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THEORETICAL BASES FOR CONDUCTING CERTAIN
TECHNOLOGICAL PROCESSES IN SPACE

A. S. Okhotin
USSR Academy of Sciences Institute of Space Research

In recent years the field of space research has witnessed /3*

a remarkable increase in the attention devoted to the problem

of space technology. Within this area the greatest interest

has been stimulated by the problems of studying the behavior

and manufacture of materials in a state of weightlessness.

A whole series of experiments have already been performed in

this regard: the study of welding on board "Soyuz-6" in 1969,

the study of the process of crystallization of various materials

on "Skylab" and "Apollo-Soyuz," the modeling experiments on

"Salyut-5" and the short-term experiments on rocket probes in

the USA. At the present time technological experiments are

being conducted on the orbiting space station "Salyut-6" with

the active participation of scientists from a number of social-

ist countries. These investigations make it possible even now

to state the fundamental laws of the behavior and production

of matter in weightlessness with a substantial degree of pre-

cision. And it is the analysis of these fundamental laws which

makes it possible to formulate the basic technological require-

ments of the apparatus in space and to determine to a large

extent which materials are appropriate to prepare in space.

In its most general form, the system of equations describing /4

the process of the growth of crystals can be written thusly in

dimensionless form:

The equation of motion . _ ...

*Numbers in the margin indicate pagination in the foreign text.



The equation of continuity

(2)

The equation of energy

The equation of convective diffusion

(4)

In this system vo/ AT0, and I Q are taken as arbitrary scales

of velocity, temperature change, and length, respectively. Then

, (5)

(7)

(8)

where P is pressure; AT0 is [Twall - Tmass_averag(J ; AT is the

characteristic temperature gradient; p is density.

The dimensionless criteria in equations (l)-(4) can be

represented in the following form:

The Grashof criterion . __, /5

(9)

The Peclet criterion

The Reynolds criterion

The Fourier criterion

n
_ if, to
~ oT ' (10)
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The criterion of Grashof diffusion

The criterion of Peclet diffusion

(14)

where 3 is the volume expansion coefficient; B£> is the coeffi-

cient of volume expansion due to change in composition; v is

the kinematic viscosity; a is the coefficient of thermal con-

ductivity; g. is the acceleration of tensile force; T is time;

c is concentration; Ac is the characteristic concentration

gradient; and ^ is the diffusion coefficient.

Before proceeding to a general analysis of the system of

equations (l)-(4), let us first consider for a moment each one

separately.

The equation of motion - the Navier-Stokes equation -

(1) , characterizes the generation of motion in a liquid from

changes in its density due to temperature or concentration

variation (such as in unstable stratification). According to

this, the expression for density has the form

If the dependence of p on concentration can be neglected, such

as, for example, in the case of greatly diluted solutions, then

the ;~o^C term in equation (1) may be omitted. In a stationary

regime the term in equation (1) containing a Fourier criterion

may also be omitted. In the majority of cases (of processes /6

of material manufacturing) the term containing the Peclet

criterion is also neglected, due to the small value of the

second derivative of velocity.



Therefore, when performing a qualitative analysis of the

growth of crystals in a melt, we can write equation (1) in

the form

From this it is possible to estimate by order of magnitudes

that at small velocities of generated motion (Re « 1), the

value of Gr/Re2 ~ I/Re, whence G^ ~ Re. Then at large veloci-

ties (Re » 1) , the value of Gr/R§2 ~ 1, which means Re - /Gr. .

Naturally the quantity which determines the velocity is

still the Grashof criterion. At appropriate boundary condi-

tions the equation of motion describes such processes important

to space technology- as thermocapillary convection. This type

of flow is treated in more detail below.

The equation of continuity, (2), for the case of binary

mixing (henceforth, in order to simplify the mathematical

exposition, we shall always consider crystal growth only in

binary mixtures, since the essence of the procedure does not

change in multiple-component mixtures; only the mathematical

apparatus is more complicated), can be written in the form

where Ax. is the relative change in the content of the component
A

A of the binary mixture, and the criterion Pe ^ can be represen-

ted in the form

where Pr D is the Prandtl diffusion criterion or the Schmidt

criterion:



If only free convection takes place during the process of

crystalline growth, then expression (17) transforms to

(20)

The equation of continuity is usually introduced in this form

into the system of equations in order to describe the process
f

of transport in the growth of crystals.

The equation of energy, (3) , for the process of heat

transport during crystalline growth, is nothing other than

the equation of thermal conductivity, which can be written in

general form as:

.
where the Peclet criterion

Peofe-fc.. (22)
while the Prandtl criterion

" "o »!. (23)
I* ft.

The quantity Br is the Brinkmann criterion

(24)

where l N/ is the volume; A is the thermal conductivity; and

$* is the dissipative function in dimensionless coordinates,

taking into account the velocity gradients.

If the process of heat transport only describes natural

convection, then the equation of motion can be written in a

simpler form:

it'lT <24>
We should note that the Peclet criterion is different for liquids /8

and for gases, since for gases the values of "a" and "D " have

the same order of magnitude, while for liquids, p ' « a.:, .and so



Pe
 <<: Pe# • Consequently, for two liquids with the same Peclet

numbers, their temperature .distributions are determined by their

thermal conductivities, while the concentration distribution

is determined by the convection processes.

The equation of convective diffusion, (4) , describes a

nongravitational process taking place in crystalline growth.

Therefore, the analysis of this equation is extremely important

in the preparation of materials in a condition of weightless-

ness. In stationary conditions in a binary combination the

equation takes the form _ _ -
IT 3c i. 9 c._

(25)
which makes it possible to perform qualitative analysis by

inspection. Since the value of the Peclet criterion determines

the mechanism of redistribution of components in the melt, it

is clear that when Pe » 1 the contribution of the right-hand

side of equation (25) is small and that the mechanism of dis-

tribution is essentially determined by the convective current

with the velocity <y^ . If we have Pe « I/ then the process

of formation of a concentration profile accounts for the main

diffusion. Since the value of the Prandtl diffusion criterion

does not depend on the hydrodynamic processes in the melt, while

the value of the Reynolds number is determined in our example

by convective currents, we can choose that value of the Peclet

criterion from equation (18) at which the effect of convection

on the concentration profile disappears. Let us designate this

value as Pe D* = 1. Then RePe# = 1 and taking the analysis of

equation (16.) into account, we can write down (Gr*Pr^ *) = 1

for small velocities of motion, while for large velocities,

(/G~F*Pr# *) =1. Since the movement of the critical value of

the Peclet number (PeZ? * = 1) is only possible at small values /9

of the Reynolds criterion, that is, at small flow velocities,

and considering that PrZ? » 1 in liquids, the relationship

)* = 1 will be correct for a melt.



Naturally, this description of the features of each

equation which are applicable to a condition of weightlessness

is of only the most general character, since a more detailed

analysis forms the subject of specialized investigation.

For our purposes it is certainly more important to estab-

lish the fact of the impossibility of a general solution to

this system of equations (1-4). We can only qualitatively state

that the generation of motion in liquids and gases in the pro-

cess of obtaining crystalline materials can take place because

of a variety of processes: the development of natural convec-

tion, the accidental pulsation of velocities in an unequally

heated liquid under conditions of stable stratification, the

presence of a temperature or concentration gradient at a free

surface (thermocapillary convection), changes in the density

of the material or a phase transition, or peculiar boundary

conditions which lead to the development of Stefanov convection,

and other phenomena.

Since preserving an absence of motion of internal current

from any of the phenomena enumerated above is the fundamental

requirement for obtaining materials from a melt or a gas through

the process of crystallization, it is therefore obvious that

the choice of methods and materials must be performed in such

a way as to remove or keep at a minimum the causes of any such

motion. Since a large number of the causes are nongravitational

in nature, it is therefore necessary even in space to conduct

a selection of materials, starting with the values of the

criteria stated in equations (1-4), and methods of obtaining

and maintaining the boundary conditions and flow conditions

of the crystallization process, so that the possibility of gener-

ating motion with the liquid or gas is minimized. - /10



Since it is not possible in carrying out the process of

obtaining crystalline materials in. orbiting .space stations to

speak of a condition of ideal weightlessness (it is well known

that the value of "g" in such vehicles varies from 10 3 to

10~8, depending on the structure of the satellite and the

conditions of its orbit), it is more accurate to consider the

flow of these processes under conditions of microgravitation.

In this condition it is possible to create working conditions

within the technological apparatus at which the values of the

Grashof criterion, which is directly proportional to the value

of the acceleration of free fall, will be such that the possi-

bility of creating free convection may be large. We will

henceforth consider, however, that the methods and apparatus

have been chosen to condition the values of the Grashof criterion

at such a level that the presence of natural convection in obtain-

ing crystalline materials can be ignored. Incidentally, we

should note that it is possible to create these conditions even

in terrestrial technological establishments, but because of the

presence of the value g = 1 on earth, their realization is only

possible in very small volumes or thin sheets. But this is far

from always corresponding to the dimensional requirements of

producing crystalline materials.

Thus, starting from the fact that the general solution to

the system of equations (1-4) is lacking and ignoring the

presence, of free convection in conditions of weightlessness,

the description of separate steps in the process of obtaining

crystalline materials in space is only possible by means of a

solution to the partial problem. By way of example let us

introduce some - in our opinion highly characteristic - processes

which occur during the production of materials in the conditions

of interplanetary space.



First of all, let us estimate the value of acceleration

at which the effect of natural convection may be ignored in the

transport process in melts and gases. Let us designate this

value g = ng 0 , where n is the value of load lightening and /ll

go is the acceleration from the gravitational field at the

surface of the earth. We must find "n."

Since it is well known that the effect of natural convec-

tion in thermal transport disappears at Ra = GrPr < 10
 3, then,

using relationships among criteria given above, we can obtain

(26)

A more exact value of the quantity n can be obtained by

solving the problem for more specific conditions of the process.

For example, one of the possible situations in preparing icrystals

from a melt is the equality of the velocity of motion created by

natural convection to the velocity of motion of. the liquid at

the front of crystallization. Since the motion at the front

is conditioned by the different densities of the liquid and

solid phases, its velocity is thus:

where Yf is the velocity of the moving front of crystallization;

p and p . are the densities of the solid and liquid phases,

respectively. Taking into account what was said above about

the equality of the Grashof and Reynolds criteria, we obtain

(28)

or for the case Re = /Gr

1 ir>A -£r, \*-
( 2 9 )



We could use as another example the growth of crystals

in the gaseous phase, where the characteristic velocity is the

velocity of Stefanov flow:

O (30)

where c is the mass concentration of the gas, x is the cold /12

surface, and n0 is the normal to the surface.

The total transfer of matter across the surface of the

growing crystal is equal to

In turn, the expression for the total transfer of matter in the

one-dimensional stationary case can be found from the equation

for convective diffusion, (4), and is equal to

I j-O--!̂ :̂ (32)

where F is the heated surface.

Here, then, for the case Re = Gr, it can be shown that

:*"«^3rM£ (33,

and for the case Re = /Gr

<34>

Note that (33) and (34) coincide exactly with expression

(26) except for the logarithmic factor. Let us introduce some

numerical quantities. For semiconductors of the type As Bu,

taking & = 10~2m with a temperature gradient ~ 200°/cm, the

value of Gr = 2nl06. The value then of Pr D. ~ 30-300. Whence,

according to (26), n ~ 10~7 or 10~8, while according to (28),

10



n ~ 10~10 if the growth of the ,AS Bu crystals proceeds at a

rate of 3 x 10~8 cm/sec. For crystalline growth from a gaseous

state, if we take Cr = 0.5 and Cx = 0.25, the value of n is

~ 10~6 according to equations (33) and (34).

These examples testify to the relation between the comple-

tion of crystals and the value for the strength of "g." However,

the required level of n for crystalline growth is different for /13

liquids from that of gases. This is related to the different

intensity of natural convection as well as to what is more

important for processes conducted in weightlessness, the dif-

ferent Prandtl diffusion numbers, which for gases are on the

order of unity while for liquids they are of the order of 10 to

1000 and above. Thus, even very slow motion with Re « 1 leads

to a significant redistribution of the components of a mixed

regime.

The estimates from the formulas (28, 29, 33, 34) provide

the possibility of determining conditions at which natural

convection, even if its intensity is relatively great, will have

no practical effect on the purity of the manufactured crystal.

Its effect is significantly greater on the growth of crystals

from the gaseous phase than on those grown in melts; the stated

functional dependences make this obvious. This signifies as

well that we approach complete weightlessness more completely

with the same value of n in the process of obtaining materials

from the gaseous phase than we do in production processes in

melts.

One of the characteristic types of structural imperfections

in a monocrystal is the presence of a mixed band parallel to

the front of crystallization. One of the most frequent solu-

tions to the system of equations (1-4) is a distribution of

concentration along the length of a crystal which depends on

11



the frequency of pulses in the rate of growth and on their

amplitudes. From this we can obtain a function relating the

value of the strength of acceleration to the distances between

mixed bands.

Let us assume that the concentration of the mixture is low,

that the depth of the melt is infinite, and introduce a movable

system of coordinates whose origin (z = 0) is fixed at the

center of the front of crystallization, while the z-axis extends

into the solid. Under these assumptions the .equation of con- /14

vective diffusion can be written in the form:

(35)
~ " *r

where "z = *jj-̂ ~ , § = ~ , ~ = -%• , and Cro is the concentration
00 O

of an infinite distance from the coordinate origin. The local

conditions of the problem can be written in this system in the

form frc^oojs* <?/05] s<r.r?)
(36)

where K is the coefficient of distribution of the mixture,

<J>o(z) is the distribution of the mixture in the melt at the

moment F 0
 = 0.

Let us further assume that the process of crystallization,

which proceeds with the constant velocity v~ at the moment

F o = 0, includes periodic oscillations of small - compared

to v - amplitude. We note that

(37)

where e is the amplitude of the oscillation (e « 1) and 01 is

the frequency of the oscillation. If the solution to equation

(35) is of the form

••• (38)

12



then, skipping the calculation, it can be rewritten in the form

, . - .
<40)

- J2
H

I
J

} -

c -. ^A^
and (

VJ *~ tf Jc <** is the error function while Cft^cfcie^ /15

is the complementary integral of probability.

The degree of deviation of the concentration from uniformity

(that is, where the rate of crystallization is constant) is deter-

mined from (38) by the derivative of e4>i( Fo, 0). Taking equation

(40) into account, this is proportional to e/w. The distance

between bands L ~ I/to. If the direction of heat flow in the

melt coincides with the direction of g, there can occur a

dampening with time of the pulses in velocity and temperature,

which last two are proportional to each other. Then, as was

shown above, when Re « 1, Re ~ Gr; consequently v ~ e ~ ngo,

while the frequency of these oscillations to ~ /ngo . Hence,

for Re « 1 the ratio e/co = /ng 0 ; consequently the band

intensity as well declines ~ /ng o . In the case of Re » 1,

we established Re ~ /Gr", so e ~ /ng'0 and the ratio e/o>y that

is, the band intensity, is independent of ng 0 . The distance

between bands, however, L, is always proportional to l//n.

So if under terrestrial conditions L = 10"1* m, for n = 10~6

it is increased to 10 cm.

It could happen that the pulses in the. melt are related to

turbulent natural convection. It is more convenient in this

case to find the amplitude of the pulses from the equation

13



for the balance of turbulent energy, where it is only multiplied

by the terms for dissipation and generation. For:this example

let us assume that the generation of turbulence is only depen-

dent on pulsations in density, so that

Jo (42)

where p', v' are the pulses in density and velocity, 10 is the /16

path length of a period. When we see that p '-' ~ v' ~ T ' and

that e ~ "v ', we find from (42) that

(43)

Using the Taylor hypothesis about the relation between the

spatial and time scales of the turbulence,

t*T& (44)

where T is the time scale of the pulsation, we find for the

frequency

^"JtT (45)

Since for naturally turbulent convection Re - /Gr or V0 ~ /ng0,

the ratio e/u) is

The scale &o of the turbulence depends only on the geometry of

the system, so when the current flow is turbulent, the band

intensity does not depend on n. We have from (44) and (45) that

w'ife (47)

i,
and the distance between bands varies as n~2.

It can be shown that in monocrystalline blocs the dimen-

sions and orientation of the blocs also become functions of

the pulsations;, that is, they depend in the final analysis on

the value of the strength of acceleration. And since the

14



dimensions of the blocs or the distances between bands determine

the values of many structurally sensitive physical properties of

semiconducting and metallic materials, it is possible to get a

dependence of these properties on the quantity ng0. Starting

from this fact, we can draw conclusions about the desirability

of the study of a graph of properties versus strength of

acceleration in the range from ~ 10~10 go to ~ 102 go. This

makes it possible to establish the parameters of changes in /17

the physical properties of materials from the value of ng0,

and on this basis to determine by means of calculations what

properties materials prepared in weightlessness will possess.

Such functional relationships may provide the basis for estab-

lishing the benefit of producing one material or another in

space. Research we have performed on the dependence of the

electrical conductivity of a.number of melts of the Te-Se

system on the value of ngo allow us to state the character

of the dependence and to confirm the hypothesis stated above.

In growing monocrystals in melts, a number of situations

can arise which create a redistribution of the mixture across

the solid body. One of these situations might be the distor-

tion of the front of crystallization in the case where the

density of the melt differs from the density of the solid body.

In this case there is a motion of the melt along the normal to

the front of crystallization with the velocity

) (48)£ii -

where V is the projection of the velocity of crystallizationn o
v along the normal to the front. When the front of crystal-

lization is distorted, in transverse directions, components of

the velocity v arise which also lead to the appearance of
n o

a profile of concentration in the solid phase. We shall solve

the problem for the lines of flow in the form of a right-angled

15



parallelepiped, although in principle it is possible to obtain

the solution for any geometry of lines. Let us assume, then,

that the z-axis coincides with the axis of the line of flow,

while the y-axis lies on the plane of the front of crystalliza-

tion. Using the equations of motion (1) and continuity (2) ,

and limiting our examination to binary melts, we obtain for

the distribution of c, the mass concentration of the light

component, along the front of crystallization:

(49)

where & is the average concentration of the light component on

the front of crystallization, and

v- (50)

In expression (50), Y is the angle between the front of crystal-

lization at the given point and plane normal to the axis of

a = SP.gfr . a = 9PT
the line; zh 9c- ' T ~Tc~ . In the solution of formula

(49), which we will not perform here, it is assumed that the

value Y = const, that diffusion disappears in the solid phase,

the diffusion velocity of each component is small compared to

the velocity of crystallization, and that the depth of the melt
/

is infinite. It is obvious from inspection of (49) that the

concentration of the light component at k > 1 and 0 < t < 90

increases with increasing values of "y" and does not depend on

gravitational mechanisms for the generation of motion.
B

In the more realistic case, when the depth of the melt is

finite, the effect of changes in the average concentration

shows in the distribution of concentration in a cross-section.

Assuming this change in the functional dependence on the weight

of the liquid phase f has the form

16



- - fc-J (51)

we obtain finally

where b is the thickness of the boundary diffusion layer, and

H is the depth of the liquid, phase. Since in the result from

expression (51) we did not take into account the nonstationary

terms, the condition .of its applicability is that £/b » 1/Pe £> .

In summary, we can say that the formation of the field of /19

concentration in a cross-section of the crystal is determined

fundamentally by the value of the Peclet diffusion criterion,

the ratio b/£ and by the angle ¥. When Pep <_ 1, the decisive

element will be the change in the content of the melt, and a

decrease in the difference in the concentration can be achieved

by increasing the depth of the melt. As an illustration, let us

introduce the results of calculation from formula (52) for the

block CdxHg^_xTe in the line of a rectangular section of 1.5 x

0.5 cm with a velocity v = 1.4 x 10~5 cm/sec by the Bridgman

method, and compare them to the experimental data. For this

material, k = 4, Pe.-•.£? = 0.2, and we obtained excellent agreement

at a distance from the start of the block by 2.5 cm (H = 5 cm)

in the cross-section for the theoretical and experimental results

for the distribution of the concentration of the mixture, using

only the mechanism described above without including any gravi-

tational causes of motion in the material.

The examples which have been performed of the common cases

of solutions to the system of.equations (1-4) display the pos-

sible means of analysis of the various methods and conditions

of the production of crystalline materials both in terrestrial

conditions and in weightlessness. We will not continue to

17



enumerate these frequently-encountered examples, but will only

note that many of the requirements of technological experiments

in space can be theoretically analyzed ahead of time with suf-

ficient precision and the appropriateness of their behavior

in weightlessness determined.

We should point out that it would be incorrect, however,

to consider the problem of space technology dependent only on

the equations of transport which have been introduced. As a

general rule, in addition to these processes there also exist

in the conditions of preparing crystalline materials in space

a whole series of other factors determining the performance.

One of the possible processes which affect the production of

crystals in weightlessness may be barodiffusion. Its effect,

however, is only noticeable when a number of conditions are /20

fulfilled. In order to determine these., let us evaluate the

effect of a centrifugal field on the redistribution of the

components in the mixture. Limiting ourselves for the sake of

simplicity to the case of an ideal binary mixture, we set down:

(53)

^ llTV/**"'Liat»M (54)
1V- $i 9* J

Here GI is the concentration (the number of molecules in a

unit volume), i = 1, 2. The index "1" refers to the heavy

component, "2" to the light component, ojy is the angular

velocity of rotation, xi is the. molar share, yi is the molec-

ular weight, pi is the density of the pure matter, S is the

coefficient of sedimentation, R is the universal gas constant,

T is the temperature of the mixture, r is the distance from the

axis of rotation.

18



Assuming S/p is a constant for the given mixture, we

find that the ratio of the concentration at the points r! and

r2 is equal to

With this functional relationship one can determine, for example,

the value of the distance necessary for the generation of baro-

dif fusion. So, for example, for germanium lightened with

silicon (xi = 0.99, xa = 0.01), we have S^> = 5 x 10~6 sec2/m2,

ra - ri = 10~2 m, wy = 8 x 10~
2 sec~2.

When the concentrations €2(^2) and Cz(^i) differ by 1%,

the power of the exponent in (55) is equal to ~ 0.01. This

means (ri + r2)/R = r 0 ~ 2.5 x 10
6 m

Obviously, only other, more favorable values in equation (55)

will lead to observation of the effect of barodif fusion in the

preparation of crystals under the real conditions of space

flight. /21

As has already been indicated above, another possible

process is the generation of thermocapillary convection at the

surface of the material. Its intensity is defined by the

Marangoni criterion:

- 3<2g. A Tel
"" (56)

where o is the coefficient of surface tension, AT is the fall

of temperature in the surface layer, and a is the thermal con-

ductivity. The relationship between the strength of thermo-

capillary and natural convection is evaluated by a ratio of

the criteria:

19



(57>

or, more correctly

~ "' (58)

The velocity of the capillary motion is defined by the expression

(50)

where r is the capillary diameter, a is the angle of inclination

of the capillary to the horizontal, £ is the length of the

column of liquid in the capillary, and 6C is the moistening

angle.

In the case of ideal .weightlessness,

and

(61)

where T is the rise time of the melt in the capillary to the

height I with velocity y . A measure of the relative strength

of the capillary force in the melt is the Bond criterion: /22

8 0 " " <62>

It is not difficult to see that if n is small the capillary force

prevails, and the surface is strongly distorted.

20



As is clear in the Marangoni and Bond criteria, the value

of the surface tension <p 0 plays a decisive role. This value

is important in the study of interphasic tension, which in the

process of crystallization in weightlessness can sometimes play

a determining role. Let us examine how this parameter varies

in different materials, with the condition that we will only

consider homogeneous liquids. The expressions for the deter-

mination of . the coefficient of surface tension are quite

numerous. They all correlate to one model or another of

liquidity and have their advantages and disadvantages. We

are greatly interested in the dependence of the surface tension

on the curvature of the surface of the melt, which can be

described with sufficient accuracy by the thermodynamic equation

of Gibbs . The dependence has the form

du. (638? B S5£&33f 5 '

where r is the radius of the spherical surface of tension, and

& is the distance between the surface of tension and the Gibbs

surface of the section.- The concept of surface tension repre-

sents an isobaric-isothermal potential and can be reversed in

principle in application. In the first approximation, surface

layers can be considered to be phases of variable content,

whose composition depends on the boundaries separating the

phases. From a thermodynamic viewpoint, the process of formation

of a single phase has a surface tension of

(64) /23

where Fs is the specific free surface energy (equal to Us - TSS),

Us is the. total internal energy of the hypothetical surface

phase, Ss is the surface change in entropy, y is the chemical

potential, and F is the adsorption.
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The value

(65)

where Ns is the number of particles, in the surface phase, NI

is the number of particles in the macrophase portion, A is the

increase of the area .cf the two phases, hef is the thickness

of the surface phase, equal to the distance from the inter-

phasic surface to a hypothetical surface where the composition

of the phase does not differ from the composition of the volume

within, and C and Ci are the concentrations of the components.

For a multicomponent phase,

t£*

40 = fs-'Z-fll
fl (66)

6-a/

where k is the number of components, composed of T-particles.

It is obvious that these functional relationships are of a

rapid descriptive character, yet they show in what direction

the process of surface tension will flow and that in a clear

way they do not depend on the strength of the tension. In

order to determine the temperature variation of the coefficient

of surface tension, it is necessary to take account of the fact

the density in the region of a phase transition changes com-

pletely over a distance of the order of a molecular diameter

with strongly varying oscillations. In this circumstance it

is necessary to distinguish liquid metals from nonmetals, since

the intraionic forces in metals depend on densities. It is

extremely important to establish the inversion curve <& 0 = f (T) ,

figure 2, for various metallic liquids. These values were /24

obtained in liquids in equilibrium with a saturated gas in order

to eliminate transport of material across the liquid-gas inter-

face. Confirmation of the presence of an inversion of Q o is
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provided by the observation, on resting drops of liquid metal,

of superficial grains whose form and dimensions appear to be

related to the tendency of the system toward an inversion

<£ o = f(T). Analysis has shown .that all these grains are based

on planes, the planes of close packing. Beginning with what has

already been said, it is possible to. propose a physical model

of surface tension which expresses it in terms of the free energy

necessary to remove an atom from the volume of the liquid to a

surface at T = 0°K, minus the change in the free energy propor-

tional to the ratio of the characteristic frequency of oscilla-

tion in the volume and at the surface. In this treatment,

superficial capillary waves are regarded as elastic waves and

used for the description of thermal processes in the melt. It

must always be borne in mind that if there is vapor escaping

from the surface of the melt, that is, if the melt is not in

equilibrium, then there will be a decrease in surface tension

at all temperatures.

A well-known theory suggests that if an oscillation of

density exists in the liquid it will always produce the

inversion fco = f(T). Unfortunately, we lack a mathematical

description of these processes which is sufficiently precise

for quantitative calculations. We can conclude, however, that

surface tension, especially in weightlessness, can play an

important role in the process of crystalline formation and

changes substantially the laws of behavior obtained from the

system of equations (1-4). This effect should be particularly

pronounced in the growth of crystals of small dimensions (and

it is with just these that a majority of the technological

processes in space are now conducted) because of the compara-

tively extensive propagation of fluctuations in surface

phenomena, especially that of an inversion of surface tension.

The functional relations which we have obtained of this process, /25

when applied to quantitative calculations and.related to the
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system of equations (1-4), will undoubtedly/ lead to a more

exact evaluation not only of the form but also of the quality

of materials produced in weightlessness.

Besides making use of the value of the surface tension,

it is also necessary to analyze thoroughly the process of

wetting of the wals of the container by the liquid. This pro-

cess is governed by the local moistening angle 0C/ which comes

into the balance equation in the form

4̂ 0" (67) ^
where xh-vi *~s ̂e coe^^icient of surface tension between the

liquid and its vapor, ^ 2^ _T i-
s that between the liquid and the

wall of the vessel, and ^.D_T
 is that between the vapor and the

wall of the vessel. We should note here that the local moisten-

ing angle is an autonomous physical parameter whose theory has

been poorly developed. We can make the following comments at

this point. First, the value of 9 is a physical constant for

a particular vapor, liquid and solid, and should be the same

under terrestrial and space conditions. However, this condition

can be violated in the neighborhood of a critical point where

the thickness of the transition layer between the liquid and

vapor increases, the compressibility increases, and the strength

of the tension provides a large portion of the surface energy.

Second, despite the assumption of a constant local moistening

angle, the ratio of the radius of the sphere assumed by the

liquid, h, 'to the radius of the container, R, plays an important

role in the behavior of the liquid in the container. Thus it

has been shown that at high initial values of the ratio (h/R > 2)

even nonmoistening liquids can form spheres of gas within the

liquid in weightlessness, while for small values (h/R < 2)

liquid can form vapor within a gas even at 0C < 90°. We must

note that the existing thermodynamic models, based.on the /26
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analysis of the free energy of a system, qualitatively describe

the effect of the local moistening angle of a liquid in a con-

tainer. The assumption of a regular functional relationship,

however, which makes it. possible to include this process in

the system of equations (1-4), is accompanied by great diffi-

culties. This is no less necessary in the analysis of results,

even if only in order to evaluate qualitatively the effect of

these forces on the process of obtaining crystalline materials

and their quality in weightlessness.

Somewhat unconnected to the foregoing, there is the ques-

tion of possible internal activity during the process of

preparing crystalline materials in weightlessness, although,

if it takes place it must be included in a general way in the

overall system of equations describing the phenomenon as a

whole. Among such activity there are also processes whose

effect can be beneficial to the quality of the material prepared

in weightlessness. Unfortunately this question has been hardly

studied in the course of the general analysis of the flow of

technological processes in a state of weightlessness. To be

sure, much more has been done in this regard in the area of

the study of periodic nonlinear control oscillations on

separate sides of technological processes (intermingling of the

melt, outgassing, formation of small parts from the melt, etc.).

Here a series of experimental studies have been completed, and

the general theory is very well known on the basis of the theory

of nonlinear oscillation. The joint solution of these functions

together with the equations of the transport processes has not

been completed, however, due to the mathematical complexity

of the analysis. The solutions of these problems do possess

undoubted practical interest, however.

In conclusion we may say the present work examines and

sets out ways of considering the fundamental phenomena determining
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the flow of processes producing crystalline materials in space.

Naturally, in such a small work, we do not have the possibility /27

of considering in detail all the known phenomena affecting

technological processes in space and of producing a mathematical

exposition of the separate functional relationships we have

given. Nonetheless, we can state that, based on the analysis

performed here of the general functional relationships, we can

already, establish with substantial theoretical assurance the

suitability of performing one process or another, or the

suitability of producing one material or another in space.

For this it is necessary to know the temperature dependences

of the physical parameters introduced in the equations adduced

above, and the criteria for materials in liquid or gaseous states

and their changes at points of phase transition. Unfortunately,

these properties either have not been investigated at all or

have only been partially studied for many promising materials

in space technology (an incomplete collection of properties,

for example, or a narrow temperature interval, etc.). This

in turn makes it impossible at this point to perform many

quantitative calculations. In those cases where the present-

day understanding makes it impossible to give a quantitative

or qualitative analysis of the action of processes in space,

it is necessary to perform further theoretical and experimental

study. We have attempted to give some direction to these

studies in the present work.
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FIGURES
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Fig. 1. Distribution of the mixture along the
front of crystallization in CdxHg;L_xTe.

Fig. 2. Inversion or turning of surface tension,
shown in dynes/cm, with temperature T of the
melt (1: cadmium, 2: zinc).
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