Catalog Dil"ectivE's

CATALOG Invoke catalog service

<,

FJ LES

END

Spe~ify which filE's are to be cataloged

Terminate catalog function

3.3.3 J Use of the Library Creation and Maintenance Function

An important function of the GLE is to be able to create and maintain two

types of libl"al"ies; system and user, The purpose of a library in the GLE

system is to provide the user \~ith a utility with which to manipulate

assembled object modules and to pl"ovide the linkage editor with a set of

object modules from whicb extel"nal references may be satisfied.

Even though thel"" are t\~O distinct types of libraries, the only real

difference bet\~een them is in the way they al"e usecl by the 1 inkage editor.

Structura lly, a sys ten I and USel" 1 ibrary are equ iva 1 ent.

~ll1des of Use

The library Cl"eation and maintenance function (LCMF) operates in t\~O modes;

creation and maintenance"

Creation Node - TIl(' creation mode of the LCMF causes the object modules output

from the meta assembler to be fonnatted into a standard librar.Y (see Figure 12).

DUI"ing librar.Y cl"eation, the follO\~ing l"estl"ictions must be kept in mind:
o

o

o

o

A libral"y may not contain modules witll duplicate names

The CREATE directive is mandatory and must be the second directive

NAME,KIND and PASSlvORD are the only othel" directives allowed

The libral"y will contain the modules in the ol"der in which they

are encountel"ed.

~laintenance Mode - If the CREATE clil"ective is not the second directive

encountel"ed then the illode is assumed to be the mai ntenance mode. Pl"ocessing

of new modules is hanclled by t\~O basic pl"ocedures: implied autolllatic

l"eplacement. and directeG replacement by use of directives.

If no pl"ocessing Gil"ectives al"e given, then t.he LCMF Cl"eates a ne!< libl"al"Y

hy I'leplacing the mDdules of the old library witl1moctules tllat have t.he same

39

TYPE 0F FILE· LIBRARY

NAME 0F LIBRARY

KIND 0F LIBRARY· USER/SYSTEM

CREATI0N DA1'E I CREA Tl0N TIME

NUMBER 0F M0DULES IN LIBRARY

M0DULE NAME CF FIRST M0DULE
-, PTR 1'0 _

M0DULE INF0R

,
,

M0DULE NAME 0F LAST M0DULE
TPTAT0 _

M0eULEINF0

FIRSTM0eULE INF0RMATI0N lesC, elCTIONARIES, PTR 1'0 0s:/ECT1'EXTl

.

, .

LAST MOeULE INF0RMA1'ION 10SC, e!CTIONARIES, PTA 1'0 0BJECT 1'EXT)

..

Figure 12. Standard Library Fonnat

40

j.

.....
I •

>
TEXT
0F
OBJECT
M0eULES
IWI1'HOUT
esc ANe
eICTI0NARIES)

.'

• j

• I

.1

i
, .

[

I

TYPE 0F FILE· LIBRARY

NAME 0F LIBRARY

KIND 0F LIBRARY· USER/SYSTEM

CREATI0N DA1'E I CREA Tl0N TIME

NUMBER 0F M0DULES IN LIBRARY

M0DULE NAME CF FIRST M0DULE
/PTRT0 __

M0DULE INF0R

,
,

M0DULE NAME 0F LAST M0DULE I PTA 1'0 •
M0eULEINF0

FIRSTM0eULE INF0RMATI0N lesC, elCTIONARIES, PTR 1'0 0s:/ECT1'EXTl

.

, .

LAST MOeULE INF0RMA1'ION 10SC, e!CTIONARIES, PTA 1'0 0BJECT 1'EXT)

..

Figure 12. Standard Library Fonnat

40

:.-

>
TEXT
0F
OBJECT
M0eULES
IWI1'HOUT
esc ANe
eICTI0NARIES)

.'

• j

• I

.1

i
, .

[

I

name as output from the Meta Assembler. Any new modules will be written

at the end of the new library.

If processing directives are given then transcription of modules to the new

library will take place according to the directives.

A functional flowchart of the LCMF appearS in Figure 13.

Detailed Description of LCMF Directives

FORMAT

LIBRARY;

DESCRIPTION

Thi s d1r'ecti ve must bJe I'lresent as the fi rst di rective to invoke the LCMF.

FORMAT

CREATE;

DESCRIPTION

This directive must be the second directive encountered in order to

cause a new libJra,ry to be created, using Meta Assembler outl'lut only.

If CREATE is not the second directive encountered then it is assumed

that an olC'l user or system 1 ibrary is available to update against.

FORt·tl!:r

NAME=libJname;

DESCRIPTION

This directive uses the symbol string "libname" to !!live the library a

flame. If this directive is absent for a creation mode then a default

name of "LIBRARYl" is given to the 1 ibJra,ry.

An ul'ldated libJrary retains its original name unless changed by the NAME

directive.

FORMAT

KIND = USER I
SYSTEM.

41

LCMF

PUT DECODED
INFORMA ,ION
IN TASK
TABLE

MODE'MAIN,ENANGE

FORM LIBRARY
HEADER FROM
TASK TABLE

YES

MODE - CREA 1'E

GET OLD
lIBRARY
HEADER

CREATE
LIBRARY
USING TASK
TABLE

GET OBJECT
MODULE
FROM MESA
ASSEMBLER

DECODE
NAME OF
MOOULE

SAVE PER,I
NENT INFOR
MATION FOR
LIBRARY HEADER
IN TASK TABLE

SKIP TO
ENOOF
MODULE

PHOCESS OLD
HEADER AGAINST
TASK TABLE

GIVE SUMMARY
OF LIBRARY
CONTENTS

Figure 13. FunctionaJ Flowchart For the Ubrary Creation a:1d Maintenance Function

42

WARN
USER AND
FLAG MODULE
FOR NON
INCLUSION

STOP

••

i ..

,
-I
•

DESCRIPTION

This directive provides the library with a kind attribute. If this

directive is absent for a creation molile then a default kind of "USER"

is given to the library. An updated library will retain its original

kind unless changed by the KIND directive.

FDR~1AT

NOAUTOREP;

DESCRIPTION

This directive <!Ieclares that the LCMF function will not replace all

modules from the old library with modules from the Meta Assembler havin§

identical names, but selectively replaced modules according to REPLACE,

BEFORE and AFTER directives.

FORMAT

BEFORE oldmod, new mod l [. neW modi"'];

DESCRIPTION

This dil'ective causes the LCMF to insert the "newmocl" modules from the

Meta AssemlDler befo;'e the specified "old mod" for transcription to the

new libral'Y. This caouSeS automatic deletion of old modules having the

same names from the old lilDrary.

FORMAT

AFTER 01 dmod, nel'imod 1 [, newmod i ...] ;

DESCRIPTION

This directive causes the LCMF to insert the "newmod" modl11es frOIll

the Meta Assembler after the specified "oldmod" on the old library for

tramcription to the new library. Insertion of this type causes

automatic deletion of old modules having the same names frolll the old

1 i brary.

FORMAT

PASSWORD=pas5word;

DESCRIPTION

This direC1.ive specifies a Jilassword for the lilDrary. If this directive

is absent then there is no default password given to the library. An

updated libra,ry will retain its original pass~lord unless changed by the

PASSWORD directive. 43

DESCRIPTION

This directive provides the library with a kind attribute. If this

directive is absent for a creation molile then a default kind of "USER"

is given to the library. An updated library will retain its original

kind unless changed by the KIND directive.

FDR~1AT

NOAUTOREP;

DESCRIPTION

This directive <!Ieclares that the LCMF function will not replace all

modules from the old library with modules from the Meta Assembler havin§

identical names, but selectively replaced modules according to REPLACE,

BEFORE and AFTER directives.

FORMAT

BEFORE oldmod, new mod l [. neW modi"'];

DESCRIPTION

This dil'ective causes the LCMF to insert the "newmocl" modules from the

Meta AssemlDler befo;'e the specified "old mod" for transcription to the

new libral'Y. This caouSeS automatic deletion of old modules having the

same names from the old lilDrary.

FORMAT

AFTER 01 dmod, nel'imod 1 [, newmod i ...] ;

DESCRIPTION

This directive causes the LCMF to insert the "newmod" modl11es frOIll

the Meta Assembler after the specified "oldmod" on the old library for

tramcription to the new library. Insertion of this type causes

automatic deletion of old modules having the same names frolll the old

1 i brary.

FORMAT

PASSWORD=pas5word;

DESCRIPTION

This direC1.ive specifies a Jilassword for the lilDrary.

is absent then there is no defaul t password given to

If this directive

the

updated libra,ry will retain its original pass~lord unless

1 i brary. An

changed by til e

PASSWORD directive. 43

FORMAT

DELETE oldmod2 [,oldmodi ",];
DES CR I PTI ON
This directive causes the LCMF to not copy the "oldmod" modules from the
old library to the new library,
FORMAT

IGNORE new mod l [,newmodi ",];
DESCRIPTION
This directive causes the LCMF to ignore the "neM11od" m0dules from the
meta assembler during processing,
FORMAT

RENAME oldnamel = newnamel [,oldname(newnamei",J;
DESCRIPTION
This directive assigns a new name to a module that will appear in the
new 1 ibrary, If any other directives refer to this m0dule, the old name
should still be used.
FORMAT

REPLACE neM11odl [,newmodi , .•];
DESeRI PTI ON
This directive is meaningful onl~, during the effect of a NOAUTOREP directive.
It causes the "neM11od" modules to replace modules on the old libra,ry
with the same names on the new library.
FORMAT

END;

DESCRIPTION
This directive causes termination of directive reading for the LCMF
ancl initiates processing of the directives,

Exampl es of LCMF Wse

For the following examples assume the existance of two Meta Assembler generated
files, A and B, of object modules containing moclules MA, MS, MC, MID and
modules MD, MA. OX, OY, OZ respectively.

44

• J

,
'" f

i
L

Example 1. Creation of a system library LIBl from file of modules B.
Di recti ves; LIBRARY;

CREATE;
NAME=LIB1; KIND=SYSTEM;
END;

System Library LIBl contains MD, MA, OX, OY,OZ.

Example 2. Automatic update of LIBl using file A to create user
library LIB2.
Directives; LIBRARY; KIND=USER, NAME=LIB2; END;
User Library LIB2 contai ns;

MD from A
MA from A
OX from LIB1
OY from LIB1
OZ from LIB1
MB from A
MC from A

[xample 3. Restore MA from B on LIB2.
Directives; LIBRARY;

NOAUTOREP;
REPLACE MA;
END;

User Li mrary LIB2 contains;

or

MD from LIB2

MA from B
OX from LIB2
OY from LIB2
OZ from LIB2
MB from LIB2
MC from LIB2

45

LIBRARY;
IGNORE MD;OX,OY,OZ;
END;

--"~

3.3.3.4 Use of LINKAGE EDITOR Function

The most important service provided by the GLE is the LINKAGE EDITOR (LE).

The LE service provides the i~eta Assembl er user with the means to generate

a standard format load module (see !'"igure 14) by binding separately assembled

modules that reside in user and/or system libraries.

Since the LE must handle a variety of linkage editing re:quirements. a set

of directives has been provided to give the user direct control over much of

the load module generation process. The basic control features are:
o specification of execution start address

o order of module appearance in load module

o link map generation

Data !'"low through the LINKAGE EDlr.OR

The LE expects as its primary inputs a user 1 ibrary of object modules from

which to form a basis for a load mOdule. and an optional system library

from which to satisfy external references. The LE then reads and decodes

the user directives. if any.

A "task" table is initialized with the decoded directives. Pertinent

information includes: module order and start addresses supplied by "INCLl:ID["

directives. library to find module. and modules to exclude from the load

module. If no service directives have been input then the "task" table is

initialized by using the entire user library.

The "task" table is then processed to determine all the modules that will appear

in the load module. This processing includes sea,rching for definitions to

a'ny undefi ned references.

Once all the modules to be linked have been determined. addresses for all modules

a'nd control sections can be assigned. This c0mpletes filling in the "task"

ta'ble. If a link ma'p has been requested then the "task" table is used to

create the map.

All that remains to be done is to gene~'ate the standard load module. First.

the header block is written. The user and/or the system libraries are then

46

:1

3.3.3.4 Use of LINKAGE EDITOR Function

The most important service provided by the GLE is the LINKAGE EDITOR (LE).

The LE service provides the i~eta Assembl er user with the means to generate

a standard format load module (see !'"igure 14) by binding separately assembled

modules that reside in user and/or system libraries.

Since the LE must handle a variety of linkage editing re:quirements. a set

of directives has been provided to give the user direct control over much of

the load module generation process. The basic control features are:
o specification of execution start address

o order of module appearance in load module

o link map generation

Data !'"low through the LINKAGE EDlr.OR

The LE expects as its primary inputs a user 1 ibrary of object modules from

which to form a basis for a load mOdule. and an optional system library

from which to satisfy external references. The LE then reads and decodes

the user directives. if any.

A "task" table is initialized with the decoded directives. Pertinent

information includes: module order and start addresses supplied by "INCLl:ID["

directives. library to find module. and modules to exclude from the load

module. If no service directives have been input then the "task" table is

initialized by using the entire user library.

The "task" table is then processed to determine all the modules that will appear

in the load module. This processing includes sea,rching for definitions to

a'ny undefi ned references.

Once all the modules to be linked have been determined. addresses for all modules

a'nd control sections can be assigned. This c0mpletes filling in the "task"

ta'ble. If a link ma'p has been requested then the "task" table is used to

create the map.

All that remains to be done is to gene~'ate the standard load module. First.

the header block is written. The user and/or the system libraries are then

46

:1

I

FILE TYPE - LOAD MOOULE I ERRORS-YIN

LOAD MODULE NAME

CREATION DATE I CREATION TIME

LOA" MODULE KIN" - RELIABS

TARGET COMPUTER

LOAD MODULE LENGTH

EXECUTION START ADDRESS

END OF MODULE' YIN I LENGTH OF RECORO

LOCATION COUNTER FOR FOLLOWING CODE

RELOCATiON BIT MAP· YIN I LENGTi' OF MAP

RELOCATION BIT MAP

· ·
TEXT BIT STR I NGS

· · ·
•

•

·

Figure 14. Standard Load Module Format

47

HEADER

BITMAP

BIT STRINGS

CODE BLOCK
FOR CONSECUTIVE
ADDRESS
LOCATIONS

read sequentially. As a new module is read, it is either skipped or processed.
All the information necessary to do address location is available from the
"task" table. When the libraries have both been processed the linkage edition
is complete. Figure 15 contains a functional flowchart of the LINKAGE EDITOR.

48

r
t
I
I
•

YES

Figure 15,

LINKAGE EDITOR

NO
DECODE DIR
PLACE MODULE
INFO IN TASK
TABLE

FILL TASK TABLE
wrrn ALL MODULE

?, NAMES FROM

GET
TASK TABLE
ENTRY (MODULE
NAMEI

GET "DEF"
TYPE SYMBOL
FROM MODULE

YES

GET "REF"
TYPE SYMBOL
FROM MODULE

END OF
"REFS"

NO

NO

USER LIBRARY.

NO
ERROR

ERROR

NO
DUPLICATE

NO

NEW
YES

"REF"

ASSIGN STARTING
ADDRESSES BASED
ON TASK TABLE

GENERATE
LINK
MAP

POSITION TO
READ NEXT
MODULE TEXT

,.;iJT IN
TASK TABLE

PUT REF IN
TASK TABLE
INDICATING
UNSATISFIED

Fur.ctional Flo...,h." for the LINKAGE EmlTOR -

49

GET NAME
OF REFERENCE

IS IT DEFINED
IN USER/SYSTEM

LIBRARY

NO

ERROR

PROCESS "DEF'S"
AND "REF'S" FOR I---I~
THIS MODULE

YES

LINKAGE EDITOR

NO
DECODE DIR
PLACE MODULE
INFO IN TASK
TABLE

FILL TASK TABLE
NO wrrn ALL MODULE

NAMES FROM
USER LIBRARY.

GET
TASK TABLE
ENTRY (MODULE
NAMEI

END GF
TASK TABLE

NO
ERROR

YES

GET "DEF"
TYPE SYMBOL ERROR
FROM MODULE

NO NO
>-~~~ DUPLICATE

GET "REF"
TYPE SYMBGL
FROM MODULE

END OF
"AEFS"

NO

NO

YES

ASSIGN STARTING
ADDRESSES BASED
ON TASK TABLE

NO

GENERATE
LINK
MAP

POSITION TO
READ NEXT
MODULE TEXT

,.;iJT IN
TASK TABLE

PUT REF IN
TASK TABLE
INDICATING
UNSATISFIED

Figure 15, Fur.ctional Flo...,h." for the LINKAGE EmlTOR -

49

GET NAME
OF REFERENCE

ERROR

PROCESS "DEF'S"
AND "REF'S" FOR
THIS MODULE

NO MGDULE
REQUIRED

Control of Load Module Generation
The GLE gives the user a wide range of control over the load module creation
process. This control is divided into four main sections; load module
type, execution start address, modules that will appear in load module,
and generation of a link map.

General Directives
These directives control ob>fious features in the LINKAGE EDITOR.

0

0

o

UNKEDITl

Format
LINKEDIT;

Descri2tion
This directive is r~quired tm invoke the LINKAGE EDITOR service.

\'!AMEI

Format
NAME=lmmd;

Oescri pti mn
The user may supply a name to oe given to the gene!"ated load
module. If the optional NAME directive is included, then the
name of the load module will be 'lmod'. In the case where the
directive is not inc]'uded, then the default name of 'LOAD
MODULE l' will be supplied.

Format
END;

Description
This directive terminates service directive reading and causes
the LINKAGE EDITOR to perform the requested services.

50

!
., I

,
! ,
l
~ ,

Load Module Generation Node
The GLE will have the ability to produce load modules for a wide variety of
target computers. The intent of the load module generation mode is to
inte~face with various target machine loaders by producing absolute or
relocatable load modules as required.

•

•

i RELOCATICJ']

Fonnat
RELOCATION=(startbit: endbit) [, (startbit: endbit), ...];

D"!scriotion
This directive provides the GLE with a specification of all
the fi"!lds ~;hat may contain addresses during an assembly.
This allows the load module to create a relocation bit
map, based em the specified fields, SCI that a relocating
loader will know which addresses will need a load bias
added. The 'startbit' indicates the starting bit position
and the 'endbit' indicates the ending bit position for a

field. All fields are described left tCl right with
bit 0 (zero) assumed tCl be on the extreme left.

··LI· _________ ---'
o n

The relocation bit map will be created only if the load
module mode is 'REL' (see the MOD~ directive). This
directive is mandatory and must De the third linkage
editor directive.

J.MObEl
'FDnnaj;

MOIDE ABS 1
REL '

Descriotion

In the absence of the MODE directive, the mode of the load
module will be relocatable unless:

• the ENTRY directive is oiven
o no teiocatable text is ,'oune

51

Execution Start Address Specification
The starting address for execution of the load module produced by the GLE
can be specified by the optional ENTRY directive.

• IENTRV!

Format

ENTRY module

(I symbol I)
addr I

Descriotion
A start address may be specified by giving the name of an
ebject module. If the module has an end transfer address
specified, then this address will be used, otherwise the
default end transfer address as suppl ied by the Meta Assembler
wi 11 be used.

If a 'symbol' is used to specify the start address, then the
definit~on of this symb0l, as supplied by the LINKAGE EDITDR,
.will be used.

The use of 'addr' gives the user the abil ity to specify an
absolute address for the start err. execution. It must be
descrIbed in the same base as the meta assembler output listing.

M0dule Appea,rance in a Load Module
The essence of module binding is the determination of the medules that will
appear in the load module, the erder j'n which they will appea,r i,n the load
modul e, and the types of addresses that may be bound.

At this time, the LINKAGE EDITOR will be able to handle three addressing
schemes provided by the Meta Assembler; direct memory add,ressing, base
displaced addreSSing, and location ceunter relative addressing.

There are several user directives available to determine which object modules

will appear in a load m0dule; ULIB, SLIB, EXCLUDE, RENA...,E and INCLUDE.

Even with the user directives, there are important assumptions that will be

made when processing object modules using these directives.

The fi rst assumption concerns the defaul t processing (of external references.

If a module is needed for satisfaction 0f an external reference, then it

will be searched f0r. The first Jlace to l00k will be the 'task' table to

see if it is already linked. If it is not linked, then the us"r library

will be searched. If the user library does not contain the m0dule, then

the system library will De searched. If after searching the system library

the m0dule is still n0t f0und, then the reference will remain unsatisfied.

S0 we see the search hierarchy is:

1) a 1 ready linked

2) user 1 ib,rary

3) system library

The sea,rch hierarchy may be changed by use 0f the FILES,NOULIB,NOSLIB and

EXCLUDE directives.

o

Format.

FILES I [l!ISER]L][SYSHM]! ;

Descripti0n

This directive indicates the files to be used in order to create

the l0ad m0dule. This directive is ma'ndatory and must be the

second directive encountered.

53

o

o

IINCLUDEI

F(mnat

INCLUDE module [(msa)J[,csect(csa) ••• J[:I~ti:IJ;
Description

This directive causes the forced inclusion of 'module' from
an optional library. The direc:ive also allows a starting
address, 'msa " to be specified for the module. Additionally,
assembly time control sect·jons, 'csect', may have starting
addresses specified. This directive has the power tel determine
not only order elf appearance but starting addresses as well.

There are some restrictielns depending upon the memory allocation
scheme of the Meta Assembler. If the mode of the load module
is defined as the"section"mode and 'msa' is specified, there
will be a warning. However, the control section address will
l5e allelcated back-to-back felr the specified module. If the mode
is" norma l" , . 'l1lsa' can be speC; fied but any control secti on
address, 'csa', will be ignelred "If specified.

If this directive is not included in the creation of the load
module, then ALL the medul(!s frem the user library will be
included as a default.

All addresses must be specified in the base ef the Meta Assembler
output listing.

IE~CLIiI@EI

Fermat

EXCLI!IDE mednam[,IDeldnam .•. J'[: I ~m I J;
Description

This directiVe forces the exclusieln of particular modules frem
appearance in the final lead module. If no library is specified,
then the module is ignored ne matter whkh library it is found en.
This affects the search hierarchy by implying which library may
conta in the modul e.

54

o

o

o

INOULIB!

F0rmat

NOULIB;

Descriotion

This directive forces exclusion of all modules in the user

library from appearing in the final load module. This implies

that the search hierarchy effectively becomes:

1) already lir,ked

2) system 1 i brary

INosusl

Fgnnat.

NOS:"IB;

Descriotion

This directive forces exclusion of all modules in the system

li!Jrary from appearing in the final load m0dule. Therefore.

the search hierarchy effectively becomes:

1) already 1 inked

2) user li!Jrary

IRENAMEi

Format.

ReNAME oldname=newname [.oldname=newname •...];

Descriotion

This directive causes external references to '01dname' to be

satisfied !Jy the definition supplied by 'newname': If 'newname'

is 0ne of the external references to a module.that has !Jeen

mentioned on an EXCLUDE di"ective. then 'oldname' will not be

renamed and will be 1 eft as undefi ned.

55

o

o

I liStcr l

Format

GSECT csect,csa [,bound];
Oescri pti on

The GSECT directive causes text in control secti,on 'csect'
from all linked modules to be linked consecutively into one
gl0bal c0ntr0l secti0n, starting at address 'c:sa'; Opti,mally
included is the bounding information, 'b0und', to be used to
determine where to start. addresses in this secti0" when
the next m0dule is encountered.

If the mem0ry allocati0n scheme is defi,ned as the normal m0de,
then this GSECT directive will cause the err0r of mem0ry 0ver
lapping.

The address must be described in the base "f the Meta Assembl er
0Utput listing.

\80!1lND\

F0rmat

BOUND start ['nextJ;
Deseri Rtf on

The optional bound directive cQntrQls lQcatiQn CQunter pr0cessing
f0r m0dules that a,re nQt supplied with starting addresses. The
default values WQuld cause mQdules to start at 10cati0n 0 and
be butted up aga iost Qne another.

The address must be described in the base of the Meta Assembler
output listing.

56

< •

1
j

Generation of a link Map
The user has control over the inclusion or exclusion of a link map as par:
of the LINKAG~ EDITOR outputs. This contrel is available through the
optional MAP directive.
o~

Fonnat
MAP

~
ON -I OfF .
GLOBAL .'
~lODULE~

DescriDtion
If the MAP directive is included without an operand or is not
included, then the default information will be generated with
the unsatisfied external map. When ii link map is generated, the
following fixed contents wiTT be available. All addresses wiTT be
printej in the same base as the Meta Assembler output listing.

o Default map
o

o

o

o

tcho of input directives
Error/warning messages
load module header information
o

o

o

o

Creation date and time
liilad modu Ie hnd
Load module length
Executi on sta rt address

Block assignment!
o Name of module and control secticln
o

o

o

Start acldress
Length
Library from

o Relocatien
linked
fields

o Module map
o

o

Externa 1 references
External definitions

57

I

!

I
i
l
~.

o Global cross-reference map

o Name of defInition

o Defined value

o Module name defined

o References to definition by module

o Unsatisfied external
o External references

o Module name referenced
o References to externals

Example of Link Edit Use

The directives described previously Imply a hi erarchy of ordedng on

object modules and control sections. The simplest explanation of this

hierarchy is through the use of an example.

Example 1. Sh0W ordering hierarchy.

·Assume the memory allocation scheme is the section mode and the

base is acta 1.

Let object modules PG1, PG2, PG3 and PG4 exist.

PG1 contains A1, A3, B1 and B2 as control sections.

PG2 c(mtains A1, AS, BO and B2 as control sections.

PG3 contains AO, A2. A7 and B1 as control sections.

PG4 contains AB as a control section.

PG2 and PG4 are needed to satisfy external references.

Given the following directives. show the starting aliidresses.

UNKEIlHT;

END;

FILES USER;

RELOCATION=(O:ll) ,(12:23);

NAME=LMOD;

MODE ABS;

BOUND SQOO;

GLOBAL A1 • }OO ,2 ;

GLOBAL B 1 ,1000;

INCLUDE PG1;

INCLUDE PG3(200), A7(7000);

58

• J

I

i . ;
o Global cross-reference map

o Name of defInition

o Defined value

o Module name defined

o References to definition by module

o Unsatisfied external
o External references

o Module name referenced
o References to externals

Example of Link Edit Use

The directives described previously Imply a hi erarchy of ordedng on

object modules and control sections. The simplest explanation of this

hierarchy is through the use of an example.

Example 1. Sh0W ordering hierarchy.

·Assume the memory allocation scheme is the section mode and the

base is acta 1.

Let object modules PG1, PG2, PG3 and PG4 exist.

PG1 contains A1, A3, B1 and B2 as control sections.

PG2 c(mtains A1, AS, BO and B2 as control sections.

PG3 contains AO, A2. A7 and B1 as control sections.

PG4 contains AB as a control section.

PG2 and PG4 are needed to satisfy external references.

Given the following directives. show the starting aliidresses.

UNKEIlHT;

END;

FILES USER;

RELOCATION=(O:ll) ,(12:23);

NAME=LMOD;

MODE ABS;

BOUND SQOO;

GLOBAL A1 • }OO ,2 ;

GLOBAL B 1 ,1000;

INCLUDE PG1;

INCLUDE PG3(200), A7(7000);

58

• J

I

i . ;

100 200 1000 5000 8000 -
Al(PG1) AO(PG3) Bl(PG1) A2(PGl) A7(PG3)
Al(PG2) A2(PG3) Bl(PG3) B2(PG1)

A5(PG2)
BO(PG2)
B2(PG2)
A8(PG4)

59

3.3.3.5 Use of the Catalog Function
During use of the Meta Assembler system, many files will be created along the
path to load module generation. Some of these files, such as libraries,
will be saved and used many times. To aid the user with configuration control,
a catalog function is provided by the GlE. This function extracts descriptive
information about the three basic Meta Assembler system outputs object
modules, libraries of object modules, and load mGJdules.

Summary of Catalog Directives
o CATALOG Invoke catalog service
o FILES Specify which files are to be cataloged
o END Terminate catalog function

Detailed Description of Catalog Directives
o ICATAlOGi

FGJrmat
CATALOG;

Description
Mandatory directive required to invoke the CATALOG function.

o lFrU::S!

Format
FILES = IF ilename I

~ogica 1 uni t
Description

[I F] r I fi 1 ename \ L' logical unit
[IF], ...] ;

During a talE run, several files a,re created. Before the LIBRARY
function, a file of object medules generated by the Meta Assembler,
knewn as OBJ, and opti@nally an @ld 1 j,brary ef ebject medules to
update, kn@wn as OlIB, exist. After the lIBRARY function, a new
library, knewn as NLIB, exi sts. Bef@re the LINKAGE EIDITOR functi on,
a user and/er system library, known as UUS and SLIB, respectively,
exist. After the LINKAGE EDITOR functi@n, a lead module, known
as lMOD, exists.

60

o

So, at any of the described paints, several files with generic
names are available for cataloging. In addition to their
generic names, the files will also have a FORTRAN logical unit
associated with them. The table below describes the 'filename'
and its corresponding 'logical unit'·

The '/F' indicates the full catalog for the file mentioned.

FILENAME
OBJ
DUB
NUB
UUB
SUB
LMOD

Format
END;

Qescription

LOGICAL UNIT
8

7

9

9

11

12

This directive causes the CATALOG function to perform the
catalog of files.

Available Information

'(he information that is available for each of the three basic files is
shown below.

Object Module
0 Object Module Descriptil!ln (DSC)
0 Cl!lntrol Section Dictionary (CSD) , /F' only
0 External Reference Directionary (ERD) '/F' only
0 [xternal Definition Dictionary (EDD) '/F' only
0 Vector SymbQ 1 Di cti onary (VSD) '/F' only
0 Object Text (TXT) '/F' only
0 Object Module End (END) '/F' o.nly
0 Object Module [OF (EOF)

61

o

So, at any of the described paints, several files with generic
names are available for cataloging. In addition to their
generic names, the files will also have a FORTRAN logical unit
associated with them. The table below describes the 'filename'
and its corresponding 'logical unit'·

The '/F' indicates the full catalog for the file mentioned.

FILENAME
OBJ
DUB
NUB
UUB
SUB
LMOD

Format
END;

Qescription

LOGICAL UNIT
8

7

9

9

11

12

This directive causes the CATALOG function to perform the
catalog of files.

Available Information

'(he information that is available for each of the three basic files is
shown below.

Object Module
0 Object Module Descriptil!ln (DSC)
0 Cl!lntrol Section Dictionary (CSD) , /F' only
0 External Reference Directionary (ERD) '/F' only
0 [xternal Definition Dictionary (EDD) '/F' only
0 Vector SymbQ 1 Di cti onary (VSD) '/F' only
0 Object Text (TXT) '/F' only
0 Object Module End (END) '/F' o.nly
0 Object Module [OF (EOF)

61

Library of Object Modules

• Library Header

• Module Name List 'IF' only

o Object Module Description (DSC)

• Control Section Dictionary (CSD) 'IF' only

• External Reference Dictionary (ERD) , IF' only

• Vector Symbol Dictionary (VSD) 'IF' only

• End Marker , IF' only

• Object Text (TXT) 'IF' only

• Object Module End (END) 'IF' only

• Object Module EOF (EOF)

Load MOdule

• Load Module Header

• Relocation Address Fields

• Text Bit Stri,ngs with Relocation Bit Map 'IF' only
• End of Load Module

Exampl es of Catalog Use

Example 1. Catalog all files after],oad module generatien

Directives: LIBRARY;

CREATE;

NANE=EXLIB ;KIND=l:1SER;

END;

LINKEr!!T;

FILES USER;

RELOCATION=(0: 11) , (12: 23) ;

ENTRY MAIN;

INCLU!!E MAIN (0): ULIB;

END;

CATALOG;

FILES;OBJ/F ,NUB ,9/F, LMOD;

END;

Nete: File aus is net cataleged because the library functien operated in

a creatien nI~t a maintenance mode.

62

Library of Object Modules

• Library Header

• Module Name List 'IF' only

o Object Module Description (DSC)

• Control Section Dictionary (CSD) 'IF' only

• External Reference Dictionary (ERD) , IF' only

• Vector Symbol Dictionary (VSD) 'IF' only

• End Marker , IF' only

• Object Text (TXT) 'IF' only

• Object Module End (END) 'IF' only

• Object Module EOF (EOF)

Load MOdule

• Load Module Header

• Relocation Address Fields

• Text Bit Stri,ngs with Relocation Bit Map 'IF' only
• End of Load Module

Exampl es of Catalog Use

Example 1. Catalog all files after],oad module generatien

Directives: LIBRARY;

CREATE;

NANE=EXLIB ;KIND=l:1SER;

END;

LINKEr!!T;

FILES USER;

RELOCATION=(0: 11) , (12: 23) ;

ENTRY MAIN;

INCLU!!E MAIN (0): ULIB;

END;

CATALOG;

FILES;OBJ/F ,NUB ,9/F, LMOD;

END;

Nete: File aus is net cataleged because the library functien operated in

a creatien nI~t a maintenance mode.

62

Example 2. Catalog of an unknown file on FORTRAN logical unit 8 to determine
its type.
Directives: CATALOG;

FILES=8;
END;

63

I
i

3.4 INSTALLATION AND TRAINING
This section describes the delivery, installation and training procedures for
the products developed under this contract. The facility utilized for
installation and training was MSFC -t NASA request.

3.4.1 Task 7 - NASA MSFC Delivery
The enhanced Meta Assembler, developed under Task 1, and the Linkage Editor,
developed under Task 5 was installed at NASA MSFC on an IBM 360 (see Figure 3).
To provide system mai ntenance capabil ity at MSFC the MDAC proprietary Meta
Translator was alos be installed on the IBM 360. The delivery consisted of
the following:

o Installation on the MSFC IBM 360
o MSFC Installation Verification
o Meta Assembler System/Meta Translator Demonstration
o Personnel Training at MSFC
o MS FC Del iverab 1 e Items

3.4.2 Installation on the MSFC IBM 360
THe MSFC IBM 360 was selected as the host machine for the installation of
the enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver, and
MDAC Meta Translator. The procedures to perform the installation of the
enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver,
and MDAC Meta Translator were:

o to develop IBM 360 JCL for file creation, Meta Translation,
FORTRAN compilation, link edit and execution of the components
of the Meta Assembler system.

o

o

to determine the overlay structure for the Meta Assembler
to meta transl ate the Meta Assembl er component meta 1 anguage
descriptions

o to compile the Meta Assembler FORTRAN source
o to link edit the Meta Assembler system object modules

64

. ,

3.4 INSTALLATION AND TRAINING
This section describes the delivery, installation and training procedures for
the products developed under this contract. The facility utilized for
installation and training was MSFC -t NASA request.

3.4.1 Task 7 - NASA MSFC Delivery
The enhanced Meta Assembler, developed under Task 1, and the Linkage Editor,
developed under Task 5 was installed at NASA MSFC on an IBM 360 (see Figure 3).
To provide system mai ntenance capabil ity at MSFC the MDAC proprietary Meta
Translator was alos be installed on the IBM 360. The delivery consisted of
the following:

o Installation on the MSFC IBM 360
o MSFC Installation Verification
o Meta Assembler System/Meta Translator Demonstration
o Personnel Training at MSFC
o MS FC Del iverab 1 e Items

3.4.2 Installation on the MSFC IBM 360
THe MSFC IBM 360 was selected as the host machine for the installation of
the enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver, and
MDAC Meta Translator. The procedures to perform the installation of the
enhanced Meta Assembler, Linkage Editor, NSSC-l target output driver,
and MDAC Meta Translator were:

o to develop IBM 360 JCL for file creation, Meta Translation,
FORTRAN compilation, link edit and execution of the components
of the Meta Assembler system.

o

o

to determine the overlay structure for the Meta Assembler
to meta transl ate the Meta Assembl er component meta 1 anguage
descriptions

o to compile the Meta Assembler FORTRAN source
o to link edit the Meta Assembler system object modules

64

. ,

3.4.3 MSFC Installation Verificaticn
The installation verification was performed utilizing standard test cases
for the Meta Assembler system and the meta language definition of the Meta
Assembler for the Meta Translator. The verification procedure exercised
each Meta Assembler system prograrn involving the NSSC-l assembler creation.
The Meta Translator was verified by regenerating the Meta Assembler parsing
subroutines via meta language processing.

3.4.4 Meta Assembl er System/Meta Transl ator Demonstration
The Meta Assembler system and the Meta Translator demonstration consisted
of rept-(lduci ng the veri fi cation process util i zi ng the standard test cases
anj the Meta Assembler meta language definition.

3.4.5 Demonstration for the NSSC-I
The system was demonstrated as fully supPQrting assembly level software
development for the NSSC-I. This was performed via cross assembly of GSFC
supplied NSSC-I programs, object module link edit, and load module formatting.

The NSSC-I assembler language definition in ALLDEF and ALLLEX and pr0cessing
by both the ALLDEF and ALLLEX pr'ocessors was al so demonstrated. Si nce a NSSC-I
computer was not available at MSFC, actual execution could not be performed.

3.4.6 Personnel Training at MSFC
A period of one week was allocated for personnel training at MSFC. The
primary thrust of this training period was toward Meta Assembler system
maintenance_ Items addressed were;

o ALLDEF jDrocessor des i gn and use
o ALLLEX processor deSign ana use
o Meta AssemlDler design and use
o

o

Linkage Editor design and use
Meta Translator Utilization

3.4.7 MSFC Deliverable Items
All installation support materials were included 1n the delivery as follows:

65

o Meta Assembler system FORTRAN source on magnetic tape
o Meta Assembler system program listings
o Meta Assembler meta language source on magnetic tape
o Meta Translator FORTRAN source on magnetic tape
o Meta Translator User's Manual
o Installation procedure documentation

Available Meta Assembler system user oriented documentation was delivered at
this time. This delivery task, however, preceded the formal documentation
development. All formal docum 91tation, Task 4, and fi nal product vers ions
will be made available to MSFC for subsequent installation.

3.4.8 GSFC Deliverable Items
Due to the cancellati0n of the GSFC installation at NASA request, items which
Were scheduled for this delivery were delivered to MSFC. These items, all on
ma§netic tape were:

o NSSC-l ALLDEF source
o NSSC-l ALLLEX source
o NSSC-l target output driver source
o GSFC furnished test cases

3.5 META ASSEMBLER 00CUMENTATION
This section pertains to the Meta Assembler system documentation developed
under Task 4. The two types of documentation I'lroduced are:

o User Manua 1 s
o Detail Design Manuals

3.5.1 Wser Manuals
Comprehensive user manuals were developed for each of the Meta Assemble.r
system programs including:

o ALLDEF User Manual
o ALL LEX User Manual
o Meta Assembler User Manual
o Li nkage Editor USer Manual

66

.1

o Meta Assembler system FORTRAN source on magnetic tape
o Meta Assembler system program listings
o Meta Assembler meta language source on magnetic tape
o Meta Translator FORTRAN source on magnetic tape
o Meta Translator User's Manual
o Installation procedure documentation

Available Meta Assembler system user oriented documentation was delivered at
this time. This delivery task, however, preceded the formal documentation
development. All formal docum 91tation, Task 4, and fi nal product vers ions
will be made available to MSFC for subsequent installation.

3.4.8 GSFC Deliverable Items
Due to the cancellati0n of the GSFC installation at NASA request, items which
Were scheduled for this delivery were delivered to MSFC. These items, all on
ma§netic tape were:

o NSSC-l ALLDEF source
o NSSC-l ALLLEX source
o NSSC-l target output driver source
o GSFC furnished test cases

3.5 META ASSEMBLER 00CUMENTATION
This section pertains to the Meta Assembler system documentation developed
under Task 4. The two types of documentation I'lroduced are:

o User Manua 1 s
o Detail Design Manuals

3.5.1 Wser Manuals
Comprehensive user manuals were developed for each of the Meta Assemble.r
system programs including:

o ALLDEF User Manual
o ALL LEX User Manual
o Meta Assembler User Manual
o Li nkage Editor USer Manual

66

.1

The content of the user manuals is presented in a topical narrative fashion
and thoroughly discusses the user interface considerations including:

o product overview/capabilities
o detailed presentation of user interface

(control cards, 1 anguage statements, etc.)
o extensive examples of user interface
o assumptions and restrictions
o diagnostics

3.5.2 Detail I)esign Manuals
To support the maintenance aSjilect of the l1eta Assembler system, detailed deSign
docum61tation was deve10ped for thF: foUowing programs:

o ,~LU)EF processor
o ALLLEX proceSsor
a

o

a

Meta Assembler
Linkage Edit0r
NSSC-I target output driver

The content of the detail design manuals is jilresented with a blend of t0pical
narrative discussions and sUjilporting schematic representaHons including:

a

o

a

a

a

a

a

pr0gram capabilities
functional flow cha'rt
block structure diagram
input/output description
global data area description
subroutine summary

function description
1 oca 1 data descri ption
system interface requirements

h0st installation procedures
machine dejilendent consideratior;~

67

APPENDIX A
SCHEDWLE/MILESTONES

A·1

~

00
.... ;:0

-O@.
02:
o .'" ;tYr
to .. ~
c: ~I
);:,0
I"" til
=i_
-<en

Ml.lESTiONES '

I. META ASSEMBLEliI ENHANCEMENT

2. GENERALIZATUDN OF PAOCEEillJRE
LANGUAGE

l. IMPROVE ERROR OIAGNOSTI'ICS ANEil
(!)EBUG FEAliWAES

4. META ASSEMBLER EilOCClMEN'Al'ION:

5. DeVELOP LINK eelliea

6. NASA GOOEilAliIEilEilELlVERY

7. NASA MSFC OEUVERY

De 1 eted tnrOUGj;J

IDeleted ugla

NOifES~ _
TASK 1 ~rDE'SIGN REV'IEW'FOWR MONTHS AFTER'ATP" - - -

{

TASK 4· FINA'L META ASSEMB'LER SYSTEM ANEilEilOCWMENTA1110N DELIVERY
• TASK 6· OELIVERY OF NSSC·I META ASSEMB, LER ANEil,' GENEAA'lIZEO LlNKAG, E

EOIl'Olil TO GSFC' CJ!:NCEUEID AT NASA RIiOI!JEST
TASI(7 . OELIVERY OF META TRANSLATOA'J;O MSFC J\;rll!) TASK 6 ITEM

TO MSFC

-.

MONliHS A'FTER ATP

}

I,ll

Dc:>.)

'11;1"0NE 111 ,RIP FO GSFC OF l1WO 121 WEEKS EilClRATION CANCELLEID
121 ONE I~II TRIP 11(;) MSFC Cf mo 121 WEEKS OWRA;r)ON
131 ONE f.1'I11RIP ,0 MSFC OF ONE Iall WEEK OWRATION
141 THREE IJITAIPS 110 MSFC OF THREE 131 OAYS OCllilA1110NEACH

Praject Schedu lie

, , " ., • •
I)

• •

~

00
.... ;:0

-O@.
02:
o .'" ;tYr
to .. ~ c: ""'-I);:,0
I"" til
=i_
-<en

Ml.lESTiONES '

I. META ASSEMBLEliI ENHANCEMENT

2. GENERALIZATJ(DN OF PAOCEEillJRE
LANGUAGE

l. IMPROVE ERROR OIAGNOSTI'ICS ANEil
(!)EBUG FEAliWAES

~. META ~SS~~;LER';;CClMEN'Al'l~~:

5. DeVELOP LINK eelliea

6. NASA GOOEilAliIEilEilELIVERY

7. NASA MSFC OEUVERY

131 .

Deleted

IDeleted thr0uola

NOifES~ _
TASK 1 ~rDE'SIGN REV'IEW'FOWR MONTHS AFTER'ATP" - - -

{

TASK 4 - FINA'L META ASSEMB'LER SYSTEM ANEilEilOCWMENTAl110N DEL/VERY
• TASK 6 ·OELIVERY OF NSSC·I M. ETA ASSEMB. LER ANEil.' GENEAA'liZEO LlNKAG. E

EDIl'Olil 110 GSFC' CANCEUEID AT NASA RIiOI!JEST
TASI(7 - OEL/VERY OF META TRANSLATOA'J;O MSFC J\;rll!) TASK 6 ITEM

TO MSFC

-.

MONliHS A'FTER ATP

)

Dc:>.)

'11;'-rDNE 111 ,RIP FO GSFC OF l1WO 121 WEEKS EilCiRATION CANCELLEID
121 ONE I~II TRIP 11(;) MSFC Cf 'J;WO 121 WEEKS EilWRA;r(ON
131 ONE I,'" l1RIP l'0 MSFC OF ONE j,J I WEEK OWRATION
141 THREE lalTRIPS 110 MSFC OF THREE 131 OAYS EilCililAl110NEACH

Project Schedu lie

, , " ., • •
I)

• •

· .

Al'pendix B
ALLDEF NSSC-I 0EFINITION

8-1

ASSEMBLY LANG~A'GE OEF 1I~1 HaN C ALLOEF)

I" OE~INITIRN or NSSc-l ~~SEMBLER "

I" MACHINE mEscRrPTloN aNI EN¥IORNMENT "'

OPTIoN , PAGE"LENGTH = 56,
O~TE • !/11/78 ;
C8MPUTER • NSSC:l •
CINTIN.ATlaN • Qo ,
SIUNolNG • 'EO :
ERROR"sl~E = 18 ,
UNDEFINEo'EXTERN'A'~S • YES,
L I ST-S'ASE = B $

sii!~ , AOORESS.UNIT = la,
AC(!;·ES-S-WNIT ~ 16:
HEM>SIi!E • 4096 S

," ~S~R OEFrNEO TYPES 0,
TYPE .NO~IST','NoPROC' $
TY'P,!: ".'AJOR" 'MINOR' $
TY'?E "OIRECT'. 'INOIRCT, $
TYPE ''liT' $
TY'P!: • CaNTRIL -CO'1NTER', 'r.cv' s

I" LOCAL ANn GLOBAL 'V,ARiMILE OEF'liN.lTI.ONS "/

OEFAU~T MNEHONI'C ~OATA'; 'NONE'S
LOCA'L 'A'NSWER' • 0 S
LOCAL "OEF' • 1 S
LOCA'L "EXTER,NL' • 0 $
LOCAL 'INOIPECT' • ~ S
LOCAL 'LIT-FLAG' i
LOCA,L 'SEcTrON.S'AVE'. 'LociTION-SAVE' !
LOCA'L 'LlTERiA'L.SCAN" • 0 C
GLOB'A~ 'DOLI AB.SEC' • 'OOLLi:R.LCC' S
CL0,B'AL 'M'ACR,O~L I,Nt' • 0 S
G~QAAL 'B~I.LD' $
GLOBAL 'FIRST~DARO' • 1 S
GLOR'~L 'L4BtL~rl;ELo' $
GLOBAL 'STRrNG' $
GLOR,Al 'MS' $
GL.QB~L "ML' S
CLOB'A~ 'Ps' $
GL.oBAt 'PL' so
GLOB'AL 'STANO'ARO' = i' ,Sh~RC£~UBRAHY' 8 2.

'REPI'AT>~RRAY' .3; 'M'A'CRO·EXPANQ' • 4.
'LIT~RAL·pOOL.' • ,; ,otr.L.IT.POOL •• 6 S

GLOB'~L 'NoRH'A'L' • l' 'SK I p' • ~. ·'R£P!:AT.r liLL.' • 3,.
'HA,CRO-BUI Lo' • 4 ,

I· US~R OErYNEO SEHANTI~ iUNCTIONS .,

SEH'ANtIC 'OEFLA,BEL' :

17-ApR-79 1614~ PAGE

"
"

1

~~

'" w

00
";0

'tJQ
Q f:~
.... 1 "'.> "'1"1
c' "-.-,
.~ ••.• ,.

L: ~~'j
. ..j
... .;~ "$

.(

r

~

,- 5

,
,-

ASS£MBi. Y LANGUAGE DErlNHI0N (A'LLDEr)

rr (PR{SrNTCOpE,R!.t."tO'(l);),
IF (OYMS'OI.- TYPE I ~pERA,ND I 1)) ,E~. UNDEr INED).
ELSE.

F.RROR I 35).
END.
G RE A T F _ S yMS·OL I OPER·.'NDI 1)) •
IF (EYTERNL.E~,l);

CRFATE"RErO[Fl aprRANOlll.DEF),
"(<D.

[N[:'J $
sErHNT[C 'HAJOP' ,

SIi'"LE,NGrH=18.
OEPLA8ELCOPrRANOH)) •
DBjECTIAOO~ESS·T'.EI(OiArION-COUNTER),

r IrL 0 (~'s) =OP'c0nE,
F IELnlsl'5). INaIriEeT,
FIELOI6 11 7 1"OpERANO(2) $

SEMA·NtIC 'HINOP' I
R I T'''LEfltG THeIS.
DErLASEL{OPERAND{l));
DBjECT(AOD~ESS.T,pEI(OiATION"COUNTER),

'I ELa !.0'1l)'0 ;FiE'I.D (12'17).,OPCOOE) $
S£H-ANTI C • ORGSEM' :

ANS·WER • VA,LUEIQP[RANDll,l»).
l'F (ANSWER, £'0. ~),

SECTION{'O,ATA'),
ELSE.

I' IANSWER,EO'l',
SEc nON,{ 'CODE' , ,

ELS'E: I

F"AIL.
E.NO,

E:NO,
SET"0RIGINIQPERANQI1;2j.o) $

to SPECIAL KINO'S 0, DEFINiTIONS .t

GR·OUP BEGI N SYMHOL. '(' $
GR'O.Wp END SYMBOL. .,. $
END STATEMENT SYMBOL. ',Eoi',' SO
END MOOWI.E S'MBOL "END' I S~W4NTIC • ENO-MODUL,E •

SOURCE-MOCEIOErolIToPOOL. $

INSTR~€TION' .MACRO"CALL' :
OPERAND 11) • OPTIONAL i'A'BEI. TERM.
OPE'ilANOI2) • SYMB',L, TERM LIST,
SEMANTIC 0 OErI.A·8ELCoprRANOll»),

ST .C.-PiR;;(OI'ERA,NO (2)) ,
H'A CRO.L I NE,"l $

to 0 I BE€T I V'r. AND PSE:,~OO 0;' OEr I NI HONS _,

OIRECfIV'E 'O'ATA' I
OPrR,A,NO 11' • OPT I ON"'L i: A'BEL TERM,

• 1

11""PR-19 1.14~ PAGE 2

,e

c

,0

0

0

C)

C

C

0

C

'" .. c

0

c
,,-. ,

c
(

e

'0

C

n

ASSEMBLY LANGU~GE DEnNllTlON CAl.~DEn

OP£R'AND'12' • ANy EXPRE~S! ON LI ST.
SEM'~NT!C .oErIoA,aELlnPERA'NDH)',

CREATE-o·ArAI·,DPER'ANO'12" $,
uNLABE~ED DIRECtivE 'ASS~MiLE' I

OPER4NBll) • ~DOREsS TERM.
SEMANTIC • STARTIO~E:~'ANOH».

SECTION,i ·o'AlA').
SET·L1T~R'L·POOLI·OAT").

all REC; I VE • RES'
OP['R'AND,I 1) •
OP~RANQ.(2) •
SEMANTIC •

SOI~RCE.M00E'SUNOARO S
:
oPTlaNA(~A8EIo TERM.
A'NY EXPR'E:~S IBN.
oErio.BEi: I nPE" ANOII 1)) •
RESERVEIDi'ERANOCZ'.·.·) $

fllRECTiVE "E~U' I
OPER'NOll'"IoASEL T~RM'
OPERANO'I Z, ~ANy Ex,P~ES'S ION,.

SEMANTICS·
OEf"L,A'BELe,OPERANQ'i 1 i) .,EQUA TE I OPERANDe 11. QPER'ANO,I.21.11 S

UNLlBi:LEO OIRECTI¥E 'LIT' :
OPER'A'ND'll) • V,A'LUE E~PRESS!ON.
SEM'ANTIC • ANS,WER'=oPrRANO'111.HOO.Z,

1'1' I ANSwER. EQ,.,0).
SET·U tE~,AL -POOl. I • DATA ") •

ELSE,
liF IANSWER"EQ.,1"

S~T;L,I TER'A'L-POOL I "CODE' I,
ELSE.

FA Ii'.
'E'NO,

END S
UNL,A8~LEO 01 RECT I vt • PA'ClE,

SEMANTIC • EJECT'PAG~
UN.L,AB[LEO DrREcTIV'E '1oIST,

SEHANHC • LlsTINGo1;
uNLA8~LEO 0,1 REaT I V'E 'UNi:S I

SEMANTIC • LISTING.~:
MIRECrl VE 'PROC' I

oprR'ANQ.(1)aLAaEL TERM.

I
5
I
PRINT(1) 5
I
PRINHs) $

SEH'A'NTI'C • pROCESS-MOOr-SK,IIP S
uNIoA,etLEO OI~EcTIV'E 'ENO' I

SEMiNTlc • If" IPROcESS-WOOE .EQ. SKIPI,
pROCESS;M~O[• NQRM4~.

ELSE'
FAIl..

END 5

17-A'PR-79 1611'~~ PAGE

•••••• '.... W'.'RN1NC ••••••••.••

uNLAe~LEO 0 I RECTI V,E '·PE·ND' I
SEM'ANT Ie • !'r I SOUi'(CE~MoO£. EQ. M'ACRO-tXP·'A'NO,I.

ENO-MAtRn. '
~OURCE.MoOE.STANO"RD.
HA,CRO_UNE.0"

END REOErIN£O AS 4NOT~ER WJ!~O K INC

,; , I'

~

• • • •

OJ
in

,-

ASSeMBLY lANGUAGE OEriN/TION (AUDErI

E~SE,
'AIL,

ENO ~
UNLA'BrLED JIRECTIVE 'AORG. I

oPrRANO(l) • ANY [XPRE~SION LIST,
SE~"NT!C • IF (SYH80L-TYI'E(OPERA'ND(l,lP"EO,ABSOI.UTE,AND,

SyHHOL. T y?E (DPERA'NO (1.2,) ,EO, ABSOLUTE) •
DRuSEH I npmAN.Q It»,

ELSE,
fA iL,

FNO $
UNLA8[LEO DI~ECTlvE 'RORG. I
O~£HANO(l) • ANy EXP~ESSiQN LIST,
SEMANTIC' IF ISYHBf'L-TYpEIOPERAtjO(l,l» ,[0 , A'BSDI.UTEl,

OR'GSrM (OPERAND (1)).
E";E,

FAi~:
END $

ERROR MESSAGE
NUMBER II 3:»,
LEvEL ;: l'
,DUPLIcATE LABEl.' 5

ERROR MESSAGE
L • 11
N • 2~,
• I LI.EG'Al CONTROL sECT I;,N' 5

NOUN .$' ,
RESULT_AOINESS 'ERH,
S[HA,NTIC. IF ISUSf"lrLD,ED,OPERAND.rIEI.D).

I' (SnURCE-MDDE,EQ,LITERAI..POD~,OR.
SDHRCE"MOOE,EO.Ot'-I.IT-PDOL).
~Er T ION-SAVE -Grl-SECT! ON.
LQ~ATION.SAVE·LOCATION.
tT~'SECTION'IOl.l.R.3EC.
LO~.TIOM.GO~I.AR.LOC.
RErURNCLOCATIONl.
LO~A'ION.~DCATION~SAVE.
~T[-SECTION·SECTION·StVt,

ELSE,
REtIRNCI.DC.TIONl.

EN!).,

E~SE '
rA II.,

END S
INSTR,~CTION 'NONE I I

17-APR-79 16143 PAGE

OPER,AND (11 "' CONTROr.:-COUNTER S •••••••••• W~RNING ••••••• , ••
N~ SEM'ANT I CS SPEC In EO

INSTRUCTION 'NoNE"
OPERAND(l) • OPTioNAL rABE~ TERM.
SEMANTIC • OEF~~B£L(OP~R.NO(lll S

.........

~

11- ·,"· d ,

OJ
in

,-

ASSeMBLY lANGUAGE OEriN/TION (AUDErI

E~SE,
'AIL,

ENO ~
UNLA'BrLEO JIRECTIVE 'AORG. I

oPrRANO(l) • ANY [XPRE~SION LIST,
sE~,iNT!C • IF (SYH80L-TYI'E(OPERA'ND(l,lP"EO,ABSOI.UTE,AND,

SyHHOL. T y?E (OPERA'NO (1,2,) ,EO, ABSOLUTE) ,
DRuSEH I npmAN.Q It»,

ELSE,
fA iL,

FNO $
UNlA8[lEO OI~ECTlvE 'RORG. I
O~£HANO(l) • ANy EXP~ESSiQN LIST,
SEMANTIC' IF ISYHBf'L-TYpEIOPERAtjO(l,l» ,[0 , A'BSoI.UTEl,

OR'GSrH (OPERAND (1)),

E";E,
FAi~:

END $
ERROR MESSAGE

NUMBER II 3:»,
LEvEL ;: l'
,DUPLIcATE LABEL' 5

ERROR MESSAGE
L • 11
N • 2~,
• I LI.EG'Al CONTROL sECT I;,N' 5

NOUN .$' ,
RESULT_AOINESS 'ERH,
S[HA,NTIC. IF ISUSf"lrlD,ED,OPERAND.rIEI.D).

I' (SnURCE-MDDE,EQ,LITERAI..POD~,OR.

ELSE,

EN!).,

E~SE '
rA II.,

END S
INSTR,~CTION 'NONE' I

SDIIRCE"MOO E, EO .0E'-1. IT-POOL) •
~Er T ION-SAVE -GTl-SECT! ON.
LQ~ATION.SAVE·LOCATION.
tT~.SECTION~IOl.l.R-3EC.
LO~.TIOM.Go~I.AR.LOC.
RErURNCLOCATIDNl.
LO~~'ION.~OCATION~SAVE.
~T[-SECTIDN·SECTION·StVE'

REtIRNCl.oGATIoNl.

17-APR-79 16143 PAGE

OPER,AND (11 "' CONTROe-COUNTER S •••••••••• W~RNING ••••••• , ••
N~ SEM'ANT I CS SPEC In EO

INSTRUCTION 'NoNE"
OPERAND(l) • OPTloN.L rABE~ TERM.
SEMANTIC • OEF~.B£L(OP~R.NO(lll S

--'j

~

c
(-

r

r

c
(-

r

CI

c

'" en
r ,
~
c.

r

r
'.

r

,-

r

C

C

r

ASSEMBLY ~ANG~AGE OEn.NII T I ON C A'LLDEFI

/. EXECuTABLE INSTRUCTION DEFIN1TIONS ./

INSTHUCTION "FLP' :
RBUL T • HI NOR,
oPrR,A,NQ'(11 • QPTI~NAl LABEL TERH.
SCM'AtH Ie • QPCOOE"o' 221.

M,INOp (OpERA'NOU I) $
INSTRUCTION 'LOO' ;

RESULT • wi NOP.
OP£RANQ(11 • OPTIDN~L rAREL TERM.
SEM~NTIC a OPC ODE.O'i3 f •

MINOP(OpE~ANDC111 S
INSTRUCTIoN "LOP, :

RESULT • M1NOM.
OPERAND (1) • OPT I aNAL i)BEL TERM,.
SEM'.NTIC • opcOOE.,Q ';:21.

H I'NOP' opEil·ANOH II S
rNstRucTION ,NEG, :

RESU~ T _ f!,I,NOR'
aPER'.'NO '1 I • oPT I oN'Ai: i: A'BEL TERM,.
SEH'ANTIC • OPCODE=o'~41.

H I;NOP (,OpER,ANOH II S
r~STR.CTION 'AOC, :

RESUL T _ M,I'NOR.
OP[R,.,ND-IlI _ oPTloN'AL- LA'BEL TERH,.
SEMMTIC • OPCODE.o'~61.

MtNOP(opE~ANDCII) i
INSTRUCTION 'eMP' :

RESULT • M.I,NOR,
oprRANO'(11- oPT! oN'.L t'ABEL TERM,.
SEMA,NT IC • oPCOoE.o 'i~ I.

MlNOO('OpE~'.NDCII I S
rNSTR~CTION 'NoRM I

RESU~ ToM I NOR·.
opr RANO'(lI • oP'T!~N'kL j'A'BEL TERM.
SEMANTIC • OPCOIE·o'i41.

MI.Op(DpE~ANOll)1 5
I NSTRUCTI ON 'A'eX' :

R:E·SU~T = MINOR'
OP[R'kN0'l11 0 oPT! oN'Ai: j' ABEL ,ERM"
SEHA,NTIC • oPCOOE'O'25'.

M,INOr (OPER,A'NeC 1)) S
INSTRUCT10N 'XAx, :

R.ESUL T • M I:NOP.
oPi:RA'NOH I 0 OPT I oN'AL i:.'BEL TERM"
SEMANTIC • oPCOoE·n'~5'.

HI'NOP (OPERA'Ne C 1) I S
I NSTRUCT! ON '~EA' :

RESULT • MINOR,
oprRANeH I • oPT! oN'Ai: j''''BE~ TERM,
SEMANrlC • oPCOoEoO'26'.

MI,NOP (OpEbND'lI)) S

17-APR-79 U,4!J PAGE lJ

• •
,
"

'" .:.,

.$?c: ilt,
't70
O~ Os

:ti r-
I()~
~~;
ie;;
- I .." -.;;;;

(

'SSCMBi~Y LANGUAGE OEF"lN'lTION (A1.LQEFl

IN'ST~UCTION 'XAE' ;
Rt"SULT = ':IN·gr..',
Or'~R~NO(l) = OPTl:NAL ~AS£L TERM,
SEH/,,'Hrc = (YcOI)E::r,)126I,

"INOoIQpE~AN~Il» $
INST~UcrION '[AX' :

RESIJ!.l :: MI~O:;,
(;')Pr.rt"H~D(l) :: {iI-lTI"lN'.\L i'AaEI. Tt:RM,
SE~~,~TIC :: nPCO~E=n,,71,

~INOP(Op(~ANIID(l» $
rNST~iU~riON 'nEVERSE ... EA'X" :

RdjUL r :: liltJOr(I
nPr.a.VH)(1.) :: nPTI(",N~1. i'ABEL TERM,
StMJ·i'ITIC :: ;)PcO'l'E::o';,7t,

v. i NOo I O",E" '~D (1» $ INS Tf'WC II ON I HL T' :
R;=S~tLT :: MINO,~,
O?£ij4NDCt) :: GPTI~NAL l:AbEL TE~M,
SFHAtlTIC :: f_PCOOE=O'~~I,

,'IN·rn,dOpERA'NO(l» $
iNSTR~CTION ,NaP, :

R'LSULT :: MINOr.,
OPERANDI I > • mPTIDNAL l'AGE~ TERM.
SEMANTIC : oPCOOE=D'~2',

~INaplopERAND(1» $
INSTRHCTION 'ExIT' r

RESULT ~ HINO~,
OPERM~D(1) • OPTI')"AI: i'ABE_ TERM.
SEMA,~TIC u :jPCO'iJE=o'161,

MINO-IQpERAND(1» $
INST'~CTION 'TOV, :

RESWLT ~ ~I~O~,
OPErlANDII> • OPTloNA'L i'ABE" TERM.
SEH~~TIC • oPcOOE'n'~II,

"JNa~(OpERA~D'l») $
INSrquCTIDN ,aP, :

RESWLT ~ ~INO~,
OPERANDI 1 > • OPTI~N'L rASE" TERM.
SEMANTIC ~ OPCOJE=o'~31,

:lINO,IQpERANO(l» • r NSTRUGT I ON ,TaP' :
RESULT • HINO"
np [RM18(l> • oPTlnfll'i L'ABEI. TERM.
SEH~IJTrC ~ OPCOJE=n'~5',

MINO~(QpEpAND(l» $
TNSTtWCTlON ,ROV, :

REsULT = MINO~I'
DPeR.NBCt) • OPTIoNAL j'AHE_ TERM.
S-EMANT.IC c (,p-'C Oi)'E:::n'",7',

"I'NO? IOpE~AN,D(l») S
I NsrQ8GT J ON 'CPO' :

REsULT • MJNO~.
DPER· ... No (1) • oPT J ON'AL LA8E~ TERM.

17-kPR-79 16 •• 3 P'A'G£ 6

c.

('

c

-', ,-
c
, ,

(

"
C

III
00

r

-
~

r,
"--

r:

c

c

('

J::

r

SEMANTIC

A'SSEMBL Y lANGUA'GE OEHN.JTION CALLOEfl

• OPC,Ol!l£l:'n' 1:7',
MINOPCOp,ER'ANOC1) i

rNstNDcTIDN 'sr o' :
AESUL T • MINOR,
opr'R'ANO'Cl) • OPTlQNAl lABE~ TERM.
SEMANTrc • oPcOOE=O'20',

M I NOP COpERANO 11) :i
INsTRUCTION 'rA-i!' I

R'ES,~LT • MINOR.
oPrRANo c 1) • oPT! aNAt: LABEL TEAM.
SEMANTIC • aPcOoE.o'~l'.

HINOp COP,ER,ANOHII :I
INstRUCTION '_ED. :

RESUL T • M I NO;;.
OPERA,NO C 1) • oPT I ~NAL LABE~ TERM.
SEMANTIC • oPCOoE.o'~3'.

MINDPCopEtAN041) S
INSTRUCTION .RIO, :

R,E!UL T • HI NO~.
OP~R'AND(1) • OPTION-A'L LA'8E~ T.RM.
SEMANTIC • OPCOOE'O'~4'.

H,I NOpC OpERANOH II S
INSTRUCTION ,TlX, :

,R,E SUl T • M,I NOR.
OP[R.NOCll • OPTIONAL rABE~ TEAM.
SEHANTIC • oPCOoE'o'll'.

HI NOP C,OpER'ANOH)) S
,TIE. : INSTRUCTIoN

RESULT
OPERANO(1)
S£M'ANT Ie

NOUN ,.' ,

• MilNOR,
• OPT! oNAl L A8E~ TERM,.
II aP'cOoEIIO' i51,

HINOpCOpEilANO(1)) :I

SEHA'NT 1 C • ,r (SUBr! '-LO. [Q. OPcoOE.rl'E~D,J.
INOIRE~"l,

Ei.SE.
r A I;L;

END $
INSTRUCTION 'LOA' :

RESULT • M'AJOR. -
opi!:RA'Nml1)' OPTlON'At: i'ARE~ TERM,.
oPrRAND'(2) • ANy EXPRE~SION,.
SEM'ANTIC • oP~D'OE'n'23"

IIAJOP (OPERA'NO (1). OPERA'NO(21) S
INSTRUCTION ',LD~' :

REsULT • MAJOR.
OP~'RAND'(l1 • oPTlON'A'l i'ABEI. TERM.
OP£RANO(2) • ANy rXPRESSION.
S£M'ANTIC • OPCOoE'n '.0'.

M AJDp CDpEji,AN 0-11) lOP ERAND,C 21) S
INSTkUCTION 'LD,I' I

RE!~LT • MAJOR.
OP£RANDCll • oPTIoNAL LABEl. TERM,.

17-APA-79 16H~ PAGE 7

-.' . .r- .,...1 ~,.~.J !:L_J ~ ,;. III

c.

('

c

-', ,-
c
, ,

(

"
C

III
00

r

-
~

r,
"--

r:

c

c

('

J::

r

SEMANTIC

A'SSEMBL Y lANGUA'GE OEHN.JTION CALLOEfl

• OPC,Ol!l£l:'n' 1:7',
MINOPCOp,ER'ANOC1) i

rNstNDcTIDN 'sr o' :
AESUL T • MINOR,
opr'R'ANO'Cl) • OPTlQNAl lABE~ TERM.
SEMANTrc • oPc OOE=O'20',

M I NOP COpERANO 11) :i
INsTRUCTION 'rA-i!' I

R'ES,~LT • MINOR.
oPrRANo c 1) • oPT! aNAt: LABEL TEAM.
SEMANTIC • aPcOoE.o'~l'.

HINOp COP,ER,ANOHII :I
INstRUCTION '_ED. :

RESUL T • M I NO;;.
OPERA,NO C 1) • oPT I ~NAL LABE~ TERM.
SEMANTIC • oPCOoE.o'~3'.

MINDPCopEtAN041) S
INSTRUCTION .RIO, :

R,E!UL T • HI NO~.
OP~R'ANO(1) • OPTION-A'L LA'8E~ T.RM.
SEMANTIC • OPC,OOE'O'~4'.

H,I NOpC OpERANOH II S
INSTRUCTION ,TIX, :

,R,E SUl T • M,I NOR.
OP[R.NOCll • OPTIONAL rABE~ TEAM.
SEHANTIC • oPCOoE'o'll'.

HI NOP C,OpER'ANOH)) S
,TIE. : INSTRUCTIoN

RESULT
OPERANO(1)
SEM'ANT Ie

NOUN ,.' ,

• MilNOR,
• OPT! oNAl L A8E~ TERM,.
II aP'cOoEIIO' i51,

HINOpCOpEilANO(1)) :I

SEHA'NT 1 C • ,r (SUBr! '-LO. [Q. OPcoOE.rl'E~D,J.
INOIRE~Tol,

Ei.SE.
r A I;L;

END $
INSTRUCTION 'LOA' :

RESULT • M'AJOR. -
opi!:RA'Nml1)' OPTlON'At: i'ARE~ TERM,.
oPrRAND'(2) • ANy EXPRE~SION,.
SEM'ANTIC • oP~D'OE'n'23"

IIAJOP (OPERA'NO (1). OPERA'NO(21) S
INSTRUCTION ',LD~' :

REsULT • MAJOR.
OP~'RAND'(l1 • oPTlON'A'l i'ABEI. TERM.
OP£RANO(2) • ANy rXPRESSION.
SEM'ANTIC • OPCOoE'n '.0'.

M AJDp CDpEji,AN 0-11) lOP ERAND,C 21) S
INSTkUCTION 'LD,I' I

RE!~LT • MAJOR.
OP£RANDCll • oPTIoNAL LABEl. TERM,.

17-APA-79 16H~ PAGE 7

-.' . .r- .,...1 ~,.~.J !:L_J ~ ,;. III

OJ
cO

,

(

'SSI.M81~y LANGUAGE DEF"lNH10N IA!.LOEFI

OprHANQ(2) = ANy CXP~E~SlON,
SEM~NTrC a DPCQDE~nli2',

"AJOp I OPERAND I 1 I. OPERANO{2 I) $
'LrnE' : INSTRHCTlON

REsllL T
oPrP.ANO(l)
QI-rRANQ 12)
SEHAIHIC

= MAJO."
= OPTlSnAL l'ARE~ TERM.
= ANy EXPRE~SI0N,
II OPCO[JE~,~ I 521,

M'JOp IOpEoiANOlll.QPERANOI21 I $
INSTf1~CTION 'LOX' !

RESULT • pAJnll,
OPERA'D 1l) • rPTIUNAL rAaE~ TERM.
QPrRANQI21 • ANy EXPRE~SION.
SEMANTIC = oPC0nE~rn'~4f,

MAJOpIOPERANOI1I.OPERANOI211 5
I NST~UCT I ON 'STA' :

R,ES,ULT = ~IAJtD'Il

QP£'RANQ{l) C OPTJ~NA~ i,'ABEL TERM,
nPrRANO(2) = ANY ~X~~E~StQN,
SEMANTIC • nPCOoE=n'~~',

MAJOpIOpI;RANOI1I.OPERANOI211 $
INS'''UCTION 'sTl' :

RESULT a MAJO,~,
OPERANDI) I • Onl0NAI j'AHE!. TERM,
OPrRANOl21 • ANy EXPRESSION,
SEMANTIC = OPCGOEcn'321,

"A J Oo IO pERANO(1)'OPERANO'1211 $
INStRUCTION ,STE, ,

RE~~LT = MAJO~,
OPERA~OI11 • aPTloNAL rARE!. TE~H.
OPERAND I 21 • ANy EXPREISION.
sEH.N'IG = oPC00E=O'{0 1,

~AJOp I OPERANO'I 1). OPERANCI 21 I S
INSTRUCTION 'STX' :

RlsuLT • MAJOR,
O"ERANOltl • DPTloN*(rABEL TERM.
oPrRA~OI7.) • ANy EXPRE~SloN.
SEM'4NIIC • ~pcmruE:n'74"

MAJOPIOpEFiANO(1),OPERANOI2») S
INSTRUCTION 'AOX' :

REsULT ~ MAJOR'
OPrRANOlll • CPTlONA(j'ABEI. TERH.
OP[HANOI2) • ANy EXPRE~'ION.
SEH,A'NTIC • OPCODE=O'~2"

MAJOI' I OpER,A'N0 I 11. OPER'ANOI 2 I) S
INSTRWCTlON 'ADD' ,

R£~WLT C MAJrnR'
OPERANDI11 • OPTioNAL rA8E~ TERM.
QPrRANQI21 • ANY EXPRESSION,
SEMANTIC ~ oPCQnE:n'~4',

MAJop I Op[iANOI1I'OPERANO(2») s
INSTRuCTION .suB, ,

RESWLT • MAJOR.

17-APR-79 161_3 Pl~£ 8

"I' -o

00
"';0
'tiC;
02
a "'" " ,-
.0-0
c~.,
l:> r.)
r- IT!
=i_
.!'<(t}

c

o

o

o

o

c'

(-:-

(

('

i::

o

o
'-' ,- '

'(',

c

'(~.

o

o

"

o

OPi:RAND(11
oprRAND(21
SEHA'NT/C

ASSEHBLY LANGUAGE DEriNIHON CALLOEf"l

- oPTloN'At: LABEL TERH.
• ANy EXPRE~SION.
• oPCOOE=o "24',

MAJOP(OpEliANO'1 1.1. OPERAND C 211 S INSTRUCHON "MUL' I
RtSULT • MAJOR.
nP£RAND'(ll • oPTloN'AL i:A'BEL TERM.
Ol'rRA NO(2'1 • A'Ny EXPREqS ION.,
SEHANTIC • OPCOOEoO'44"

MAJOPIOpERANO'C 11. OPER'ANO 1211 S INSTR,0cTlON "DIV' :
~EsULT • MAJOR'
[lPrR.A'ND'I11 • oPT! ON'AL j' A'aEL TERM"
Of'ER'AND 121 • ~Ny eXPREsS IoN.,
SEMA'NT Ie. OPCODE-o' 64'.

HAJOp-lOPER'A'ND 11" OP£RANO'CzII S INSTHUCTION 'ETR' :
RESUL T • MAJOR'
OPERANDHI • oPT/ON'At' i.'A'BEL TERM.
OPr,RAND I 21 • A,Ny E XPRE!S ION,.
SEMANTIC • oPcOOE,o'2m',

NAJOP ('OpERANO,C 11, OPER'ANO'C,ZII S
• A'NO' : rNsTRiJcTloN

RESULT
nPERAND(1 1
oprRA'ND'(21
sEMANTIC

• MAJOR.
• OPTION'AL LABEL T.ERM.
• ANy EXPRE~SION.
• oPCOOE'n'2~"

NAJaI'I OPEFiANDI 11. OPER'A'NDo(211 S
INSTRUCT! ON 'MRG' :

RES~LT • MAJOR,
OPE,RAND'lll • OPT/ON'Al i.'A,eEL TERM"
OPr.RANO'(21 • AN'y EXPRE~S ION,.
SEM'ANT I C • oPCODE-n' 5~'"

MAJOp (OPERA'NOH I.OPERANDI(2) I S rNSTHUCTI ON • OR' I
RESULT • MAJOR.
OPER'AND l l1 • oPTloN'~'L i:AREL TERM.
OPF:RANO'121 • ANY EXPRE~SION,
SEM,ANTIC • OPCODE'o'~0'"

MAJap(OPEirA'NDC11.0PER~NDiC2) I S rNSTRUCTloN 'EOR' I
REsuLT • MAJOR,
OPE'R'ANoll1 • GPTlONA{ i:~BEL T.RH,
OP~R'A'NG'121 • ANY EXPR,EsSION.
sEMANTIC • aPCOQE'o'j0' •

M'AJOp (OpERAND'C 11.,OPER'A'NDIC211 S INstRUCTION 'opT' :
RES~LT • HAJOp,
OP£'RANOll1 • oPTlflN'~L' i)'BEL TERM,
OPER'AND'(21 • ANy EXPAEgSUN.
sEMANT Ie • opcoaE.o' 16'.

MAJOPI OpEiiAND'! 11. OPERAND(2) I S
INSTRUCTION 'IP" I

17-/iPR-79 16l4a P.~' 9

'!'

f

RES liLT
O~[RA~D(1)

oprRANO(?)
SEMA'TIC

~SSEM8LY L'NGa~GE DEFINITION IkLLDEf)

:I Mlo JOr.:,
::I nPTl :IN,A'L j'AREL TERM,
• 4Ny l~PRE~SION,
• oPC OnE=n"·6 1•

,-AjOp(OpERANO(1).OPERA,NQ,(2)i 5
INSTkllCTlON 'SH" :

REsULT g MAJOR,
OPr.HA 'IQ(l) = "PTlQN'A'l l'A,8[1. TERM.
O"ERANO(?) • A~y CXPRE~SIJN.
~EM'ANTJC ::I 0PCoQE=n'i41,

MAjOr (OpE/i.A'NO(1) .@PERANO'I 2» $
INSTRIICTION 'OSH- :

RESULT = MAJOq.
OPE~'NO(l) • oPTIoNAL LABEl. TERM.
OPERAND(?) • ANy EXPRE~SloN.
SE~ANTIC • OPCOoE=O'361.

IN'STRUc110N 'DC"
M,AjOp(@pER'ANO(1).OPERANDI2» '5

RESWI T : MAJO'R,
UPERiND11) • ~PTjoiAL LABEL TERM.
OPERAN~(2) c ANY Ex?~~SSI0NJ
SEMANTIC = oP€~Dr • 0'56',

H'jO~(OPERANO(1).OPER'NO(2) 5
INSTRIICTION 'CyC'

REsULT ::I ~AJO,~.
QPr.RANQ(ll • uPTinN,A'L i'A,an TERM.
OP~RANo(2) • ANy ,XPRERS!9N.
SEMANTIC • OPCODE •• ·~41 •

• AJOpCOpE~'ND(1)'OPERANC(2» $
INST'lIICTl8N ,BRM, ;

RlSIiJL T :I M,Aj.OH,
DPEILlNO(1) • n~Tl"N'AL I~AaEL TERM.
oprRANo(2) • ANy ~XPRE~SIUN.
sEH,ANTIC • [)P'COoE::I(.'J't'l6 1,

l'IAJDo(OpER'ANO(1).OPERAND'(2» S
INSTRIICTION 'BRU' :

RE.S,WL r = I"AJCJ1fr
Opr RANQ(l) • OPTiCINAi i'ABEL TE:RM.
O'P£,RMHll(2) I: ANY c:)('PRE!::::SION,
SEH~NTIC p oPC0DE~n'~2',

r AJO?(OPER'AND(l) .OPERAND'(2/) S
rNsrr{IlJ.cTIfZlN 'B'RO' :

RESULT a MAJO~,

oprRANO(ll = oPTlnN'~L i:ABE~ TERM.
OPERANCe,) • ANy E.PRE~SIDN.
S'[,""MH I C rI OP'C0l,)'Ee,o t 4.2 1 ,

NAjQp tDpER,AND (1), oPERANO(2» $
INSTR,wCTIQN 'TIN' :

RES~LT • MAJO~.
OPfRANO(\) • oPl IONA(~.BE~ TERM.
GPtRAND'(2l a AN'Y E.X.pR.EsSI'JN,
SEMANTIC • Op;00E"0·,2'.

MAJ,Op(OpERA'NO(l) ,oPER'AND(2» S

17-APR-79 161~3 PAIiE 10

c

()

,
r-

c

c

c

(

.,-

'P -.,
(

c-

("

'J

v-

r

,-

(

- - · ... L' "".''''\01''''~t. ut.r l:N·j T ION C ALLDEF")

INSTRUCTION 'TX~E' I
RESULT • MAJOR,
aPER_NOIII 0 OPTIoNAL CARE~ TERM.
nP[RANOI21 0 ANY E~PRE~SION,
SEMANTIC .OPCOoEon'22'.

MAJOp"OpE~ANDll)'OPER'ANDI2)l S
INSTRWCTION 'TA~' :

RESWLT • M~JO~,
OPERA·NO 11) • oPT! ONAl L'A'8E~ TERM,
OP~RANO(2) • ANy EXPREtSIOM,
SEM·ANT I C • OPODQE""' ~6',

11 AJDpIoPERANDI1) ,OPERAND'(2» S
I-NSTRUCTI& •• 'TA·[I :

RESULT • MAJOR.
OPERANOII) • oPTIoNAL rABE~ TERH,
ePERANo(2) • ANy EXPRESSION,
SEM,ANT I'C • uPCOoE:n' 4·6',

M,AJDp I OPERANDI 1 : ,oPER.ANO'(2» S
I'NSTRUCTIoN ,HG, I

~ESULT • MAJOR,
oPERANDIl) • DPTloN~'L LA'PE~ TERM,
OPEFtI,NQ(2) • ANy EX'PRE~SIDN,
SE~AN"C • oPCOoEon'66',

. MAJOpIOpERANOll),OPERAND'12» S

" SYMBOL. DrrtNJrIONS TO i;WP·PORT ASSEH'~LV .,

pRrr I X OPER,AToR d' :
REsUL T • AN·Y EXPREsSION,
oprRANOll) • LIT,
5EM,ANTIC • ANS'WERccH~CKOPIKIND.ll.

11-1pR-19 1614~ PtG£ 11

I' I ANSWER. [Q, I NSTRUCTI ON. OR, ",SWER. EO" 0·1 REeT I VE),
~ I TER,Ai' (t'oA TA' • OPi:R·ANC I iI, <', L I T·'~AGI,
RETURN i·QPERANO I 1) I •

ELSE.
rAIL;

END $

pREfiX OPERATOR .51' I
RESWLT • cONTqOL.chvNTER.
PRECEDENcE • 1~.
oPrR·ANO III • CCV,
SEHA,NT Ie. ANSWER. V,ALUE (OPER'ANOH II,

IrC.NSwEi.EQ,0),
SECTiONI l'oATA'),

E~SE.
IF IA,NS·WER,EQ,l).

s~ctIONt'COOE'I.
ELSE.

ERRoR 1;2' I.
,Ali:.

END,

•••••••••• ~U;RN,J NG ••••••••••
PRECEDENCE NoT SPEClnEO 21 USED

" • ~ " •
,

~" -,---.

c

()

,
r-

C

C

c

(

,-

'P -.,

c-

("

'J

v-

r

,-

(

- - · ... L' "".''''\01''''~t. ut.r l:N·j T ION C ALLDEF")

INSTRUCTION 'TX~E' I
RESULT • MAJOR,
aPER_NOIII 0 OPTIoNAL CARE~ TERM.
nP[RANOI21 0 ANY E~PRE~SION,
SEMANTIC .OPCOoEon'22'.

MAJOp"OpE~AND(1)'OPER'ANDI2)l S
INSTRWCTION 'TA~' :

RESWLT • M~JO~,
OPERA·NO 11) • oPT! ONAl L'A'8E~ TERM,
OP~RANO(2) • ANy EXPREtSIOM,
SEM·ANT I 0 • OPOOQE""' ~6',

11 AJOPCOPERANOI1) ,OPERAND'(2» S
I-NSTRUCTI& •• 'TA·[I :

RESULT • MAJOR.
OPERANOII) • oPTIoNAL rABE~ TERH,
aprRANO(2) • ANy EXPRESSION,
SEM,ANT I'C • uPOOoE:n' 4·6',

M,AJOp C OPERANDI 1 : 'OPER.ANO'(2» S
,T .t.,G, r I'NSTRUCT I ON

~ESULT
OPERANOIl)
OprFtI,ND(2)

SE~AN"C

• MAJOH,
• DPTlON~'L LA'PE~ TERM,
• ANy EX'PRE~S ION,
• OPCOOEo n'66 ',

MAJOpCOpERANDll),OPERAND'12» S

" SYMBOL. DrrtNJrIONS TO i;WP·PORT ASSEH'~LV .,

pRrr I X OPER,ATDR d' :
REsUL T • AN·Y EXPRESSION,
DPrRANOll) • LIT,
SEM,ANTIC • ANS'WERccH~CKOPIKINo.ll.

11-1pR-19 1614~ PtG£ 11

I' C ANSWER. [0, I NSTRUCTI ON. OR, ",SWER. EO" 0·1 REeT I VE),
~ I TER,Ai' (t'DA TA' • QPi:R·ANC I iI, <', L I T·;~AGI,
RETURN i·Dp·ERANO I 1) I •

ELSE.
;AIl;

END $

pREfiX OPERATOR .51' I
RESWLT • cONTqOL.chvNTER.
PRECEDENcE • 1~.
oPrR·ANrn III • CCV,
SEHA,NT Ie. ANSWER. V,ALUE I OPER'ANOIl II,

I;C.NSwER.EQ,0),
SECTiONI "oATA'),

E~SE.
IF IA,NS·WER,EQ.l).

s~ctIONt·COOE·I.
ELSE.

ERROR 1;2' I.
,Ali:.

END,

•••••••••• ~u;RN,J NG ••••••••••
PRECEDENCE NOT SPEClnEO 21 USED

" • ~ " •
,

~" -,---.

~
'"

r--

t-

~SS[HBI Y LANGUA~E DEF"INHION IALL~En

END $
pOSTFix OPEraToR III I

RESULT = CCV,
M'E'iA'O(1) • ANY EXPREsSIoN"
S£MA~TtC • IF IcHE~K;nPISPEL,LING'll,tQ,,'S(!I,

~'ETURN(OP£RANe'll) I,
ELS,E,

r AlL;
END $

INFIX OPERATO'R ',' I
RlSULl = [kSEL TrR~,
pn[CEOENeE • 10'
OPEnANOIII • CONTqOL.CnUNTER,
OPERANOI?I ; lA'BEl T,"M,
SEM,ANTtc • R!.TU~NIOPERAND'(21) $

pOSTFix OPERATOR')' I
RESULT • LIT,
np~RANDIII • SYH8vL T['RM,
SEMANTIC • RETUil'N I oPrRAND 111 I $

pOSTFiX OPE"ATOR '.f I
RESUl T = LA'Bi;L TEHM,
OPERANOII) • LABEL TrR~'
SEM·MiTre = EXTE~'NL.l;

RETURNloP~RANOllI1 $

INFtX QP1R,ArOR I.' I
Rl~ULT • ANy E~PRE~SION,
OPERAND(I) • ANy E.PR[~SIUN,
Of'ERANO(?) • ANY EXPRESSIoN,
Pk~CE'()ENr.(1: <'~,
SEM.NTIC • RETU.N(nprRAND(1)+OPERANO(21) 5

INFI>- OPER~TOR I.' I
REsol T • ANy cXPR,E~SION"
np,RANgII) • ANY EXPRE~SION,
OP,RANOC21 • ANY E.PRE~SION,
p"rCEOENr.E c 4'~,
St:MA;;JIC 'RET~HN(nPrRlNO(11-0PER'A'NO'(2») S

p'REF'I)(OPERATOR I.'
Re SUL T • AN Y ~ XPRBS ION"
oP'rR4NO(1I • ANY EXPR,ESSION,
PkF:CEOENCE c 4'~,
SEMANTIC • RET~~N{oPrRlNDll)IS

PREFIX OPERaTOR '-'
RlSULT • ANY EXPRESSION'
OPERAND(1) • ANy EXPRESS10N,
PII,CEO[NCE • 4.,
SEMANTIC • RETURNC~-nPER.NOCiIIS

INFIX OPERATOR I.! 1

-., ,-.~~ '-'-""_~"""'''''J'"",,-,,,,,,~_,-~,_,,_" ____ ,

~. -.
17-lPR-79 16143 PAGE 12

•••••••••• ~~AN:ING ••••••••••
PRECEDENCE NOT SPECIFIED lU0 uSED

•••••••• D. W*RNl,NG •• 0 •••••••

PRECEDENCe: NOT SP[CI'F I EO _1000 uSED

•••••••••• W'.4.RN'ING
PRECEDENCE NOT S~F 1£0 .1000 USED

~~l

l

c , .'

,-,.

r,
~.

,
,-

("

c

-"
r-

~ ...
C'

.r

to

r'
\

~

r

r .
:.:-

--' ..
r,

ASS(MBLY LANGUAGE OErINITION IAl.l.DEn

qESUI.T • ANy E~PREsSION,
OP£RANID Cll • AN,y EXPRE~SION,.
OI'£RANQ (2) • ANY [XPRES'SION.
PRECEDENCE = ~~l
SEM,ANTIC • nCiURNcoPrRANO(1)DOPER'AND'C2>1S

c NFl X OPER,ATOR ';' I
RES~L T • AN'y EXPREsSION.
OPERAND(1) • ANY EXPRESSION.
OPERANQ(2) • ANy E.PRE~SION.
PR~CEDENCE • 50.
SEMANTIC • RET~ANCoPrRANO(1)/OPER'NOC2)IS

INFIX OPER,ATOR '.-' ,
RESULT • "NY EXPR,E~SION'.
OP[RANro(1) • ANy EXPRESSION,
OPERAND(2) • ANy E.PRE~SION,
PRECEDENCE • 20,
SEMANTIC • RETURN'CoPr.'RAND(1).~OR.QPER'A'NO'12)IS

INFIX OPERATOR '>' I
R[SUI.T • ANy EXPRESSION.
OPERAND (1) • ANY EXPRESSION.
OPERAND(2) • ANy EXPREsSION,
PRECEDENCE • 1~'
SEMANTIC • RETURN'lnprRANOI11.GT.OPER'AND.(21)1

I NF I X OPER,ATOR '<' I
R(S~L T • AN'Y EXPREgS I ON,
OPERAND(1) • ANy EX'PREsS ION.,
OPERANO(2) • ANy E~PREsSION,
PRECEOENCE • 1~.
SEMANTIC • RETUR,NIOprR4N0(1)'I.T.OPER'Arin'C21)S

I NF I X OPERATOR '.' I
RES~LT • ANY EXPRE.SION,
OPERANC(1) • ANy tXPREsSION,
oprRANQ(2) • ,Ny EXPREgSIGN,
P~ECEDENCE • 1~,
SEM,ANTIC • RETURN'loPrRkNO(1) .EO.OPER'ANO'12J)1

INFix OPER·ATOR '.1.' I
RESWLT • ANY EXPRESSION,
nPERANU l l1 • ANY EXPRE~SION.
OPERANQ(2) • ANy E.PRE~SIDN.
PRtCEOENCE • 6",
SEMANTIC • RETURN(,:S~L', IOPERAND III .DP£R,~NO'(21) 1'1

INFIX OPERATOR '.-. :
R'EsuLT • ANy EXPRESSiON,
OPERA,NOCll • ANy EXPREsS';"N"
OPERANO'(2) • ANy EXPRESSION,
PRECEDENCE • 6",
SEM-ANTiC • RETURNloPrRANC(1),C10 .. 0PER·ANDC21)$

INFIX OPER'ATOR '.-' I
RES~LT • ANY EXPREsSIoN.
OP~RAND'I 1) • ANy EXPREsS ION,
OP~RANO(2) • ANy EXPREsSION.
PRrCEDENcE • 6",
SEMANTIC • RETURNCoprR'ANOH)l10"OP£RANO'I~))S

17-A'PR-79 UI.~ P'GC u

'-~

~
'"

·-

, ,.., . .",.,
~ .:;!

; r; . .. ;~j
~o .,

... ·0 ''--~~
.~

£."' ,.,.. ",
~
~ ">.

-. --.~~,,, .. -,-.~---~ '~-'-----'-------

ASSE~BLY LANGU.GE DEflNITIDN IALLDEf)

INFtx OPERATOR '~.I
RlsULf ~ ANY ~PRE~StON,
npE~UN(l)(1> :: ANy X'PR,EsSIIJN"
~PfRANO(2) • ANY XP~E~SION,

Pk'r..CE!lENCE = 3'~,
5'EHAlnIC = RETURN(OPr.RA,N0(1) .AND.OPERANO'(2»$

INFIX OPER·AraR ' •• '
RESILT = ANY EXPRERSloN,
(!)PrRAND(l) :2 J.NY E)(IPRE~SlUN,
npr RANn(7) z ANy E~PRE~SI0N"

PKECEOENCE = 2",
SEMANTIC • RETURN(oPrRAND(1).OR.OPERANO'12»$

INrrx OPER,ATOR '.1_' I
ReSULT • AN'Y EXPQ[SSI0N,
O>,,,RANQ(ll • A'NY EXPRESsI,)N'
GPERANO(?)= A'NY ExPRESsIO~,
PRECEDENcE " 6"'
SEMM,T IC = R'E TURN(','SilR, (OP-E'RA~JD (1) ,OPERANC(2))) $

INfIX OPERATOR ',':
RESULT = SYMBUL tERM LIsT,
OPERAND(1) = SYMBJL tERM LIST,'
OPERkMD(2) = bYMSUL TE~M,
PRECEDENCE • 1l,
SEMANTIC = LISTF(OpEI',ANG!1),aPERANOI2» $

INFIX OPERATOR ',' I
RESULT = ANy EXPHsSION LIST,
Of'ERAND(1) = ANy EXPRr.~'I~N LIST,
OP[RANO(2) • ANY EXp'REsSION,
PRF:CEOENr.E = ll,
SEM'ANTrC = LlSTF(OpERANO(l) ,OPER'A,N~(2)) S

END ~r ALlO,F OEFINITION $

t... __ ".,'.

17-A·PR-79 16143 P.GE 14

,

1
ft
.. ... '" '" ... • '" ... '" • <>

-
'

.... -'<

Z
 0

- 0
-

:z

lS
I

... ... c
•

... ...
I
I
)

..
a:

~

0
..

0
:

Z

or
..

...
--'

.2

>
-

0
'J
111

0
-

X

'i
w

...

...
en

0
-C

., W

'" "-0

or
.., O

J

" ::> z --'
'" t-O

0

-

u
o

I
'

,
~

'
~
.
,

B
·16

'...,
u

\.;

,) i " .. :,1f

.. ,; •

[l

Appendix C

ALL LEX NSSC-I DEFINITION

C-l

r

c

-
l

C

,-
'-

'--

'~,

\,..

-
(")

'"
r·

c
;

('

r

:r

'r-
',- .

(

r-
"-

~~ --.-, --'''l

~EXICAL rIDK-EN DEtlNITlON 17-APR-19 1614-9PA-GE

BEGIN LEXIG-AL BrrINITrON $
<LEXICON) :-

IIi

IF FIRST.CARD N~ ~,
<f'IR-STcARO)

IF 11-ACROS EO 9
II <MArROpREPASS>,

M-ACROS.,B,
C~RsOR"l

i ,
iF SUBFIELD ~E F!ELO~,
i

IF' NnT , ,~,
J F' NOT I ,_t.,
(TOK-EN> ,
(

,. CHECK FIDR ASSEMBLE CARD ./

/. I S A M-ACRO PASS NEEDED .,
,. GET A~L M*CROS ./

/" UNTIL ALL F![~IDS "'

'" NEXT F! [LO IF BLANK OR "' /-. COHMENT "/
/" GET A TOKEN "'

IF MN Et10Nic EQ ~, /" ONLY FOR ACTURL '1 TOKEN"START.POSITION OF (TOKEN).,
TOKEN·SI~E.SIlE OF <TO~EN>

1/ NuLL
)

1/ IF SUeFlnB EO L '" CHECK FOR NULL LINE ., SCAN,
(, . , ,
CURsOR'LENCTW

II IF CURSORoCH'iR EO -999
) ,
MNEMONIc.a,
TnKENoTY'PEoNAME;
SUJBfI'ELO.?,

/I SCA-N"

42

(, , . ,
r.URSOR~LENCTH

II IF CUR~OR~CHAR EO -999
II suer !;ELo.s'Uanv.LO.l
) ,
<LExICON)

1/ CuRSDrtoLrNriTH,

(TOKEN> I.
TOK-EN,. TYpE.ENo·or-L INE

'0 GET NEXT fiELD "I
,. !GNORE REST If COMMENT .1

'" OR REA-CHEO END or LI NE "/
'" REACHED NEXT rlELO '1

'" CONTINuE WITH NEw ,OKEN 01

'" J~ST Gn our !,r TOO 01
'" M'ANY FIELDS 0/

S

,> PARAMETER SUaSTITUTION "I
iF SOURCE_MODE EO MA~RO-EXP*NO.
',F MACRO"L!NE EQ ~; I" MUST BEF!RST L!NE .1 f SUBFIELO Eo 3,
(MA,i;ROARC> ,
tOKEN"TYPE"SYM8 0L I' IF PROr.ESS'MOOE EO SKIP,

(SKIPMAcRIDTEXr)
I' rr LlTrRAL"SCAN Eo i.;

~~EROLE~ELPAREN>,

,. IN ARGUMENT FIELD 0' I' RETURN AS A SY'HBOL 0'
'" IGNORE rEXT Of HA-eRO "'
'" PARSE L. 1'ER'A'L '1

1

,

Q
w

flo
." f$1 "f;j
o~
~J£ ,..

!P
;;~

......... 0 ,..
'! .
~;;;

{

,

.-

(

LEXICA('OKEN DEFIN1TION

l'I fERAe "SC-A'N,r.-:,
rOK.EN°' 'PEO,SY .. JoL

II IF LETTER,
(N·AH£> •
(

IF SYSFLELD EO 1,
1 OKF NoTY'pE.LASEi:

" TOKFN·TYpE~N*ME
I

" iF DIGIT.
(NW1B,£R>

" iF SPECI AL,
(SPEC [,\ L).
tOKEN-1YPE:SPECIAL

II iF ALMF~ICI
<SYMBOL>.
tOKEN°TYPE"SYMBOL

/I iF CURSoRoCH,AR EQ ;909,
cl!JRSoR:,c·WR,s,QR+l,
TOKENoTYPE"ENDo.Fo(liE 5

<NUMBER> :.

"

iF SUSrIEI.O EQ 2.
MNEMONIC=1,
T@KEN to IYPf..9NAM£,

QUR SOR'C URSOR-l

IF till t •

(!:Ie T),
tOKEN"~.LU£.VALHE OF OCTAL (OCT)

1/ (INT>.
TOKEN"vALUE=VA'LuE OF <lNT>
I.
TOKEN"TyPElvALUE $

<MACR.O.ARG> :.
1 TO 20
I

1 F NO T ' ,.
IF" NOr ,;':
CH'IRACTER

) $
(SKIPM'A·CRO'TEXT) I,.

I
I F sus' 1 FLffi EQ 1.,
(NA'HE),
Sel'N,
SuBFIELU.2

/I NuLL
) ,
I

IF SUS'IELi EQ 2.
IF CURSOR"iH*R NE -999.
IF NOT 'rN5 '.
CUR·SOR':LENcTW.

17-APR-79 16145PA,G£ 2

It CHECK FOR A NAME .,
/. IS THIS A LASEL ./

/0 NO. JU.5T A NAME .,
/. CwECK FOR A NUMBER ./

/0 CHECK FOR SPECIALS 0'

/'0 UNK'NOHN SY'MBOL 0/

'0 EN0 of LINE TOKEN ./

/. A LEADING ~ MEANS OCTAL .,
'0 I,' NOT THEN DEcJH'~L 0/

A

"

c

".

,~

.-.

(

r

('

~EXICA[tO~EN 0ErtN1TION

MNEMONIC.'Z;
TOKEN_TYpE.N'A'M£

II I,r s.Usf' I £ Lli NE c
) $

<SYMSOl:) I.
1 TO M6NY 'LMERles i

<INn j"
i TO 12 OI'CITS $

<OCT> j.
i TO 12 OCTA~S $

(N~'H£> :"
1 TO 6 LETMERICS $

<SPECIAL) I" ,.' ,
f

, I' •
!

,+ ,
II ,-I
I

it '+'
II '.'
II '0'
1/ N~Ll
I

II ,/',
f

'I'
1/ NuLl
I

II ''''',
f

'+ '
1/ NuL,
i

1/ .f .. I,
, -'

II NULl.
I

1/ if SuBrlELO Em 1,
f $ (I

1/ iF su8rlELO EQ 3.

f (, ,

i
IF IMAGECCURSOR;Zi Em ~

II Ir IMAGECCURSOR;Zj EO -11
I •
[I TERAI..SCA'N.l

/I SPECIAl. $
<M'ACRO"REPASS) I'

17-APR-79 16,.5PAGE

,- LETTERS ANO'OR DIGITS

/. CECr"AL DIGITS

/. OCTAL DIGITS

,. LETTER ANO LETTERS
/. ANO'OR DIGITS

./

*'
*' ., .,

,. A SH InEO LEn N PLACES */ ,* A SHIfTED RIGHT N PI.ACES *'
,. A HUL T I PLIED 8Y 10.o N '/
,. A MULTIPLIED BY lI10o'N "'
" LOGICAL A'NO ., ,. MULTIPLICATION */

,. REMAINDER D. liN
,- DIVISION

,. LOGICAL OR
,. ADO IT I·ON

,. Ex'eLUSIVE OR '* SURTRACTION

*/ .,

*' 0'

*' 0'
,. CONTROL SECTION INO,ICATOR"

'* CHECK IF AR,GuMENT .IELO .,
,. THEN POSSlBLE LITERAL "'
I' LEn PA,REN FOLLOWED BY *'
,. A BLANK' OR
/. ~ COMM'A

./

*'
,. R~LAT!,ONA~ OPER,ATORS ETC."

3

n

'"

--.

,

,-

c

eYC~E
I

k£XICAC iO~EN ~EFINITION

C0RSQR=1,
IF C~RSeR·c~aR NE -99~.
SCAN,
I

IF C~RSOR EO l'
<LA1SE:L>:, •
I ABE~_FI'f:lO:1

II J ABEIo_fJ'ELO::12J
) .
SCAN.
I

'PReC',
<LEGAL>'
IF lAaEl"FIE(O EQ 1.

17-APR-79 16 I 45PA'eE

10 UNTIL END OF INP~T

/0 CHECK ~A8E~ FIE~O

/0 MAcRO OEFINITION

/. HUST HAVE ~AaEL F" 1E~0
/. NESTED NOT Al~OWEO
/. SAVE H'ACRO NA'~E

"'
"/

"I

"/
0'
./

IF 8,U'ILO ~E 1.
~S:pOsITI~N OF <~A8~~>.
"leStrE OF <[~~E~>I
PS~M5, /* AND PARAMETER NAME "'

I.

p.L=Mi..
A NS WER 'ST A'R TM'ACRO'! MS .HL • PS • P~ I •
R·~Ilrn.l

1/ 'ENO':,
<LEG4'L>,
Ir- 8UIl.0 EQ 1.
IF LABEl_FIELO EQ 0.
F,:NO, .. M!ACR,O,
8ull o .• ~

II IF ~Ul~D EO 1.
Cl!JRSOR lll l.
STRINe·cUHSOR.
ST'RT_BOOy·~tN~.
<·aUI'I.DE~EMENTS>

/I ~U~l
) .
NEXT-IHA'C E

R,ESET-iNPuT.
JINEXT_IHAGEl ~

(i!EROLEV'ELPAREN) ,.
t S'CAN roR '!1 f

A~SWER:I.TSCAN
/1 AN,SWERz:'''
I.
I

SCAN FeR ~I •
/' SCAN reR 'l" ,. -.
cURSOR.,L TSCAN.
i IF ANSwER eT 0.

IF ANswER ~ T I. TSCiN"
L IT-'I.led

/. END OF M,ACRO

/. MUST BE IN A MACRO '0 MUST NOT H'AVE A ~A8EL

'0 MACRO BOOY

'0 BUII.O PI:ECES OF ~lN£

'" Rt-POSITION INPUT

.,
"/
"'
"I

0/

01

... ~:,!

4

r

,
,

c

'-

,

"

C')

m

, ,
00
"'.:t/

C
.,..

'l7J;)
o~
~~ (

00" !i:".::;;
I t~

:<;;; (

(.

(

c

~[X·IC"~ TOKEN OEfliNlTlON

II LIT"F'L4-G'.~
, $

(I. [,GA'L) : a
I •

II I,' $
(LABEL) "

i Te 4 AL~ERlcS.
fir ' , S

(.BU'ILDELEHEN r s> '"
SCAN.fnR.p'.'RM.

iF I.rscAN GT e,.
cURsaR':L TSC'A,N.
i

CURsaR.CuRSORoP(.
ANSwER.0.
, (f ,

(~UHBER>.
'I'
TOKr,N,·yAL UE·'TOKEN;YALUEo~,.
ANSwE'Rol"

1/
NOT NUL~
I, ANswER EO 1.
<NON,S~B> •
A'NSWE'R.SUBPARMNUMii TOKEN-V "LUE I.
CURSOR.CURSORoPC. , (, ,
<NUMBER>.
I) t t

/1
STRINCaCWRSOR
CURSORaCWRSORoPL , .

cBU!t.DFLEMENTS>
// cWR,seR"cENCTH.

<N0NSUR) S
<NONS~e> ; •

(F STRING GE CURSOR

'/ A'NSWER:NONS~H! SyR'1 NC: CURSOR-STR I NG, I
sTRINC_"~RSOR $

(rIRS TCARO,> "
If F I RSY"CA'RD EQ 1.:
, I I ,

SCA,N.
S!t!JBFTELrn'!2"
TOKE~j.S TA'RT .CURSOR:
I A'SSEMBLE I ,

reK'EN·S 1 ~E"8"
TaKEN-TyPE ON'A'ME.
'IRST·CARO".2

/'I i'F FIRST.C'ARD EQ 2.

• -.-,-..

S,CA,N.
<N'~ME>.

.-. ~-, ~ I

17-A'pR-79 1·6J,45P"GE

/* BLANK AND COMMENT */
/0 "RE ONLY LEGAL TOKEN 0/

,. MiCRO NAME IS fOUR .,
'* LETTERs ANOIOR DIGITS .,
/. LOOK A'HEAD FOR A SUB- ./
/. STlTUTION 01 ,. ,r IT IS FOUND ./
/. MOVE TO THE P"RAMElER .,
,~ MOVE PAST PARAMETER .,
/. DETERM'INE PARAMETER .,
/. NUMBER ./

,- PUT IN NON-SUBSrIT-UTA'BI.E ./
/. PIIRT 0, THE H',~H LI,NE ./
/. PUT IN ,.R'AHE1CR NUMBER 0/

,. NOT A PARA-MEltR. IGNORE

/. SCAN OFF REST OF LI·NE
,. AND OUT-PUT

,. NON-SUBSTITUTABLE CoDE
/. ONLY PUT OIlT I', TH[RE

~.- ... ~ I ---..:.

0,
., .,
0' 0,

. ,

.~

5

' __ I ~ - , •• • 6. __ '.:U

n
.:..

I,

C'

LEXICAL ,e~EN DEfINITION

S~18'1 ELe.".
T0KEN·TyPE~N*HE,
TOKE~.SI~E·SIlE aF <NAME>.
TnKEN,·START=P0 S I T I ON eP <NAME>,
L1STING.l,
MACRoSal.
o TO 2
(

SCAN.
t

• {NOLlSTI', LIsTING.m
1/ I (lJOPROCI', 'MAr.ROS"3 I

I,
r I'RST"C'AR0,a~

1/ SCAN,
IF CDRSoR.CHAn ~o :999.
C~RS8R'·CUR,SOR.~ ,
TOK·EN. T yPE~ENo·e"·i.·1 NE.
FIRST.CARo'·'m $

ENO OF LEXICA'L o~fINITION S

••. " I

17-APR-79 16H~P~GE 6

... .. .c

... on
.. • '" ~ • z c

..
z ...

.
... D

en
II:

z
<>

W

II:

S<
'"

o

...
....

'2

:..J
(;)

~

.-
U

t-

-
-

><
:z

w

..

-
'

0
.. W

'" ... o
II:
W

m

'" ::> .:z

Er\JD

D
ATE

.)
...J

C

'
'-

(
C

(

('
..

C
-B

., 1 1

	0001A02
	0001A03
	0001A04
	0001A05
	0001A06
	0001A07
	0001A08
	0001A09
	0001A10
	0001A11
	0001A12
	0001A13
	0001A14
	0001B01
	0001B02
	0001B03
	0001B04
	0001B05
	0001B06
	0001B07
	0001B08
	0001B09
	0001B10
	0001B11
	0001B12
	0001B13
	0001B14
	0001C01
	0001C02
	0001C03
	0001C04
	0001C05
	0001C06
	0001C07
	0001C08
	0001C09
	0001C10
	0001C11
	0001C12
	0001C13
	0001C14
	0001D01
	0001D02
	0001D03
	0001D04
	0001D05
	0001D06
	0001D07
	0001D08
	0001D09
	0001D10
	0001D11
	0001D12
	0001D13
	0001D14
	0001E01
	0001E02
	0001E03
	0001E04
	0001E05
	0001E06
	0001E07
	0001E08
	0001E09
	0001E10
	0001E11
	0001E12
	0001E13
	0001E14
	0001F01
	0001F02
	0001F03
	0001F04
	0001F05
	0001F06
	0001F07
	0001F08
	0001F09
	0001F10
	0001F11
	0001F12
	0001F13
	0001F14
	0001G01
	0001G02
	0001G03
	0001G04
	0001G05
	0001G06
	0001G07
	0001G08
	0001G09
	0001G10
	0001G11
	0001G12
	0001G13
	0001G14

