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I. INTRODUCTORY CONCEPTS AND TOQOLS
la. Scattering Matrices and Scattering Cross-—-Sections

In scattering experiments of any kind, the fundamental
observable quantity is the scattering cross section; and the
theoretical object of prime Mmportance associated with it is the
scattering matrix (or S-matrix). We begin by giving formal
definitions of the S-matrix applicable to general scattering
processes and in later sections'adapt them toc molecular colli-
sion problems. The S-matrix will be shown to be directly re-
lated to the scattering cross section through an auxillary
object, the transition matrix (or T-matrix); and a key objective
of the theoretical program of collision processes is the calcu-
lation of S- or T-matrices.

S- and T-matrices are gquantum mechanical chbjects and
they will be introduced as such in the present subsection. How~
ever, under certain conditions, such as in the treatment of
heavy-particle dynamics in molecular collisions they can be
adapted to semiclassical or even classical evaluations. In the
present lecture series we shall focus on the semiclassical
evaluation of the'S-matrix (called the "semiclassical S-matrix")},
with special applications to the case of electronically non-
adiabatic transitions. Before discussing this explicitly, we
shall review some basic ideas associated with the S-matrix in
general.

A collision system can be thought of as being in the
states wln (incoming) and yoH {outgoing} before and after the
collision process respectively; and the collision can be visu-
alized as a "blackbox" mathematically described by a transformer
operator S (the scattering operator) such that

yout _ gyt | (Ta.1)

Suppose v oig specified by a given free state |i> {(this state
is oftenbggosen to be an eigenstate of the unperturbed Hamilton-
ian). ¥ can be expanded in terms of the complete set of
which [i> is a member

oI = Y el ]3> . (Ia.2)

The transition probability amplitude from |i> to a particular
|f> is then given by
out

cp = <E[¥ > = <£|s|¥™> = <£[s|i>

Ht
[#3]

£i
(Ta.3}



Hence, it is seen that Sg;, which is a matrix element of the
scattering operator £ in the |i> representation, gives directly
the transition probability amplitude from the state |i> to the
state |f>. We note that the conservation of probability for

in ou )
¥ rand ¥ reguires that

<?Out| out inlyin

b4 > = <¥ e, {Ia.d)
implying that

STS = SS+ =1, (Ia.5)

which is a statement of the unitarity of the S-matrix.
The definition of S can also be formulated in the time-
dependent formalism, if we set

in

¥ = ¥ (t=—2)
YO = g (i) (1a.6)
Then S can be defined by
Y (4e) = Y (-w») , (Ta.7)
and is also expressible as
S = lim U(t,to) ’ {Ia.8)
>4 @
t >=

0]

where U is the time evolution-operator for the interaction pic-
ture wave function.

In order to calculate the scattering cross section from
the S-matrix, we first evaluate the transition probability per

unit time W;,r, since the cross section 0j,r is defined as

Wiﬁf
Ui+f = —Ezj" p {(Ia.9)

where Fy is the incident flux of particles for the state ]i>.

Now S, #s defined earlier, is the transition probability ampli-
tude between infinite past and infinite future times. To find
the probability per unit time, we must express it as the limit

of a time-dependent quantity §fi(t) for i#f (transition between
different states) such that

Sg; = lim §fi(t) . (Ia.10)
i £ 4o



The transition probability per unit time Wi+f can then be de-
fined as

~ 2
i>f o t : )

Since we are interested in transitions between different states
i> and |f>, it is reasonable to extract from $ a term which is
zero when i and f are indeed different, namely Gfi. Also, since
energy conservation holds between infinite past and future
times, we can further separate out an energy conservation

factor 6(Ei—Ef) in the remainder term. Hence we write

Sfi z Gfi - 2ﬂ16(Ei—Ef)Tfi . {(Ia.l2)

-

The factor 2wi is introduced for convenience; and T, whose
matrix elements are Tgy; = <fIT|i>, is called the transition or
T-matrix. Written as in (Ia.l2) with an explicit energy depen-
dence, Sfji (for i#f} can now be exXpressed as

. - Llim
Spy = "ML (B;-E )T, = L, S (B) .
{(Ia.13)
This identifies §fi(t) as
. i t/2 i(E;-E)t'/A
sf.(t) = —,E-Tf,J dt' e
i l—t/2
i sin{(Ei-Ef)t/2ﬁ}
= —_%{ T Tf (Ia.1l4)

i (Ei—Ef)t/Zﬁ

which represents a transition probability amplitude for i=f
over a finite period t of observation. The transition prob-
ability per unit time, £rom (Ia.ll), is then given by

2 . 2
_ leil 1qg SiR {(Ei Ef)t/Zﬁ}
ivE T T2 e E. -E_2 (Ta-15)
sl i°fF £
2R
which is equivalent to
21 2 :
= e— - =£4
Woe =5 SGEED[TL]T, . (Ta.16)

In general, in any experimental situation, there will be a group
of final states |f> satisfying.energy conservation, and the



scattering cross—-section observed will correspond to the sum
over these final states. From (Ia.9),

"
O ™ F, ;

ivf (Ta.17)

The sum will go over to de p(Ef) if we are dealing with con-—
tinunum states in the producg channels; p(Ef) is the density of
states.

Before leaving our formal discussion of the S-matrix
we will point out a formal relation between it and the Green's
function to set the stage for the introduction of the semi-
classical S—matrix in Section Id.

The operator (E—H+in)"l {n being infinitesimal) is
called the retarded Green's function operator and is direcily
related to the T-matrix, and hence the S-matrix:

¢ (E®) = G;(E) + G;(E)TG;(E) , (Ia.18)

where G+(E) = (E—Ho+in)'l is the umperturbed retarded Green's
function operator. The Fourier transform Gt(t) of ¢t (E) is
given by

(E-H+im) T .

» “ »
&t ie) 1 11mJ au oIET/M
— -

= 2%0 neo
{(Ia.1l9)

By actually evaluating the integral in (Ia.19), G+(E) can be
written as the inverse Fourier transform of GF(t):
+ {=o)
G (B) = (i/ﬁ)J dt exp (iEt/H)exp (~iHL/H) .
0

(Ia.20}

(Ia.18) and (I¥a.20) will be the starting peoint for our formumla-
tion of the semiclassical S-matrix in Section I4.

1b. Partitioning of the Molecular Collision Hamiltonian

Beginning with this subsection we will restrict our
attention to molecular collision problems, and the general
formulation of the S-matrix given earlier will be adapted
accordingly. To prepare ourselves for these special formula-
tions of the S-matrix we will start with a discussion of the
molecular collision Hamiltonian.

Separétion of Electronic and Nuclear Motion and the

Born~Oppenheimer Approximation. Consider a molecular col-
lision system with n electrons and N nuclei, with electronic co-
ordinates denoted by Yj and nuclear coordinates by §i. The
total Hamiltonian can be written as




e
H=T_ + T + V(R,r
. L F T+ V(R

H,, (B, (Ib.1)

where Hel(ﬁ}zﬁ stands for that part of H besides the nuclear
kinetic energy operator. The first-step to simplify the Hamil-
tonian is to separate out the center of mass motion of the whole
system. The dynamics of the' system is then described by an
arbitrary set of (3N+3n-3) independent internal coordinates.
Several choices of these can be made to suit particular problems,
but here we will not be concerned with the specific choices. In
general one attempts to make cocrdinate transformations which
would leave the total kinetic energy operator in the form

v 2 2

= _'ﬁ_ 2 e B & 2
T="% Vg 2 Z T ZVr_ + {m.p.) (Ib.2)
1 e i i

where (m.p.) represents mass polarization terms (proportional to
VRi-VRj and Vri-vrj) which can be ignored. In (Ib.2), M stands
.
for the 'total mass' corresponding to some C.M. cocordinate S;
H; and Uy are the reduced nucleaxr and electronlc masses corres-
ponding to the nuclear internal coordinates R and electronic
internal coordinates rl respectively. The total Hamiltonian.can
be written in terms of the transformed coordinates as

5 5 N=1
A 2 _H. ) 142 _A 72
082 g8 Ry A 5T
- (Ib.3)
vV (R, 1) may be taken to include spin-orbit interactions. The
Hamiltonian in terms of the 3N+3n-3 internal coordinates be-
comes

RN
H=- + V(R,r) .

2 2
-“h 1 ‘ﬁ N
= - 2§ = LI +
H 2 Z u. R. T 2n Z V VIR/T)
i 1 1 e 1 l
=7 +H _(R,D , (Ib.4)
al
where
2
- A 1 .2
TR=‘zZuVR.'
2 1 1

(ib.4) looks jidentical to (Tb.1), except now ® and T are undexr-
stood to be the internal.coordinates with the C.M. motion
separated out. Hamiltonians will be written in this sense for
all our later discussions.

Separation of electronic and nuclear motions ultimately



depends on the great disparity between electronic and nuclear
masses. Since the forces acting on them are of comparable
orders of magnitude, nuclear motions tend to be much more slug-
gish than electronic motions and electrons can be assumed to ad-
just to the nuclear motions adiabatically. This consideration
is the basis of the Born-Oppenheimer approximaticn, which in
general means the assumption of the existence of some basis set
of electronic wave functions ¢k(?}ﬁ) which depend parametrically
on the nuclear positions R, and for any fixed R is orthonormal
and complete:

3 . P . S
* M . = -
Id r¢k(r,R)¢£(r,R) E: <¢k|¢£> Gkg fixed R ,
. (Ib.5)
1=1 |o,><¢,] Fixed ¥ , (Ib.5)
e 2 g

-
such that the total wave function 1p(§ﬁr) of the collision sys-
tem can be expanded as

N . A
YR =) x, B, iR . (Ib.7)
A

Adiabatic wvs Diabatic Representation -~ Nonadiabatic

Couplings and Transitions. The nuclear wave function
Xg (R) describes the motion of the nuclei on the potential sur-
face associated with electronic state {. We will see below what
we mean by these surfaces when different basis sets ¢y are
chosen. Specifically, we will see how the different choices will
lead to Epe adiabatic and diabatip representations. The func-
tion Xy (R) will asymptotically (Rw«) give the amplitude for the
probability that the system ends up in the electronic state ¢
and thus directly gives the S-matrix for this transition (whose
initial state is specified by the problem). Hence, our objec-—
tive of obtaining the S-matrix reduces, guantum meq&gnically,
to the solution of the Schrodinger equation for ¥, (R).

The time-independent Schrddinger equation to be solved is

&R = By @R ' (Ib.3)

where H is given by (Ib.4). Substitution of (Ib.7) into (Ib.8)
results in the coupled set of eguations for Xg(fa=

" - = - ¢ + 0
(Tp + T§, + U, = E)xy jz#i (T, + Ty, + U 0%y

(Ib.9)



where

<¢i]Hel|¢_> {Ib.10)

u. .
1] J

N=1 __ﬁz
T!, = Z [——]<¢.|v $.>.¥ (Ib.11)

13 =i T RTOR

T"

N-le .2
ij

: 2
___.<¢_iv $.> . (Ib.12)
k=1 2“1«:] * ]

Brackets depote integration over electronic ceordinates ?'only.
The diagonal elements U;:(R) are the.effective potential energy
surfaces mentioned earliér that govern nuclear motion. The
diagonal terms Tgi(ﬁj, which are nonadiabatic corrections to the
potential energy surfaces, are usually small and can be ignored.
From (Ib.9}. it is seen that motion on the different surfaces

are coupled by the off-diagonal elements Ti., TEj and Uij‘ Tij
and Tg. are usually called nonadiabatic couglings, of which

Ti- are the dominant ones (dependent only on the first derivative
of "¢ with respect to nuclear coordinates) and are also nuclear
velocity dependent (since it is proportional to Vi operating om
nuclear wave functions).

The adiabatic representation is defined by Epe requirement
that the potential matrix U be diagonal for &#11 R. This repre-
sentation employs for the electronic basis functions the eigen-
fupctions of Hel:

a _ a .
H ¢, = W (R) by i (Ib.13)

the superscript a on the wave functions denoting adiabaticity.
The effective potential energy surfaces governing nuclear motion
in this representation are

a o .
Ukk(R) = Wk(R) . (Ib.14)

The only nonzero couplings in (Ib.9) are the nonadiabatic inter-
actions Tij and T;-, hence the designation of adiabatic represen-—
tation. Figure 1 Shows a perspective view of the electronically
adiabatic surfaces of the H"‘D2 system with a translational degree
(R} and a vibrational degree {r) of fLreedom [R=(R,r)].
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Fig. 1.

3 perspective view of the electronically adiabatic poten-
tial surfaces for H+D2.

Writing ?}-VRk as ﬁ(k)

. the matrix element % <¢i|V ¢>j>
in (Ib.11), can be written as

1
_— > =
T <01V 6> = <

P}J

(Ib.11) can then be rewritten as

&) (1,15
ij

m

(k)
¢, |7 |¢j>

T = ) Fl“?j(.l;) ) (Ib.16)
k "x



Hence in matrix notation

=E—l~
k Mk

- Lo (Ib.17)

¢ o)y

Similarly T" can be written as

~ 2]_]_]{

Comparison with (Ib.12) shows that (Ib.18) is indeed equivalent
to it. Denoting the column matrix X3 by X (Ib.9) can be
rewritten in matrix form as

Tz 30 30 o L) 300, 500 500

+ ——(P +p P )+
Kk -

. {Ib.18)

L

(k) (k)
) }
¥y

o,
2

+ U@ - 1LEIx® = (T+Uu® - 1IEy® =0,

{(Ib.19)

where 1 is the unit matrix. We see that T can be identified
as the generalized kinetic energy operator of the system. It is
useful to write T as

T= ):Eg—*?k -?(k) , (Ib.20)
k .
where
e =N -~
P(k) = P(k) + lp(k) {Ib.21)

is the generalizedé@omentum matrix of the k nuclear ccordinate.
Thus the matrices P(k and U(R) give complete dynamical 1nforma—
tion of the collision system. The diagonal elements of Pg
vanish identically regardless of representation. This can be
established by applying the operator §Tk) =?% VRkto the ortho-

normallty condition (Ib.5). This procedure also shows that
(k) is hermitian.

Nonadiabatic couplings tend to peak near avoided crossings,
where Ugi—Ua attains minimum values. Very often these regions
arise because the adiabatic states are predominantly mixtures
of two simple (molecular orbital or walence bond} structures
(described by ¢4 and ¢J) whose corresponding potential energy
surface (Uji and U4j) cross. In one-dimensional (atom-atom) sys-
tems, if the crossing states are of the same symmetry, then the
"non-crossing™ rule requires that the adisbatic curves formed
from them will exhibit an avoided crossing. The generalization
of the non-crossing rule to systems with N internal nuclear



degrees of freedom can be stated as follows: the locus of
points defined by the intersection of two N-dimensional exact '
adiabatic potential energy hypersurfaces corresponding to states
of the same symmetry forms a hypersurface of at most ¥-2 dimen-
sions.

During a molecular collision process, if the relative mo—
tion of the nuclei is sufficiently slow, they will tend to
follow a single adiabatic potential energy surface, even near
an avoided crossing. This is so because electronic motion al-
ways has time to adjust to the changing nuclear configuration.
On the other hand, if the nuclei move very rapidly in the
vicinity of an avoided crossing, the probability of nonadiabatic
transition (moving from one adiabatic surface to another) will
approach unity. This is due to insufficient time for the
electrons to adjust their motion adiabatically to rapidly chang-
ing nuclear configurations. In the fast motion limit, there-
fore, the adiabatlic representation may not be the most appropri-
ate; and it may be more suitable to choose a representation in
which the nonadiabatic couplings are minimal.

Representations which make use of electronic wave functions
of desired characteristics (such as ionic or covalent) or those
which minimize nonadiabatic couplings are in generxal known as
diabatic representations - a term introduced originally by
Lichten. Very often diabatic representations are chosen such
that the matrices f‘k) vanish. In these representations transi-

. tions between surfaces are induced primarily by the off-diagonal
elements Uij of the Hamiltonian Hgj. In the cases where these
are small, the corresponding diabatic representation may be pre—
ferred over the adiabatic representation, even at low collision
energies.

We will now illustrate the foregoing discussion with the
simplest possible example of collision dynamics: the one-
dimensional two-state problem. The matrix I (generalized
kinetic energy) in (Ib.20) becomes

1 2 1 1
T==— + == (PP + pPP) + =P Ib.22
L= te P (B-B + pP) g ( )

where all matrices are two-by-two and p =-%~§%? We start with
a disbhatic representation in which §d=0 (all nonadiabatic

couplings vanish), and

d d

« Ull(R) U12(R)

U (R) = a 4 . {Th.23)
U12(R) U..(R)

22

; . . . d
To find the adiabatic representation, we have to tramsform U
such that

?® = cturtmem (Ib.24)



becomes diagonal. The matrix that diagonalizes Ud(R) can be
written

coso sing
C(R) = ’ (Ib.25)
~sing cosg

where d
2U12 (R)
tan 2a(R) = ) 3 . (Ib.26)
[U22(R)-U11(R)]

The adiabatic potential matrix Ua(R) is then

v (r) = [l O]E(R) + ['1 O]U(R) (Ib.27)

o 1 0o 1

where ‘
Tw =2 tufl(R) + 05 ®1 (Ib.28)
v’ = UR + [ol, ®1%, (Ib.29)
5, ® =2 w5, ®-ul, @1 . (Tb.30)

Of course the price we have to pay in using the adiabatic repre-
sentation is that P3#0 in general. If we represent the diabkatic
basis set by ¢g, the adiabatic set will be given by

a -1.4
= Pl . Ib.31
o =1 3?3 ( )
a aih 3 ,a gl -1 & -1
Hence Pmﬂ ¢m Ty ¢£ ) § ij i Czj ; (Ib.32)
a "R do
e.g. P12 =313

We saw earlier that P;;=0 in any representation and P is
always hermitian. Therefore, P~ in our example can be written



. (Ib.33)

a,_. _ [0 ). 3e®
PR = [—i 0]-5 3R

3¢/8R can be obtained from differentiating (Ib.26):

L S 4., _ 4
TR 2 [Uq(U75) " — U ,051 - (Ib.34)

Recalling (Ib.22), we require the operators Pa-Pa, pPa and Pap
ocperating on the nuclear wave functions x(R): We will look
at the effects of these in turn. First, P2.p2 is diagonal.
Therefore, it does not couple the two adiabatic electronic
.states. Second,

a _ |0 1.2, 9
Pp = {—l O}ﬁ ot (R) 3R {Ib.353)
is the dominant nonadiabatic coupling'matrix [which is also

hermitian, since it involves 3/9R acting on xj(R)]. Finqlly,

pe® = [_?_ é]—ﬁza" (R) (Ib.36)

is anti-hermitian. We will now consider the physical significance
of the guantities a' and o" by examining the case of the Landau-
Zener model. This model assumes straight-line potentials

U%l(R) and U%z(R) and constant U%z near the crossing region.

From (Ib.30) we see that Uj is also constant near the crossing
region. At the crossing point Ry itself, Ug(R) vanishes by
definition and in general (regardless of the choice of dynamic
models)

' — e 1 4d
o (RO) = Ud(RO)/[2U12(RO)] . (Ib.37)

Hence in the Landau-Zener model a' is constant throughout the
vicinity of the crossing point, and the guantity ARy defined by

ARO = 1/ (Ib.38)
is a length characterizing the effective width of the crossing
region. a"{R), which governs the anti~hermitian nonadiabatic
coupling (Ib.36), can be evaluated as [using (Ib.34)]:

"o _l_ d "o o_ d w - _2_, ' [l d a
at = =2 [0, (U;,)" = U;,04] 2 a'[Ug0s + Uy, (05,

20
(Ib.39)

1"l



which gives a

-G (R.) UlrR )IO (R
e (R) = j LD - Od 12 g . (Ib.40)
20y, (Ry) (U5 Ry

In the Landau-Zener model, this leads to «” (R.)=0. Thus we can
just concentrate on the hermitian nonadiabati¢ coupling term.
Since the off-diagonal elements U%Z are diagonalized away in
the adiabatic representation at the expense of the introduction
of P2p, the advantage of the adiahatic wvs diabatic representa-
tions depends on the relative magnitudes of U%, and Eap. We
thus introduce a dimensionless constant reflecting this ratio:

Te' (R)v, (R)

AR = —m————————, (ITh.41)
A d
2U12(R)
where vg(R) is a state-dependent nuclear velocity given by
1 2 d
ES =F - 4
2 uvg(R) E UgéR) ' {(Ib.42)

and E is the total energy {(kinetic + potential) of the collision
system. At Ry (when v becomes state independent since Ufl=ng)
we then have

1%J(R0) 'V(RD)
A(RU)? 3 = (Ibh.43)
2U12 (RO)ARO 0 .
where a
2U. (R_}AR
1270 0
S e D 44
vo = = (Ib.44)

is a characteristic velocity which also plays a prominent role
in Landau-Zener transition probabilities (see Section Ila). v
is then the critical velocity determining the suitability of
adiabatic vs diabatic representations. If v(R})»>>v,, A>>1, and
(1.41) implies that U§2 is insignificant compared to the strength
of nonadiabatic. couplings. Hence for high nuclear velocities,
the diabatic representation would be more favorable. On the
other hand, if T<<V g, U%z exceeds the nonadiabsatic couplings
even at the crossing point, where they tend to be the strongest,
and the diabatic representation would lose its advantage com-~
pared to the adigbatic. Far from the crossing region (Rw), we
can assume that

a

Ulz(”) =0,

3 .4
aRtrlz()—o,



Ud(m) = const.
and Ué(m) =0, {Ib.45)
such that the logarithmic derivative of Uiz tends to a finite
Iimit
d
R i e
lim 12 _
Ry Ud = klZ . {Ibh.46)
12
Then, from (Ib.34)
d .,
lim o' 1im C12) ' Fip b, 47)
B g IR 2u o2 204 =) E
12 . d 12
and, using '(Ib.41), ,
o) = v (o) a
A (=) ZEEY;T- (Ib.48)

Since A(e)»>>1 for high velocities, (Ib.41) again shows that under
these conditions, the diabatic representation is more favorehle
for large R. In view of the discussion above we can conclude
that for large velocities, the diabaiic representation is pre-
ferable for all R.

Ic. Quantum Mechanical Treatment of Nuclear Motion - Close
Coupling -

In the last subsection we have separated electronic
from nuclear motions by appropriately choosing Born-Oppenhelimer
electronic basis functions. To deal with nuclear motion we must
further separate the coordinates describing relative nuclear
moticn from those describing internal motion (vibration and ro-
tation). Quantum mechanically this is usually done by expanding
xg(ﬁ} as [in analogy to (Ib.7)]

_\.-LI _z - _S.'A.. l
xg(p,R ) = L uga(p)aza(R i0) (Ic.l)

where 3'stands for the relative motion coordinates and ﬁ“ the
internal motion (vibrational-rotational). coordinates. &, is
the nuclear motion wave function for the o internal vibrational-
rotational state of the & electronic state anif as written in
{Ic.1l), is taken to depend parametrically on p. Similar to the
case of purely electronic transitions, the nuclear wave functions
ugy directly give S-matrix elements for transitions between
electronic and internal nuclear states. To solve for ug,, We



have to substitute {Ii¢c.l) inte (Ib.9), or, eguivalently, (Ib.19).
Flrst we write {(assuming there is only one internal coordinate
R
2 2
+ 2 A 2
T ===V - =9 .

R 2¢ 'p _ 2u' 'R (Ie-2)
where u and 1" are reduced masses for the relative and internal
motions respectively. (The case of many internal degrees of
freedom will not affect the formal development of the coupled
eguations). Analogous to (Ib.ll) and (Ib.l2) we have

»

2 2
‘ﬁ -h
Tll.] = T 5y <¢ |V ¢' > Vp - 5-?’-‘- < i[VR'qu).VR'
(Ic.3)
2 2
T, _ R 2 s 2,
ij = 2 <¢ivp¢j> e <¢'i|VR1‘?j> . (Ze.4)

Pty
Multiplying (Ib.9) by E and integrating over R', making use of
the property (orthonormallty of £, for the same electronic
state)

Jd R Elugla aa ! (Ic.5)
we arrive at the coupled equations
2
“R 2 . .
[ 7 Vo T E] ® = .Z,Qia,ja'(p)uja'(p) (Ic.6)
jo
where
Q = (&®rte, (u,. + Tl o+ TUE
ie,ja’ io i3 ij ij’ 73
'H—{Jng (<¢|v¢>+5 59,085 }
o p
- 2 2
2 7 v
S (PR S EE -
%55 2 Jd R gia[ po Tt u']gja'

(Ic.7)

We note that &, and E need not be orthogonal if i#j. The
integral

Jd RE., E. E¥Y. ., (Ic.8)

ig’ja’ ia,jao

gives the overlap between internal nuclear wave functions on
different electronic potential energy surfaces. The program of



close coupling quantum mechanical calculations is the solution

of (Ic.6), for which several powerful algorithms have been de-
veloped. 1In principle (Ic.6) is capable of describing rotational,
vibrational as well as electronic transitions. However, the
problem may become prohibitively difficult as the number of open
channels increases.

Id. Semiclassical S-Matrix Elements and the Stationary Phase
Approximation

In this subsection we will present a formulation of the
classical limit (0} of the S-matrix due to Miller (A comple-
mentary formulation has been carried out by Marcus.) This form
for the S-metrix for molecular collisions takes advantage of the
fact that heavy particle dynamics of the molecular collision
system can be well treated by classical mechanics. We will first
consider the case of electronically elastic (adiabatic) colli-
sions in which the motion of nuclei follows a single electroni-

- cally adiabatic surface Ua(R) In Section IIT we will generalize
our formulation to electronically nonadizbatic collisions based
on a path integral formulism.

For the description of adiabatic motion we can use the
Hamiltonian

P2 .
EE—+ h(R') + V(R',p) (Id.1)

H

where the coordinates R' and p retain the same meaning as in
the last subsection and P is the momentum operator canonically
conjugate to p. V(R',p) is an interaction which vanishes as
p#+®, and

hfn> = e In> (1d.2)

defines the agsymptotic (p3«)} internal states |n> with internal
energies €. In a given electronically adiabatic collision pro-
cess, we are interested in obtaining the transition amplitude
between two internal states defined by h, i. e., the S-matrix
element

S (&) .
n2,n1

{Id.3)

where E is the total energy of the collision system. We will
first establish a relationship between the S-matrix element and
the Green's function (Ia.20), which will then be computed in the
classical limit to give an expression for the semiclassical
S-matrix. To obtain ¢ (E), we first have to calculate Gg(E), the
unperturbed retarded Green's function corresponding to the
Hamiltonian



HO =H-V . (I1d.4)

"in the translational coordinate and internal guantum number
representation |p,n>. This is given by

sin(k,p_} 1ik.p
+ _ ~2u 17 < 1>

<0,rmy |Gy @ loy rny> = Snznl[ﬁ2] X ©
(1d.5)

1
2H(E"€nl) 1/2
where k = |—————— (1d.86)

1 ﬁZ

and p.{p.,) is the smaller (larger)of p, and p.. Substituting
\ 1 2
into (Ia.l8) we have, for nls-‘nz,

co L)
+ —_ 1 1 + T
<o, 6" ®) [pyn,> = L)dpzifp1<pznzleo(3)‘92n2>

3 l +
X <oy, |T®) [ogn;><on) [Gp (E)eyn,> -

(1a.7)
Hence
lim N lim  [2u)?
< > = —_— i 1
D1 sP 7= p,mpl6 () |ogny plrp2+m[ﬁz] exp (ik;py + ikyp,)

x <k2n2|T(E)|klnl> (1d.8)

% =, gink,p!
= 1 L 2L ' o>
1 L)dplijdpz som,|T(E) [piny

w‘here <k2n2|T | kln kz

sin k_p.l .
x “—-k—l"—']:" - (Id-g)
1

Since the T- and S-matrices are related by

.

8 L2 1/2
n, ey n,ny 21[-52] (klk2) <k2n2!T(E) lklnl> '

(Id.10)

. . . . +
we can identify the S-matrix in terms of G (E) as (nli-‘nz)



el

" .
- = (klk2)1/2 Lim L SXP(-ik
1 u PyePy

: 2
+ 1
x <pn, |G (E) [o,n > = Lo [ﬂ klk?_]

L0)]
8
]

1Py~ RoPy

i/2

)

1 0o
1 Py, 2

dt exp[%§£ﬂ<pzn2]exp[

(I4.11)

-iH
H

s o t
X exp{ ik, Py lkZDZ)J )[pfnf

0

where we have made use of (Ia.20).
So far the treatment has been exactly quantum mechanical.
In order to evaluate Sn n in the classical limit, we usze the
277
classical Hamiltonian in (Id.11), which is given by [compare
(1d.1) ]

P
H(P,p,0,q) = ot £@) + Vip,m,3) . (Id.12)

This Hamiltonian has been expressed in terms of the action-angle
variables {n;} and {g;}, i=l,...,N-1, vhere N is the total
number of nuclear degrees of freedom. These variables describe
internal motion classically and, in particular, the action vari-
ables I are the classical counterpart of the gquantum numbers fox
the internal degrees of freedom. WKB quantum conditions require
that n; be integers at asymptotic regions (p3), and this forms
the basis for the semiclassical description of the initial and
£inal guantum states of the collision system.

In order to proceed further, we have to digress to pre-
sent a result for the classical limit (F*0) Green's function

in the cpordinate representation: ‘
. ) 2 1/2
iH(t,-t,) 3 ¢(q2,q1)/8q23ql_[ /
<q,lexp|~ ———|lq;> = |- :
2 R 1 2wit ' _I
i¢(q2rql)
X exp B S (Id.13)

where ¢ is the classical action, the time integral of the classi-
cal Lagrangian, £

2
$(a,,q,) =I at{p(¥)g(x) - Hlp(e) ,qa(e)1}
t

. (Id.14)



and p,g are the canconically conjugate nmomentum and ccoordinate.
The only approximation involved in the derivation of (Id.13) is

the stationary phase approximation formula:

; 1/2 if(x )
k.

(Id.15)

where the points of stationary phase are given by

£10Gg) =0 .

Since (Id4.15) becomes exact as-1i+0, one may say that classical
mechanics is the stationary phase approximation of quantum

(Id.16)

mechanics.
Making use of (Id4.13) in (Id.1ll1l) we have

lim Plel/z ;
snz’nl (E) = P10, [__]_1_2-—] exp%(plpl - ngg)]
) erdtfzqs(pzﬁ'z,pl l.t)/a (PR, (p )-Il/z
0 (~2m 1)
n.o;t) ]} (18.17)

X {i[Et + ry
exply @(pznz,pl 17

wheras the action integral in the mixed represgntation (p,?{) is
t .
dlom, 0. t) = | 2Lt [B(ENF(EY) - T(E)B(E) - HEDT ,
PR s -
t (1d.18)

t=t2—tl,

and the momenta Py and Py, with directions accounted for, are

given by

Pl = —"ﬁkl i

P2 = -‘sz .

The stationary phase approximation (Id.1l5) is now invoked again
to do the integral in (Id.17). First we note that



g'?l(pﬁ..lrp'a‘t)

= n..0.m it a
9t 2ts 1 lr = E(pznzrplnlr ) (I .19)

where E(pzﬁé,p,ﬁ';t) is the total energy for the trajectory with
the indicidted boiundary conditions. It is distinct fxom the cen-
stant quantity appearing in the argument of Sn n (E). In fact,
the stationary phase condition 2’71

] - = _ -~ =~ _
e ¢(92n2,plnl,t) = E(pznz,plnl,t) = E

{Id.20)
defines the Ffunctional relationship between E and t.

The sta-
tionary phase in the integrand of (Id.17) can now be written
ZBY = - - 1 1Y A f=0Y o 1y Tt
@(n2,nl,E) Py P2p2 + Et It dc' [P{t')p(t') q{t')-n(t")
1

- H{t")] = J dt[-p (£)P(£) = T()-T()]

(1d.21)
and 5 N N
P1B, gy O $(pyn,r0 0 it) o on-1|t?
S, o B = " TS5 3E Taaseay /A
21 i 22711
lé(ﬁé’ﬁi;E)
X exp ————*%;~*——— {1d.22)

The pre-exponential derivative in (Id.22) is actually the de-
terminant

524 324
Snlan2 anapl
(1d.23)
2
3% 2%
apzanl szapl

which can be shown to be (with some messy algebra):

2 2 1 9%6 (.1 1 F)
9<% o [Bt] fyrByd
—h — - - —ty -
a(pznz)a(plnl) Ple B ananl

(1d.24)



The expression (Id.22f for the semjclassical S-matrix then
simplifies to

s2a @, E) /onon |2 |ie @R 1E)
. 2’7 257 21y
S & @B =1 N-1 exp =
278 | (-2nin)
(Id.25)

We ¢an go one more step to simplify the pre-exponential factor.
From (Id.21l) we have

= . - B D, + . _
¢(ﬁzpzrnlpl,t) ¢ (1,0 jE) + B0, ~ Ppy - Bt
] (1d4.26)
and from (Id4.18),
3
= o= Q- (Id.27)
i .
Differentiating (Id.26) with respect to ﬁ‘l, we obtain
3P
ELe) o~ 1
3. (BprPiB) = T, 3
1 1
9k
=& --H —"'—1
9 TP 3R
1
pp 9 (@)
1 1 i
=g - ———=—3=9 (Id.28)
1 Pl anl 1

where in the last equality we have used (Id.6). IE we consider
the time dependence of ﬁi without the interaction potential in
(zd.12), i.e., the time dependence in asymptotic regions, we see
that (using Hamilton's equations)

; : de (i, )

A aH 1
d, = ==~ = (Id.29)

1 anl Bnl
P
. JH 1

=TT =TT . I4.30
pl Py u { )

Hence Be(ﬁi)
Cl(tl) = const + an-tl (Id4.31)

1



P
p(tl) = const + Tl tl ' (Id.31) -

and'@' as defined in (Id.28) does not have any asymptotic time
dependence, that is, it has the "free" time dependence of §(t)
subtracted out. The pre-exponential factor of Sn is then
given by ‘ 271

. ]

EET.A _J (Id.32)
1. nl .

Finally the S-matrix can be expressed most conveniently by

2 — e
3 @ﬁz,nl,E) ) [qu] )

pay — -

_l 2 ) P S
N-1 Bﬁéy / 1®(n2,n1;E)
S =~ (E) = if(~2wif) [—é-_—;—,-J exp|{—————| ,
2’ W E

(Id.33)

where ¢ is given by (Id.21). In any application of (Id.33), we
must determine classical trajectories specified by initial
boundary conditions
— s .
n, = specified integers

ﬁ‘(tl)

p(tl) = asymptotically large

p(e)) = -{2u(e - e@p1}? (1d.34)

up (£,)3e (@)
1 1
Tt ) = gqr o+
1 1 P(tl) Bﬁi
and final conditions
ﬁ(tz) = ﬁé = specified integers:
p(tz) = asymptotically laxrge (Id.35)

P(t,) = {2u(E - e@) 1}/

g(tz) = anything

If there is more than one trajectory fitting the prescribed

bondary conditions, (Id.33) must consist of a sum of terms, one
for each such trajectory. To evaluate the derivatives 3%7/33:,
we must integrate Hamilton's equations to obtain a function ~



ﬁé(&i,ﬁi;E), whose values, of course, need not be integers. We
will then have to solve

= Ay N
n, nz(ql) {Id.36)

(with the arguments nl and E of n2 suppressed) for the initial
angle variables ql whlch would lead to the prescribed final
integral values for n2. {Id.36) is a set of N-1 equations in
the N-1 unknowns ql, and the pre-exponential factor aﬁé/sﬁi is
in fact a determinant of partial derivatives, which are to bhe
evaluated at the roots of (Id.36). Each set of roots Qi will
then correspond to a distinct trajectory and will lead to a
different .

IX. SPECIFIC THEORIES AND DYNAMICAL MODELS

In this section we will begin by studying simple dynam-
ical models for nonadiabatic electronic transitions. We will
consider low energy collisions such that the characteristic ex-
tent of nonadiabatic coupling is small. Under such circum-—
stances the potential surfaces Ut#ﬁ) and the nonadiabatic coup-
ling metrix elements can very often by approximated by analytic
functions of R. Moreover, the transition can be considered as
due solely to the coupling between two electronic states, thus
the general multistate problem defined by (Ib.9) can be reduced
to the relatively simple two-state problem. We will state our
problem in terms of the semiclassical time-dependent formulation.

The Schrodinger equation to be solved is

oy (R, Trt) = i — ¢(R T;t) (II.1)
where [Compare with (Ib.7)]
VYR = Lx, ®e)o,®E) . (1.2)

If {¢g} is chosen to be an adlabatlc representation, (II.1l) be-
comes
2

H™ 9 9
{-————+U (R)}x + ZT X, = i =
2 2 Xy
L™ S ij%j It ~i
(II.3)
2 2 2
_ il 3 2
where T,, = < ——--—-—-— - — _ 5 —
ij ¢1| 2u 5 ¢ ¥ ¢il3R CI)j 3R '
R -
(F1.4)
and a one-dimensional problem has been assumed. [I+ is geen that
T, =7T!I. + TY., on comparison with (Ib.}1) and (Ib.12)]1. The

1] 1] 13



Tij are, of course, the nonadiabatic couplings discussed in
Section Ib.2.

So far, our time—-dependent formulation is rigorously
guantum mechanical, and (II.3) is egquivalent to (Ib.9). The
semiclassical viewpoint is introduced in assuming a classical
trajectory

R = R{t) .

The electronic Hamilton H,y then becomes time-dependent through
R(t), and the electronic motion can be described by a time-de-
pendent wave function ¢(¥:t) satisfying

3

— el N —
Hel(r,R(t))¢(r;t) = i Y ®{T;t) . (IZ.5)
® can be expanded in terms of the ¢i:
. (t
-~ Y 1 a
Mrﬂ)=Zai&mimerm&ﬁ—%Jtﬁﬁmeﬂ-.

i
(I1.6)

The nonadiabatic transition amplitudes, or S-matrix elements,
are then determined by ]an(t)|2. Substitution of (II.6) into
{II.5) gives

.t
rr _ i a _ .a
ha, = jgicijexp{ 'ﬁJ dt(Ujj Uii)}aj {II.7)
e

where the nonadiabatic coupling matrix elements are

C,.

i <¢il—1ﬁ8¢j/8t> . (T1.8)

For a two-state problem we have

.t
i i a a
Iﬁal = Clzexpﬁﬁj dt(Ull 022)}a2 . (IT.9a)
i t a a
xﬁa2 = CzlexpﬂgJ dt(022 - Ull)}al . (II.%)
The S-matrix element S,y is given by
5. - = |a, (tre) |2 (I1.10)
2+1 2

with the initial ceonditions

al('“) =1, az(—W) =0, (I1.11)



and the coupling Cj1» is assumed to be maximuam at +=0.

ITa. The Landau-~Zener Model

It is often more convenient to formulate collision
problems in the diabatic rather than the adiabatic representa-
tion (see discussion in Section Ib.2). The Landau-Zener model
of nonadiabatic coupling between electronic states of the same
symmetry, for instance, is formulated in terms of the diabatic
representation of the electronic Hamiltonian, Ud, defined by

-~

d —_
Ull = U(RO) - Fl(R—RO)
t;d =T(R.) - F_(R-R.) {IXa.l)
22 0 2 0 ' -
a _ . _
Ul2 = g = const. ,
where T(R.) = Ud (R.) = Ud (R.} (I-Ia 2}
0" T 1170 220" )

Ry being the point of intersection of the diabatic curves, and

Fy. Fo are constants. The equation of the trajectory in the

vicinity of Rp is approximated by a linear function of time:
R-R, =wv_t . (I1a.3)

From (Ib.27), ga is then given by

a _ g -1 -R) -
U11 = U(RO) 2(F1+F2){R RO) U(R) (ITa.4a)
a _§ - - ;
U22 = U(RO). 2{F1+F2) (R Ro) + U({R) (ITa.4b)
where au? (R) ={AF(R—R0)}2+ 42’ p AF=|F1—F2].
{(IIa.5h)

Analogous to the derivation of (Ib.32), we obtain

Ci, = #idasat (IIa.6)

where o is defined in (Ib.26}). Using (Ib.34) in which ' means
9/9t), (IIa.6) reduces to



Iﬁa(AF)vo
C,. = . (£xa.7)
12 {AF(vot)}2+4a2

The exact solution of (II.9) using (IIa.4) and (IIz.7) has been
carried out by Zener, and it is found that, for a 'once passage'
through the nonadiabatic coupling region, the S-matrix is given

by

-21Ta2

voAAF| - (t1a.8)

2 2
|S2+l[ = [a2(°°)| = exp

As discussed in the previous section, it is thus seen that when
the velocity vy is small, the nonadiabatic transition probability
is also small. On the other hand, for wvg large, S5+ tends to
unity, meaning that the colliding particles tend to follow the
diabatic path.

IIb. The Demkov Model

In this model Ud(R) is given by

d A d - _4A
U22(R) =5 = const , Ull(R) = > (IIb.1)}
Uiz (R) = A exp(-AR) , (1Ib.2)

and the straight-line trajectory R(t}=vpt is also employed.
Transforming to the adiabatic representation, we have

/2

a

Ull (IIb.3a)

®) = - %—[az + 4n%exp (~22R) 1%

/2

® (m) = %mz + dalexp (2R 1Y% . (I1b.3b)

U22

At asymptotic regions U?l(R) +~ v (R) and Uaz(R) -+ Ug {R) .

Hence in this case, oppdsite to e Landau—%ener modei, the non-—
adiatic transition amplitudes are the same as the diabatic ones.
Expanding ©(Z:t) in the diabatic basis set {¢§}:

@

e) = J b, (£)6° (R(t) ,P) expl- thdtUd (R(£))dt)
! ] i i ' i ii '
(I1bh.4)

we obtain, analogous to (IZ.9), the set of coupled equations

a ift . a a
1‘ﬁb1 = Ulzexp{_h-f dt(Ull - U22) }b2 . {IIb.5a)



a if*. 4 a
1ﬁb2 = UZIexp{,ﬁ—J dt(U22 - Ull) }1::l . {IIb.5b)

If we use the initial conditions
bl(—w) =1, b2(—°°) =90 , (IIb.G)‘
the 'once passage' S-matrix element or transition probability

is given by lb2(+W)|2. The exact solution of {IIb.5) using
{ITb.1l} and (IIb.2), as worked out by Demkov, is given by

Il

= o) | 2
Sper = 2y |

2 [ @A C2{if7.. .4
sech [2,5)“?0] sin [;EJ c;it Ul2 (R(t))]

N 3
. 21 24 2{ wA
sin tﬁkvO]SECh {ZﬁkVOJ . {ITb.7)

The Demkov model and the Demkov formula (ITb.7) is widely used
to describe charge transfer processes of the type

+ o+
A+B ~A #Bor

A+B +A +B.

IIc. Stuckelberg Theory - Curve-Crossing Problems

In the diabatic representation (in which all nonadi-
abatic couplings vanish) the coupled equations of motion for the
one-~dimensional two-state problem are

Xy + ki (R)X; = @)X, (IIc.la)
X5 + Eé (R)X, = ¢ ®)x, (IIc.1b)
== _ 21 I
where kl,2 == (E U11,22) ' (IIc.2)
A
a=2L U?:z (ITc.3)

and "denotes second derivative with respect to R. (IZc.l) is
often used to describe collision dynamics with curve crossing,
i.e., when U%l(R) and ng(R) intersect at some point. The
Stuckelberg method to solve these equations is based on semi-
classical phase integrals and their amalytic continuation in the



complex R plane. For unit amplitude entrance on channel 1,
(IIc.l) must be solved subject to the boundary conditions

iEl (=)R iEl {(=)R

Xl(R)R;m e -8, e {ITc.4a)
iEz (=)R

xz(R)R_;m - 812 e (FIc.4b)

where S717 and S;, are the scattering matrix elements.

The. procedure of Stuckelberg to solve the equations is
as follows. First one eliminates ¥, from (IIc.l) to obtain a
fourth order differential equation %or X1+ A solution of the
form

1
= — + e -
Xq expLH 8, + 8, +hS, 1 (IIc.5)

is then substituted-into the fourih order eguation to obtain
eguations for Sofsl,.... when coefficients of the various powers
of i are separately eguated to zero. ZXeeping only Sg and S; one
can arrive at the general WKB solutions for ¥; and X,. The
solutions thus found are observed to have singularities at R,
which satisfies

d 4 .2 d 2

(U22 - Ull) + 4(U12) =0 . (IIc.6)

Ry is in general complex and (IIc.6) implies that R} is also a
solution. The WKB forms X1 and X then cannot be used in the
neighborhood of Ri, including the immediately adjacent real axis.
It i1s, however, desirable to consider the approximate solutions
Xl 5 as analytic in sufficiently remote regions from the con-
jugate pair Rx and R¥ so that X1,2 for R>>ReRx can be joined
smoothly to Xl 2 for Rl,R2<<R<<ReR* (Rl 2 being turning points)
by tracing the WKB solutions along a contour remote from the
neighborhood of Ry and R%E. Any contour chosen will invariably
pass through the so—called Stokes lines, which are defined by

R
ReJ dR(kl - k2) = 0 (IIc.7)
B
2 _2u
whera kl,2 —_ﬁz (E W1,2) {(IIc.8)

and Wl o are the adiabatic curves obtalned by diagonalizing Ud.
The WKB solutions consist of dominant and subdominant solutions
in the complex R plane. As one crosses a Stokes line the co-



efficient of the subdominant solution must change discontinuously
in order for the solutions to join. This is known as the Stokes
phenomencn, and one can say that a nonadiabatic transition is the
physical manisfestation of the Stokes phenomenon.

This connection procedure determines the coefficients
of the WKB solutions whose asymptotic forms lead directly to the
S-matrix. If there is only one region of nonadiabaticity {in
which the WKB solutions are not valid), then there will be two
crossing encounters due to the fact that this region is passed
twice, once on the way in and once on the way out. Stuckelberg's
solution for the S-matrix is given in this case by
I.1/2 1/2 Iz

) exp(i¢i’j1> + @, 5 exp(ig; M) (11c.9)

s, .= (P, .
1,] 1,3
for i,3=1,2, where Wy is chosen to be the lower adiabatic curve,
the ¢'s are the WKB phase integrals (i.e., classical action in-
tegrals), the P's are transition probabilities; and I and II
refer to the two crossing encounters and thus to the two diffexr-
ent classical trajectories that contribute to the i+j nonadiabat-
ic transition. The various quantities in (IIc.9) are given below:

R
6. T=1im 2(E - k.R + J dr'k. (R')) , {IIc.10a)
1,1 1 1
Roveo R
1
TI tReRx R
¢ ‘= 1lim 2(f - - k.R + aR'k. (R') + dar'k. (R")) ,
1,1 o 1 , 2 en. L
2 S8 (IIc.10b)

I T R R
$ = ¢ = lim (£ - kK.R - kK R + L{ drR'k, (R") + J drR'k, (R')
1,2 2,1 Bovoo 1 2 eRs 1 ReR. 2

ReRy
+ ZL{ dR'kz(R‘)) , (IIc.l0c)

2
IT II R R
¢1 5 = ¢2 ;= lim (-g—klR—sz + j drR'k. (R') + J dR'k2(R')
' ! R ReRy ReR,

ReR .,
+ ZL{ dR'kl(R')) ;  (IIc.l0d)
1

R
L dim 20~ KR + J arR'k, (R') (IIc.l0e)

Rryco R 5

¢2,2



1T B ReRs R
¢2 2 = 1im 2(§ -~ sz + J dR'kl(R') + J dR'kz(R') r (ITc.l0£}
! R0 Ry ReRy

I ‘ kN 2

R L D (IIc.lla)
II Iz 2
Pl,l = P2’2 =P . {Iic.llb)
I_ IT _ T IT _ _
P1,2 = P1,2 = Pzrl __P2,l = p(l-p) , (IIc.llc)
where p = exp(-28§) (IIc.12)

is the local nonadiabatic transition probability and

R* R*
é = lJ dR[kz(R) - kl(R)] = 21L{ dR{(k2(R) - kl(R)]
R?; eRy
{I1c.13)

In (IIc.10), kj = k4i{=) and the phase factor £ is given by
{not originally given by Stuckelberg in this form)

E=6ns - 6 - argl(if) - o - (1Ic.14)
For 6<<1, £~— and for 6>>1, E~-1/126.

Tnterference between the two terms in (IIc.9) leads to
oscillatory behaviocr of ISi'-|2 as a function of E. This phe-
nomenon is known as Stuckelbérg oscillations. For example, con-—
sidering the 1+2 transition, we have

|Sl 2|2 = 2p{1l-p) [1 + cos(&+A-B)] , {IIc.l5)
rReR,
where A= J dR‘kz(R') R {(Iic.l6a)
R
2
ReRy
B = I drR'k. (R') . (IXc.leh)
1
Rl

I1d. Tully-Preston 5urface~gopping Trajectory (SHT) Theory

The SHT approach is basically a classical trajectory
approach in which nuclear motion is treated completely classi-
cally. Classical trajectories are propagated on the entrance



(initial) potential surface until an avoided surface crossing
or other point of large nonadiabatic interaction is reached. A
relation defining these avoided crossing seams have to be found
for each problem:

SE =0 . (TId.1)

A probability of switching to another surface P(ﬁﬁi} is then
computed and the trajectory branches. One branch, with the
weight (1-P), is resumed on the old surface, whereas a new
branch, with the weight P, is resumed on the new potential sur-
face, with a slight velocity correction. More branching will
occur if the branched trajectories subseguently encounter the
avoided crossing seam again, and at each encounter, a surface-
hopping probabiliiy has to be determined.

The switching probabilities at each hopping encounter
are calculated by integrating the coupled equations (II.9). For
instance, if a trajectory is initially propagated on the adiabat-
ic surface.l, then P = |a,|2 is obtained by integrating (II.9)
over the entire nonadiabatic coupling region. The sclution ob-
tained would, of course, depend on the choice of the classical
trajectory ﬁTt) used in the R-dependent guantities in (II.9),
which in turn depends on the choice of the potential ({(either
U%l or U%z)used for its determination. However, it has been
found that for many triatomic systems of interest, especially
the H3+ system, tEg choice of the effective potential for the
determination of R{r) in (IZ.9) has relatively little effect on
its solution, and very often the solutions given by the differ-
ent choices can be approximated by the Landau-Zener formula with
appropriate parameters. Furthermore the transition probability
depends almost entirely on the component of velocity perpendicu-
lar to the avoided crossing seam.

An important requirement of the model is a prescription
for changing wvelocities to conserve angular momentum and energy
when a surface hop occcurs. Since the perpendicular (to the -
seam) component of the welocity is most effective in nonadiabatic
coupling, velocity corrections are usually applied to this com-
ponent only. These corrections reflect the energy defect of the
adiabatic surfaces on the seam at the site of hop.

Tully and Preston have obtained classical branching
trajectories for the linear H™ + D, system using the surface
hopping model as described and compared them with trajectories
obtained from an effective potential given by

ot 2 . 2 L
Wope®) = la, "9, ® + {ay| W, ® . (I1d.2)

If the entrance channel is on W, they observed that Ia2[2, cal-
culated by (II.9), was essentially zerc except in the immediate
neighborhood of the avoided crossing seam. In other regions,

the trajectories determined from W_.. were nearly superimposable



on those determined from Wl(ﬁ). Near the seam regions, however,
the branched trajectories were significantly different from
those determined from Wgeg. Hence they concluded that, below a
certain energy threshold, the probability of nonadiabatic transi-
tions and the magnitude of nonadiabatic corrections to the poten-
tial [given by (ILId.2)] were both negligible except in regions
near the avoided crossing seam.

There is one important difference between the SHT model
and the semiclassical S-matrix thecory introduced earlier (and
which will be generalized-to include nonadiabatic transitions in
Section III). The SHT theory adds probabilities (rather than
probability amplitudes) for different trajectories and hence is
incapable of producing interference effects leading to resonances.
This defect, however, may be unimportant when a large number of
initial vibrational and rotational phases have to be averaged
over, since the averaging process would serve to wash out the
interference effects.

ITe. The Mever-Miller Treatment of Classical Electronic Degrees
of Freedom

Even though semiclassical methods have been largely
successful in the treatment of molecular collision procasses,
their formulations arxe plagued by a fundamental shortcoming -
electronic and nuclear degrees of freedom are not treated on the
same dynamical footing. Since it is never seriously doubted that
classical mechanics can be applied safely to nuclear motion,
some attempts have been made to redress the situation by advanc-
ing schemes to treat electronic motion by classical degrees of
freedom alsc. These attempts by no means aim at reducing elec—
tronic motion to the tempting framework of classical particles
orbiting around the nucleus. One has rather to search for the
right classical dynamical variables which will describe the
relevant aspects of electronic motion in molecular collision
dynamics. For this purpose we will present a recent formulation
due to Meyer and Miller.

To motivate the choice of a suitable set of classical
electronic degrees of freedom we will first-formulate the general
N electronic-staze problem in the diabatic representation. The
semiclassical description introduced at the beginning of Section
IT {assigning a specific classical trajectory R=R{t)] leads to
the set coupled equations

. 4 o
. _%z Ay (B (R(E)), 1,350, (1Te.1)

J

for the expansion coefficients of the electronic wave function



?(r,R(t)) = ] a ()¢, (x,R(E)) (ITe.2)
i

which satisfies the time-dependent electronic Schrddinger equa-
tion

Hel{r,R)@ = ifod/at. (ITe.3)

[Compare (IIb.5). Knowledge of aj(t) then gives directly transi-
tion amplitudes for electronic transitions between the states ¢;.
{(In this subsection we limit ourselves to one—dimensional nuclear
motion.) .

One of the ways to assign the trajectory rR(t) in (IIe.l)
is to assume that nuclei motion follows a force field determined
by Ehrenfest's theorem:

BHel(r,R)

p = uR(%) < | jo>

3R

It

' 5 .d
- izjai(t)dj () ﬁUij (R) . (IIe.4)

Since the o's are unknowns in (IIe.4), this equation has to be ad-
joined to (ITe.l) to form a set of N+l equations for the solution
of the N+l unknowns «j (t) and R(t). Other choices of trajectories
can be made (for example, as in the SHT model, in which R{t) is
determined by the adiasbatic potentials or Wars)}, but in any case,
a single unigue classical trajectory is used which is independent
of the final electronic staté, a clearly dynamically inconsistent
situation. (In fact, this is one of the formal weaknesses of the
SHT approach) . '

The Meyver—-Miller approach consists in searching for a
set of classical electronic degrees of freedom which would lead
to Hamilton's eguations. of motion completely equivalent to
(ITe.2) plus the Ehrenfest trajectory. Yet the boundary condi-
tions of these Hamilton's equations, unlike those of the time-
dependent semiclassical treatment, would be dynamically consis-
tent, since electronic transitions now correspond to different
initial and final values for certain of the classical electronic
degrees of freedom, and different transitions entail different
classical trajectories. These transitions can be conveniently
and unambiguously described by the semiclassical S-matrix formu-
lation of Section Id.

The sought-for classical electronic degrees of freedom
are related to the aj(t) by

ai(t) =1/ni(t) exp[-iqi(t)] . (ITe.5)

The n; and gi are analogous to those introduced in Section Id for



the description of internal nuclear motion and can be correspond-
ingly considered as electronic action and angle variables. The

classical Hamiltonian Hel(ﬁﬂa}t) is then given by

Il

W . —
B, @dt) = <¢|H_; @.R(E)}8>

Il

za;u

I (II.6)
; ij
1]

J

that is,

. d
H, @,Qt) = iZj /ninj expli (q;-q,) 103 (R(E)) . (ITe.7)

Hamilton's equations for oy and q; are then given by

LW,
BHel (n,q;t)

I (IIe.8a)

sm N

. el(n;q:t)

ni = - _—mé'—__ .
93

The full c¢lassical Hamiltonian becomes

2
H(p,R,H,Q) = 12)_11 + Z\/ninj EXP{i(qi'qi) }U:'f:j (R} ,
ij

(ITe.9)

and Hamilton's equations for the canonical wvariables R,p,ﬁ}ﬁ'are

> - 9H _ P
R(t) = D v’ {(ITe.l0a)
N S .3 .4
p(t) = T 31 Vninj exp{:l.(qi qj)}aR Uij(R) '
] (IZe.10b)
3H By d
qi(t) =3 - z o Re[exp{l(qi~qj)}Uij} . (ITe.1l0c)
i i
n, (£) = S _ Z 2Yn.n, Imfexp{i(g.-q }}Ud.] . (ITe.l0d)
i qi 3 ij 173 ij

(ITe.1l0c) and (IIe.1l0d) can be shown to be eguivalent to (ITe.l)
if {IIe.5) is used in the laktter. Furthermore (ITe.l0b} is none
other than (IIe.4), the Bhrenfest trajectory equation. Hence the
goal of the Meyer-Miller program is achiewved by the in;roduction


http:n-[exp{i(q-q)}.oU

of the classical electronic degrees of freedom specified by
{ITe.b).

As an example we consider the two—-electronic—state prob-
lem. The classical electronic Hamiltonian (IIe.7) is given by
d d

_ d
= nlUll + 1§} + 2ann2 Ulzcos(q2 ql)

H (n Fa¢) fqllq2) n2 22

el 172
{(ITe.11)

Making a canonical transformation to the new set of varizbles

ni = n, + n, = 1 (conservation of electronic probability)

I =
n2 nz , (TTe.12)
ql = q.l I

[ J— -
the two-state Hamiltonian reduces to one with only one degree of
freedom (né,qé) z {n,qg).,

Hel(n,q) = (l—n)U‘i'l + nUd + 2¥n(1~-n) Ud cosq . (IIe.l3)

22 12
However, to make the boundary conditions amenable to classical
treatment so that n(ty) = nyp is a function of g{f3) = d;, we
have to introduce the Langer-modified Hamiltonian

L _ a d / 1 /_3__ a
Hel(n,q) = (1 n)Ull + nU22 + 2/n+ > 3 n Ul2005t;.
{(ITe.14)

Electronic transitions are then represented by the boundary con-
ditions n(t;) = ny = 0, ny = 1. To compute the S-matrix given by
(Id.33), we have to solve the following equation for ql

n,{q,) =1 (ITe.15)

and each root will give rise to a separate term in (Id4.33).

ITT. THE MITLER-GEORGE THEORY OF ELECTRONIC TRANSITIONS IN LOW
ENERGY MOLECULAR COLLISIONS

In Section I we have introduced the semiclassical S-
matrix for electronically adiabatic collisions in which elec-
tronic coordinates do not enter into the picture at all. Transi-
tions between internal states of nuclear motion are described
within the framework of classical degrees of freedom (action and
angle variables) whose boundary values are quantized. In Section



IT various ways to deal with nonadiabatic transitions are con—
sidered, some based on specific dynamical models, such as the
Landau-Zener model, while others, such as the SHT treatment, are
built on somewhat dynamically ill-~defined boundary conditions,
despite successes in many applications. The Meyers-Miller for-
malism attempts to put everything on firm grounds with the bold
step of introducing classical electronic coordinates to comple-
ment the classical nuclear ones. This approach, though intellec—
tnally challenging and showing great promise, is as yet rela-
tively undeveloped in its applicational aspects. In this section
we retreat one step from the Meyers-Miller formalism, as it were,
and discuss a treatment of nonadiabatic transitions due to
Miller and George, which makes use of guantum mechanical elec-
tronic and classical nuclear degrees of freedom. Though suffer-
ing from the undesirable feature of having to mix classical and
quantum mechanics, this formalism leads to a quite aesthetically
appealing interpretation: all dynamics, including nonadiabatic
transitions, is essentially described by classical motion of the
nuclei on electronically adiabatic potential energy surfaces.
Nonadiabatic motion is deserihed by the analytic continuation of
classical mechanics into complex coordinate regions. Hence all
dynamical information is contained in the analytic structure of
the adiabatic potential surfaces, and nonadiabatic coupling
matrix elements, while centrally important in quantum mechanical
treatments, do not enter explicitly inteo this formulation.
Transitions between internal nuclear states are handled in the
same way as described in Section Id.

IIla. The Feynman Propagator Approach

In our formulation of the S-matrix in Section Id,
(Id.13) was the starting point. There we noted that this equa-
tion results from the stationary phase approximation of the
Green's function propagator <q2|exp[—iH(tg-tl)/ﬁ]/ql>, which is
equivalent to the choice of a particular trajectory, g(t), for
the nuclear coordinate g. This particular trajectory is the one
obtained from the sclution of Hamilton's equations, and is thus
called a classical trajectory. In the treatment of a problem
involving electronic coordinates, we will be interested in the
more generalized propagator in coordinate representation

<q2,x2|exp[—iH(t2-tl)/ﬁ] lq % 1> (£1Ia.1)

where x3,x| are the collective electronic coordinates at &t and i3
respectively. g denotes the collective nuclear coordinates. Ii
was Pechukas who first developed the idea of building a formal-
ism to treat molecular collisions involving electronic transitions
based on the propagator (IIIa.l). Instead of starting midway to’
write down the stationary phase approximation for it, we begin
with Feynman's path integral expression:



—iH(t2~tl)
<g.X Iexp B e— lq X >
272 - 11
q X .t
= J 2 Dy J 2 px exp{%—[ 2 dt[%'uﬁz + T, - viz,a)1} .
il 1 1

(ITIa.2)

where the path integrals are over all electronic and nuclear
trajectories x(t) and q(t) that connect (x;gi) at tj and (x2,q2)
at tp, and T, is the electronic kinetic energy. One can imagine
doing the electronic path integral first (although in practice
its actual evaluation is never carried out) and write

-iH(t -t_) q .t
2 1 2 2 1
<q2x2|exp{———%;————}iqlxl> = J Dg K[xz,xl;q(t)]exp[gj dt-gu
9 €
x (&) 2 (IIIa.3)

where K is the electronic propagator
x2 5 t2
Xix_ ,x :;q(t)] = Dx explexp[= de {® - vi{x,q(t))}] ,
2771 - ﬂit x

1 1 (TITa.4)

which is a functional of the nuclear path, i.e., it depends on
the particular choice of the nuclear trajectory g(t).

The times t) and tp are usually taken to be the infinite
past and infinite future respectively, when gj, d9p + =, and the
system is in asymptotic electronic state ¢3(x;) or ¢,(x3), which
are eigenfunctions of the Hamiltonian éﬂEHeﬂq,x). Instead of
the propagator (IIIa.l) , Pechukas noted that one actually re-
quires the propagator in ‘state' rather than coordinate represen-
tation:

<2,q, |exp-iH (t,-¢,) /Al |1,q,>

dezjdxl<2|x2><x2q2|exp[—1H(t2—tl)fﬁ]|qlxl><xl|l>

dezjdxl¢§(xz)<q2x2|exp[—iH(t27tl)/ﬁ]lqlxl>¢l(xl) (ITIa.5)

Using {(IIIa.3), the 'state' representation propagator takes the
form



~iH(t ~t,) q k
— 2 L 2 2. 1
<2,q2]exp[ = ]Iqu> = J Dg K2l[q(t)]exp[%J at E—u
9 tl
. . 2
* (gq(t)) ] {(IITa.6)

where

f Lo if%2
KZl[q(t)] = JdXIdezdﬁ;(xz)L Dx expLgL dt{Tx - V(g (t) ,x)}]tbl(xl)

1 1 (I1Ta.7)

is the electronic transition amplitude. It gives the transition
amplitude (1+2 electroniec transition)with the nuclei constrained
to follow the trajectory g(t). S-matrix elements for the

I1nj + 2np transition, where n; and np are the initial and final
values of the quantum numbers for the nuclear degrees of freedom,
are then constructed in a way analogous to the development
following (Id.1l}.

Retracing our steps slightly, we see that the calcula-
tion of Kyq([g(t)], which is the determination of the electronic
transition amplitude under a fixed nuclear trajectory, is none
other than what we set out to do via the semiclassical time-de-
pendent formalism in Section IT. Kpj is none other than

.t
32EXP{é%'J dt ng(q(t))} {see (II.6)]; and g(t) was chosen to be
the straightline trajectory for both the Landau-Zener and the
Demkov models. In the next subsection we will present a semi-
classical form for K[g(t)] which is wvalid for all classical
paths. This result is then used in (IIIa.6), in which the path
integral over g is done using the stationary phase approximation,
which effectively selects out the classical paths, out of in-
finitely many possible cnes. Then everything follows exactly as
the development subsequent to (Id.11).

IIIb. The Electronic Propagator and Analytic Continuation of
Classical Mechanics

as already remarked the determination of the electronic
propagators Koq (or Kll) is equivalent to the solution of (II.2).
The XK's are given in terms of the a's by:
t

- 2

Kzl[q(t)l = a, (tZ)eXP[;ffiL dt W2 (€)1 {I1Tb.1la)
1
—-i tz

Kll[q(t)] = al(tl) exp[_?I dt Wl(t)] (IITb.1b)

£y



where the W's are the adiabatic potential energy surfaces.

We will briefly indicate the semiclassical solution for
the two-state case as provided by Miller and George via the first
order perturbation solution for a, (with the initial conditions
al(tl)=l, ap(t3)=0). (III.9) gives

.t . rt
1 Y 1 ~
2, (t2) = 'ﬁJ at C2lexp{_EJ dat (w2 Wl)} . (IITh.2)
+ t
1 1
Hence, from (IIIb.la)
1% ift i
= e — —_— T - - 1
K?l[q(t)] ’HJ dt c21exp{,ﬁj dt (w2 Wl)}exp{ _H[ dat WZ}

t Y =

i if* ift2
.= —%Jt dt Czlexp{-%[t dt’Wl(t') -%Jt dt‘Wz(t')} r

1 1 (IIIb.3)

which can conveniently be interpreted as an integral over t of
transition amplitudes for transitions from W, to W, at particular
times t. One now proceeds to the classical iimit by attempting
to do the integral using the stationary phase approximation,
i.e., one requires that

d € t2 -
—~U ar'wo (t') + J ac'w (t‘)] =0
dt 1 2

tl t

or Wl(t) - W2(t) =0 . -(IIIb.4)

The solution of (ITIIb.4) is in general complex, which means in
(ITIb.3) one needs to evaluate the nonadiabatic coupling Cj, for
a complex time. In order to avoid this, one applies the station-
ary phase approximation to the next order of accuracy by looking
for a time at which the phase of the integrand in (IITb.3) is
least rapidly varving, i.e.,

-

d2 T t2
—-EU dt'Wl(t’) +J dt'Wz(t')] =0
dt t t
1
ox W (8) - Wo(t)) = - <(AW) = O © 7 (111b.5)
ET 2 ac :
where AW =W_. - W, .

2 1



Expanding the phase in a Taylor series about ty, a solution to
(IITb.5), one has

t £y 1 3
J at'w. (t') + J dt'Wz(t') =T - (t“tO)AWO + 0 - E1t_t0)

1
t) t
X (AW)S + ... {(IITh.8)
where
(o t,
T = J dt Wl(t) + J dat Wz(t) .
& %

AW, = AW(t=tO) .

- 2
(4 g = @ (aw/ats .

Q
(IIIb.3) becomes
: P B e .
. o L Zit X -
K2l[q(t)] = ‘ﬁ-(c2l)t0 exp[_ﬁ ]L;?t exp[ﬁ AWO(t to)
i e 13
+ g%‘(AW)O(t to) ] (IXIb.7)

where the integration limits have been extended to i=. The
integral in (IIIb.5) is recognized as the integral representa-
tion of the Airy function, and invoking its asymptotic form

gives
1/2
Kyplael= - <¢1|_aa1? %57 — 1/j
0 (2AW ./ (AW} ™) -l
0 0
2 Ao (8%, v i[%o 1%
X exp|- 3 “%—[W] —_%'J dt Wl (&) —__—H*J dt WZ(t) . (II1b.8)
0 tl tO

This approximate sclution is recognized to resemble the exact
Stuckelberg solution (WKB phase integral soluticn) for (II.9)
most closely if the pre—exponential factor is set equal to 1.
We thus write

t

K [q(t)] = e Yex i todt W) - = 2at w_(t)| (IT1b.9)
21 B e -|g . 1 ), 2 :
1 0



, W, (20W, 1/2
where § = ‘é‘ '_ﬁ—[w] ' (FTXTh.10)
0

but whose general form is as yet undetermined. This general form
can be obtained as follows. We already remarked that (IIIb.4)
may not have real solutions, but it will always have complex
solutions. For the avoided curve crossing case where tg is the
solution to (IIIb.5), we may expand AW about to to obtain an ap-
proximate solution for (IXITb.4):

-~ L_ 2 "
AW{t) = AWO + 0 + 2(t to) (AW)O . (ITIb.11)

Hence t,, a solution to AW=0, is given to the above approxima-
td b
ion by 1/2

ZAWb
t, = t0 + :L[(AT)E;J ; (IITb.12)

and it is immediately seen that t} is also a solution. One then
obtains

Ty £y 1 2
de AW(L) dt[AWO + E(t'to) (Aw)ai

¥ t*
2AW 1/2
3 2w —
3 o {aw
0
t'k
= 2J dt AW(t) . (IITb.13)
tO -
Comparing with (IXIb.10) we see that
e,
i
g = -_%{ dt Aw(t) , (IIIb.14)
t
0
which is the sought for general form, independent of the approx-
imation introduced for AW{(t). (IIIb.9) can then be written as
, rt t t
if 0 i{ % il 0
K 81 = - = - = - =
aq E(E)] expl:_ﬁL dt W, (¢) _ﬁ.L dt Wl(t) ’HL dt Wz(t)
1 0 *
t
il 2
—_‘EL dt W2 (t):l

0



. rt .t
*
- exp[}_%{ dat Wy [a(t)) -_%ﬂ 23t W2[q(t)£] . {(IIIbL.15)
t

tl ‘ "

_This last equation gives the general semiclassical solution for
the electronic propagator.

With (IXTb.15), the propagator for nonadiabatic transi-
tion (IIIa.6) becomes

-iH(tz—tl)
<3,q2]exp[—?——] ll,ql>

q, -  (t ot ot
- J ’nq expL%J %ar = pi@e)? —,—;—J at Wy (q(e) -%I %at W, (q(0).
! 2! Y T

{IITbh.16)

It is instructive to compare this equation with the expression
for the electronically adiabatic propagator

-iH({t -t.) q .t
<qzlexp[—~—_ﬁ—2—£]]ql> - J “vq expt%f fat 2 ugen?
ql =
i(%2 :
-5 dt v(g(t))] ., (ITIb.17)
e
1

where V(g) is the single potential surface for the adiabatic
motion. (IIIb.l16) has the following physical interpretation.
Instead of moving on the single surface Vig), the nuclei make

the nonadiabatic transition at the complex time t, from one
adiabatic surface to another (W;+Wp). Since t, is complex, non-
adiabatic transitions are in general classically forbidden pro-
cesses, and the interesting conclusion emerges that classically
forbidden processes can be described by the analytic continuation
of classical mechanics into the complex time (or ccordinate)
domain.

As mentioned earlier, the nuclear path integral in
{ITIb.16) (which, like its electronic counterpart, 1s never
evaluated in practice) is carried out again by the stationary
phase approximation to give:

N -1/2 3
—iH(t_-t_)y 8 1¢2’l(q2,ql)

2 1 oy N 2
<2q2|exp[ = Jllql> = | {(~271H) [apl)ql exp — .

(£I11b.18}



where N is the number of nuclear dégrees of freedom, Py is the
momentum conjugate to q;r and ¢2 1 is the action integral
!

t
2.1 .2 (& £,
] {g.,q,) = dt = ud(t)” - dt W, - dt W, . (IIIb.19)
2,121 2 i 2
t, £ t,

This integral is evaluated along the classical trajectory (ob-
tained by integrating Hamilton's equations) which is determined
by double—~ended boundary conditions gy and ¢, and which change
from potential Wy to Wo at complex time t..

Znalogous to {Id.33), the expression for the nonadiatic
transition S-matrix element can be written

4 (on -1/2
S, 4. = i’:(—21ri'H)N 1[—5—‘?]11]
2’7" ST

x exp[:—,%J ac{p (£)P (L) + Q(t)ﬁ(t)}:l (IIIb.20)

—C0

where p,P are the nuclear translational and g,n the nuclear in-
ternal degrees of freedom. (Note that in previous eguations of
this section g stands for the totality of nuclear degrses of
freedom). In the evaluation of the integral in (IXIb.20), the
complex trajectories will yield exponential damping factors
characteristic of classically forbidden processes.

Finally we point out that in the case of one-dimensional
nuclear motion {(atom—atom collisions), (IITh.20) reduces to the
Stuckelberg solution given by (IIc¢.9) to (IIc.1l3), with £ = n/4.

IIIc. Examples of Nonadiabatic Transition Probabilitlies in the
Miller-George Theory

We will congider the Landau-Zener and the Demkov models
in this subsection. The Landau~Zener model is given,in the
diabatic representation by (IIa.l) and (IIZa.2). In the adiabatic
representation the potential surfaces W; are given by (iIa.4),
(here Wy stands for U%.). To calculate the local transition
probability =28 [see (IIIb.7)1, we need § as given by (IITbh.1l2).
This can be changed into an integral over R, the translational
nuclear coordinate,- if we assume the straight-line trajectory
(ITa.3). We have, for a 'once passage' through the ncnadiabatic
coupling region:

P =

2
2,1 |S2+ll = exp(-24) : (I1Ic.1)
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i [T«
where . é - ?—HHI at }AW(t)

%

i
2ﬁvb

R
*

J dr AW(R) , . (ITIc.2)

RE

and Ry = R(t=t,) is the complex coordinate at which AW=0. From
(Ixa.4),

1/2

AW 1 . (ITXc.3)

Il

[{AF)Z(R—RO)Z + 4a°

Il

R+ 21 a/(AE) . (IIZc.4)

Hence Ry 0

To do the integral in (IIIc.2) it is convenient to change the
variable of integration to x, where

R = RD + 21 x a/(AF) .

{(ITIc.2) then bescomes

2 1
s 23 J dx/1-x° . (I1Ic.5)

=-ﬁ%OAF

Elementary integration yields

2
Ta.
8 = v AF (1Ic.6)
0]
-2ﬁa2
Finally P2‘l = exp{-24§) = exp[_ﬁv AF] {(I1Ic.7)
. I
0

which i& the same result as obtained in (IIa.8).
We now consider the Demkov model given in the adiabatic
representation by {(IIb.3), which gives

mi = (8% + anlexp(-22R) 12 . (IITc.8)
The solution to AW=0 gives a sequence a complex roots
1 A im
R, = - Kﬂn(aii +‘§I(2n+l)' n=0,1,2,4++.
(I11c.9)

To do the integral (fIIc.2), we use the principle root, i.e.,
the one which is closest to the real axis and leads to the
largest P2 1 We pick

I



1 A im
R, = - X’ln(azi + == . (ITIc.10)

Effecting the change of wvariables R+*x, where

__Ll, A im
R = N Qn(ZA) + Yl (IIIc.1ll)
the R—integral in (ITIZIc.2) hecomes
TA 1 -imx 1/2
§ = - J dx (1+e ) . (I¥Ic.12)
2XHv
0 -1
This gives
A
§ =
ZkHvb
and P21 = exp{-nA/(lhvb)]_ (II3c.13)

For-large 8, this is essentially the same result as obtained in
(I1b.7).

IITd. Analytic Structure of Adiabatic Potential Surfaces

The most appealing nature of the Miller<George theory
lies in its description of nonadiabatic transitions: a non-
adiabatic transition can be described by a classical trajectory
moving continuously from one adiabatic surface to another, which
beccme degenerate at some complex time (coordinate) point. In
fact the two surfaces can be pictured as two pieces of the same
surface, so that what appears to be a transition in real time
(or coordinate) space is really no transition at all when the
trajectory is allowed to be complex. The dynamical information
embedded in the nonadiabatic couplings, which are not required
in the present formalism at all, is completely contained in the
analytic structure of the adiabatic potential surface, i.e.,
when W; is regarded as a complex function of either R or t. This:
is indeed an intellectually pieasing and physically cogent way to
look at nonadiabatic transitions.

The theory of analytic functions provides the natural
framework for the description of the adiabatic potential surfaces.
For the two state case

a.d
o oo o L _g
1,2 3 2022

d ,2 d.2 :
ll) + 4{U12) 1. {(1171d4.1)



The surfaces W are the roots of the quadratic equation‘

1,2

(0S,-w) (U5, - (0% =0, (ITTd.2)
and as such are the two branches of the same analvtic function
W(R), with the branch point at R, where
d 4.2 d 2
AW(R,) = [(U22—Ull) + 4,1 =0 (IIId.3)
Wy and W, are also known as the two Riemann sheets of the same
analytic function W(R), which is double-valued. W can, of
course, also be considered as a function of t. Let the complex
variable =z be either R or t. Starting from an arbitrary point
2g and following any contour which winds around z_ (the branch
point) once and ends up back on zy, or traverses a branch cut
(emanating from zg) once, one would go from one Riemann sheet
of W to the next. Any contour, however, which does not encircle
any branch point or which does not traverse any branch cut will
force W(z) to stay on the sheet it begins with. It is at the
point where the contour traverses the branch cut that Wy goes
over to W, or vice versa. Consider the first equality in
(IITb.15). The sum of integrals can be written as one complex
integral

J dé Wit} , (ITId.4)
C(tl+t2)

where the contour, from t, to t2, is represented in Figure 2
(solid line}. Because of the analytic nature of W, the contour
does not have to.go exactly through t,. In fact, any distorted
contour from t; to ty traversing the cut at some point will
suffice (such as the dashed contour in Figure 2).

In much the same way we can discuss nonadiabatic
transitions in multistate problems. Analogous to (I111d4.2) the
N adiabatic surfaces of an N-gstate problem are obtained by the
solution of the secular egquation .

det gd -Wl| =0. {I11d.5)



The NxN determinant leads to an Nth-order polynomial in W. The
N different roots of this polynomial are essentially the N dif-
ferent branches, or Reimann sheets, of the Nth root analytic
function W. As in the 2-state case, trajectories that make
transitions from one branch to another can be really considered
to be propagated on a single surface, although they would bhe
required to go around appropriate branch points.

For a transition from state o to B in an N-state prob-
lem, the nuclear path integral can in general be written [com-
pare with (IIIb.18) and (IIIb.19)]:

-iH{t_~t.) aq

. 2
<Bq2|exp[-"_—ﬁ2 1_J[aql> = [}-2ﬂxﬁ)M[ap1]q:1
1

* QXP%J at [%_‘ pEEn? - W)} (11Id.6)

=1/2

CBa(tl+t2)
t-plane
W W
- - -‘\\\
/)7 i\
A \
rd A
/"/ \\
J e \
/ wol
!
é } 1 > d -
f) ) i,

Fig. 2. Contour of integration (—) for the electronic propagator

in (IIIb.15). In general tp~Re(t,). The displacement is accentu-
ated here for clarity. The dotted line represents the branch cut.

The distorted contour (dashed) is also acceptable for the calcula-

tion of the electronic propagator. The W's represent the sheets
used for various parts of the contours.



where M is the number of nuclear degress of freedom. In (IIId.6)
W is the N-valued analytic adiabatic surface. Cgg is a contour
in the complex time plane connecting t; and t; and winds around
the appropriate branch points of W in such a way that the tra-
jectory beginning on Reimann sheet o (the ¢ electronic state) at
t; finishes up on Reimann sheet B (the B electronic state) at t3.
g{t) is the classical trajectory obtained by integrating Hawmil-
ton's eguations along the complex contour C8a(tl+t2).

Before leaving our discussion of the analytic structure
of adiabatic potential surfaces, we would like to mention a
practical problem connected with the calculation of é in (IIIb.12).
In most cases other than the Landau-Zener meodel of straighi-line
potentials (for instance, the Demkov model}, there will be more
than one branch point for W(t). For large &, that is, small
transition probability, it will be usually sufficient to take the
branch point closest to the real axis and compute § as though
there were only one branch point (as we did for the Demkov model).
For small &8, however, this procedure may not always be sufficient.
For this case, the formula for the local transition probability

p = exp(-280) .

where 60 is computed using the branch point closest to the real
axis, may-require some correction.

The correction procedure, usually emploved is to replace
exp (-285) by an expression which is the exact solution of a two-
state exponential model due to Nikitin. The model is defined by

Ud = B exp(-BR} + e 2 cosfexp (-BR) (Ixid.7a)
11 2 2
Ud = B exp{(-BR) - éE--:- é—coseexp(~8R) (ITId4.7b)
22 2 2
a _.d4 _ _A _, _
U12 = U21 = 2 sinfexp (-BR) (ITId.7¢)

where Ag,8,A,B and 6 are all constants. Ud can be diagonalized
to obtain the adiabatic potentials

- 1/2
W1,2 = B exp(—~BR) + %f{l-zcoseexp(-B(Rer)) + exP(_2B(R-RP})] /

(1114.8)
where RP is the 'center' of the nonadiabaticity region defiqed by
eXp(—BRp) = Ag . (IT1d.9)
In this model Ae is the asymprotic splitting of Wy and W,, and

1/B8 is the characteristic length of the nonadiabatic coupling.
If the matrix that diagonalizes gd is written as in (Ib.25),



{ib.26) implies that

-1{-A sinfexp (-8R}
20 = . .
@ = tan [Ae—A cosGexp(*BR)] (I11d.10)
Hence @ >0 at R+ o ; (ITId.11)
and 2o =+ 0 at R<<RP . (I1xd.12)

Assuming a straight line-trajectory AR=vyt, the exact solution
of (II.9) or (IIb.5) gives the Nikitin result for p, which in-
corporates the effect of the multiplicity of branch points.:
inh[(n/4)3 (1+cose) ]_]
sinh(76,/2) 1
(ITIId4.13)

S
P = expl- %-GO(l—cose)]{:

This is the correction formula (sometimes known as the Nikitin
formula) used in most applications with exponential-like diabatic
curves. 60 is calculated by using (I1Ib.12), with t, being the
branch point of W(t) closest to the real axis. 6 is obtained
from {(IIId.1l2).

IV. APPLICATIONS QOF THE SEMICLASSICAL S-MATRIX

We will discuss two classes of problems, electronically
adiabatic and electronically nonadiabatic problems. The former
makes use of the formalism presented in Section Id, and provides
the perspective and motivation for its generalization to the
latter, which relies on Section IIT.

IVa. Electronically Adiabatic Collisions

The example we will discuss is vibrational excitation.
in collinear A+BC, both classically allowed and classically for-
bidden. Since electronic degrees of freedom are not explicitly
considered, all dynamics is treated classically. The system has
only two degrees of freedom, one ‘translational R, and one
vibrational ({(internal) r. The completely classical Hamiltonian
can be written as

P2 p2
H(P,R,p,xr} = EE + 55-+ viz) + V{(R,r) ., (Iva.l)
where p and m are the reduced masses for the two degrees of
freedom, v(r) is the vibrational potential for BC, and V(R,r)
is the interaction potential coupling translation and vibration.

Following (Id.12) we have to assign (n,q). the action-

angle variables suitable for this problem. The action variable



n is the classical counterpart of the vibrational guantum number
for the free BC. The WKB guantum conditions require that

1/2(r
e+ 37 = &5 J arle - vy 1Y 2 (Iva.2)
2 2
il r
<
P2
wherea g = 5£-+ v{r) (Iva.3)

and r., r, are the classical turning points. The angle variable
q is given by
2,.1/2

r
= Lzﬂfﬁ ) J dz'[g - V(r')]l/2 ' (Iva.4)
n'(g) -
<

where n(e) is the function defined by (IVa.2)., The Hamiltonian
(Id.l2) becomes .
2

% + e{n) + V{r(n,q) R (IVa.5)

H(P:anrq)

H +V
0

where £(n) is the inverse function of n{e). For a simple har-

monic oscillator

vi{r) = %-mmz(r - r0)2 . (IVa.86)

Using (IVa.2) and (IVa.4), one obtains

g(n) = (n + %)“ﬁm (IVa.7)
1/2
_ [€5:CE0 A R
and ) r(n,gq) = ro + [ - ] sin gq . (IVa.8)

For the general case one can expand the potential:

vi{r) = %-mm2(r-r0)2[l + al(r-ro)/ro + az(r—ro)%&bz F oieean 1,

(IVa.9)

and £(n}) and r(n,g) can then be constructed as powers series in
A= (2mmr02)'l. For most diatomic A<<l and it is usually suf-
ficient to retain terms up to first or second order in A.

For a transition between the vibrational states nj; and
ny, the S-matrix, following (Id.33), is given by



an2 -1/2
Sa o (B) = i (-27iH) [—::—J 1 expli = (n,/n)] ,
n2,nl Bql ny gl 271
(IVa.l0)
where @(nz,nl) = - Jdt{R(t)ﬁ(t) - g(t)ﬁ(t)] ’ (Iva.ll)

-0

and g, is the one-dimensional analog of ﬁi in (Id.34). The
classical trajectories g(t) and R(t) are determined by the in-
tegration of Hamilton's eguations

4 = 39H(P,R,n,q)/3n , (Iva.l2a)
& = 3H(®,R,n,q) 5P , (IVa.12b)
h = -3H(P,R,n,q)/3d ,
P = - 3H(P,R,n,q)/dR .

We must now specify the boundary conditions for this problem.
First E, the total energy, is an input parameter, as are nj; and
ny, the initial and final vibrational gquantum numbers, both
required to be integers. The boundary conditions are then

nl = gpecified integer (Iva.l3a)

n, = specified integer (Iva.l13b)
1

P, = -{2u(E-cln)] /2 (Iva.13c)

172 (Iva.13d)

P, = +{2u[E—s{n2)}
Note that once nj and np are fixed, Py and P will also be fixed
by (IVa.l3c) and (IVa.l1l3d). One thus starts a trajectory with
the initial conditiomns

n, = specified integer {IVa.lda}
Rl = asymptotically large (Iva.l4db)
P, = ~{2ulE-c(n)) 117 (Tva.14c)
=g, + &'(n) LN {Iva.l4d)
LSS Y .

[which is actually the same set of equations as (Id.34)]. 1In
(Iva.l4d) e'(n3)uR;/P; is fixed but g; is as yet unspecified.
The idea is to choose representative values of g§j in the range
O0sgqs27m, and integrate Hamilton's equations (IVa.l2) forward in



time until Ry[R(t=t2)] is again asymptotically large and
Pz[(?ﬁg)t=t 1 =+ 0; thus generating many trajectories with many
final value§ for n, (which may not be integral). In this way
a functional relationship n;(Qj,n;) is established. One then
solves the equation

nz(ql,nl) =n, (Iva.l1l5)

for gy, where njp on the right is the specified final vibrational
guantum npumber of the problem. Associated with each root of
(Iva.l5) for §; is an action integral ¢ and a pre-exponential
derivative (an2/a§i)n1; and the S-matrix Sn2nl is a sum of terms
like (IVa.l0), one fo¥ each root ..

Since for any solution T@; to (IVa.l5) g.+2T is also a
solution, there must e an even number of xoots to (IVa.l5).
Moreover, since n,y (4} is periodic with period 27, any two solu-
tions gp and Tyy within an interval of 27 must be such that
(3n2/8q1)3- and (BnZ/BQiLqIL have opposite signs. We consider
the case where there are two solutions gr and gyy in the inter-
val O$ql$2w. f.et the two action integrals (IVa.ll) associated
with these two solutions be ®; and %y respectively. Then the
S-matrix is given by .

-1/2 -1/2

s, o = [-2mis|n) (gl

exp{%-@l) + [+2ﬁiﬁ|né(qII)|]
271 ,

x exp(%-@II) R (IVa.l18)

where the i outside the pre-exponential factor in (IVa.l0) has
been suppressed because it does not affect the value of |Sn
Keeping proper track of the signs and the i's in (IVa.l6),
it can be rewritten as

1/2

|2
pail

i 1/2 iw i
= —t =@
T (DI) * Pix exp ( 4 +‘ﬁ TII
1 (Iva.17)
where . : PI = [2wﬁ|né(q1)|} ’ (IVa.18)
. -1
= 127fi[n} (q ) |1 (Iva.19)

s =p )

n.n I

exp (-:%T- ‘-i-
271

Prz

are the pre-exponential probability factors. (IVa.l7) clearly
reveals the quantum superposition sffect inherent in the semi-
classical formulation. The transition pro ability is

I2 1/2

- in(e__ -} .
P * Pyp ¥ 2(pypp) 7 sin(@m0.)

{(IVa.20}

It is worthwhile to note here that the oscillatory result in
{IVva.20) is also characteristic of the nonadiabatic Stuckelberg



type transitions discussed in the next subsection (Stuckelberg
oscillations), both being the result of guantum superposition.
The completely classical result, which adds probabilities in-

stead of prcobability amplitudes, is

CL
Pnznl = P + Prr - (Iva.2l)

So far we have only described the situwation when there
are real solutions to {(IVa.l5), i.e., when the transition is
classically allowed. However, transitions may be classically
forbidden in the sense that no real solutions exist for (Iva.l5)
even though the state n, is energetically accessible [E>e(nj)].
In such cases one is forced to consider the complex roots of
{IVa.l5). To see this explicitly one may expand nz(ql) about
Gmaxs the real value of g; that would lead to the maxaimum real .
value of n,, which we denote nzmax:

— max i - - = 2
= = - + o .
n, &) =ny T S (@) @, (IVa.23)
Suppose the designated n, is larger than ny,™%, so that there
are no real soluticns to (IVa.l5). Complex solutions, however,
exist, and are approximately given by
max, |1/2

_ 2 {n2—n2 )

4 '

q; = qmax =i T;gia;;;TT—' . (IVa.24)

The set of initial conditions (IVa.l4), with complex qi, is of
course still good for the integration of Hamilton's equations
(Iva.12). all that is physically required is that nj, P;, Ri,
n, Ry, Py are all real at asymptotic regions. 95 iz pot physi-
cally observable and can acquire any real or complex value. That
the ipitial variables n,,P;,Rq are all real 1is specified by the
problem. n, is required to be real, which automatically implies
that P, is also real [(IVa.l3d)l. R,, however, will in general
be complex for large real t if @ is complex, since the
Hamiltonian (IVa.5) couples all the wvariables during the propa-
gation of a trajectory.

Hence we seem to be running into a dilemma with the
possible complexity of Ry. But the difficulty only arises if
we reguire t, to be real. If tp can be made complex in an ap-
propriate way, R2 can be made real. Actually the constraint of
real t; need not be applied on any physical grounds: since in
this formulation, E has been made exact, and by the uncertainty
principle its conjugate variable, t, can be anyvthing, and thus
possibly complex.

Suppose at &n asymptotic real time Ez, n{t)=n, and
P(t)=P,. Propagating further in time will not change eithexr
ni{t) or P(t). However, Hamilten's equations imply that



P
= R(L 2 F
R(¥) = R(t)) + —=(c-E,) . (IVa.25)

Now R(Ez) may in general be complex, but R(t2) can be made real
if the final time ts is chosen to be
£, =t, - i 2= ImR(E,) . (Iva.26)

2 P
2 2

This explicitly shows that in order to have final dynamical
variables all real, the final time t5; may have to be complex
when classically forbidden processes are considered.

If gy is a complex root of (IVa.l5), it is seen from
(Iva.24) that the other root is gf. Hence, as in the classically
allowed case, it appears that there will also be two terms in the
S-matrix. Now both @I and @57 will be complex; but it can be
shown that if g; is the root leading to an exponentially damping
term exp{-Imd.], the other root will lead to an exponentaally
growing term éxp[+Im@I]. Thus in the S-matrix, only one term
should be retained, the one leading to, damping: ~

s = [-27ifin! (g )]-1/2eXP(i@ /1) (IVa.27)
n,,n 271 I
27
and the transition probability is
-1 'lem@II\
= ] —_—_—
Pn2,n1 [Znﬁlnz(ql)l] exp[ = J (IVa.28)

which is reminiscent of the WKB result for tunnelling in one-
dimensional systems.

{(IVva.l7) and (IVa.27) are called 'primitive' semiclassi-
cal results because they only work well for ng<nyM@% and ny>n,Max
independently, i.e., the separate solutions cannot be connected
smoocthly as no traverses noM@X. In particular, when njp
approaches nsM28X arbitrarily closely, both (IVa.1l7) and (IVa.27)
break down since ]né(qI’II)]‘l+m. This situation recalls the
classical rainbow effect. To remedy it, one has to introduce
uniform semiclassical formulas which, in addition to effecting
a smooth connection between ny<n M™% and n2>n2max, will also
approach the 'primitive' semiclasSsical results in regions where
they work well.

IVb. Electronically Nonadiabatic Collisions
We consider here the collinear A+BC nonreactive colli-

sion process again, but with electronic transitions. A typical
process of this type can be written



2 2
(P 2) + Hz(nl) + X( P3 2) + Hz(nz) {(IVb.1)

1/ /

where n) (ny) is the initial (final) vibrational quantum number
of Hy, and the halogen X undergoes a spin-orbit electronic
transition. The total Hamiltonian for this system can be written

H=-3-—=—-2--—=4+48 (Ivb.2)

where R is the translational X-H, coordinate and r is the vibra-
tional H, cooxdinate. u and n are the reduced masses pertaining
to R and r respectively.

In the previous subsection, both R and r are treated
classically; and the nuclei are considered to be moving on a
single electronic peotential surface v(r)+V(R,r) [see (IVa.l}].
The transformation (p,z)+{(n,q) is then made, with the action-
angle variables (n,q) still treated classically. Since an
electronic transition is involved here, we have to consider at
least two electronic surfaces (we will limit ourselves to ex-
actly two). There are two equivalent ways to proceed using the
Miller~George theory. One is using the electronic representa-
tion, i.e., finding an electronic basis set ¢(R,r,§) (where ¥
stands for electronic coordinates) which will generate the po-
tent%al surfaces and couplings Ugj = <¢ﬂHell¢j>§_(the subscrapt
¥ means that brackets denote integration over electronic coordi-
nates only). We can assume that the starting basis set {¢i} will
in general be diabatic. gd can then be diagonalized to yield
the adiabatic surfaces Wi reguired for the Miller-Gecrge theoxry.
In this approach the hypersurface Wi {(R,r) is two-dimensional and
one is required to know the analytic structure of a function of
two complex variables, very often not an easy task. The second
way is to use what is known as the vibronic representation. This
approach makes use of (to begin with) a diabatic vibronic basis
set

., T ¢i(er:R)¢n{r) . (Ivb. 3)

where Y, (r) is a vibrational wave function of BC aindependent of
the electronic configuration of A. This set generates diabatic
surfaces and couplings given by
2 2
d B 93
. . =<0, |- g= ==+ L > Ivb.4
Uln,jm an 2n ar2 Hel|¢3m z,r ' ( ).

which can again be diagonalized to produce adiabatic surfaces as
required by the Miller-George treatment. The advantage here is
that the adiabatic 'surfaces' W(R) here will only be functions
of a single variable R, and their analytic structure is much



easier to handle than those of Wi (R,r}. Hence the classical
nuclear problem is reduced to a one-dimensional one,' and the
result of the application of the Miller-George theory (IIIb.l18)
reduces to the Stuckelberg seolution given by (IIc.?2) to (IIc.l4).
In this subsection we will use the vibronic representation.

The DIM formalism applied to the collinear model
{(IVb.1l) vields a two-by-two form for the electronic Hamiltonian:

4d _ . .
Uli(R,r) = v(r) + D + Ai(R—r/2)+ Ai(R+r/2) + iA/3, i=1,2
(IVb.5a)

d d
Ul, = Uy = /2 A/3 (IVb.5b)
where D is the depth of the Morse well v(r), the Aj's are the
anti-Morse functions, and A is the spin-orbit coupling of X.

Ud can be diagonalized to yield the adiabatic electronic sur-
faces W;(R,r) with the accompanying adiabatic basis set {62}
such that

a - a
Helq»i(r,R,Sc‘) = wi(R,r)c@i(r,R,?a . (IVb.6)

We prefer to use the representation [compare with (IVb.3)]

a
o, = ¢ xRy (0, (IVb.7)
where the vibrational wavefunctions wn(r) are Morse functions
satisfying-the equation

12 52

{- —2?:5 + v(r) }wn(r) = E:ntpn(r) . {IVb.8)

where € is the asymptotic wibrational energy for the n vibra-
tional state of Hy. Using (IVb 4) and first integrating over
the electronic coordinates x, we can write

a 3 A2 32
in,jm Gij<wnl_ 2n 4.2 ¥ Wi(R’r)|¢m>r
2 2
0 -h
LN s - 2 =
2n <1pnlgij(r’R)Iq’m x n %in R) rlwm r '’
(IVh.9)
where

52
s (ER) = <cp (X, R)l ¢ (X,r,R) >~ (IVb.10)
dr



a o a ..
r, = <@, r . 2 rLr . -
X; 4 E/R) = <0, & R |3 45 Gr R > (IVb.11)

These cdupling matrix elements are similar to the nonadizbatic
couplings Tij and ng [{(EB.11) and (IB.12)] discussed in Sec-—
tion Ib.

We can also show that

Xij = "xji (IVb.l2a)

Ly = kzlxikxkj + axij/ar . (IVb.12b)

Tge couplings y and £ can furthermore be expressed in terms of
U-:

" ; (BU?j/Br)
¥oo = JD..T . —=2——, (IVb.13)
12 13 1i" 23 W2 Wl

where d

Uia
F3 =T = ot 2 (R 52 (IVb- 14a)

19 12

a

r._ =T = Ulz (IVb.14b)
12 21 ad . 2.1/2 -5

E(W,-u,y o2 1) +(U 5) ] -

The 'diabatic' vibronic potential surfaces can then be written,
from (IVb.9):
2 2 2
d i g i1
. s =< - ==+ W, P
Uin,in® vl an 2" i X12

|[f > . ‘ivi)_lsa’
m xr

2 X
a 5 2, X
Uln,2m(R) T o2n <lpnllez dr T [¢m>r

. (IVb.15b)

For a particular vibrational transition n®m, we have a
one-dimensional two-state problem, i.e., we just have to deal
with the 2x2 matrix (IVb.15) with fixed n and wm. This matrax
can be diagonalized to yield the final adiabatic vibronic sur-—
faces W3 (R) and the S-matrix is given directly in terms of the
Stuckelberg solution [(ITc.9) to (IIc.l4)]. Figure 3 illustrates
the diabatic and adiabatic vibronic curves and the coupling Xq»
for the BrH, system. The potential curves correlate asymptoti-
cally to the states 11 and 20.
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Fig. 3. The diabatic wvibrenic curves (the solid lines labelled
id and 2d) are split by the wvibrational nonadiabatic coupling

X12 (see insert) into the adiabatic vibronic curves, labelled la
and 2a, which are represented by the dotted lines. Note that the
labelling is reversed inside the avoided crossing.

As mentioned before, the formula p=exp(-2§) very often
does not yield good results for P=]S[2 when compared with quan-
tum mechanical calculations; and the Nikitin correction formula
(IIId.13) is usually employed. There is, however, no cut and
fast rule regarding the applicability of the Nikitin formula, a1t
being exact only for exponential diabatic curves and couplings.
In the present example, this formula has been applied to Morse—
like potentials (IVb.5), and found to help appreciably in bring-
ing the results into good agreement with quantum calculations. i

Another slightly disconcerting factor in the application
of the semiclassical approach is the difficulty with the phase
factor £ in (IZc.l14). The value #/4 is mot often guoted and
used in the literature. In the present applications, since the
Nikitin correction formula is sued, the form as given by (IIc.l1l4)



would be rendered less rigorous, and the justification for its
use in conjunction with the Nikitin formula requires more work.
{(In any case the use of this form is not very frecuently reported
in the literature). In our work we have varied & between -w/4
and w/4 to compare with quantum mechanical results. Reasonable
agreements are achieved at either extreme, but it is found that
£~1/10 would shift the results into phase most closely with the
quanitum results. 5
In Pigures 4 and 5 we present some results for |S
(written nj-mp) for X=Br. In each case the semiclassical
results are compared with exact quantum mechanical coupled-chan-~
nel calculations. The reasonable agreement is apparent, point-
ing to the reliability of semiclassical calculations. Similar
results are obtained for the Br-Hy 2;-1p and F-H, 07-0, transi-
tions. It should be noted here that the distinct oscillatory be-
havior may be due entirely to the artifact of the collinear model.
In three-dimensional calculations where there is strong coupling
between translation and the various internal degrees of freedom,
and especially when averages over a large number cf quantum
states are involved, the interference effects may be gquenched.
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Fig. 4. Transition probability versus energy curves for the
01-02 transition in the Br + Hg collision system. The threshold
for this transition is 0.027 hartree. The solid curve represents
quantum results, and the dashed and dotted curves are the semi-
classical results obtained with the phase factor £=0 and +m/4,
respectively.
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Fig. 5. Transition probabilaty for the 17-0; transition in the
Br + H, collision system. The threshold for this transition is
0.029 hartree. The solid curve represents quantum results, and

the -dashed curve is the semiclassical result obtained using the
phase factor &=-m/4.



V. THEORY OF INTERACTION WITH FIELDS - LASER-ENHANCED COLLISIONS

The widespread interest in lasers has generated a quest
for a deeper understanding of the effects of intense radiation
on molecular collision processes. In this class of phenomena,
as distinct from its atomic counterparts, dynamic considerations
play a major role, and field-induced molecular events do not have
to satisfy strict resonance requirements. Thus the radiation
field may be expected to have very prominent effects on the
collision dynamics. In particular, such molecular processes as
collisional excitation, unimolecular dissociation, radiative
collisions, and Penning and associative ionization are expected
to ke strongly influenced by an intense laser f£ield. In this
section we will generalize the Miller-George theoxy to include
radiation interaction.

As soon as a field is put in, many problems suggest
themselves. If we are dealing with a laser, the field may
approach being monochromatic but always not exactly so. Even a
single mode laser has a spectral linewidth owing to broadening
effects such as Doppler, ccllision and. radiative lifetime
broadening. How many modes of the laser field must one include
in the interaction Hamiltonian? This immediately raises the
question of what the best representation is for the description
of the photon field in laser-molecule interactions. There are a
number of candidates: the Fock (photon-number} state representa-
tion, the coherent representation, or even the classical field
approach, i.e., regarding the field simply as a time-dependent
driving force on the system. What part does the polarizataion
of the field play in lager—-influenced molecular collisions?
Recently there is even some controversy regarding the fundamen-
tal validity of using the 'P-A' vis a vis the '#-E' interaction
under the dipole approximation. These and other questions have
not as yet been answered definitively. In this section we will
restrict ourselves to the simplest possible (although not en-—
tirely realistic) situation of a monochromatic field interacting
with a two-electronic state molecular system. The dipole approx-—
imation is assumed, and the photon-number representation is used,
as this lends itself most easily to physical interpretation.
Alse, complications deriving from the intrinsic angular momentum
of the photon will not be considered. Even under these limita-
tions, the radiation field can be demonstrated to have signifi-
cant effects on the collision system.

Va. The Electronic (Vibronig)-Field Representation

The field-free collision system can be described by the
electronically adiabatic potential surfaces Wi(ﬁ) which satisfy:

Hop¢y R = W, (R¢; (®,%) (Va.l)



where {¢i} is the adiabatic basis set, and ﬁ'(§} are the nuclear
(electronic) coordinates. One can also work with the vibronic
surfaces Wi(R) as discussed in Section IVb, where R represents
the translaticonal degree of freedom only. Our discussion in
what follows can be phrased eguivalently in the electronic or
vibronic representations; for the sake of definiteness, we will
chocse the former. The Hamiltonian due to the presence of the
£field is given by

H, =-fed’a + T®,®) -'ﬁé (w) (AT+8) (Va.2)
= rwd’a + H, .
1

The first term represents the free-field Hamiltonian and the
.second term, Hys the interaction Hamiltonian under the dipole
approximation. It is understood that the photon creation and
annihilation operators, 47 and & respectively, are those for the
single frequency w; and

By () = (2mtw/v) 28 (Va.3)
where V 1is the quantization volume of the collision system and
& is the unit polarization vector of the external field.

A natural basis set to be used for the matter-field
system consists of states of the form ¢i|n>, where In> is the Fock
state with n photons (of frequency w), since they describe the
asymptotic (Re®) configuration of the matter-field system. For
instance one may visualize that before collision, the molecular
system is in the ith electronic state, while there are n; photons
floating around in the external field (in the quantization volume
V). This state of affairs is described by the asymptotic state
$4|n;>. After the collision, again at asymptotic regions, the
molecular system may end up in a different elecironic state (say
the j} whereas the number of photons in the external £ield may
be changed to ng. The final asymptotic state will then be de-
scribed by ¢j]nf>, and the S-matrix element corresponding to this
process may be written S. .« If n:>n.,, stimalated emission

jnf,lni J T
has taken place; if ns>n4, absorption has occurred.

Even though f¢i} is adiabatic in the field-free Hamil-
tonian Hoj, the states ¢i[n> will no longer be adiabatic in the
Hamiltonian Hgj+tHg, since the interaction Hamiltonian Hj mizes
them. They are only eigenstates of the Hamiltonian

H, = H_ + nwata , (Va.4)

HR¢i[n> = (Wi+nhm)¢i|n> . {(Va.5)

The potential surfaces W,+nfiw can now be considered the diabatic
surfaces in the presence of the field. Analogous to the field-



free case, at locations (alcng R) where resonance occurs
(Wi+niﬁm=Wj+nfhm), avoided crossings may be produced if symmetry
conditions permit, i.e., if

3 NI N
d7xp3u (x,R)O, #0 . (Va.6)
In such cases, one may generate adiabatic curves just

as one does in the field-free situation. These adiabatic curves
E; (R) satisfy the equation

P W W P -
(Hel + Hf)¢i(R,x) = Ei(R)wi(R,x) {(Va.7)
where
. N _ Z — ._'..Ll>
wi(R,x) = aign(R)¢£(R,x) n> . (va.8)

¢,n

The representation ¥; is termed the electronic-field representa-
tion while Ei(ﬁ) is known as an electronic-field surface. The
Ei's are, of course, eigenvalues of H=Hgi+Hg, where H is ex—
pressed in the ¢i|n> representation. Suppressing i in (Va.8)
(i.e., writing it as a general eigenvector) and substituting in
{(Va.7), we cbtain the infinite set of coupled equaticons for o, :

in
— ) '
Eo, = (W tmfiw)o, + § Aoy Vntl ay (a0 ¥ v/n ai,n—l] ’
(Va.9)
where
. Ny — 3 ULV VL WL, S, —
déi(R) = Eé(m)‘ d x¢ﬁ(R,x)u(R,x)¢i(R}x) (Va.l0)

is the dipole coupling between ¢, and $3;. In obtaining (Va.9)
we have used the following properties of the number states |n>:

<njdlo> =0 (Va.lla)
1|lalavs = "

<n'|&|n"> = vn S0 nno1 (Va.llb)

<p? "'[- e — n . .

n'|a"|n L (va.llc)

These properties lead to the important fact that only states

¢i|n> with a difference in photon number egual to one are directly
coupled; and hence, to first order in the dipole strength 4’,

only single-photon processes are possible when the interaction
term proportional to 32 is ignored (R is the field vector poten—
tial). Even with this simplification, (Va.9) shows that, in
order to obtain the adiabatic (electronic-field) surfaces, an
infinite-dimensional matrix has to be diagonalized in general.



Vb. The Rotating-Wave Approximation (RWA)

For the present discussion we limit ourselves to the
two-state molecular system with Wp>W;. In this molecular colli-
sion problem, the energy detunings 4, for a transition
1| n> <~ ¢2|ni1>

—
Ai(R) = W2 - Wl * fw {(Vb.1}

must be examined as a function of all the nuclear degrees of
freedom. For W,>Wy, A,»fw for all R; hence the transition
¢l|n> - ¢2|n+l> can be considered anti-resonant (or potential
energy non-—-conserving). A_, however, may vanish for certain
nuclear configurations, implying that the transition ¢l|n> -
¢2]n—l> is resonant at those configurations.

We now assume that dj;=0 (which would be rigorously true
for a homonuclear atom-atom collision system). In this case
the secular matrix for (Va.9) block-~diagonalizes, and it can ke
written in the generzl form shown in (Vb.2), where the coupling
strength is

' A 3 -
d. = Vi 5 = EO-Id x¢3ﬁ'¢l . (Vb.3)

N is the number of photéns in the external field and Eb is the
electric field strength. The block diagonalization reflects the
fact that, in making the transition ¢j~>¢,, the system must
gain or lose an odd number of photons. The two non-diagonal
blocks are completely eguivalent; and depending on the inatial
conditions of the collision environment, one can ignore the
appropriate one. For instance, if the collision system is pre-
pared in the state ¢, and the applied radiation field has field
strength

EO = Y2TNAw/V {IVb.4)
with N odd, then we can work entirely with the upper left block;
and with N even, the lower right block. In practice, of course,
¥ is so large that dN“dN+1“dN—l' and the two blocks would be
largely eguivalent.

It is in principle possible for a system prepared in
$1 initially to absorxb n photons (n odd £N) or emit n photons
(1¢n odd <), and either stay in ¢ or make a transition to ¢s.
While processes involving transitions ¢l|n1>-+—+¢2 ny> may or
may not be rescnant if <Ny, they will always be anti-resconant
if n,>nj. The RWA in the collision case (similar to the atomic
case) consists in throwing away all direct couplings between
diabatic states ¢1|n> of the latter kind (np>n;); for example,
between the states ¢,|N-1> and ¢1|N-2>, It is expected to be
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less accurate- when the applied field strength is very large; or
in non-~resonant situations (as opposed to anti-resonant ones)
corresponding to ¢1|N> =+ ¢2|N—l> such that the energy detuning,.,
Wo~Wp~Hw, is not significantly different from that for the anti-
resonant transation, Wo-Wi+Aw. In the latter instance, applica-
tion of the RWA would not be internally consistent, since it
would not be justifiable to chop only couplings connecting

states with ns»n; while keeping those with n)>n, if the detunings
