
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



F

I
r

'ift

t 10 FtdkUArRY 1977 LUNAR OCCULTATION OF URANUS.

LIME DARKENING, AND POLAR BRIGHTENING AT 6900

to	 V"
R. R. RADICK AND W. C. TETLEY

A-CR-15x780)	 THR 10 FEBRUARY 1977 LUNAR	 N79-28074
LTATI0 1 OF URANr1S. RADIUS, LIMP
ENING, ANn POLAR BRIGHTF, NINO AT 6900 A
inois Univ.)	 23 p HC A02/MF A01	 rinclas

CSCL 03A x,/89 29261

i,

oil
a

a

1

s^S^^1£l 
Z^lti^`

•



Till: 10 FEBRUARY 1977 LUNAR OCCULTATION OF URANUS.

ADIUS, LIMB DARKENING, AND POI.AR BRIGHTENING AT 6900 X.

Richard R. Radick and William C. Tetley

Astzonomy Department

University of Illinois

Uroana, IllLnois 61801

Manuscript pages: 16

Figures: 4

Tables: 2



RUNNING HEAD: LUNAR OCCULTATION OF URANUS

DIRECT CORRESPONDENCE TO:

Richard R. Radick

Astronomy Department
University of Illinois

Urbana, Illinois	 61801



-3-

ABSTRACT

A photoelectric observation in the near infrared of the 10 February

1977 lunar occultation of Uranus is described and analyzed in terms of

planetary radius, limb darkening, and polar brightening. Contact timings,

corrected for lunar limb effects, indicate an equatorial radius of 25700

500 km for the visible disk. A modified Minnaert function is used to model

limb darkening and polar brightening. Least-squares fits to the observed

light curve indicate that Uranus is slightly limb darkened in the passband

of the observations (450 X FWHM centered near 6900 X) and that polar

brightening is present.
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I. INTRODUCTION

Although Uranus has been regularly observed fo- almost two centuries,

many (,f its physical characteristics remain poorly known. Normally, ground-
1

based telescopes cannot clearly resolve the planet because atmospheric seeing

distorts and blurs its small image.

The photographs obtained by Danielson et al. (072), using the balloon-

borne Stratoscope II telescope, have provided tl.e i.es^ modern information

about the appearance of Uranus in the visual region of the spectr ,im. These

photographs show a strongly limb darkened disk, which is otherwide feature-

less, having an equatorial radius of 25900 ± 300 km. Recent re- pnalysis of

the Stratoscope II images by Avis et al. (1978) shows the ellipticity of the

disk to be 0.021 ± 0.001. The 1977 occultation of SAO 158687 by Uranus

yielded at measurement of 26200 *_ 100 km for the radius at the half-light

level (Elliot et al., 1978). However, the half-light radius is not the radius of

the visible disk, but something several hundred kilometers larger. Accordingly,

this result is consistent with the Stratoscope II measurement.

The appearance of the Uranian disk is e,-nsiderably different in the

infrared. Sinton (1972) and Smith (1977), observing in the 8370 X methane

bond, and Franz and Price (1977; also Price and Franz, 1978), observing in

the 7300 X band, have found the disk to be limb brightened at these wave-

lengths. These observers also find brightness variations across the disk,

both in the methane bands and in the adjacent continua, which are best ex-

plained as a general brightening over the polar region of the planet.

On several occasions during 1976 and 1977 Uranus was occulted by the 	
01

moon. One of these events, the reappearance of 10 February 1977, was

visible from North America under favorable circumstances. Since the spatial

resolution afforded by an occultation is virtually unaffected by atmospheric
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seeing, this valuable opportunity was used to learn more about the appearance

of the Uranian disk in the near infrared.

II. OBSERVATION

The February 10 occultation 	 was observed at the University

of Illinois Prairie Observatory using the high-speed digital recording system

which has been described elsewhere (Radick,1979). The bandpass of the ob-

servation is shown as Figure 1. The shape is due primarily to the spectral

filter which was used. Although the region spanned by this response includes

the wings of two strong methane bands at 6700 X and 7300 X and a pair of

weaker bands, it is principally the continua lying between these absorption

features which are represented by the observation.

At the time of the occultation, the third quarter moon was 31 degrees

above the horizon at Prairie Observatory. The sky transparency was good,

although the seeing was rather disturbed ( %4") and scintillation was quite

pronounced. Telescope pointing was achieved by tracking a nearby star until

shortly before the time predicted for emersion and then off-setting to the

position of the planet. In order to minimize the chances for an unfortunate

outcome, the event was viewed through a comparatively large (24") diaphragm.

This insurance was dearly paid for in terms of scattered moonlight entering

the: photometer, Uranus contributing only about 12% of the total light. In

fact, visual inspection after emersion showed the planet to be well-centered

in the diaphragm.

Tile observational trace is shown as Figure 2. Each point represents

the sum of sixty-four 1 msec time frames. Two low-order bits were truncated

from each time frame during the observation: the ordinate scale does not

correct for this truncation. The abscissa is scaled in relative time units,

the origin corresponding to 9:32:00.0 UTC with an uncertainty of perhaps

I

4



-6-

i second (Radick, 1979). Relative time intervals are precise. The sloping

baseline is due to a gradual decrease in background light as the bright

portion of the moon moved away from the photometer aperture. Scintillation,

in the form of increasing noise, becomes apparent as the planet emerges.

III. ANALYSIS AND RESULTS

A. Correction and Normalization of the Observational Data.

The observational data were first corrected for coincidence losses due

to a system bandwidth of 20 Mliz. A linear baseline was then fitted by least

squares to those points which clearly lay outside the occulLation event and

removed from the observational trace. The ordinate was then resealed to unit

amplitude. The central portion of the corrected trace is shown as Figure 3.

The corrected trace shows no features which indicate that removal of a highei .-

order baseline is required. This impression is consistent with the experience

of Elliot et al. (1975) in their analyseL, of lunar occultations involving the

satellites of Saturn.

It is unnecessary to correct the trace for any effects due to the trunca-

tion of the observational data. This truncation is responsible for a small

portion of the noise in the normalized light curve, but it does not distort

its shape.

B. Lundr Limb Corrections.

The topography of the lunar limb can significantly influence the detailed

shape of the light curve for planetary occultations. If the lunar 	 I

velocity vector in the plane of the sky is not approximately perpendicular

to the limb at the point of contact, the occultation can "slide" several

kilometers	 along	 the	 lunar	 limb.	 The	 Uranus
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occultation involved about 12 km of limb. On this scale, curvature

of the mean limb also becomes significant. Together, local features on

the limb and limb curvature may produce appreciable variations in the

angular rate at which in occultation proceeds. Since it is the angular

rather than the temporal scale of the event which is of ultimate interest,

the relationship between the two must be carefully examined.

For a stellar occultation, it is normally possible to determine the

angular velocity of the lunar limb at the point of 	 contact	 directly

from the diffraction fringe pattern. This app:oach cannot be used in the

present case, however. Due to the large angular size of the planet, there

simply are no detectable diffraction effects in these data. Therefore, we

are forced to rely on predictions for the information necessary to convert

the temporal scale of the observation into angular measure.

Accordingly, we have calculated topocentric positions and distances for

the moon and Uranus, librations, and the position angle of the lunar axis

for each second over an interval of about thirty seconds centered on the mid-

point of the occultation by interpolating the geocentric data tabulated in

The American Ephemeris and Nautical Almanac and applying the appropriate

parallactic corrections. From these, topocentric values for the direction

and angular rate of the apparent lunar motion, as well as values for the

angular separation and position angle of Uranus measured relative to the

center of the moon, were derived as functions of time. The results of these

calculations are compared with the 	 U. S.	 Naval Observatory's pre-

diction for the midpoint of the occultation in Table I. The differences 	 •

present among the entries in Table I may reflect any of a variety of things:

ephemeris differences, interpolation round-off errors, truncation errors

in computation, or differences in the precepts used for the calculations.
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It is probably reasonable to suppose that these difierences are representative

of the uncertainties in the circumstances of the occultation, namely *_1 sec

in time and !0.1 degree ?n angle. 'fire fact that the midpoint of the occulta-

tion occurred within one second of the predicted time lends assurance to

these calculations.

The geometry of the occultation may be conveniently referred to a

Cartesian co-ordinate system fixed to the lunar limb, as s}-own in Figure 4.

The origin of this system has been arbitrarily placed at Watts' Angle 219.0,

near the location of the centrz:l emersion. The ordinate axis inters;cts the

center of Lhe moon. Both axes are scaled in areseconds. Both limb curvature

and elevation changes relative to the mean limb as read from the Watts'

charts (Watts, 1963; Van Flandern, 1970) contribute to the limb contour shown..

The trajectories labeled A and B are drawn in the direction of the apparent

lunar motion relative to this co-ordinate system. Trajectory A represents

the circumstances we predict. Trajectory B corresponds approximately to

the USNO prediction. One may consider either the lunar limb moving down and

away from Uranus, or Uranus rising above the limb, along; the direction of

these lines.

If it is assumed that the central emersion occurred at the predicted

time, then the location of Uranus along these trajectories and the angular

distance between the center of the planet and the lunar limb contour can

be specified at any instant of time from the results of the calculations

described above. In other words, the temporal scale of the observation can

be converted to the desired angular scale. Unfortunately, neither the cir-

cumstances of the occultation nor the details of the limb profile are known

to sufficient accuracy to allow the calculation of an exact conversion.

Accordingly, we shall perform the remaining analysis for each of the two
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ajectories. In addition, we will consider models which assume a smoothly

^rved lunar limb, in order to assess the influence of the Watts' Corrections

our resul.s.

%,. Model Occultation Curves.

,

7

y

T ^

The shape of the corrected trace provides information about the

brightness distribution over the disk of the planet. We expect this distri-

bution to reflect limb brightening/darkening and, perhaps, polar brightening.

We assume that the limb brightening/darkening obeys the Minnaert Law (kinder

and Jones, 1972; Binder and McCarthy, 1973; Elliot et al., 1975), which

states that the intensity observed from any point on the disk is proportional

to

cos k (i) • cos k-1(e)

where i is the irradiation angle and a the emission angle for that point.

The parameter k characterizes the nature of the limb brightening/darkening:

assuming i = e, the disk appears limb darkened if k 	 0.5, uniformly illumi-

nated if k = 0, and limb brightened if k < 0.5. To represent polar brightening,

we multiply the Minnae-t Law by a function B(0), where 0 is Uranian latitutde.

Currently, there is virtually no information available indicating what the

functional form of B(m) may be. Accordingly, we shall consider three rather

arbitrary possibilities. The first.

B W - 1, (Model 1)

implies no polar brightening. The second,

B(^) = 1 + B(1 - cos 0), (Model 2)
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was chosen because it suggests a "bright polar cap". The third,

BU) - 1 + B sin(1m1), (Model 3)

suggests a "dark equatorial belt". The parameter B Measures the increase

in brightness at the pole relative to chat at the equator for zero phase

angle.

We have constructed numerical models for the occultation light curve

which envision a hypothetical occulting straight edge being drawn across the

planet, revealing its disk in evenly-spaced steps. We subdivide the disk of

the planet into square cells. A particular cell is considered part of the

disk if its center lies inside the boundary of the diEk. Tests demonstrated

that subdivisions of fifteen and twenty-five cells/disk diameter yield

essentially i.^eutical results; consequently, the coarser subdivision has

been used througho_.t these calculations. The angles i, e, and y were evaluated

for the midpoint of each cell within the disk and model brightness distribu-

tions calculated over a range of values for k and B. Normalized occultation

curves were then constructed from these distributions by summing brightness

contributions from rows of cells parallel to the occulting edge, summing the

resulting strip brightnesses, and finally normalizing to the fully illuminated

disk. This procedure produces models evaluated at sixteen evenly-spaced

points, the two endpoints having zero and unit intensities. Continuous

curves were constructed from these discrete models using cubic spline functions.

These continuous models were then compared to the corrected observational

trace. Best-fit values for the contact points were identified

which minimized the X 2 /(degree-of-freedom) for each continuous model.

0	 The overall best fit was then selected, using the same criterion,

by means of a grid search in k and B. The intervals of this search were

1
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0.05 units for k and 0.2 or 0.4 units for B. 	 In this fashion, we ultimately

identify best-fit models characterized by four fitted parameters, namely,

the two contact points, the Miuraert parameter, and the polar brightening

parameter.

In view of the uncertainties in the lunar limb c. • ► :ections and the

effects these alone have on cur results (which will become evident presently),

it is unnecessary to correct for either the ellipticity or the illumination

defect of the Uranian disk. The projected ellipticity is about 0.007, and

the chord defined by the contacts 	 is	 less than 0.5%' shorter than the

equatorial diameter for the fully illuminated disk.	 The illumination de-

fect produced by the 3 o phase angle between the sun and the Earth, as seen

from Uranus, shortens this chord by another 0.1%. Such effects do not

appreciably influence our analysis.

D. kesults

Ire all ciphteen best-fit models were calculated as follows:

1) For each of the two trajectories shown iii Figure 4, best fits were

calculated for the three polar brightening models described above. 2) These

calculations were repea • ed, holding the contact interval fixed at a value

corresponding to a radius of 25900 km for the visible disk (i.e., the

Stratoscope II radius). 3) A third set of six models was computed assuming

the circumstances of Trajectory A and a smoothly-curved lunar limb (i.e.,

no Watts' corrections were applied). The results of these calculations

are summarized in Table II. The uncertainties tabulated therein were

determined from tht: curvature of the X 2 surface at its minimum with respect to

the parameters and may be regarded as formal standard errors (Orear, 1958). The

values for the radius have been determined from the contact intervals, assuming

a topocentric distance of 18.367 A.U. to Uranus.
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These results are illustrated in Figure 3, which shows the best-fit

curves for polar brightening Models 1 and 2 of Trajectory A superimposed

on the normalized observational light curve. Model 3 is virtually indis-

tinguishable from Model 2, and is not shown. The results are similar for

Trajectory 8 and also for Trajectory A without the Watts' corrections; that

is, all the best fits for Model 1 resemble one another, as do the fits for

all models which incorporate polar brightening.

IV. CONCLUSIONS AND DISCUSSION

We draw the following conclusions from the results presented in Table

II:

(1). The dat. e well-fitted. However, a significant improvement in the

fit i. achieved when	 polar brightening is incorporated

into the model, as _judged from the magnitudes of the x 2 /(degree-of-

freedom) for the various best-fits.

(2). The fit does not distinguish between polar brightening Models 2 and 3.

We suspect that these data cannot provide much detailed information

about the polar brightening on Uranus, and that any reasonable model

for polar brightening would probably reproduce the observational light

curve as well as do these two.

(3). The results of the analysis are not significantly affected by the un-

certainties in either the circumstances of the occultation or the de-

tailed shape of the lunar limb profile as read from the Watts' charts.

This is	 least true for the polar brightening parameter, which suffers

changes as large as 40% from these effects. The values derived for the

planetary radius and the Minnaert parameter 	 are	 comparatively

stable.

(4). The amount of polar brightening demanded by the best-fit models seems
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uncomfortably large, even though Price and "rariz	 report "signif-

icant" amounrs of polar brightening in and near the 7300 X methane band.

To check this impression, the brightness distributions specified by otir

models were numerically smeared to simulate aperture and seeing effects.

t.odel "pinhole scans" were then calculated from thzse smeared distribu-

tions and compared visually to the area-scanning photometric observations

obtained at Lowell Observatory (Franz and Price, 1977; Price and Franz,

1978). These experimen t s suggest that the area-scanning observations

might be consistent with values for B one-third to one-half chose demanded

by our best-fit models, but not much more. Although we do not dismiss the

possibility that the larger values obtained here are correct, it seems

prudent to acknowledge that our analysis may overestimate the magnitudc

of the polar brightening. Whether this would reflect uncertain limb

corrections, or some systematic effect which has been overlooked entirely,

or the selection of an inappropriate functional form for the polar

brightenir.;. is difficult to decide.

(5). Averaging the results for Trajectories A and B, Models 2 and 3, we obtain

25550 ± 500 km for the radius of the Uranian disk, assuming circ,ilar

symmetry. Correction for ellipticity and illumination defect yields

a value of about 25700 kn for the equa l )ri.sl radius. While not parti-

cularly accurate, this result is consistent with the Stratoscope II

measurement. On the other hand, the radius inferred from Model 1 (no

polar brightening) does not appear to be consistent with the Stratoscope

II radius. This discrepancy strengthens the case for polar brightening.

(6). In the same manner, we obtain an averaged value of 0.50 ± 0.07 for the

Minnaert parameter. I-.z view of the possibility that we have overestimated

numerical magnitude of the polar brightening, we have examined in



-14-	 0 

detail what happens to the best-fit models as B is decreased. The

initial adjustment appears to be at the expense of the planetary

radius, which becomes progressively smaller as B is decreased. Only

as 11 -pproaches zero does the value of the Minnaert parameter begin

to respond by increasing	 in value. We estimote that a factor-of-

two decrease in B from the best-fit values increases k by about 0.05

units. A similar increase 	 occurs	 if we assume the Stratoscopc

II radius. Making these allowances, we feel that a value of 0.60

0.10 is appropriate for the Minnaert parameter, which in turn implies

that Uranus is slightly limb darkened in the passband of our observa-

tion. This conclusion is consistent with the results of Price and

Franz.

In summary, we have presented high-resolution observational evidence,

free from the distorting effects of atmospheric seeing, which confirms the

presence of visible structure on the disk of Uranus. This structure can be

represented by a one-parameter polar brightening; model plus limo darkening,

although some difficulties remain in assi ba,.ng a quantitative magnitude to

the polar brightening. The analysis results in an accurate quantitative

measure of the limb darkening displayed by the disk in she passband of our

observation.
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Table I

Predicted Circumstances for Midpoint of Uranus Occultation

Circumstance	 USNO Predictions	 Present Calculation

Time (UTC, 1OFeb77)	 9:32:49	 9:32:50

Position Angle (PA)	 238.2	 238.1

Contact Angle (CA)	 -126.8	 -126.3

Watts' Angle (WA)	 219.1	 219.0	 v

Long. Lib.	 -0.3	 -0.4

Lat. Lib.	 -1.0	 -1.0	
1

Shadow Velocity	 0.4520 km/sec	 0.4524 km/sec
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FIG.	 1. - Tile bandpass of the observation.

FIG.	 2. - The uncorrected observational light curve.

FIG.	 3. - Tile normalized observational light curve, and two representative

best-fit model light curves.

FIG.	 4. - The geometry of the occultation. The curving arc near the

.abscissa represents the lunar limb, which is moving away (down)

from the center of the planet at this time. The cardinal

directions in the sky and the location of the north Uranian

pole are indicated.
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