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1. INTRODUCTION

In the literature *here is considerable interest in the incorporation of
contextual information into classification, especially in the development of
methods for character recognition. Generally, one of two basic approaches
has been followed, the table look-up method or the Markov approach. The
table look-up method is based on the assumption that every word in the text
is selected from a known finite table. A word of text is classified by com-
paring it with every word in the table having the same length and finding
the best match.

The Marknv approach is based on the assumption that the true category of a
character is related in a probabilistic manner to the true categorie: of a
small number of surrounding characters. Its use leads to the estimation of
the probabilities of all possibie pairs, triples, etc., of characters; i.e.,
transition probabilities from sample text.

Abend (ref. 1) derived optimal procedures when a Markov dependence exists
between the states of nature, and Raviv (ref. 2) gives the results of applying
such procedures for the recognition of English text. Chow (ref. 3), using a
nearest-neighbor dependence method, obtained the structure and parameters

of a recognition network for patterns represented by binary matrices.

Use of contextual analysis in speech iecogrition is considered by Alter
(ref. 4). Welch and Salter (ref. 5) present an algorithm for the incorpora-
tion of contextual information in the classification of picture elements
(pixels) in an image. Ch:.ttineni (ref. 6) discusses the use of context with
the linear classifiers.

A1l of these apprnaches assume the availability of, or estimation from a
sample, the transition probabilities. 1In the application of the above tech-
niques for classification of imagery data such as that obtained in remote
sensing, it is difficult to estimate the transition probabilities; and very
often they vary from one image to the other.



This paper presents a simple model for the transition probabilities in terms
of a single parameter O and presents methods for the incorporation of contex-
tual information into classification in terms of O0. Techniques for locally
estimating O, based on classifier decisions and using a maximum 1ikelihood
method, are developed. The paper is organized as follows.

Section 2 presents a model for the transition probabilities. Section 3 dis-
cusses the incorporation of context into classification. Section 4 develops
techniques for locally estimating the parameter of transition probability
model using the maximum likelihood method. Section 5 presents conclusions.
Appendix A develops some results for estimating the parameter of transition
probabilities under the assvmption of different transition probability models
for horizontal and vertical neighbors. Appendix B presents a multitemporal
interpretation of the techniques developed in the paper for remote sensing
applications by minimizing the registration errors and incorporating ontext
into classification.

2. A MODEL FOR REPRESENTING TRANSITION PROBABILITIES

Let i and j be the neighboring picture elements (pixels) with pattern vectors
X; and xj and class labels wj and w; respectively. Let w; and w; take
values r and s. Let P(w = r) be the a priori probability of class r. If it

is assumed that the labels of pixels i and j are independent, then
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Because generally a dependence exists between neighboring pixels, this
dependency is modeled through a parameter O, which lies between 0 and 1 as

P(wi - r‘|-.uJ =s) = (] - O)P(w1 =r)
and (3)

rluj =pr)= (] - O)P(mi =r)+0

P(mi

where
0<ocx<] (4)

From equations (1), (2), and (3), it is easily seen that, © = 1 denotes
complete dependence and that © = 0 denotes independence.

The following shows that this definition satisfies the postulates of prob-
ability. Let there be M classes. Consider that
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thus satisfying the probability rule. However, it is to be noted that the

dependencies between the neighboring pixels can be modeled through some other
: = o

parameter; for example, by replacing O-g By then the dependencies depend

—-—E—:E. then the dependencies depend

1-e

on 8, -= < B <=, This paper assumes that the spatial dependencies are

modeled according to equations (3) and (4).

on a, 0 < a < =, by replacing 0 =

3. CONTEXTUAL CLASSIFIERS

Using the transition probabilities model of the previous section, this section
develops methods for incorporating contextual information into the classifier

decision process. 3



3.1 SPATIALLY UNIFORM CONTEXT

It is assumed that O holds hood for transition probabilities representation

in the neighborhood under consideration.
shown in the following figure.

Consider a neighborhood of pixels

Figure 1.— Four neighbors of pixel 0.

The pattern vectors and class labels of these pixels are denoted by Xi, w
Suppose that pixel 0 is under consideration.

120, 1, 2, ee00, 4,

i’
Pixel 0

is classified into class io on the basis of o posterior! probabilities

p(mo =
following:

10[X0, XI. eoe, X4). Let f = p(Xo, X], eoe, X4}.

Consider the



Making an assumption that the probability density function of a pattern given

its label is independent of other labels and patterns, one can write the
following:

L (6)

Now consider

"o u j* Yy (7)

Note that in equation (7), it was assumed that the labels of the pixels are
independent of the labels of the nonneighboring pixels.
(6), and (7), the following is obtained.

P‘“‘o - ‘olp‘loluo - io, 4
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From equations (5),
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However, the denominator of equation (8) can be written as

p(xo’ x}! ooo, xa) = p(x]. olo‘ x4)p(x0|x]. noo’ x4)
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Now consider

-
¥ \ . E bee E | veu i seu )
X, ' Yy . Ve . v g "L ."

'q

- L

E CIE RTINS 0 T TR .

[

>
e o o [ B oy

Hence, the following is obtained:
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Using equations (9) and (10) in equation (8), one gets

Plug * 1gP(Xglug = o’r’ (1 - 0) Z POXgluy = 0Py = 1) + 0B(K,fuy * 1o
|

‘j) * lm(ljlw.' LI |

\olP:.J '

o

Yolug = 1g)

(10)

ol l‘) " N

2 Moy * tghelhgley -
10'1

""ﬂo - ‘oltn. X

]

4
(w, = 1,]X,)
Plug = 151%g) n (1-0)+0 f,rl——‘,"jl-”
3

* . .
' pluw, = 1,]X,)
Epluo-f,,llo)rl (1-0)¢e - °|
10.‘ Jo

o) ﬂ [“ - 8) ; P(Kglog = 15)P(wy = 1,) + Op(Xluy = 101]

(1)

Equation (11) can be used to update the posteriori probabilities of the
classes of pixel 0 with the incorporation of contextual information. For



classification of pixel 0, the decision rule becomes the following: ‘ecide

XOLMO = 10. which maximizes 910' where

4
pPlw; = 15]|X,)
9y = plug = olxg) [T |- 0 0 L eane

J=1

3.2 SEQUENTIAL OR MARKOVIAN DEPENDENCE

This section considers the sequential or Markovian dependence between
neighboring pixels with the transition probabilities as described in sec-
tion 2 in terms of parameter O. This sequential model can be used to
classify a pixel using contextual information as follows. Consider a
3x3 neighborhood of pixel 0, shown in figure 2.

-

Figure 2.— Il1lustration of 3x3 neighborhood.

Consider pixel 1. Its posteriori probabilities are updated using the infor-
mation from patterns of pixels 8 and 2 and similarly for pixels 7, 0, 3 and

6, 5, 4. Finally, the posteriori probabilities of the labels of the pattern
of pixel 0 are obtained using the ones of pixels 1 and 5. Now consider the

sequential neighborhood shown in figure 3.

x2‘ x3’ xn-]' xn' xn+l’

e yae

W wy w3 “n-1 Wa { “n+1

Figure 3.— Illustration of a sequential neighborhood.



Assume that the posteriori probabilities p(un_1 = i!!l, ver, xn_]).

i=1,2, *++, M are known. Then the problem is to update the posteriori
probabilities of xn using the information from Xn. Xn+1. and XI. see, Xn_1.
The following assumptions are made. Given the identification of the label of
the n-1¢/ pixel, the label of the nth pixel does not depend on the patterns
of pixels 1, 2, «++, n - 1, That is,

plw. = klmn_] = Js Xye s X0 4) = Plw, = klwn_] = J) (12)

n n-1

It is also assumed that given the identification of the label of a pattern,
its density does not depend on any other information. That is,

p(Xn[mn = k, any other X or w) = p(Xn|mn = k) (13)

With these assumptions, the contextual relations using sequential or
Markovian dependence are developed. Now consider
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Using similar arguments, one can write the following:
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Now the posteriori probabilities of the label of pattern X, are updated using
the information frei. pattern X, and patterns Xio Koo o0y Xp-1 28
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The information in patterns X]. ey B in obtaining the label of pattern
X4y Can be written as follows:

Plugey * J1Ky0 +oe 1) ® :u.,., eyt ARy e, KD
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The numerator of equation (19) can be written as follows:
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Now from equations (17), (18), (19), and (20), one obtains

(1 = 000y = KIkys wves X)) 30 B0y lipay = IPlaggy = 9) # 00Ky lupey * KDDLy * KIKyL w00, Ky
M - ' S ‘
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: : Plupey * klkayy)
{ Wbl © Klkyo socs B} # @ R0 gf Moy = Wby oons By (21)

From equations (16) and (21), one obtains the desired result.

3.3 UNSUPERVISED MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

One of the methods of unsupervised learning or clustering is to assume the
component densities of the mixture density as normal with unknown means

and covariance matrices and to draw samples independently from the mixture
density and estimate the parameters of the mixture density using maximum
likelihood technique. Let % = {X]. see Xn} be a set of n unlabeled samples
that are drawn independently from the mixture density:

p(X|a) = Z p(Xjw = J, aJ)P(w = j)
j=1
where o is a veotor of parameters of the mixture density and aj is a vector
of parameters of the jth component density. The likelihood of the observed
samples is, by ucfinition, the joint density,

n

p(kla) = [ ] oty

k=1

If p(X|lw = i) are assumed to be muitivariate normal with the means Wy and
covariance matr1ces i the equations for the local maximum likelihood

estimates u " z , and P(w = i) under the constraints of 0 < P(w =1i) <1 and
M
:E: P(w = i) = 1 are given by the following (ref. 7).

i=1

11
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k=1
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Z Plo = §[X,, “i)Exk - ) - ﬁi)T]
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where

5 A p(xklui - i, i‘(.)P(ul = 1')
; y: ' i A, B i e W o
Plw = i[X, a;) "

In the application of this technique to the clustering of images in the
spectral domain, the parameters are updated after a split-and-merge sequence.
Updating the parameters involves the computation of the posteriors. The con-
textual algorithms presented in sections 3.1 and 3.2 can be used for updating
the posteriors, with the estimates of transition probabilities from the local
neighborhood using the techniques developed in sections 4.1 and 4.2.

12



4. LOCAL NEIGHBORHOOD MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETER ©
This section derives an expression for the likelihood function of patterns
xo. X]. x2. XJ. x4 given the parameter O and obtains © by maximizing this

function.

4.1 NEIGHBORHOOD OF FOUR

Consider a local neighborhood of pixel 0, illustrated in figure 1. The
Tikelihood function of xo. Kys =00 Xy given O can be written as follows:

"

3 A, TS SRR N e

Consider

[1: (23)

To obtain equation (23), it was assumed that the probability density of a
pattern, given its label, is independent of any other information. Consider

fq, *o¢ . . )
1 A | 4

4
P 0o~ Yo l—li'-“ . lJ 0" ‘D' ) (24)

=i

The derivation of equation (24) is based on the assumption that the label of
a pattern is indpendent of the labels of the nonneighboring patterns. From
equations (22), (23), and (24) the following is obtained-

‘-

nt i -l j=0
M M
: Z Plug = 1g)e(Xglug = 1g) D=+ 3 [n Plkglu = 45)P(u; = 15lug = o e’] (25)
‘Io"l i]" l"]
13
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Interchanging the product and the summations results in the following

expression:
~ s [m
P(Xge Kyo *ory Xg0) = E Plug = 1o)P(Xglug = 'o’rl E Py log = 4,0P(w, i jlug * tg. O) (26)
o] IR
4
Since II p(xj) is independent of O, dividing both sides of the above equa-
j=0

tion by it and noting that the « ; riori probab+’.ties are independent of
pattern location, one obtains

4 [m -
P“ I w2 L p(‘O o}uo)h[x .“"%*‘J-:Jiji’ P(.) . 1_]'-0 = g ) '
np“") ljzl‘.Jn! ‘

J=0
H
p(u ol | 'l }
p( . )l_‘ F(t_‘ ] Plw = |J||.J . |'0| )]

,0 J=1 1'1
pl balRad

0 i | i )
PTG M gl fr ©)

: ‘ : . pla = 1,1%4) '

101 |J=l
™ 4 ;
“ Z plw = !0“0) n (v -0)+0 m :-%-l;li, ’ (27)
o lj" ‘
Let
p(x s Koy *00, X Io)
L(o) = — 24 (28)
[ Trerp
J=0

Expanding equation (27) yields

4

L(0) = (1 - 0)% + 001 - 0)3A + 0%(1 - 0)%B + 03(1 - 0)C + 0% (29)

14



Pla = 15]K,)
(D DS ?‘ﬂo (Plo = 1gI%y) # plw = 15155) ¢ plw = 1plk,) ¢ plu = 1gi3y)]

L]
(1 Iollo)
B 2 2 e 1) tl‘t..a . I“1\1’P‘-' . ‘U:'I ¢ plw = |°1I|)p(u - |°|IJ,O [ |°||','(' - |°‘I.,
Cpla = gliynle = 4g1ag) ¢ ple * folXdele = 1olKg) + Bl * Holkolu = 1olR))
4
ple = 15]X,)
C- :E: g 9 ,° [Plo = SoIX 0l = 1510, 000w + 1glhy) * Blu = tgiydpla * 1418,000u = 151x,)
* pla = 'ullﬂl‘l-‘ . |0||j’l'i- 1““‘, ¢ ple - ‘ollz”(ﬂ . ‘ol",’(b’ b ‘ol"”

Plw '0“0‘
D Z i [D(-' e 'Orll,p(“l ‘[1Ll:’i‘(w . 'olll)P(N - |o".)]
§ .

To maximize L(0), the derivative of L(0) is taken with respect to O, and
the resulting expression is equated to zero. This results in

‘L(.\‘) = a\\s + bt\z +co+d=20 (30)

30
where

=12 + 9A - €4 + 3C

a =4 - 4A + 4B - 4C + 4D, b
c =12 - 6A + 2B, d=-4+A

Equation (30) is a cubic equation with real coefficients; hence, it will
have either three real roots or one real root and two complex roots. With

a change of variable (ref. 8),

Z=a0+b (31)
one obtains from equation (30)
23432 +6=0 (32)
where
H = ac - b2 I
(33)

azd - Jabc + 2c3‘

oy
1}

15



Let

1 . -
fo+ )

and (34)
1 T
q = ?’[‘G - GZ + 4HJ]
The roots of the cubic equation y3 -1=0arel, -% + %J-_3 and -;— - %J-'f.
2

If either of the imaginary roots is represented by u, the other is u“. That
s,

©
1]
|

y 1= (y -y - uly - ud) (35)

Then the roots of equation (32) can be shown to be

-H
¥4 = P —
Tl Rl ~
L -H
22 = w p :F (36)
23 = wz <Y" + w %3;

The roots of equation (30), 04 1 = 1, 2, 3 can thus be obtained from
equations (31) and (36).

The L(0) is a continuous function in 0. The O in the range 0 < 0 < 1, which
maximizes L(0), can be found using figure 4 (ref. 9).

16



COMPUTE L(0) AND L(1)

v

COMPUTE
L' ((\) = f‘l‘:ﬂ(‘g).

'

FIND THE ROOTS OF L'(0) = 0

A 4

ARE ANY
OF THESE ROOTS
IN [0, 1]?

DESIGNATE THE ROOTS
IN [0, 1], 015 ***s 0

WHERE k IS EITHER
1 OR 3

'

CHOOSE Uopt EQUAL TO 0 OR
1 OR U] OR, se-, Ok, DEPENDING

ON THE LARGEST OF L(0), L(1),
L(O]), «++. 0OR L(l‘k)

Figure 4.- Procedure for finding Po

y

CHOOSE ﬂopt EQUAL

TO O OR 1 DEPENDING
ON WHETHER L(0) OR L(1) It
LARGER

in the range 0 < 0 < 1,

pt
which gives the global maximum for L(0O).

17



The nopt of this section can be used with the spatially uniform context

algorithm presented in section 3.1.

4.2 NEIGHBORHOUD OF TWO

Consider a local neighborhood of pixel 0,

illustrated in figure 5.

x X

1 0
1 0

X

2

Figure 5.— Two neighbors of pixel 0.

Let
p(x » ’ X I(’
L(0) = ~91,-—-‘~~3m (37)
I1 p(xj)
J=0
Using similar arguments as in section 4.1, one obtains an expression for
L(O) as follows:
_ 2 - 8
L(O) = (1 - 0)° + 0(1 - O)A + 6°B (38)
where
M plw = IO]X )
» Z PT‘T_'TT [p(w = 10|X ) + plu olx )]
io=}
and
M p(w 10|X ) _
B = Z 4‘*'—_———- [p(u! = 10!)( )p(u\ = 10|X2)]
o p (m = 10)

Taking the derivative of L(0) with respect to O and equating the resulting

expression to 0 yields

aL (o)

0 2(0 -

18

1) + (1 - 20)A + 20B = 0

(39)



The root 0, of equation (39) is given by

1. 2-A

o = 3frsi ) (40)
Because L(0) is a continuous function of O, the optimal value of @, Oopt

in the range 0 < Oopt < 1, which gives maximum value for L(0), can be found

using a procedure similar to that given in figure 4. The Oopt can then be
used with the sequential contextual algorithm presented in section 3.2.

5. CONCLUSIONS

This paper considers the problem of incorporating contextual or spatial
information into classification. The dependencies between neighboring
patterns are modeled through a single parameter O, which describes the tran-
sition probabilities of the classes of the neighboring patterns.

Expressions are derived for updating the posteriori probabilities of the
classes of the pattern under consideration using contextual information both
for a spatially uniform contextual model and for sequential or Markovian
dependencies between neighboring patterns. A likelihood function for the
patterns in the neighborhood of the pattern under consideration, given the
parameter 0, is derived, and the optimal value of O can be obtained by
maximizing the likelihood function.

The techniques presented in this paper can be used for the incorporation
of contextual information both for supervised 2id vnsupervised classifica-
“ions. Incorporaticn of context in unsupervised learning or clustering by
using maximum likelihood estimates for the parameters of a mixture density
with the component Gaussian densities is briefly described.

Instead of using one parameter © in the neighborhood of the pattern under
consideration, as shown in appendix A, transition probability models with
different parameters can be used. The techinques, as shown in appendix B,
can be extended for multitemporal or time-varying situations such as those

encountered in remote sensing.
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The procedures developed for a local neighborhood estimate of O can be used
under some other modeling of transition probabilities as long as the transi-
tion probability modeling satisfies the probability postulates. For exgmple.
O can be replaced with 1—2;5, where a lies between 0 and = or with ——
where £ can be between -» and =,

1 +eF
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APPENDIX A

ESTIMATION OF TRANSITION PROBABILITIES WITH DIFFERENT
PARAMETERS IN THE LOCAL NEIGHBORHOOD

This appendix develops some results for estimating the parameters of transi-
tion probabilities under different models for horizontal and vertical neigh-
bors. Let eH and ov be the parameters of transition probability model for
horizontal and vertical neighbors respectively. For the local neighborhood
illustrated in figure 1, consider the following equation from section 4.1:

p“o‘ ‘ln ey, x‘le’

4
I p(X;)
J=0

L(T) = L(8y, 8) =

4

plw = 14]X;) Plw = 19lXy)
Z Plw = 10“0) (- Gv} * :w 'o (1 - °u) * H Plw '0
171 J=1 ;
f?
#4

(1 - 80201 - 8)% + (1 - 8201 - 8000, + (1 - av)?aﬁaH

+

(1= 8y)ey(1 - 8% + (1 - 8,)8,(1 - 6,)8,ay, + (1 - 0,)0 678y,

+ 0501 - 0,)%, + 0(1 - 8,)0,a8, + GokBy, (A-1)
where
M
p(w w 10|x0) p -
O = Z plu = Tg) L0 = TglXp) + plu = 1g[Xy)]
10=1
ZM (w OIXO
guent P = 1
10—1 0



p(u.'i |X

av = —P—rw—.-‘rr{p(m = folx ) + P(l» . 10|x3)]

10-1

Z" Pl = 10rx )
"'"" (ld
p

- w'i
i

10“] Jp(w = 10“3)]

-—

plw = 15/%)

Ay "2‘_ Lo (u
i=1 Plw=1p)

10|X-|) + plw = 10“3)][9(‘0 . 10“2) + plw = 10“4)]

plw = io’xo)
BVH = Z '}hWNw 10lx])P(U o 10“3)][9(“’ = 10]x2)P(w = 10|X4)]

plw = i5/Xg)
By ® 1: a3 2010‘)’1:)(&0 = 1gl%p) + plw = 1gIxg)Ilp(w = 1p]X))p(w = 1]Xy)]

plw = i,]X,)
WByy = Z 0 0 rp(w = iglXy) + plw = i5[X3)Ilp(w = i5]Xy)p(w = 14[X,)]

3
=t P w = 1,)
10-1 0

To determine By and Oy that maximize equation (A-1), one takes part ii deri-
vations of equation (A-1) with respect to By and 94 and solves the resulting
equations for By and 6,. Taking the partial derivative of equation (A-1) with
respect to ev. equating the resulting expression to zero, and solving for Oy
one obtai,

2
Bunb, + 8,40, * &
ap2% * a01% * 2po

A-2



where

a“2'2'2’1H+28H'QV+ﬂVH'QBVH

-4 + 2'1H + Z\T.v - avH

s 7 -

y

A = Vot By - ooy oy - aBy, ¢ By - aByy + By,

"2 + LIH * ZQ.V Lo uVH - ZBV + GBHV

1 -ay + 8y

Similarly, taking the partial derivative of equation (A-1) with respect to Oy
equating the resulting expression to zero, and solving for fys one obtains

2
bys82 + buqBy + b
oy = (172) Ny MV __NO (A-3)
bp2fy * bpyPy * bpg
where
bNZ . 2 - l].H - zav + QVH + 28v - QBHV

bN] = "4 + ZHH + ZJV - GVH

bN0=2'a

bpg = 1 - ay * By - ay *ayy - aByy + By - aByy + By

H

b

p1 = "2 * 20y - 2By + ay - oay 26,

I

boo'I'ClH'.'BH

Substituting for Oy from equation (A-2) into (A-3) results in a fifth-order
algebraic equation whose roots can be obtained by numerical methods ‘refs. 10
and 11). Let the resulting roots be GHr(i), i=1, «++, 5. From equation
(A-2), one then obtains the corresponding values for OVr(i), § =], samy, §,
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Let

eHr(i)
ﬁrfi) = s 11,2, ¢0e, § (A-4)
BVr(i)
where Er(i) is a vector, Let
0 1 0 1
3] s : 32 = s 33 = - 64 = (A-5)
] 0 0 0

Now the optimum value of 5, Fbpt for 0 < 6, <1 and 0 < 9 <1, which maximizes
equation (A-1), can be obtained from the flow diagram given in A-1. The

above analysis can be generalizea for obtaining the parameters of transition
probabilities which have different parameters for more than two directions.
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\ 4

COMPUTE L(éi), =1, ¢0e, 4

v

CoMPUTE 2L , 3
JH

'

SOLVE FOR THE SOLUTIONS
OF EQUATIONS (A-3) AND
(A-4), T (i), 1 =1, =2, 5

VES
T 21 eee, 6 LIE INSIDE
HE INTERVAL [0, 1]

I

200 ANY OF THI
COMPONENTS OF ur(i),

DESIGNATE THE ROOTS
WHOSE COMPONENTS LIE
BETWEEN [0, 1] AS

Bys 1% 5, 6, »oe, 4+ k, k <85,
CHOOSE 3y AS & FOR WHICH

0
j:]|21 u-u'4+k
#i

B

FHOOSE Oopt AS

61, WHERE

J. = 1‘ '-" a
#i

Figure A-1.— Procedure for finding © o which gives a

op
global maximum of L(6).
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APPENDI X B
MULTITEMPORAL INTERPRETATION OF CONTEXT

This appendix gives a multitemporal interpretation of the theory developed in
the paper for applications in remote sensing. In remote sensing, the sensor
system usually ma"~es several passes over the same ground area and acquires a
set of data for each pass or acquisition. These passes are registered, and
classification is performed on the registered data. It is assumed that there
are r acquisitions. For the pixel under consideration, in each acquisition

a data vector xi. i=1,2, *++, r is acquired. Suppose that the acquisitions
2, *++, r are registered with respect to acquisition 1. In registration,
errors are encountered. Let the classifier be trained on the data from these
individual acquisitions, obtaining the probability density functions
p(Xlw=14), i =1,2, ««+, M. The following paragraphs discuss the applica-
tion of the theory developed in the paper in obtaining the label of the pixel
under consideration using data xi. i=1,2, *++, r and by minimizing the
effect of registration errors and incorporating the context. The pixel is
classified using the decision rule: Classify it class w = j if

plo = 3[X;s ooes X) 2 plw = §1Xp, weey X)) (B-1)
'i = ], 2' oon, M
£

The registration errors are assumed to be mcdeled through the model for tran-

A}

sition probabilities given in equations (3) and (4). Since p(X1, soviy Kol
is independent of i, equation (B-1) is equivalent to classifying the pixci
as w = j if

P(w = J)p(x]1 ¢85 xrlm o J) 2 P(w " i)p(x]a RSy xrlw * i) (B-Z)
1' = ], 2, cee M
£
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From the theory developed in the paper, one has

L r L
. z PURluy = 1y )Pluy ® .r;r—![“ - 8) Z pLxy * 4wy * |J] ¢ PN @ 'I)] (8-3)
i i,=]
J

The fcllowing assumpti~ns are made in the derivation of equation (B-3). The
density function of xj given its label identification is independent of any
other information. The wy = i]. the class of X]. does not depend on the
label of combined data, X]. LR Xr. Because the acquisitions 2, *+*+, r are
assumed to be registered with respect to the first acquisition, the transi-
tion probabilities are assumed to obey

Using arguments similar to the ones in sections 4.1 and 4.2, one can write
the likelihood function of xl, XZ’ LN Xr given 9 as

P(Xyy Koy ove, X_[8) L M
| [ A ehe . ) "
7 plK,) pix,) [2 2 PUXpo g * 4y woeg Ko, v 1, 18)

M M
. s
§=1 1 r
M r
plag, = 1,]%,)
pl i ]x) (1-0)+ ) ,’
> H cx ]‘ )



The © can be obtained by maximizing equation (B-4); it is used in equation
(B-3) in obtaining the label w = j of Xys ***» X.. It is to be noted that
this multitemporal interpretation can easily be coupled with the contextual

classification techniques developed in the paper.
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