General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

! (NASA-CR—161255) META ASSEMBLER N79-27872
X ENHANCEHENTS AND GENERALIZED LINKAGE EDITOR

' Final Report (McDo ouglas Astronautics
| Co.) 98 p 1 CSCL 09B

Unclas
G3/61 27947

S ﬁ
- \
=
YL __,‘
. 4: ,l
: @% ¢ . :
4

7
G
MCDONNELL nouth_s_;_>_

CORPORATION

/—-\,/ META ASSEMBLER ENHANCEMENTS AND
MCDONNELL_)__ GENERALIZED LINKAGE EDITOR
DOUGLAS (CONTRACT NAS8-32570)

Final Report
JUNE 1979 MDC G8027

PREPARED FOR:
GEORGE C, MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER
ALABAMA 35812

PREPARED BY:
MCDONNELL DOUGLAS ASTRONAUTICS CO-WEST
AVIONICS CONTROL AND INFORMATION SYSTEMS
HUNTINGTON BEACH, CALIFORNIA 92647

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-HURNTINGTON BEACH
5301 Bolsa Avenue, Huntington Beach, CA 92647

PREFACE

The final report for "Meta Assembler Enhancements and Generalized Linkage
Editor" is submitted to the Nationa] Aeronautics and Space Administration,
George C. Marshall Space Flight Center in accerdance with the provisions of
the contract number NAS8-32570. The report describes the results of the
design and implementation of an enhanced meta assembler and generalized
Tinkage editor to provide syntax responsive and target reconfigurable
assembly, Tinkage edit and library creation and maintenance capability.

If any additional information is desired, please contact any of the foliowing
McDennell Douglas or NASA representatives as appropriate:

® Mr. Z. Jelinski, Project Manager (MDAC)
Huntington Beach, California.
Telephone: 714-8%6-5060

° Mr. K. V. Smith, Principal Investigator (MDAC)
Huntington Beach, California
Telephone: 714-896-2937

Mr. Geoffrey C. Hintze, Project COR (NASA)
Marshall Space Flight Center, Alabama
Telephone: 205-453-5709

i

Page intentionally left blank

TABLE OF CONTENTS

PREFACE
INTRODUCTION

Proeblem Statement

Objectives

Technical Approach

1.3.1 Task 1 - User Oriented Syntax Definition
Capability

Task 4 - Meta Assembler Documentation

Task 5 - Develop a Generalized Linkage Editor

Task 7 ~ Meta Translator Instailation and
Training at MSFC

— iad]
N —

—t it i
e« .
o)
. e .
NIV AN

1.4 Results
ADMINISTRATIVE DATA

D PN

2.1 Team Organization

2.2 Schedule/Milestones

2.3 Facilities and Resources

2.3.1 MDAC-W Huntington Beach, California

2.3.2 NASA Marshall Space Flight Center, Alabama

TECHNICAL PERFORMANCE

™.

3%

3.1 Meta Assembler Implementation
3.1.1 Task 1 - User Oriented Syntax Definition
Capability
3.1.1.1 Assembler Level Language Befinition
Meta Language (ALLDEF)
3.1.1.2 Assembler Level Language Lexical
Meta Language (ALLLEX)
3.1.1.3 ALLDEF Meta Language Processer
3.1.1.4 ALLLEX Meta Language Processor
3.1.1.5 Generalized Parser (ALTRAN)
3.2 Meta Translator Implementation
3.2.1 Meta Translator Description
3.2.2 Meta Translator Application
3.3 Generalized Linkage Editor
3.3.1 General Overview
3.3.1.1 Libratory Creation and Maintenance
3.3.1.2 Binding of Modules
3.3.1.3 Cataloging of Standard Meta Assembler
System OQutputs
3.3.2 Flow Through the Generalized Linkage Editor
3.3.2.1 Creation of a System Libratory for
General Use

-l
w—

—t et) T ek

— o — —

L
@ L

[40}

3.4

3.5

APPENDIX A
APPENDIX B
APPENDIX C

3.3.2.2 Creation of a User Library and
Load Module Generation
3.3.3 Use of the Generalized Linkage Editor
3.3.3.1 Directive Coding Conventions
3.3.3.2 List of Generalized Linkage Editor
Directives
3.3.3.3 Use of the Library Creation and
Maintenance Function
3.3.3.4 Use of Linkage Editor Function
3 3.3.5 Use of the Cataleg Function
nsta11at1nn and Training
4.1 Task 7 - NASA MSFC Delivery
.4.2 Installation on the MSFC IBM 360
4 3 MSFC Installation Verification
4.4 Meta Assembler System/Meta Translator
Demonstration
.4.5 Demonstration for the NSSC-I
4 6 Personnel Training at MSFC
-4.7 MSFC Deliverable Ttems
.4.8 GSFC Deliverable Items
eta Assembler Documentation
5.1 User Manuals
.5.2 Detail Design Manuals

SCHEDULE/MILESTONES
ALLDEF NSSC-I DEFINITION
ALLLEX NSSC~I DEFINITION

vi

PAGE

35
36
38
39

60
64
64
64
65

65
65
65
65
60
66
67

A-1

c-1

Sectien 1
INTRODUCTION

McDonnell Douglas Astrenautics Company-West (MDAC-W) has developed a Meta
Assembler for NASA under previous contract efforts. Under contract NAS8-27202
the initial development of the Meta Assembler for the SUMC was performed.

The capabilities included assembly for both main and micro level programs.
Contract NAS8-30907 provided support to NASA MSFC during a period of checkout
and utilization to verify the performance of the Meta Assembler. Under
contract NAS10-8434 and NAS10-8833 additional enhancements were made to the
Meta Assembler which expanded the target computer family to include archi-
tectures represented by the PDP-11, MOBCOMP II, and Raytheen 706 computers.

1.1 PROBLEM STATEMENT

In spite of its usefulness, the system had some serious shortcomings namely
the Meta Assembler used a language independent syntax for directives { pseude
ops), macros and labels because these features could differ greatiy from one
assembly language to another. For this reason, existing assembly Tanguage
programs had to either have the source for these differences rewritten or a
syntax prepracessor had to be written to change them. This put an additional
burden on the user because in rewriting the source he had to substitute
unfamiiiar symbels for ones that he was used to. If a new syntax preprocessor
had to be written he usually had to seek assistance from the program originater
which resulted in additional cests and effert connected time delay.

Additionally, if a user desired to link together separately assembled modules,
he was required te use whatever, if any, Tinking suppert tools were available

fer the target machine or write his own.

The above disadvantages provided serious obstacles te software standardization.

1.2 OBJECTIVES

The primary objective of this effort was to standardize a NASA low cost

Meta Assembler and Linkage Editor. The enhancements to the Meta Assembler
defined for this contract include: the design and development of »

User Oriented Syntax Definition capability and the design and development

of & recognition capability to support these definitions in order to perform
the assembly process. Alse, the design and development of a generalized 1ink-
age editor and library creation and maintenance function was defined.

The result of this effort resulted in the establishment of a Meta

Assembler program and Linkage Editor program which operates in the envirenment
of a Targe scale host computer and supports software development for flight
‘and ground checkout computers (mini-computer class).

Additionally, user and maintenance documentation was developed and the
inherent capabilities of the program demonstrated.

1.3 TECHNICAL APPROACH
The ~~»tract called for 7 major tasks to be performed.

Task 1 - User Oriented Syntax Definition Capability

Task 2 - Generalization of the Procedure lLanguage

Task 3 - Improvement to the Meta Assembler Error Diagnestics and
Dynamic Bebug Features

Task 4 - Meta Assembler Documentation

Task 5 - Develepment of a Generalized Linkage Editor

Task 6 - NASA Geddard (GSFC) Delivery and Installation for the NSSC-1

Task 7 - Meta Translator Installation and Training at MSFC

Of these seven tasks, tasks 2 and 3 were deleted through renegotiation due
to technical difficulty of task 1. Task 6 was deleted at the request of
NASA and ceombined in part with task 7.

1.3.1 Taskr1 - User Oriented syntax Definition Cgpabi]ity
The existirg Meta Assembler is designed to translate symbolic assembler level
instructions into machine language instructions for a wide variety of target

computers. The adaptability is achieved via a set of target definition
directives which parameterize the Meta Assembler for the subsequent assembly
function. The target definition directives supply the architecture character-
istics (e.g., word size, register descriptions, character set definition)

as well as the instruction set definition (mnemonic, operand description).

Additionally, the Meta Assembler has built in directives to perform assembly
time functions (e.q., data definition, parameter definition, location counter
control, Tisting centrol, conditional] assembly control, procedure definition
and expansion}. The syntax processing of the Meta Assembler directives is
fixed (e.g., DATA, PROC, EQU, ORG) and at the instruction processing level
flexibility is provided for operand definition rather than syntax definitien.
Therefore, the Meta Assembler represents equivalency in its assembly function
with a correlating target machine and assembler syntax compatibility is not
maintained. This can have the effect of requiring programmers to Tearn the
equivalent assembler Tanguage and directive syntax instead of using the
familiar target assembler syntax. Additienally, maintenance of a program
cannot be performed by both the Meta Assembler and the target machine
assembler due to the syntactical differences.

This task alleviates the syntax incompatibility by providing the additional
capability to allew the user to define the syntax of the assembler larguage
and directives and the correlating semantics of the statements (e.g., generate
intermediate Tanguage, perform an assembly time function). This was
accomplished by designing a meta language for the purpese of defining
assembler languages, their syntax and transiation semantics.

The processors developed for this capability are the meta language processor,
the lexical processor and the generalized parser. The meta languaSe precessor
is a pre-assembly function which processes the meta linguistic definition
of the assembler language and generates a dictionary data set containing the
syntax and semantic tables to be uti'ized by the generalized parser,

This function need not be performed for each assembly. The generalized
parser performs the first pass of the assembly utilizing the syntax and
semantic tables produced by the meta language processor. The first pass
accomplishes the source statements translation inte the Meta Assembler

intermediate language which can then be processed by the existing second pass
of the Meta Assembler to perform object module generation.

The design intent of this capability was not to replace the existing Meta
Assembler target definition and first pass precess but rather augment the
Meta Assembler with the optionally invoked generalized parser functioen as
illustrated in Figure 1. Host portability of the enhanced Meta Assembler was
preserved.

Under this task a complete meta linguistic definition of the NSSC-I assemb]er
language was developed. This represents part of the delivery items
relative to Task 6.

1.3.2 Task 4 - Meta Assembler Documentation

A Detail Design Méhua] was prdduced which fully documents all subroutines
and data areas of the Meta Assembler. This document fs intended to support
maintenance functiens pertaining to the Meta Assembler. Included in the
Detail Design Manual 15 an appendix devoted to hest computer installation
precedures,

The existing Meta Assembler User's Manual was updated to include the
enhancements and modifications performed during this effort. Meta Assembler
error diagnestics are Tisted with appropriate explanations as an appendix

to the User's Manual.

1.3.3 Task 5 - Develep a Generalized Linkage Editor

A generalized Linkage Editor function was defined, designed, developed, and
validated with appropriate documentation supperting each phase. It provides
the capability to utilize meodular programming techniques in the application

of the Meta Assembler by combining a user Tibrary of separately assembled
object modules, preduced by the Meta Assembler, into an absolute or relocatabie
load module on a large scale host computer. Its primary processing capability
is to perform relocation and external Tinkage functions on the objact modules
processed. To implement a system generatior capability the Linkage tditer
additienally may access object modules from an object medule library to satisfy

undefined giobal references (see Figure 2).

USER ORIENTED SYNTAX DEFINITION EXTENSION

Sintax Ty

DEFINITION |

SEMANTIC

. META

LANGIJAGE
PROCESSOR

BEFINITION:

ASSEMBLER :

LANGUAGE | [%

{ DICTIONARY

SYNTAX
TABLES

SEMANTIC
TABLES

-
|
l
|
|
|
l
|
|
|
L

——

GENERALIZED
PARSER '

1

I
|
|
l
I
|
l
!
|

CURAENT META ASSEMBLER

ASSEMBLER
LANGUAGE

PASS |

PASS 2

Figure] IMeta Assembilar Configuratior;

OBJECT

TARGET ~
DEFINITION

META
ASSEMBLER

e b o

r-—-—-——-————-—.—-———————-—-—-—-a—»-——-————

USER
OBJEGT
LIBRARY

OBJECT |
L

SYSTEM ,
_ QBJECT
LIBRARY

OBJECT |

2

+

TARGET

STANIAHD

 LINKAGE i QUTPUT : | TARGET
] i EDITOR Mlé%ﬁ?_ i DRIVER [P Mt)%t?_e | MACHINE

OBJEET
3

HOST MACHINE '

OBJECT -

e e e
—— — — — — — o —

'USER GENEHATE[D GBJECT MGBULES AND THE QBJECT MOBULES
' ON THE SYSTEM OBJECT LIBRARY ARE PRODUCED BY THE META
1 ASSEMBLER

Figure 2 Generalized Linkage Editor ,

A critical aspect of the Linkage Editor will be its ability to respond to
user defined parameters to fully utilize the resqurces of the target machine,
specifically the NASA Standard Spacecraft Computer (NSSC-I). The resource
parameters include the ability to optionally specify beginning addresses for
some or all of the control sections represented in the object modules and

to specify the order in which the control sections are to be loaded.

The implementation of the Linkage Editor is in ASA FORTRAN IV, as is the
Meta Assembler, to facilitate ease in transporting the function from one
host computer tc another.

The absolute load moduie generation is in a standard format to maximize its
applicability to a wide variety of target machines. This necessitates an
output driver to be developed whenever a new target machine is interfaced.
Under this task an output driver was developed to format the load modyle for
toading and execution on the NSSC-I (see Figure 2).

1.3.4 Task 7 - Meta Translator Instaliation and Training at MSFC

For the exclusive purpose of maintaining the enhanced Meta Assembler,the

MDAC proprietary Meta Translator was installed at MSEC on an IBM 360. This
installation included the delivery of source programs (tape), program listings,
technical decumentation and installation procedure description for the MDAC
Meta Translator, the enhanced Meta Assembler and the generalized Linkage

Editor (see Figure 3).

Personnel training was conducted in the utilization of the Meta Translator.

In additien, the NSSC-1 Tanguage definition and output driver were delivered
to MSFC. The GSFC furnished test cases were also delivered (see Figure 4).

1.4 RESULTS

The Meta Assembler was enhanced to allow the uyser to define an assembler
Tanguage syntax to be processed. This capability eliminated source language
refermatting or ad hoc syntax recognizer development in order to maintain
cempatibility with a target machine assembler language syntax.

META ASSEMBLER

. { DEFINITION

META LANGUAGE |

] MDAC
JMETA TRANSLATOR

META ASSEMBLER
| PARSERS ASA
FORTRAN IV

T sounce

| META Assemeien

SUPPORT ROUTINES
ASA-FORTRAN IV
SOURCE

'IBM 360

~—» FoRTRAN '

COMPILER

ASSEMBLER

soumee ! META ASSEMBLER |famimee

i-:.i'guré 3 MSFC‘]n;ta;htlon: IEM?!ED

OBJECT

LINKAGE
EDITOR

STANDARD
LOAD

MODULE
#

NSSC-1'4

SYNTAX |
DEFINITION |

SEMANTIC
BEFINITION |

NSSC-) I
ASSEMBLER |
LANGUAGE | -

" LanGuace |
| PROGESSOR
DICFIGNARY
- - B |
| . |
P —
| CSYNTAX | I
| TABLES | |
| ':
|
| |
| ' SEMANTIC |
' TABLES l
L.

o

_—
!

! GENERALIZED f
i PARSER i

Figure? GSFC Installation - IBM 360 '

'
ASSEMELER |
. PASS |

+ ASSEMBLER
1 PASS It

META T

OBJECT

{ LINKAGE
EDITOR

a f STANDARD

L e P ety

LOAD
‘MODULE

| ‘NSSC-I
! ouTPuT
| DRIVER

NSSC-
| Leap
IMODULE

it

The original Mets Assembler was regenerated using the latest version of the
MDAC Meta Translater. This regeneration provided an increase in efficiency,
both execution time and memory requirements, and a more extensive dynamic
debug capability.

These improved dynamic debug features will provide support in the maintenance
of the Meta Assembler itself.

A generalized Linkage Editir was developed as a standard post processor for
the Meta Assembler. The function of the Linkage Editor is te 1ink separately
assembled relocatable and/or absolute object modules into an absolute or
relocatable load module. The Linkage Editor was written in FORTRAN IV to
coincide with the host portability requirements of the Meta Assembler.

The NSSC-I computer was the iﬁitia] target computer. The Meta Assembler
and Linkage Editor were configured to accept NSSC-I assembler language syntax
and produce load modules that fully utilize the NSSC-I resources.

The resultant Meta Assembler and Linkage Editor was installed at NASA Marshall
Space Flight Center to facilitate centralized contrel of these NASA standard
programs.

To provide NASA MSFC the capabiiity to maintain the Meta Assembler the MDAC

propreitary Meta Transiator program was installed at NASA MSFC and training
was provided in its yse,

10

L T

Section 2
ADMINISTRATIVE DATA

2.1 TEAM ORGANIZATION

The overali responsibility for this Project was assigned to Avienics Control
and Information Systems (ACIS), headed by Mr. 5.A. Johnston, Birector and

was performed by the Computer Science Branch. ACIS is a@n organization of
information scientists and engineers dedicated to research, design, analysis,
and testing of advanced software concepts and to the development of computer
applications for scientific and military use (see Figure 5)

MDAC Project Manager - Mr. Z. Jelinski

MBAC Principal Investigator - Mr. K. V. Smith

MDAC Technical Staff - Mr. J. B. Churchwell
Ms. Soo Park

NASA COR - Mr. Geoffrey C. Hintze

The original Principal investigator of the Meta Assembler Enhancements and
Generalized Linkage Editor Project, Mr. A. J. Edwards, terminated employment
with MDAC-W in danuary 1978. At that time, Mr. K. V. Smith was assigned

the responsibility of principal investigator of this project.

2.2 SCHEDULE/MILESTONES
The schedule and milestones for the performance of the contract is contained
in Appendix A.

2.3 FACILITIES AND RESOURCES

The development pertien of this contract was performed at Huntingten Beach,
California, Headquarters of the McDonnell Douglas Astronautits-COmpany-west
(MDAC-N). The installation portion of the centract was performed at Natienal
Aerenautics and Space Administration, George C. Marshall Space Flight Center,
Marshall Space Flight Center, Alabama.

1

McDONNELL DOUGLAS ASTRONAWTICS COMPANY

VICE PRESIDENT !
ENGINEERING

C.). DORRENBACHER

AVIONICS CONTROL AND |
INFORMATION i
SYSTEMS i
DIRECTOR :

_G.A JOHNSTON___,

DATA GONTROL AND PROCESSING
' SUBSYSTEMS
CHIEF ENGINEER |

R. R. ERKENEFF

COMPUTER SCIENCE '
SRANCH CHIEF

Z. JELINSKI

META ASSEMBLER ,
PROJECT J
MANAGER |

Z. _Qeiémski

:F-igu':é % Pasition of Contract Within Compaﬁv

12

[—

wrot o .

2.3.1 MDAC-W Huntington Beach. California
The McDonnell Douglas Automation Company provided support to the project through
the use of its facilities - the CBC Cyber 74 and DEC PDP-10 computers.

The MDAC-W proprietary Meta Translator was one of the primary support
software products used in the performance of this project.

2.3.2 NASA Marsha1] Space Flight Center, Alabama
The host computer for the installation of the delivered software was the
IBM 360 Tocated in building 4708.

13

Section 3
TECHNICAL PERFORMANCE

3.1 META ASSEMBLER IMPLEMENTATION
This sectien contains the implementation results for the Meta Assembler exten=
sions.

3.1.1 Task 1 - User Oriented Syntax Definition Capability

The purpose of this task was te previde a user oriented capability te syntacti~
cally define an assembler language, machine instructions and directives,
enabling the Meta Assembler to maintain syntax cempatibility with target com-
puter assemblers.

The objective of this task was to integrate a meta language definition of an
assembler language into the Meta Assembler technique such that the built-in
semantic and support processing is available to the user at the meta language
level. The built-in semantic and support processing is represented by:

° expression evaluation
® assembler directive processing
® intermediate language formatting
° object generation
° listing function

The implementation approach was to develop a meta language to define the
assembler language syntax and correlating built-in semantic functions,

This meta language is input to a stand-alone preprocesser for translation
inte syntax and semantic tables which will guide the first pass processing
by the Meta Assembler. A generalized parser was developed, integral to the
Meta Assembler, to perform the alternative first pass of the cross assembly.
The outp&t of the generalized parser is an intermediate language (IL) data
set such that the existing second pass of the Meta Assembler can compiete
the cross assembly by converting the IL into the ebject data file and
generate a program 1isting (see Figure 6).

PRECEDING PAGE GLANK NOT FRARD

5

91

FORTRAN Logical Unit 10

ALLINT | SkeTeton ALLDEF

Dictionary
l FORTRAN Legical Unit 10
ALLDEF meta- | :
tanguage ALLDEF 21 Dictionary contain
definition . ing ALLDEF defin.
' l FORTRAN Logical Unit 10
’LLLEX me ta-]angu- ' Compiete ACLDEF
age description of. ALLLEX : _ dictienary de-
Source language > scribes source
tokens language and
semantics
_____________,—'
L FORTRAN Logical Unit 8
/ Assenbly - <>
language P
o Version 2 :
‘;gggggs - Meta Assembler Object
{ALTRAN) ModuTes
_ . S |
Assembly
Listings {
Figure6. Use ofi the Version 2 Meta .______.f’/,——-h\\

Assembler

3.1.1.1 Assembler Level Language Definition Meta Language (ALLDEF)

The purpose of the meta language, ALLDEF, is to provide an easy to use
enviroenment in which to describe an assembler language syntax and correlating
semantic process. The design of ALLDEF is based on the OPALDEF meta language
developed by MDAC for the U.S. Army Armament Command, Frankford Arsenal.

Key to the concept of ALLDEF is its correlation to a bottom-up operator
precedence parsing function. This permits a simplistic meta Tanguage
notation and results in efficient parsing. Basically, ALLDEF represents a
"dictionary" definition concept where the symbols of the target assembler
lTanguage are defined in terms of their spelling (lexically) and their meaning
(semantics). The meanings are defined contextualiy, i.e., where the symbol
may appear and translationally, i.e., what Meta Assembler built-in semantic
functien is to be performed.

A statement in ALLDEF may take forms to define user types, parameter table
entries, target machine characteristics, assembler tanguage symbols, semantic
functions and comments. The ALLDEF definitions are specified in a free-form
structure with the constraint that user type, parameter table and target
characteristic definitions must precede their references.

User Type Definition

A type is an attribute asseciated with a symboel which categorizes that symbol
uniquely. Thus, a symbel may be bound unambiguously to an operator based on
Tts type. A set of built-in types will be provided to the ALLDEF Tanguage
including:

NUMBER - a digit string

VALUE - a NUMBER symbol which has been cenverted
to its binary representation,

NAME - a character string which satisfies a
definition of an assembler Tevel
mnemonic or symbol notation.

LABEL - a NAME symbol which is identified in
the label field of a statement.
ADDRESS - a NAME symbol defined in the assembler

symbel table as an address value.

17

R e e KBRS o P M At 1 e

CHAR STRING - a character string normally delimited
and typed for text processing.

SPECIAL - a character string composed of special
characters,

SYMBOL - a character string which cannot otherwise
be typed as NUMBER, NAME, CHAR STRING, or
SPECIAL.

The available built-in types are used to provide initial token classification
and the set may be extended further via the TYPE statement in ALLDEF. This
provides unique binding attributes for tokens defined in ALLDEF.

Example:
TYPE '"REGISTER, '"MEMORY,'....$
Parameter Table Entry Definition
A parameter table is available for utilization. tssentially, the entries

in the parameter table are the translation time variables defined, optionally
nitialized, and used as desired. The parameter table is divided into two

sections, a glebal and a local section. The global section contains the
variable entries that are initialized only at the start of the assembly.

The local section contains the variable entries that are initialized at the
start of each statement assembly. Additionally, all of the built-in
translation parameters are available in fixed entries ir the parameter table

including:

CURSOR - current input statement cursor pesition
in the local section and initialized to 1.

CURSOR CHAR - character under the CURSOR position,
in the glebal section,

OPCODE - operation code value for object generation,
in the global section.

BIT_LENGTH - bit string length for object generation,

in the global section.

18

FIELDS
LOCATION
CTL-SECTION

MEM-SIZE
ADDRESS_UNIT
ACCESS_UNIT
ERROR SIZE
VALUE_SIZE
OBJECT SIZE

The user may extend
in ALLDEF.

Example:

w

g P

the number of fields to parse for a statement,
in the local section and initialized to 3.
assembly Tocation counter, in the global section
initialized to zero.

current control section for LOCATION, in the
global section initialized to 1.

global section parameters correlating to the
Meta Assembier SIZE directive

the parameter table via the GLOBAL and LOCAL statements

GLOBAL "LEVEL'=T, 'NEST'....$

Global section definitions LEVEL is initialized
to T and NEST is initialized to zero by default.

LOCAL 'SOURCE’, 'DEST', 'STYPE' = DOUBLE...$

Local section definitions SOURCE and DEST
are initialized to zero by default and STYPE
is initialized to DOUBLE (previously defined
on a TYPE statement).

Target achine Characteristics

The target machine characteristics are the parameters hseded to perform the

cross assembly function.
maintained as fixed built-in entries in the parameter table (see paragraph

2.1.1.2).

Some of the characteristic parameters are

19

Assembler Language Symbols

The prdcess of building an assembler language “dictionary" consists of defining
the assembler language symbols, or tokens, and the correlating semantic

functiens, i.e., object generation and assembler directive Processing. ALLDEF
statements are needed to define the assembler Tevel tokens in terms of

operator precedence rules for the syntactic processing, and the semantic functions
to be performed. It is at this point that the essence of unique assembler
language translation into Meta Assembler intermediate language occurs,

ALLDEF Statement for Assembler Language Operator Definition -~ ALLDEF statements
are used to define the assembler language symbols, i.e., instruction mnemonics,
directive mnemenics, and the special operators of the assembler language
statements, creating the environment for an operater precedénce syntax
processing. The remaining task is to define the syntactic meaning of the
operator definitions. The syntactic meaning of an assembler level token
defined in ALLDEF takes the form of:

° definition of the resylts

° definition of the operands allowed

° definition of the eperator precedence
° parameter table action

° semantic action

The cellective ALLDEF terms to define the assembler Jevel symboels and theijr
meaning cemprise the ALLDEF statement.

Assembler Level Operator Definition - The assembler level operator definitions
describe the verbs and special operators of the assemb]er fanguage and provide
the mechanism to perform a statement parse. The operator definition term
occurs first in an ALLDEF statement. Machine instructions and directives

are the action verbs of the assembler statements which result in a statement
level semantic, i.e., object generation and directive functien. Special
Operators are the sub-statement identifiers that perform on the action verb
operands. Their asseciated semantics build toward full statement recognition
at assembly time.

20

Examples:

¢ 1.

DIRECTIVE 'EQU':]
PREFIX OPERATOR'#':
POSTFIX QOPERATOR '@': special operators

INFIX OPERATOR',®:

Definition of Results - A result is the mandatory type of information to be
returned to the parsing process upon complete recognition of an operator

{other than the action verbs INSTRUCTION and DIRECTIVE). A result is expressed
in terms of ALLDEF types.

Example:
RESULT=REGISTER

Definition of the Operands Allowed - Operands are defined in terms of their
order, optionality, type, kind, and term or sublist structure. The grder
pesition of the operand is correlated to a left-to-right scan of the operands.
The type must be an ALLDEF type. The kind refers to the built-in generic type
used to further bind operands and operators, i.e., EXPRESSION. The sublist
structure, SUBLIST, indicates a delimited term, i.e., a parenthesized notation.
The keyword OPTIONAL defines the presence of an operand is allowed but not
required.

Examples:
OPERAND(1) = REGISTER SUBLIST
OPERAND(2) = OPTIONAL ADDRESS EXPRESSION

Definition of the Operator Precedence - The precedence specified in a defini-
tion provides the priority for reducing an operator to its result. Default
precedence is assigned te the various operaters, however, the precedence

may be explicitly specified.

Example:
PETTEDENCE=50

21

Semantic Action - The semantics of an operator definition are described in a
semantic clause which explicitly specifies semantic functions or refers to a
separate semantic definition statement.

Semantic actions occur at two different levels of Pracessing. First, there

are the assembler function semantics which perform statement level semantics,

i.e., symbol table definition and object code generation. Second, there are
syntactic processing semantics which manipulate parameter table variables and
Operands, i.e., building operand 1ists, in order to effect precise assembler language
statement recegnition. Additionally, decision making phrases and arithmetic
operations are available to the semantic clause providing flexibility over the
semantic definition. This consists of an IF-THEN-ELSE-END type of phrase

Structure and arithmetic function keywords .

Action may be taken upen perameter table variables in the form of assignment
statements. This is an imediate transilation semantic available for use
at the language definer's discretion.

Example:
NLEVEL=NLEVEL+1

The assembler functien Semantics are represented by directive processing,
i.e., symbol table definitions, macro processing, literal pool processing and
object generation.

Examples:
CREATE_SYMBOL(OPERAND(2))
CREATE_EATA('DATA',OPERAND(]))

symbol table proceséing

LITERAL(OPERAND(3)) l Titeral pool processing
SECTION('DATA") contrel section processing
SECTION{GPERAND(T))

CREATE_MNEMONIC(OPERAND(1)) ’ mnemenic definition,ie. ,macre

OBJECT(ADDRESS_TYPE(LOCATION;pOUNTER),FIELD(043)=
OPCODE,FIELD(4-7 }=OPERAND(1,1) FIELD(8-15)=
OPERAND(1,2))

]Mﬁatcwegmmmtmn

22

[p———y

[P

T |

Lt il

The syntactic processing semantics perform actions upon the operands during
the assembler level statement recognition process.

Example:
LISTF(OPERAND(T),OPERAND*Z),0'65') build an operand Tist composed
of 3 elements

The decision making phrase provides the capability to have alternate paths
as well as establish the truth condition for the operator definition
recognition. Available to the IF phrase is the ability to test:
° operator kind, spelling or precedence
operand value
operand presence (optional testing)
parameter table value
value of expressions

4
o
=]

(=]

Example:
IF(PRESENT(OPERAND(1)))

IF(SYMBOL_IYPE(OPERAND(])).E@.REGISTER),
CHK-REGT ,

ELSE,
CHK-REG2,

END,
LISTF(DPERAND(]),0PERAND(2)),

END §

ALLDEF Operater Semantf: Definition.Examplg
* INSTRUCTION 'MOV' : OPERAND(1)=REG_REG,RESULT=DOUBLE,
SEMANTIC=0PCODE=0'01" ,BDL164
INFIX OPERATOR ',': RESULT=REG REG

OPERAND(1) = REGISTER,

OPERAND{2) = REGISTER,

SEMANTIC= CHK-REGS,LISTF,
END §

SEMANTIC 'DBLI6': BIT LENGTH=16

23

OBJECT(ADDRESS"TYPE{LOCATION_pOUNTER),FIELD(D-E)*OPCODE, ‘
FIELD(4-9)=0PERAND(1,1), .]
FIELD(10-15)=0PERAND(1,2))$

An example of NSSC-] assembly Tanguage is contained in Appendix B.
3.1.1.2 Assembler Leve] Language Lexical Meta Language (ALLLEX)

Lexical Analysis

The lexical processing is performed by interpeting a meta definition of the
Texicon to perform token identificatien in & top-down fashion. The meta
language for defining the lexical pracessing is very similar to the meta
language of the MDAC Meta Translator and is processed by a preprecesser step
subsequent to the ALLDEF processing of the syntax meta definition.

The primary purpose of the lexical meta definition is to define the assembly
time token feteh and identification process.

It became c¢lear that a parameterized standard lexical function is prehibitive
due to the context sensitive uniqueness found in assembier languages. This

has led to the necessity of providing a specialized meta language to adequately
address the token fetch and identification process.

It is the responsibility of the lexical Process to fetch a token and identify
it as one of the basic types:

NUMBER - a digit string token which can be
cenverted to a binary value.

VALUE - a NUMBER token which has already been
converted te its binary representation.

NAME ' - a character string token which has the

preperties of an assembler Tevel mnemenic
or symbolic notation.

LABEL - a NAME token which has been identified
in the label field.
CHAR STRING - delimited character string token

24

SPECIAL

SYMBOL

a token composed of special characters
only as defined by meta language.

a token which cannot be otherwize
identified as a NUMBER,NAME,CHAR STRING
or SPECIAL.

The lexical meta definition provides a top-down, recursive descent, goal

oriented technique for teoken fetch and identification.

The meta definition consists of productions developed to guide the lexical

process by defining the following lexical situations:

o}

Q

o

The lexical meta language is a medified Backus Naur Format (BNF) notation

what
what
what
what
what
what
what
what
what

is
is
is
is
is
is
is
is
is

a

a
a
a
a
d

NUMBER token

NAME token

LABEL token
CHAR_STRING token
special character
subfield separator

parse order fer token identification
the end of a statement field condition
the end of statement condition

which will provide the basic parse functions:

o

o

[+]

(=]

[o]

exclusive cursor contrel
truth/false path prediction

reoccurance precessing

recursive processing
1it- ral string prediction

The extended Texical parse functions include:

a

o

built-in primitive definitioens

e.g. LETTER,DIGIT,CHARACTER,etc.

parse state conditienal testing

The ALLDEF PARAMETER table and built-in global var1ab1es will
be available for assignment and conditional testing (e.g., CURSOR,

CURSOR CHAR ,FIELDS ,etc.)

25

[+]

token construction and assigning the initial identity {e.g., NUMBER,
NAME, etc.)

While there is a distinct separation of the lexical and syntactic parse
functions, there is a commen source of the overall statement recagnition
state. Through the ALLDEF parameter table and other built-in global
variables, specialized parse functions can be controlled, i.e., label field
identification, end of stateme.t detection, assembler precessing modes

for special lexical and syntactic definitions (macro and text functiens).

Exampie:
<TOKEN> : = <NUMBER>//<NAME>//<SPECIAL>//<SYMBDL>$
<NUMBER>:= (IF'0',BASE=8//BASE=10),
<DIGITSTRING>,
(IF BASE EQ 8, TOKEN_VALUE=VALUE OF
OCTAL<DIGITSTRING>//TOKEN_MRLUE=
VALUE OF <DIGITSTRING>) ,TOKEN TYPE=VALUE,
IF NOT LETTER §$
<DIGITSTRING>:= 1 to MANY DIGITS $
<MAME>:= LETTER, O to MANY (LETTER//DIGIT),

TOKEN_TYPE=NAME$
<SPECIAL>:=(','//’.‘//‘+’//'-‘//'*'//'/'),TOKEN_TYPE=SPECIAL$
<SYMBOL>:= 1 TO MANY (IF NOT SPACE,NOT <SPECIAL> , CHARACTER) , TOKEN_TYPE

=SYMBOL $

3.1.1.3 ALLDEF Meta Language Processor

A meta language pProcessor was developed to process syntactic meta definitions
inte the ALLDEF dictionary composed of the syntax and semantic tables., The
ALLDEF processor functions as a stand-alone preprocesser to the Meta Assembler.
The ALLDEF dictionary file is preserved as an input file to the generalized
parser function of the Meta Assembler which eliminates the need to execute

the ALLDEF processor for each cross assembly,

The design of the ALLDEF proecessoer is based on fhe OPALDEF processor developed
by MDAC for the U.S. Army, as is the ALLDEF meta language design based upon
the OPALDEF meta language (see Figure 7).

26

MODIFIED BNF
DESCRIPTION
OF LEXICAL
SCANNER

ALLDEF
DESCRIPTION
OF ASSEMBLER
SYMBOLS ANB
THEIR MEANING

ALLDEF
PROCESSOR

LEXICAL I fo '

PROCESSOR

ASSEMBLER
DICTFONAHY

INTERPRETIVE
TABLE OF
LEXICAL
SYNTAX

INTERPRETIVE
TABLE GF
LEXICAL
SEMANTICS

1

l

|

|

|

|

l

|
__},_’.
|

SYMBOL
PROCESSOR S '

——

L

Figure 7. ALLDEF Processor

DICTIONARY ENTRY
FOR EACH SYMBOL
ALONG WITH THE
ASSOCIATED PARSING

e m——— —— —— —— —— ——

INFORMATION
SEMANTIC DIRECTIVES
ASSOCIATED WITH
EACH SYMBOL

27

e — — —— — T— i——— A—y ——

3.1.1.4 ALLLEX Meta Language Processor

A meta Tanguage processor was also developed to process lexical meta definitions
into an existing ALLDEF dictionary. The ALLLEX processor functions as a

post processor to the ALLDEF processor and a preprocessor to the Meta Assembler.

The design of the ALLLEX processor is based on the MDAC Meta Translator,

3.1.1.5 Generalized Parser (ALTRAN)
The ALTRAN processor will be developed as an integral module of the Meta

Assembler. It provides the alternative first pass processing of the Meta Assembler

by translating assembler language source statements into the Meta Assembler
intermediate language structures and performing assemdler directive semantics
via the ALLDEF dictionary (see Figqure 8).

ALLTRAN P@rsing:

Thé parsing tééhnique employed in ALTRAN is a precedence analysis scheme
utilizing a left-to-right scan. A reduction of an operator and its operands

to the defined result is made when another operator is recognized of a lower

or equivalent precedence value, Any semantic associated with the reduced
operator is also effected at that time. The assembler directive semantics,
i.e., symbel table manipulation and contrel section activation, are performed
immediately by built-in support routines. The object generatien semantics
build a T1ist of intermediate language elements on the intermediate language fiTe.
During the parsing process of ALTRAN, the operators and operands are placed

on stacks for evaluation. The binding of operands to eperators is performed

on the basis of the ALLDEF operator definitions. The proper operator
definition is detected by matching the available operands with the ALLDEF
operater definitien which permits operator reductien to eccur. The implication
is that multiple definitions of the same operator are permitted.

3.2 META TRANSLATOR IMPLEMENTATION

3.2.1 Meta Translator Description

The Meta Trans1at9r ié a propreitary translater writing system (TWS) developed
at MDAC-W that is a very effective tool for the generation of language
translators (see Figure 9). It is machine independent in the class of medium
and large scale computers that have an ASA FORTRAN IV compiler,

28

. 1
[——|

DICTIONARY

P

LEXICAL
SCANNER

l

CLASSIFIER

v

PARSER

REBLUCER

BUILT IN
SEMANTIC FUNCTIONS

1T

T L

GPERATOR
STACK

OPERAND
STACK

Figure 8. ALLTRAN Processor

28

SEMANTIC
STACK

o€

AUTOMATED LANGUAGE

METRAN USAGE
GENERAL APPLICATION

LANGUAGE PARSER USAGE

20832

/US'ER PROGRAMS
(IN DESCRIBED

METRAN

(HOST FORTRAN}

LANGUAGE
DESCR{PTION
({N METALANGUAGE}

MDAC LANGUAGE DES [GNER

) LANGUAGE)
LANGUAGE
> PARSER . E(LJ{B‘OL
(HOST FORTRAN) FORTRAN
TRANSLATED
OUTPUT

~ MODIFIED SOURCE

SYMBOLIC ASSEMBLY CODE

Figure 9. Meta Transiater General Application

TP

Every transilator consists of a parser to recognize syntax, a procedure
executor and a set of subroutines to perform semantic functions, a number
of support routines that perform common functions, and a control driver to
act as an executive, tontrolling the flow of operations.

The parser and procedure executor are generated by the Meta Translator

Since they are language-dependent. The semantic procedures may inveke built-
in or user supplied Subroutines. The support routines are not generated

but are provided as an adjunct to the generated code. The control driver

is a short main Program which initiates translation, and is written by the
language definer in FORTRAN IV.

The language definition is written in the meta language by the language definer
(see Figure 10). It is this definition that is translated into the parser

and procedure executor by the Meta Translator. A supporting BLOCK DATA
subroutine s also generated for initialization of syntax and semantic
parameters.

3.2.2 Meta Trans1at@r AppTication

The Meta Translator was ysed to originally produce the Meta Assembler syntax
Processing subroutines and is integral to the implementation of the ALLDEF

and ALLTRAN processors. This technique utilizes a meta language for defining

the syntax processing algorithms and greatly eases implementation and maintenance

functions.

Te provide maintenance capability to NASA, the Meta Transiator was installed
at MSFC and the Meta Assembler meta language Source was a deliverable itenm.

3.3 GENERALIZED LINKAGE EDITOR

3.3.1 General Qverview

The Generaiized Lfﬁkage Editer (GLE) is a multi-functioned utility designed
to aid the Meta Assembler user in the creation and maintenance of software
systems built from Meta Assembler formatted object modules.

3

R T AL R B R S e

CE

SDECLARATIVENAME

SDODECLARATIVE .

$SDIMENSION

FORTRAN TRANSLATION EXAMPLE

.=SET CASE I =

{‘DIMENSION’, ‘INTEGER’,
‘REAL’, ‘COMMON’, "DATA’,
‘EQUIVALENCE’, "DOUBLE",
‘LOGICAL’, 'COMPLEX",
IMPLICIT'),

.=CASE | OF

{SDIMENSION SINTEGER,
SREAL $SCOMMON,SDATA,
SEQUIVALENCE,SDOUBLE,
SLOGICAL SCOMPLEX,
SIMPLICIT).

=TEXT{$DECLARATIVENAME,’

LIST OF 1000
BEGIN
SNAME,
TEXT{SNAWME), .
$FINDDIMENSION,
$COMMA
END,
TEXT{EJECT).

{*"DETERMINE DECLARATIVE TYPE

{* PARSE THE DECLARATIVE

), /* OUTPUT ‘DIMENSION’
/* PARSE THE ARRAY LIST

/* PARSE AND OUTPUT ARRAY NAME

/* PARSE AND OUTPUT PARENS AND
/* SUBSCRIPTS. GUTPUT A COMMA.

1* PRINT AND PUNCH OUTPUT HAAGE

Figure 10. Meta Translator Example

20834

*f

*/

*/
*/

*/

¢/
*/

*/

P

:54-51:‘ '..I

iz Ly

Functionally, the GLE provides three basic services: creation and maintenance
of libraries of object modules, binding of separately assembled modules to
form a generalized load module. and cataloging of object modules, Tibraries
and load modules te gather descriptive information.

3.3.1.1 Library Creation and Maintenance

This service provided by the GLE gives the Meta Assembler user the capability
to create a new user/system library directly from the output of the Meta
Assembler. Once a Tibrary has been created, it may then be updated using
Meta Assembler output and the old Tibrary to create a new Tibrary.

3.3.1.2 Binding of Modules

This is the primary service of the GLE. Its functien is to bind separately
assembled modules, developed for a common target machine and residing on

user and/or system Tibraries, into a generalized Toad module. The generalized
load module is then available for transformation into the structure required
by the specific target computer loader. A wide range of contrel is given to
the user, through the use of directives, for determining which modules and

in what order will appear in'the resultant load module.

3.3.1.3 Cataloging of Standard Meta Assembler System OQutputs

This capability gives the user a too] to display descriptive information
about each of the three Meta Assembler system outputs: object modules,
Tibrary of object modules, and load modules.

The available information includes: type of output, module name, module
creation date and time, medule version, target computer.

3.3.2 Flow Through The Generg}ized_Linkdgg Editor

The flow of data.fhrough the GLE is controlled entirely by user supplied
directives which represent: invocation of a basic service, tasks fer a
basic service to perform, and terminatien of a basic service.

I{ is expected that a couple of basic flow paths will be performed again
and again. With this in mind, the following descriptions will outline these
two basic flews (a macro flowchart appears inm Figure 11).

33

L5

G{AHGETGOMPUTER
ASSEMBLY
LANGUAGE

v

META
ASSEMBLER

OBJECT A

ASSEMBLY

LN § 0
OBJECT ¥ y:
- /
DIRECTIVES
LIBRARY ERROR MESSAGES
CREATION AND AND CATALOG
MAINTENANCE OF RESULTANT
FUNCTION EXISTING LIBRARY
SYSTEM
OR
—— . USER LIBRARY PROCESSING
\ 4 LIBRARY
NEW OR
UPDATED .
g‘;ssgg‘n NOTE: CATALOGING MAY BE
DRpoen DONE BEFORE OR
AFTER ANY STEP
: L b© LINK EDITING
K —
EXISTING STANDARD ERROR MESSAGES
USER OR LOAD
SER LINKAGE : AND
SYSTEM Enimo MOBULE AR
LIBRARY '

—____J

‘

*IF TWO LIBRARIES ARE MADE AVAILABLE TO THE LINKAGE EDITOR

THEN THEY MUST NOT BE OF THE SAME TYPE.

Figure 11. Flow Through the Generalized Linkage Editor

34

3.3.2.1 Creation of a System Library for General Use

In a production atmosphere, there usually exists a set of object modules

that perform widely needed utility functions: input/output, mathematical
functions, date and time, etc. Once these functions are coded and tested
they should be put into a Vibrary that is available to all users. The GLE's
library creation and maintenance function will create a system library of
object modules using the assembled utility functions as input. This

Tibrary of utility functions is now in a form that may be used by the linkage
editor service to satisfy references to them.

When changes to the system library are necessary, the jibrary service has
capabilities to update the old system 1ibrary against newly assembled modules,
using directives, to create a new system library.

3.3.2.2 Creation of a User Library and Load Module Generation

The Meta Assembier user will create a set of object moedules to perform a
particular task. As new tasks are reguired or old tasks become unnecessary,
the set of object medules will change to reflect the current requirements.
The GLE's Tibrary creatien and maintenance function (LCMF) can model such a
sequence. Given an initial set of object medules, the LCMF can create a
user library of object modules. As changes are made, the LCMF can make the
required changes to the user library.

Once a 1ibrary is built, the linkage editor service may then be inveked.

The linkage editor service, using a user library and/er system library,

will create a Toad module.

35

3.3.3 Use of the Generalized Linkage Editor'
Each service of the GLE is accessed by user directives, These directives

control service invocation, service termination and service tasks to
be performed.

A1l directives are of the general format described below.

3.3.3.1 Directive Coding Conventions

Notation Used to Describe Directives

The descriptive notation used to define the syntax of the input directives

makes use of upper and lower case Tetters and the characters left bracket (L)
right bracket (]), pericds(...}, and vertical bar ().

A1l keywords and other explicitly required symbols appear as upper-case or
special characters. An implicit operand appears as a lower-case name which
is described in a narrative subsequent to its usage.

An optional operand is shown enclosed within brackets([{]). Occasionally,
more than one level of optionality is required and is described in terms
of brackets within brackets:

MAP {ON] ; describes MAP; or

OFF MAP ON: or
MAP OFF:

Choosing one of a 1ist of operands is denoted by 1isting the oeperands
vertically and enclosing them with vertical bars (]|):

36

ENTRY . module ; deseribes ENTRY medule; or
S bO] 1
(’aggr) ENTRY (symbol); or
ENTRY (addr);

Specifying a repetitive collzction of identical overands is described by
follewing the operand with a triple dot (...):

name [,name...] describes name or
name, name or
name,...,name

Format of Directives

A1l GLE directives are formed according to the following rules and
restrictions:

A1l directives are free-form using columns 1-72

® Blanks are ignored and are used for readability only

® Each directive is terminated by a semicoelon

° A1l text between the strings /* and */ is ignored, this string may
not centain intervening blanks.

More than one directive may appear eon a card

° Directives may be contained on mere than one card

The following example illustrates the preceding points:

1 ' 72 73 80
L IBRARY | | DIR 00
LIBRARY SERVICE FUNCTION */, DIR 002
BEFORE A,B; /*PUT B BEFORE A, AND */A DIR 003
FTER C/*PUT/,D; END: DIR 004
LINKEDIT; INCLUDE A:SLIB(4000) DIR 005
,ST(1),52(2) ;MAPON; END; CATALOG IR 006
JFILES=8,ULIB /*,%/,SLIB; /DIR 007

CATALOG END/END; CIR 008

37

3.3.3.2 List of Generalized Linkage Editor Directives
The directives listed below give a quick summary of capabil’ties for each ¢
basic service provided by the GLE. -

Library Creation and Maintenance Function Directives

° LIBRARY Invoke Library Function y

° CREATE Build New Library from Meta Assembler Output On y

° NAME Specify name of 1ibrary

° KIND Specify kind of Tibrary B

° BEFORE Position for a new modyle o

® AFTER Position for a new module i

° DELETE Delete modules from old library

¢ IGNORE Ignore new module

° RENAME Give module rew name

° NO AUTOREP Only processes new modules named on before,
after and replace directives

® REPLACE Allows select replacement of modules

° END Terminate Tibrary function

Linkage Editor Directives

° LINKEBIT Invoke LINKAGE EDITOR

° FILES Indicates file to be 1inked

° RELOCATION Specify address fields .

° MODE Force type of load module .

® INCLUYDE Force inclusion of a medule from a Tibrary .

® EXCLYDE Force exclusion of a module from load module

° NOULIB Force exclusion of entire yser library ’

° NOSLIB Force exclusion of entire system Tibrary

® RENAME _ Cause external reference name change o

° ENTRY Specify execution start address B

° NAME Name load medule ;

° MAP Turn Tink map Tisting on or off v

° GSECT Cause assembly time control sections to . 3
_ be lToaded censecutively L

° BOUND Determine module bounding

° END Terminate linkage editer function)

38

Catalog Directives

" CATALOG Invoke catalog service
" FILES Specify which files are to be cataloged
“END Terminate c¢atalog function

3.3.3 2 Use of the Library Creation and Maintenance Function

An important function of the GLE is to be able to create and maintain two
types of libraries; system and user. The purpose of a library in the GLE
system is to provide the user with a utility with which te manipulate
assembled object medvles and to provide the linkage editor with a set of
object modules from whichk external references may be satisfied.

Even though there ave two distinct types of 1ibraries, the only real
difference between them is in the way they are used by the linkage editor.

Structurally, a system and user library are equivalent.

Modes of Use

The Tibrary creation and waintenance functien (LCMF) operates in two modes;
creation and waintenance.

Creation Mode - The creation mode of the LCMF causes the object modules output
Trom the meta assembier to be formatted into a standard library (see Figure 12).

DBuring library creation, the following restrictions must be kept in mind:
® A library may not contain modules with duplicate names
® The CREATE directive is mandatory and must be the second directive
® NAME,KIND and PASSWORD are the only other directives allowed

The library will contain the modules in the order in which they
are encountered.

Maintenance Mode - If the CREATE directive is not the second directive
encountered then the mede is assumed to be the maintenance mode. FProcessing
of new modules is handled by two basic procedures: Jimplied automatic
replacement, and directed replacement by use of directives.

If no processing directives are given, then the LCMF creates a new library
by veplacing the modules of the old library with modules that have the same

39

B T T S T

TYPE OF FILE = LIBRARY
NAME OF LIBRARY
KIND OF LIBRARY = USER/SYSTEM
CREATION DATE CREATION TiME
NUMBER OF MODULES IN LIBRARY

. . - ' PTR TO .
MQDUL; NAME GF FIRST MODULE MOBULE INFOR 1)
FIRST MODULE INFORMATION (DSC, DICTIONARIES, PTR TO OBJECT TEXT) ol

LAST MODULE INFORMATION (DSC, D!ICTIONARIES, PTR TO OBJECT TEXT) At

— e e e et et R S e e ety -1

Figure 12, Standard Library Format

40

TEXT
OF

ORJECT
MODULES
WITHOUT

DSE AND
DICTIONARIES)

PR

oy

gl

E

-

P |

v

name as output frem the Meta Assembler. Any new modules will be written
at the end of the new library.

If processing directives are given then transcription of modules to the new
Tibrary will take place according te the directives.

A functienal flowchart of the LCMF appears in Figure 13.

Detailed Description of LCMF Directives

FORMAT

LIBRARY;

DESCRIPTION

This directive must be present as the first directive to invoke the LCMF.
FORMAT

CREATE;

DESCRIPTION

This directive must be the second directive encountered in erder to
cause a new library to be created, using Meta Assembler dutput only.

It CREATE is not the second directive encountered them it is assumed
that an old user or system library is available to update against.
FORMAT

NAME=11ibname;

DESCRIPTION

This directive uses the symbel string "1ibname" to give the Tibrary a
name. If this directive is absent for a creation mede thenm a default
name of "LIBRARY1" is given to the Tibrary.

An updated 1ibrary retains its original name unless changed by the NAME

directive.

FQRMATV

KIND = YSER :
1 5YSTEM .

41

GET
DIRECTIVE
AND DECODRE
iT

END
DIRECTIVE

YES

FIRST
DIRECTIVE

“CREATE"
DIRECTIVE

PUT DECOBED
INFORMATION
IN TASK
TABLE

MODE - CREATE

GET QBUECT
MODULE

FROM MESA-
ASSEMBLER

END OF
MORULES

DECORE
NAME OF
MODULE

LIBRARY HEADER
IN TASK TABLE

y

MQDE =MAINTENANGE K SI'_(-IP TO
I . L ¥ END OF
' MODULE
: GET OLD PHOCESS QLD
“CREATE" LIBRARY HEADER AGAINST
MCDRE HEADEH TASK TABLE

]

CREATE
. LIBRARY

USING TASK
TABLE

FORM LIBRARY
HEADER EROM
TASK TABLE

GIVE SUMMARY
OF LIBRARY
GONTENTS

Figure 13. Functional Flawghart For the Library Creation and Maintenance Function

42

_ WARN
: USER AND
Bgz‘ggfg & FLAG MODULE
FOR NON-
INCLUSION
'SAVE PERTI-
NENT INFOR-

I

ot iy

DESCRIPTTON

This directive provides the library with a kind attribute. If this
directive is absent for a creation mode then a default kind of “USER"
is given to the library. An updated library will retain its eriginal
kind unless changed by the KIND directive.

FORMAT

NOAUTOREP ;

DESCRIPTION

This directﬁve declares that the LCMF functien will not replace aill
modules from the old Tibrary with moduleés from the Meta Assembler having
identical names, but selectively replaced modules according to REPLACE,
BEFORE and AFTER directives.

FORMAT
BEFORE oldmed, new m@d] [, new modi..-];

DESCRIPTION

This directive causes the LCMF to insert the “newmod" modules from the
Meta Assembler before the specified "old mod” for transcription to the
new library. This causes automatic deletion of old moduies having the
same names frem the old Tibrary.

FORMAT

AFTER oldmod, newmod] [,newmodi...];

DESCRIPTION

This directive causes the LCMF to insert the "newmed” modules from

the Meta Assembler after the specified "oldmod" on the old library for
transcription te the new Tibrary. Insertion of this type causes
autematic deletion of old modules having the same names from the old

library.

FORMAT

PASSWORD=pas sword ;

DESCRIPTION _

This direciive specifies a password for the library. If this directive
is.absent then there is no default password given to the library. Anm
updated Tibrary will retain its original password unless changed by the
PASSWORD directive. 43

FORMAT

DELETE 01dmed, [,oldmodi...];

DESCRIPTION

This directive causes the LCMF to not copy the "oldmod" modules from the
old Tibrary to the new Tibrary.

FORMAT

IGNORE new mod, [,newmedi...];

DESCRIPTION

This directive causes the LCMF to ignore the "newmod” modules from the

meta assembier during processing.

FORMAT

RENAME oldnameI= newname, [,a]dname{= newnamei...];

DESCRIPTION

This directive assigns a new name to a medule that will appear in the
new 1ibrary. If any other directives refer to this module, the old name
should still be used.

FORMAT

REPLACE newmod][,newmodi...];

DESCRIPTION

This directive is meaningful only during the effect of a NOAUTOREP directive,
It causes the "newmod" modutes to replace modules on the old Tibrary

with the same names on the new Tibrary.

FORMAT

END;

DESCRIPTION

This directive causes termination of directive reading for the LCMF
and initiates processing of the directives.

Examples of LCMF Use

For the following examples assume the existance of two Meta Assembler generated
files, A and B, of object modules containing modules MA, MB, MC, MD and

modules MD, MA, 0X, 0OY, 0Z respectively.

44

Vel i, |
* 1

Example 1. Creation of a system Tibrary LIB1 from file of modules B.
Directives: LIBRARY;

CREATE;

NAME=LIBT; KIND=SYSTEM;

END;
System Library LIB1 contains MD, MA, OX, 0OY,0zZ.

Example 2. Automatic update of LIBI using file A to create user
library LIB2.
Directives: LIBRARY; KIND=USER, NAME=LIBZ; :ND;
User Library LIB2 contains:
MD from A
MA from A
0X from LIBI
Y from LIBI
0Z from LIBI

MB from A
MC from A
Example 3. Restore MA from B on LIBZ.
Directives: LIBRARY; LIBRARY;
NOAUTOREP; IGNORE MD;0X,0Y,0Z;
REPLACE MA; or END;

END;
User Library LIB2 contains:
Mp from LIB2
MA from B
0X from LIB2
QY from LIBZ2
0Z from LIB2
MB from LIB2
MC from LIB2

45

R i O N P LT vl AR P

3.3.3.4 Use of LINKAGE EDITOR Function

The most important service provided by the GLE is the LINKAGE EDITOR (LE).
The LE service provides the Meta Assembler yser with the means to generate

a standard format Toad module (see Figure 14) by binding separately assembled
mpdules that reside in user and/or system libraries.

Since the LE must handle a variety of linkage editing reguirements, a set
of directives has been provided to give the user direct control over much of
the lead module generation process. The basic control features are:

? specification of execution start address

° oprder of module appearance in load module

° Tlink map generation

Bata Flow through the LINKAGE EBITOR

The LE expects as its primary inputs a user library of object modules frem
which to form a basis for a load module, and an optional system Tibrary
from which to satisfy external references. The LE then reads and decodes
the user directives, if any.

A "task" table is initialized with the decoded directives. Pertinent
information includes: module order and start addresses supplied by "INCLUDE"
directives, library to find module, and modules to exclude frem the load
module. If no service directives have been input then the "task" table is
initialized by using the entire user library.

The "task" table is then processed to determine all the medules that will appear
in the load module. This processing includes searching for definitions to
any undefined references.

Once all the moedules to be linked have been determined, addresses for all medules
and control sectiens can be assigned. This completes filling in the "task"
table. If a link map has been requested thenm the "task" table is used to

create the map.

A1l that remains to be done is to génerate the standard load module. First,
the header block is written. The user and/or the system libraries are then

46

FiLE TYF‘-E - LOAD.MODU LE ERRORS = YIN.

LOAD MODULE NAME

CREATION DATE _ | creaTion TIME
LOAD MODULE KIND = REL/ABS e

TARGET COMPUTER

LOAD MODULE LENGTH

EXECUTION START ADDRESS

END OF MODULE = Y/N. | LENGTH OF RECORD
LOCATION COUNTER FOR FOLLOWING GODE '
RELOCATION BITMAP = Y/N | LENGTI? OF MAP

RELOCATION BIT MAP

TEXT BIT STRINGS

Figure 14. Standard Load Module Format

47

} HEADER

BIT MAP

BIT STRINGS

CODE BLOCK

FOR CONSECUTIVE
ADDRESS
LOCATIONS

read sequentially. As a new module is read, it is either skipped op processed, e
ATl the information necessary to do address locatjon is available from the

“task" table. When the libraries have both been processed the 1inkage edition -
s complete. Figure 15 contains a functional flowchart of the LINKAGE EDITOR.

48 :

LINKAGE EDITOR

ANY
PROCIISING
DIRECIVES

DECODE DIR
PLACE MODULE
INFO IN TASK
TABLE

FILL TASK TABLE
WITH ALL MODULE
NAMES FROM
USER LIBRARY.

5

GET

TASK TABLE
ENTRY (MOGDULE
NAME)

END OF
TASK TABLE

I

ERROR

ANY UNSATISFIED
REFERENCES

ASSIGN STARTING
ADORESSES BASED
ON TASK TABLE

YES -
; GET NAME
OF REFERENCE

YES

1S IT DEFINED
IN USER/SYSTEM
LIBRARY

GENERATE
LINK
MaAP

POSITION TO
READ NEXT
MODOULE TEXT

3

GET "PEF”
TYPE SYMBOL

FROM MOBULE

ERRORA

YES

DUPLICATE

NO

ERROR

PROCESS "DEF'S"
AND “REF'S” FOR |l

THIS MODULE

18 TH1S
END OF
MODULES

TEXT, GEN-
ERATE LOAD
MEDULE TEXT

FUT IN
TASK TABLE

GET "REF"
TYPE SYMBOL
FAOM MOBULE

PUT REF IN
TASK TABLE
INDICATING
LUNSATISFIED

Figure 15. Functional Flowchart for the LINKAGE EDITOR -

49

Control of Load Modyle Generation

The GLE gives the user a wide range of control over the load module creation
process. This control is divided into four main sections; load module

type, execution start address, modules that will appear in load medule,

and generation of a 1ink map.

General Directives

These directives control obvious features in the LINKAGE EDITOR.

° [IFKEDT)

Fermat
LINKEDIT;

Description
This directive is required to invoke the LINKAGE EDITOR service.

° INAME]

Format
NAME=1mod;

Descriptian
The user may supply a name to be given to the generated load
module. If the optional NAME directive is included, then the
name of the load module will be "Imed'. In the case where the
directive is not included, then the default name of 'LOAD
MODULE 1' will be supplied.

° [END

Format
END;

Bescrigtjon
This directive terminates service directive reading and causes
the LINKAGE EDITOR to perform the requested seryices.

50

[——

T O S

Load Module Generation Node

The GLE will nave the ability to produce load meduies for a wide variety of
target computers. The intent of the load module generation mode is to
interface with various target machine loaders by producing absolute or

relocatable load modules as required.

e | PELOCATIC!

Format

RELOCATION=(startbit: endbit)[,{startbit: endbit),...];
Descrintion
This directive provides the GLE with a specificatien of all
the fields shat may contain addresses during an assembly.
This allows the load module to create & relocation bit
map, based on the specified fields, so that a relccating
loader will know which addresses will need a Toad bias
added. The ‘'startbit' indicates the starting bit position
and the 'endbit' indicates the ending bit pesitien for a
field. A1l fields are described left to right with
hit 0 (zero) assumed to be on the extreme lefi.

The relocztien bit map will be created only if the load
modile mode js 'REL! (see the MODE directive). This
directive is mandatory and must pe the third linkage
editor directive.

¢ MODE
‘Format

MODE Aasl .

REL
Lescription
In the absence of the MODE directive, the mode of the load
module will ke relecatable unless:

® the ENTRY directive is given
no reiocatable text is found
51

[+

Execution Start Address Specification

The starting address for execution of the load medule produced by the GLE
can be specified by the optional ENTRY directive.

° ENTRY
Format
ENTRY module
(swmol}
addr /
Description

A start address may be specified by giving the name of an
object module. If the module has an end transfer address
specified, then this address wil} be used, otherwise the
default end transfer address as supplied by the Meta Assembler
will be used.

If a 'symbel’ s used to specify the start address, then the
definitien of this symbel, as supplied by the LINKAGE EDITOR,
will be used. '

The use of ‘addr’ gives the user the ability to specify an
absolute address for the start aT execution. It must be
described in the same base as the meta assembler output Tisting.

Module Appearance in a Load Module ‘

The essence of modyle binding is the determination of the modules that will
appear in the lead module, the order in which they will appear in the load
medule, and the types of addresses that may be beund.

At this time, the LINKAGE EDITOR will be able to handle three addressing
schemes provided by the Meta Assembler; direct memor: addressing, base
displaced addressing, and location counter relative addressing.

62 -

There are several user directives available to determine which object modules
will appear in a load medule; ULIB, SLIB, EXCLUDE, REMAME and INCLUDE.

Even with the user directives, there are impertant assumptiens that will be
made when processing object modules using these directives.

The first assumptien cencerns the default processing ¢f external references.
if a moduie is needed for satisfaction of an external reference, then it
will be searched for. The first zlace te look will be the 'task' table to
see if it is already linked. If it iz noet Tinked, then the usar library
will be searched. [f the user library does net contain the medule, then
the system library will be searched. If after searching the system library
the medule is still net found, then the reference will remaip unsatisfied.
So we see the search hierarchy is:

1) already linked

2) user library

3) system library

The search hierarchy may be changed by use of the FILES,NOULIB,NOSLIB and
EXCLUDE directives.

° [FILES

Format
FILES |[USERJL,JLSYSTEMI!;

Description
This directive indicates the files to be used in erder to create
the load module. This directive is mandatery and must be the
second directive encountered,

53

INCLUDE

Format
INCLUDE module [(msa)J[.csect(csa)...][:lgLIBl];

LIB
Descrigtion

This directive causes the forced inclusion of 'medule' frem

an optienal library. The directive also allows a starting
address, 'msa ', to be specified for the madule. Additionally,
assembly time control sections, 5csect’. may have starting
addresses specified. This directive has the pewer to determine
not only order of appearance byt starting addresses as well.

There are some restrictions depending upon the memory allocation
scheme of the Meta Assembler. If the mode of the Toad module

is defined as the“section'mode and ‘msa' is specified, there

will be a warning. However, the control section address will

Be allocated back-to-back for the specified module. If the mode
is "normal®, *msa‘' can be specified but any control section
address, ‘csa*, will be ignored if specified,

If this directive is not included in the creatien of the load
medule, then ALL the medulac from the user library will be
included as a default.

A1l addresses must be specified in the base of the Meta Assembler
eutput 1isting.

Format

EXCLUDE m@dnam[,modnam..-][:[gt%g'];

Descri_tion

This directive forces the exclusien of particular modules from
appearanca in the final load meduls. If no library is specified,
then the module is ignored no matter which tibrary it is found on.
This affects the search hierarchy by impTying which Hibrary may
contain the medule.

54

INOULTB

Format
NOULIB;
Description
This directive forces exclusion of all modules in the user
library from appearing in the final lead module. This implies
that the search hierarchy effectively becomes:
1) already lirked
2) system library

Descrintion
This directive forces exclusien of all modules in the system
library from appearing in the final load module. Therefore;
the search hierarchy effectively becomes:
1) already 1inked
2) user library

Format
RENAME oldname=newname [,aldname=newname,...];
Description .

This directive causes external references to 'oldname' to be
satisfied by the definition supplied by ‘newname . If 'newname’
is one of the external references to a medule that has been
mentioned en an EXCLUDE directive, then ‘oldname' will not be
renamed and will be left as undefined.

55

&

Format
GSECT csect,csa [,bound];

Description
The GSECT directive causes text in contrel section 'csect!
frem all linked modules to be Tinked consecutively into gne
glebal control section, starting at address 'csa'; Optionally
included is the bounding information, ‘bound', to be used to
determine where to start .addresses in thig section when
the next medule is encountered,

If the memory allocation scheme is defined as the nermal mode,
then this GSECT directive will cause the error of memory over-
lapping.

The address must be described in the base of the Meta Assembler
eutput Tisting.

Format
BOUND start [,next];
Desgriiiign

The optienal bound directive controls 1acation-counter-precessing
for modules that are not supplied with starting addresses. The
default values would cause medules to start at location 0 and

be butted up against ene another,

The address must be described in the base of the Meta Assembler
output Tisting.

56

Ry

Generation of a Link Map
The user has control over the inclusion or exclusion of a Tink map as part

of the LINKAGE EDITOR eutputs. This contrel is available through the
eptional MAP directive.

° WA

Fprmat
MAP i ON
OFF ;
GLOBAL
MODULE _

Description

If the MAP directive is included without an operand or is not
included, then the default informatien will be generated with

the unsatisfied external map. When a Tink map is generated, the
following fixed contents wil] be avaijlable. A1l addresses will be
printed in the same base ag the Meta Assembler autput listing.

® Default map
° Echo of input directives

[+]

Error/warning messaaes
° load module header information
Creation date and time
Load module kind
Load medule length
® Execution start address
Block assignment:
Name of module and contro] section
° Start address
° Length
Library linked from
Relecation fields
® Module map
External references
External definitions

=]

87

i e me oy

A

° Global cress-reference map

° Name of dafinition

° Defined value

Module name defined

References to definition by module
Unsatisfied externdl

-]
o
Q

External references

Q

Module name referencad

® References to externals

Example of Link Edit Use

The directives described previeously imply a hierarchy of ordering en
object medules and centrol sections. The simplest explanatien of this
nierarchy is through the use of an example.

Example 1. Show ordering hierarchy.

‘Assume the memory allocatien scheme is the section mede and the
base is octal.

Let object modules PGY, PG2, PG3 and PG4 exist.

PG1 contains Al, A3, BT and BZ as control sections.

PG2 contains Al, A5, BO and B2 as centroel sectiens.

PG3 contains AO, A2, A7 and Bl as centrol sections.

PG4 contains A8 as a control section.

PG2 and PG4 are needed to satisfy external references.

Given the follewing directives, show the starting addresses.

LINKEDIT;
FILES USER;
RELOCATION=(0:11),{12:23);
NAME=LMQD;
MODE ABS:
BOUND 5000;
GLOBAL A1,700,2;
GLOBAL B1,1000;
INCLUDE PG1;
INCLUDE PG3(200), A7{7000);
END;

58

100 200 1000 5000 8000

A1{PG1) AG(PG3) B1(PG1) A2(Pa1) A7(PG3)
A1{PG2} A2(PG3) B1(PG3) B2(PG1)

A5(PG2)

BO(PG2)

B2(PG2)

AB(PG4)

59

3.3.3.5 Use of the Catalog Function

During use of the Meta Assembler system, many files will be created along the
path to load module generation. Some of these files, such as libraries,

will be saved and used many times. To aid the user with configuration control,
a catalog function is provided by the GLE. This function extracts descriptive
information about the three basic Meta Assembler system outputs object

modules, 1ibraries of object modules, and load modules.

Sumnary of Catalog Directives

® CATALOG Invoke catalog service
° FILES Specify which files are to be cataloged
° END Terminate catalog function

Detailed Description of Catalog Directives

° [CATALOG

Format
CATALOG;
Pescription
Mandatory directive required to invoke the CATALOG function.

Format

FILES = [filename
ogical unit

Dgs¢ription

During & GLE run, several files are created. Before the LIBRARY
function, a file of object modules generated by the Meta Assembler,
known as OBJ, and optionally an oid library of object modules to
update, knewn as OLIB, exist. After the LIBRARY function, a new
library, knewn as NLIB, exists. Before the LINKAGE EDITOR function,
a user and/or system library, known as ULIB and SLIB, respectively,
exist., After the LINKAGE EDITOR function, a load medule, known

as LMOD, exists,

filename
logical unit

3

[/F] [

[/F1,... } :

60

PP

So, at any of the described points, several files with generic
names are available for cataloging. In addition to their
generic names, the files will alse have a FORTRAN logical unit
associated with them. The table below describes the 'filename'
and its corresponding 'logical unit'.

The '/F' indicates the full catalog for the file mentioned.

FILENAME LOGICAL UNIT
0BJ 8
OLIB 7
NLIB 9
ULIB 9
SLIB 11
LMop 12

END

Format

END;

This directive causes the CATALOG function to perform the
cataleg of files.

Available Infarmation

The infermatieon that is available for each of the three basic files is

shown below.

Object Module

Q

o

Object Module Descriptien {DSC)
Control Sectfon Bictienary {CSD) : '/F' only
External Reference Directionary (ERD) : '/F' only

External Definitien Dictionary (EDD) : '/F' only
Vector Symbal Dictionary {VSD) : 'JF' only
Object Text (TXT) : 'JF' only
Object Module End (END} : '/F' only

Object Module EOF (EOF)

61

Library of Object Modules
° Library Header
® Module Name List ¢ '/F' only
® 0bject Module Description (DSC)
® (Control Section Dictionary (CSD) : 'JF' only
External Reference Dictionary (ERB) : '/F' only

® Vector Symbol Dictionary (VSD) : '/F' only
® End Marker : '/F' only
® Object Text (TXT) - : '/F' only
¢ Object Module End (END) : '/F' only

® Q@bject Module EOF (EOF)

Load Module

 ° Load Module Header

? Relocation Address Fields

® Text Bit Strings with Relecation Bit Map : '/F' only
° End of Load Medule

Examples of Cataleg Use

Example 1., Cataleg ali files after load module generation
Directives: LIBRARY;
CREATE;
NAME=EXLIB;KIND=USER;
END;
LINKEDIT;
FILES USER;
RELOCATION=(0:11),(12:23);
ENTRY MAIN;
INCLUDE MAIN (0): ULIB;
END;
CATALOG;
FILES=0BJ/F,NLIB,3/F, LMOD;
END;

Note: File OLIB is not catalogéd because the library function bperated in
a creation not a maintenance mode.

62

Bt)

Example 2.
its type,
Directives:

Catalog of an unknown file on FORTRAN logical unit 8 to determine
CATALDG;

FILES=8;
END;

63

BIE L R AN e e e et § e e e e <

3.4 INSTALLATION AND TRAINING

This section describes the delivery, installation and training procedures for
the products developed under this contract. The facility utilized for
installation and training was MSFC =t NASA request.

3.4.1 Task 7 - NASA MSFC Delivery
The enhanced Meta Assembler, developed under Task 1, and the Linkage Editor,

developed under Task 5 was installed at NASA MSFC on an IBM 360 {see Figure 3).

To provide system maintenance capability at MSFC the MDAC proprietary Meta
Transiator was ales be installed on the IBM 360. The delivery consisted of
the following:

° Installation on the MSFC IBM 360

® MSFC Instaliatioen Verification

° Meta Assembler System/Meta Translator Demenstration

Personnel Training at MSFC
° MSFC Deliverable Items

3.4.2 Insta]]ation on the MSFC IBM 360
THe MSFC IBM 360 was selected as the hest machine for the installation of
the enhanced Meta Assembler, Linkage Editer, NSSC-1 target output driver, and
MDAC Meta Translator. The procedures to perform the installation of the
enhanced Meta Assembler, Lirkage Editor, NSSC-1 target output driver,
and MDAC Meta Translater were:
° to develop IBM 360 JCL for file creation, Meta Transiation,
FORTRAN compilation, link edit and execution of the compenents
of the Meta Assembler system.
° to determine the overlay structure for the Meta Assembler
° to meta translate the Meta Assembler component meta language
descriptions
° to compile the Meta Assembier FORTRAN source
° to Tink edit the Meta Assembler system object medules

64

Woaliin g

)

3.4.3 MSFC Installation Verificaticn

The installation verifiéation was performed utilizing standard test cases
for the Meta Assempler system and the meta language definition of the Meta
Assembler for the Meta Translator. The verification procedure exercised
each Meta Assembler system program involving the NSSC-1 assemb]er creation.
The Meta Transiator was verified by regenerating the Meta Assembler parsing
subroutines via meta language Processing.

3.4.4 Meta Assembler System/Meta Translator Demonstration
The Meta Assembler system and the Meta Translator demonstration consisted
of repraducing the verification process utilizing the standard test cases

and the Meta Assembler meta language definition.

3.4.5 Demonstratimn_for the NSSC-1I

The system'was demonstrated és fully supporting assembly Tevel software
development for the NSSC-I. This was performed via cross assembly of GSFC
supplied NSSC-I programs, object module link edit, and Toad modyle formatting.

The NSSC-I assembler Tanguage definition in ALLDEF and ALLLEX and processing
by both the ALLDEF and ALLLEX processors was also demonstrated. Since a NSSC-1
computer was not available at MSFC, actual execution coyld not be performed.

3.4.6 PersonneT Training at MSFC
A period of one week was allocated for personnel training at MSEC. The
primary thrust of this training peried was toward Meta Assembler system

maintenance. Items addressed were:
° ALLDEF processer design and use
° ALLLEX processor design and use
° Meta Assembler design and use
? Linkage Editor design and use
® Meta Translator Utilization

3.4.7 MSFC De11verab]e Items
A1l installation support materials were included in the delivery as follows:

65

® Meta Assembler system FORTRAN source on magnetic tape

Meta Assembler system program 1istings

Meta Assembler meta language source on magnetic tape

Meta Translater FORTRAN source on magnetic tape

Meta Transtater User's Manual “
Installation procedure documentation -

Available Meta Assembler system user oriented documentation was delivered at
this time. This delivery task, however, preceded the fermal documentation
development. All formal documentation, Task 4, and final product versions
will be made available to MSFC for subsequent installation.

3.4.8 GSFC Deliverable Items
Due te the cancellation of the GSFC installation at NASA reguest, items which
were scheduled for this delivery were delivered to MSFC. These items, all on
magnetic tape were:

@ NSSC-1 ALLDEF source

® NSSC-1 ALLLEX source

© NSSC-1 target outpui driver source
GSFC furnished test cases

Q

3.5 META ASSEMBLER DOCUMENTATION
This section pertains to the Meta Assembler system documentation developed
under Task 4. The two types of documentation produced are:

° User Manuals

° Detail Design Manuals

3.5.1 User Manuals
COmpreheﬁsive user manuals were developed for each of the Meta Assembler
system pregrams including:
° ALLDEF User Manual
® ALLLEX User Manual
° Meta Assembler User Manual
° Linkage Editer User Manual

66

The content of the user manuals is presented in a topical narrative fashion
and thoroughly discusses the user interface considerations including:
° product overview/capabilities
® detailed presentation of user interface
(control cards, language statements, etc.)
extensive examples of user interface
® assumptions and resirictions
diagnostics

3.5.2 Detail Design Manuals
To support the maintenance aspect of the Meta Assembler system, detailed design
documentation was developed for the follewing programs:

® ALLDEF processor

® ALLLEX processor

® Meta Assembler

® Linkage Editor

® NSSC-I target output driver

The content of the detail design manuals is presented with a blend of topical
narrative discussions and supporting schematic representations including:
° program capabilities
® functional flow chart
® bleck structure diagram
° input/output description
° glebal data area descriptien
° subroutine summary
function description
local data description
system interface requirements
® hest installation procedures
machine dependent consideratiors

67

APPENDIX A
SCHEDUILE/MILESTONES

A1

"MONTHS AFTER ATP

MILESTONES - b e o N) .
1]2'3 _4’t.s-ls.i7|3L9 10'1-1[12 13|r14'ts 1s|17l‘18';19l20|21- 22[23'24

v

19/}-18)

v T
!

ALTYND ¥OOd 40
8l 2oVd W

1. META ASSEMBLER ENHANCEMENT

e _ | Vi

2. GENERALIZATION OF PROCEDWRE |1 hrouah Relnegotiatior : . | -
LANGUAGE {(Deleted through Refnegotiatjon) 77T

2. _g*g;”:‘%vfei‘iz‘;if’m“@“'"“s“”“" (Deleted threugh Repnegotiation) | TR

e ' : &I\ 4
4. META ASSEMBLER DOCUMENTATION | | ' . | |]

5, BEVELOP LINK EDIT@R

6. NASA GODDARD DELIVERY I : : aﬁm

7. NASA MSFC DELIVERY , ' . [}.(z)

NOTES. e ‘ : . : :
TASK 1 - DESIGN REVIEW FOUR MONTHS AFTER ATP t1) ONE (1) TRIP TO GSFC OF TWO (2) WeEKs DurATion CANCELLED
- TASK 4 - FINAL META ASSEMBLER SYSTEM AND DOCUMENTATION DELIVERY {2) ONE (1) TRIP TQ MSFC GF TWO {21 WEEKS DURATION
v TASK 6 - DELIVERY OF NSS5C-| META ASSEMBLER AND GENERALIZED LINKAGE (3) ONE (1) TRIP TO MSFC OF GNE (1) WEEK DURATION
... .eowror 1o asFc. CANCELLED AT NASA Rhglﬂﬁg . {4} THREE i3} TRIPS TO MSFC OF THREE (1) DAYS DURATION EACH
TASK 7 - DELIVERY OF META TRANCLATOR TO MSFC A \SK &6 ITEM

TO MSFC
Project Schedule
I T T : ! S U S A U S U S SN S

L4

Appendix B
ALLDEF NSSC-I DEFINITION

B-1

D

0

O

0

56

-

9]

3

7

/* OEF

ASSEMBLY LANGUAGE DEFINITION {(ALLDEF)

IRITIoN aF NSSgwl ASSEMBLER o/

/7% MACHINE peScRIPTION ANE ENVIORNMENT e/

BPTION & PAGE*LENGTH = §6&,

5izZg

D4TE 8 8/11/78 ,

CoMPUTER = NSg5Cai
CoNTINyATION = NO ,
BoUNDING 3 YE~ |
ERROR®SIZE = 48 ,
UwugrlegﬁnggﬂmNLs L (-

- S =
i ADDEESS-UNIT = 1B+

ACCESS®*UNIT = 15

MEMeSIEL & 4894 ¢

/% USER DEFINED TYPES @y

TYPE INOLIST', 'NogPROE' 3

TYPE 'MAJOR', 1M{NQR' §

TYPE tDIRECT', 'INDIRCT: g

TYPE wLIT' g :
TYPE *CONTRp »6QUNTER', 'REV™

/% LOCAL AND GLOBAL bﬁnikhLE DEFINITIONS */
DEFAULT MNEMQNTC 'DATAY; t{oHES

LecaL
LOEAL
L0eaL
LOcat
LOcAL
LOCNL

1L0eal

clopal
clunai,
GLOpAL
GhogAl
skopar
shosal
GLORAL
chopal
GLOBAL
chogal
cbopal

cLOBAL

TANSHER' # 8 §
YDEF' % ¢ §
YEXTERNLY 2 0 §
YINDIPECTY ® B 5
"LITerLAG?Y §
'SECTIONeS,YET, *LOCETIONSSAVE" &
'LITERAL=SCANT & o ¢
"DOL ARSEC ', *DOLLARGLOGC® §
"MACRO+LINE* = B §
'gUlLpt 3
'FIRgT+CARDY 2 1 §
'"LaBELeFlELD" §
'STRINGY §
lMsl s
.‘ML‘ s
'P§Y g
‘LT §
"STANDARD' = 1, YSHURCE+L [BRARY! m 2,
'REPEATeARRLY' = 3, IMACRO=EXPANDY A #;
'LITERAL'PQOL' 3 %, 1DEF =L IT+POOL! » 6 §
"NORMAL?Y ® 1r 'Skl = 2, YREPEATHFILLY = 3u
TMACRO~aVUILDY & 4 o

7% ysER DEFINED SEMANTIE FUNCTIONS s/
sEMANFIC +DEFLABELY

17=4PR=79

16143 PAGE

1

L]

ASSEMBI.Y LANGUAGE DEFINITION (ALLDEF) 17«iPR=7% 16143 PAGE 2

1F (PRESENT(OPERANDC(Y)),
IF_tSvmeol«TYPL (OPERANDIL)),E£Q, UNDBEF INED),
ELSE
ERROR (35},
END,
A CREATF «SyYMRBL L UPERAND (L)),
B IF (EYTERNL,EB, 11,
UGRIHTE"H:EF:D'EF‘n'P*'R‘N‘D‘“ sDEF Y
EN' ’
ENR $
SEMANTIC 'Maugpt
BIT=LENG TH=18,
BepL A8cL (oppRANDLL)) .
BBJECT(ADDRESS*TYPE (L OFAY 10N COUNTER),
Fretptals)=0PgO&E,
. FIELDISIS) = INplREET,
FrELots 17 1%0pEpaND{2)) §
SEMANTIC '*MiNop!
Bl ENGrHE18,
DEFLABEL (OPFRANDIEL)) |
DBJECT(kmDRESS-TYPE(gOEkTIDN.GﬂUNTER):
of) Flelplgtidiep, FTIELD{22117)20PCODE) §
SEMANTIC 'orGsEM®
ANSHER = ya UF(OPERANDL,4}) .
IF C(ANSWrR,g0,0),
SECTIgN('DATA YY),
ELSE,
IF (ANSHER, EQat),
SEGTIGNC "CApE"y,
ELS'EI
FATL,
END, .
E'ND!
SET*ORIGIN(QPERAND (L, 2),0) §

g4

9140

P

/% SPECIAL KInBS OF DEFINTTIgNS #/

A
v

g
-

GROYP BEGIN gymBok +(' g

GRoUP END Symagpl ')' 8

-~ EMD STATEMENT sYMBOL ', g0i',t s

END MoDULE sYyMpd_ "EyD' 4 SEMANTIE = ENDsMODULE,
SOURCE«MODE®DEF» [TePQOL §

2 D04 d0

it

ALYTEr
.

¥
s

5
INSTRUETION +MACRO, sCALL Y
OPERAND({) = OPTloNa&y {ABEL TERM,
DPERAND(2) » SYMBAL YERM LIST,
SENANTIC = DEFLABEL (gPFRRAND(L]),
STACK=PRU(OPERAND(2)),
- MACROLLINER] $

/* DIRECTIVE AND PSEUDO Op DEPINITIONS s/

-

OlRECTIVE 'paTa' 1 _
QPERAND (1) » OPTIONAL i'ABEL TERM,

v-8

O

o O 0

N

D H0N

9]

O D

30

ASSEMBLY LANGUAGE DEFINITION (ALLDEF) 17~4PR=79

OPERAND2) a ANY cXPRESSION L]ST,
SEMANTIG S BEFLNBEL(QPERwlei)I.
CREATE+~DATAL #; OPERAND(2)) §

UNLABELED DIREETIVE YASSEMALE' 1

OPERANRD (1) » AQDRESS TERM,
SEMANTIC = START{OPERAND(L)),
SECTIoN{ 'BATAY),
SETSL} YeRAL*POOL{ rDATAYY,
o SOBRCEeNIDETSTANDARD %

BIRECYIVE 'RES'

OPERANDC1) n OPTIONAL {ABEL TERM,

OPpRANDA{2) a ANY ENPHESSIQN,

SEMANTIC a DEFLABEL.{APERAND{L1));

RESERVE {OBERAND(2) p#yn) §

BIREETIVE "Eput 1

QPERAND (117 ASE| T¥Ry,
QPERAND() ®ANy EXPRESS]ON,
SEMANTICS = .
., BEFLABEL{OPERAND(1}),EQUATE (OPERAND (LY, QPERANDA2),1) §
UNL ABELED DyRECT{VE 'L1t*
BPERAND(Ly w VALUE EYPRESSION,
SEMANTIC » ANSMER!:OPERTAND‘(],).HOD-.z,
IF (ANSWER.EQ.@),
s:ET’EIfERAL“PGGL{'DATA*),
e]
iF (ANGWER,EQ, 11,
SeTeLITERAL=POOL("CODE'),
€.sg,
Fali'y
END,
END s
UNLABELED DIREGTIVE tPAGEY o
SEMANTIC & EJECT®PAGE §
UNLABELED DyRECTIVE ‘LISTI 1
SEMANTIC » LISTINGRL, PRINT(1) §
UNLABELED DIReaTIVE TUN{'St1 4
SEMANTIC o LIST[NGup, PRINT{G) §
DIRECYTVE 'prog' !
OPERANDL 1)a ABEL TERM.
SEMANTIC = PROCESSwMODRzSKIP 5
UNLABELED DIREQTIVE 'ENp' 3
SEMANTIC « IF (PROCESSwODE .EQ. SKIP),
PRDOCE5SaMalr B NORMAL.
ELSE

UNLABELED DIRECTIVE *PENDI ¢
SEMANTIC o IF(SQUICE«MEBE,EQ, MACRO-EXPAND),
END=MNAZRA,
SOVRCE «MADEsSTANDARD.,
MACROw | INENDy

16143 PAGE

sxtanansns WARNING otti;iuq.s

END REDEFINED AS ANOTHER WORD KIND

3

L

o

G-8

ASSEMBLY LANGUAGE DEFINITION (ALLDEF3 17-4PR=79

FLSE,
Falie
ENG S
UNLABELED JTRECTIVE *AORGY
OPERANDU1) = aANY ©XPREQSION LIST,
SEMANTIC = [(SYHROL&TYPr (OPERAND(141}) 4p 0, ABSOLUTE + ANG,
SyMHOL»TGPE (OPERAND(1,2)) vEQ, ARSOLUTE),
ORGSEM{APERANDLLY),
ELSE,
FAIL«
FNOD 3
UNLAHELED BiRECTIVE *RORGr 1
OPphaNB(L) o aNyY EXPRESSTON LIST,
SEMANTIC = tfp (SYMBr ~TYRE(QPERAND{(L,1}).EQ . ABSDLUTE},
DRESFM{OPERAND (1))

ELyE,
FajL,
END 8
ERROR MESSAGE
NUMBER a I,
LEVEL s 1t
rOUPLICATE LARELY §
gRRQR MESSAge ¢
L z 1?
N s 22,

V1 LEGAL CONTROL SECYTIRN! §

NOun ¢
RESUL T=anpRESS 1ERM,
SEMANTIC » IF (SUBFIpLD,EQ, OPERAND-PIELD),

IF {SpURCE~MOOE.EQ,L ITERAL*POOL. DR,
SOURCE*MODE,EG.OEF~LIT+POOL) ,
SErTIQN«SAVE=CTL~SECT]ON,
LOFATION«SAVESL OCATION,
ET1~SECT10NZDOLLARS3EG,
LOEATIONEDOLLARYLOC,
RETURNILOCATION) 4
LOpaTIONkLOCATIONNMSAVE,
eYi *SECTIONSECT LONOSAVE,

ELSE.

RETURNILOCATIONI,

END.

ELSE
FATL,
END 8
INSTRUCTION 'NpNE' I
DPERANDILY R CONTRO| ~COUNTER $

16143 PAGE

salanenaee H@RNjNﬂ_olcocoogoo

NG SEMANTICS SPEC(FIED

INSTRUCTION *NONE':
OFPERAND (1) » GFTlOMAL {"ABEL TERM,
SEMANTIC = pEFLABEL (gPFRAND(L)) §

4

9-9

Fa)

")

i

8

ASSEMBLY LANGUAGE ODEFINITION (ALLDEF}

/% EXFCUTABLE (NSTRUCTIoN DEFINITIONS o/

INSTRUCTIGN v P+ 1
RESULT x MIMOR.
oFgRANDY1) a GPTIANAL {'ABEL TERM.
SEMANTIC a oFCOpE=g' 521,
. MINDP(OPERANDILY) §
INSTRUGTION rppDe 3
RESULT o MINOR.
OPERANB(4) = OPTIONAL ['ABEL TERM.
SEMANTIC o 0PCOpDEzn"t3v,
MINOPLQPpERANDIL)) §
INSTRUCTIEGN viDP: @
RESULT & HINGR,
oPERANDL4) & OPTInNAL UABEL TERM,
SEMANTIC o oPCOpEsn'i12Y,
) MINOPLOpERANDILY) $
TNSTRUCTIGN WNEG, 1
RESULT = MINOR»
OPERANDC(1) o OPTIONAL iiABEL TERM,
SEMANTIC a OPCOPE=pn'pdr,
MINOP (OPERANDTLY) §
IMSTROCTION raADCy
RESULT = MINOR.
OPFRAND(1) = OPTIONA{" {"ABEL TERM,
SEMANTIC g OPCODEan'pb?,
nuinOp LOpERANDELY) §

INSTRUCTION *EMPt

RESULT » HINOR.
OPERANDC 1) = OPTIOMNAL ['ABEL TERM,
SEMANTIC 5 gPgOnEeg’inot,
o M;‘:NOQCwGPEﬁfﬁNDiLH 3
INSTRUETION *nNpRM' 4
RESULT a MINORS
OPFRAND(1). = OPTIONAL' {'ABEL TERM,
SEMANT IO = OPCODE=p'34!,
MINDR (OPERANDIL)) §
tNSTRUCTION 'AgHT
REsULT s MINOR»
OFERAND{1) = OPTI1oNA{ {"ABEL TERM.
SEMANTIC » OPCODE=zg'as!,
MINOP (OPERANDLL)) §
INSTRUCTION *Xad*
RESULT s mINORY
OPERAND(1) = GFTIGNAL i'ABEL TERM,
SEMANTIC = oPEbpEzg'ast,
MINOP CLBPERAND(L)) §
INSTRUCTION 'ApA* ¢
RESULT x MINDRy
OPERANDC1; = OPTIONAL 'ABEL TERM:,
SEMANTIC r OPCODE=p'361,
MINOPIOPERANDEL}) §

17~apa=79¢

15143 PACE

-]

EX 5

g

ASSTMBLY LANGUAGE DEFINITION ¢(aLLBEF? 17=aPR=79 16143 PaGe 6

INSTIUCTION *xpEr 3

RESULT = INBo,
OPERAND (1) = OPTISHAL [ABEL TERM,
SEMANTIE s (PCOE=pt a6y,

sINDw C0pERanill) 3
INSTRUCTION TEa%'
RESGULT = MIngy,
PPERANDL1) = LPTIAMAL {"aREL TERM,
SEMANTIC = NPCODE=q'270,
sInoe topERanBil)) §
INGTHUSTION rApVERSE~Eay’ s
Re SULT = MlnOw,
NPERANDLL) = oPTIoNA| ["ABEL TERM,

SEMANTIC APEDAE=g 271,
KniNO2 (opEcanD(l)) §
INSTHYCTION qe T .
RiISULT = mENDY,
OPERANDCy) = GPTI4ANAL ['ABEL TERM,
SEMANTIC - cPcOpEzp'ppt,

MINDLOPERANDIL)) 3

INSTRUGTION ,NgP, .
RLSULT z MINOR,
OPERAND (13 = oPTIGNAL P'ABEL TERM,
SEMaNTIC . gPebnEzgta2r,

) HINOPCOPERANDILY) §
INSTRUCTION +exlT' 1
RESULT 2 KIND%,
OPERAND (1) = OPTIINAL ['ABEL TERM,
SEMaNTIC 5 nPCONEzp'{69,
MIND- (opERAND (L)) §
INSTRUCTION rTgVr
RESWLT = MINGY,
OPERANOL1) = oPTIONAL ["ABEL TERM.
SEMANTIC & oPCOpE=q'ady,
) MINOP (OPERAND(L)) S
INSTRUCTEON ¢ Tak, .
RESULT - NlN.oP_c
OPERAND(1} = oPTLGNAL i'ABEL TERM,
SEMANTIC . UPGDUE=O'03';
NINGPLOPERANDLLY) 5
INSTRUCTION (TP :
RESULT = MINOW,
NPERANDI(; 3 = OPTLaNg 'ABEL TERM,
SEMARTIC 2 pPCUOJE=p'p5Y,
MINODw (GpERANDGIL)) §
INSTRUCTIAN +ROVr :
RESULT = mINDR,
GPERANDI) = OPTIGNAL {'ABEL TERM,
SEMANTIC & CPEODE=R'471,
- pinoplopEgAnD(L))
INSTROCTION »gpDy
RESULT = MINOR,
OPERAND (1) = GPTIONAL ['ABEL TERM,

g8

™

P

)

S

SRS RS

—

SEMANTIC

ASSEMBLY LANGUAGE DEFINJTION CALLDEF)

» OPCODE=p' {71,
MINOPLOPERAND(L)) §

INSTROCTION t510t 3

RESULT
appRaeNDLg)
SEMANTIC

x MINOR, .
» DPTIONAL U'ABEL TERM.
w OGPCOpE=pt2pg!,

HINOP LOPERANDILY) §

INSTRUCTION +Tagr @

RESULT
OPERAND (4

g MINOR,
= OPT]oNAL {'ABEL TERM,
s OPCOPE=p?21t,

MINOP (OPERANDELY) §

INSPRUCTION +RED

RESULT
OPERANG (1)
SEMANTIC

s MINGR,

s OPTANAL ['ABEL TERM.

z OPCODEzn'331,
minoplopERangil)? §

INSTRUCTION +R10:

RESULT
OPERAND()
SEMANTIC

a MINOR,

x GPTIONAL {4BEL TERM,

s OPCOpE=p'24,
HINDEOpERANDLLYY §

INSTYRUCTION +TIX. ¢

RESULT
DP[RWNDIIQ
SEMANTIC

s MINORs

& DPTIONAQ UABEL TERM,

» OPCODEen'ilr,
MINOPLOpERANDIL)Y) §

INSTRUCTION «T1€v

RESULT
OPERAND (1)
SEMANTIC

NOUN 2,0 @
SEMANTIC

w MINDR,

» OPTIgNA; ['ABEL TERM.

5 BPLOQE=pT{5e,
KINOPCORERANDIL)) §

s IF {sUBFleLD,EQ,OPCODE=FIELDY,
INDIREATAL,
ELSE,

INSTRUCTION tigAs

RESULTY

GPERANBI L) -

OPFRAND(2)
SEMANTIC

a MAJOR,
n gPTIONAL ['ABEL TERM.
2 ANY EXPREGS!ON,
x 0PCODE=n'30¢,
MAJOP (OPERAND (L) s DOPERAND{Z) Y §

INSTRUCTION v gL' @

RESULT
NPERANDC 1)
oPERANG(2)
SEMANTIE

& MAJOR.

= OPTIONA] |'ABEL TERM,

w ANY PXPRESSION,

a BPCODE=gn‘4a?,
MAJOP-CGPERANDCL) yOPERAND(2)) §

INSTRUGTION rLBIv

RESULT
OPERAND (1)

a MAJER, ,
x OPTIONAL {ABEL TERM.

i7~4PR=79

- et

16143 PAGE

é{f.ﬂ" T‘Ti

LTI

?

6-8

ASSLMBY LANGUAGE DEFINITION (ALLDEFY

OPERANDC2Y = ANY CXPRESSION,
SEMANTIC e OFEADE=ntq21,
tAJOR{OPERANDEL) ; OPERAND(2)) &
INSTRUGTION ' pE+
aEsuLT = MA Y0,
OPERAND(1) = OPTIcMAL |"AREL TERM,
OPERANDI2) = ANY EXPRESSIOM,
SEMANTIC = oPcOnE=n's2l,
wAJOPtOPEQANDIL) s QPERAND{Z2)) §
INSTRUCTION rLp¥X'
RESULT x MA R,
OFERANDEL) = fPTluNA_ {"ABEL TERM.
OPERAND(2) = aANY EXPRESSION,
SEMANTIEC = oPCORE=p'g4r,
MAJOP LOPERAND (1) GPERAND{2)) S
INSTRYCTION tSTA" ¢
RESULT MA O,
OPERAND (1) = OPTI9NAY {'ABEL TERK.
APPRANDT2) - ANY ¢ XPRESSTOH,
SEMANTIC = OPEODE=pn'adt,
MAJOP (OPERAND{1) ,DPERANDI2Y)
INSTRUCTION STl
RESULT a MAJOR,
BPERANDtYy o DPTIaNAL |"AREL TERM,
OPERANDA2) = aANY ¢ XPREGS]ON,
SEMANTIC z 0PCORE=zn'32t,
o pA Or(0pERANDLL) +oPERANDI2)) &
INSYRUCTION «+STE:
RESULT = MAGDR,
OPERANDLy) = GPTIONAL ['ABEL TERH,
oPpRANDIR) 5 ANY CXPRES&S]ON,
STL.MANT]C T D‘PEGODE=Q'ie‘i
MAJOP{OPERANDL L) fOPERANDL2)) §
INSTRUCTION rSTX0 @
RLSYLT & MAJOR,
OFERAND(L)Y o oPTIGNAL i'ABEL TERM,
OFFRAND(2) = aNY CXPRESS!ION,
SEMANTIE » GPCOBE=n'y4:,
_ MAJOR {OPERANDEL) OPERAND(2)) 8
INSTRUCTION rap¥' =
RESULT = pAJOR
NPERANDG1) = &PTLoNAY [ABEL TERM.
DPERANDLR) & aNY EXPRESSION,
SEMANTIC e OFCOpE=p'azt,
HAJRP LOPERANG1) . OPERAND(2)) §
INSTRUCTION rapDe @
RESULT e qAJOR
OPERAND(1; = OPTIONAL ['ABEL TERM,
PERANDIZ) o ANY [XPREgSioN,
SEMANTIC 5 aPCOnEzg'pdt,
‘ uA40p (OPERAND(L) QPERANDL2)) §
INSTRUCTION +SuBy
RESULT x MAJDR,

17-apR=79

18143 PAGE

8

5 0 0 0 2 0o

A
H

oi-g

8§ 30Yd TwnDwo

ALMYNS ¥ood 40

ASSEMBLY LaNGuaGe DEFINITION (ALLOEF) 17=4PR=79 15143 PaGE 9

OPERAND(1) = gPTIoNA, LABEL TERM,
OPFRAND{2) & aMNY EXPREGSION,
SEMANTIC & oPCODE=gt241,
_ H‘JOPfOPEHANDMIJrUPERwNDlE)) L
INSTHUCTION wMpl+ 1
RESULT & MAJOR,
OPERAND(1) & gPTIoNA, i, ABEL TERM:
OPERAND(2) & ANY EXPRERSION,
SEMANTIC . OPGUDE-IQ'QQ!,
MAJUP10PERWND¢1)rOPERwNUIZ))]
INSTRUCTLON *prV¥: 3
REGULT s MA#URl o
OPERAND(1) = oPTIONAQ' {'aseL TERM,
OFERAND 2y x ANy EXPREGSION,
SEMANTIC oPE0nE=gtgqt,
HﬂJUPWGPERWNDII).OPERﬂﬂnmzi) s
INSTHUCTION »gTRY ¢
RESULT a MAJOR,
OPERAND(1) = OPTIONAL' 'ABEL TERM.
DPERAND(2) 5 ANY EXPRE]SION,
SEMANTIC cPcOnEen‘agt,
MAJDPLOthknﬂ(II;gPERinﬂ423l 5
TNSTRUCTION +aNDY 3
RESULT w MAJOR,
OPERAND(4) o OPTIONAL (ABEL TERM,
OPERANDCZ2) o aANY EXPRE®SIQN,
SEMANTIE & oPCODE=p *33,
‘ MﬁJOPtGPEﬁwuotli.nPERwNn¢2;) H
INSTRUETION tMRG ¢
RESULT s MAJOR,
OPERAND(1) = pPTIoNAL {ABEL TERM,
OPERANDC2) » ANY £XPoEeSioN,
SEMANTIC m 0PCODEs=yt s,
MAJDP(OPERkNDil)cDPERAN0121) s
INSTRUCTION roRt 3
RESULT = HAJOR,
OPERAND(1) a aPTIONAL {'AREL TERM,
OPERANDA2) o ANY £XPRE€STON,
SEMANTIC = oPCODE=y 'spt,
MAJGP(GPERWNDll)r@PEannmzj) L]
INSTRUGTION rpgR+ ¢
RESULT = MAJOR,
OPERANDL1) 2 aPTIONAL {'ABEL TERM,
OPERANDG2) o ANY EXPRE]SION,
n

SEMANTC oPCODE=q ' 929,

o MAJAP COPERANDEL) y OPERAND2)) §
INSTRUCTION 'ppT+

RESULT x MAJDR,

OPERANDLy) w OPTIONA(" {'aBEL TERM,

QPERANDL2) 5 ANy EXPREQSTGN,

SEMANTIC o 0PCODE=g' L6,

. HlJUPIUPEHkNB{I)rOPERﬁND{E’) 5
INSTRUCTION 11pFyr

¥ ™

t1-8

ASSEMBLY LANGUAGE DEFINITION {ALLDEF)

RESULT a MAYD,
OPERAND(1) = OPTIaNa ["AREL TERM,
OFFRAND(2) a aNY ¢ XPREgSION,
SEMANTIC a OPCONE=n'761,
FAJOR (OPERANDIL) s OPERAND(2)) §
INSTRUCTION +SHF: 1
RESULT a MALOR,
OPEHAND 1) o 0PTlaNay "AHEL TERH,
OPERAND(2) o aNY CXPREQSTIN,
SEnaAnTC -4 L)?GODEzn'i‘“.
MAJOPLOPERAND(L) s OPERANDY2)) €
INSTRUCT[ON *psH" @
RESULT 2 MAJOR,
OPERANDC1L) » QPTIONAL | ABEL TERM,
aPERANDALD) a ANY gXppEesigh.
SEMANTIC a OPCORE=n* 3560,
MAJOL{DPERAND (1) ;OFERAND(2)) &
INSTRUCTION 'pg¥' :
RESUy T = MA 0K,
UPERAND(L) = PTiORAL LABEL TERH,
GPERAND(2) = ANY ExPRCSSION.
SEMANTIC = OPCalp & 0'540,
MA 0P (OPERAND (1) ,0PERAND(2)) §
INSTRGUCTION *gyg
REGHLT 2 hA D
DPER&NR(1) = CPTINMAL {"ABEL TERAM.
OPERANG () = aNY [XPREgS!ON,
SEMANTIC g pPGOpE=sp'34r,
vR g0 (OpERAND L) gPERANDLZ)) &
INSTRYCT]ION +BaM,
RESHLT z MAJDR,
OPERANDC(4Y 3 nPTIANAL [(ABEL TERM,
NFERANDL2) & ANY ZXPREQSIUN,
SEMANT 1C x PCODE=p'aét,
HAJOU(OPERAND (L) DPERAND(2)Y) §
INSYRUCTION *BRU'
RESWLT & MAJOY,
OPERANG {13 = oPTIONAL ["ABEL TERM,
OPERAND(2) ¢ ANY CXPREQSION,
SEMANTIC 3 mPCODEﬁJ'ﬁz'n
MAJOF (OPERAND(L) s OPERANDY(2)) §
INSTRUCTION 'gRO'
RESULT s MAJDT,
OPFRAND(1L) = QPTInNA&_ ('ABE[L TERM.
GPERAND{2) x ANY cXPRE4SION,
SEMANTIC o OPEOPE=ptant,
MAJOP LBPERAND (1) s OPERAND(2)) §
INSTRUCTION vFiNr g
RESULT e MAJDR,
OPERANG 1) » OFi1ONA 1 ABEL TERM.
OPERANDL2) = ANY [XPRESSIIN,
SEMANTIC o aPCOpE=g'y2:r,
MAJOP (OPERAND{L) : OPERANDL{2)) §

17<4PR~79

16143 PRGE

10

zi-g

IR

- womon canwvave DeFINDEION CALLDEF) 17~APR*79 16143 PAGE 13

INSTRUCTION 'TxLE? |
RESULT a MAJOR,
BPERAND(1} = oPTioNal ['AREL TERM,
DPERAND{(2) = ANY EXPRESSION,
SEMANTIC 4 0PCODEmpn’22),
7 MAJOp CORERAND (1) oPERANDLZ)) 8
INSTRUGTION rTalr 3
RESULT s MAJ08,
OPERANDC1) = OPTIONAL ['4BEL TERM
OPERAND(2) a aANY pXPRERS1ON,
SEMANTIC m pPCODEERg'pé&r,
HAJOP{OPERANDI L), OPERAND(2)) §
rNSTRUCT[ON LR 7 ML
RESULT a MAJOR.
OPERANDS1} » gPTION&L (ABEL TERM,
OPERAND (21 2 ANY EXPRESS}ON,
SEMANTIC o ©oPgOpE=nta6e,
o A Op LOpERANDLL: JOPERAND(2)) 8
YNSTRUCTIGN +TAG, ¢
RESELT = MAJOR,
OPERAND(1) 3 aPTIONAL Q'AREL TERM,
DPERANDE2) x aNY EXPREgSION,
SEMANTIC 5 oPcODE=n'46!,
MAJ0P COPERANDIL) . OPERANDILRY) $

7* sYuBoL DEFINITIONS Tp RUPPORT ASSERALY e/

PREFIx oPERATQR '¢' ¢
RESULT n ANY CXPRESS]ON,
QPERAND (1) a LIT) .
SEMANTIC z ANSWER=gHECKOP(KIND,1).
1F (ANSWER.EQe INSTRUCTION.OR,A%SWER,EQuDIRECTIVE),
LITERAL(PDATA' , QPERAND (L), *, LI T*FLAG),
RETURNTGOPERAND (1)),
ELSE,
Falk,
END 3
sasssnnsen WARNING esenasspss

PREF X OPERATOR '3(' |
RESULT s CONTROLLGAUNTER,
PRECEDENGCE = 19,
OPEFRAND(1) = CCV,
SEMANTIC ¢ aNSWERwyaj UE(OPERAND(L)),
tF (ANSWER.EQ.D),
SECTION(YBATA 3,
ELSE,
IF (ANGHER,EQ11),
Sgcriont'cOoE"s,
ELSE.
ERRAR (28],
Fall,
ENDl

——

X

PRECEDENCE NOT SPECIFIED 2B USED

e

x e

£t-8

ASSEMBI Y LANGUAGE DEFINITION taLLDEF)

END §
POSTFIX OPERsTQR '}' 1
RESULT z GV,

OFERAND(L) 2 ANY EXPREGSION.
SEMANTIC - 5 1F {CHEEKAP ISPELLING,1).E0, *S(1),
R TURN ¢ OPERANDH 1)),

ELSE,

INF1X OPERATEQR ',' 1
RESULD L ABEL TpRuM,
PRFCEBENCE 5 12,
BPERANDLL) 2z CUNTRGL.CAUNTER,
OPERAND(2Y - LABEL TpRw,
SEMANTIC 3 RETURN-(oPpRANDt2)) &
POSyFix OPEnATaR !)' 1§
RESULT ® LT
OPERAND (1) = SYMBuL TERM,
SEMANTIC x RETUANLAPPRAND(L)) ¢

PASTFiX OPEnATQR 'el i
RESULT = LABEL TpRy,
OPERANDBC1) a | ABE_ TR,
SEMANTIC 3 EXTEGNLel,
RETUKNLAPRRAND (1)) §

INF1& GPERATQR '+' 1
AESULT a ANY EXPREQSTON,
APEFAND(L) = ANY CXPRERSTUN,
BRERANDIR) u ANY EXPREGSION,
PRECEDENCE = 4¥, .
= FETUAN{nPPRAND{1) «QPERAND(2)) §

SEMANTIE
INF1X OPERATER '+' |
REQULT e ANY EXPREag1ON,

OPERAND (9 = ANY tXPREGSTQN,

OPERAND(2) o aANY EXPRE&SIQN,

PapCEOENCE & 4¥,

SEMARTIC o RETUWN(APPRAND(L)=OPERAND(2)) §

PREF ¥ OPERATDR 'o'

RESULT s ANY cXPpeeStoN,

OMERAND(1) = ANY EXPREES)ON,

PHECEDENCE © 4U,

SEMAMTIC t RETURN(oPpRANDTL) 1S
PREF1X OPERATDR '~'
Rbsu, ¥ 8 ANY EXPREGSIgN.

OPERAND(1) = aNY EXPREQSION,

PHECEDENCE o 4%,

SEMANTIC z RETURN(p=aPERAND(i},S
INFLX OPERATER 'e' 1

R R i 1 T A A A B e kb

P ﬁmmﬂ
M

17=4PR=79 16143 PAGE 12

sanpsssane HIRNING }iu..oo.oi

PRECEDENCE NOT SPECIFIED 1888 USED

SEASUROBDE LARN NG esassesass

PRECEDENGE NOT SPECIFIED 1009 USED

eessussene LARNING ssssnseacs

FRECEDENCE NOT SPECIFIED 1pp0 USED

—

i

v1-8

7N

3

£

ASSEMBLY LANGUAGE DEFINITION CALLDEF)

RESULT ANY EXPRESSIGN,

 }

OPERAND1) u 4NY FXPRERS]ION,

OPERAND(2) s ANY EXPREgSION,

PREGEJDENEE = <=9,

SEMANTIC = nETURNlaPpRANﬂtl)nﬁPEHwﬂnizljs
INFIX OPERATGR '/' |

RESULT a2 ANY EXPRERSION,

GPERAND(1) = ANY EXPREESION,

OPERAND(2) = ANY EXPRESSIQN,

PRECEDENCE 2 s9,

SEMANTIC B RETURN(mPgRﬁND(llIOPERANDfQ)}S
INFIX OPERATOR 'om'

RESULT 3 ANY EXPREQS!gN.

BPERAND(1) g ANY EXPRE]SIQN.,

OFERAND(oY = ANY £XPRE&S|ON,

PRECEDENCE & 2,

SEMANTIC o RETURNMBPERAND(1J.XOR.OPERwNoii)}s
INF1X DPERATOR '>! 1§

RESULT = ANY EXPREQSION,

OPERANDC1) « ANY EXPREGSIgN.

OPERAND(2; » ANY £XPRESS!ON,

PRECEDENZE = 15,

SEMANTIC o RETURN(APPRAND(1),GT,DPERANDL2))S
INFIX OPERATOR '¢* 1§

RESULT s ANY EXPREQSIgN:

OPERAND(1) a ANY £XPRESS|ON,

OPERANDLS) & ANY EXPRESSON,

PRECEDENGE » 19, _

SEMANTIE c RETUanOPrRkNo‘ll.LT.UPERﬁﬁ912)I$
INFIX OPERATOR 'z'

RESULT a ANY EXPRERS|ON,

OPERANDS4) a ANY EXPRERSTON,

OPERAND{2) = ANY CXPRESSIQN,

PHECEDENGE 7 12, _
SEMANTIE g RETURNwoPERWNDtii.EuioPEﬂﬂNsza)s
INFIX QPERATQOR 'ele! | _

RESULT a ANY £XPRESSION,

DPERAND (1) = ANY EXPRESSION.

DPERAND(2) & ANY EXPRERSION:

PRECEDENGE n &9,

SEMANTIC 4 RETURN(TSQL}IOPERﬁNﬂli}rGPERWNDIZ"ﬁS
INFIX QPERATOR tes'

RESULT x ANY EXppEgstoN,

OPERAND(1) g 4NY EXPRESS.gN,

OPERAND(2) 5 ANY £XPREgS]ON,

PREGEDENCE n 6,

SEMANTIC u RETURN(OPERAND(1)a{1Qse0PERAND(2))}S
INFIX OPERATOR tes'

RESULT = ANY EXPRE&S!oN,

0PERAND(1) » ANY EXPREgS]oN,

OPERAND(2) a ANY £XPRESS|ON,

PRPCEDENCE & 69, .

SEMANTIC 2 RETURN(oPPRAND{(1) /160a0PERAND(2))S

17~APR=79

L3

16143 PiGE

39

w

Si-89

3

ASSEMBLY LANGUAGE DEFINITION {ALLDEF)

INFIX OPERATOR ta%'
ALSULT

a aNY pXPREgSLON,
APERANDC(L) = ANY LXPRESSIUN,
OFFRANDCZ) = ANY zXFRE&STON,
PRECEDENGE = 39,
SEMANTIC x RETURN(DPERAND (1), AND,OPERANDI2))S
INFIX OPERATQAR '+%' :
RESULT = ANY ZXPQERS{ON,

OPERANDL 1) o (NY pXPRESSTUN,

NPFRANDIZY o ANY EXPRESSTON,

pRECEDENCE = 24,

SEMANTIC 3 RETURN(aPRRAND(1),0R,0PERAND(2) S
INFIX OPERATOR ta’-t

RESULT a ANY EXPREgSION,

oPFRAND(L) = ANY EXPrEgS TN

CPERAND(2)= ANY ExPRpSgloN,

SEMANTIC & RETURN{SHR, (OPERAND (1), 0PERAND(2) 318
INFIX DPERATOR *,':

RESULT = s¥yByL fEpm LIST,

CPERAND(1y = SYMBOL TEgM (1ST,”

OPERANBE(2) = $YMBuk TEiM,

PRECERENCE = 172,

SEMANTIC = L 1STr{QpEGANG L) 1 0PERANDL2)) &
INFIX GPERATOR 1, 1

RESULT = ANY EXPRERSION L]sST,

OPERAND 1) = ANY EXPRESSION LST,

OPERAND(2) = aANY £XPRESSION,

PRECEDENRE = 12, .

SEMANTIC = LISTF(OPERAND(1) 1 OPERAND{2}) $

END oF ALLDeF nEFiylTlay s

17-4PR~79

16443 PAGE

14

[S

al-8

)

ASSEMBLY LANGUAGE DEFINITION (ALLDEF)

ToTAL NUMBER OF RECOGNITjOR ERRORS = g

17-apR=29

16147 PAGE

¥
EE®

15

L1

¥
[

Appendix C
ALLLEX NSSC-I DEFINITION

C-1

o0N

~

A

LEX[CAL TFOKEN

BEGIN LEXIGA: DEFINITION §
<LEXICONY> 1w
IF FIRST+CARD Ng a,
CFIRSTOARD)

[F 4ACROS EQ ©
2/ <MACROPREPASS),

MACROSRE,

CURSDRRY

171

SUBFIELD LE FIELDS,

T
-

IF antT v ',
IF NBT 1,7,
fTUKEN)t

17 MNEnONEITC Eq 2,

BEFINITION 17=APR~TFo 161

/% CHECK F@R ASSEMBLE CARD

/¢ 15 A MACRG PASS NEEDED
/% GET ALL MACROS

/® UNTIL aLL FIELDS

/% NEXT FIELD IF BLANK OR
/4 COMMENT

/% GET A TOKEN

/% oNLY FOR ACTUR,

TOKEN®STARTPOSITION OF <TOKEND.,
TOKEN*STZERgl2Z OF <TOKEND

£/ Npkt
)

/¢ Ir suBrleln Eg 1,
SCAN,
{
v.f,
CuRSORMENETS
:/ IF cURSoR~gcHAR EQ

HNEHONTCe2,

TAKEN®TYPEaANAME
SusFrELD=2 -
2/ SClw, /% GET NEXT FIELD
¢
', /% JGNORT REST [F COMMENT
CURSORELENCTY
// 1F gURSQRLCHaR EQ =999 /% OR REACHED END OF LINE
:/ suBrleLDaSUBR IRLBd /% REACHED NEXT FLELD
r
. SLEyIcoN» /% CONTINYE WITH NEW yOKEN
|
s’ CURSQRALENETH, /% JUST GET OUT IF Top
/% MANY FIELDS
42
- TgWENwTYpE:END*BF*LINE $
CTOKEND tF .
IF SOURCESMOOE FO wABROEXPAND, /% PARAMETER SUBSTITYTION
if MAGgo»_ nE Eg B, /* MUST BE FIRST LINE
}r SUBFIELD EQ 3i /% IN &RGUMENT FlELD
CHAGROARG > » /% RETURN AS A SYMBOL
’r‘GHEN-T.YPE!SY’MBDt
/7 IF PROCESS*MODE EO Sk1P, /* LGNORE TEXT OF MaCRO
<SKipMACRQTEXTY
/7 IF LITFRAL®SCAN £Q 1! /% PAASE LiVERAL
CZEROLEVELPAREN),

/* CHEEK FOR NULL LINE

=999

43P AGE

'y,
./

»/

ey
e/

o/

./

./

Y
«f

.
Y

e/

./
./

b

€0

LEX1CAL FOKEN DEFINITION

LITERAL »SEANTT
TOKEN®TYPESSY IgL

/7 1F LE
CNAMED,
t

TTER,

IF suBFlELD £8 14
TOKFN«TYPE=LABE
27 TOKPNeTYPE=RNAME

H
f¢ 1F Bregr,
<NUMBER>

74 1F SPECTAL,

<SPECTLLY,

TOKEN®1YRPERSPEC AL
/7 TF ALMparg,

£5YMBO|_ >,

TOKEN®TYPE®SYHMAOL L.

/7 1F CURSDR*CH'AR £0 =909,
CURSDR=CURSER+1,
TOREN« TYPERENDROF ' INE §

<NUMBERY o

tF SuBriIgL

D EQ 2,

MREMON{C=1,
TOKEN+ | yPEaNAME,
CURS Rz CURSOR.1

/e
lF rar,
€0CT>,

TOKENey&LUESVALUE aF OeTAL <DET>

7/ CINTY,

fOKEN*y%LmE=V*LUE of <Int>

12

YOKEN* yPERYALUE $

¢MACROARGY o
170 20
(

) g
C¢SKIPMACROTEXT>
{

4
1

1P oNOT oy
IF NOT rlr)
CHARACTER
le

If SUSFIRLA Eg
CNAMED

SgAN,
SuBFIfLle2
Nukl

IF sUBFleLR Eg
IF GURSORe~eHAR
I:F NUT 'ENE. 'l
CURSORWLENETH,

1,

2,
NE -9.99;

17=APR~79

/% CHECK FOR A NAME

/o 1S THIS A LABEL
/% ND, JUST & NAME
/% CHECK FOR 4 NUMBER
7+ CHECK FOR SPEGIALS

/@ UNKNOWN SYMBOL

/% END oF LINE TQKEN

16 :145PAGE

/¢ A LEADING @ MEANS QCYAL

/% 1F NGT THEN DEgIMgL

*/

./

2

e

N

LEXICAL FOKEN DEFINITION

MNEMONICoE,
TOKEN-TYPE gNiwME
{,s IF SUBFIgLE NE 2

<SYHROL> iw

C<INTY

<oCT>

i
<NAME> 1=

1 7O ManY ALMERICS §
£?
1 70 12 p161TS §
Is
TO 12 oETALS &

1 TO B8 LETMERICS §

<SPECIAL> ;=

’/

/f

7

14

¥4

’r

tat,

te!
/7 ter
H

it
24 et
£ et
/7 NUky
}
1,
t

l,l
44 Nuly
)
!*"
t

ter
27 Nuky
H

tat,

{

27 NUL.

]

If SuBr1eLd Eg 1,
3¢ -

1F suBr{ELO £0 3.

ti,
i

IF 14AGE (CURSORS2) Ep @
/7 IF r”waE¢GURsﬂR.2§ EQ =11
L)
LITERAL »SCAN®L
SPECIA; 3

CHACROPREPASSY B

FL

i
Ll

/e
/e
sl
/e
/e
FE

/e
/e

o
F

fe
»

/e
/e
P
/»
Fd)
L

Fi)

17-APR~79 16145PAGE

LETTERS 4ND/GR DlGITS s/

BECIMAL DIGITS */
OCTAL DIGITS oy
LETTER 4ND LETTERS oy
ANO/DR DBIGITS .y
A SHIFTED LEFT N PLACES e/

A SHIFTED RIGHT N PLACES ./

A MULTIPLIED gY 1paey sy
A MULTIPLLED BY 1/4Qeey o/
s}

LOGICAL AN L4
MULTIPLICATION .y
REMAINDER oF A/N 4
DIVISION .
LOGICAL DR o/
ADDITION Y]
EXCLUSIVE gR ./
SUATRACTION »/

CONTROL SECTION INDICATOR®/

CHEEK IF ARGUMEN FIELD #/
THEN POSSIBLE LI¥ERNL ./
LEFT PAREN FOLLOWED gY /

A B ANK: OR *)
A COMMA "/
RELATLonAL OPERATQRS ETC.*/

3

e

LEXICAL FOKEN BEFINITION

EYCLE

t

GUR@OR@i-

IF fURSOR*CHAR NE ~999, P
S5CAy,

(

[F cYURSOR Eq 3! /e
<LAREL D>,
| ABELeF IE{ Doy

/7 | ABEL«FI'E: D=z

)

?Gﬁw.
"PROC /e
<LEGAL>I
1F LABEL*FIED EQ 1. /o
IF aVILlp ~E 4, r
M5=p0sltlaN oF <LABEL), /e
MLaSIZE OF <LABELy
PS=MS, /e
FL”ML: -
ANSHER2STARTMAGRO(MS ML, PS,PLy ,
RUILD:3

rr 'EnDY, /o
CLEG&L >,
7 BYILD EQ 4, o
TF LApELFIELD EQ O, /e
F:.ND:.- H‘AC Ru R
BU!LBWU

7/ 1F BUILD EQ 4, /e
CURSORT1,
STRINGICURSOR,
START.BODYeL yNE,
<gUTLDELEMENTSS I/

/7 NULL

)

»
NEXTe1MAGE

RESET*INPYT, /e
JINEXT.IMAGE) §
CEERDLFVELPARENS :B

t

SCAy FpR 'S7,
ANSRER=| TSCAN

// ANSWERc®

t
{

SCAy FpR ') »

4/ SCAy FoR 1y

Y

CURSOReL TSCAN,

I¥ ANSWER 6T @,
IF ANSWER LT LTSCiN,
LIT«FLaGnl

17~APR~7¢% 18 145PAGE
UNTIL END OF InPUT ./
CHECK LABEL FlELD .74
MACRC DEFINITION ./
MUST HAVE LABEL FlgLp */
NESTED NOT ALLOWED ./
SAyE MACRO NAME LY
AND PARAMETER NaMg)
MYST BE IN A MACROD 'Y
MUST NOT HAVE A LABEL o/
MACRO BODY LT}
BUILD PLEGES OF LINE L4
RE=POSTTION INPYT o/

4

LEXI1CAL FOKEN DEFINITTON

(~ 7/ LITeFLaGal
g

)
LEGAL> 1w
. [B

/4N g
<LABELS :a _
o 1 T0 4 ALMERIGS,
R L
¢BYILDELEMENTS 1F
SCANWF NR.PARM;,

tF Lrscay Gr @4
QURSGRwLTSCWN|
t

L)

CURSORZCURSOReR,
t ANSHER®Y,
v,

<NUHBER>I
tye

TOKE.Ns YA UERTORENSY A UE 03,

ANSHER®I,
NOT NuLL

2/ IF anNSWER EQ 1,
<NONSLRY,

LAY

AmswéﬁnSuBPAHMNuMqTnmENkaLUE;.

CURsoR3CYRSORP},
”l'
fN?MBER>.
Y,
STRING=CURSOR
e // CURSQReCURSOR#P]
Y
4BUILQFLEHENT5>
CURSOR: (ENGTH,
, <NONSURY §
C¢NONSUR> i=
IF STRING Gf CUrSOR

{ /7

TVhﬂEuanj'

. S8TRING=URSOR §
¢F IRSTEARDD :a
IF FIRST*cARD EQ 1,
rye,

SCA‘Nn

SUBFI1ELneos)

TOXENSTARTRCURSQR !

'ASSEMBLE 'y

TOKEN«S 1 2EBB,

- TOKEN®TYPERNAME
FIRSTwCaARDER

#7 IF FIRSTegaARD Eg 2,

SCAN,

<NaMg .,

LY

/7 NNSHER=N0NSUBgSTRTNG:GURSOR'STRING)l

17=4PR=79 161.45PAGE
A% BLANK AND COMMENT w7
/8 ARE ONLY LEGAL TOKEN o/
/e MACRO NAME 1S FOUR ./
/* LETTERS AND/OR DIGITS L 74
/* LOOK AHEAD FOR A SUB= .y
/% STITUT)ON s/
/% if 1T Is FounD A
/% MOVE TO THE PARAMETER Y
/¢ MOVE PAST PARAMETER L1
/* BETERMINE PARAMETER LY
/% NUMBER ./
/® PUT IN NONeSUBSTITUTABLE ¢
/% PART O THE Misk) LIN &/
/e PUT IN #3RAMETCR NUMBER s/
/% NOY A PARAMETER,]GNORE 74
/e SCAN OFF REST OF L INE »/
/% AND QUTPUT Y
/* NoNesuBSTITUTABLE CoUE o/
/% ONLY PUT ONT If THERE »/
. 4 1 i 3] f '2 &. -

&

2

LEX|CAL FOKEN DEFINTITIGN

SUBFIELpESY
TOKE e TYPERNAME,

‘ TUKENeS T ZERSIZE of <NAMED,
TOKEN«START=POS[1iaN OF <NAMED,
LISTiNGel,

HACRESa1,
g 10 2
«
?C"“N‘a
1iQOLISTY', LISTING=E
;1 '(MOPROC; ', .MACROSag
Vs
FIRSt+CaARDAT
/4 SCAN, _
IF CuRSOR.CHAN g 1999,
CURSaR=aURSOR+],

TOKENwTyPEIENG#OF+| [NE,
FIRST.cpRDo2 &
END OF LEXICAL DEFINITIOp €

17-APR=79

161 49PAGE

6

f-{--x}‘v,i

80

LEXTCAL FOKEN DEFINITION 17-APR=79

ToTAL HUMBER oF RECOGNITiON ERRORS & @

W,

~+=
A . T
. T
>y f
- —

O

-—

L6 145PAGE

7

	0001A02
	0001A03
	0001A04
	0001A05
	0001A06
	0001A07
	0001A08
	0001A09
	0001A10
	0001A11
	0001A12
	0001A13
	0001A14
	0001B01
	0001B02
	0001B03
	0001B04
	0001B05
	0001B06
	0001B07
	0001B08
	0001B09
	0001B10
	0001B11
	0001B12
	0001B13
	0001B14
	0001C01
	0001C02
	0001C03
	0001C04
	0001C05
	0001C06
	0001C07
	0001C08
	0001C09
	0001C10
	0001C11
	0001C12
	0001C13
	0001C14
	0001D01
	0001D02
	0001D03
	0001D04
	0001D05
	0001D06
	0001D07
	0001D08
	0001D09
	0001D10
	0001D11
	0001D12
	0001D13
	0001D14
	0001E01
	0001E02
	0001E03
	0001E04
	0001E05
	0001E06
	0001E07
	0001E08
	0001E09
	0001E10
	0001E11
	0001E12
	0001E13
	0001E14
	0001F01
	0001F02
	0001F03
	0001F04
	0001F05
	0001F06
	0001F07
	0001F08
	0001F09
	0001F10
	0001F11
	0001F12
	0001F13
	0001F14
	0001G01
	0001G02
	0001G03
	0001G04
	0001G05
	0001G06
	0001G07
	0001G08
	0001G09
	0001G10
	0001G11
	0001G12
	0001G13
	0001G14

