T Waew rr- o1 ¥

00154 SGM’)”,
NASA Technical Memorandum 80118

NASA-TM-80118 19790019761

ON THE ATTENUATION OF SOUWD BY THREE-DIMENSIONALLY
SEGMENTED ACOUSTIC LINERS IN A RECTANGULAR DUCT

W, KocH

June 1979
LIBRARY £82y

)

JANGLEY RESEARZH vy
LIBRARY, MNA3A
HA!‘L‘PTQD‘L /IRGINIA

TER

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

(AR

NF00671



1 Report No 2 Government Accession No 3 Recipient’s Catalog No

NASA TM-80118

4 Title and Subtitle 5 Report Date

June 1979

On the Attenuation of Sound By Three-Dimensionally

. 6 Performing Organization Coda
Segmented Acoustic Liners in A Rectangular Duct

7 Author(s) 8 Pertorming Organization Report No
f *
v‘v’. KOCh
10 Work Unit No
9 Performing Organization Name and Address 505-03-13-18
NASA Langley Research Center 11 Contract or Grant No

Hampton, Virginia 23665

13 Type of Report and Period Covered

12 Sponsor.ng Agency “ame and Address Techm'ca1 Memor‘andum

National Aeronautics and Space Administration T4 Soomeorme Ao g
Washington, D.C. 20546 penserng Agency

15 Supplementary Notes

*Insti1tut fur Theoretische Stromungsmechanik, DFVLR/AVA Gottingen,
Bunsenstrasse 10, D-34 Ghttingen, Federal Republic of Germany

16 Abstract

Ax1al segmentation of acoustically absorbing liners 1n rectangular, circular

o annular duct configurations has proven to be a very useful concept to

obtain higher noise attenuation with respect to the bandwidth of absorption

as well as the maximum attenuation. As a consequence, advanced liner concepts
have been proposed which induce a modal energy transfer in both cross-secticnal
diractions to further reduce the noise radiated from turbofan engines. However,
these advanced Tiner concepts require three-dimensional geometries which are
d1fficult to treat theoretically. In the present paper, a very simple three-
dimensional problem is 1nvestigated analytically. The results show a strong
dependenre on the positioning of the liner for some incident source modes while
the effect of three-dimensional segmentation appears to be negligible over

th2 {requency range considered.

17 Key Words 1Suggested by Author(s}) 18 Distribution Statement

Duct Acoustics
Sound Attenuation

Unclassified - Unlimited

Segmented Acoustic Liners Subject Category 71

19 Secunity Classif (of this report) 20 Security Classif (of this page) 21 No of Pages 22 Price”
Unclassified Unclassified 27 $4.50

" For sale by the National Technical information Service Springfield Virgimia 22161




ON THE ATTENUATION OF SOUND BY THREE-DIMENSIONALLY SEGMENTED
ACOUSTIC LINERS IN A RECTANGULAR DucT

W. Koch
Institut fur Theoretische Stromungsmechanik,
DFVLR/AVA Gottingen,
Bunsenstrasse 10, D-34 Gottingen,
Federal Republic of Germany
SUMMARY
Axial segmentation of acoustically absorbing liners in rectangular,

circular or annular duct configurations has proven to be a very useful
concept to obtain higher noise attenuation with respect to the bandwidth of
absorption as well as the maximum attenuation. As a consequence, advanced
liner concepts have been proposed which induce a modal energy transfer
1n both cross-sectional directions to further reduce the noise radiated
from turbofan engines. However, these advanced liner concepts require
three-dimensional geometries which are difficult to treat theoretically.
In the present paper, a very simple three-dimensional probiem is investi-
gated analytically. The results show a strong dependence on the positioning
of the Tiner for some incident source modes while the effect of three-

dimensional seqmentation appears to be negligible over the frequency range

considered.

+ This research was conducted while the author held a National Research
Council Senior Research Associateship at the NASA Langley Research
Center, Hampton, Virginia.

N7F-2 7 TS Z =



INTRODUCTION

In order to meet current and future noise regulations of commercial
jet transport aircraft, considerable research effort hasbeen expended over
the past years in an attempt to attenuate the noise radiated from turbofan
engines. With most design possibilities for minimizing the noise generated
at the source being exhausted, acoustic lining became one of the more
established approaches to further reduce the noise. Advanced duct liner
concepts have been developed in order to achieve more absorption with less
weight and volume of acoustic treatment starting with the concept of axially
segmented liners originally introduced by Lansing and Zorumski [1].
Several theoretical and experimental investigations have proved that multi-
segmented Tiners can be superior to uniform liners with regard to the band-
width of absorption as well as the maximum attenuation. The basic idea
behind the concept is that the impedance discontinuities of the various
segments are used to redistribute the acoustic energy into different,
usually higher order, acoustic modes which are absorbed more efficiently. Of
course, the results are strongly dependent upon the given sound source.

In [1], as well as most other papers treating multisegmented liners
(see for example [2], [3], [4]), either two-dimensional or annular duct
geometries have been employed which resulted in one mode number remaining
constant. From the fact that, in an annular lined duct, the attenuation
is higher not only for higher order radial but also for higher order
circumferential modes, it is only natural to expect higher attenuation if
the modal structure 1S broken up in both mode numbers since then several
more modes are available for an energy transfer. The use of circumf%rentia11y
as well as axially segmented liners Tleading ultimately to the concept of

Tiners with continuously varying impedance in all directions is based upon



this idea. Aside from manufacturing difficulties, the main problem with
these advanced liner concepts is that they involve three-dimensional
geometries which are difficult to treat theoretically.

The present investigation is a first attempt to examine the effects
of three-dimensional segmentation analytically. By looking at a very simple
three-dimensional problem, namely two axially segmented uniform Tiner pairs
which are tilted by 90 degrees with respect to each other in an otherwise
infinitely Tong, hard walled rectangular duct, the effect of modal break up
1n both cross-sectional directions can be studied. At the same time, this
problem constitutes an excellent testing ground for the analytical approach
of combining the mode matching and Wiener-Hopf technique. This method is
very useful in solving certain three-dimensional problems by matching essentially
two-dimensional solutions. Disappointingly, the few sample results that were
evaluated numerically show practically no increase in sound attenuation due
to three-dimensional segmentation. Two-dimensional segmentation appears to
be equal or even superior in the examples considered as long as the liners
are positioned correctly. Thus the results reemphasize the fact that, for
a given incident mode, the sound attenuation can be increased substantially

if the liner is positioned such thatthe wave front normal points into the Tiner.

GOVERNING EQUATIONS
The geometry of the problem is schematically depicted in Figure 1. 1In
an 1nfinitely 1long, hard walled rectangular duct of constant cross-section,
WxH, two Tiner pairs, separated by a distance AL = L2 - L], are mounted on
the side walls and are tilted by 90 degrees with respect to each other. A
uniform axi1al mean flow of Mach number M = W./a, > 0 is assumed in the positive

x - direction. Viscesity, thermal conductivity and all nonlinearities are



ignored. Introducing a dimensionless perturbation velocity potential &g

such that
Ve © Uref (i+v); v= Lref grad @0 ? (1)
the governing convected wave equation is
32 32 52 1 02 )
2t 2t 2 T2 7 %70 (2)
3 X 3y 0z a Dt
where
Dt ot 3

with the corresponding expression for the perturbation pressure p

P, = P, (1+p)s oo “lreflret D,
aoo2 Dt °
Lref 1s a reference length (in our case, the duct height H) while the reference

velocity Uref is taken to be the uniform mean flow velocity W_, if mean
flow is present, or the ambient sound speed a_ 1if the undisturbed medium
is at rest. The sound source is assumed to have harmonic time dependence

exp (iwt).
After applying a Prandtl-Glauert type transformation and simultaneously

nondimensionalizing the spatial coordinates

X = X ,}’:Y—, Z=_Z_s (3)

1-M L

1t is advantageous to introduce the amplitude function ¢(x,y,z) defined by
o, (% Y, Z, t) = %§¢u,mz)&Wt+KW’;, (4)

where



This reduces the governing equation (2) to the Helmholtz eguation

2+ 2+ 2+K ¢=0

which has to be solved for the axially segmented liner configurations shown
in Figure 2 in nondimensionalized notation, 1.e. h = H/Lref’ W= w/Lref
and £ = L/(Lref V 1 - Mz). In Figure 2a, the two liner pairs are mounted
on thesame side walls while the remaining two walls are hard. This is a
two-dimensional configuration since the mode number in the y-direction does
not change throughout the whole lined section. In Figure 2b, the second Tiner
pair is ti1lted by 90 degrees. It is this three-dimensional configuration
we are mainly interested in here.

In the hard walled sections I, II and III (see Figure 2) the sound field
can be described by the sum of acoustic modes Wm,n (y,z). The method of

separation of variables together with the application of the hard wall boundary

condition of zero normal velocity leads to (cf. [2])



Here the hard wall duct eigenfunctions and eigenvalues are

L (v, z) = cos (K, y) cos (K z) ,

where

m I n I Lr £ n Il
Km = = 3 Kn = . ret — and K 0
W w H h m, m n

n
>~
+
P

Assuming only a single incident duct wave (due to the linearity, the
solutions can always be superimposed), Er s ’.Er < denote the modal amplitudes

of the prescribed 1ncoming hard wall duct waves impinging from upstream and
: 7 (v) 5 ) z (V) 5 ()

downstream respectively. Am,n . Am,n , and Bm,n , Bm,n are the modal

amplitudes of the waves in front of and behind the v-th lined segment,

propagating upstream or downstream (see Figure 2).

>
1l
]

- . 2 2 .
Ym,n = ! Km,n - K, K< |<m,n

are the corresponding modal propagation constants. For K <Km,n » the duct
wave is attenuated (cut off) while for K > Km,n the duct wave propagates. In
the latter case one has to distinguish two cases (cf. [2]):

a) K»> Km,n /V1- M2 :  The corresponding phase velocities have different
signs for the upstream and downstream propagating wave.

b) Km,n < K <:Km’n/ 1 - M2 : The two phase velocities have the same
sign and energy considerations are necessary to determine the direction of wave
propagation (see [5] or [6], p. 161).

For the lined sections, a locally reacting lining material of specific normal
acoustic impedance Gy 18 assumed. For our numerical examples, the crossover

frequency 1mpedance model



g, = Re (1 +7 f/f) - 1 ctg (21 f, d,) (5)

for honeycomb liners with an wmpervious backing and a thin sheet of absorptive

facing material is employed. R, and fy, = foLref/aw are the specific

acoustic resistance and the nondimensional characteristic frequency (crossover

frequency) of the facing sheet while d, = d/Lref is the dimensionless depth

of the honeycomb structure. f, = f Lref/am denotes the frequency parameter.
Since we allow a uniform mean flow, the medium inside and outside the

liner is assumed to be separated by an infinitely thin vortex sheet of finite

axial Tength across which the pressure remains continuous. Furthermore, the

kinematic condition of equal particle displacement on both sides of the vortex

sheet must be 1mposed. The solution of the problem of sound transmission through

a finite length acoustically treated duct section is assumed to be known in terms

of the various reflection and transmission factors Rm,n;u,v and Tm,n;u,v.

The details of the solution are unimportant as far as the present work is con-

cerned to the extent that the finite length Tiner can be taken as a "black box"

with known reflection and transmission characteristics.

GENERAL FORMULATION IN TERMS OF THE MODAL REFLECTION AND TRANSMISSION FACTORS

The concept of reflection and transmission factors has proven very useful
1n several engineering disciplines. In acoustics, most muffler design procedures
are based on the one-dimensional transmission-line approximation and a very
nice introduction to multidimensional problems in ducts was given by Zorumski [7].
The reflection and transmission factors relate the modal amplitudes in front
of and behind a nonuniform duct section. This nonuniform duct section may be a
discontinuity in the physical properties, 1ike a change in duct cross section or
wall admittance, or may be of finite axial extent. In this paper, we are mainly

concerned with the latter. Referring to a simple liner pair in Figure 2,



Rm,n31,v
reflected wave due to a unit amplitude (u,v)th wave impinging from upstream.

, for example, denotes the complex amplitude of the (m,n) th

Similarly ;m,n;u,v denotes the complex amplitude of the (m,n) th transmitted
wave due to a unit amplitude (u,v)th wave impinging from upstream. Similar
definitions apply for the incident wave coming from downstream indicated by a
left pointing arrow in the superscript.

If all four walls of the two lined sections in Figure 2 are treated with

acoustic material, one can write for the first lined section

<« -> < = < <

(1) o (1) } } (1) 1 (1)
A = E__R‘Y + ) B T , (6a)
My N r,S m,n;r,s h=o v=o MoV MsN3U,V
o (1) Z T } } (1) 5 m
B = E TN + B R M/ , (6b)
m,n r,sS m,n;r,s =0 V=0 MoV MyN3u,V

and similarly for the second liner segment

< s Oo—» -> < <«
(2) } 5 (2) (2) (2)
A = Asy’ RS + E T\~ (7a)
msn h=0 fo H MoNsU,V r,s m,n;r,s
> x oo—) > <« <
(2) _ (2) (2) (2)
Bm,n - } } Au,v Tm,n;u,\) * Er,s Rm,n;r,s . (7b)
=0 V=0
> (V)
With zero mean flow the reflection (and transmission) factors Rm :'u N and
Rm(x?u , are equal. Throughout the intermediate hard walled section II, each

mode propagates independently such that

D R bz
S () _ 3 (2 ~iymn (20 - 27) . (8b)
Bm,n - Am,n e” ! ¥mn 152 1

1 (2) 5 (1)
Equations (8) can be used to eliminate A N and B_ , o dn (6) and (7). Then

(6b) and (7a) constitute a two-fold infiniteset of determination equations for

2 (1) 7 (2)
the two-fold set of infinitely many unknown amplitudes Bm n and Am ns



m,n - 03 ]9 29 E
(1) T (2) -i (2, - 2.) = (1 > 2
B - A Yu,v 4 (1) . (1) 9
m,n Z=O 2=o T 1 Rm,n;u,v Er,s Tm,n;r,s (92)
and
A N L I A R e ) A2 T(@ (9
=0 P TPAY MyN3UsV m,n r,S m,n;r,s .

This infinite set of equations can be truncated a few modes beyond the modal
cut off numbers. Therefore, once the reflection and transmission factors are
known and the source characteristics are prescribed in terms of the incoming

> “
modal amplitudes E and Er s ° the solution of the truncated set of

r,S
equations (9) is straight forward.

The computation of the reflection and transmission factors constitutes
the main problem. Unfortuately, to my knowledge there exist no analytical results
for the reflection and transmission factors of three-dimensional rectangular
ducts lined uniformly over a finite axial Tength on all four walls although the
mode matching method should provide one means to do so. With regard to numerical
techniques, for example, Watson's method [8] could be employed. However, in
several applications only two opposing side walls are lined such that one mode
number can be held fixed while computing the corresponding reflection and
transmission factors. This is the case for the examples depicted in Figure 2.

Thus the solution procedure will now be outlined for the special case of two tilted

Tiner pairs.

TWO LINER PAIRS TILTED BY 90 DEGREES WITH RESPECT TO EACH OTHER

In the first lined section of Figure Eb, the walls are hard at y = 0 and

<
y = w. Hence, for a given incoming mode Er or B (1)

m mber r or
s m.n the mode numbe
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m in the y-direction will be unaffected by the presence of the first liner and

will equal that of the incoming mode. For the quasi-two-dimensional problem

shown 1n Figure 2a, this is true all the way through both Tined sections such

that r s fixed by the incoming mode. For the second lined section of Figure 2b,
the walls at z = 0 and z = h are hard and for a given incoming mode, Kmfi)

or Er,s , the mode number s or n 1in z-direction will equal that of the

incoming mode. The three-dimensional effect is therefore due to the interaction

of the two liner pairs. In the intermediate hard walled section II, an incoming

-r <

mode Au(i) produces reflected amplitudes Am(ﬁ) with n = const., while an

incoming mode Emsl) produces reflected amplitudes Emfl) with m = const.
A11 reflection and transmission factors of the first lined section can be
computed by keeping the mode number m constant and equal to that of the
corresponding incident mode; and all reflection and transmission factors of the
second liner section can be computed by keeping the mode number n constant

and equal to that of the relevant incident wave.

Equation (6) can therefore be rewritten in the form

< > > ot <« <«
(1) _ (1) (1) (1)
Am,n S, v Er,s Rm,n;r,s ¥ Z=o Smov. Tmungm,v (10a)

8

> > > < <
(1) _ (1) (1) (1)
Bm,n 6m,r Er,s Tm,n',r',s ¥ 2=0 Bm,v Rm,n;m,v . (10b)

Here 6m n denotes Kronecker's delta function.

Similarly equations (7) become

F Yy @ (@ ARG
Am’n ) Z:o AU’n Rm,n;]-l,n + 6 n,s Ey‘,s Tm’n;r’s H) (]]a)

5 (2 =) X@ F@ 5 g2 (11b)
M

u,n myN3H,N n,S r,S m,n;r,s
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Again employing the uniform duct transmission equatiors (8), the infinite

system (9) now reduces to the special form

[oo]

> « . < > ->

g (1) _ (2) =iy, , (22 - 27) (1) - (1)

m,n 2=0 Am,v e 'mv Rm,n;m,v S mr Er,s Tm,n;r,s ’
o -> . > < <« <

- (M v, (22 - 27)  (2) (2) _ (2)
Z:o BUan e wn Rm,n;u,n+ Am,n = Sn,s Er,s Tm,n;r,s ,

men=0,1, 2, ... .

r,s are the prescribed mode numbers of the incident waves. Using matrix

partitioning this set of equations may be written

s | Sy (e - )M s o
[Zmin, ety ] RO Rmnsu]|| Buav
L — - — = — — — — = —{---
| «
i 1y (22 - 21) o (2) (2)
[vae MoV Rmmnhv] [Gmﬂu1ﬁv] UsV

> >
(1)
{6m,r Tm,n;r‘,s EY‘,S}

A ———— . (12)
z T§) <
{Sn,s Tm,n;r,s Er,s}

NUMERICAL RESULTS

The quantities of most practical interest are the reflection and transmission

coefficients. These are the ratio of the reflected or transmitted power in the

(m,n)th  cut on mode over the incident power in the (r,s)th cut on mode. For

an (r,s) duct wave incident from upstream, they are defined by

————— e T
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NORE
gh,n;r,s = i (2 (%’r) 2 %) Ao ,

Kr,s (2 - (%,m) (2 - (%,n) Er',s

2
= (2)
e - Kin,n (2 -8 o,r) (2 -8 o,s) Bm,n

MoN3T,S >

r,s (2 -8 o,m) (2 -6 o,n) Er,s

Simlar definitions apply for a mode incident from downstream. The total
reflected or transmitted power for a single incoming mode (r,s) is then

obtained by simply summing the contributions of all cut on (m,n) modes, i.e.

> _ } -> > _ >
Pr.s &0/ Pm,nsr,s Tr,s Tm,n;r,s
b
cut on
m’n/cut on

The acoustic effectivity of a liner combination 1s usually measured by the
power attenuation or 1nsertion loss AP. For a single incoming mode (r,s),

1t 15 defined by

AP [dB] = 10 Tog (1/t,. ()

In our numerical examples, the mean flow Mach number is taken to be zero

such that the relevant reflection and transmission factors for a simple liner
pair can be computed by the method outlined in [4]. Originally it was intended
to compute the reflection and transmission factors for uniform mean flow
("plug" flow) by extending the Wiener-Hopf method describedin [4]. It turned
out that the extension is not trivial leading to the appearance of instability
waves hitherto neglected in all mode matching approaches. Therefore a more
thorough study of the mean flow problem is necessary which will be reported

separately.
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The infinite set of equations (12) 1s evaluated numerically by truncating
1t, 1n general, three modes beyond the corresponding cut off mode. Valuable
computational checks are provided bv the requirements that the total transmitted,

reflected and absorbed powers have to equal the incident power, 1.e.

as well as by the reciprocity theorem in the form

2 () 5 (1)
m,n _ ) } r,s

(2 -(Sr,o) (2 - 65,0) Km,n z (2 Sm,o) (2 Sn,o) Kr,s ‘
r,S m,n

Th1s reciprocity theorem is valid only for M =0 but applies to cut off
modes as well as to cut on modes. The relevant absorption coefficient O o
can be computed from the solution in the Tined section (see [4]).

The numerical examples are chosen such as to provide a comparison with
previous results [4] whenever possible. In particular, the two Tiners in
each pair are assumed to be identical and to have the same axial length
Li/H = gélzn To avoid geometric effects, the duct 1s assumed to be of square
cross section H x H, H = 18.73 cm. The crossover frequency 1mpedance model (5)
with f ., = 8.14 is used for all examples.

In Figures 3 to 5 the power attenuation 1s plotted as a function of frequency.
First, to check the procedure, the two-dimensional configuration of Figure 2a is
evaluated. Assuming an incident fundamental mode (0,0), the result is shown as
curve A 1n Figure 3 and is identical to the one given in [4]. From a computational
point of view, the present approach, using mode matching in conjunction with the
3-part Wiener-Hopf technique, is preferential to the n-part Wiener-Hopf approach
of [4] because one and the same Wiener-Hopf subroutine can be used for an arbitrary

number of lined sections and only the fairly straight forward matrix equation (12)

has to be reformulated if more liner sections are added. Also shown in Figure 3



14

are the results for the case when the two liner pairs are separated by a hard
walled section of length Lj (curve B). Only minor differences are observed

due to the interference of waves in the intermediate section. Finally, the
second liner pair is tilted by 90 degrees (curve C) and again only minor changes
occur. As a matter of fact the power attenuation is even slightly below the

one for two-dimensional segmentation over most of the frequency range shown.

In Figure 4, the incident modes (1,0) and (0,1) are considered. Curves A
and B show the results for two-dimensional segmentation. Depending on whether
the normal wave front vector points into the lined wall (curve B) or is merely
tangent (curve A), substantial differences are observed in the power attenuation
with a corresponding shift in the tuning frequencies of the two liner segments.
Curves C and D show the solution for three-dimensional segmentation, i.e. the
second Tiner pair is tilted. It appears that the effect of correct positioning
of the Tliners by far outweighs the effect of three-dimensional segmentation. Up
to the second resonance of the second liner segment at f, ~ 2, the curves for
the t11ted configuration essentically follow the ones for the corresponding sinale
two-dimensional liner section and then remain at the higher level. Translated
to the situation of an annular turbomachinery duct, where mainly circumferential
modes are excited, this means that radial liners would be vastly more efficient
acoustically than annular liners of the same absorbing area. In a different context,
the advantages of the concept of radial liners were pointed out by Abdelhamid
[91.

Finally, in Figure 5, the incoming mode is taken to be (1,1) and hence a
different Tiner combination with tuning frequencies above f, = 0.7 had to be
chosen. A summary of the cut on frequencies of the various modes for all

cases is presented in Table- 1. For comparison, the sound attenuation of the
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fundamental mode is also included (curve A). Curves B and D give the results
for two- and three-dimensional segmentation respectively, for the case with the
better impedance match, i.e. the thinner Tiner is closer to the source. Curves
C and E depict the results for the corresponding cases with the two liner
segments interchanged. It is somewhat surprising that, even here, the two-
dimensionally segmented duct outperforms the duct with three-dimensional

segmentation over most of the frequency range, similar to the situation in Figure 3.

CONCLUDING REMARKS

The simple three-dimensional problem of two axially segmented Tiner
pairs tilted by 90 degrees with respect to each other in a rectangular duct
was used to study the effect of three-dimensional acoustic liner segmentation.
Only a few sample results have been evaluated. However, none of these indicate
that the effect of modal energy transfer 1n both cross-sectional directions can
be used to obtain a substantially higher sound attenuation per given liner
length. The effect of correct liner positioning, i.e. such that the wave normal
points into the liner and is not merely tangential, appears to outweigh the
effect of three-dimensional segmentation by far. For the situation of a turbofan
exhaust duct, where the sound generation by blade rows leads to the excitation
of mainly circumferential modes, this would mean that radial Tiners are
acoustically superior to annular Tiners.

Although the results with regard to three-dimensional segmentation are very
disappointing, the analytical method emnloyed has more far reaching
applications already envisaged by Zorumski [7]. In the present paper, the
mode matching method 1s used only to link different finite Tength sections

via the respective transmission and reflection factors. Very often the

geometry of those finite length sections is such that only an interaction with one
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mode number can occur. In such a case, the various reflection and transmission
factors can be computed by two-dimensional methods 1like the Wiener-Hopf technique.
Linking these by means of the mode matching method makes it possible to build
up three-dimensional problems by means of two-dimensional solutions. One such
example 1s the i1nteraction of sound generated 1n a blade row and sound reflected
and absorbed by an adjacent liner. Other applications include the interaction
of different blade rows (or stages), not only with respect to their acoustics
like rotor shielding in turbofan engines or sound transmission through several
compressor stages, but also with respect to their aeroelastic behavior since
blade vibrations are also communicated via acoustic modes.
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LIST OF SYMBOLS

Latin symbols

Am(x) modal amplitude upstream of v-th liner segment
a ambient speed of sound
Bm(x) modal amplitude downstream of v-th liner segment
d, = d/Lref dimensionless honeycomb depth
Er S modal amplitude of incident wave
f frequency
f*=fLref/a°° frequency parameter
f0*=f0L /a reduced characteristic frequency of liner facing
ref’ “w
sheet
H duct height
h = H/Lref dimensionless duct height

—re
1]
<F1
—

1maginary unit

I_.l.

unit vector 1n x-direction

= eref/(aa>‘V 1 - M2) reduced circular frequency parameter

Kp = M /w m-th hard wall eigenvalue in y-direction, m = 0,1,2,...
K, =10 1/h n-th hard wall eigenvalue in z-direction, n = 0,1,2,...
o =V K+ Ky

L], L2, L3 axial lengths; see Fiqure 1

Lof reference length (= H)

% = L]/(Lref'v 1 - MZ) reduced ax1al Tength L,; see Figure 2

M=W_/a, mean flow Mach number

p dimensionless acoustic pressure

P, ambient pressure

Ry specific acoustic resistance of liner facing sheet
Rm,n;u,v (m,n)th modal reflection factor due to (u,v)th incident

mode
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Re(z) real part of z
Ton: (m,n)th modal transmission factor due to (u,v)th
sllis sV . .

incident mode

t time

Uref reference velocity; Uref =a_ if M=0, Uref =
W if M#0

v dimensionless acoustic velocity vector; see
equation (1)

W duct width

W_ uniform mean flow velocity

W= N/Lref dimensionless duct width

Xs Y, Z rectangular coordinates

X, ¥y 2 reduced spatial coordinates; see equation (3)

Greek symbols

N B 2 5
Ym,n T T K™ - Km » K> Km,n

Ymon = 5 > (myn)th eigenvalue of hard
i Yoono 1 K, . K=, K <:Km n walled rectangular duct
AP = 10 Tog (]/Tr S) power transmission loss for (r,s)th mode incident
Gm n Kronecker's delta; has a value of one 1f m = n and
? of zero 1 fm# n
o specific acoustic normal wall impedance; see equation (5)
K = cp/cv specific heat ratio
0 total reflection coefficient for (r,s)th incident
r,s
mode
o . modal reflection coefficent for (u,v)th incident
MyN3psV
mode
Tp s total transmission coefficient for (r,s)th incident
? mode
T sy modal transmission coefficient for (u,v)th incident

mode



®O(X, Y, Z, t)

d(x, ¥y, 2)

Wm,n(y, z) =

w = 2nf

Superscripts

cos (K y) cos (KnZ)

20

dimensional velocity potential; see equation
amplitude function; see equation (4)

(m,n)th eigenfunction of hard walled rectangular
duct

circular frequency

quantity referring to wave propagating in the
downstream direction

quantity referring to wave propagating in the
upstream direction
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LEGENDS FOR ILLUSTRATIONS
Figure 1.- Schematic view of two axially segmented duct liner pairs tilted

by 90 degrees with respect to each other.

Figure 2.- Geometry of axially segmented Tiner in nondimensional notion:
(a) two-dimensional segmentation; (b) three-dimensional segmentation

Figure 3.- Power attenuation versus frequency with (0,0) mode incident.

Figure 4.- Power attenuation versus frequency with (1,0) or (0,1) mode incident.
(Liner data as 1n Figure 3).

(8]
§

Figure Power attenuation versus frequency with (0,0) mode, (Curve A), or

(1,1) mode 1ncident.

Legend for Table

Table 1.- Cut on frequencies f, for various modes (m,n) in a square duct
(zero mean flow).



m U 0 1 2 3 4 5
0 o | 0.5 1.0 1.5 2.0 2.5
1 0.5 | 0.7071/1.1180 | 1.5811 | 2.0616 2.5495
2 1.0 | 1.1180 1.414 | 1.8028 | 2.2361 2.6926
3 1.5 | 1.58111.8028 | 2.1213 | 2.5 , 2.9155
4 2.0 | 2.0616| 2.2361 | 2.5 2.8284 | 3.2016
5 2.5 | 2.5495| 2.6926 | 2.9155 | 3.2016 | 3.5355

Table 1.- Cut on frequencies

square duct (zero mean flow).

f, for various modes (m,n) 1n a

22
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Liner pair

Liner pair "1"

Y g

Figure 1.- Schematic view of two axially segmented duct Tiner pairs tilted by 90 degrees
with respect to each other.
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Figure 2.~ Geometry of axially segmented Tiner in nondimensional notation:
{a) two-dimensional segmentation; (b) three-dimensional segmentation



Power attenuation, 4B

o* =
First segment: R, = 0.8, d, = 0.08]
Second segment: R, = 0.6, dy = 0.27
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Figure 3.- Power attenuation versus frequency with (0,0) mode incident.



Power attenuation, dB
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Figure 4.- Power attenuation versus frequency with (1,0) or (0,1) mode incident.
(Liner data as in Figure 3).



Power: attenuation, dB
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Impedance model data:
Tox =

8.1
Ay
d
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Liner "T": R,
Liner “2": Ry
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m=1, n=1
m=1, n=1/};

Liner "1'" and Liner'2' interchanged
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Figure 5.- Power attenuation versus frequency with (0,0) mode, (Curve A), or (1,1) mode incident.
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