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Subscripts: 

AOS Denotes a parameter associated with the AOS point 

B Denotes a vector measured from the lower boundary 

(i.e., base) of a polyhedron 

CA Denotes a parameter associated with the closest 

approach point 
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an event 
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Superscripts: 
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coordinate system 
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1.0 	 INTRODUCTION
 

This document provides the level B/C mathematical specifications
 

for the Area Targets and Space Volumes Processor (ATSVP). Pur

suant to the requirements of reference 1, this processor is de

signed to compute the acquisition-of-signal (AOS) and loss-of

signal (LOS) times for the following:
 

a. Area targets
 
(1) 	Earth-referenced circles which are specified by a
 

latitude, longitude, altitude, and radius.
 

(2) 	Celestial circles which are specified by a right
 

ascension, declination, and angular radius.
 

(3) 	Earth-referenced polygons which are an arbitrary
 

Earth-fixed figure having up to five sides with the
 
"corner points" defined by latitude, longitude, and
 

altitude.
 

(4) 	Celestial polygons which are an arbitrary, inertially
 

fixed figure having up to five sides with the corner
 

points defined by right ascension and declination on
 

the celestial sphere.
 

b. 	Space volumes
 

(1) 	Earth-referenced space volumes which are an arbitrary,
 

Earth-fixed, five-sided polyhedron. These volumes are
 

defined by'a lower-limit polygon at an altitude, h!,
 

and the projection of this polygon to an altitude, h2.
 
'
The corner points of the polygon are defined by
 

latitudes and longitudes and rotate with the Earth.
 

(2) 	Celestial-fixed spice volumes which are an arbitrary,
 

inertially fixed, five-sided polyhedron. These volumes
 

are defined by a lower-limit polygon at an altitude, hl,
 

and the projection of this polygon to an altitude, h2.
 

The corner points of the-polygon are defined by right
 

ascension and declination on the celestial sphere.
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The AOS and LOS times for these targets are defined (ref. 1) as
 

follows:
 

a. 	Ground circles and polygons
 

AOS - the time corresponding to the first subsatellite point
 

to lie just inside the area.
 

LOS - the time corresponding to the last subsatellite point
 

just prior to exiting the area.
 

b. 	Celestial circles and polygons
 

AOS - the time corresponding to the first zenith point to lie
 

just inside the area.
 

LOS - the time corresponding to the last zenith point just
 

prior to exiting the area.
 

C. 	Earth-referenced and celestial-fixed space volumes
 

AOS - the time at which the spacecraft (S/C) is just entering
 

the volume.
 

LOS - the time just prior to the S/C exiting the volume.
 

Six data tables will contain the information necessary to completely
 

describe the area targets and space volumes. These tables (ref. 1)
 

are as follows:
 

a. Ground targets table containing 10 targets in 1 block of data. 

b. Celestial circles table containing 10 targets in 1 block of data. 

c. Ground polygons table containing 20 targets in 2 blocks of data. 

d. Celestial polygons table containing 10 targets in 1 block of data 

e. Earth-referenced space volumes table containing 10 targets in 

1 block of data. 

f. Celestial-fixed volumes table containing 10 targets in 1 block 

of data. 

Section 2 of this document describes the characteristics of the
 

area targets and space volumes and provides the mathematical
 
equations necessary to determine whether the S/C lies within
 

the area target or space volume. These equations provide a
 

detailed model of the target geometry and will be used during
 

the precise numerical search.
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Section 3 discusses a semianalytical technique for predicting
 

the AOS and LOS time periods. This technique is designed to
 

bound the actual visibility period using a simplified target
 

geometry model and unperturbed orbital motion. Its principal
 

purpose is to reduce the burden on the precise numerical search
 
by eliminating regions of the S/C orbit where AOS and LOS times
 

are physically impossible. Section 4 provides a functional over

view of the ATSVP. This section outlines the overall process
 

required to determine precise AOS and LOS times.
 

Section 5 presents the detailed logic flow for the ATSVP. This
 

section integrates the functional overview presented in section
 

4 with the equations and approach presented in sections 2 and 3
 

and the appendixes. Appendix A discusses the procedure for sub

dividing complex concave polygons into two or more simpler convex
 

segments. The purpose of this subdivision process is to permit
 

the equations in section 2 to be used on a segment-by-segment
 

basis to test for containment. Appendix B provides a solution
 

to the conic intersection equations used in section 3 for
 

elestial-fixed targets.
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2.0 	 AREA TARGETS AND SPACE VOLUMES CHARACTERISTICS AND CONTAINMENT
 
CRITERIA
 

The following subsections discuss the characteristics of each of
 

the area targets and space volumes presented in section 1. The
 

mathematical equations necessary to determine whether the S/C lies
 

within the area target or space volume are also developed and dis

cussed.
 

Two reference coordinate systems will be used. The inertial
 

Aries mean-of-1950 (M50) coordinate system (fig' 2-1) will be the
 

reference system when dealing with area targets and space volumes
 

which remain inertially fixed. The rotating geocentric coordinate
 

system (fig. 2-2) will be used when dealing with area targets and
 

space volumes which rotate with the Earth.
 

Each of the following six subsections is further subdivided into
 

three topics:
 

a. Procedure - a brief description of the steps to be performed. 

b. Equations - a statement of the input parameter requirements 

and development of the mathematical equations. 

C. Assumptions and limitations - a description of any simplifying 

assumptions and/or mathematical restrictions. 

For convenience, section 2.7 summarizes the equations for all of
 

the area targets and space volumes.
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M
 

'Earth's mean rotationdl
 
axis of epoch
 

Center of 
Earth
 

Mean vernal
 
equinox-of epoch Mean equator
 

,of epoch
 

- Cartesian, coordinatj
NAME: 	 Aries mean-of-1950", system.
 

ORIGIN: 	 The center of the Earth.
 

ORIENTATION: 	 The epoch is the beginning of Besselian year 1950 or Julian
 
ephemeris date 2433282.423357.
 

The -XM-YM plane is the mean Earth's equator of epoch.
 

The XM axis is directed towards the mean vernal equinox of epoch
 

The Z. axis is directed along the Earth's mean rotational axis
 
of epoch and is positive north.
 

The YM axis completes a right-handed system.
 

CHARACTERISTICS: 	 Inertial, right-handed, Cartesian system.
 

Figure 2-1.- Aries mean-of-1950 coordinate system.
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NAME: Geocentric coordinate system
 

ORIGIN: Center of the Earth
 

ORIENTATION: XG - YG plane is the Earth's true-of-date equator
 

XG 	passes through the Greenwich meridian
 

is along the Earth's rotational axis
ZG 


YG completes the right-handed system
 

CHARACTERISTICS: Rotating, right-handed, Earth-fixed
 

Figure 2-2.- Rotating geocentric coordinate system.
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2.1 EARTH-REPERENCED CIRCLES
 

Earth-referenced circles are defined to be circular ground target
 

areas whose centers are defined by geodetic latitude, longitude,
 

and altitude (fig. 2-3). The S/C lies within this ground target
 

area if its subsatellite point lies within the perimeter of the
 

circular area.
 

2.1.1 Procedure
 

The following procedure will be used to determine whether the SIC
 

lies within the ground target area:
 

a. The geodetic coordinates of the ground target area will be 

transformed to the geocentric system. 

b. The SIC positioh vector will be transformed from the MS0 

system to the geocentric system. 

c. A test will be performed to determine whether the S/C subsat

ellite point lies within the perimeter of the ground target 

area. 

2.1.2 Equations
 

The following parameters are required:
 

and A - geodetic latitude and longitude, respectively, of the 

center of the Earth-referenced circle (fig. 2-4) 

h - altitude of the Earth-referenced circle, measured with 

respect to the Fischer ellipsoid of 1960 (fig. 2-4) 

r - radius of the Earth-referenced circle (fig. 2-3)
c 

Rsc - S/C position vector in the P150 system (fig. 2-3) 

t - time corresponding to R
 

[RNP]5TE -Rotation, nutation, and precession (RNP) matrix which
 

is used to transform vectors from the M50 system to the
 

true-of-epoch inertial (TEI) coordinate system
 

te - epoch time corresponding to the RNP matrix
 

R - mean equatorial radius for the Fischer ellipsoid of 1960
 
em
 

2-4 



Sc
 

Fischer
 

ellipsoid
 

Figure 2-3.- Earth-referenced circle.
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zG
 

CP
 

h 

YG 

XC equator
 

Prime (Greenwich) e
 
meridian
 

NAME: 	 Geodetic coordinate system.
 

ORIGIN: 	 This system consists of a set of parameters rather than
 
a coordinate system; therefore, no origin is specified.
 

ORIENTATION: 	 This system of parameters is based on an ellipsoidal model
 
of the Earth (e.g., the Fischer ellipse of 1960). For
 
any point of interest we define a line, known as the geodetic
 
local,vertical, which is perpendicular to the ellipsoid
 
and which contains the point of interest.
 

h, geodetic altitude, is the distance from the point of
 
interest to the reference ellipsoid, measured along the
 
geodetic local vertical, and is positive for points out
side the ellipsoid.
 

X is the longitude measured in the plane of the Earth's
 
true equator from the prime (Greenwich) meridian to the
 
local meridian, measured positive eastward.
 

4 is the geodetic latitude, measured in the plane of the
 
local meridian from the Earth's true equator to the geodetic
 
local vertical, measured positive north from the equator.
 

NOTE: 	 A detailed explanation of declination, geodetic
 
latitude, and geocentric latitude is provided
 
on figure 2-4(b).
 

CHARACTERISTICS: 	 Rotating polar coordinate parameters. Only position vectors
 
are expressed in this coordinate system. Velocity vectors
 
should be expressed in the Aries mean-of-1950, or the Aries
 
true-of-date, polar for inertial or quasi-inertial repre
sentations, respectively. The Fischer ellipsoid model
 
should be used with this system.
 

(a) Basic definitions.
 

Figure 2-4.- Geodetic coordinate System.
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G
 

'K
 

Plane
 

NAME: Geodetic coordinate system of point P.
 

DEFINITIONS: h is the altitude of point P measured perpendicular
 
from the surface of the referenced ellipsoid.
 

is the geodetic latitude of point P.
 

4C is the geocentric latitude of point P.
 

6 is the angle between radius vector and equatorial plane

(declination).
 

X is the longitude of point P. Angle (+ east) between
 
plane of the figure and the plane formed by the Greenwich
 
meridian.
 

(b) Detailed explanation
 

Figure 2-4.- Concluded.
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F - flattening coefficient for the Fischer ellipsoid of 1960
 

W - Earth rotation rate
 
e 

The first step is to transform the ground target area from the geo

detic system to the geocentric system. The vector from the
 

center of the Earth to the center of the ground target area can
 

be expressed in the rotating geocentric system by
 

(hi+ aF)COS X Cos * 
CB (h + a0) sin X cos (2-1) 

Bh + (1 - F)2 a] sin 2 

where
 

a 	 . em (2-2) 

- F)2 2Vcos 2 + (1 sin ' 

The second step is to transform the S/C position vector fromithe
 

M50 system to the geocentric system. This is accomplished by
 

a. 	Transforming the vector from the M50 system to the TEI system
 

using the RNP matrix.
 

b. 	Transforming the resultant vector from the TEI system to the
 

geocentric system.
 

The 	S/C position vector in the TEI system is given by
 

TEI 	= ~[R ]EM 0EI (2-3)so 


The S/C position vector in the geocentric system (fig. 2-5) is
 

given by
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ZTEI' ZG Greenwich meridian 

Greenwich meridian at time, t 
at epoch time (te) we 

0' YTEI 

xTNI XG 

We)Ct teI 

Figure 2-5.- Relationship I:etween TEI and.
 
rotating geocentric systems.
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cos AX sin AX 0 G 

sc sin AX Cos AX 0 SC (2-4) 

0 0 1 TEI 

where
 

AI = we (t - t e ) 	 (2-5) 

The final step is to determine whether the S/C subsatellite point
 
lies within the ground target area (fig. 2-3). The angle from
G
 
CB to the perimeter of the circular ground target area, 
 YA ,
 
is given (in degrees) by
 

120 	 (2-6)
7 

The angle from G 'to the S/C, iB 	 S,' given by 

S=Cos -1 c 	 (2-7) 

The S/C lies within the ground target area if
 

YS 	-<YA (2-8)
 

2.1.3 Assumptions and Limitations
 

The following assumptions are implicit in the equations presented
 

in section 2.1.2:
 

a. 	The S/C geocentric subsatellite point is used to compute entry
 

into the ground target area.
 

b. 	The effects of polar nutation and precession from time t to
 
e 

time t can be neglected.
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C. The radius of the Earth-referenced circle, rc is a
, 


segment of arc.
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2.2 CELESTIAL CIRCLES
 

Celestial circles are defined to be circular areas on the celestial
 

sphere (fig. 2-6). The center of this area target is defined by
 

right ascension and declination. The criterion for a S/C to lie
 

within this area is for the S/C zenith point to lie within the
 

perimeter of the celestial circle.
 

2.2.1 Procedure
 

The following procedure will be used to determine whether the S/C
 

lies within the celestial circle:
 

a. 	The unit vector along the centerline of the celestial circle
 

will be computed in the M50 system.
 

b. 	The dot product between this vector and the S/C position
 

vector will be formed to determine whether the S/C lies
 

within the celestial circle.
 

2.2.2 Equations
 

The 	following parameters are required:
 

aA and 6 A - the right ascension and declination, respectively, of
 

the centerline of the celestial circle expressed in
 

the M50 system (fig. 2-6).
 

YA - the celestial circle angular radius (fig. 2-6).
 

sc - S/C position vector in the M50 system.
 

The 	unit vector from the center of the Earth to the center of the
A 

celestial circle, CB, is given by
 

cos A cos aA6
 

C = sin aA cos 6A 	 (2-9) 

sin &A
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Earth
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Figure 2-6.- Containment test for celestial circles.
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The angle between this vector and the S/C, yS, is 

Y= CosTC 
Rsc

J +Sj (2-la) 

The S/C lies within the celestial circle if 

YS -< YA (2-11) 

2.2.3 

None. 

Assumptions and Limitations 
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2.3 EARTH-REFERENCED POLYGONS
 

The Earth-referenced polygon is defined to be an arbitrary planar
 

figure having up to five sides (fig. 2-7). This figure is fixed
 

with respect to the rotating Earth. The corner points (i.e.,
 

vertices) of this polygon are defined by geodetic latitude, longi

tude, and altitude. The basic criterion for penetration is to
 

ensure that Ehe S/C subsatellite point lies within the perimeter
 

of the ground target area.
 

2.3.1 Procedure
 

The basic procedure for this ground target area is similar to the
 

procedure presented in section 2.1.1. It consists of
 

a. Transforming the geodetic coordinates of each polygon vertex 

to the geocentric system. 

b. Transforming the S/C position vector from the M50 system to 

the geocentric system. 

c. Testing to determine whether the S/C is interior to all 

planes defined by the sides of the polygon. 

2.3.2 Equations
 

The following parameters are required:
 

n - number of sides
 

and Xi - geodetic latitude and longitude, respectively, of
 

each vertex (fig. 2-7)
 
hi - geodetic altitude of each vertex (fig. 2-7)
 

R - S/C position vector in the M50 system
sc
 
t - time corresponding to Pi
i_ TEIsc 

LRNPTE0 - RNP matrix to transform from the M50 system to the 

TEI system 

te - epoch time corresponding to the RNP matrix 

R - mean equatorial radius for the Fischer ellipsoid of 1960em
 
F - flattening coefficient for the Fischer ellipsoid of 1960
 

W - Earth rotation rate
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Figure 2-7.- Earth-referenced polygon.
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The first step is to transform the parameters defining each
 
vertex of the polygon from the geodetic system to the rotating
 

geocentric system. These vectors are given by
 

(hi + aF) cos Xi cos i
 

1 2
(hi + aF) sin Xi cos 4i.i = , ,3 i...n 

+ (1 - F) 2 aF1sin i (2-12) 

where
 

a F is defined by equation 2-2 with 4i replacing '.
 

The S/C position vector in the geocentric system, sG is then
 

obtained by using equations 2-3 through 2-5.
 

The next step in the procedure is to determine whether the S/C
 
lies interior to all planes defined by the sides of the polygon.
 
Figures 2-8 and 2-9 illustrate the geometry. All vectors in these
 
figures are with respect to the geocentric system. The centroid
 

of the ground target area, C3 , (fig. 2-8) is defined as
 

n 

G i=l 
 (2-13)B n 

The unit normal vectors to each side of the polygon (fig. 2-9) are
 

given by
 
Ri+ X R. 

i=1i+iXiFI 
 1 = 1,2,3,.. .n-l (2-14a) 

AG X 
n XR n 
 (2-14b)
 

1 n
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Figure 2-8.-
 Centroid of Earth-referenced polygons.
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Figure 2-9.-
 Containment test for Earth-referenced polygons.
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The 	perpendicular distance from G to each polygon side is

B
 

di = N. - i = 1,2,3,.. .n (2-15) 

The 	S/C must lie interior to the ith plane if
 

'G

N. 	 . 

-*-G 
dd (2-16) 

where
 

+G 

PB sc B 	 (2-17) 

If equation 2-16 is satisfied for all sides, then the S/C sub

satellite point lies within the perimeter of the polygon.
 

2.3.3 Assumptions and Limitations
 

The 	following assumptions and limitations are implicit in the
 

equations presented in section 2.3.2:
 

a. 	The S/C geocentric subsatellite point is used to determine
 

entry into the ground target area.
 

b. 	The effects of polar nutation and precessionfrom time t
e 
to 	t can be neglected.
 

c. 	The vertices of the polygon are specified in a counterclockwise
 

order as viewed from the top.
 

d. 	The polygon is convex; i.e., the interior angles between the
 

sides defining the vertices are less than 180 degrees.
1
 

e. 	 The angular separation between two consecutive vertices is
 

sufficient to permit a nonzero cross product (eq. 2-14).
 

f. 	The S/C and the ground target area lie in the same hemisphere.
 

The procedure discussed in section 3 will assure this
 

condition.
 

1 Concave polygons can be accommodated by subdividing them into
 
two or more convex polygons. Appendix A discusses this procedure.
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2.4 CELESTIAL POLYGONS
 

Celestial polygons are defined to be arbitrary figures having up
 

to five sides with the corner points (i.e., vertices) defined by
 

right ascension and declination on the celestial sphere. The
 

criterion for-penetration into this area is to ensure that the
 

S/C zenith point lies within the confines of the polygon. Figure
 

2-10 illustrates the celestial polygon. It is noted that this
 

polygon also represents a variable area polyhedron which remains
 

inertially fixed.
 

2.4.1 Procedure
 

The basic procedure for this area target is similar to the proce

dure presented in section 2.3.1, i.e.,:
 

a. 	The unit vector along the "centroid" of the polyhedron will
 

be computed in the M50 system.
 

b. 	Tests will be made to determine whether the S/C is interior
 

to all planes defined by the sides of the polyhedron.
 

2.4.2. Equations
 

The 	following parameters are required:
 

n - number of sides
 

ai and 6i - right ascension and declination, respectively, of each
 

vertex in the M50 system (i = 1,2,3,.. .n)
 

S- S/C position vector in the M50 system
 

The first step is to determine the unit vector along the centroid
 

of the polyhedron. The unit vectors from the center of the Earth
 

to each vertex in the M50 system are given by
 

cos a. cos 6.1 1 

R. 	= sin a. cos 6. i = 1,2,3,.. .n (2-18) 

sin 6 . 
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Figure 2-10.- Celestial polygon.
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The 	unit vector along the centroid of the polyhedron is
 

C =(2-19) 

where
 

= i=l 	 (2-20) 
n 

The final step is to determine whether the S/C lies interior to all
 

planes defined by the sides of the polyhedron. Figure 2-11 illu

strates the geometry. The slant range from C to the S/C is
 

PB = Rsc C 	 (2-21) 

Equations 2-14 through 2-16 (with R., C., and p. replaced by
 
A A 

Ri, C, and pB' respectively) are then used to determine whether
 

the 	S/C is interior to all polyhedron planes.
 

2.4.3 Assumptions and Limitations
 

The following assumptions and limitations are implicit in the
 

equations presented in section 2.4.2:
 

a. 	The vertices of the polygon are specified in a counterclockwise
 

order as viewed from the top.
 

b. 	The polygon is convex; i.e., the interior angles between the
 
are less than 180 degrees.

1
 
sides defining the vertices 


c. 	The angular separation between two consecutive vertices is
 

sufficient to permit a nonzero cross product (eq. 2-14).
 

d. 	The S/C and the area target lie within the same, hemisphere.
 

The procedure outlined in section 3 will assure this condition.
 

1Concave polygons can be accommodated by subdividing them
 

into two or more convex polygons as discussed in appendix A.
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Figure 2-11.- Containment test for celestial polygons.
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2.5 EARTH-REFERENCED SPACE VOLUMES
 

The Earth-referenced space volumes are arbitrary five-sided poly

hedrons which are defined by a lower-limit polygon at an altitude,
 

hI and the projection of this polygon to an altitude, h2 ' The
 , 


vertices of this polygon are defined by geodetic latitude and
 

longitude and rotate with the Earth. Figure 2-12 illustrates
 

this type of space volume. As shown, the planar cross sectional
 

area of this polyhedron remains constant with respect to altitude.
 

2.5.1 Procedure
 

The following procedure will be used to determine whether the S/C
 

lies within the space volume:
 

a. 	The geodetic parameters defining each vertex of the lower
 

boundary will be transformed to geocentric position vectors.
 

b. 	The centroid vector to the lower boundary will be computed
 

in the geocentric system.
 

c. 	The S/C position vector will be transformed from the M50
 

system to the geocentric system.
 

d. 	Tests will be performed to ensure that the S/C lies above the
 

lower boundary and below the upper boundary. If either of
 

these tests fails, then no further computations are re

quired.
 

e. 	Assuming the previous step is passed, tests will be performed
 

to determine whether the S/C is interior to all planes
 

defined by the sides of the polyhedron.
 

2.5.2 Equations
 

The 	following parameters are required:
 

and i geodetic latitude and longitude, respectively, of 

each vertex of the lower boundary (i = 1,2,3,4,5) 

h - geodetic altitude of the lower boundary 

h2 - geodetic altitude of the upper boundary 
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Figure 2-12.- Constant area polyhedron.
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R - S/C position vector in the M50 system 

t 
TEI 

- time corresponding to R
lpmarxt 

[RNP]M50 -RNP matrix to transform from the M50 to TEI system 

t e epoch time corresponding to the RNP matrix 

R e em mean equatorial radius for the Fischer ellipsoid 

of 1960 

F - flattening coefficient for the Fischer ellipsoid 

of 1960 

- Earth rotation rate 

The first step is to transform the parameters defining each
 

vertex of the lower boundary to geocentric position vectors.
 

Equation 2-12 (with hi = 0) provides the necessary transformation.
 

The centroid of these vectors is given by
 

n 

G i=l (2-22) 
n 

The geocentric vector to the centroid of the lower boundary
 

(fig. 2-13) is given by
 

-*G : l15 C 23
cB = G --

C =C +h (2-23) 

Next, the S/C position vector in the geocentric system, , is 
sc 

computed using equations 2-3 through 2-5.
 

The fourth step in the procedure is to ensure that the S/C lies
 

between the upper and lower boundaries. Figure 2-13 illustrates
 

the geometry. All vectors in this figure are with respect to
 
CB to the S/C, pG


the geocentric system. The slant range from 2C PB'
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Figure 2-13.- Boundary tests for constant area polyhedrons.
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is given by
 

+G +G G
 
Rsc 	- CB (2-24)


PBsc C
 

The S/C lies above the lower boundary and below the upper boundary
 

if
 

C 
h- h > BBB > 0 (2-25)2 1eB_-


Assuming that equation 2-25 is, satisfied, the final step is to
 

determine whether the S/C lies interior to the side planes of
 

the polyhedron. Figure 2-14 illustrates the geometry. The unit
 

normal vectors from C to each side of the polygon are given by
 
B
 

G 	 + 
N . B 	 i 1,2,3,4 (2-26a)
 

I 	 G 

G 'iiG_ G 

( 5 G) •	 (2-26b)
N - 5 BG - ii --

Equations 2-15 and 2-16 are then used to determine whether the
 

S/C 	is contained within the polyhedron.
 

2.5.3 Assumptions and Limitations
 

The 	following assumptions and limitations are implicit in the
 

equations presented in section 2.5.2:
 

a. 	The altitude of the lower boundary, hi, is measured with
 

respect to the centroid of the vertices which lie on the
 

Fischer ellipsoid.
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Figure 2-14.- Containent test for constant area polyhedrons.
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b. The effects of polar nutation and precession from time t 
e 

to t can be neglected. 

c. The vertices are specified in a counterclockwise order as 

viewed from the top. 

d. The planar area of the polyhedron is convex; i.e., the inter

ior angles between the sides defining the vertices are less 

than 180 degrees.
1 

e. The local horizon for determining whether the S/C is between 

the upper and lower boundaries is perpendicular to the centroid 

vector. 

f. The distance between two consecutive vertices is sufficient 

to permit a nonzero cross product (eq. 2-26). 

1Concave polyhedrons can be accommodated by subdividing them
 

into two or more convex portions as discussed in appendix A.
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2.6 CELESTIAL-FIXED SPACE VOLUMES
 

The celestial-fixed space volumes are arbitrary five-sided poly

hedrons:which are defined by a lower-limit po-lygon at an altitude,
 

hl, and a projection of this polygon to an altitude, h2.. The
 

vertices of the polygon are-defined by right ascension and de

clination and are inertially fixed. Figure 2-12 can aIso be

used to illustrate this type of space volume. As mentione&
 

previously, the planar cross sectional area of this-polyhedron
 

remains constant with respect to altitude
 

2.6..l Procedure
 

The basic procedure for this space volume is very similar to the

procedure presented in section 2.5.1. It consists of':
 

a. Computing the centroid vector to the lower-boundary in the 

M5-0 system. 

b. Testing to ensure that the S/C lies above the1lower boundary 

and below the upper boundary., If either of these tests fails, 

then no further computations are required. 

c. Assuming the previous-step is passed, further tests; will be 

performed to determine whether -theS/C is interior to all 

planes defined by the sides of the polyhedron. 

2.6.2 Equations.
 

The following parameters are required:
 

ai and 6i - right ascension and declination, respectively-, of 

each vertex of the lower boundary in- the M50 system, 

(i = 1,2,3,4,5)
 

h1 - altitude of the lower boundary
 

h2 - altitude of the upper boundary
 

Rem - mean equatorial radius
 

2-32
 



The unit vector to the centroid of the polyhedron, C, is com
puted via equations 2-18 through 2-20. The vector to the centroid
 
of the lower boundary is given by
 

CB = (R em+ h C 	 (2-27)-+G
 

Equations 2-24 and 2-25 (with variables R and CB replaced by
 

RSC and CB, respectively) are theA used to ensure that the S/C
 
lies between the upper and lower boundaries.
 

Assuming equation 2-25 is satisfied, equation 2-26 (with ,

and replaced by CB and respectively) is used to
 

define the unit normal vectors to each side of the polyhedron.
 
Finally, equations 2-15 and 2-16 are used to determine whether
 
the 	S/C lies within the space volume.
 

2.6.3 Assumptions and Limitations
 

The following assumptions and limitations are implicit in the
 
equations presented in section 2.6.2:
 

a. 	The altitudes of the lower and upper boundaries are measured
 
with respect to the mean equatorial radius.
 

b. 	The vertices are specified in a counterclockwise order as
 

viewed from the top.
 

c. 	The planar area of the polyhedron is convex; i.e., the in
terior angles between the sides defining the vertices are
 

less than 180 degrees.
1
 

d. 	The distance between two consecutive vertices is sufficient
 

to permit a nonzero cross product (eq. 2-26).
 

1Concave polyhedrons can be accQmmodated by subdividing
 
them into two or more convex portions as discussed in appendix A.
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2.7 SUMMARY OF EQUATIONS
 

This section summarizes all of the equations presented in the
 

previous sections for the various area targets and spa'ce volumes.
 

The order of presentation and equation numbers correspond to the
 

computation sequence discussed in the text.
 

2.7.1 Earth-Referenced Circles
 

( ) cos X Cos{ p+a)sio cos (2-1) 
( - F) 2aF sin 

where
 

R 
aem (2-2)
 

a cos2 1+ (1 -'F) sin24) 

kTEI = REIE (2-3)scM50
sc 


F cos AX sin AX 0 G 
R cR c -sin AX cos0AX 0 (2-4) 

0 0 1 TEl 

where
 

AX = we (t - te) (2-5) 
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A 

oscl 

C_
B 

180. 
78 

1 
(2-6) 

(2-7) 

2.7.2 Celestial Circles 

YS <- A (2-8) 

B 

sinaA 

sin 

cos 6A (2-9) 

-A 

Co0 - IC B sc (2-10) 

YS -< YA (2-11) 

2.7.3 Earth-Referenced Polygons 

(hi + aF) cos )i cos 

.(hi + a.) sin ci cos 

2-3F)2aJsin4 

i = 1,2,3, ... n (2-12) 
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where 

aF 
aem 
= r 2r 

Cos 

R 
(.

+ (i - F) sin2 i 

(2-2) 

4-TEIc TEI[RNP]M50 Rsc (2-3) 

R
Sc 

= 

[ cos AX sin AX 0 G 
-sin AX cos AX 0 RTEIj se 

0 0 1 TEI 

(2-4) 

where 

AX =- e (t - te) (2-5) 

GCB = i=in- (2-13) 

G . 
Ri+1 X VG 

XRi+ 

1 = 1,2,3,...n-1 (2-14a) 

N-G NG 
G1
1G 

n 
(2-14b) 

di GNN I - Gc i 1,2,3,...n (2-15) 

NG PB < di i = 1,2,3,...n (2-16) 
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where
 

-)-GG 
PB R c -

G 
D (2-17) 

2.7.4 Celestial Polygons 

R. = 

cos a. cos 6i 

sin a. cos 6i 

sin 6. 

i = 1,2,3,.. .n (2-18) 

_C (2-19) 

where 

n 

C - n (2-02 ) 

-9 sc- C (2-21) 

N.-l 
SR-+l X R. 

i = 1,2,3,.. .n-l (2-14a) 

Nn 
R1 
RR1 

XRn 
-x ^ 

(2-14b) 

d. = . i - i = 1,2,3,.. n (2-15) 

N, pB < d. 1 = 1,2,3, ... n (2-16) 
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2.7.5 Earth-Referenced Space Volumes 

aF cos Xi Cos 

a sin Xi cos 

(1 - F) 2 aF sin i 

i = 1,2,3,4,5(2-12) 

where 

F cos 
~cs~-

R 
em 

+ (1 F) sin 
2i 2 -

(2-2) 

5 

-S_ 

G =GCB -G 

i=l 

5 

+ h G 

(2-22) 

(2-23) 

Rsc -RNP-M50 Rsc(23 

RG = 

[co s 

scS 

AX sin A 

AX cos AXAXj 
0 

0 TG 

0 RTEIsc 
1iTEI 

(2-4) 

where 

AX e (t - te (2-5) 

-)GG 
S=R c 

G 
- CB (2-24) 
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G
 

h- h > BBB > 0 
l~~B 

G~GX(-A i 

-G B X - i+l) = 1,2,3,4 

1 x 

^G = G X 

= G .(G _ G 1 

^G -G
 
<
N d. i = 1,2,3,4,5 

2.7.6 Celestial-Fixed Space Volumes
icos6.
c.cos 

Ri = sin ai cos 6i 1i 1,2,3,4,5 

sin 6 i
 

_ C 

where
 

5A
 

ZR.
 

S C - 15 

= RRem + hl C 

(2-25) 

(2-26a) 

(2
 

(2-16)
 

(2-18)
 

(2-19)
 

(2-20)
 

(2-27)
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h2 

pt = RS 

hhB > B 

- CB 

-C 

B > 0 

(2-24) 

(2-25) 

S 
N. 

B X N 
% \S i x (^l 

- i. 
+i^1+1) i =3 1,2,3,4 (2-26a) 

N - JB N 4 (2-26b) 

d. = Ni 

Ni 

-

PB < d 

i 

i 

= 

= 

1,2,3,4,5 

1,2,3,4 

(2-15) 

(2-16) 
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3.0 	 SEMIANALYTICAL'ALGORITHM TO PREDICT AOS AND LOS TIMES
 

This 	section presents a semianalytic technique for predicting AOS
 

and LOS times. This technique is designed to bound the actual
 

visibility periods and uses a simplified geometry model in con

junction with unperturbed orbital motion. Its principal purpose
 

is to reduce the burden on the precise numerical search by
 

eliminating regions of the SiC orbit where AOS and LOS times are
 

physically impossible.
 

The 	basic procedure consists of the following:
 

a. 	Determining the parameters of an outer boundary cone which
 

circumscribes the entire area target or space volume.
 

b. 	Determining whether the orientation of the S/C orbit plane
 

will permit any intersections of the outer boundary cone
 

with the S/C orbit plane.
 

c. 	Assuming intersections are possible for the following:
 

(1) 	 Celestial-fixed targets 

(a) 	Compute the conic intersection points of the outer
 

boundary cone with the S/C orbit plane.
 

(b) Compute predictions of AOS and LOS times
 

ttAOS 	 and tLOS, respectively) for each
 
K KC
 

revolution based upon these intersection points.
 

(2) 	Earth-fixed targets
 

(a) 	Compute the time of closest approach (TCA) of the
 

S/C position vector with the centerline of the
 

outer boundary cone and the corresponding closest
 

approach angle (yCA. These computations are
 

performed on a revolution-by-revolution basis.
 

(b) 	If yCA is less than or equal to the half-cone
 

angle of the outer boundary cone, then compute
 

predictions of AOS and LOS times based upon the
 

times when the SiC lies on the perimeter of the
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outer boundary cone. These times are denoted by
 

tAOSK and t LOS
 

After the AOS and LOS time predictions are determined, the precise
 

numerical search (using the detailed area target and space
 

volume geometry-model discussed in sec. 2) can then be performed
 

over the reduced time regions from tAOSK to tLOSK.
 

The following parameters are .required to predict the AOS and LOS times:
 

t - start time for the search 

tend - end time for the search 

At 

sc0 

- time increment for the search. For the purposes of 

this algorithm, At will be used as a tolerance for 

converging upon the AOS and LOS times for Earth

referenced targets. 

- S/C position vector in the M50 system at tstart* 

Vsc - S/C velocity vector in the M50 system at
 
TEI
 

[RNP]M50 - RNP matrix to transform from the M50 to the TEI
 

system.
 

t - epoch time corresponding to the RNP matrix.
 
e 

The following subsections provide the necessary equations.
 

Section 3.1 discusses the computation of the outer boundary cone
 

parameters. Section 3.2 discusses the technique to determine
 

whether any AOS or LOS times are possible. Section 3.3 presents
 

the equations to predict AOS and LOS times. Section 3.4 discusses
 

the assumptions and limitations implicit in these equations.
 

Two reference coordinate systems are used in these computations.
 

The M50 coordinate system is used when dealing with celestial

fixed targets and the TEI system is used for Earth-referenced
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targets. The TEI system was selected for Earth-referenced targets
 

in order to model the effects of polar nutation*'and ptecession
 

on the Earth's spin axis.
 

For celestial-fixed targets, the M50 Keplerian elements (a, e,
 

i, S, w and M ) at the start time will be computed from R
o sc
 

and V0
 sc
 
0
 

For Earth-referenced.targets, the TEI Keplerian elements at the
 

start time will be computed from REI .and VTEI. Where
SC SC
 
0 0
 

gEI = 2 ]TEI R (3-1)
SC "RPM0 sc0
 

o 0
 

TEI TEI(3-2)

Vsc RNP-M0 sc
 

0 0
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3.1 COMPUTING OUTER BOUNDARY CONE PARAMETERS 

The outer boundary cone is defined by 

a 0 - right ascension of the centerline 

latitude of the centerline
O -


YA - half-cone angle
 

For Earth-referenced targets these parameters will be defined in
 

the TEI system at tstart- 1 For celestial-fixed targets, these
 

parameters will be defined in the M50 system and remain invariant
 

with respect to time.
 

3.1.1 Earth-Referenced Circles
 

The unit vector along the centerline of the cone is given in the
 

TEI system by
 

cos AX - sin AX 0 TEI $G 

C = sin AX cos AX 0 B (3-3) 

0 0 1J CB 

where
 
G
 

CB is given by equation 2-1
 

AX is given by equation 2-5 with t equal to tstart
 

Thus, the right ascension and latitude of the centerline is given
 

in the TEI system (at the start of the search) by
 

ao = tan 1 y (3-4) 

1The TEI system is selected for Earth-referenced targets in
 
order to model the polar nutation and precession from M50 reference
 
to the epoch time of the RNP matrix.
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= 
o sin-I {CTEI (3-5)
 

where
 

cTEI ,(CTEI TEI, EI)
C \x 7Cy
 

The half-cone angle, T A' is given by equation 2-6.
 

3.1.2 Celestial Circles
 

The right ascension, latitude, and half-cone angle in the M50
 

system are given via input
 

ao = a A (3-6)
 

0o = 6A (3-7)
 

3.1.3 Earth-Referenced Polygons,
 

The unit vector along the centerline of the outer boundary cone is
 

given in the TEI system by equation 3-3 where equation 2-13 is used
 

to compute CB* Equations 3-4 and 3-5 are then used to compute
 

a0and 0, respectively. The -outerboundary cone is centered
 

along the centroid vector and has an angular radius which contains
 

the vertex furthest from the centroid vector (fig. 3-1). Thus,
 

the half-cone angle is given by
 

=Amax [oc' )i Ij i = 1,2,3,.. (3-8) 

where
 

max implies the maximum algebraic value
 

is given by equation 2-12.
 
1 
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Figure 3-1.- Circumscribing polygons.
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3.1.4 Celestial Polygons
 

The unit vector along the centerline of the celestial polygon is
 
by euatin 
. qua onsTEI 

given by equation 2-19.- Equations 3-4 and 3-5 (with C replaced
 
by C) are then used to compute ao and 0o; respectively. The
 

half-cone angle which contains the vertex furthest from the centroid
 

is given by
 

YA = max [CO R = 1,2,3,.... (3-9) 

where
 

R is given by equation 2-18.
 

3.1.5 Earth-Referenced Space Volumes
 

The unit vector along the centerline of the outer boundary cone
 

for Earth-referenced space volumes is given by equation 3-3 with
 

G replaced by G (eq. 2-22). Equations 3-4 and 3-5
B
 

are then used to compute a0 and 0o, respectively. Since the
 

Earth-referenced space volume represents a constant area polyhedron
 

(sec. 2.5), the outer boundary cone to be used for predicting AOS
 

and LOS times circumscribes the space volume planar area at the
 
S/C altitude. However, for noncircular orbits, the S/C altitude
 

varies as a function of time and thus the size of the outer
 

boundary cone would also vary as a function of time. The size of
 

the cone is largest at perigee and smallest at apogee. Since the
 
purpose of the outer boundary cone is to'bound the actual visibility
 

region, the half-cone angle at the S/C perigee altitude will be
 

computed and held constant with respect to time. The vector from
 

the center of the Earth to each vertex of the space volume pro

jected to the S/C perigee altitude, Ri (fig. 3-2) is given by
 

] i = 1,2,3, ..n (3-10) 
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Figure 3-2.- Circumscribing space volumes.
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where
 

9.is given 'byequation 2r12
 
G
 

C B is given by equation 2-23
 

R is the S/C perigee radius
p
 

= a(l - e) (3-11)
 

Thus the halfacone angle which contains the vertex furthest from
 

the centerline of the cone is given by
 

Y= max Cos- t I = 1 (3-12) 

3.1.6 Celestial-Fixed Space Volumes
 

The unit vector along the centerline of the outer boundary cone
 

for celestial-fixed space volumes is given by equation 2-19.
 
A TEI A 

Equations 3-4 and 3-5 (with C replaced by C) are then used 

to compute ao and 0 respectively. Since the celestial-fixed
 , 


space volume also represents a constant area polyhedron (sec. 2.6),
 

the outer boundary cone to be used for predicting AOS and LOS times
 

circumscribes the space volume planar area at the S/C perigee
 

altitude (sec. 3.1.5). The vector from the center of the Earth to
 

each vertex of the space volume at the S/C perigee altitude,
 

Ri , is &iven by 

R Ri + R- B 
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where
 

R. is given by equation 2-18
 
3. 

B is given by equation 2-27
 

R is the S/C perigee radius
 

(equation 3-11)
 

Thus
 

-1 3.14 

yA = max cos c i = 1,2,3,...n (3-14) 
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3.2 DETERMINING WHETHER AOS AND LOS TIMES ARE POSSIBLE
 

The following computations will determine whether the relative
 

orientation of the S/C orbit plane and the outer boundary cone
 

will permit any intersections between these two figures. If no
 

intersections are possible, then no AOS or LOS times are possible.
 

Since the Earth-referenced targets rotate with the Earth and the
 

celestial-fixed targets remain inertially fixed, two different
 

types of tests are required. The celestial-fixed situation is
 

the simplest and is discussed first.
 

3.2.1 Celestial-Fixed Targets
 

Figure 3-3 illustrates a celestial-fixed outer boundary cone and
 

a S/C orbit plane. The S/C orbit plane is perpendicular to the
 

unit angular momentum vector which,is given by
 

XXr
 
sc x c 

o o (3-15) 

0 0 

where
 

R and V are the S/C position and velocity vectors, re
0 0 spectively, in the M50 system at the beginning
 

of the search.
 

The centerline of the outer boundary cone, C, is given in the
 

M50 system by
 

Cos CoS 00 


C sin a0 cos to (3-16)
 

sin o
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00 

where
 

a and were computed using the procedure discussed in
 

section 3.1.
 

The intersection points of the outer boundary cone with the S/C
 

orbit plane are denoted by I and 12 on figure 3-3. These
1 


vectors can be found by solving the following conic intersection
 

equations1
 

h I=0 (3-17a) 

C ^ Cos YA (3-17b) 

^ = (3-17c) 

These equations provide 0, 1, or 2 solutions for I. If no
 
solutions are produced, then the relative orientation of the
 

outer boundary cone and the S/C orbit plane does not permit
 

intersections, and no AOS or LOS times are possible. If only
 

one solution is produced, the AOS and LOS times are the same.
 
If two solutions are produced, the AOS and LOS times predictions
 

are made using the method outlined in section 3.3,
 

1The method for solving these equations is presented in
 

appendix B.
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3.2.2 Earth-Referenced Targets
 

Figure 3-4 illustrates an Earth-referenced outer boundary cone
 

at a particular instant of time. This -cone rotates about the.
 

Earth's polar axis. Hence, over one sidereal day, the voltame of
 

space-swept out by the outer boundary cone describes a spherical
 

sector whose upper and lower limits are determined by YA and
 

o (fig. 3-5). Intersections of the S/C orbit plane with this
 

volume of space are possible only if the S/C orbit inclination'
 

exceeds the lower limit of the spherical sector.
 

For posigrade and polar orbits, the S/C orbit plane will intersect
 

the spherical sector only if
l
 

i 5 o- YA (3'18a)
 

For retrograde orbits, intersections are possible Only if1
 

180 t> l - (3-18b) 

where
 

i is the S/C orbit inclination in the TEl system
 

If equation 3-18 is not satisfied, then no intersections are
 

possible and thus no AOS or LOS times'are possible. If equation
 

3-19 is satisfied, then the approach presented in section 3.3 is
 

used to predict AOS and LOS times.-


The absolute.value sign is used in these equations to ac
commodate targets in both the northern and southern hemispheres.
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Figure 3-4.- Earth-referenced outer boundary cone.
 

3-15
 



Upper limit 

Lower limit 
at A .o. 

.... 

.:,outer 

a Spherical sector 
swept out by 
Earth-referenced 

boundary cone 

Orbit plane 

Equatorial plane 

Celestial sphere 

Figure 3-5.- Spherical sector swept out by Earth
referenced outer boundary cone.
 

3-16
 



3.3 PREDICTING AOS AND LOS TIMES
 

The following subsections present the equations necessary to
 
predict AOS and LOS times for celestial-fixed and Earth-referenced
 
targets. These equations assume that the tests performed in
 
section 3.2 have indicated that intersections of the outer boundary
 
cone with the S/C orbit plane are possible.
 

3.3.1 Celestial-Fixed Targets

A 

A 

The intersection vectors, I1 and 12 (sec. 3.2.1), can be
 
used directly to predict the AOS and LOS times. 
 Figure 3-6
 

illustrates the geometry. 
The unit vector in the direction of
 
the ascending node, Q, is given by
 

Cos Q 

= sin R (3-19) 

0 

where
 

= right ascension of the ascending node in the M50
 

system
 
A 

The angles between 0 and the two intersection vectors are given
 
by
 

-X 1 ) (3-20a)
 
Ul= tan
 

-1' 2 (3-20b)
u2 = tan A7 

R.-
 12
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One of these angles corresponds to the AOS point and the other to
 

the LOS point. The appropriate angle can be determined by noting
 

that the visibility period must be less than or equal to one half
 

of the orbit.
 

Thus let
 

-
K = tan 1 1 2) (3-21)
 
12
1^ 1 


If K > 0 

(3-22a)
uAOS =Ul 


(3-23a)
ULOS = U2 


If K < 0 
UAOS = U2 (3-22b)
 

ULOS = u (3-23b)
 

The true anomalies of the AOS and LOS points are given by
 

(3-24)

fAOS/LOS = 'AOS/LOS 


where
 

-wis the argument of perigee of the S/C orbit.
 

These can be converted to AOS and LOS times by
 

os/Los - MAOS/LOS + T (3-25) 

where
 

MAOS/LOS = EAOS/LOS - e sin EAOS/LOS (3-26)
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>r
EAOS/LOSaI OS2Li
I 3
 
EASLS=2 tan-1 14 e tan (fAoS/L ~ (3-27) 

M= 360 (in degrees per unit of time) (3-28)
T 

T = 2 (3-29) 

t =start -- + (R - 1) T (3-30)
 

M
 

R is the revolution number measured with respect to
 

tstart
 

a is the semimajor axis of the S/C orbit
 

e is the eccentricity of the S/C orbit
 

Mo is the S/C mean anomaly at tstart
 

V is the gravitational constant
 

Since both the orbit plane and the celestial-fixed target remain
 

inertially fixed, uAOS and uLOS remain constant. Thus, the
 

AGS and LOS times for future revolutions differ by only the
 

orbital period. The AOS and LOS times, for the subsequent N
 

revolutions are given by
 

t + T K = 1,2,3...N (3-31)
tA 


OK+ 3AOS/LOS
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3.3.2 Earth-Referenced Targets
 

Computation of AOS and LOS times for Earth-referenced targets is
 

somewhat more complicated than for celestial-fixed targets since
 

the orientation of the Earth-referenced target varies as a func

tion of time. The following procedure will be used to estimate
 

the AOS and LOS times:
 

a. 	The TCA of the center of the Earth-referenced outer boundary
 

cone with the S/C position vector will be determined along
 

with the corresponding closest approach angle, YCA. These
 

computations will be performed on a revolution-by-revolution
 

basis.
 

b. 	The closest approach angle from the previous step will be
 

compared with 'A" If YCA > YAe then no AOS or LOS times 

are possible for that revolution, and the previous step will 

be repeated for the next revolution. If YCA ' YA' then 

AOS and LOS times will be computed by solving for the times 

when the angle between the center of the outer boundary cone 

and the S/C position vector is equal to YA" 

3.3.2.1 Determining TCA
 

The 	closest approach point occurs when the S/C position vector
 

:and the center of the outer boundary cone lie in the same hemis

phere and are coplanar (fig. 3-7). Both the S/C and the center
 

of the outer boundary cone are moving with time. The center of
 

the cone is rotating about the Earth's Z axis at the Earth's
 

rotation rate. The S/C is moving about the orbit angular momen

tum vector at a rate which is dependent upon both the orbit period
 

and eccentricity. As a result, the TCA cannot be analytically
 

determined for noncircular/nonequatorial orbits. The TCA can,
 

however, be determined iteratively by the following:
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a. 	Estimating the closest approach point (for the first revolu

tion, this estimate would be based upon tstart; for sub
sequent revolutions, this estimate would be based upon the
 
TCA of the previous revolution plus one orbital period).
 

b. 	Determining the time at which the S/C will reach this point.
 

c. 	Updating the closest approach point based upon the time
 
estimate from the previous step.
 

d. 	Repeating the two previous steps until the difference in
 
time between two successive iterations is less than or equal
 

to the time step, At.
 

The following discussion develops the equations necessary to
 

compute the TCA.
 

the unit vector from the center of the Earth to the center of
 

the outer boundary cone is given by
 

C = sin a cos o (3-32) 

sin o 

where
 

a aO + we(t tstart) 	 (3-33) 

* 	is the initial right ascension of the centerline
 
(sec. 3.1)
 

e is the Earth rotation rate
 

o is the latitude of the centerline (sec. 3.1)
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A 

The closest approach point, rCA' occurs when
 

A A ^ 
h
rCA r	 C x h (3-34)
 

A
 

where h is the angular momentum vector in the TEI system
 

RTE VTE I  
(computed via eq. 3-15 using and from 

eqs. 3-1 and 3-2). 0 Sc0 

The angle 	from the ascending node to this point, uCA , is given
 

by 

fl rCA)
 
h
tan-1 	 rA)


uCA = 

which can 	be simplified to
 

= tan-i ^ tax) 	 (3-35) 

where a 	is computed by equation 3-19 using the right ascension
 

of the ascending node in the TEI system.
 

The TCA, tCA, is then given by 

fCA = CA - ' (3-36) 

ECA = 2 tan- 1 tan (fA (3-37) 

MCA = ECA - e sin ECA (3-38) 

MCA + U 	 (3-39)
CA
 
M 

3-24
 



where
 

T is given by equation 3-30
 

M is given by equation 3-28
 

e is the orbit eccentricity
 

* is the argument of peri ee
 

This time would then be used in equations 3-32 and 3-33 to update
 
the value of C. Equations 3-35 through 3-39 would be repeated
 
until the value of 
tA between two successive iterations is
 
less than or equal to the time step, At. After the TCA has been
 
found, the corresponding closest approach angle, yCA' would be
 

computed.
 

The unit vector from the center of the Earth to the S/C is given
 

by 

Cos 2 cos u - sin 2 sin u cos i 
r= sin n cos u + cos £9sin u cos i (3-40)
 

sin u sin i
 

The closest approach angle is given by
 

TCA = cos- rC (3-41) 

where
 

^rCA is given by equation 3-40 evaluated at UCA
 
AC
 

CCA is given by equations 3-32 and 3-33 evaluated
 

at tCA*
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If YCA is greater than the outer boundary cone angle, YA
 
(sec. 3.1), then no AOS or LOS times are possible for this
 
revolution. In this event, the procedure outlined is repeated
 
for the next revolution. The initial estimate of TCA for the
 
next revolution would be equal to the TCA for the current re
volution plus one orbital period. The process continues until
 

either yCA : YA or the TCA exceeds the end time of the search,
 
tend' If YCA < YA' estimates of AOS and LOS times are made
 
using the method outlined in section 3.3.2.2.
 

3.3.2.2 Determining AOS and LOS Times
 

After a feasible TCA has been found, the AOS and LOS times can
 
be computed by solving the following-equations.
 

r C = cos TA (3-42)
 

Substituting equations 3-40 and 3-32 into this expression and
 
simplifying yields
 

cos (Q - a) cos o cos u - sin (Q- a) cos 0o cos i sin u 
+ sin 0 sin i sin u cos YA (3-43) 

Equation 3-43 cannot be explicitly solved for time for noncircular/
 

nonequatorial orbits. However, this equation can be solved
 
numerically using the-method of successive substitution. For
 
convenience, equation 3-43 can be rewritten as
 

A1 cos u + B1 sin u = C1 (3-44)
 

where
 

A = cos *ocos (a - a) (3-45) 

B = sin 4o sin i - cos 4o cos i:tsin (2 - a) (3-46) 

C1 = Cos TA (3-47) 
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Assuming a is constant between iterations, equation 3-44 has
 

the following solution
 

U tan JB	 IJ C 1 2.UAOS/LOS 	 + co (3-48)
 
A 1A 1 +B 12•
 

The minus sign will produce AOS solutions and the plus sign will
 

produce LOS solutions. The procedure is as follows:
 

a. 	Solving for AOS times, tAoS
 

(1) 	Use initial estimate of tAOS = tCA. 
(2) Compute A1 , B I, 	and C1 using equations 3-33, 3-45,
 

3-46, and 3-47.
 

(3) 	Compute UAOS using equation 3-48 with the minus sign.
 
(4) 	Compute revised estimate of AOS time using equations
 

3-24 through 3-30.
 

(5) 	If the change in time from the previous iteration is
 
less than At, then a solution has been found. Other

wise, repeat steps (2) through (5) with the revised time
 

estimate.
 

b. Solving for LOS time, tLOS
 

The 	solution for LOS time is similar to the procedure for
 

AOS 	time except that
 

(1) 	The initial estimate of LOS time in step a(l) is given
 

by
 

tLOS 	= tCA + (tCA - tAOS ) (3-49) 

(2) uLOS is computed in step a(3) by using equation 3-48
 

with 	the plus sign.
 
(3) 	The revised estimate of LOS time is produced in step a(4).
 

3-27
 



The computations discussed in this section are performed for
 

each revolution in which yCA was found to be less than or equal
 

to TA* In the special case where YCA is exactly equal to yA '
 

the AOS and LOS times are identical and equal to the TCA. Hence
 

computation of AOS and LOS times can be bypassed.
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3.4 ASSUMPTIONS AND LIMITATIONS
 

The following assumptions are implicit in the equations presented
 

in sections 3.1 through 3.3.
 

a. 	Unperturbed orbital motion over the time period tend > t >
 

tstart.
 

b. 	The effects of polar nutation and precession from te to
 

tend can be neglected.
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4.0 FUNCTIONAL OVERVIEW OF AOS AND LOS TIME COMPUTATIONS
 

This section provides a functional overview of the ATSVP. The
 

overall procedure for determining precise AOS and LOS times is
 

presented and discussed. The basic procedure consists of
 

predicting the AOS and LOS times using the algorithm presented
 

in section 3 and then refining these predictions by performing
 

a sequential time search using the equations presented in section 2.
 

The AOS times are defined to be the time point at which the S/C
 

first enters the area target or space volume. If the S/C lies
 

within the area target or space volume at the beginning of the
 

user-specified search period (tstart), the first AOS time will
 

be set equal to the start time. LOS times are defined to be
 

the last time point prior to the S/C exiting the area target
 

or space volume. If the S/C lies within the area target or space
 

volume at the end of the user-specified search period (tend), then
 

the last LOS time will be set equal to the end time. It should
 

be noted that the time increment used to perform the sequential
 

time search will limit the accuracy and resolution of the AOS
 

and LOS times (e.g., if the time increment is 1 minute, this
 

implies that the AOS and LOS times will be determined to the
 

nearest minute and that visibility periods of less than 1 minute
 

may be skipped).
 

The area targets and space volumes defined in section 1 fall into
 

two general categories:
 

a. Earth-referenced which:include 

b. 

(1) Earth-referenced circles. 

(2) Earth-referenced polygons. 

(3) Earth-referenced space volumes. 

Celestial-fixed which include 

(1) 

(2) 

(3) 

celestial-fixed circles. 

celestial-fixed polygons. 

celestial-fixed space volumes. 
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The 	logic for computing the AOS and LOS times for each of these
 

categories is presented in the following subsections.
 

4.1 EARTH-REFERENCED AREA TARGETS AND SPACE VOLUMES
 

Figure 4-1 provides a functional flowchart for the Earth-refer

enced area targets and space volumes. The required inputs are
 

a. 	 Target table (either the ground target, ground polygon, or
 

ground-fixed space volume table).
 

b. 	Target ID.
 

c. 	Start and end times and time 'increment (tstart' tend' and
 

At, respectively).
 

d. 	S/C ephemeris and ephemeris ID.
 

e. 	RNP matrix and associated epoch time.
 

A brief description of the process is provided herein. The
 

heading numbers correspond to the numbered blocks on figure 4-1.
 

1. 	The geodetic parameters defining the area target or space
 

volume are obtained from the appropriate target table based
 

upon the input target ID. Sections 2.1.2, 2.3.2, and 2.5.2
 

describe the specific parameters which are required.
 

2. 	The RNP matrix and its associated epoch time are obtained.
 

3. 	The geodetic coordinates of the area target or space volume
 

are transformed to the rotating geocentric coordinate system
 

(secs. 2.1.2, 2.3.2, and 2.5.2).
 

4. 	The number of visibility periods between tstart and tend
 

are determined along with predictions of AOS and LOS times.
 

Section 3 describes this process.
 

5. 	A test is performed to determine whether any visibility
 

periods were found. If this test is failed, then no AOS/LOS
 

times are possible and processing is terminated.
 

6. 	A loop is established which will process each visibility
 

period found in step 4.
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7. 	The current time, t, is initialized to the AOS time predict

ion, tA0S . The initial value of the precise AOS time, AOS1 ,
 

is set to K zero. The AOS/LOS counter, i, is initialized

1
 

to one.
 

8. 	A loop is established which will terminate when t exceeds
 

the LOS time prediction, tLOSK.
 

9. 	The SIC position vector (at time t in the M50 system) is
 

obtained from the ephemeris file based upon the ephemeris ID.
 

10. 	The S/C position vector is transformed to the rotating geo

centric system and computations are performed to determine
 

whether the S/C lies within the area target or space volume
 

(secs. 2.1.2, 2.3.2, 2.5.2, and app. A).
 

Based upon the results of these tests, the S/C visibility
 

parameter, V, is set
 

V > 0 if the S/C lies within the area target or space
 

volume
 

V < 0 if the S/C lies exterior to the area target or
 

space volume
 

11. A test is performed on V.
 

If 	 V > 0
 

11.1 a 	further test is performed on AOSi to determine
 

whether the S/C was also visible during one or more
 

of the previous time steps.
 

If AOS. 	> 0

1 

11.1.1 	then the S/C was visible-during one or more
 

of the previous time steps. Hence, no transi

1Depending upon the target geometry and the S/C groundtrack,
 
multiple AOS/LOS times could occur during a single visibility period.
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tion has occurred. The current time is incre

mented by At and the search continues.
 

If AOS. < 0
 
1 

11.1.2 	 then a transition into the area target or
 

space volume has occurred. The current AOS
 

time, AOSi, is set equal to the current time.
 
The current time is incremented by At and
 

the search continues.
 

If V 	< 0
 

11.2 	 a further test is performed on AOS.1 to determine whether 

the S/C was visible during the previous time step. 

If AOS. 	> 0
1 

11.2.1 	then the S/C was visible during the previous
 

time step and a transition out of the area
 

target or space volume has occurred. The
 

current LOS time, LOSi, is, set equal to the
 

time of the previous time step (t - At). The
 

AOS/LOS counter, i, is incremented by one.
 

The next AOS time is initi&lized to zero. The
 

current time is incremented by At and the search
 

continues.
 

11.2.2 	 the S/C was not visible during the preceding
 

time step. Thus no transition has occurred.
 

The current time is incremented by At and the
 

search continues.
 

12. 	 At the completion of the sequential time search, a test is
 

made to determine whether the S/C was visible at the end time.
 

If the test is true, the last LOS time is set equal to tLOS
 

4.2 	 CELESTIAL-FIXED AREA TARGETS AND SPACE VOLUMES
 

Figure 4-2 illustrates the logic flow for the celestial- fixed
 

area targets and space volumes.. This.logic is sinilar to the
 

approach presented in section 4.1. The required inputs are
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a. 	Target table (either celestial circles, celestial polygons,
 

or celestial-fixed space volumes table).
 

b. 	Target ID.
 

c. 	Start and end times and time increment (tstart, tend' and
 

At, respectively).
 

d. 	S/C ephemeris and ephemeris ID.
 

A brief description of the process is provided herein. The
 

heading numbers correspond to the numbered blocks on fiqure 4-2.
 

1. 	The parameters defining the celestial-fixed area target or
 

space volume are obtained from the appropriate target table
 

based upon the input-target ID. Sections 2.2.2, 2.4.2, and
 

2.6.2 describe the specific parameters which are required.
 

2. 	The number of visibility periods between tstart and tend
 

are determined along with predictions of AOS and LOS times.
 

Section 3 describes this process.
 

3. 	A test is performed to determine whether any visibility periods
 

were found. If this test is failed, then no AOS/LOS times
 

are possible and processing is teriinated.
 

4. 	A loop is established which will process each visibility
 

period found in step 2.
 

5. 	The current time, t, is initialized to the AOS time prediction,
 

tAOSK. The initial value of the precise AOS time, AOS1 , is 


set to zero. The AOS/LOS counter, i, is initialized to one.
 

6. 	A loop is established which will terminate when t exceeds
 

the LOS time prediction, tLO .
 

7. 	The S/C position vector (at time t in the M50 system) is
 

obtained from the ephemeris file based upon ephemeris ID.
 

8. 	Computations are performed to determine whether the S/C lies
 

within the area target or space volume (sees. 2.2.2, 2.4.2,
 

1Depending upon the target geometry and the S/C groundtrack,
 
multiple AOS/LOS times could occur during a single visibility
 
period.
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2.6.2, and app. A). Based upon the results of these tests,
 

the S/C visibility parameter, V, is set
 

V > 0 if the S/C lies within the area target or
 

space volume
 

V < 0 if the S/C lies exterior to the area target
 

or space volume
 

9. A test is performed on V.
 

If V > 0
 

9.1 	 a further test is performed on AOS.1 to determine whether
 

the S/C was also visible during one or more of the previous
 

time steps.
 

If AOS. > 0
1
 

9.1.1 	 then the S/C was visible during one or more of
 

the previous time steps. Hence, no transition
 

has occurred. The current time is incremented
 
by At and the search continues.
 

If AOS. < 0
S

9.1.2 	then a transition into the area target-or space
 

volume has occurred. The current AOS time, AOSi ,
 
is set equal to the current time. The current
 

time is incremented by At and the search continues.
 

If V < 0
 

9.2 	 a further test is performed on AOS. to determine whether
 1 

the S/C was visible during the previous step.
 

If AOS. > 0
 
1 

9.2.1 	 then the S/C was visible during the previous time
 

step and a transition out of the area target or
 

space volume has occurred. The current LOS time,
 

LOSi, is set equal to the time of the previous
 

time step (t - At). The AOS/LOS counter, i, is
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incremented by one. 
The next AOS time is initial
ized 	to zero. The current time is incremented by
 
At and the search continues.
 

9.2.2 	 the S/C was not visible during the preceding time
 
step. Thus, no transition has occurred. The
 
current time is incremented by At and the search
 

continues.
 

10. 	 At the completion of the sequential time search, a test is
 
made to determine whether the S/C was visible at the end
 
time. If the test is true, the last LOS time is set equal
 

to tLOSK.
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5.0 DETAILED LOGIC FLOW
 

Figure 5-1 presents the detailed logic flow for the area targets
 
and space volumes processor. This flowchart integrates the
 
functional overview presented in section 4 with the equations and
 
approach presented in sections 2 and 3 and the appendixes.
 

Annotations are provided on the flowchart to describe the comput
ations and tests that are performed. In order to simplify
 
figure 5-1, several notations have been used to represent corre

sponding FORTRAN functions, e.g.,
 

4(I) represents an array of longitudes indexed by, 

the variable I. 
R(I) represents a two-dimensional array [i.e., R(3,5)] in 

which the first dimension represents the Cartesian 
components of the vector and the second dimension is 

indexed by the variable I. Hence, operations involving 
vector quantities imply a "DO loop" on the innermost 

dimension. 

N(J,I) represents a three-dimensional array [i.e., N(3,5,3)] 
in which the first dimension represents the Cartesian 
components of the vector and the second and third 
dimensions are indexed by variables J and -I, respectively. 
Operations involving these vector quantities also imply 
a DO loop on the innermost dimension. 

K-1 
_variable 

implies summation over the indicated range using thespecified by the lower bound (e.g., the variable 

L 1 L will be used to perform the summation over the range
 

L =1 to L = K-).
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Figure 5-1.- Detailed flowchart. 
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SUBDIVIDING CONCAVE POLYGONS
 

This appendix discusses the procedure for subdividing complex
 
concave polygons into two or more simpler convex segments.1 The
 
purpose of this subdivision process is to permit the equations in
 
section 2 to be used on a segment-by-segment basis to test for
 
containment. The criterion for the S/C (or S/C subsatellite
 
point) to be contained in the concave area target or space volume
 

is that it must be contained in any one of its segments. For
 
convenience, the equations and figures presented in this appendix
 
will use a pentagon as an example.2 However, this approach is
 
easily extended to any n-sided polygon.
 

Figure A-I presents three examples of concave pentagons. Figure
 

A-l(a) illustrates a pentagon having one concave vertex. Figures
 
A-l(b) and A-l(c) illustrate pentagons having two concave vertices.
 
These pentagons can always be subdivided into triangles by select
ing an "appropriate" vertex and connecting nonadjacent vertices
 
(fig. A-2). The maximum number of triangles necessary to completely
 

subdivide any arbitrarily shaped polygon is
 

N =n -2 (A-l)
Segmax 

where
 

n = number of sides 

IA concave polygon is defined to be a polygon that has one or
 
more interior vertex angles exceeding 180 degrees. A convex
 
polygon is defined to be a polygon that has all of its interior
 
angles less than 180 degrees.
 

2This corresponds to the maximum number of sides specifically
 
addressed in the requirements defined in reference 1.
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(a) One concave vertex.
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(b) Two adjacent concave vertices.
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(c) Two nonadjacent concave vertices.
 

Figure A-I.- Examples of concave pentagons.
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Figure A-2.- Examples of subdividing concave pentagons.
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Furthermore, the maximum number of interior angles exceeding 180
 

degrees can also be determine4 by noting that the sum of the
 

interior angles of the polygon must be equal to the sum of the
 

interior angles of all triangles into which it can be subdivided.
 

Thus, the sum of the interior vertex angles for any arbitrarily
 

shaped polygon is given by
 

n 

Z = (n- 2) 180 (A-2)i 
i=!1 

where
 

Yi = interior vertex angles of the polygon
 

Thus, the maximum number of interior vertex angles exceeding 180
 

degrees, y*, is given by
 

N(y*)ma x = (n- 3) (A-3) 

This equation limits the maximum number of concave vertices for a
 

pentagon to two. Figures A-l(b) and A-l(c) illustrate two ex

amples. In figure A-l(b), the two concave vertices are adjacent
 

to each other. In figure A-l(c), the two concave vertices are non

adjacent.
 

The selection of the "appropriate" vertex to begin the subdivision
 

process is highly dependent upon the shape of the polygon and the
 

number and relationship of the concave vertices. Also, it is not
 
always necessary to subdivide the polygon into triangles. Figure
 

A-3 illustrates another method for subdividing the pentagon of
 

figure A-l(a). In this case, the concave pentagon is subdivided
 

into a four-sided convex polygon and one triangle. Furthermore,
 

figure A-1 by no means exhausts all of the potential pentagon
 

shapes that-could be constructed.
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Figure A-3.- Alternate subdivision.
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Since the shape of the area targets and space volumes will remain
 

static during a mission, it is recommended that the subdivision
 

process be performed manually. 1 There are two distinct advantages
 

to this approach:
 

a. It eliminates the coding and execution of complex subdivision 

logic. 

b. It can be performed once for each concave area target and 

space volume and does not have to be repeated each time AOS 

and LOS times are desired. 

The treatment of concave polygons will place additional require

ments on the target tables other than those specifically mentioned
 

in reference 1. In addition to the number of sides and coordinates
 

for each vertex, the target tables must also contain the following
 

for each polygon-shaped target
 

N - number of segments into which the target is subdivided 

(3 > Nseg > 1 for polygons having five or less sides) 

VOi - integers defining the counterclockwise ordering of the
 

vertices for each segment (i = 1,2,.. Nseg)
 

The use of these additional parameters can best be illustrated by
 

example. For figure A-3, this pentagon is subdivided into two
 

segments. The first segment is a four-sided polygon defined by
 

vertices 1, 2, 3, and 5. The second segment is a triangle defined
 

by vertices 3, 4, and 5. The corresponding parameters for this
 

pentagon would be
 

N =2
 
seg 

VO1 = 1235 (or 2351 or 3512 or 5123) 

VO2 = 345 (or 453 or 534) 

1This can easily be performed by plotting the vertex points
 

on a Mercator projection.
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Similarly, for figures A-2(b) and A-2(c):
 

a. Figure A-2(b)
 

N =3
 seg 

V0 = 125 (or 251 or 512) 

VO2 = 235 (or 352 or 523) 

VO3 = 345 (or 453 or 534) 

b. Figure A-2(c)
 

N =3
 seg 

VO1 = 125 (or 251 or 512) 

V02 = 245 (or 452 or 524) 

VO3 = 234 (or 342 or 423) 

For consistency, this approach can also be used for convex polygons.
 
In this case, Nseg would be one and VO1 would be set to the
 

counterclockwise vertex sequence.
 

For computational purposes, the number of sides for each segment,
 
ni , can be extracted from the vertex ordering integer, VOi, as
 

follows
 

Vo.
 A
 
ni highest values of ni where TRUNC I >0 (A-4)
 

-l 

10n 


where
 

TRUNC implies integer truncation.
 

The vertex numbers, V., corresponding to each vertex of the ith
 

subpolygon can also be extracted from the vertex ordering integer
 
as follows
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V 

v1 TRUNC n. (A-5a)
1
10 

I
Ij-1 -

Ivoi - 5 V£ Ion i 

j = 2,3,.. .n. (A-5b) 
10ni-S
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CONIC INTERSECTIONS
 

This appendix presents the equations to compute the intersection
 
points between two right circular cones. 1 The required input
 
parameters are
 

V1 - unit vector along the axis of the first cone
 

Y1 - half-cone angle of the first cone
 

V2 - unit vector along the axis of the second cone
 

Y2 - half-cone angle of the second cone
 

The quantities to be computed are
 

I A 

I, and 12 - unit vectors to the intersection points of the 

two cones 

Figure B-1 illustrates the two right circular cones and the inter
section points. The coordinate system for the cones is arbitrary
A A 

and the only restriction is that both V1 and V2 must have a
 

common origin and must be expressed in the same system. The first
 
step is to determine whether the relative orientation of the two
 
cones permits any intersections. This can be determined by com
puting the angle between the axes of the two cones.
 

y = cos {V1 V 2 } (B-1) 

These equations can also be used to compute the intersection

points between a right circular cone and a plane or the intersection
 
points between two planes.
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pTointsConic intersection
 

2Yl
 

Figure B-I.- Intersection of two cones.
 

B-2
 



The cones will not intersect if
 

Y > + Y2 [fig. B-2(a)] (B-2)y1 


or
 

y + smaller {yi: Y2} < greater fyI: Y21 [fig. B-2(b)] (B-3)
 

Assuming intersections are possible (i.e., neither equation B-2
 

nor B-3 is satisfied), the next step is to compute the intersection
 

Figure B-3 illustrates the geometry. The intersection
vectors. 


vectors are symetrically located on either side of the arc connect

ing vectors V1 and V2." Furthermore, the intersection vectors
 

lie on the perimeter of both cones. Thus, all of the sides of the
 

spherical triangle connecting vectors V1 . V2, and 1 are
 

known
 

side a (connecting V1 and 1) = Y 
A A 

side b (connecting V2 and I )= Y2 

side c g(connecting 
AA

V1 and V2 ) = y 

The angle from side 'c' to side 'a' can be determined using the
 

half-angle formula for spherical triangles. The result is
 

B = 2 tan- 1 K (B-4)
 

where 

Y = sin(S - y1 ) sin(S - y2 ) sin(S - y)'
sin(S) 

S = 1/2 (Yl + Y2 + Y) (B-6) 
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(a) y > yl + Y2 

v 1 I
 

l/
 

(b) Y + smaller Y : Y2} < greater Y1 Y2}
 

Figure B-2.- Conditions when cones do not intersect.
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Figure B-S.- Spherical geometry to compute intersection points.
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The dual value of K in equation B-5 produces two values of B
 
in equation B-4. These values of B are equal in magnitude but
 
opposite in sign and correspond to the two intersection points1
 
The unit vectors to the two intersection points are given by
 

llx P2x Vlx 
 cos B sin y1
1I1, 2 4 y k2y V ly +sin B sin y (B-7) 

lz 2z lz- os Y1 

where
 
V 1 => (Vlx, Vly, Vlz)
 

A
 2 > ( 2x' 2y~ k2z)2

V1 X V2 
A
--A 2(B-8)

IV1 x v21 

i => ( 1 x" ,iy IIz (B-9) 

912 
X V1 

iFor the special case of B = 0, the two intersection vectors
 
are coincident. This physically corresponds to the situation when
 
the two cones are tangent.
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