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PREFACE

Mathematical methods for coﬁputing satellite orbits consist of
an algorithm of formulas.that ¢an be programed on an avtomatic com-
puter. This report is concerned, specifically, with methods for
predicting satellite orbits; that is, given the satellite's state
vector (usually position and velocity) at an epoch, &ompute the
state vector at another epoch (or sequence of epochs). A large
variety of methods and techniques are availdble today for solving
this problem and it is necessary to choose one that' best suits a
particular application. To do this, the methods must be converted
into. an executable program code and then ‘analyzed to determine their
efficiency and accuracy for producing usable results.

Each method consists of three basic parts:
a. Formulation of the differential equations of motion,

b. Analytical or numerical methdéd for the solution
(integration) of these equations,

e. Mdthematical model of the perturbing forces acting on the
satellite.

Each part can be coded as a separate module or subroutine in a con-
puter program. The formulations (part a) are discussed in section
1.0 of this report. New formulations are available that have a
profound impact on increasing the efficiency of orbit predictions.
This is due to the new stabilized differential eguations that are
easier to solve. The methods of integration (part b) .are also dis-
cussed in section 1.0, The aim is te mateh formulatioh and inte-
gration method for a particular application. Mathematical force
models (part e¢) are discussed in section 2.0.

In section 1.0 of this report, the conecern is with "numerical
accuracy" in the orbit prediction. This is defined to mean the
accuracy to which the differential equations are solved, assuming
that the preogramed equations perfectly describe the physical
3ituation. The most récent advances in celestial mechanics and
numerical analysis are examined. A set of rigorous numerical
experiments were carried out to test the various combinations of
formulation and integrator.

The .subject of force models is concerned with "physical ac-
curacy" of an orbit predictor. That is, how well does the predict-
ed orbit agihee to physiecal reality? This depends, usually, on
how well the forces can be modeled. Several types of perturbing
foreces that affect the orbit are dizscussed in seetion 2.0.
Questions to be considered are:

iid



. What are the typical maénftddes of each perturbation? 1If
they are neglected or poorly modeled, how is the accuracy
of an orbit prediction affecteq?

¢ 'How can the force routine€s be ‘made less costly in “terms of
computer runtzme‘and storage? What new, more efflclent
forde models should be used?

. What aré the necessary farce .models for a variety of
standard Earth satellite orblts?

The suggestions and reéémméndations contained in this report
are based on the particular cases, studled. An attempt wazs made to
consider a variety of orbits, predlctlon intervals, output require-
ments, ete. In view of the w1de variety of satellite missions that
are being planned, the scope of this study is necessarily limited.
Nevertheless, it is hoped that these results and conclusions will
be a useful guide in choosing the components of an orbit prediction
program, as well as a help in analyzing the numerleal results of
such a program.
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APPLICATION AND ANALYSIS OF SATELLITE
ORBIT PREDICTION TECHNIQUES

By Analytical and Co@putational Mathematics, Inec.
1.0 FORMULATIONS AND INTEGRATION METHODS

1.1 Introduction

The computsdtion and prediction of satellite orbits requires-
the solution of a set of ordinary differential equations. - Studies
have been carried out to determine the best methods for obtaining
these solutions. It will be assumed in this sectioh -that the per-
turbing forces are known exactly. The 'goal, therefore, is to in-
vestigate the pumerjcasl agcufacy of a satellite orbit computation
program. That is, to determine the effects of roundoff and
truncation errors on the solution.

Many different formulations of the satellite differential equa-
tions are available. Of special interest here are the new formula-
tions that have the mean motion based on the total energy. They

will be compared to the more classical formulations and evaluated
via numerical experiments.

. Methods for the numerical solution of ordinary differential
-equatidéns are ‘also discussed. Numerlcal experiments have been
carried out to determine the most efficient methods, in terms of
computer cpu times.

An intention of these studles has been to determine the formu-
lation and numerical integration comblnatlons which exhibit ‘most or
all of the following attributes.

a. Numerically Accurate: The combination should produece so-
lutions whieh are consistently more sccurate than the force model
accuracy {(see séction 2.0 on force model errors). In other words,

roundoff and trunegtion errors should be much smaller-than modellng
errors. .

. b. Pnggigﬁab;é‘ﬂggunégy; In addition to point (a), the accu-
racy of _the solution should beé -prediectable. In practiecal applica-
tions, it is necéqéary that ~an upper boufid on the error be known.

c. Efficient: For a given accurdcy; & combination should
reguire as little eomputatlon time as possible Lo obtain ‘Ehe



solution. Thus It i1z desirable to have a method which is
reasonably accurate but requires the least computation time.

d. Religble: A combination should give reliable results for
all possible applications. In addition, the ¢ombination should
have a "puilt-in®" reliability so that it is insensitive to possible
misuse of the algorithm. )

e. Stable: Small errors in the initial state should not
cause the combination to run into numerical difficulties. Some
combinations may be reliable over short propagation times; but,
because of instabilities become completely erronecus for longer
times.

f. General: The formulation should be valid over the whole
range of intitial conditions. For dnstance, certain sets have
singularities for circular or equatorial orbits. However, since we
are most interested.in elliptical orbits, we will exclude the gen-
erality to parabolic or hyperbolic orbits.

g. Concise: The computer algorithm for a combination should
require a small percentage of the 3torage requ;rements of the total
force model.

A brief discussion is given on analytical and seminumerical
methods. These are specialized techniques that allow a large sav-
ings in computer time. Their accuracy and range of applications
will be discussed. ¢

1.2 Formulations

The =satellite differential equations can be .formulated in a
number of different ways for different purposes. All formulations
fall basically into three classes:

a. Coordinate Formulation
p. Variation of Paraﬁetefs
¢c. Total Energy Elements

These three .classes can each be divided:into'twd sets, formula-
tions with timé as the independent variable and formulations
with an independent wvariable other than time.  Before discussing
the different classes one should understand the effect of the
independent variable on the numerical integration. The ellipses
of figure 1 show where the force model is being evaluated for
equal steps in three different 1ndependent variables. "The perigee
point of this ellipse (e = .7) is located on the right-hand side.
Note that egual steps in the true anomaly tends to evaluate the
forece model more near the perigee point. On the other hand,
equal steps in time tends to bunch the majority of the ‘force






evaluations near the apogee. The eccentric anomaly smooths
the evaluations equally over perigee and apogee. Since the
stronger perturbations are usually associated with the perigee
point (atmospherie drag, for example), it becomes immediately
clear why the use of the true or -eccentric anomaly results in
an automatic %Yanalytical" step size control.

One could conclude from figure 1 that if the perturbations
are much stronger at perigee than at. apogee, then the ftrue anom-
aly would be the most appropriate choice for independent variable.
If the perturbations at apogee and perigee were nearly equal then
one might expect the eccentric anomaly to be the better choice.
Clearly, time would be a poor choice for either case. Of course,
when the orbit is cireular then the different independent variables
become quite the same.

1.2.1 Coordinate formulation.- Let the coordinates %
of the satellite be referred to an inertial rectangular coordinate
system. The most basie formulation of the equations of motion
is the so called Cowel method (ref. 1)

x=-Ex- T3
r3 ox
where
.

r=Ex|

-
Vv is the perturbing potential funetion and P represents acceler-
ations that are not derivable from & potential. The gravitational
parameter is p, This method uses time as the independent vari-
able. The main advantage is, of course, it's simplicity. The
approach, however, has several disadvantages. The right-hand side
of the differental equations’ are quite large- and therefore one is
forced to take small numerical steps or use a high order integrator.
Also, the differential equations are unstable. An attempt to alle-
viate the first problem was made by Encke (ref._ 1). If the equation
of unperturbed motion is '

and



Then the Encke equations read ’

where

The right-hand side of the equation is small if Ax is small. But

>
AX may grow to be quite large, therefore, this method must be "recti-
fied. This rectification involves setting E < and ax = 0. This
ean cause additional instabilities in the differential equations.

One .may modify the Cowell ‘eguations by using a fictitious time
3,.defined by the differential equation

This method (ref. 2) retains the coordinate formulation and adds an
important analytic stepsize control, but it requires an extra dif-
ferential equation to compufte the time. An Encke-type formulation
can alse be applied to these equations to reduce the magnitude of
the right hand side of the differential equations.

1.2.2 JYariation of parameters.- By solving the unperturbed

problem one obtaina a vector of six constants of integration o
Classieal varigtion of parameters (VOP) methods develop equations
of motion which definéd hoWw the six constants of lntegratlon vary
in the perturbed case. They have the form

o= %@,

The niéhtrhand sides of the differential equations are small, as
in the Encke method, but do not require the expense of rectification.



The Lagrange and Deluanay element formulations are typical VOP
examples. These sets, however, have singularities at zero ineli-
nation and zero eccentricity. Another example, the Poineare’
elements, avoids these problems. These VOP elements, which prove
very fruitful in analytical studies, are somewhat cumbersome for
aumerical integration. Since the forces are usually given in
Cartesian coordinates, the differential equations require a cone

version from Z and t to ;. Another method, developed by Pines
(ref. 3), simplifies this conversion. This method, developed with
time as the independent variable, has mixed secular terms. These
terms grow in magnitude with time and will eventually degrade the
accuracy of the solution. The secular terms were later eliminated

by a conversion te a perturbed time as independent variable (ref. 4).
Another disadvantage of these classical variation of parameter meth-
ods is that a costly iteration to solve Kepler's equation is reguired
at each integration step (ref. 5).

Burdet has developed a VOP method based on Sperling's solution
of a set of regular and linear differential equations of the unper-
turbed (two-body) motion (ref. 6). Although this approach requires
14 differential equations, it provides increased numerical stability.
The method presents no mixed secular terms and requires no Kepler
iteration. The regularization requires a transformation to an inde-
pendent variable other than 'timé. For elliptical cases the method
can be specialized so that the independent variable becomes the
eccentrie anomaly and thus this method also has an analytical step
size control (ref. T).

1.2.3 Total energy elements.- Kustaanheimo and Stiefel have
also developed a linear and regular set of differential equations.
The resultant ditfferential eguation is that of a perturbed harmonie
oseillator in 4-s3pace

W+l o= Q(V,?—X,‘i)

ox
where

However, the major difference between the Burdet and KS method is
that the total energy, instead of the two-body energy, is used as

a parameter. This has been shown by Stiefel and Scheifele (ref. 8}
to significantly improve the accuracy and stability of the solutions.
The KS method, whieh has ten differential equations, can be special-
ized for elliptieal orbits in whieh case the eccentric anomaly be-
comes the independent-variable. Variation of parameters applied to
the inpegration:constants'of thé four dimensional harmonic oscillator



provides eight element dif}eﬁeﬁt;al pqﬁations.. Two addi=-

tional element equations come from the perturbed frequeney w
{based on the total energy) and an element <t for the perturbed
time.

The Burdet elements have been modified by Bond (ref. 9) so
that they too contain the total energy element. Both element sets
(K8 and Burdet-Bond) have .proven to be extremely accurate, stable,
and yet have conclise formulations. The two methods, however, are
‘not well suited for analytical solutions.

Recently, a number of canonical element sets have been devel-
oped (refs. 10, 11, and 12) which incorporate a total energy element
in an extended phase space. Llney nave eight canonical dependent
variables with an independent variable other than time. Two o: the
sets, D3¢ and DSu, are similar to the Delaunay elements and have
the; true and eccentrie anomaly, respectively,  as their independent
variable. These sets have singularities for small eccentricities
and ineclinations. They have been transformed to Poincare! type
.elements, PS$ .and PSu, to remove the singularities. Unlike the
classicadi, elementsh no iteration of Kepler's equation is required.
A11 of .these "extended phase space” sets have been shown to be as
accurate and efficient as the KS set,. but are not as conecise in
,their Lormulathn" Because they are canonical sets, they are more
readily adopted to analytical perturbation theory. ’

10204 Lhoosing -a formulation.- In examining the different ele-
ment formulations, one finds a number of characteristics which are
considered deszrable for use in a numerical orbit prediction pro-
gram.

a. lhe elements should vary slowly and smoothly as a function
of the independent varlable.

b. The elemehts‘should always be detrineg for elliptical orbits.

c. The independent variable should be the true or eccentric
anomaly, allowing for analytical step size control.

d. The enefgy element should include the total energy.
L e. Lne tormulatioén should require no 1teratlon of Kepler s
equation during the integration procedure.

Only the KS, Burdet-Bond, PS$ and PSu elements of the total
energy .class Exhlblt all of these characteristics. Indeed, a wide
range of experiments have consistently shown that the total energy
formulations, when compared to the more classical formulations, are
faster, far more stable, and yield more accurate results, while re-
quiring very little (if any) more computer code (ref. 13 and 14).
Two of these four sets, KS and PS¢, were chosen for further
testlng and comparisons. The results and conclusions from the nu=-
merical experiments are discussed in section 1. 4. An additional



objective was to match a numerical integration method toc these
two formulations. Several numerical integrators are discussed in
the next section.

1.3 Numerical Integrators

Given the differential equations and initial conditions, one
may employ finite calculus to numerically integrate the differen-
tial equations, giving the solution as a function of the indepen-
dent variable and initial eonditions. Two ¢lasses of integration
methods will be discussed in this section:

a. Runge-Kutta (single-step) formulas
b. Adams (multistep) formulas

The major difference between these two classes is that the single’
step methods develop the solution over one step, requiring no pre-
vious information on the solution. The multistep formulas require

a sequence of values of the derivatives in order to advance the so-
lution one step. If the derivatives vary slowly and smoothly from
step to step, then both c¢lasses perform well. If the derivatives
become erratic or impulsive, the single step methods, with Step size
control, are preferred. Step size control with the multistep method
iz generally not possible.

Note that a step size control procedure that is built into an
integrator is called "numerical" step size control. Compare this to
the "analytical" step size control that is introduced in section 1.2,

1.3.1 Adams formula.~ The classical Adams method is an example
of a2 multistep formula, 1t uses the ALdams-Bashforth formula {(pre-
dictor) and the Adams-Moulton formula {corrector) to obtain the solu=-
tion. A complete discussion of this method is given by Henrieci (ref.

15).

The solution is extrapolated one step forward by applying the
predictor formula. The derivative is then evaluated with the pre-
dieted solution and a ccorrected solution is obtained from the cor-~
rector formula. This classical predict-correct type of algorithm
is not well suited for variable-step applications. Therefore, only
fixed-step Adams integrators are included in this study. A trun-
cation error estimate is available and can be used to determine the
best =step size.

Consider a vector that 1s defined by the first-order vector
differential equation

.
gz _ ->



where x 1is thé independént variable. Also define
xj = X + jh
- e
Y. = ¥(x,
y( J)
-+ >
£.=f vy
3 =BGy

The prédictor and corredtor foﬁmulas are

N .
IS Z 2
Y1 T TR ) B finew
k=0
N
v s =
ac - _ >
Y41 = Vp T B Cr T
k=0

where N+1 is the order of both formulas.

Observe that the corrector formula is an implieit equation
) +
since fn+1 depends on §n+1‘ Usually, one iteration is sufficient

for solving the equation. * The coefficients -Pk Ck are functions
of the order of the formula. These coefficients may be computed re-
cursively for any given order before the integration is initiated.

For this reason the Adams method is sometimes called a "variable order"
method.

The truncation error of the corrected solution is given by

=3 ~ ""P _ LA
r‘1:1:1-!~l T Pn (yn+1 y*n+l)

where Kn is a function of only the order.

"The first N+1 values of fi are required to start the

integration.‘ In the numerical examples in Section 1.4, an eighth
order RK formula was used to start the Adams integration.

1.3.2 =K m .— Runge-Kutta {(RK} formulas fall
in the class of single-step integration formulas. That is, they
are self-starting. In general, an RK formula can be written as

v

Ty =3 +§ W, K
n+l—yn i1

i=1

“



where Hi are weighting coefficients, v is the number of func-

tion evaluations required at each step and K; 1is defined as

i-1
FomnE (s o 3,
K =hEx +Ch, v+, A%
j=1
Equations of conditicn for Wi, C; and Aij are found by

expanding the RK formula in a Taylor series. Solution of these
equatbtions provides the numerical values ¢f the coefficients. To,
date, however, there is nc simple manner to obtain values of these
coefficients for any order. A good discussion on RK methods is
contained in reference 16. -

A short description of five different RK formulas is given
in the following subsections. A 1ist is given below showing the
number of "funection ealls® {(NFC) that are réquired .at each step

by the variocus AK formulas. A function call is one evaluation of
the differential equations.

REK formula NFC per step
E 2
RK4 4
RKF45 6
RKA45 )
RKSS8 10
RKT8 13

3.3,2.1 Classical fourth-order formula: The elassical fourth-
order formula (RKY4) is

-+ -+ +
> - +g:?
Yn+1 Yn 3 Kl + 2K2 + 2K3 + Kll
-+ -+
Kl = hf (xnr}'.n)
> > 1 - 1z
K, = hilx +3h, § +5 K
- - 1. > 1>
K3=hfxn+§h,y +2K2 '

10



It is‘veryipdpulaf and quite efficient. ' However, when comparéd to
other available RK formulas, it has the following disadvantages.

a. No step size control.

>

b. Less efficient for acelrate integration.
Its chief advantage is the small computer storage requirement.

1.3.2.2 Fehlberg's formulas: Fehlberg's RK formulas overcome
the two disadvantages mentioned above. His formulas contain an auto-
matic truncation error estimate and are available in orders one
through eight (refs. 17 and 18). BReference 19 contains a discussion
of the error propagation, as well as the coefficients f&r each RK-
Fehlberg formula. A fifth order version (RKF45) and an eighth order
version (RKT78) have been tested.

. 1.3.2.3 Bettis'! improved formula: New versions of Fehlberg's
formulas are being developed by Dale Bettis at the University of
Texas, Austin. He uses a Davidon optimization scheme to compute new
RK coefficients that minimize the truncation error. The expression
fér the truncation error is. known as an andlytiecal function of the
coefficients. Therefore; the optimized coefficients apply to any
set of differential equations and, in effect, raise the order of the
formula (ref. 20).

Dr., Bettis has made available to the Mission Planning and Anal-
ysis Division (MPAD) his optimal version of REF45, which will be
referred to here as RK4S5. There is no increase in computer run time
or storage over that for RKF45 since the algorithm is the same.

1.3.2.4 Shanks formula: An additional RK formula developed by
Shanks (ref. 21) has alsoc been tested. It was chosen since it was
of high order and has been shown by other- investigators (ref. 22) to
have accuracy comparable to that of Fehlberg's formulas.

Shanks attempted to minimize the number of functlion evalua-
tiwons per step for a given order. The formula tested here {RKS8)
is approximately an eighth-order formula and requires only 10 func-
tion evaluations per step (RKF78 requires 13) but it contains no
step size control. Therefore, it is expected that RKS8 will be
more efficient than RKFT8 when a constant step is desirable, such
as for circular orbits. The reverse situation is expected for very
elliptical orbits.

1.3.3 General remarks.- Fér the special case of orbital motion,
the right-hand side of the differential equations are usually smooth
funcetions of the dependent variable. In this regard, the Adams for-
mulas are expected to be more efficient-than the Runge-Kutta formulas.
Elliptical orbits may, however, require the variable step size option
of the RK formulas.
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The required order of an integrator for a given agcuraey de-
pends on the formulation .of the differential equations. A method
such as the Cowell formulation requires a high order integrator to
obtain satisfactory results. But, a method such as the KS formu-
lation is somewhat insensitive to the order of the integrator (see
section 1.4), i.e., all integrators perform about the same.

Although high order integrators are usually more accurate
they are also less stable {(ref. 22). Thus, in choosing the inte-
grator one must find a happy medium where the order is large enough
for reasonable accuracies but small encugh not te introduce instabil-
ities.

1.4 Formulation-Integrator Combinations

When building a numerical orbit prediction program, it is de-
sirable to choose the formulation and integration method that best
satisy the requirements discussed in seetion 1.1 (Force modeél reguire-
ments are discussed in section 2.0). The discussion in this section
concerns the choice of these two important components and relies on
both theoretical considerations and numerical experiments. "Use was
made of the results and experience of prior investigators to eliminate
some methods and limit thé number of possible combinations.

Several different problems of orbit prediction were chosen for
the numerical experiments. The orbits chosen are important for
shuttle orbiter and payload missions. Also, they demonstraté the
different qualities of the 'differential’ equatlon formulation = numer-
ical integration (PE - NI) combinations. A thorough discussion of
the comparison is contained in reference 23. The following gives a
sunmary and the conclusions.

1.8.1 Formylations investigated.- The discussion in seetion 1.2
concluded that there are four avallable element sets (KS, Burdet-Bond,
PS4, PSu) that have significant advantages over all the rest. These
four are in the class of "total energy elements" and each, is
based on an independent variable different from time. It was de-
cided to choose two of these for further testing and evaluation.

In choosing between the four total energy element sets, sev-
eral considerations were.made. First, P3¢ has true anomaly as
the independent variable, the remaining three have eccentric anom- ~
aly. Thus, PS¢ was chosen for further testing in order to deter-
mine the advantage of the step spacing {(fig. 1) of the true anomaly.
For orbits that are strongly perturbed by the geopotentlal and drag,
PS¢ should. have an advantage.

) KS was choéen from among. PSu and .Burdet-Bond because {(con-
pared to PSu) it has a concise formulation and it has fewer ele-
ments than Burdet-Bond (10 versus 13). HNumerical experiments and
theoretical analyses of Bond (refs. 10 and 24) indicate that the

PSu has a slight advantage in long %term stability. However, this
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does not seém to be significant enough (for most applications of
orbit predictors) to offset the value of a conecise formulation.

1.4.2 HNumerical integration methods investigated.- Graf’
(ref. 13) investigated a number of different numerical integrators
with the Cowell and KS formulations. From the conclusions of that
report it was determined that four integrators had advantages
that warranted a thorough investigation with the KS and PS¢ formu-
lations. A short description of these 1ntegrators and the reasons
why they were chosen are listed below:

a. AD9 - This is an Adams (multistep) method of ninth order
whieh evaluates the derivative once per step. This- fixed step meth=-

od proved to be very efficient with the KS method even for eccentriec
orbits.

b. RKY - This is the celassical fourth order RBunge-Kutta
(single-step) method whiech requires four derivative evaluations per
step. Even though this is a simple, low order method it proved effi-
cient with the K5 method.

¢. RKUN5 - This is the fifth order Runge-~Kutta method with the
cption of step size control. It ﬁequires six derivative evaluations
per step and uses Bettis's optimized coefficienis because «of their
proven accuracy (ref. 20). This method was chosen mainly because
of its powerful step size control. '

ﬁu RK78 - This is the eighth order Runge-Kutta-Fehlberg meth-
od that requires 13 derivative evaluations per step. It does have
the option of step size control. It was chosen for its efficiency
for stringent accuracy requirements. . '

1.4.3 WWM In com-
paring “K3 and PS4 ‘one might argue that the KS formulation has a
clear advantage because it is so concise. Certainly, if one com-
pares storage one finds that P3¢ equations require 100 percent
more démputer storage tham KS equations. However, this is not
quite a fair comparison. One should always compare- formulations
by the percentage of the feormulation storage to the storage re-
quired by the total orbit prediction algorithm which includes the
force model and numerieal integrator. Thus with a force model
which adequately represents the forces on a satellite about the
Earth and with an integrator such AD9, KS composes 13 percent of
the total storage and PS¢ only 23 percent. Thérefore, the im-
pact of the PS¢ additional overhead is not as large as it might
first appear, but still should be considered for very stringent
storage reguirements.

We define eyele time as the time required for one evaluation
of the  derivatives of an element set. Certainly KS will have a
smaller cycle time than PS¢. But for accurate predietions, a
large force model is required arnd thus most of the time evaluating
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the derivatives is spent in the force model. Thus one finda that the
ecycle time for -PSy 1s only 6 percent more than the KS eycle time.

One- can only conclude that, ‘for acecurate orbit_ppedietions
where a large force model is requlred ‘the overhead'éf PS¢ 1is
negligible except for very stringent storage .and cycle time re-
quirements.

1. ll..ll MWW- The
four 1ntegrat10n methods and the K5 and PS¢ formulations have been
programed in double precision on the Univac 1110 (ref. 25).. The
results. of the various. comparisons are displayed in graphical form
(figs. 2(a) through 2(d)). The bottom scale in each graph is the
execution time {epu time) in seconds and the left- hand seale is the
accuracy defined as

AR

AR is the position vector difference magnitude .between the .
test and reference solutions at the final time. .

R is the position magnitude 'of the reference solution which
is .accurate to 10 digits.

where

Note that the epu time was varied by taking successively smaller.
step sizes .or, tolerance criteria in each of the NI - DE combinations.
Methods whose curves lie above and to the left are therefore coh-
sidered the most effiecient.

Again, one should refer to reference 23 for a more detailed
description of these numerical comparisohs, .graphical displdys, and
conclusions. ’ ’

t.4.4.1 Near Earth orbit:f-myis test case has the following
initdal -conditions”

"

h

a 28.49, Epogh.of Jan. 1, 1975

278 km- I

167 =0 =Mz0°

hP
The force model includes air drag and .an elghth order, eighth
degree.geopotentlal model.. The final ‘time of integration is
tf = 2.0 days which is about 32 revolutlons.

Regults:

The KS and PS performed about the same, which could be ex-
pected for this near circular orbit. All the Runge=-Kutta methods
performed about the gsame and.both formulations appear to be in-
sensitive to the order of &the integrator. In both fqrmulations,
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the AD9 method was slightly more efficient than the RK methods.
This too could be expected since the forces vary slowly and are
very smooth in this case., Figure 2(a) displays the efficiency
curve of the KS and PS combinations with AD9 and RKH5.

1.4.4.2 Geosynchronous orbit: This test case has the fol-
lowing initial conditions

ha=hp

w = =M= 0.0° I =0.0°

1

35862 kn Epoch of Jan. 1, 1975

tg = 100 days = 100 revolutions

The force model includes the Sun and Moon perturbations and a
fourth order, fourth degree geopobtential model.

Results:

Again, the KS and PS methods performed almost the same. For
accuracies of 5<b8<6 or about 100 to 1000 meters, the RK4, RKIS5
and AD9 are almost equivalent. For slightly more stringent accura-
cies, the ADY integrator is most efficient in either formulation.
The RK78 fails to be competitive except for very stringent accura-
cies of &>7 (less than 1 meter). Figure 2(b) displays the curves
of the KS and PS combinations with AD9 and RKL.

1.4.4,3 Elliptical transfer orbit;  The initial conditions of
this case are -

h, = 200 km I

It

30.0°
h, = 35862 km w=. =M= 0.09 Epoch 6f Jan. 1, 1975
tp = 2.0 days ~ 4 revs

The force model includes drag, an eighth order, eighth degree geo-
potential and Sun-Moon perturbations. Note that in this case the
forces at perigee are much stronger than those at apogee.

Results:

In this case the PS¢ formulation proved to be much more
efficient than KS, regardless of integration method. " This was ex~-
pected since PS¢ uses the true anomaly as the independent vari-
able. Fixed step ADY combination with PS® showed the highest effi-
ciency. But the RK45 with its excellent step size control could be
used with either KS or PS® for competitive efficiencies. The
RE78 showed.to be inefficient again except for stringent accuracies.
Also the fixed step methods.AD9 and RKY4 fared poorly when used with
the XS formulation. This is because the KS independent variable
{eceentric anomaly) is not well 8uited for this case.  Figure 2(e)
displays the X3 and PS combinations with AD9 and REK45.” Note the
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large difference between the AD9 comblnations “but small difference
between the RKY5 combinations.

1.4.%.% Highly eccentric orbit: The initial conditions of
this case are

h, = 425 knm I = 30°
n, = 258,903 km w=9=sM=0.0° Epoch of Jan. 1, 1975
e = 0.95

The force model includes drag, an 18th order geopotential and the
Sun-Moon perturbations., The final time of integration is t; =

50 days ~ 8.6 revolutions. Note in this case the perturbation
forces are equally strong at perigee and -at apogee.

Results:

The KS formulation showed to be the stronger formulation in
this case whieh is again to be expected =since the eccentric anomaly
as independent variable is better suited for this highly eccentric
orbit. The RKU45-KS combination was the most efficient but one could
uze the RKUY5E-PS and even the fixed step AD9-KS combination without
much loss in efficiency. The RK78 integrator appeared to have sta~-
bility problems and its step size control did not perform well,
Since the true ancomaly is not well suited with this case, the fixed
step methods ADY and RKY did not do well with PS¢. Figure 2(d)
shows bthe accuracy curves of the P3¢ and KS formulations with
RK45 and AD9.

.1.4.5 Conclusions from compariscens.- It was concluded from
previous experiments that the PS¢ and K3 formulations possess most

or all of the attributes listed in the introduction. The comparisons
have shown the KS method does have a slight advantage in relation to
storage requirements and eyecle time. Results from the numerical
studies show that both methods are equally powerful for circular
orbit eases but differences between the two formulations become
apparent for more eccentric orbits.

It is recommended for circular orbits with slowly varying
forces (such ag the two cases that were examined) that the AD9
integrator be used with either the KS or PS¢ formulation for the
most efficient results. However, the RKY and RKA45 integrators may
also be used with little loss in effieciency. If the forece model
includes discontinuous forces such as venting, one may find that
a low order single-step method such as RK4 to be more adeguate.

In the case of eccentric orbits where the perturbing forces
are much stronger at perigee than at apogee (such as the elliptic
transfer orbit), the PS%® formulation should be used. For best
results the AD9 integrator is recommmended, However, an integrator
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with -gzood step size control 'sdich a$ RKY5 may be -used with KS
formulation for competitive results. '

For highly eccentric orbits, where the perturbing forces are
important at both perigee and apogee, the KS formulation is best.
Although the KS formulation has an analytic step size control that
is suited for this case, the method produces the most efficient
results with 'the- help of the excellent RK45 mumerical-step size
control. Adeduate results may also be'obtdined from the RKY5-P3
combindtion.

From thée study, it appears there iz no ce¢lear cut "winner®
between K3 and PS¢ formulations. Certainly, both methods are
very powerful and should be considered -as the leading contenders
for niimerical orbit prediction algorithms. The ADY9 method cer-
tainly is the best integrator when the analytieal step size con-
trol is adequate but the RKHS becomes powerful when additional
help is needed for step size control.

1.5 Analytical Solution Methods

Whereas the numerical methods that were discussed in thte pre-
vious sections develop the =solution in disc¢rete steps, analytical
methods produce the solution in the form of finite mathematical
expressions. These expressions contain explicitly the dependent
variable. Numerical evaluation of these expressions provides the
posltlon and velocity of the satellite at a glven time.

An analytical solution can be thought of as a "one step"
méthod. When used for orbit prediction, the ‘Gomputation cost to
obtain the state is always the same, regardless of the prediction
interval. ~Typical computation timé is less ‘than .one second.'’

Anaiytical solu@ions to the J2 (oblateness) problem have

‘been established in the DS-eleménts (ref. 11) and PS-elements "
{ref. 12). An orbit prediection program (ANALYT) - based on the DS.
analytical solution has been developed and is documented in
reference 26. HNumerical experiments contained in reference 26
show that ANALYT solutions of the J5 problem have errors on the

order of a few meters, so long as the ecéenﬂribity is larger than
0.01. In addition, this error remains constant over several hun-
dred revolutions (ref. 11).

Additional testing -of the ANALYT program was carried out in
reference 27. The reférence trajectories ‘were obtained from the
KSFAST program {(ref. 28), using an 18th order,. 18th degree geo-
potential model plus atmospheric drag. It was found that the pro=
gram gives good results for those orbits where drag is not so
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important; i.e., heilght of perigee is abbte 700 km. Position errors
for a prediction of 60 revolutions was on the order of a few kilo=-
meters.

1.6 Multirevolution Methods

A seminumerical orbit prediction method has been developed,
based on the-multirevolution integration technique.. The method
makes use of the fact that the orbital motion of a satellite is.
nearly periodiec from revolution to revolution, as measured from
some orhital reference point sueh as perigee.. The algorithm can
extrapolate the satellite's orbital.elements many revolutions
ahead, thereby saving much computation time. Typical applications
are for lifetime studies, orbit stability analyses and reference
trajectories.

Let §p be the osculating elements at a prespecified orbital

reference point. Then the multirevolution method solves the fol-
owing first corder difference equation,

& - + g
Yp+1 =.%p 5 Tl¥ps0)

where .p is the revolution number. The above equation results’

from the finite change in the elements over one revolution, meas-
ured from the reference point. This change may be computed by =a
numerical integration of the equations of meotion, with the use of

-+ . . . a4 .
Y, @as initial conditions. Since. p will have integer values only,

! . - . - - 1
the elements_n§ are known .at discrete points of a continuous .inde-
pendent variable, forming a grid of equal intervals. The multi-
revolution method provides the solution of the difference equation
at points separated by M grid points, where M 1is the multirevo-
lution "stepsize™. The computed solution.is then eatablished on a
large grid, each interval of which contains M sup}ntervals:

The multirev&lution Tormula is written as
N . N

> o+ P %" .
j=o . T
P = 0, 1

; oo - .
The subsc¢ripted expressions on ; and f refer to the revolution

number. p = 0 gives a predictor formula and p = 1 a corrector
formula. n is the step number. The backwanrd differencez V¥ are
defined as ’
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The coefficients ®; are polynomialis in W The above formula

is very similar to the -Adams formula {(section 1.3.1}. Further
theoretical details of the multirevolution algorithm are glven in
references 29 and 30. i

An orbit prediction program KSMULT based on the multirevolu-
tion algorithm has been developed and is documented in reference 31.
The K3 elements are used for extrapolation and the differences are
computed by the KSFAST program. Therefore, all of the “input/ocutput
.and force. model optlons of KSFAST are available to KSMULT.

Numerical evaluations of KSMULT have been carried out {ref. 32).
The purpose was to determine the optimum values for the order N
and stepsize M, when the multirevolution algorithm is applied to

near EBarth orbits. The initial parameters of the orbit investigated
were: :

altitude 296 km

ebcentricity -0

inclination’ 30°

period 90.4 min

Perturbations included an. 1.8th order zonal geopotential model plus
air drag (Jacchia density .model). Results are shown in table I{a)
and (b) for prediction intervals of 125 days and 165 days, ‘respec-
tively.

TABLE I.- KSMULT TEST RUNS

(a} Prediction Interval = 125 days

i Savings
N M — AR cpu_time —factor
6 6 2.0 km 162 sec 6.8
6 24 1.1 118 9.3,
8 16 8 169 6.5
10 16 8.9 175 6.3

23



TABLE I.- Concluded

(b) Predictiom Interval = 165 days

) Savings

N_ M 4R cpu time - _factor
6 16 9.1 km 208 sec 7.1
8 " 16 1.6 211 sec 6.9

Notes: 1. The reference solutions were obtained from KSFAST.

AR is the vector magnitude of the position difference
in the XK3MULT and KSFAST solutions. This is primarily
a downrange error.

2. The errors in these preﬁictions are oh the order of a
few kilometers. This is less than the expected errors
due to force model inacecuracies (see Section 2.0).

3. Ratios of KSFAST cpu time are shown in the column under
H3avings Factor." This gives an indication of the
savings to be realized with KSMULT. Note that the total
KSMULT runtime for precision computations of 2628 revo-
lutions (table 1(b)) is only about 3 1/2 minutes.

4, According to these results (and addtional results in
reference 32), M=16 and N=8 are the optimum values
for near Earth orbits.

5. This particular orbit decayed at 170 days. During the
final stages of the decay, the orbital elements change
rapidly and multirevolution is no longer the appropriate
numerical integration method. The program cean then
switch to KSFAST for computation of the final few revo-
lutions.

An additional multirevolution program STEPR has been built,
based on the routines in the general orbit prediction program {GOPP)
{ref. 25). STEPR is described and documented in reference 33. All
of the element sets (KS, PS¢, PSU, DS¢, DSU, Cowell) and inte-
gration methods (Adams, RK4, RK45, RK78) that are contained in GOPP
are available to the multirevolution algorithm. STEPR represents a
new concept for orbit prediction programs: any orbit predictor can
have the multirevolution technique as an additional option, thereby
making it several times more efflcient for long predictions.

STEPR has been used as a prototype program and tool for the
following investigations:
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a. Determine the best set of total energy elements and
numerical integration methods for applying multireveolution to a
variety of orbit types (ref. 33).

b. Determine the accuracy limitations of the multirevolution
method {(ref. 33}.. .

¢. Study the orbital motion of the préposed solar power
satellite over a time spah of 30 -years.

d. Lifetime studies of near Earth satellite.

e. Evaluation of refinements to the multirevolution. algo-
rithm,

1.7 Concluding Remarks

4 discussion has been given on several new methods for orbit
prediction. Included are numerical, analytical and seminumerical
methods. Comparison test resulis have been summari¥zed. Suggestions
have been made on the use of the new methods for production applica-
tions.

For numerical orbit predictiocn methods, it was found that the
"total energy" element formulations produced more efficient results
when compared to classical formulations. A comparison bétween the
two total energy formulations, KS-and P3¢, showed no major differ-
ence for circular orbits. However, for eccentric orbits, differences
become apparent because the formulations have -different independent
variables., It was found ‘that, if the independent variable was suited
for a partieular orbit, then more efficient results could be realized.
Several numerical integration methods were investigated im conjunction
with 'KS and PS¢ formulations. For circular orbits, all integrators,
ineluding the fourth order Runge-Kutta (RK4)}, proved to be competitive.
In eccentric orbits, it was seen that a fixed step Adams method (ADS)
was the most efificient integrator, if the formulation's indepen-
dent variable was suited for the orbit.. Otherwise, a fifth order
Runge-Kutta (RK45) with its excellent step size control proved
more efficient.

Leecurate and concise analytical solutions have been obtained
through ‘the use of the canonical total energy elements. The solu-
tions require .a negligible amount of computer time and are fea31ble
for orblt predlctlons 1f the unmodeled forces are small.

For long term,lntegratlon, 1t was found that a seminumerical
orbit prediction method, based on the multirevolution technique,
results in a large savings in computation time. Yet the errors
in the solution are still small'er than the predicted errors due to
force model inaccuracies. Thig versatile method may be applied to
any numerical orbit prediction technique.
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2.0 MATHEMATICAL MODELS OF.THE PERTURBING FORCES-

2.1 Introduction

The environment of an Earth satellite includes a wvariety of
forces and effects that actively perturb its orbit from the ideal-~
ized two-body motion. This part of the report will investigate
these forces and their impact on the accuracy and cost of orbit pre-
dictions.

L computer program for nume}ical orbit prediction usually has
the four basic modules:

a. Input/output and initialization

b. Formulation of the satellite differential equations
¢. Numerical integration routine

d. Mathematieal model of the perturbing forces.

Under consideration here are the various models that are available
to make up the fourth module.

Analytical orbit prediction methods are somewhat diffferent
from the numerical methods in that they usually do not exist as a
combination of modules. The formulation, integration routine and
force model are contained in the same set of egquations. If neges-
sary, they can be separately -defined. However, it is not the inten-
tion to discuss the solution mefhod in this section. The important
thing is that each orbit prediction method (numericzl or analytical)
consists, in some way, of the above modules. In particular, the
. force model,: once it is defined, plays a large part toward determin-
ing the applicability of the resulting computer program.

Acecuracy is of fundamental importance-in any computer program,
Sources of posgsible error in predicting satellite trajectories are:

a. Roundoff and truncation errors, .

b. Inaccurate initial position and wvelocity, and

¢. Inaccurate models of the perturbing accelerations.
Roundoff errors result from the fixed word length that exists

in 21l computing machines. That is, .only a limited number of digits
are carried throughout the arithmetic operations. Algorithms that
require more arithmetic operations will be more affected by roundoff
errors. From this point of .view, the fewer numerical integration
steps needed to compute a trajectory, the better. Also, roundoff
errors are very machine dependent because of. different word sizes
and methods of rounding.

Truncation errors are -due to the finite difference calculus
that is carried out on a computer. Continuous functions are
"discretized™ and computed at finite intervals of the dependent
and independent variables. This is mathematically equivalent to
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truncating the infinite Taylor series expression, hence the term
"truncation error." With numerical integration methods, the higher
order formulas have agreement to more fterms in the Tavlor series
and less truncaticon error. Thus, they are generally more accurate.
The accuracy is usually controlled to be within prespecified bounds
at each step, in order to limi{ accumulation of truncation errors.

Section 1.0 discussged truncation and roundoff errors that re-
sult from a variety of methods; i.e., the numerical accuracy in
solving the programed equations.

The second error source, ipitial vposiftion and velocity errors,

is related to physical accuracy because, typically, they are ob-
tained from an ordit determination program that has limited accuracy
{due to roundeff and iruncation errors, tracking errors, ete.).
When input into an orbit prediction program, their siight deviation
from the exact values can cause an appreciable deviation between the
real and computed trajectories. These initialization errors are not
studied in detail in this report. If expected values of the initial
errors are known, their importance relative to roundoff, ftruncation
and forece model errors can be determined. ’

This section is concerned with the third error source, inagcu-
rate and/or incomplete model of perturbing forces. Generally, the
models differ in their accuracy and complexity. They must all
ultimately be based on empirical mathematical formulas and observa-
tional data. The physical constants (such as mean radius of the
Earth, gravitational constant, air drag coefficient, etec.) are deter-
mined from such data and are necessarily limited in accuracy, due to
observational inaccuracies and roundoff in computations. It is not
the intention of this study to verify or refine the agreement to
observations, Instead, several existing models are systematically
compared to determine their efficiency and accuracy when used in an
orbit prediction program. Effieciency is determined by a model's
conputer execution time and storage. 1t is desired to find £he
least éomplex force model that delivers a required acecuracy in a com-
puted trajectory.

A necessary condition for using numerical orbit prediction
programs to study force model effects is that the numerical errors
te less than the force model errors to be studied. The analysis
and comparisons carried out in section 1.0 prove that this condi-
tion is satisfied in the case of the progratts (KSFAST and GOPP)
that are used in this study.

Typical forces affecting the motion of an Earth satellite
are:

a, Atmospheric drag

b. HNonsphericity of the Earth

¢. 3Sun and Mcon gravity

d. Reference coordinate system inaccuracies
e. Solar radiation pressure
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£f. Uncoupled attitude maneuvers
g+, Vehicle venting

An indepth discussion of the first four are given in this report.
Density models of the upper atmosphere are discussed in sgction 2.2.
The USSR-ASTP and Jacchia models are compared. A new dynamical
{time dependent) density model is presented and tested against the
Jacchia model. In section 2.3, an analytical Sun-Moon ephemeris
model is described and compared to the stored ephemeris of the JPL
tape. The geopotential model is discussed in seection 2. 5, It is
shown how the different terms in the geopotential expression affect
the trajectory. Suggestions are made on a simplified geopotential
model. Seection 2.5 concerns the effects of noninertial coordinate
systems on the trajectory. Finally, reconmendations are given in
section 2.6 on the correct force models to be used when predicting
the following types of trajectories:

Shuttle-type near Earth cirecular orbits
Elliptical transfer orbits (e T 0.7)
Geosynchronous orbits

Near Earth orbit lifetime pqoblems

The complexity of the various forces, and the diversity of
satellite shapes and orbits, makes it very difficult to consider gll
possible perturbations. This study has, of necessity, been somewhat
limited in scope. The last three of the above mentioned affects will
not be discussed. However, it will be made clear in each subsection
as to the scope and limitations of each force model studied.

2.2 Atmospheric Density Models

Atmospheric drag is an impbrtant perthrbaéion on the orbits of
near Earth satellites, such as the shuttle orbiter. The drag forcs
model includes two effects:

a. The aerodynamic interaction of the satellite with the
upper atmosphere, and ’

b. The variable atmospheric density.
The first depends on vehiecle characteristics; i.e., the satellite's
shape and body attitude. The second depends .on altitude, time of
day, geographical position and date.

The acceleration a due to drag is based on the empirieal

equation

-
a= =503l (2-1)
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where o 1is the atmospheric density at the position of the

satellite, ‘T is the veloeity magnitude and direction of the
satellite relative to the atmosphere, and Cd is the drag coceffi-

cieht. The ballistic number B is defined as the weight divided
by the c¢ross sectional area of the satellite.

It has been determined experimentally that the drag.coefficient
of a vehicle moving in a rarified atmosphere is approximately 2.2.
Therefore, the studies described in this section have been based on

Cq = 2.2

The ballistiec number depends, in general, on the angle .between
+ -+ > )
the vectors V and &, where & 1is the body orientation vector.
For the shuttle orbiter, B e¢an vary between (approximately) 50 and

4o0 lbs/ftz. For this study, an intermediate value of
B = 100 pounds per square foot

has been used throughout; i.e., B was held constant in all com-
parisons.

2.2.1 Desecription of the models.- The density at any point
above the Earth's surface generally depends on altitude, time of day,
and level of solar activity. These variations, if incorrectly model-
ed, may result in inaceurate orbit predictions for satellites that
are near the Earth. HNondynamie models such as the 1962 U.S. Standard
Atmosphere do not include the time dependence and solar activity

effects. Four density models were investigated (refs. 3%, 35, 36, and
3773

a. An analytical nondynamical model based on the 1962 U.S. Stan-
dard Atmosphere. This model is described in reference 38 and
will be called the AMDB model. It uses exponential funetions to
describe the 1962 atmosphere. In a trajectory prediction pro-
gram, it uses a.negligible amount of computer storage and execu-
- tion time.

‘b. The Jdacchia model (ref. 39). This model is composed of
two parts:

(1) The determination of the exospheric temperature as
a function of position, time, and the solar and geomagnetic ae-
tivity.

(2) The determination of density as a funetion of the
exospheric temperature and altitude.
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In addition to the solar and geomagnetic activity, the model con-
tains semiannual and diurnal atmospheric variations. Empirical
formulas based on these variations are used to obtain the exo-
spheric temperature.

¢. The USSR (Russian) model used in the Apcllo=Soyuz Test
Project (ASTP) mission. It includes the four effects mentioned in
(b) above and is based on the tracking data of Cosmos satellites
for the period from 1964 to 1970 inclusive. . It is not as versatile
as Jacchia's model since the solar radiation intensity data is
assumed fixed for the year 1975 (ref. 40).

d. A new analytical model (AMDB¥) which contains diurnal
variations (refs. 36 and 37). In addition, 1% can be initialized
to agree with Jacchia's model. It requires less computer storage
and runtime than Jacchia or USSR.

The required input data for each model is as follows:

AMDBR - satellite altitude above the Earth

Jacehia

satellite altitude above the Earth,

- position vecbor of the satellite relative to the
Earth, .

- position vector of the Sun relative to the Earth,
- Julian date of the‘satell;te's'staté vector
Russian -~ satellite altitude above the Eérth,

- position vecbop of the .satellite relative to the
Earth,

- position vector of the Sun relative to the Earth,
- number of hours from midnighﬁ December 31
AMDB¥ - satellite altitude above the Earth

- position veetor of the satellite relative to the
Earth,

- Julian date of the satellite's state vector
The AMDB* model was developed by Gus Babb (NASA/JSC),
Stephen Starke (ACM) and Alan Mueller (ACM) wheh it becameé appar-

ent that the three other models had significant deficiencies. The
most notable were:
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AMDB -~ The exponential formulas were not accurate enough.
In some cases, this model gave no better results

to orbit predictions thanm if alr drag had been
completély neglected.

Jacchia - This model involved large costs in terms of computer
storage and execution time.

USSR - - Poor results were obtained for epochs other than
1975. Also, it was grossly inaccurate at the lower
altitudes (120 km).

2.2.2 Method of evaluation.- The purposes of this study are .
twofold: (1) determine. the effects of atmospheriec density vardia-
tions on the path of a near Earth satellite, and (2) evaluate the
various density models in terms of accuracy and efficiency,.

It would be desirable to compare each model directly to the
actual density of the upper atmosphere at a given position and time.
This. is not possible because direct density measurements are not
available. In fact, the density is determined indirectly by its
effect on satellite motions. This was the procedure uséd to develop
the Jacchia and USSR models. Therefore, it need not -be repeated here

Since both the Jacchia and USSR models were developed indepen-
dently, and .since both are based on satellite tracking data, a con-
servative estimate -of theéeir accuracy -car be determined by comparing
them to¢ each other in epoch 1975 Output densities are compared in
table II.

- FTABLE II.~ DENSITY bUTPUT, JACCHIA VERSUS USSR

Altitude, Difference,
. km —>Rercent
120 Y ) -
240 8.9
320' 1.4
500 9.8

The large difference at 120 km is due to the inaccurate USSR

model at lower altitudes.. It therefore should not be used when the
satellite!s altitude is less than approx1mate1y 200 km.
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Trajectory. comparisons were made by -examirning' the predicted
position of a near Earth satellite (h, = 220.km, hp = 380 km).
A compféte geoﬁotential model was: used. Predicjéd position based
on Jacehia and USSR density models are compared in Table III for
epoch 1875. .

TABLE III.- POSITON DIRFERENCE, JACCHIA VERS3US. USS3R -

Prediction Position -
i ni ) jays 1iff i -
0.5 " 0.b
1.0 .7
5 .0 39.0

The Jacchia model is considered to be more complete than the
USSR model, because it can be applied to the full 'range of altitudes
and epochs (ref. 3%). Also, it is-in.wide . use.at NASA/JSC. It was
-used, therefore, as the .reference for these studies.

2.2.3 Effects of the Sun on the upper atmosphere.- In addition
to the nearly exponential variation with altitude, the upper atmo-
spheric density varies according to the time of day {(diurnal)}, time
of year (seasonal), -and level of solar aectivity. The .diurnal effect
is a "bulge" on the atmosphere caused by solar heating of the sunlit
side. A change in seasons causes the bulge to chapge latitudes.

It has been found that these three effects can gause a signifi-
cant variation in the density at any point of altitude 500 000 feet
or higher. This section shows the variation as a function of altitude
of the diurnal and.solar activity effects.

The Jacchia model was used to determine the atmospherie
density at altitudes between 120 km and 600 km. Figure 3(a)
shows how the density varies between these altitudes. The four
curves show the difiference between the atmosphere in sunlight
and darknhess, as well as the effect of solar intensity in 1970
and 1975. The Sun shadow curves show the diurnal effect. The

reference density is 0, = 1.225.kglm§.J

s The curves in- figure 3&5) converge at about 500.000 feet
(152 km). At this altitude and below there-is, good-ragreement
between Jacchia and the AMDB exponential model.
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More explicit detalls of the diurnal variations are shown
in figure 3(b) where the density ratioc funetion =-&n ofp, is

plotted against the Sun's hour angle. The daily variation is
apparent.

To determine the effects of these variations, satellite orbit
predictions were carried out using the Jacchia and AMDB models, and
also for the case where air drag is neglected. The orbit conditions
were the same as for the case in section 2.2.2. Positions in the
orbit are compared against the Jaechia-based solution ¥n table IV.

TABLE IV.- POSITIQON DIFFERENCE, JACCHIA VERSUS AMDB;‘NOD?AG

Prediction Position . . Position
interval, davs difference AMDB, km difference NODRAG, Kkm
0.5 11.1 6.7
1.0 by 8 27.8
5.0 1127.0 649.0

For this particular case, the nondynamic exponential model
gives no better results than would be obtained from completely
neglecting atmospheric drag. These results lead to the conclusion
that any accurate orbit prediction program must make use of a den-
sity model that includes the three time dependent effects.

2.2.4 A new apalytical atmospheric densifty model.- Inspection

of curves in figure 3(a) suggest that, at any given time, the atmo-
apheric density funection (ordina@e) may be represented by

-tn(e/o,) = Flz) (2-2)
where
p = atmospheriec density g
po = . reference density at sea level (1.225 -§)
. m

altitude above the oblate Earth in kilometers,

N
n

and F{z) is a rational polynomial. The expression for »p
would be \

P = o, exp[ -F(zq (2-3)
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The coefficients in F could be determined to give agreement to
the curve that corresponds to a given epoch. This procedure would
account for seasonal and solar radiation intensity variations, at
least over a limited time of a few days or weeks. 1In addition, it
was thought time dependent trigonometriec terms might be added to

F in order to include the diurnal variations.

This approach has ‘been used to derive a new analytical at- .
mospheric density model (refs. 36 :and 37). F in equation (2=3)
is represented by .

83
F = a; + a, 2 +-E-+ B. (2-14)
where
B = -b {2-152) cos (¥-35°) cos B8 (2-5)+

841y @p, ag. and b are constants to be determined. The function
- [ -

B effectively simulates the diurnal bulge of the atmosphere. ¢

and $ give the angular distance of the subsatellite point from

the center of the bulge. Given the right ascension and declination
of the Sun {(ag,85) and the right ascension and declination of the 4
vehicle (a,,68,), then ’

Y = a, - o
- s v (2-0v,

B = &, - 8, cos ¢ -

The constant of 359 in equabion (2-5):represénts the fact that the

bulge lags 35° behind the Sun, as viewed from the surface of the
Earth. ’

The values of aq, ag, ag, are calibrated for agreement.of-

p with theé value prediected by the Jacchia model. Three points are
chosen: 24 = 152 km, z,; = 400 km, z3 = 600- km. They are positioned

over the surface of the Earth suech that B = 0, i1.e. ¢ - 35 =

" .
B = 5 . Fqs To, f3 are the wvalues of

~£)

as determined from the Jacehia model. Then a4, ap, a3 are com-
puted sequentially from
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- 1 %3 o TRE 1 1
cay = |f, -+ F———= (£, ~ E£))), /f](z, -2 = T T
3 ' 3 1. z2 Zl 2 1 1 3 ‘ 2123 ziZZ‘
£, ~£ - a_ -
a2=z-2-+zl+zg (2-7)
2 1 172
a
- _ 3
ap = £ -3z -

L.
To compute b, choose =z = 400 kum and a¢-35° = 180°, " = 0.
f 1is obtained from the Jacchia, such that

‘33
b= (f - ay T2,z - —z-—) (z - 152) (2-8)

Equation (2~5), and hence the AMDB¥ model, is valid for
z>152 km. For altitudes below 152 km, the AMDB model -should be
used since it is in close agreement with Jacehia for that altitude
range (see fig. 3(a)).

It was expected that this model would give good agreement
With the Jagéchia model, ‘but require less computer storage and exe~
cution time. To inyestjgape this concept, several orbit prediction
experiments were gcarried out. '

2.2.5 0Orbit prediction experiments.- Numerical orbif predic-
tions were carried out using the GOPP program (ref. 25). The orbits
used in the comparisons are shown in table V.

TABLE V.- ORBITS USED IN PREDICTION EXPERIMENTS

2 =
A B C D_ E F

perigee (km) - 220 300 300 220 Same as 166
apocgee (k'm) 380 600 600 380 A except 533
ecéentricity 012 .02& 022 .012 epoch .02
period (min) "~ 90.5 93.6 93.6 90.5 is 90.5
argument of perigee 0 0 180° 0 12:00 0
ascending node 0 0 1] 0 January 1, 0
inclination 300 30° 309 90° 1977 - 30°
epoch 12-:00 January 1, 1975 Same as

4,B,C,D




Results of the orbit prediction experiments with different density
models are shown in tables VI{a) through VI(f). All comparisons are
with respect to the Jacchia model. The "No Drag" case is also included.

TABLE VI.- POSITION DEPERDENCE ON DENSITY MODEL

(a) Orbit 4

Time of
integraticun, Pozition difference. km
davs No drag RUSSIAN AMDB*
0.5 8.9 0.2 0.3
1.0 36.1 0.8 1.5
5.0 895 16 b2
{(b) Orbit B .
Time of )
integration, Position difference, km
days No drag ‘RUSSIAN AMDE#®
0.5 .83 .03 .07
1.0 3.16 0T .28
5.0 81.5 1.0 6.0
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TABLE VI.- Continued

(c¢) Orbit G

Time of
integration, Position difference, km
davs No drag RUSSTIAN ) AMDB#*
0.5 .5 0 .01
1.0 1.8 .02 .ou
5.0 47,5 .8 .5
(da) Orbit D
Time of
integration, P i ff nece m
davs Ho drag RUSSTAN AMDB¥*
‘0.5 8.6 1 .3
1.0 34,8 .5 1.5
5.0 836 10.3 Li.,g9
(e) Orbit E
Time of ) )
integration, Positid i f ne km
days No drag . RUSSTAN AMDB*¥
0.5 13.9 3.4 0.4
1.0 56.0 “19.2 1.9
5.0 1404 hoy 41.6
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TABLE VI.~ Conclu@ed

(f) Orbit F
Time of ) )
integration, Positiop difference, km
.___days No drag AMDB*
0.5 30.9 LU
1.0 164 .4 2.0
5.0 3944 25.9
Notes: 1. “The position differenc¢e is almost entirély in the

downrange direction. The largest effect of drag is
to perturdb the position of the satellite in its orbit,

2. All of these cases show that drag can cause a signifi-"
cant perturbation for orbit predictions of one day or
longer,

3. The new analytical model (AMDB*) shows good agréement
with Jacchia, although not quite as good as USSR for
epoch in 1975. )

4, Fer epochs other than 1975 (orbit E) the USSR model is
not very accurate. This shows the effeet of the solar
activity level. The USSR _model is based on the solar

activity in 1975.

5. AMDB* has about the same accuracy, regardless of epoch.’
{(Compare orbit A with orbit E.)

2.2.6 Additional remarks.- It has been shown that atmospherie
drag can cause & large perturbaticn of 4 satellite's position in
its orbit. In addition, time dependent variations in the atmo~
spheric density can also cause large perturbations. Therefore,
orbit prediction programs for near Earth orbits must include a
dynamic model of ‘the atmosphere.

The Jacchia density model hasd been compared with the USSH
nodel. They show good agreement for cértain orbits. The USSR
model, however, is not valid for altitudes lower "than 200 km or

epochs other than 19751, Also, both models are rather ineffi-
cient in terms of computer storage. and runtime. i ) ’

Trr given the correct solar activity data, the USSR model
could, perhaps, be calibrated to work for any epoch.
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A new analytical model (AMDB*) has been presented. This
model was developed jointly p&'dué Babb (NASA/JSC), Stephen Starke
(ACM) and Alan Mueller "(ACM). " It can be calibrated to agree with -
the Jacechia model at any given _epoch. The chief advantages of this
model are its small computer storage and 'execution'time requirements.

Execution time2 and storage reguirements for the four models studied
are shown in table VII. This data is based on the models being pro-
gramed -on the Univae 1110 system.

TABLE VII.- EXECUTION TIME AND STORAGE REQUIREMENTS

(Aftmospheric Density Models)

Model Execution time, ms Storage, words
Jacchia 1.6 1252
USSR 2.6 575
AMDB 0.2 <160
AMDB#* 0.3 3ﬂi

It can be seen that AMDB¥ offers considerable advantages. in
speed and storage over Jacchia and USSR, and is almost as fast as
the simple exponential model (AMDB). This increased speed is most
_useful for long orbit predictions, lifetime studies, or in appli-
cations where execubtion time must be 1imited, such as in an onboard
computer.

2.3 Geopotential Model

The mathematical model for the gravitational poteéntial of the
Earth is given as a function of the satellite's position with re=-
speet to an Earth fixed coordinate §ystem. This function is the well
known solution of Laplace's equation in terms of spherical harmonies.
The perturbing accelerations are obtained as the partial derivatives
of the geopotential. They can be computed using nonsingular recursive
equations (ref. 41}.

-

25ome additional savings in execution time for the USSR could
be realized if single precision programing were.used.
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The figure of the Earth is described by the numerical coef-
ficients in the geopotential expansion. These coefficients have
been computed from satellite observations and surface gravity
measurements (ref. 42). Although they may sometimes be orbit de- -
pendent, the thorough analysis of reference 42 ‘provides ‘¢coeffi~
cients that deseribe the true Earth to a high precision. These
coefficients were taken as the reference model for the comparisons

desceribed in this section.

Orbit predictions based on the fully determined geopotential
will give the best accuracy but can be prohibitively expensive in
terms of computer execution time. .It is desired, therefore, to
determine the effects of neglecting many of the higher order terms.
Attempts were made in references #3 and 44 to determine satellite
position errors resulting from predictions based on a truncated
geopotential. The numerical results showed that any neglected term
could produce a linear error growth. However, the analytical sat-
ellite theories and observations (table 1, ref. 42) indicate that
the tesseral terms produce only periodic perturbations of small
amplitude (200 nautical mile altitude). Additicnal numerical ex-
periments described in this section showed that, when properly ini-
tialized, the linear error growth {due to neglected tesseral terms)
in the predicted orbit could be avoided.

2.3.1 HNumerigal experiments.- Studies were conducted comparing
a do perturbed solution with a J, and Jdao perturbed solution.

(J2 being the second zonal harmonie and Jgp the second tesseral
harmonie.) The Jd» perturbing potential is a function of only the
position magnitude and latitude, while the Jao poténtial is a

function of the position magnitude, latitude, and longitude with re-
spect to the Earth. Two different cases were run for the J, versus

do + da2 comparison. All were given the same inertial initial
conditions. However the initial longitudes with respect to the

Earth were different; i.e., different initial epochs, The initial
inertial conditions were: )

a = 6677.766 kn. g = O.bo )
e = .016 w-= 0.0°
I = 30° M= 0.0°
In case 1 the hour angle was g, = 104.8°% and in case 2, 8, = 149.9°.

The position differences between the J, and ds + dog solutions are

shown in table VIII(a) for both cases as a fqﬁction of time.

42



AS one can see from table VIII(a), ‘case 1 appears to show a
secular position difference trend stemming from the Js, PEP-

turbing force. While in case 2 the position difference seems to
be pericdic and much smaller. Case 2 verifies what has been shown
analytically and from observations..

Anocther numerical study was made comparing an eighth order
zonal medel with an eighth order eighth degree zonal and tesseral
model. Again two different cases for the hour angle were chosen.

In case 1 the hour angle g, = 42.9 whilé in case 2 gy = 100.6.

The initial conditicns were the same as those in reference by,

a = 6629.656567 knm. a = 45°
e = .01 w = 45°
I = 45° M = 45°

The Julian date of 2442332.17 correspnds to the hour angle in
case 1. The rFesults are shown in table VIII(b)..

The results in case 1, table VIII(b) are similar to those
shown in referencé 44, Again, table VIIl(b) Shows that the error
growth is strongly dependent on the imnitial epoch.

TABLE VIII.- POSITION DEPENDENCE ON GEOPOTENTIAL MODEL

(a) 2x0 versus 2x2

Time ‘ " Position difference, km
davs Case 1 - ~Case 2 -
0.25 1.35 0.43

.50 .91 .005
1.0 ‘ N, 07 .p2
1.5 6.09 .03
2.0 19.54 .0l
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TABLE VIII.- Concluded

(b)Y 8x0 wversus 8x8

Time Position difference, km
.days Case 1 Case 2
.25 245 1.29
.50 7.3 .31
1.0 16.49 .92
1.5 24,72 1.84
2.0 28.9 2.02

2.3.2 Theoretical background.- The basic reason for the
results of the twe previous examples is that the right-hand side
of a differential equation cannot be arbitrarily truncated without
possible drastie effects on the solution. Consider the .single ore
dinary differential equation for x, ’

% = F(x,%) (2«9)
4 similar differential equation for ¥ iE
¥ = F(y,t) + G(y,t) (2-14)
where |e|<<1 and G is periodic im y and t. Let x*(%)
and y*(t) be solutions to equatioms -(2-9) and (2-10), respectively
such that )

x®(t,) = y*(t,)
Define

g{t) = x(t) - y{(t)
Then

E = Flg + y(t),t] = Flx(t) « g,8] = eGlx(t) - &,t]
W¥hen § is initially szero,

£ = Flr + y#{(t),t] - P[x¥(t) - E,t] - eCGLx¥(t) ~ &,t] (2-11)

where x%¥(t) and y#*(t) are known functions. According to the
theory of differential equations, there is no reason to expeet that
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the solution.to eguation (2-11) will remain small.. There‘is ﬁhus
no theoretical justification, for arbitrarily neglecting geopotential
terms. ’

Much is known about the solutions of the differential equa-
tions in celestial mechanics. As mentioned earlier, the tesserald
terms produce periodic effects in the solution. Therefore, an
average over one revolution can be used to determine a "mean"
mean motion that will compensate for the neglected tesseral term.,
The mean mean motions in case 2- (tables VIII(a) and 7(b)) agreed
more c¢losely than in case t.

2.3.3 Comments and recommendations.- Based on,the results
of these studies and those documented in references 43 and U4, the
following recommendations can be made:

e For very accurate predictions of satellite, position (near
BEarth orbits) the full geopotential model must be used.

¢ Predictions of orbit size and shape can be based on 2
zonal model only. ’

e. Mean initial elements must be used before any btesseral
term can be neglected..

Practical realization of the third recommendation requires
additional work in the following areas:

e Development of a rigorous theoretical justifieation for
using initial mean elements with a simplified geopotential.
This .should. make the. connections between analytical theories
and numerical solutions.

¢ Development of a fast numerical routine -for computing -ini-
tial mean values for the elements. Impact on existing pro-
.grams. should be minimized with the goal of minimum storage
and minimum ekXecution time for the initialization.

s . Development of an efficient qﬁthod for including important
resonance effects. It is known that the motion of the
satellite can be significantly perturbed by certain res-
jonant .geopotential terms. These cqnnqx'be neglected.,

2.4 Luni-S ray

1ng gravitationaf forces of attraction due to the Sumn and the
Moon e¢an have an important effect on the orbit of a satellite, par-
ticularly for ‘high altitude‘orbﬁﬁs. Given the mass and position of
a perturbing body, one may calculate it5 perturbation on the orbit:
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Let ; be the position Vvéctor of the satellite, referenced to
some inertidl coordinate system centered:at- the Edrth.” Then its
aceeleration is

5 u> > > > o
X+ X I&+FG+R (2-12)
where
> &
-+ B e
F¢' =-—pﬁ £-+ ¢
M.\ 3 3
& Pg  Tg
5 -
+ Maf .2 Y,
@ ’ - -
o To
s 3> + + - -+
= - r = -
% "X Rk X" T
+ + B - i
%_ and F@ are the disturbing accelerations dueto the Moon and

. e 4
Sun, respectively, and R represents any additional accelerations.

-+ -+
r and r are the positions of the Foon and Sun, respectively,

14 0] i}

K
referenced to the Earth centered inertial coordlnate systen. The
‘mass ratios of the Moon and Sun are Known -to a--very high precision:
The gravitational parameter’'is

M = k2r Me‘ )
where k Is the gravitational constant and Mg -is the 'mass of
the Earth,. s )
. b + - ++‘ '

The first term in.the brackets of '% and 'Fé is called the
"direct® ternm aqa represents thé gravitationdl attraction of the
satellite by the perturbing body. The second term, called .the "in-
direet" term, represents the perturbation of the motion of the
Earth. Eguation (2-13) assumes point masses for the Moon and Sun.

Y
R in equatlon {2-12) represents perturbations sueh as atmospherle

drag, nonspherielty of the Earth, ‘etec.
Kceordlng to ‘equation (2-13), the luni-solar perturbing ac-

+ +

celerations %, and FQ can be directly computed, provided that

46



X, i and ;0 are known. The numerical integration of eguation
(2-12) requires, therefore, that the position of the Sun and Moon
be known as a function of time. 1Two methods for cbtaining this
information have been investigated and are discussed in this sec-
tiodn: - .

a. The stored sphemeris data on the Jet Propulsion Labora-
tory (JPL) tape. A polynomial interpolation is used to obtain

intermediate values of o and ; . This ephemeris is considered
to-be. the most accurate é&ailahle,and will be used as the reference
for this study. It was derived based on radap observations and sat-
ellite tracking data. o ' - .

‘b. Analytical formulas that give the elements of the Sun and
Moon as a function of time. Positions can.then be computed from-.
these elements. This type of ephemeris is sometimes preferred be-
cause it does not require the tape.read and.table look=up operations.
However, the analytical formulas are-generally not ag accurate as
the JPL tabulatéd datsa.

The luni-solar perturbatons will-be shown for uear Earth, geo--
. synchronous and elliptieal orbits. An analytical ephemeris model
will be discussed and compared to the JPL model. Of particular in-
terest are their dccuracy and’their computér storage and runtime
requirements. Finally, suggestions are made for better utilization
of a stored ephemeris. o -

.The initial parameters of the three orbits studied are shown
in table IX. .

TABLE IX.- ORBITS USED IN PREDICTION EXPERIMERTS

(Luni-8olar)

Geosynchronous, km Near-Farth, km Eccentric, Kkm
hy, 35 86l 220 1 0Q0
h, 35 864 380 36 462
e 0.0 0.012 0.723
I 0 30 30
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TABLE IX.- Conecluded

(Luni-Solar)

Gegsynchronous, km ﬂsax;ﬂan&n¢_km. Eggentrice, km

Period 24 hrs 90.5 min 12 hrs
Epoch Noon January 1, 1975

2.4%.1 Magnitude of luni-selar perturbatiops.- The total
affects of the Sun and Moon on the fhree orbits was determined by
comparing the output position vectors of-two cases of orbit pre-~
diction. In one case, the luni-solar gravity perturbations, were
ineluded using the JPL stored ephemeris (ref. 45). Luni-solar
gravity was set to zero in the other -case. Results of the com-
parisons are shown in table X(a).

The individual effects of Sun and Moon gravity are shown in
tables X(b) and X{(e), respectively.

TABLE X.- LUNI-SOLAR GRAVITY EFFECTS ON POSITION

(a) Combined Sun and Moon

Prediction
interval, days Geosynehronous, km Near-Earth, m Eccentric, km
0.5 3.7 36.. 8 27.3
1 11.1 75.7 54,4
5 57.5 3191.5 174 .7
30 281.0 - -
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."TABLE X.- Concluded
(b). Sum only

Prediction

interval, davs: Geosynechronous ., km - :Near~Earth, m . Ecceptric, km

0.5 -2.3 SR N - 2.5
1 "5.0 62.9 y.7
5 25-.0 321.5 .9
30° "152.4 - © -
(e) Moon only
Prediction - ) - T
interyal, days Gegcsynchronous, Kkm Near-Earth, m Eceentric, km
¢.5 L,2 5.8 -24. 9
R 6.1 13.1 " 49.8
i
5 32.7 70.8 174 .8
30 128.7 - -
Notes: 1. The errors in each case have a linear growth. This indi-
- cates that the decision t6 include luni-solar -perturba-
tions in an orbit prediction depends on the. expected pre-
diction interval ahd required raccuracy. -

2. The Moon 'has a muchk -‘larger effiect than- the Sun on the
eccentric orbit. On the other hand, the Sun has a
larger effect on the near Earth- orbit. -

3. Compared to air .density uncertainty effects (table 111},
the. lunji=-solar perturbations on a near Earth satellite
are small. ‘ ’ o

4, The linear growth ind¥cates -that the source of the error

is a slightly wrong value of the “"mean" mean motion, simi-~
lar to that discussed for the geopotential -in section 2.3.
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2.4.2 Apalytical model versus JPL stored data.- An alternative

to the JPL stored ephemeris table has been investigated in references
46 and 47. It is based on expressions that give the mean orbital
elements of the Sun and Moon as fuhections of time, and it is therefore
referred to as an analytical model.

Expressions for the Sun were obftained from the American Ephermeris
and Nautical Almanac (ref. 48) and are documented in reference U6.
Brown's lunar theory was used for the Moon's analytical ephemeris (source
was ref. U9) and the mathematical expressions are given in reference H47.
The algorithm Ffor these analytical models will be referred to here as
nANAL." The JPL data (and asscociated algorithm for interpolation) will
be referred to as "JPL". .

The JPL AND ANAL output positions of the Sun and Moon are compared
in figures 4 and 5. The differences are relatively small and periodic.

However, it must be determined how these differences affect an
orbit prediction. This was done in references 46 and 47, and the
results are summarized in table XI for the three types of orbits
shown in table IX. .o

TABLE XI.- POSITION DIFFERENCE, JPL VERSUS ANAL

Predietion
interval, days Geosynchronous, km Near-Faprth, m Eccentric, km
0.5 7 .03 22
1 5 .05 16
5 20 .Y 126
30 197 - -

Notes: 1. It is assumed that JPL is the more accurate ephemeris
model since it is based on precise optical observations,
spacecraft tracking and radar data.

2. The errors caused by using ANAL for orbit predictions
are extremely small and are negligible for many applica-
tions.

3. The choice between JPL and ANAL muﬁp be made on the basis
of operational considerations, such as execution time
-and storage limitations.

Computer runtime and stonége compénisons,arq shown in table XII.
While there is very little difference in execution time, JPL requires,
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on the gwerége, 4 ‘seconds to initialize and read the data tape.

In addition, for_Univac 1110: demand users, there can be a long de-
lay while the computef operator finds and loads the magnetic tape.
The demand mode also reqguires special procedures for the tape read
during execution. Computer 8torage 'is about 50 percent more for JFL.

TABLE XII.~ COMPUTER RUNTIME AND STORAGE, JPL VERSUS ANAL

Model Exggu;jgn|ﬁimga,ug§ _ Storage, words
" JPL 2.5 (4000) 147 T
ANAL 2.3 T66 -

2.4.3 Additional suggestiohs.- Improvements can be made to
the JPL algorithm that may substantlally reduce the disadvantages
mentioned in £he previous section. The suggesbed approaches are:

a. Strip the Sun and Moon data from the JPL data set.
Carryout the interpolation calculations for the Sun and Moon only.

£ - . - -
~b. Place the Sun=Mbon datad in a more easily accessible mass
storage device, such as Fastran files. This would require seg-
menting the data according to epoch. )

¢.. Use Chebyschev polynomials as the interpolating functions.
This would provide a bound on errors and requireé less data storage.

2.5 Time and Coordinate System Models

The direction in space of the Earth's rotational axis is not
fixed but has two separate motions, called precession and nutation.
It is usually desirable to express the geopotentlal accelerations
in an Earth fixed coordihate system. Thése accelerations must bthen
be converted to an inertial‘coordinate system in order to carryout
yheﬁnugerioal integration of the satellite differential squations.

The Earth's rate of rotation is slowly decreasing.” This
effect, if uncorrected, can Introduce errors in time. In order
to edrrectly compute the perturbatlons due to the nonspherical,
rotating Earth the Earth's hour angle must be accurately known.

8This is the computer cost on Univae 1110 for one evaluation
of the algorithm for Sun and Moon positions.
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This section will discuss studies that were carried out
in order to investigate the most efficient methods for including
the effects of precession, nutation and Greenwich rotatioh in
an orbit prediction program. Also to be discussed are numerical
experiments that show the errors that will occcur when these
effects are neglected.

2.5.1 Discussion.- Precession is the steady drifting of the
Earth's polar axis of rotation around the surface of a cone whose
axis is the ecliptic pole and whose semicone angle is the obliquity

(23927') (see fig. 6). Period of revolution around this cone is

26 000 years, which corresponds to a drift of approximately 20 arc-
seconds per anum at the Earth's pole. Suppose an inertial reference
system is defined such that the Z-axis is in the direection in which
the Earth's mean pecle peointed on January 1, 1950. Then the Earth's
pole in 1975 will differ from the Z-axis of the basic reference
coordinate system by approx1mate1y 514 are-seconds.

Define the preeession matrix_ P to give the transformation
from mean equator and ‘equinox coordinates of some reference epoch
(Basic Reference Inertial Coordinate System) to mean equator and
equinox coordinates of date. The expression for this matrix
is given in reference 50.

Nutation refers to the small oscillatory wobbling of the
Earth's polar axis around its mean prece351ng position. As a re-
sult, the value of the obliquity of the ecliptic oscillates about
a mean value. This transformation‘represents the difference be-
tween the position of the true celestial pole and the mean celestial
pole. Nutation may be broken up into a series of short period term:
(up to a total of 139 terms). Some of these terms have periods as
small as 5 1/2 days. The two largest terms correspond to "the
Earth's pole traversing an ellipse of semiaxes g»,2 and 6".8
once in 18.6 years. The six largest of these terms were included
in the study.

Thus, the nutation matrix N makes the transformation from
mean equator and equinox coordinates of date to true equator and
equinox coordinates of date. Expllclt expressions for the matrix
N as a function time are-given in reference 50.

Greenwich rotation is the daily rotation of the Earth around
its own spin axis. The rate of rotation of the Earth was derived
by Newecemb in 1895. His equation became the. definition of 'non-
uniform" time commonly called universal time, UT1. - The amount of
rotation of the Earth is given in terms of UT1 rather than the
angle called the Greenwich mean sideral time. In the analysis,
Greenwich mean sideral time is obtained from UT1. The explicit ex-
pression for the Greenwich rotation (matrix G) is given in refer-
ence 50.
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Teo summarize this discussion, the entire transformation from
basic reference inertial coordinates to Earth-fixed coordinates,
and vice versa, can be given by the matrix product GNP as follows:

r'EF = GNP I'IC
or

= pINTGT

ric rep

where ry. and rpp are vectors in the ﬁefaqence coordinates and

Earth=-fixed coordinates, respectively.

2.5.2 ﬂgggxigglﬂgxggnimbnié ~ .Tire expre331ons for matrices

G, N, and P are lengthy, contalnlng many trlgonometrlc funetions.
It is, therefore, desirable when numerically predicting satellite
orbits to minimize the number of times these matrices need to be
calcudated. A study*wasncérnied*out to determine the effect of pre-
cession, nutatiom and nonuniform .Greenwich rotation on a near Earth
gatellite orbit and to determine thé.optimum way to implement these
effects in orbit predietion programs.’ )

Two methods of approaeh were taken. 1In one, the matrices G,
N, and P are computed .at-gach function evaluation (calculation of
perturblng forces) This method will, be referred to here as GNP.
In the second methed of approach, these matrices were conputed once
at the epoch of initializdtion and held constant (till epoch time
is changed, if ever) This method: w111 be referred to here aas GNP¥*,
GNP and GNP¥ wywere compared with negleoting totally the effects
due to precession, nutation and nonuniform Greénwich rotation {re-
ferred to as GNP**)

In GNP¥*¥, the tbansfarmabion?ﬂrom basic reference to-Ea?Lh—
fixed system and vice versd:is accomplished by '

= Ryniform [GRN ﬂ Epoch LIC

=
=
s |
1

. T T .
Ptg < [} N P] Epoch Funiform TEF

is a rotation matrix giving a uwniform rotation of

wher? Runif‘orm
the Earth.
cos mEt 3in mEt 0
Runiform = -sinLeEt‘ cosEth q

0 o 0
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wg is the rate of uniform ' rotation of the Earth at initialization
epoch, and [G N P]Epoch is the exact transformation matrix from

basic reference to Earth-fixed system at initialization epoch. Thus
wp and Q = G N P are computed once and Rypipeopnm ig computed at

each function evaluation.

The example considered has the following initial conditions:

Height of perigee 200 km

Height of apogee 400 kn

Eccentricity 0.015

Period 90.0 min

Ineclination 30 deg

Epoch Noon, January 1, 1975
Full 18x18 geopotential

Perturbations {Nc drag
No luni-sclar forces

Input, output, and integration are in inertial coordinates., The
results are displayed in tables XIII(a), XIII{(b)} and XIV. All
numerical integrations were done in the mean of 1950 basiec ref-
erence coordinate system.

TABLE XIII.- TIME AND COORDINATE SYSTEM COMPARISONS

{a) GNP versus GNP*¥*

Prediction interval, Error in peosition, GNP CPu time,
davs km . sec
1.0 negligible 163
2.0 0.00025 328
0.0 0.0121 1640
30.0 0.0540 bg26
Notes: 1. For this case, the coordinate systems and time of

GNP and GNP#* coincide at the initialization of the
orbit prediction.

2. 1In order to compute the perturbing accelerations of
the nonspherical Earth, the satellite's postion vector
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is reotated into an Earth-fixed coordinate system, using
GNP or GNP¥.

‘GNP* is fixed (except for the uniform rotation of Green-

3.
wich) whereas GNP 1is changing slowly. .The‘small devi=
ation between the two, results in the errors in ,position
shown above,

4, The errors in position result from the effects of
precession, nutation and time erprors over 1, 2,

10 and 30 days.

5. These errors remain small, growing to be only 50 meters
at 30 days. For predictions of several months, the
GNP* nmatrix should probably be updated every 3 or H
months.

(b) GNP* versus GNP**
Prediction interval, . Error in position, . GNP CPu time,
days : : km SN . -58¢

0.0623 1.0 8

0.25 5.7 30

0.75 6.2 88

1.0 9.2 117

2.0 11.9 233

Notes: 1. The GNP* matrix is computed in the same manner as
for table XIII{a). However, GNP** contains only
the uniform Greenwieh rotation from the mean of 1950
coordinate system.

2. Again, the satellite position vector is rotated from
the inertial to an Earth-fixed coordinate system, using
GNP¥* or GNP¥*¥,

3. The position errors shown above result from the accu-

mulated precession and nutation from 1950 to 1975 (the
epoch of the orbit prediction). For GNP¥¥, the Earth.
has the wrong orientation with respéct to the inertial
coordinate system. The perturbing accelerations will
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_therefore bé-in“errbor. The integral of -these accelér—
“ation - errors resuits in the accumulated errors shown
above. .

4. The large’ errors indicate that 4an orbit prediction prd-

gram must acocount for precession; nutation: and nonuniform
rotation of the Earth.

TABLE XIV.,- EXECUTION TIME COMPARISONS (GNP)

=
o
*

GNF G GNpx*¥*

n
g
o
o

Lz

Notes: 1. Computer cpu execution times are compared here. Since
‘- GNP#** reguires the least calculations, its execltion
time is taken as the reference for pereentage compari-.

sons.

2. The total execution times for GNP and GNP* are 'shown
in table XITII(a) and XIII(b), respectively.

3. The GNP case requires a 48% increase in execution
time whereas GNP#* préquires negligible additional time.

2.5.3 Conclusions.- Based on these results, it is conecluded
that the precession, nutation and nonuniform ‘time equations can- be
evaluated once at initialiZation of the orbit prediction and held
constant thereafter. This is the method of implementation in the
GOPP and KSFAST programs (réfs. 25 and 28). An error of about
50 meters will accumulate (for a nearly circular, near Earth orbit)
after 30 days. Therefore, for predictions over an extended time
period, GNP* should be updated every 3 or 4 months.

2.6 HRecommendations Based on Orbit Types

It is the purpose of this section to make recommendations on
the appropriate force models to be used for orbit prediction based
.on the type of orbit under consideration. These recommendations are
based on the models analyzed in the previous -sections. Certain
additional foree models (such as solar radiation pressure and .

vehicle venting) may be needed for some satellites.

It is difficult to make -general recommendations because of -
the large diversity of satellite missions and objectives. The
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following recommendations are directed .primarily.to the shuttle
orbiter missions and the transfer and geosynchronous orbits of its
payload.

. The orbit types to be considered here are: near Earth
orbits with small eccentricities, elliptical transfer orbits, and
geosynchronous orbits. The size and shape of each is given by
the semimajor axis a and eccentricity e. The prediction in-
‘terval to be considered is T.

2.6.1 Near-Farth orbits.-

Orbital characteristices: 0 km < a < 7200 km

< 0.05

< 2 days

Force model recommepdations for this class of orbits:

a. Geopotential - all the terms of a chosen model (such as
ref, 42) should- be. used; i.e., all the terms that were.used in the
reduction of satellite observation data1.

-b.- Atmospheric denélty - the dynamic model AMDB®* should be

used. A small increase in accuracy may be realized with the Jacchia
model (computer cost will also be increased, however).

. €. Lupi-sblgr'gravity - theée émoupt to abouﬁ Sb.meters in
downrange position (after 1 day) and can usually be neglected. This
depends., :however, on the prediction interval smnce this error in-
creases linearly. At- 5 days,‘the error is 400 ‘meters.

d. Preeession,.pgta@ioﬂ, nonuniform botation - the GNP¥
method- should be used,

- -

2.6.2  MNear-Earth orbit lifetim ies.-

Orbital characteristics: 6550 km < a < 7200 km
0 <e < 0.05
several months <T< -zeveral years

1The order and degree of. models can vary. It is 1mportant to
realize, however, that each coefficient of a given model may have
nearly equal weight for a near Earth. satellite. As an. example,
Cqig8,17 -may be as physically important-as -Cg gince all coeffi-
c

*eients (S i=2,3,***,N, j=0,1,*°",1i) are computed as a set.

1jr ~ije
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Force model recommendations for this class of orbits:
a. -Geopotential - same .as section 2.6.1
b. Atmosgspheric density - same as section 2.6.1

¢. Luni-solar gravity - Sun and Moon graﬁity effect§ should
be included, using the analytical ephemeris model.

d. Precession, nutation, nonuniform rotation -~ the GNP¥
method should be used, with update intervals of a few months.

2.6.3 Elliptical transfer orbits.-

Orbital gharacteris%tcs: 20 000 km < a < 25 000 km
b5 < e € .75
0 < T <5 days

Force model recommendations for this c¢lass of orbits:

a. éeopotential - since the orbit passes near the Earth, the
complete model -should be used. However, near apogee the higher terms
will be insignificant and can be neglected. An automatic procedure

for doing this has been implemented in the program KSFAST " (see
ref. 28).

b. Atmospheric density - the AMDB® or Jacchia model should
be used, but only when. the altitude is less than about T00 km. Above
. that altitude, the drag calculation should be automatically skipped.

e. Luni-solar gravity - the high altitude at apogee requires
that Sun and Moon gravity be included. The analytieal model of
section 2.4 is- recommended (error is .06 km after 5 days).

d. Precession, nutation, nonuniform rotation = the GNP¥ meth-
od should be used.

2.6.4 Geosvhchronous orbits.-
Orbital characteristics: a = 42240 km
e ?,Ouo
0 < T < 30 days

Force model recommendations for this'cigss of orpits:

a. Geopotential model - The major contribution of the high
order geopotential terms is long period resonant motion. Therefore,
a fourth order and fourth degree model is recommended. For pre-
dictions of longer than 30 days, additional tesseral terms may be
needed. In any éase, terms of higher order than 16 -will be lost in
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the roundoff errors of Univae 1110 double preclﬁion arithmetic, and
should not be included.

b. Atmospheric density - atmbspheric drag oan be neglected for
this case.

e. Luni-sclar gravity - the analytical ephemeris model may be
used, provided that errors on the Grder of 0 2 km (after 30 days)
are agceptable.

¢, " Precessien, nutation, nonuniform Ptotation - The GNPE
model can be used. ’

2.6.5 General resnlts.- The discussion in section 2.6 con-
cerns bthe recommended models of atmospheric density, nonspherical
Earth, luni-solar gravitation, coordinate systems and nonuniform
Greenwich rotation. These force models and the three orbit types
do not, admittedly, cover all the exisiing and proposSed satellite
missions. However, the results can be a useful help in designing
an orbit prediction program. In the event that additional orbit
types and force models need to be considered, a short analysis
based on the procedures used here could produce a more accurabs pro-
gram reqguiring less computer runtime. Results vontained in this
report are an excellent starting point for such an analysdis.

Listed below are the important general resulis of‘these-studmes
tQat apply %o all orbit prediction problems.

- Peraodle variations 'in ztmosbheric density need to be in-~ - -
cluded when ‘air drag is important. These variations can cause
a 100 percent change in the effects of air drag on the orbit.

o Nupmerical calculation of atmogbheric dendgity can be carried
out with single preecision (Univac 1110 arithmetie. 1In
addition, the solar ephemeris in a dynamic model {(such as
Jacchia and AMDB¥) can be obtained from 'a Ymean' Sun on a
cireular orbit. The result is a 50 percent décrease in the
computer cost of the density model evaluation, and no loss
of accuracy.

¢ The geopotential model {(except for the J, term) can also

be evaluated in single precision without loss of acauracy.
The geocoefficients (table 18, ref. 42) are given to 5
decimal digits. Therefore, intermediate caleulations in
single precision {7 to 8 decimal digits, Univac 1110) are

suffieciently agcqrate1.

Yfhis assumes that there are no "programing errors® such as
taking the sum of & large number and a small number or the dif-
ference of two large, nearly equal numbers. -
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The calculation of the precession and nutation matrices

as well as the expression for nonuniform Greenwich rota-
tion needs to be done only at the initialization of

tHe orbit prediction: For very long predictions (several
months or more) the values may need to be updated, .depend-
ing on the accuracy requirements of’ the prediction.

For orbits passing héar the Earth (200-400 km) it is
necessary to include all the known terms in the geopo-
tenmtidl model. The reason is that, fnear the Earth, all
the term ‘(except J,) have about the sdme .magritude.-

Neglecting any term results in an error in the "mean"
mean motion that accumulates ITinearly in the downrange
direction. ’ .

For prediction intervals of a few days, the luni-solar
gravitational effects 'on a near Earth orbit (200-100-km)
-eahn, in many cases, be'néglecéted. This results in typi-
cal downrange position errors of 0.4 km after -5 days.

With the 'shuttle orbitfer, -for example, these errors are
much less than those resulting from uncertainites 1in aero=
dynaniec drag.
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