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PREFACE
 

Mathematical methods for computing satellite orbits consist of
 
an algorithm of formulas -that can be programed on an automatic com­
puter. This report is c6ncerned, specifically, with methods for
 
predicting satellite orbits; that is, given the satellite's state
 
vector (usually position and velocity) at an epoch, compute the
 
state vector at another epoch (or sequence of epochs). A large
 
variety of methods and techniques are available today for solving
 
this problem and it is necessary to choose one that'best suits a
 
particular application. To do this, the methods must be converted
 
intg. an executable program coae ind then'analyzed to determine their
 
efficiency and accuracy for producing usable results:
 

Each method consists of three basic parts:
 

a. Formulation'of the difTerentlal equa'tions -of motion,
 

b. Analytical or numeric&l method for the solution
 
(integration) of these equations,
 

c. Mathematical model of the perturbing forces acting on the
 
satellite.
 

Each part can be coded as a separate module or subroutine in a com­
puter program. The formulations (part a) are discussed in section
 
1.0 of this report.. New formulations are available that have a
 
profound impact on increasing the efficiency of orbit predictions.
 
This is due to the new stabilized differential equations that are
 
easier to solve. The methods of integration .(part b),are also dis­
cussed in section 1.0. The aim is to match formulation and inte­
gration method for a particular application. Mathematical force
 
models (part c) are discussed in section 2.0.
 

In section 1.0 of this report, the concern is with "numerical
 
accuracy" in the orbit prediction. This is defined to mean the
 
accuracy to which the differential equations are solved, assuming
 
that the programed equations perfectly describe the physical
 
situation. The most recent advances in celestial mechanics and
 
numerical analysis are examined. A set of rigorous numerical
 
experiments were carried out to test the various combinations of
 
formulation and integrator.
 

The .subject of force models is concerned with "physical ac­
curacy" of an orbit predictor. That is, how well does the predict­
ed orbit agree to physical reality? This depends, usually, on
 
how well the forces can be modeled. Several types of perturbing
 
forces that affect the orbit are dtscussed in section 2.0.
 
Questions to be considered are:
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* What are the typical magni'tudes of each perturbation? If
 
they are neglected or poorly modeled, how is the accuracy
 
of an orbit prediction affected?
 

*' 'How can the force routings be'made lesd costly in'terms of
 

computer runtime and storage? What new, more e ficient
 
force models should be used?
 

What are the beceisary force models for a variety of
 

standard Earth satellite orbits?
 
V 


The suggestions and red6mmendations contained in this report
 

are based on the particular cases studied. An attempt was made to
 

consider a variety of orbits, pr6diction intervals, output'require­
ments, etc. In view of the wide variety of satellite missions that
 

are being" planned, the scope of this study is necessarily limited.
 
these results and conclusions will
Nevertheless, it is hoped that 


be a bseful guide in choosing the components of an orbit prediction
 

program, as well as a help in analyzing the numerical results of
 

such a program.
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APPLICATION AND ANALYSIS OF SATELLITE
 

ORBIT PREDICTION TECHNIQUES
 

By Analytical and Computational Mathematics, Inc.
 

1.0 FORMULATIONS AND INTEGRATION METHODS
 

1'._I' Introduction
 

The computtio- and prediction of satellite-orbits requires
 
the solution of a set of ordinary differential equations. -Studies
 
have been carried out to determine the best methods for obtaining
 
these solutions. It will be assumed in this sectiob -that the per­

turbing forces are known exactly. The goal, therefore, is to in­
vestigate the numerical aceuracy of a satellite orbit'computation
 
program. That is, to determine the effects of roundoff and
 
truncation errors on the solution.
 

Many different formulations of the satellite differential equa­

tions are available. Of specia-l interest here are the new formula­
tions that have the mean motion based on the total energy. They
 
will be compared to the more classical formulations and evaluated
 
via numerical experiments.,
 

Methods for the numerical solution of ordinary differential
 
.equations are also di'scussed. Numerical experiments have been
 

carried out to determine the most efficient methods, in terms of
 

computer Cpu times.
 

An intention of these studies has been to determine the formu­

lation and numerical integration combinations which exhibit most or
 
all of the following attributes.
 

a. Numerically Accurate: The combination should produce so­
lution which are consistently more accurate than the force model
 

accuracy (see section 2.0 on force model errors). In 6ther words,
 
roundoff and truncation errors should le much smaller-than modeling
 
errors.
 

b. Predietabld'Accuracv: In.addition to point (a), the accu­

racy ofthe solution should b-predictable. In practical applica­
tions;o it is necessary that an upper bound on the error be known.
 

c. Efficient: For a given aocuracy; a combination should
 
require as little c6mputation time as possible to' obtain 'the
 



solution. Thus, t is desirable to have a method which is
 
reasonably accurate but requires the least computation time.
 

d. Reliable: A combination should give reliable results for
 
all possible applications. In addition, the combination should
 
have a "built-in" reliability so that it is insensitive to possible
 
misuse of the algorithm.
 

e. Stable: Small errors in the initial state should not
 
cause the combination to run into numerical difficulties. Some
 
combinations may be reliable over short propagation times; but,
 
because of instabilities become completely erroneous for longer
 
times.
 

f. General: The formulation should be valid over the whole
 
range of intitial conditions. For dnstanee, certain sets have
 
singularities for circular or equatorial orbits. However, since we
 
are most interested, in elliptical orbits, we wi.ll exclude the gen­
erality to parabolic or hyperbolic orbits.
 

g. Concise: The computer algorithm for a combination shopld
 
require a small percentage of the storage reqpirements of the total
 
force model.
 

A brief discussion is given on analytical and seminumerical
 
methods. These are specialized techniques that allow a large sav­
ings in computer time. Thei accuracy and r-ange of applications
 
will be discussed.­

1.2 Formulations
 

The satellite differential equations can be -formulated in a
 
number of different ways for different purposes. KIl formulations
 
fall basically into three classes:
 

a. Coordinate Formulation
 

b. Variation of Parameters
 

C. Total Energy Elements
 

These three classes can each be divided iito twco sets, formula­
tions with time as the independent variable and formulations
 
wi.th an independent variable other than time.' Before discussing
 
the different classes one should understand the effect of the
 
independent variable on the numerical integration. The ellipses
 
of figure 1 show where the force model is being evaluated for
 
equal steps in three different independent variables. 'The perigee
 
point- of this ellipse (e = .7) is located'on the right-hand side.
 
Note that equal steps in the true anomaly tends to evaluate the
 
,force model more near the perigee point. On the other hand,
 
equal steps in time tends to bunch the majority of thdforce
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True anomaly 

Eccentri anbmaly--

Figure 1 .- Independent variables. 

3 



evaluations near the apogee. The eccentric anomaly smooths
 
the evaluations equally over perigee and apogee. Since the
 
stronger perturbations are usually associated with the perigee
 
point (atmospheric drag, for example), it becomes immediately'
 
clear why the use of the true or-eccentric anomaly results in
 
an automatic "analytical" step size control.
 

One could conclude from figure 1 that if the perturbations
 

are much stronger at perigee than at.apogee, then the true anom­
aly would be the most approp'riate choice for independent variable.
 
If the perturbations at apogee and. perigee were nearly equal then
 
one might expect the eccentric anomaly to be the better choice.
 
Clearly, time would be a poor choice for either case. Of course,
 
when the orbit is circular then the different independent variables
 
become quite the same.
 

1.2.1 Coordinate formulation.- Let the coordinates x
 

of the satellite be referred to an inertial rectangular coordinate
 

system. The most basic formulation of the equations of motion
 

is the so called Cowel method (ref. 1)
 

3 
 as
r
 

where
 

r = lxi
 

V is the perturbing dpotential function and P represents acceler­

ations that are not detivable from a potential. The gravitational
 
parameter is P. This method uses time as the independent vari­

able. The main advantage is, of course, it's simplicity. The
 

approach, however, has several disadvantages. The right-hand side
 
of the differental equations are quite large- and therefore one is
 
forced to take small numerical steps or use a high order integrator.
 

Also, the differential equations are unstable. An attempt to alle­
viate the first problem was made by Enoke (ref..1). If the equation
 
of unperturbed motion is
 

+u o 

and
 

Ax x­
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Then the Enoke equations read
 

.Ax F + p ­

where
 

* av
F +=P 

' 

The right-hand side of the equation is small if Ax is small. But
 

Ax may grow to be quite large, therefore, this method must be 'recti­

fied." This rectification involves setting = -x and Ax = 0. This 
can cause additional instabilities in the differential equations. 

One .may modify the Cowell 'equations by using a fictitious time
 
s,defined by the differential equation
 

ds
 

The equations of motion then become
 

= r' 1 + r2 
r r 

This method (ref. 2) retains the coordinate formulation and adds an
 
important analytic stepsize control, but it requires an extra dif­

ferential equation to compute the time. An Encke-type formulation
 
can also be applied to these equations to reduce the magnitude of
 
the right hand side of the differential equations.
 

1.2.2 Variation of narameters.- By solving the unperturbed
 

problem one obtains a vector of six constants of integration a.
 

Classical variation of parameters (VOP) methods develop equations
 
of motion wiich'defin4 how the six constants of integration vary
 
in the perturbed case. They have the form
 

The rightrhand sides of the differential equations are small, as
 
in the Encke method, but do not requi-re the expense of rectification.
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The Lagrange and Deluanay element formulations are typical VOP
 

examples. These sets, however, have singularities at zero incli­

nation and zero eccentricity. Another example, the Poincare'
 

elements, avoids these problems. These VOP elements, which prove
 

very fruitful in analytical studies, are somewhat cumbersome for
 

numerical integration. Since the forces are usually given in
 
a con-
Cartesian coordinates, the differential equations require 


version from a and t to x. Another method, developed by Pines
 

(ref. 3), simplifies this conversion. This method, developed with
 
These
time as the independent variable, has mixed secular terms. 


terms grow in magnitude with time and will eventually degrade the
 

accuracy of the solution. The secular terms were later eliminated
 

by a conversion to a perturbed time as independent variable (ref. 4).
 

Another disadvantage of these class'ical variation of parameter meth­

ods is that a costly iteration to solve Kepler's equation is required
 

at each integration step (ref. 5).
 

Burdet has developed a VOP method based on S~erling's solution
 

of a set of regular and linear differential equations of the unper­

tunbed (two-body) motion (ref. 6). Although this approach require's
 

14 differential equations, it provides increased numerical stability.
 

The method presents no mixed secular terms and requires no Kepler
 
an inde­iteration. The regularization requires a transformation to 


pendent variable other than time. For elliptical cases the method
 

can be specialized so that the independent variable becomes the
 

eccentric anomaly and thus this method also has an analytical step
 

size control (ref. 7).
 

1.2.3 Total energv elements.- Kustaanheimo and Stiefel have
 

also developed a linear and regular set of differential equations.
 

The resultant dirrerential equation is that of a perturbed harmonic
 

oscillator in 4-space
 

u~~IW'I3V 

where
 
dt
 

= t' =rs 

However, the major difference between the Burdet and KS method is
 

that the total energy, instead of the two-body energy, is used as
 
This has been shown'by'Stiefel and Scheifele (ref. 8)
a parameter. 


to significantly improve the accuracy and stability of the solutions.
 

The KS method, which has ten differential equations, can be special­

ized for elliptical orbits in which case the eccentric anomaly be­

comes the independent-variab'le. Variation of parameters applied to
 

the integration constants of the four dimensional harmonic oscillator
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provides eight element differential equations. Two addi­

tional element equations comb from the perturbed fr.equenkcy w
 
kbased on the total energy) and an element T for the perturbed
 
time.
 

The Burdet elements have been modified by Bond (ref. 9) so
 

tnat they. -too contain the total energy element. Both element sets
 
kKS and BurdetrBpnd) have-proven to be extremely accurate, stable,
 

and yet have concise formulations. The two methods, however, are
 

'not well suited, for analytical solutions.
 

Recently, a number of canonical'element sets have been devel­

oped (refs. 10, 11, and 12) which incorporate a total energy element
 

in an extended phase space. iney nave eight canonical dependent
 
variables with an independent variable other than time. Two ol the
 

sets, DS and DSu, are similar to the Delaunay elements and have
 

the;:true and eccentric anomaly, respectively," as their independent
 

variable., These sets hav.e singularities for small, eecentricities
 
and incliha-tions. They have been transformed to Poincare' type
 

.elements,. VS .and PSu, to remove the sngularities. Unlike the
 

classica, elements,,,no iteration of Kepler's equation is required.
 

All of-these "extended phase space" .sets have been shown to be as
 
accurate and. efficient as the KS set,, but are not as concise in
 

their t:ormulation.. Because they are canonical sets', they are more
 
readily adopted to analytical perturbation theory.
 

1 2.4 .Choosing-a formulation.- In examining the different ele­

ment 	formMliations, one finds a'number of characteristics which are
 
in a numerical orbit prediction pro­considered desirable for use 


gram.
 

a. The elements should vary slowly and smoothly as a function
 

of the independent -ariable.
 

b. The elements should always be defined for elliptical orbits.
 

o. The independent variable should be the true or eccentric
 

anomaly, allowing for analytical step size control.
 

d. The energy element should include the total energy.
 

- e. fhe formulatibn should requireno iteration of Kepler's
 
equation during the integration procedure.'
 

Only the KS, Burdet-Bond, PS$ and PSu elements of the totai
 
energysclass exhibit all of these characteristics. Indeed, a wide
 

range of experiments have consistently shown that the total energy
 
formulations, when compared to the more classical formulations, are
 
faster, far more stable, and yield more accurate results, while re­

quiring very little (if any) more computer code (ref. 13 and 14).
 
Two of these four sets, KS and PS¢, were chosen for further
 
testing and comparisons. The results and conclusions from the nu­

merical experiments are discussed in section 1.4. An additional
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objective was to match a numerical integration method to these
 
two formulations. Several numerical integrators are discussed in
 
the next section.
 

1.3 Numerical Integrators
 

Given the differential equations and initial conditions", one
 
may employ finite calculus to numerically integrate the differen­
tial equations, giving the solution as a function of the indepen­
dent variable and initial conditions. Two classes of integration
 
methods will be discussed in this section:
 

a. Runge-Kutta (single-step) formulas
 

b. Adams (multistep) formulas
 

The major difference between these two classes is that the single'
 
step methods develop the solution over one step, requiring no pre­
vious information on the solution. The multistep formulas require
 
a sequence of values of the derivatives in order to advance the so­
lution one step. If the derivatives vary slowly and smoothly from
 
step to step, then both classes perform well. I-f the derivatives
 
become erratic or impulsive, the single step methods, with 'step size
 
control, are preferred. Step size control with the multistep method
 
is generally not possible.
 

Note that a step size control procedure that is built into an
 
integrator is called "numerical" step size control. Compare this to
 
the "analytical" step size control that is introduced in section 1.2.
 

1.3.1 Adams formula.- The classical Adams method is an example
 
of a multistep formula. It uses the Adams-Bashforth formula (pre­
dictor) and the Adams-Moulton formula (corrector) to obtain the solu­
tion. A complete discussion of this method is given by Henrici (ref.
 
15).
 

The solution is extrapolated one step forward by applying the
 
predictor formula. The derivative is then evaluated with the pre­
dicted solution and a corrected solution is obtained from the cor­
rector formula. This classical predict-correct type of algorithm
 
is not well suited for variable-step applications. Therefore, only
 
fixed-step Adams integrators are included in this study. A trun­
cation error estimate is available and can be used to determine the
 
best step size.
 

Consider a vector that is defined by the first-order vector
 
differential equation
 

4!= f(,Y
dX fxy
 



where x is the independdnt variable. Alsodefine
 

x. =x + jh 

y. = y(xj) 

= f(xjyj) 

The predictor and corrector formulas are
 

N
 

Y 1yn + h ZPk-en+k-N
 
k=O
 
N
 

Yn + h ECk fn+k-N+l
 
k=O
 

where N+I is the order off both formulas.
 

Observe that the o6rrector formula is an implicit equation
 

since fn+ 1 depends on Yn+1- Usually, one iteration is sufficient
 

for solving the equation., The coefficients Pk Ck are functions
 

of the order of the formula. These coefficients may be computed re­

cursively for any given order before the integration is initiated.
 
For this reason the Adams method is sometimes called a "variable order"
 
method.
 

The truncation error of the corrected solution is given by
 

Yn+l = 

n+l = K Y+l
 

where K is a function of only the order.
n 


The first N+I values of f.' are required to start the
 

integration. In the numerical examples in Section 1.4, an eighth
 
order RK formula was used to start the Adams integration.
 

1.3.2 Runge-Kutta formulas.- Runge-Kutta (RK) formulas fall
 
in the class of single-step integration formulas. That is, they
 

are self-starting. In general, an RK formula can be written as
 
v 

+Yn+l n++yn K.
 

i=l
 



where Wi are weighting coefficients, v is the number of func­

tion evaluations required at each step and K i s defined as
 

hf +Cih +ZAi ,)i 

j=l
 

Equations of condition for Wi, Ci and Aij are found by
 

expanding the RK fdrmula in a Tay-lor series. Solution of these
 
equations provides the numerical values of the coefficients. To,
 
date, however, there is no simple manner to obtain values of these
 
coefficients for any order. A good discussion on RK methods is
 
contained in reference 16.
 

A short description of five different RK formulas is given
 
in the following subsections. A list is given below showing the
 
number of "function ca'lls" (NFC) that are r6quired -at each step
 
by the various RK formulas. A function call is one evaluation of
 
the differential equations.
 

RK formula NFC per ste2
 

RK4 4
 
RKF45 6
 
RK45 6
 

RKS8 10 
RK78 13
 

1.3.2.1 Classical fourth-order formula; The classical fourth­
order fo'rmula (RK4) is
 

S+( + 2K(2 + 2K + 

K = hf(x ,y ) 
+ .I1 h, _ 

= xn2n + h, + K 

K = hf ± h, y + K2
 

Y h( +h) 1
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It is 'very papulair and quite efficient. 'However, when compared to
 

other available RK formulas, it has the following disadvantages.
 

a. No step size control.
 

b. Less efficient for accura'te integration.
 

Its chief advantage is the small computer storage requirement.
 

1.3.'2.2 Fehlberg's formulas: Fehlberg's RK formulas overcome
 
the'two disadvantages mentioned above. His formulas contain an auto­
matic truncation error estimate and are available in orders one
 
through eight (refs. 17 and 18). Reference 19 contains a discussion
 
of the error propagation, as well as the coefficients f6r each RK-

Fehlberg formula. A fifth order version (RKF45) and an eighth order
 
version (RK78) have been tested.
 

1.3.2.3 Bettis' improVed formula: New versions of Fehlberg's
 
formulas are being developed by Dale Bettis at the University of
 
Texas, Austin. He uses a Davidon optimization scheme to compute new
 
RK coefficients that minimize the truncation error. The expression
 
f6r the truncation error is. known as an analytical function of the
 
coefficients. Therefore, the optimized coefficients apply to any
 
set of differential equations and, in effect, raise the order of the
 
formula (ref. 20).
 

Dr. Bettis has made av&ilable to the Mission Planning and Anal­
ysis Division (MPAD) his optimal version of RKF45, which will be
 
referred to here as RK45. There is no increase in computer rur time
 
or storage over that for RKF45 since the algorithm is the same.
 

1.3.2.4 Shanks formula: An additional RK formula developed by
 
Shanks (ref. 21) has also been tested. It was chosen since it was
 
of high 6rder and has been shown- by other-investigators (ref. 22) to
 
have accuracy comparable to that of Fehlberg's formulas.
 

Shanks attempted to minimize the number of function evalua­
tipons per step for a given order. The formula tested here (RKS8)
 
is approximately an eighth-order formula and requires only 10 func­
tion evaluations per step (RKF78 requires 13) but it contains no
 
step size control. Therefore, it is expected that RKS8 will be
 
more efficient than RKF78 when a constant step is desirable, such
 
as for circular orbits. The reverse situation is expected for very
 
elliptical orbits.
 

1.3.3 General remarks'.- For the special case of orbital motion,
 
the right-hand side of the differential equations are usually smooth
 
functions of the dependent variable. In this regard, the Adams for­
mulas are expected to be more efficient'than the Runge-Kutta formulas.
 
Elliptical orbits may,' however, require the variable step size option
 
of the RK formulas.
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The required order of an integrator for a given accuracy de­
pends on the formulation .of the: differential, equations'. 'A method'
 
such as the Cowell formulation requires a high order idtegrator to
 
obtain satisfactory results. But, a method such as the KS formu­
lation is somewhat insensitive to the order of the integrator (see
 
section 1.4), i.e., all integrators perform about the same.
 

Although high order integrators are usually more accurate
 
they are also less stable (ref. 22). Thus, in choosing the inte­
grator one must find a happy medium where the order is large enough
 
for reasonable accuracies but small enough not to introduce instabil­
ities.
 

1.4 Formulation-Integrator Combinatfons
 

When building a numerical orbit prediction program; it is de­
sirable to choose the formulation and integration method that best
 
satisy the requirements discussed in section '1'.1 (Force model require­
ments are discussed in section 2.0). The discussion ifi this section
 
concerns the choice of these two important components and relies on
 

,
both theoretical considerations and numerical experiments.''Use was
 
made of the results and experience of ptior investigators to eliminate
 
some methods and limit the number of possible combthations.
 

Several different problems of orbit. prediction were chosen for 
the numerical experiments. The orbits chosen are important for 
shuttle orbiter and payload missions. Also, they demonstrate the 
different qualities of the differential-equation formulation -- numer­
ical integration (DE - NI) combinations. A thorough discussion of 
the comparison is contained in reference 23. The following'gives a 
summary and the conclusions. 

1.4.1 Formulations investiuated.- -The discussion in section 1.2
 
concluded that there are four available eibment sets (KS, Burdet-Bond,
 
PS , PSu) that have significant advantages over'all the rest. These
 
four are in the class of "total energy elements" and each. is 
based on an independent variable different from time. It was de­
cided to choose two of these for further testing and evaluation. 

In choosing between the four total energy element sets, sev­
eral considerations weremade. First, PS4 has true anomaly as
 
the independent variable, the remaining three have eocentric'anom­
aly. Thus, PS was chosen for further testing in order to deter­
mine the advantage of the step spacing (fig. 1) of the true anomaly.
 
For orbits that are strongly perturbed by the geopotential and drag,
 
PS should-havgean advantage.
 

KS was chosen from among. PSu andBurdet-Bond because (eom­

pared to PSu) it has a concise formuiation and it has fewer ele­
ments than Burdet-Bond (10 verius 13). Numerical experiments and
 
theoretical analyses of Bond (refs. 10 and 24) indicate that the
 
PSu has a slight advantage in long term stability. However, this
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does'not seem to be significant enough (for most'applications of
 
orbit predictors) to offset the Value of a concise formulation.
 

1.4.2 Numerical integration methods investigated.- Graf'
 

(ref. 13) investigated a number of different numerical integrators
 
with the Cowell and KS formulations- From the conclusions of that
 

report it was determined that four integrators had advantages
 
that warranted a thorough investigation with the KS and PS# formu­
lations. A short desarigtton of these ifitegrators and the reasons
 
why they were chosen are listed below:
 

a. AD9 - This is an' Adams '(multtstep) method of ninth order 

which evaluates the derivative once per step. This- fixed step meth­

od proved to be very efficient with the KS method even for eccentric 
orbits. 

b. RK4 - This is the classical fourth order Runge-Kutta
 
(single-step) method which requires four derivative evaluations per
 
step. Even though this is a simple, low order method it proved effi­

cient with the KS method.
 

c. RK45 - This is the fifth order Runge-Kutta method with the
 

option of step size control. It requires six derivative evaluations
 
per step and uses Bettis's optimized coefficients because of their
 
proven accuracy (ref. 20). This method was chosen mainly because
 

of its powerful step size control.
 

"d.. RKT8 - This is the eighth order Runge-Kutta-Fehlberg meth­

od that requires 13 derivative evaluations per step. It does have
 

the option of step size control. It was chosen for its efficiency
 

for stringent accuracy requirements.
 

1.4.3 'Comnarisona based on "storase and cycle time.- In com­

paring"KS and PSO one might argue that bhe KS formulation has a
 

clear advantage because it is so concise. Certainly, if one com­
pares storage one finds that PSO equations require 100 percent
 

more domputer storage than KS equations. However, this is not
 
qui.te a fair comparison. One should always compare-formulations
 

by the percentage of the formulation storage to the storage re­

quired by the total orbit prediction algorithm which includes the
 

force model and numerical integrator. Thus with a force model
 
which adeouatelv represents the forces on a satellite about the
 

Earth and with an integrator such AD9, KS composes 13 percent of
 

the total storage and PS only 23 percent. Therefore, the im­
pact of the PS additional overhead is not as -large as it might
 
first appear, but still should be consideted for very stringent
 

storage requirements.
 

We define cycle time as the time required for one evaluation
 

of the-derivatives of an element set. Certainly KS will have a
 
smaller cycle time Chan PS. 'But for accurate predictions, a
 
large force model is required arid thus'most of the time evaluating
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the derivatives is spent in the force model. Thus one finds that the
 
cycle time for -PS4 is only 6 percent more than the KS cycle time.,
 

One- can only conclude that, for accurate orbit.predictions
 
where,a large force, mod.el is required, 'the overehad- of -PS is
 
negligible except for very stringent storage and cycle time re­
quirements.
 

1.1.4 Comnarisons based on accuracy and execution ti~me.- The
 
four integration methods and the KS and PS formulations"have been
 
programed in double precsion on the Univac 1110 (ref. 25.)-. The
 
results. of the various.comparisons ,are displayed in graphical form
 
(figs". 2(a) through 2(d)). The bbt.tom scale in -each graph is the
 
execution time (cpu time) tn seponds and 'the left-hand scale is the
 
accuracy defined as
 

6 = -ol 

where 

AR is the position vector difference magnitude.between the
 
test and reference solutions at the fina'i time.
 

R is the position magnitude 'of.the reference solution which
 
is accurate to 10 digits.
 

Note that. the opu time was varied by taking successively smaller. 
step sizes .or tolenance-criteria in each of the NI - DE combinations.
 
Methods whose curves lie above and to the left are'therefor6 c6h­
sidered the most efficient.
 

Again, one should refer to reference 23 for a more detailed
 
descri-ption of these numerical comparisoh, ,graphical dispidys, and
 
conclusions.
 

1.4.4. Near Earth orbit:- -Thkis test case hasj'the foltowing
 
init-ial -conditions'
 

= 278 km- I 28.40. Epoch of Jan. 1, 1975ha 


hp 167 a 00
 

The force model includes air drag and an'eighth order, eighth
 
degree- geopotential model.. The final'time of integration is
 
tf = 2.0 days which is about 32 revolutions. 

Resu-lts:
 

The KS and PS performed about the same, which could be ex­
pected for this near circular orbit. All the Runge-Kutta methods
 
performed about the same and-both formulations appear to be in­

sensitive to the order of the integrator. In both fQrmulations,
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the AD9 method was slightly more efficient than the RK methods.
 
This too could be expected since the forces vary slowly and are
 

very smooth in this case. Figure 2(aX displays the efficiency
 
curve of the KS and PS combinations with AD9 and RK45.
 

1.4.4.2 Geosynchronous orbit: This test case has the fol­
lowing initial conditions
 

ha = hp = 35862 km Epoch of Jan. 1, 1975
 

1 = 0.00W = M = 0.00 


tf = 100 days = 100 revolutions
 

The force model includes the Sun and Moon perturbations and a
 

fourth order, fourth degree geopotential model.
 

Results:
 

Again, the KS and PS methods performed almost the same. For
 

accuracies of 5<6<6 or about 100 to 1000 meters, the BK4, RK45
 
and AD9 are almost equivalent. For slightly more stringent accura­

cies, the AD9 integrator is most efficient in either formulation.
 

The RK78 fails to be competitive except for very stringent accura­

cies of 5>7 (less than 1 meter). Figure 2(b) displays the curves
 

of the KS and PS combinations with AD9 and RK4.
 

1.4.4.3 Elliptical transfer orbit; The initial .conditions of
 

this case are
 

hp = 200 km I =30.0
 

ha = 35862 km w=.Q M = 0.0O Epoch of Jan. 1, 1975 

tf = 2.0 days = 4 revs
 

The force model includes drag, an eighth order, eighth degree geo­

potential and Sun-Moon perturbations. Note that in this case the
 

forces at perigee are much stronger than those at apogee.
 

Results: 

In this case the PS# formulation proved to be much more
 

efficient than KS, regardless, of integration method.' This was ex­

pected since PS uses the true anomaly as the independent vari­

able. Fixed step ADS combination with PSk showed the highest effi­

ciency. But the RK45 with its excellent step size control could be
 

used with either KS or PS$ for competitive efficiencies. 'The
 
RK78 showedto be inefficient again except for stringent accuracies.
 

Also the fixed step methods.,AD9 and RK4 fared poorly when used with
 

the KS formulation. This is because the KS independent variable
 
(eccentric anomaly) is not well §uited for this case.. Figure 2(c)
 
displays the KS and PS combinations with AD9 and RK45.' Note the
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large difference between the AD9 combinations but small difference
 
between the RK45 combinations.
 

1.4.4.4 Highly eccentric orbit: The initial conditions of
 
this case are
 

h = 425 km I = 300 

ha =258,903 km W = = 0.00 Epoch of Jan. 1, 1975
 

e =0.95
 

The force model includes drag, an 18th order geopotential and the 
Sun-Moon perturbations. The final time of integration is tf = 

50 days - 8.6 revolutions. Note in this case the perturbation 
forces are equally strong at perigee and-at apogee. 

Results:
 

The KS formulation showed to be the stronger formulation in
 
this case which is again to be expected since the eccentric anomaly
 
as independent variable is better suited for this highly eccentric
 
orbit. The RK45-KS combination was the most efficient but one could
 
use the RK45-PS and even the fixed step AD9-KS combination without
 
much loss in efficiency. The RK78 integrator appeared to have sta­
bility problems and its step size control did not perform well.
 
Since the triwe anomaly is not well suited with this case, the fixed
 
step methods AD9 and RK4 did not do well with PSO. Figure 2(d)
 
shows the accuracy curves of the PS4 and KS formulations with
 
RK45 and AD9.
 

.1.4.5 Conclusions from comparisons.- It was concluded frodm
 
previous experiments that the PS and KS formulations possess most
 
or all of the attributes listed in the introduction. The comparisons
 
have shown the KS method does have a slight advantage im relation to
 
storage requirements and cycle time. Results from the numerical
 
studies show that both methods are equally powerful for circular
 
orbit oases but differences between the two formulations become
 
apparent for more eccentric orbits.
 

It is recommended for circular orbits with slowly varying
 
forces (such as the two oases that were examined) that the AD9
 
integrator be used with either the KS or PS formulation for the
 
most efficient results. However, the RK4 and RK45 integrators may
 
also be used with little loss in efficiency. If the force model
 
includes discontinuous forces such as venting, one may find that
 
a low order single-step method such as RK4 to be more adequate.
 

In the case of eccentric orbits where the perturbing forces
 
are much stronger at perigee than at apogee (such as the elliptic
 
transfer orbit), the PS4 formulation should be used. For best
 
results the AD9 integrator is reoommmended. However, an integrator
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with -good steV size control "sdch as RK45 may be -used with KS'
 
formulation for competitive-result's,.
 

For highly eccentric orbits, where the perturbing forces are
 
important at both perigee and apogee, the KS formulation is best.
 
Although the KS formulation has an analytic step size control that
 
is suited for this case, the method produces the most efficient
 
results gitf'the, help of th'e excellent RK45 fumeriaal-step size
 
control. Adequate results may also be-obtained from the RK45-PS
 
combination.
 

From th& s.tudy, it appears there is no clear cut twinner"
 
between KS and PS formulations. Certainly, both methods are
 
very'powerful and should be considered,as the leading contenders
 
for nftmerioal orbit prediction algorithms. The AD9 method cer­
tainly is the best integrator when the analytical step size con­
trol is adequate but the RK45-becomes powerful when additional
 
help is needed for step size'control.
 

1.5 Analytical Soluti-on'Methods
 

Whereas the numerical methods that were discussed in the pre­
vious sections develop the solution in discrete steps, analytical
 
methods produce the solution in the form of finite mathematical
 
expressions. These'expressions contain explicitly the dependent
 
variable. Numerical evaluation of these'expressions provides the
 
position and velocity of the satellite at a given time.
 

An analytical solution can be thought of as a ".one step"
 
method. When used for orbit prediction,' the 'domputation cost to
 
obtain the state is always the same, regardless of the prediction
 
interval. -Typical computation time is less than .one second.,
 

Anaiytical solutions to the J2 (oblateness) problem have
 

been established in the DS-61ernts (-rf. 11) and PS-elements"
 
(ref. 12). An orbit prediction program (ANALYT-).based on the DS.
 
ana-lytical solution has been developed and is documented in
 
reference 26. Numerical experiments contafned in reference 26
 
show, that ANALYT solutions of the J2 problem have errors on the
 

order of a few meters, so long as the ec6ent'ribity is larger than
 
0.01. In addition, this error remains constant over several hun­
dred revolutions (ref. 11).
 

Additional testing-of the ANALYT program was carried out in
 
referen6e 27. The referbnce trajectories were obtafned from the
 
KSFAST pr-ogram (ref. 28), using an 18th'order,- 18th degree geo­
potential model plus'atmospheric drag. It was found that the pro
 
gram gives good results for those orbits where drag is not so
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important; i.e., height of perigee is above 700 km. Position errors
 
for a prediction of 60 revolutions was on the order of a few kilo­
meters.
 

1.6 Multirevolution Methods
 

A seminumerical orbit prediction method has been developed,
 
based on the-muitirevolution integration technique.. The method
 
makes use of the fact that the orbital motion of a satellite is.
 

nearly periodic from revolution to revolution, as measured from
 
some orbital reference point such as perigee.- The algorithm can
 
extrapolate the satellite's orbital elements many revolutions
 
ahead, thereby saving much computation time. Typical applications
 
are for lifetime studies, orbit stability analyses and reference
 
trajectories.
 

Let yp be the osculating elements at a prespecified orbital
 

reference point. Then the multirevolution method solves the fol­
owing first order difference equation,
 

p+1 Y0 f YPD)
 

where -p is the revolution number. The above equation results*
 
from the finite change in the elements over one revolution, meas­
ured from the reference point. This change may be computed by a
 
numerical integration of the equations of motion, with the use of
 

y as initial conditions. Since. p will have integer values only,
 

the elements .y 
+ 

are known .at discrete points of a continuous.inde­
pendent variable, forming a grid of equal intervals. The multi­
revolution method provides the solution of the difference equation 
at points separated by M grid points, where M is the multirevo­
lution "stepsize". The computed solution.is then established on a 
large grid, each interval of which contains M subintervals. 

The multirevolution formula is written as
 
N
 

= 

- (n+l)M ynM .. V-(+pMn+ 


J=o
 

p = 0, 1 

The subscripted expressions on y and f refer to, the rexolution
 
number. p 0 gives a predictor formula and p = I a corrector
 
formula.- n is the step number. The, backward differences V* are
 
defined as
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The coefficients aj are polynomials in -. The above formula 

is very -similar to the-Adams formula (section 1.3.1). Further
 
theoretical details of the multirevolution algorithm are given in
 
references 29 and 30.
 

An orbit prediction program KSMULT based on the muiltirevolu­
tion algorithm has been developed and is documented in reference 31.
 
The KS elements are used for extrapolation and the differences are
 
computed by the KSFAST program. Therefore, all of the input/output
 
,and force.-modei opti-ons of KSFAST are available to KSMU'LT.
 

Numerical evaluations of KSMULT have been carried out (ref. 32).
 
The purpose was to determine the Qptimum values for the order N
 
and stepsize M, when the multirevolution algorithm is applied to
 
near E-arth orbits. The initial parameters of the orbit investiga.ted
 
were:
 

altitude 296 km
 

eccentricity 0
 

"
 inclination 3.°


period 90.4 min
 

Perturbations included an. 1.8th order zonal geoqpotential model plus
 
air drag (Jacchia density ,model). Besults'are shown in table. I(a)
 
and (b) for prediction, intervals of 125 days and 165 days, respeo­
tively.
 

TABLE I.- KSMULT TEST-RUNS
 

(a) Prediction Interval = 125 days 

Savings
 
NL L - Afi cnnu time fco.
 

6 1'6 Z.0 km' 162 sec 6;8
 

6 24 11.'1 118 '9.3 

8 16 .8 169 6.5
 

10 16 8-.9' 175 6.3
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TABLE I.- Concluded
 

(b) Prediction Interval = 165 days
 

Savings
 

6 16 9.1 km 204 sec 	 7.1
 

8 16 1.6 211 sec 	 6.9
 

Notes: 1. The reference solutions were obtained from KSFAST.
 
AR 	 is the vector magnitude of the position difference
 
in the KSMULT and KSFAST solutions. This is primarily
 
a downrange error.
 

2. 	 The errors in these predictions are'on the order of a
 
few kilometers. This is less than the expected errors
 
due to force model inaccuracies (see Section 2.0).
 

3. 	 Ratios of KSFAST Cpu time are shown in the column under
 
"Savings Factor." This gives an indication of the
 
savings to be realized with KSMULT. Note that the total
 
KSMULT runtime for precision computations'of 2628 revo­
lutions (table 1(b)) is only about 3 1/2 minutes.
 

4. 	 According to these results (and addtional results in
 
reference 32), M=16 and N=8 are the optimum values
 
for near Earth orbits.
 

5. 	 This particular orbit decayed at 170 days. During the
 

final stages of the decay, the orbital elements change
 
rapidly and multirevolution is no longer the appropriate
 
numerical integration method. The program can then
 
switch to KSFAST for computation of the final few revo­
lutions.
 

An additional multirevolution program STEPR has been built,
 
based on the routines in the general orbit prediction program (GOPP)
 
(ref. 25). STEPR is described and documented in reference 33. All
 
of the element sets (KS, PS , PSU, DSt; DSU, Coweil) and inte­
gration methods (Adams, RK4, RK45, RK78) that are contained in GOPP
 
are available to the multirevolution algorithm. STEPR represents a
 
new concept for orbit prediction programs: any orbit predictor can
 
have the multirevolution technique as an additional option, thereby
 
making it several times more efficient for long predictions.,
 

STEPR has been used as a prototype program and tool for the
 
following investigations;
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a. Determine the best set of t6 tai energy elements and
 
numerical integration methods for applying multirevolution to a
 
variety of orbit types (ref. 33).
 

b. Determine the accuracy limitations of the multirevolution
 
method (ref. 33)..
 

c. Study the orbital motion of the proposed solar power
 
satellite over a time span ot 30-years.
 

d. Lifetime studies of near Earth satellite.
 

e. Evaluation of refinements to the multirevolution algo­
rithm.
 

1.7 Concluding Remarks
 

A discussion has been given on several new methods for orbit
 
prediction. Included-are numerical, analytical and seminumerical
 
methods. Comparison test results have been summarized. Suggestions
 
have been made on the use of the new-methods for production applica­
tions.
 

For numerical orbit prediction methods, it was found that the
 
1total energy" element formulations produced more efficient results
 
when compared to classical formulations. A comparison between the
 
two total energy formulations, KS-and PS', showed no major differ­
ence for circular orbits. however, for eccentric orbits, differences
 
become apparent because the formulations have-different indepenfdent
 
variables. It was found'that, if the independent variable was suited
 
for a particular orbit, then more efficient results could be realized.
 
Several numerical integration methods were investigated in conjunction
 

.
with'KS and PSO formulations' For circular orbits, all integrators,
 
including the fourth order Runge-Kutta (RK4), proved to be, competitive.
 
In eccentric orbits, it was seen that a fixed step Adams method (ADS)
 
was the most efficient integrator, if the formulation's indepen­
dent variable was suited for the orbit.. Otherwise, a fifth order
 
Runge-Kutta (RK45)'with its excellent step size control proved
 
more efficient.
 

Accurate and concise analytical solutions have .been obtained
 
through-'the use of the canonical total energy elements. The solu­
tions require-a negligible amount of computer time and are feasible
 
for orbit predictions 'if the unmodeled forces are small.
 

For 'long term.integration, it wa-s found that a seminumerical
 
orbit prediction method, based on the multirevolution technique,
 
results in a large savings in computation time. Yet the errors
 
in the solution are still smaller than the predicted errors due to­
force model inaccuracies. Thi-s versatile method may -be applied to
 
any numerical orbit prediction technique.
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2.0 MATHEMATICAL MODELS OF.THE PERTURBING FORCES­

2.1 Introduction
 

The environment of an Earth satellite includes a variety of
 
forces and effects that actively perturb its orbit from the ideal­
ized two-body motion. This part of the report will investigate 
these forces and their impact on the accuracy and cost of orbit pre­
dictions. 

A computer program for numerical orbit prediction usually has
 
the four basic modules:
 

a. Input/output and initialization
 
b. Formulation of the satellite differential equations
 
c. Numerical integration routine
 
d. Mathematical model of the perturbing forces.
 

Under consideration here are the various models that are available
 
to make .up the fourth module.
 

Analytical orbit prediction methods are somewhat diffferent
 
from the numerical methods in that they usually do not exist as a
 
combina-tion of modules. The formulation, integration routine and
 
force model are contained in the same set of equations. If neves­
sary, they can be separately.defined. However, it is not the inten­
tion to discuss the solution method in this section. The important
 
thing is that each orbit prediction method (numerical or analytical)
 
consists, in some way-, of the above modules. In particular, the
 
force model,f once it is defined, plays a large part toward determin­
ing the applicability of the resulting computer programc
 

Accuracy is of fundamental importance-in any computer program.
 

Sources of possible error in predicting satellite trajectories are:
 

a. Roundoff and truncation errors,
 
b. Inaccurate initial position and velocity, and
 
c. Inaccurate models of the perturbing accelerations.
 

Roundoff errors result from the fixed word length that exists
 
in all computing machines. That is, -only a limited number of digits
 
are oarri'ed throughout the, arithmetic operations. Algorithms that
 
require more arithmetic operations will be more affected by roundoff
 
errors. From this point of.vtew, the fewer numerical integration
 
steps needed to compute a trajectory, the better. Also, roundoff
 
errors are very machine dependent because of.-different word sizes
 
and methods of rounding.
 

Truncation-errors are -due to the finite diffenence calculus
 
that is carried out on a computer. Continuous functions are
 
"discretized" and computed at finite intervals of the dependent
 
and independent variables. This is mathematically equivalent to
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truncating the infinite Taylor series expression, hence the term
 

"truncation error." With numerical integration methods, the higher 

order formulas have agreement to more terms in the Taylor series 
and less truncation error. Thus, they are generally more accurate. 
The accuracy is usually controlled to be within prespecified bounds
 
at each step, in order to limit accumulation of truncation errors.
 

Section 1.0 discussed truncation and roundoff errors that re­
sul't from a variety of methods; i.e., the numerical accuracy in
 
solving the programed equations.
 

The second error source, initial position and velocity errors,
 
is related to physical accuracy because, typically, they are ob­
tained from an orbit determination program that has limited accuracy
 
(due to roundoff and truncation errors, tracking errors, etc.).
 
When input into an orbit prediction program, their slight deviation
 
from the exact values can cause an appreciable deviation between the
 
real and computed trajectories. These initialization errors are not
 
studied in detail in this report. If expected values of the initial
 
errors are known, their importance relative to roundoff, truncation
 
and force model errors can be determined.
 

This section is concerned with the third error source, inaccu­
rate and/or incomplete model of nerturbing forces. Generally, the
 
models differ in their accuracy and complexity. They must all
 
ultimately be based on empirical mathematical formulas and observa­
tional data. The physical constants (such as mean radius of the
 
Earth, gravitational constant, air drag coefficient, etc.) are deter­
mined from such dita and are necessarily limited in accuracy, due to
 
observational inaccuracies and roundoff in computations. It is not
 
the intention of this study to verify or refine the agreement to
 
observations. Instead, several existing models are systematically
 
compared to determine their efficiency and accuracy when used in an
 
orbit prediction program. Efficiency is determined by a model's
 
computer execution time and storage. It is desired to find the
 
least complex force model that delivers a required accuracy in a com­
puted trajectory.
 

A necessary condition for using numerical orbit prediction
 
programs to study force model effects is that the numerical errors
 
be less than the force model errors to be studied. The analysis
 
and comparisons carried out in section 1.0 prove that this condi­
tion is satisfied in the case of the programs (KSFAST and'GOPP)
 
that are used in this study.
 

Typical forces affecting the motion of an Earth satellite,
 
are:
 

a. Atmospheric drag
 
b. Nonsphericity of the Earth
 
o. Sun and Moon gravity
 
d. Reference coordinate system inaccuracies
 
e. Solar radiation pressure
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f. Uncoupled attitude maneuvers
 
g. Vehicle venting
 

An indepth discussion of the first four are given i-n this report.
 

Density models of the upper atmosphere are discussed in section 2.2.
 
compared. dynamical
The USSR-ASTP and Jacohia models are A new 


(time dependent) density model is presented and tested against the
 

Jacchia model. In section 2.3, an analytical Sun-Moon ephemeris
 
the JPL
model is described and compared to the stored ephemeris of 


tape. The geopotential model is discussed in section 2.4. It is
 

shown how the different terms in the geopotential expression affect
 

are made on a simplified geopotential
the trajectory. Suggestions 

model. Section 2.5 concerns the effects of noninetial coordinate
 

systems on the trajectory. Finally, recommendations are given in
 

the correct force models to be used when predicting
section 2.6 on 

the following types of trajectories:
 

Shuttle-ty-pe near Earth circular orbits
 

Elliptical transfer orbits (e 2' 0.7)
 

Geosynchronous orbits
 

Near Earth orbit lifetime problems
 

The complexity of the various forces, and the diversity of
 

satellite shapes and orbits, makes it very difficult to consider all
 

possible perturbations. This study has,. of necessity, been somewhat
 
The last three of the above mentioned affects will
limited in scope. 


be made clear in each subsection
not be discussed. However, it will 

as to the scope and limitations of each force model studied.
 

2.2 Atmospheric Density Models
 

Atmospheric drag is an important perturbation on the orbits of
 

near Earth satellites, such as the shuttle orbiter. The drag force
 

model includes two effects:
 

a. The aerodynamic interaction of the satellite with the
 

upper atmosphere, and
 

b. The variable atmospheric density.
 

The first depends on vehicle characteristics; i.e., the satellite's
 

shape and body attitude. The second depends ,on altitude, time of
 

day, geographical position and date.
 

The acceleration a due to drag is based on the. empirical
 

equation
 

a -C dVIV (2-1) 
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where p is the atmospheric density at the position of the
 

satellite, V'is the velocity magnitude and direction of the
 
satellite relative to the atmosphere., and Cd is the drag coeffi­

cieit. The ballistic number B is defined as the weight divided
 
by the dross sectional area of the satellite.
 

It has been determined experimentally that the drag-coefficient
 
of a vehicle moving in a rarified atmosphere is approximately 2.2.
 
Therefore, the studies described in this section have been based on
 

Cd =2.2
 

The ballistic number depends, in general, on the angle-between
 

the vectors V and Q, where fl is the body orientation vector.,
 
For the shuttle orbiter, B can vary between -(approximately) 50 and
 

400 lbs/ft2 . For this study, an intermediate value of
 

B = 100 pounds per square foot
 

has been used throughout; i.e., B was held constant in all com­
parisons.
 

2-.2.1 Descrintion of the models.- The density at any point
 
above the Earth's surface generally depends on altitude, time of day,
 
and level of solar activity. These variations, if incorrectly model­
ed, may result in inaccurate orbit predictions for satellites that
 
are near the Earth. Non-dynamic models such as the 1962 U.S. Standard
 
Atmosphere do not include the time dependencoe and solar activity
 
effects. Four density models were investigated (refs. 34, 35, 36, and
 
37 )A 

a. An analytical nondynamical model based on the 1962 U.S. Stan­

dard Atmosphere. This model is described in reference 38 and
 
will be called the AMDB model. It uses exponential functions to
 
describe the 1962 atmosphere. In a trajectory prediction pro­
gram, it uses a.negligible amount of computer storage and 6xecu­
tion time.
 

b. The Jacchia model (ref. 39). This model is composed of
 
two parts:
 

(1) The determination of the exospheric temperature as
 

a function'of position, time, and the solar and geomagnetic ac­
tivity.
 

(2) The determination of density as a function-of the
 

exospheric temperature and altitude.
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In addition to the solar and geomagnetic activity, the model con­

tains semiannual and diurnal atmospheric variations. Empirical
 
formulas based on these variations are used to obtain the exo­
spheric temperature.
 

c. The USSR (Russian) model used in the Apollo-Soyuz Test
 

Project (ASTP) mission. It includes the four effects mentioned in
 

(b) above and is based on the tracking data of Cosmos satellites
 
for the period from 1964 to 1970 inclusive., It is not as versatile
 

as Jacchia's model since the solar radiation intensity data is
 

assumed fixed for the year 1975 (ref. 40).
 

d. A new analytical model (AMDB*) which contains diurnal
 

variations (refs. 36 and 37). In addition, it can be initialized
 

to agree with Jacchia's model. It requires less computer storage
 

and runtime than Jacohia or USSR.
 

The required input data for each model is as follows:
 

AMDB - satellite altitude above the Earth
 

J- satellite altitude above the Earth,
 

- position vector of the satellite relative to the 

Earth, 

- position vector of the Sun relative to the Earth, 

- Julian date of the satellite's state vector 

Rusian- satellite altitude above the Earth, 

posi-tion vector of the satellite relative to the 
Earth, 

- position vector of the Sun relative to the Earth, 

- number of hours from midnight December 31 

AMDB* - satellite altitude above the Earth 

- position vector of the satellite relative to the 
Earth, 

- Julian date of the satellite's state vector 

The AMDB* model was developed by Gus Babb (NASA/JSC), 
Stephen Starke (ACM) and Alan Mueller (ACM) when it became appar­

ent that the three other models had significant deficiencies. The
 

most notable were:
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A-	 The exponential formulas were not accurate en'dugh. 
In some cases,, this model gave no b'etter results 
to orbit predictions than if air drag had been 

-completely neglected. 


Jaechia - This model involved large costs in terms of computer
 
storage and execution time.
 

.USSR- - Poor results were obta-ined for epochs other than
 
1975. Also, it was grossly inaccurate at the lower
 
altitudes (120 km).
 

2.2.2 Method of evaluation.- The purposes of this -study are
 
twofold: (1) determine, the effects of atmospheric density varia­
tions on the path of a near Earth satellite, and (2) evaluate the
 
various density models in terms of accuracy and efficiency,.
 

It would be desirable to compare each model directly to the
 
actual density of the upper atmosphere at a given position and time.
 
This. is not possible because direct density measurements are not
 
available. In fact, the density is determined indirectly by'its
 
effect on satellite motions. This was the procedure used to develop
 
the Jacohia and USSR models. Therefore, it need not be repeated here
 

Since both the Jacohia and USSR models were developed indepen­

dently, arid, since both are based on sateliite tracking data, a -con­
servative estimate -of their accuracy -can be determined by comparing
 
them to each other in epoch 1975. Output densities are compared in
 
table II.
 

-TABLE II.- DENSITY OUTPUT, JACCHIA VERSUS USSR
 

Altitude, Difference,
 
_km percent­

120 	 71.2
 

240 	 8.9
 

320 	 1.4
 

50.0 	 9.8 

The large difference at 120 km is due to the inaccurate USSR.
 
model at lower altitudes.. It therefore should not be used when the
 
satellite's 'altitude is less than approximately.200 km.
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Trajectory-comparisons were made,by -exami-ning-the predpted
 
posi-tion of a. near Earth satellite (ha ,= 220.km, hp' 380 km).
 

A complete geopoten-tial model was, use'd,. Predicted position based
 
on Jacehia and USSR density models are compared in Table III for
 
epoch- 1975.
 

TABLE III.- POSITON DI&FERENCE, J.ACCEFLA VERSUS. USSR-


Prediction Position
 

interval. days' difference. km'
 

0.5 0.A
 

-1-7.
1.0 


5-0 3-9.0 

The Jacehia model is considered to be more complete than the
 

USSR model, because it- can be applied to the full range of altitudes
 

and epochs (ref., 34). Also, it is-in.wide-use~at NASA/JSC. It was
 

,used,,therefore, as the reference for these studies.
 

2.2.3 Effects of the Sun on the upper atmosohere.- In addition
 

to the nearly exponential variation with altitude, the upper atmo­
spheric density varies according to the time of day (diurnal), time
 

of year (seasonal), sand revel of so'lar actixvty. The.diurnal effect
 
is a "bulgelt on the atmosphere caused by solar heating of the sufilit
 
side. A change in -seasons causes the bulge to change latitudes.
 

It has been found that these three effects can cause a signifi­

cant variation in the density at any point of altitude 500 000 feet
 
or higher. This section shows the variation as a function of altitude
 
of the diurnal and,solar activity effects.
 

The .Tacchia model was used to determine the atmospheric
 

density at altitudes between 120 km and 600 km. Figure 3(a)
 
shows how the density varies between these altitudes. The four
 

curves show the difference between the atmosphere in sunlight
 
and darknesb, as well as the effect of solar intensity in 1970
 
and 19-75. The Sun shadow curves show the diurnal effect. The
 

reference density is P0 1.225 kg/m 3.
 

,The curves in-figure 3,(a) converge at about 500.000 feet
 

(152 km). At. this altitude and below ,there is. goodyagreement
 
between Jacchia and the AMDB exponential model.
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More explicit details of the diurnal variations are shown
 
in figure 3(b) where the density ratio function -Xn p/p0 is
 

plotted against the Sun's hour angle. The daily variation is
 
apparent.
 

To determine the effects of these variations, satellite orbit
 
predictions were carried odt using the Jacchia and AMDB models, and
 
also for the case where air drag is neglected. The orbi, conditions
 
were the same as for the case in section '2.2.2. Positions in the
 
orbi't are- compared against the Jacehia-based solution in table IV.
 

TABLE IV.- POSITION DIFFERENCE., JACCHIA VERSUS AMDBNODRAG
 

Prediction Position .Position
 

interval, dara difference ANDB. km difference NODRAG. km
 

0.5 11.1 6.7
 

1.0 44.8 27.8
 

5-.-0 1127-.0 649.0
 

For this particular case, the nondynamic exponental,model
 
gives no better results than would' be obtained from completely
 
neglecting atmospheric drag. These results lead to the conclusion
 
that any acaurate orbit prediction program must make use of a den­
sity model that includes the three time dependent effects.
 

2.2.4 A new analytical atmosDheric density model.- Inspection
 
of curves in figure 3(a) suggest that, at any given time, the atmo­
spheric density function (ordinate) may be represented by
 

-kn(p/p o )  = F(-z) (2-2)
 

where
 

P atmospheric density kg 
sea level (1.225 -).P. =,reference density at 


z= altitude above the oblate Earth in kilometers,
 

and F(z) is a rational polynomial. The expression for p
 
would be
 

p = po exp[ -F(z) (2-3)
 

33
 



....... ..... ...-. .. .
 ..... . .... 
.. . . .. 0 . . ..
 .. 

.. .-...
 

.. . .. . . . ..
 

a. ........... ... .
 

I 1 H 11
 

and11I(a Varaton with alitd epoch11.1f 

F~gurr 3.-destyvratos Itpei 



.......
 

II I I11 1 80"il~IN0 t4I,0 o "
14M 111111#91 JI 
2i1 II i l, I iii HH l i m 

(MI with postMo1111tono4 MINI IuUt w0 9maltitude. 

11 1111o1ci Fitr d d 
I 



The coefficients in F could be determined to give agreement to
 
the curve that corresponds to a given epoch. This procedure would
 
account for seasonal and solar radiation intensity variations,, at
 
least over a limited time of a few days ot weeks. In addition, it
 
was thought time dependent trigonometric terms might be added to
 
F in order to include the diurnal variations.
 

This approach has -been used to derive a new analytical at- ­

mospheric density model (refs. 36 and 37). F in equation (2-3) 
is represented by 

F =a + a2 z + 3 + B. (2-4)
 

where
 

B -b (z-152) cos (*-35 o ) cos B (2-5-)-;
 

a,, a2 , a3. and b are constants to be determined. The function
 

B effectively simulates the diurnal bulge of the atmosphere.
 
and 0 gi.ve the angular distance of the subsatellite point from
 
the center of the bulge. Given the right ascension and declination
 
of the Sun (.a3 ,.s) and the right ascension and declination of the
 
vehicle (av,sv), then
 

(2-u,
 

ST - Ss Cos 

The constant of 359 in equation (2-5) represents the fact that the
 

bulge lags 350 behind the Sun, as viewed from the surface of the
 
Earth.
 

The values of a1 , a2 , a3 , are calibrated for agreement.ofr
 

p with the va-lue predicted by the Jaochia model. Three,points arb
 
chosen; = 152 km, = 400 km, = 600- km. They are positioned
zI z2 z3 


over the surface of the Earth such that B 0-, i.e. j - 35 

2f 1- f2, f3 are the -values of
 

as determined from the Jacchia model. Then a1, a2 , a3 are com­
puted sequentially from
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. 2z-- 1 
2~ 1 Ii 1 3 

a 2 + aa3 (2-7)
 
a2 z1 
 1
z2
 

a, =fI -a2z -
a3
3 

To compute b, choose z 400 km and =-35= 0.
1800, 

f is obtained from the Jacohia, such that
 

b = (f - a1I -, a2 z (z-1228a1 3)2 152) (2-8)
 

Equation (2-5), and hence the AMDB* modeL, is valid for
 
z>152 km. For altitudes below 152 km, the AMDB model -shou-ld be
 
used since it is in close agreement with Jacch-ia for that a.ltitude
 
range (see fig. 3(a)).
 

It was expected that this model would give good agreement
 
w "t -the'Jadchia mofeli'but require less c-omputer storage and exe
 
cution time. To investigate this concept, several orbit prediction
 
experiments wer'e carried out.
 

2.2.5 Orbit Prediction exoeriments-.- Numerical orbit pred-ic­
tions were carried out using the GOPP program (ref. 25). The orbits
 
used in the comparisons are shown in table V.
 

TABLE V.- ORBITS USED IN PREDICTION EXPERIMENTS
 

A B C D E F 

perigee (-km) 220 300 300 220 Same as 166
 

apogee (km) 380 600 600 380 A except 433
 

eccentricity .012 .022 .022 .012 epoch .02
 

period (min) 90.5 93.6 93.6 90.5 is 90.5
 

argument of perigee 0 0 1800 0 1.2:00 0
 

ascending node 0 0 0 0 January 1, 
 0
 

inclination 300 300 300 900 1977 30 °
 

epoch" 12-:010 January. 1, 1975 Same as
 
A,B,C,D
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Results of the orbit prediction experiments with different density
 
models are shown in tables VI(a) through VI(f). All comparisons are
 

with respect to the Jacchta model. The "No Drag" case is also included.
 

TABLE VI.- POSITION DEPENDENCE ON DENSITY MODEL
 

(a) Orbit A
 

Time of
 
integration, Position difference, km
 

days Nodrg RUSSIAN AMDB*
 

0.5 	 8.9 0.2 0.3
 

1.0 	 36.1 0.8 1.5
 

42
5.0 895 	 16 


(b) Orbit B -

Time of
 
integration, Position difference, km
 

days 	 No dra RUSSIAN AMDB*
 

0.5 .83 .03 	 .07
 

1.0 3.16 '.07 	 .28
 

5.0 	 81.5 9 1.0 6.0 
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TABLE VI.- Continued
 

(c) Orbit C
 

Time of
 
integration, Position difference. km
 

days No4rag RUSSIAN AMDB*
 

0.5 .5 0 .01 

1.0 1.8 .02 .04
 

5.0 47.5 .8 .5 

(d) Orbit D
 

Time of
 
integration, Position difference, km
 

days No drag RUSSIAN AMDB*
 

0.5 8.6 .1 .3
 

1.0 34.4 .5 1.5
 

5.0 836 10.3 44.9
 

(e) Orbit E
 

Time 6f 
integration, Position difference, km 

days No draiz RUSSIAN AMDB* 

0.5 13.9 3.4 0.4 

1.0 56.0 19.2 1.9
 

5.0 1404 494 -41.6
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TABLE VI.- Concluded
 

(M) Orbit F
 

Time of
 
integration, Position difference, km
 
-days 'dra ADB
 

0.5 	 40.9 .4
 

1.0 	 164.4 2.0 

5.0 	 3944 25.9 

Notes: 1. 'The position difference is almost entirely in the
 
downrange direction. The largest effect of drag is
 
to perturb the position of the satellite in its orbit.
 

2. 	 All of these cases show that drag can cause a signifi-.
 
can.t perturbation for orbit predictions of one day or
 
longer.
 

3. 	 The new analytical model CAMDB*) shows good agreefent
 
with Jacchia, although not quite as good as USSR for
 

1975.
epoch in 


4. 	 For epochs other than 1975 (orbit E) the USSR model is
 
not very accurate. This shows the effect of the solar
 
activity level. The USSR .model is based on the solar
 
activity in 1975.
 

5. 	 AMDB* has about the same accuracy, regardless of epoch.,,
 
(Compare orbit A with orbit E.)
 

2.2.6 Additional remarks.- It has been shown that atmospheric
 
drag can cause a'large perturbation of a satellite's position in
 
its orbit. In addition, time dependent variations in the atmo­
spheric densty'can also cause large perturbations. Therefore,
 
orbit prediction programs for near Earth orbits must include a
 
dynamic model of 'the atmosphere.
 

The Jacohia density model has been compared with the USSR
 
model. They show good agreement for certain orbits. The USSR
 
model, however, is not valid for altitudes lower-than 200 km or
 

epochs other than 19751. Also, both models are rather ineffi­
cient in terms of- comput-er storage and runtime.
 

I1f given the correct solar activity data, the USSR model
 
could, perhaps, be calibrated to work for any epoch.
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A-new analytical model (AMDB*) has heen presented. This
 

model -was developed jointly by'(Gus B'abb (NASA/-JSC-)., Stephen "Starke
 

(ACM) and Alan Mueller (AQM. It ban be calibrated to agree with
 
The chief advantages of this
the Jacchia model at any given epoch. 


its small computer storage and execution time requirements.
model are 


Execution time2 and storage requirements -for the four models studied
 

are shown in table VII. This data is based on the models being pro­

gramed on the Univac 1110 system.
 

EXECUTION TIME AND STORAGE REQUI-REMENTS
TABLE VII.-


(Atmospheric Density Models)-


Model Execution time. ms Storage. words
 

1252
Jaochia 1.6 


USSR 2.6 57-5
 

<100
AMDB 0.2 


AMDB* 0.3 3i1 


It can be seen that AMDB* offers considerable adantages in
 

speed and storage over Jacohia and USSR, and is almost as fast as
 
most
the simple exponential model (MDB). This increased speed is 


,useful for long orbit predictions, lifetime studies, or in appli­
an onboard
cations where execution time 'must be limited, such a-s in 


computer.
 

2.3 Geopotential Model
 

The mathematical model for the gravitational potential of the
 

Earth is given as a function of the satellite's position with re­

spect to an Earth fixed coordinate, system. This function is the well
 

known solution of Laplace's equation in terms'of spherical harmonies.
 

The perturbing accelerations are obtained the partial derivatives
as 


They can be computed using nonsingular recursivE
of the geopotential. 

equations (ref. 4i).
 

2 Some additional savings in execution time for the USSR could
 

realized if single preciston programing were-.used.
be 
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The figure of the Earth is described by the numerical coef­

fictents in the geopotential expansion'. These coefficients have
 

been computed from satellite observations and- surface gravity
 

Although they may sometimes be or-bit de-­
measurements (ref. 42). 


reference 42-provides 'coeffi­pendent, the thorough analysis o2f 

true Earth to a high precision. These


cients that describe the 

the comparisons
coefficients were taken as the reference model for 


described in this section.
 

the fully determined geopotential
Orbit predictions based on 


will give the best accuracy but can be prohibitively expensive in
 

desired, therefore, to
of computer execution time. It is 


determine the effects of neglecting many of the higher 
order terms.
 

Attempts were made in references 43 and 44 to determine satellite
 

position errors resulting from predictions based on a truncated
 

terms 


The numerical results showed 	that any neglected term

geopotential. 


However, the analytical sat­error growth.
could produce a linear 

ellite theories and observations (table 1, ref. 42) indicate that
 

produce only periodic perturbations of small

the tesseral terms 

amplitude (200 nautical mile altitude). Additional numerical ex­

periments described in this section showed that, when 
properly ini­

tialized, the linear error growth (due to neglected tesseral terms)
 

in the predicted orbit could be avoided.
 

2.3.1 	 Numerical experiments.- Studies were conducted comparing
 

J2 and J22 perturbed solution.
 a J2 perturbed solution with a 


(J2 being the second zonal harmonic and J22 the second tesseral
 

harmonic.) The J2 perturbing potential is a function of only the
 

position magnitude and latitude, while the J 2 2 potential is a
 

function of the position magnitude,. latitude, and longitude with re­

spect to the Earth. Two different cases were run for the J2 versus
 

All were given the same inertial initial
 J2 + J2 2 comparison. 

the
conditions. However the initial longitudes with respect to 

The initial
Earth were different; i.e., different initial epochs. 


inertial conditions were:
 

= 0.00
a = 6617.766 km. 	 a 


= 0.00
e = .015 


M = 0.00
 
I = 300 


In case 1 the hour angle was 00 = 104.80 and in case 2, Go = 149.90.
 

solutions are
 
The position differences between the J2 and J2 + J22 


shown in table VIII(a) for both cases as a function of time.
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As one can see from'tablq V-III(a.), 'case I appears to show a
 

secular position difference trend stemming from the J22 per­

turbing force. While in case- 2 'the position difference seems to
 

be periodic and much smaller. Case 2 verifies what has been shown
 

analytically and from observations..
 

Another numerical study was made comparing an- eighth order
 

zonal model with an 
eighth order eighth degree zonal 	and tesseral
 
were chosen.
model. Again two different cases for the hour angle 


In case 1 the hour angle = 42.9 while in case 2 eb = 100.6.
eo 


as those in reference 44.
The initial conditions were the same 


a = 6629.656567 km. S = 450
 

= 450e = .01 


I = 450 	 M = 450
 

The Julian date of 2442332.17 correspnds to the hour angle in
 

case 1. The results are s.howri'in tabi&'VIII(b).-


The resut-s in case 1, table V-IIJ(b-) are similar to, those
 
error
shown in referenc6 -144'.Again, table VII1(b) shows, thit the 


growth is strongly dependent on the i-nitkal epoch,.
 

TABLE VIII.- POSITION DEPENDENCE ON GEOPOTENTIAL MODEL
 

(a) 2x0 versus 2x2 

Time - Posftion difference.- km 

'davs 	 Case 1 " zCase 2
 

0.25 	 1.35 0.43
 

.50 	 4.91 .005
 

1.0 	 4.07 .02
 

1.5 	 6.09 .03
 

2.0 	 19.54 .04 
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TABLE VIII-.- Concluded
 

(b) 8xO versus, 8x8
 

Time Position difference. km
 
.days Cas- Case2
 

.25 2:45 1.29
 

.50 7.3 .31
 

1.0 16.49 .92 

1.5 24.72 1.84
 

2.0 28.9 2.02
 

2.3.2 Theoretical background.- The basic reason for the
 

results of the two previous examples is that the'right-hand side
 

of a differential equation cannot be arbitrarily truncated without
 

possible drastic effects on the solution.. Consider the single or­

dinary differential equation for x,
 

(2-9)
= F(x,t) 


A similar differential equation for y is
 

= F(y,t) + eG(y,t) (2-16)
 

where Ie<<l and G is periodic-in y and t. Let x*(t)
 
and y*(t) be solutions to equations -(2-9) and (2--0), respectively
 
such that
 

x*(t 0 ) = y'(t o )
 

Define
 

(t) = x(t) - y(t) 

Then 

E= F[ + y(t),t] - F[x(t) - ,t]- G[x(t) - ,t] 

When t is initially zero, 

= F[ + y'(t),t] - P[x'(t) - Z,tJ - c[x'(t) - C,t] (2-11) 

where x*(t) and ye(t) are known functions. According to the
 

theory of differential equations, there is no reason to expect that
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the solution.to equation (2-11) will remain small... There'is thus
 

no theoretical justification, for arbitrarily neglecting geopqtentia'
 
terms.
 

Much is known about the solutions of the differential equa­

tions in celestial mechanics. As mentioned earlier, the tesseraI
 

terms produce periodic effects in the solutio,. Therefore, an
 
determine a "mean"
 average over one revolution can be used to 


mean motion that will compensate for the neglected tesseral term.
 

The mean mean motions in case 2- (tables VIII(a) and 7(b)) agreed,
 

more closely than in case 1.
 

2.3.3 Comments and r-ecommendations.- Based on,-.the results
 

these studies and those documented in references 43 and 44, the
of 

following recommendations can be made:
 

e* For very accurate predictions of satel-lite, position (near
 

Earth orbits) the full geopotential model must be used.
 

based on a
* 	Predictions of orbit size and shape can be 

zonal model only.
 

*, Mean initial elements must be used before any tesseral
 

term can be neglected._
 

.Pract-ical realization of the third, recommenda-tion requir.es
 

additional work in the following areas:
 

Development of a rigorous theoretical justification for
 
elements with,a -simplified geopotential.
using initial mean 


This should..make the. connections between aaly-tical theories
 

and numerical solutions.
 

Development of a fast numerical routine-for computing'ini­* 

tial mean values for the elements. Impact On existing pro­

--grams-should be minimized with the, goal of minimum storage
 

and minimum execution time for the initiatization.
 

* -Development of an efficient method for .including important 

resonance effects. - It is known that the motion of the 

satellite can be> significantly perturbed by, certain res­
onant geopot-enti-al terms. These canno.t be neg lected., 

2A Luni-Solar Gravity Models'
 

ine gravitational forces oD attraction due to the Sun and the
 
Moon can have an important effect on the orbit of a satellift, par­

ticularly for htg-h altitude orbits. Given the mass and position of
 

a perturbing body, one may calculate its perturbation on the orbit;
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Let x be the position vectqr of the satellite, referenced to
 
some inertial coordinate system centeredat the Edrth.' Then its
 
acceleration is
 

+r-x = + F + R" -(2-12) 

r ( 0 

where
 

+& (P+ 4. -


p Mx-r , ze 

+ + 

F and F0are the disturbing accelerations due'*to -the Moon and
 

Sun, respectively, and H represents ahy addtitional accelerat-ions.
 

and are the positions of the Moon and Sun, respectively,
r0 

refetenoed to-the-Earth centered inertia-i oo6rdi-nate system. The 
mass ratios of the Moon and Sun are known -to a~-very high precision; 
The gravitational parameter'is 

= k2 'Me'­

where k is the gravitational constant and M-is the'mass of 
the Earth. " 

The first term in-the brackets of- F and F is called the 
I - 0 

"direct" term and r'epresents th4 gravita-tional attraction of the
 
satellite 'by the' perturbing body. The second term, called,the "in­
direct" term, represents the perturbation of the motion of the
 
Earth. Equation (2-13) assumes point masses for the Moon and Sun.
 

R in equation (2-12) represents perturbations such as atmospheric
 
drag, nonsphericity of the Earth, etc.
 

kocording to 'equation (2-13), the 'lunk--solar perturbing ac­

celerations E and F can be directly computed, provided that
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x, r(L and r. are known. The numerical integration of equation
 

(2-12) requires, therefore, that the position of the Sun and Moon
 

be known as a function of -time. Two methods for obtaining this
 

information have been investigated and are discussed in this 
sec­

tion: "
 

The stored ephemeris data on the Jet Propulsion Labora­

tory (JPL) tape. A polynomial interpolation is used to obtain
 
a. 


r, and ro . This ephemeris i-s considered
intermediate values of 

to--be. the most accurate a.vailable. and will be used as the reference
 

It was derived based on radar observations an-d sat­for this study. 

ellite tracking data . "
 

'b. Analytical formulas that give -the elements of the Sun and
 

Moon as a function of time. Rositions can-then be computed from-.
 
sometimes preferred be­these elements-. This type of ephemeris is 


not require the tape~read and.table look-up operations,
cause it does 

0 
as
 

the JPL tabulated data.
 
However, the analytical formulas are-generally not accurate as
 

shown for bear Earth, geo-
The luni-solar perturbatons will,be 

.synchronous and elliptical orbits. An analytical ephemeris model
 

the JPL Of particular in­will be discussed and compared to model. 


terest are their dccurap'y ahd'their computer storage and runtime
 

requirements. Finally, suggestions are made for better utilization
 

of a stored ephemeris.
 

shown
,The initial parametens of the three orbits studied are 


in table IX.
 

ORBITS USED IN PREDICTION EXPERIMENTS
TABLE IX.-


(Luni-Solar)
 

GOeosvnchronous. km Near-Earth'. km Eccentric. km
 

hp 35 864 220 1 000
 

ha 35 864 380 39 462
 

e 0.0 0.012 0.723
 

30 30
I 0 
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TABLE IX.- Concluded
 

(Luni-Solar)
 

Geosynchronous. km Near-Earth. km Eccentric. km
 

Period 24 hrs 90.5 min 12 hrs
 

Epoch Noon January 1, 1975
 

2.4.1 Maznitude of luni-solar Derturbations.-*The total
 
effects of the Sun and Moon on the three orbits was determined by
 
comparing the output position vectors of- two cases of orbit pre­
diction. In one case, the luni-solar gravity perturbations were
 
included using the JPL stored ephemeris (ref 45). Luni-solar
 
gravity was set to zero in the other -case. Results of the com­
parisons are shown in table X(a).
 

The individual effects of Sun and Moon gravity are shown in
 
tables X(b) and X(c), respectively.
 

TABLE X." LUNI-SOLAR GRAVITY EFFECTS ON POSITION
 

(a) Combined Sun and Moon
 

Prediction
 

interval, days Geosynchronous. km Near-Earth. m Eccentric. km
 

0.5 3-.7 36.8 27.3
 

1 11.1 75.7 54.4
 

5 57.5 391.5 174.7
 

30 281.0
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'TA-BLE X..- Conciud'e'd' 

(bY)Sun on;ly
 

Prediction
 
m 	 Eccentric, km
interval. daYs' Geosvnchronous. 'kim :Near.-Earth. 


0.5 	 -2.3 '31-.3 2.5 

1 	 5.0 62.9- 4.7 

1-4.95 	 25-.0 321.5 

30' 	 152.4
 

(c) 	Moon only
 

Prediction-


Eccentric. km
interval, days Geosynchronous. km Near-Earth. m 

5.8 	 241_q0.5 	 4.2 

1 	 6.1 13.1 49.8 

70.8 	 .174
5 	 32.7 

-
128.7
30 


have a linear growth. This indi-
Notes: 1. The errors in each case 

cates -that the decision to include luni-solar perturba­

tions in an orbit prediction depends on the- expected pre­

dkct-ion intdrval and requ ied accuracy. 

2. 	 The Moon'has a ,much"larger effect. than-the Sun on the
 

eccentric orbit. On the other hand, the Sun has a
 

larger effect on the near'Earth-orbit.
 

3. 	 Compared to air -density uncertainty effec.t's (table III),
 
a near Ear-th satellite
the. luni-solar perturbations on 


are smaf.­

4. 	 The linear growth iid-fcates -that 'the source of the error 

is,a slightly wrong value of the "mean" mean motion, simi­

lar to that'discu'ssed for the geopotential-in section 2.3. 
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2.4.2 Analytical model versus JPL stored data.- An alternative
 
to the JPL stored ephemeris table has been investigated in references
 
46 and 47. It is based on expressions that give the mean orbital
 
elements of the Sun and Moon as functions of time, and it is therefore
 
referred to as an analytical model.
 

Expressions for the Sun were obtained from the American Ephermeris
 

and Nautical Almanac (ref. 48) and are documented in reference 46.
 
Brown's lunar theory was used for the Moon's analytical ephemeris (source
 
was ref. 49) and the mathematical expressions are given in reference 47.
 
The algorithm for these analytical models will be referred to here as
 
"ANALA" The JPL data (and associated algorithm for interpolation) will
 
be referred 	to as "JPL".
 

The JPL AND ANAL output positions of the Sun and Moon are compared
 
in figures 4 and 5. The differences are relatively small and periodic.
 

However, it 	must be determined how these differences affect an
 
orbit prediction. This was done in references 46 and 47, and the
 
results are summarized in table XI for the three types of orbits
 
shown in table IX.
 

TABLE XI.- POSITION DIFFERENCE,- JPL VERSUS ANAL
 

Prediction
 
interval. days Geosynchronous. km Near-Earth. m Eccentric. km
 

0.5 	 7 .03 22
 

1 5 	 .05 46
 

5 20 	 .4 126
 

30 	 197
 

Notes: 1. 	It is assumed that JPL is the more accurate ephemeris
 
model since it is based on precise optical observations,
 
spacecraft tracking and radar data.
 

2. The errors caused by using ANAL for orbit predictions
 
are extremely small and are negligible for many appliea­
tinns,
 

3. The choice between JPL and ANAL must be made on the basis
 
of operational considerations, such as execution time
 
,and storage limitations,.-


Computer runtime and storage comparisons are shown in table XII.
 
While there is very little difference in execution time, JPL requires,
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on the average, 4 seconds to initialize and read the data tape.
 
In addition, for Univac 1110:demand users,, there can be a long de­
lay while the computer operator finds and loads the magnetic tape.
 
The demand mode also requires special procedures for the tape read
 
during execution. Computer storage'is about 50 percent more for JPL.
 

TABLE XII.- COMPUTER HINTIME AND STORAGE, JPL VERSUS ANAL
 

Model Execution timea'-ms Storage. words
 

JPL 2.5 (LObO) 117 7 

ANAL 2.3 T66
 

2.4.3 Additional suggestiohs.-'Improements can be made to
 
the JPL algorithm that, may substantially reduce the disadvantages
 
mentioned in -the previous section. The suggested approaches are:
 

a. Strip the Sun and Moon data from the JPL data set.
 
Carryout the interpolation calculations for the Sun and Moon only.
 

b. Place the SunMbon data in a more' easily accessible mass
 
storage devibc, such as Fastran files. This would require seg­

menting the data according to epoch.
 

c . J.se Chebyschev polynomials as the interpolating functions,
 
This would provide a bound on errors and require less data storage.
 

2.5 Time and Coordinate'System Models
 

The direction in space of the Earth's rotational axis is not
 
fixed but has two separate motions, called precession and nutation.
 
It is usually desirable to express'the geopotential accelerations
 
in an Ehrth fixed coordinate system. These accelerations must then
 

be converted to an inertial' coordinate system in order to carryout
 
the numerical integration of the satellite differential equations.
 

The Earth's rate of rotation is slowly decreasing., This
 

effect, if uncorrected, can fntroduce errors in time. In order
 
to correctly compute the perturbations-dueto the nonspherical,
 
rotating Earth, the Earth's hour angle must be accurately known.
 

aThis is the computer cost on Univac 1110 for one evaluation
 

of the algorithm for Sun and Moon positions.
 

57
 



This section will discuss studies that were carried out
 

in order to investigate the most efficient methods for including
 
the effects of precession, nutation and Greenwich rotation in
 
an orbit prediction program. Also to be discussed are numerical
 

experiments, that show the errors that will occur when these 
effects are neglected. 

2.5.1 Discussion.- Precession is the steady drifting of the 

Earth's polar axis of rotation around the surface of a cone whose
 

axis is the ecliptic pole and whose semicone angle is the obliquity
 

(23027 ') (see fig. 6). Period of revolution around this cone is
 

26 000 years, which corresponds to a drift of approximately 20 are­

seconds per anum at the Earth's pole. Suppose an inertial reference
 
system is defined such that the Z-axis i-s in the direction in which
 

the Earth's mean pole pointed on January 1, 1950. Then the Earth's
 

pole in 1975 will differ from the Z-axis of the basic reference
 
coordinate system by approximately 514 arc-seconds.
 

Define the precession matrix P to give the transformation
 
from mean equator and equinox coordinates of some reference epoch
 
(Basic Reference Inertial Coordinate System) to mean equator and
 

equinox coordinates of date. The lxpression for this matrix
 

is given in reference 50.
 

Nutation refers to the small oscillatory -wobling of the
 

Earth's polar axis around. its mean precessing position. As a re­

sult, the value bf the obliquity of the ecliptic oscillates about
 

a mean value. This transformation represents the difference be­

tween the position of the true celestial pole and the mean celestial
 

pole. Nutation may be broken up into a series of short period term!
 

(up to a total of 139 terms). Some of these t&rms have periods as
 

small as 5 1/2 days. The two largest terms correspond to the
 
Earth's pole traversing an ellipse of semiaxes 9'.2 and 6".8
 

once in 18.6 years. The six largest of these terms were included
 

in the study.
 

Thus, the nutation matrix N makes the transformation from
 

mean equator and equinox coordinates of date to true equator and
 

equinox coordinates of date. Explicit expressions for the matrix
 

b as a function time are-given in reference 50.
 

Greenwich rotation is the daily rotation of the Earth around
 

its own spin axis. The rate of rotation of the Earth was derived
 

by Newcomb in 1895. His equation became the. definition of "non­

uniform" time commonly called universal time, UT1. -The amount of
 

rotation of the Earth is given in terms of UIl rather than the
 
angle called the Greenwich mean sideral time. In the analysis,
 

Greenwich mean sideral time is obtained from UTI. The explicit ex­

pression for the Greenwich rotation (matrix G) is given in refer­

ence 50.
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Figure 6.- Precession nutation, and Greenwich rotation. -
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To summarize this discussion, the entire transformation from
 
basic reference inertial coordinates to Earth-fixed coordinates,
 
and vice versa, can be given by the matrix product GNP as follows:
 

rEF G N P rIC
 

or
 

riC PTNTG-T rEF
 

where ric and rEF are vectors in the rdefe.rence coordinates and
 

Earth-fixed coordinates, respectively.
 

2.5.2 Numerical exdnriments.--Tit expressions for matrices
 
-G, N, and P are lengthy, containing ,many trigonometric functions.
 
It is, therefore, desirable when numerically predicting satellite
 
orbits to minimize the number of times these matrices need to be
 
calcu'lateed. A study was, carried-'out to determine the effect of pre­
cession, nutation and nonuniform Greenwich rotation on a near Earth
 
satellite orbit and to determine the.optimum way to implement these
 
effects in orbit prediction,programs.
 

Two methods of approach were taken: In one, the matrices G,
 
N, and ,P are computed at-Ieach function evaluation (calculation of
 
perturbing forces); This method willbe .referred to here as GNP.
 
In the second method of.approaet, these matr'ices were computed once
 
at the epoch of initialization and held' constanIt (till epoch time

is changed, if ever): This method_will be retered to here as GNP*.
 

GNP ard GNP*' were-cbmpared with nbglec.ting to'tally the effects
 
due to precession, nutation and ndnuniform-Greenwich rotation (re­
ferred to as GNP**).
 

In GNP**, the tyansformation rom basic reference to-Earth­
fixed system and vice Versa'is a6confplished'-by
 

rEFp zI uniform [a-AN P1 Epoch r10
 

rIc = N ] Epoch RHuniform rEF 

where Runiform is a rotation matrix giving a uniform rotation of
 

the Earth.
 

05 SJ~f 0
sin a)t 


Runiform Sf Wn t cos tsi w­ Co-I~
0 

60
 



wE 	 is the rate of uniform rotation of the Earth at initialization
 

epoch, and [G N P]Epooh is the exact transformation matrix from
 

basic reference to Earth-fixed system at initialization epoch. Thus 

wE and Q = G N P are computed once and Runiform is computed at 

each function evaluation.
 

The example 	considered has the following initial conditions:
 

Height of perigee 	 200 km
 

Height of apogee 	 400 km
 

Eccentricity 	 0.015
 
Period 	 90.0 min
 
Inclination 	 30 deg
 

Epoch 	 Noon, January 1, 1975
 
(Full 18x18 	geopotential
 

Perturbations 	 4No drag
 
[No 	luni-solar forces
 

Input, output, and integration are in inertial coordinates. The
 

results are displayed in tables XIII(a), XIII(b) and XIV. All
 
numerical integrations were done in the mean of 1950 basic ref­

erence coordinate system.
 

TABLE XIII.- TIME AND COORDINATE SYSTEM COMPARISONS
 

(a) GNP versus GNP*
 

Prediction interval, Error in position, GNP CPu time,
 

days 	 km see
 

1.0 	 negligible 163
 

2.0-	 0.00025 328
 

10.0 	 0.0121 1640
 

30.0 	 0.0540 4926
 

Notes: 1. 	 For this case, the coordinate systems and time of
 

GNP and GNP* coincide at the initialization of the
 
orbit prediction.
 

2. 	 In order to compute the perturbing accelerations of
 

the nonspherical Earth, the satellite's postion vector
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is rotated into an Earth-fixed coordinate system, using
 
GNP or GNP*.
 

3. 	 GNP* is fixed (except for the uniform rotation of Green­
wich) whereas GNP is changing slowly. .The small devi­
ation between the two, results in the errors in position
 
shown above.
 

4. The errors in position result from the effects of
 
pre'e.ssion, .nuta-tion and time errors over 1, 2,
 
10 and 30 days.
 

5. 	 These errors remain small, growing to be only 50 meters
 
at 30 days. -For predictions of several months, the
 
GNP* matrix should probably be updated every 3 or 4
 
months.
 

(b) GNP* versus GNP**
 

Prediction interval,. Error in position, GNP CPu time,
 

days km_ 
 .sec
 

0.0623 	 1.0
 

0.25 	 5.7 30
 

0.75 	 .6.2 88
 

1.0 	 9.2 117
 

2.0 	 11.9 233
 

Notes: 1. The GNP* matrix is computed in the same manner as
 
for 	table XIII(a). However, GNP** contains only
 
the 	uniform Greenwich rotation from the mean of 1950
 
coordinate system.
 

2. 	 Again, the satellite position vector is rotated from
 
the inertial to an Earth-fixed coordinate system, using
 
GNP* or GNP**.
 

3. 	The position errors shown above result from the accu­
mulated preces'sion and nutation from 1950 to 1975 (the
 
epoch of the orbit prediction). Foe GNP**, the Earth.
 
has the wrong orientation with respect to the inertial
 
coordinate system. The perturbing accelerations will
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therefore b6'3n6%errbr. The integral of-these accel:dr­
ation'error'resfiits'in the accumulated errors 
sh'own
 
above.
 

errors indiate'that 'An orbit prediction pro­4. 	 Theo'la'rge 

gram must account for precession; nutation'and nonuniform
 
rotation of 	the Earth.
 

TABLE XIV.-	 EXEUTION TIME COMPARISONS (GNP)
 

GNP GNP* 	 GNP**
 

48% 2% 	 0.0
 

Notes: I. 	Computer cpu-execution times are compared here. Since
 
GNP.** requires the least calculations, its execution
 

time is taken as the reference for percentage compari­
sons.
 

GNP-* shown
 

in table XIII(a) and XIII(b), respectively.
 
2. 	 The total execution times for GNP' and are 


3. 	 The GNP case requires a 4,8% increase in execution
 

time whereas GNP* requires negligib'le additional time.
 

these ieeults, it is concluded
2.5.3 Conclusioius.- Based on 

that the precession, nutat'ion and nonuniform time equations can-be
 

evaluated once at initialization of the orbit prediction and held
 

constant thereafter. This is the method of implementation in the
 

GOPP and KSFAST programs (refs. 25 and 28). An error of about
 

50 meters will accumulate (for a nearly circular, near Earth orbit)
 

after 30 days. Therefore, -for predictions over an extended time
 

period, GNP* should be updated every 3 or 4 months.
 

2.6 -Recommendations Based on Orbit Types
 

It is the purpose of this section to make recommendations on
 

the appropriate force models to be used for orbit prediction based
 
-on the type of orbit under consideration. These recommendations are
 

based on the models analyzed in the previous sections. Certain
 

additional force models (such as solar radiation pressure and
 

vehic'le venting) may be neede'd tor some satellites.
 

Ft" is difficult .to make-general recommendation's because of
 

the Large diversity of satellite hissions 'and-objectives. Thp
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following recommendations are directed primarily.to the shuttle
 
orbiter missions and the transfer and geosynchronous orbits of its
 
payload.
 

The orbit types to be considered here are: near Earth
 
orbits with small eccentricities, elliptical transfer orbits', and
 
geosynchronous orbits. The size and shape of each is given by
 
the semimajor axis a and eccentricity e. The prediction in­
terval to be considered is T.
 

2.6.1 Near-Earth orbits.-


Orbital characteristics: 6500 km < a < 7200 km
 
O < e < 0.05
 
0 < T < 2 days
 

Force model recommendations for this class of orbits:
 

As, Geopotential - all the terms of a chosen model (such as 
ref. 42) should be.used; i.e., al the terms that were.used in the 

I .
reduc'tion of satellite observation data
 

- b.- Atmospheric density - the dynamic model AMDB* should be 
used. A small increase in accuracy may be rea-lized with the Jacchia 
model (computer cost will also be increased, however). 

c. Luni-solar gravity these amount to about 8b meters in
 
downrange position (after 1 day) and can usually be neglected. This
 
depends., :howe-ver, on the prediction interval since this error in­

is 1400 'meters. ­creases linearly. At-5 days, the error 


d. Precession, nuta-tion, nonuniform 'otation - the 3NP*
 
method- should be used.
 

2.6.2 Near-Earth orbit lif-etime studies.--


Orbital characteristics: 6550 km < a < 7200 km
 
0 < e < 0.05
 

several- mQnths <T<.-several years
 

'The order and :degree of models can vary. It is important to
 
realize, however, that each coefficient of a given model may have
 
nearly equal weight for a , near Earth satellite. As an- example,
 
C18,17 .may be as- physically impqrtant-as -C8, -7 since all coeffi
 

cients (Sij , ij, i=2,3,',N, j=0,1,'',i) are computed as a set.
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Force model recommendations for this class of orbits:
 

a. Geopotential - same .as section 2.6.1
 

b. Atmospheric density - same as section 2.6.1
 

C. Luni-solar gravity - Sun and Moon gravity effects should
 

be included, using the analytical ephemeris model.
 

d. Precession, nutation, nonuniform rotation - the GNP*
 

method should be used, with update intervals of a few months.
 

2.6.3 Elliptical transfer orbits.-


Orbital characterisitos: 20 000 km < a < 25 000 km
 

.65 < e < .75
 

0 < T < 5 days,
 

Force moAdel recommendations for this class of orbits:
 

near the Earth, the
a. Geopotential - since, the orbit passes 


complete 	model-should be used. However, near apogee the higher terms
 

An automatic procedure
will be insignificant and can be neglected. 


for doing this has been implemented in the program KSFAST '(see
 

ref. 28).
 

- the AMDB* 	 or Jacohia model should
b. Atmospheric density 


be used, but only when.the altitude is less than about 700 km. Above
 

, that al-titude., the drag calculation should be autpma'tically skipped.
 

apogee requires
c. Luni-solar gravity - the high altitude at 


that Sun and Moon gravity be included. The analytical model of
 

section 2.4 is- recommended (error is .06 km after 5 days).
 

- the GNP* meth­d. Precession, nutation, nonuniform rotation 


od should be used.
 

2.6.4 Geosvnchronous orbits.-


Orbital characteristics: a = 42240 km 

e =0..0
 
0 < T < 30 days
 

this class of 	orbits:
Force model recommendations for 


high
a. 	 Geopotential model - The major contribution of the 


terms is long period resonant motion. Therefore,
order geopotential 

fourth degree model is recommended. For pre­a fourth order and 


dictions of longer than 30 days,, additional tesseral terms may be
 

any dase, terms of higher order than 16-will be lost in
needed. In 
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the roundoff errors of Univac 1110 double precision arithmetic, and
 
should not be included.
 

b. Atmospheric density - atmospheric drag can be neglected for
 
this case.
 

a. Luni-solar gravity - the analytica-l,ephemeris model may be
 
used, Provided that errors on the order of 0.2 km (after 30 days)
 
are acceptable.
 

d. 'Precession, nutation, nonuniform rotation - The GNP* 
model can be used-. 

2.6.5 General results.- The discussion in beeion 2.6 con­
cerns the recommended models of atmospheric density, nonspherical
 
Earth, luni-solar gravitation, coordinate systems and nonuniform
 
Greenwich rotation. These force models and the three orbit types
 
do not, admittedly, cover all the existing and proposed satellite
 
missions-. However, the results can be a useful help in designing
 
an orbit prediction program. In the event that additional orbit
 
types and force models need to be considered, a short analysis
 
based on the procedures used here could produce a more accurate pro­
gram requiring less computer runtime. Results bontained in this
 
report are an excellent starting point for such -an analysis.
 

Listed below are the important general results of these ,studies
 
that apply to all orbit prediction problems.
 

* Periodic variations in atmoskheric density need to be in- -
cluded when'air drag is important. These variations, can cause 
a 100 percent change in the effects of air drag on the orbit. 

Numerical calculation of atmosphleric density can be carried 
out with single precision (Univac 1110) arithmetic. In 
addition, the solar ephemeris in a dynamic model (such as 
Jacohia and AMDB*) can be obtained from'a ltmean'" Sun on a 
circular orbit. The result is a 50 percent decrease in the 
computer cost of the density model evaluation, and no loss 
of accuracy. 

* The geopotential model (except for the J­2 term) can also 

be evaluated in single precision without loss of accuracy.
 
The geocoefficients (table 18, ref. 42) are given to 5
 
decimal digits. Therefore, intermediate calculations in
 
single precision (7 to 8 decimal digits, Univac 1110) are
 

sufficiently accurate1 .
 

1This assumes that there are n& "programing errors" such as
 
taking the sum OW a large number and a small number or the dif­
ference of two large, nearly equal numbers.'
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The calculation of the precession and nutation matrices
 
as 	well as the expression for nonuniform Greenwich rota­
tion needs to be done only at the initialization of
 
tfe orbit' prediction; For very long predictions (severaTl
 
months or more) the values may need to be updated', .depend­
ing on the accuracy requirements of' the prediction.
 

* 	For orbits passing near the Ear-th t200-400 km) it' i-s
 
necessary to include all the known terms in the geopo­
ten'tial model. The reason i-s that, tear the Earth-, all
 

e
the term (except J2 ) hav about the same ,magdttude.­

error in the "mean"
Neglecting any term results in an 


mean m6ton that accumulates linearly in the downrange
 
direction.
 

* 	For prediction intervals of a few days, the luni-solar
 

gravitational effects'on a aear Earth orbit (200-4.00-km)
 
-cah,, in many cases, be'negledted. This results in typi­
cal downrange positi'on errors of 0.4 km after,5 days.
 
With the'shuttle orbiter, -for example, these errors are
 
much less than those resulting from uncertainites in aero
 
d~namic drag.
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