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ABSTRACT

The estimable quantities are indicated for simple dynamical
analyses of range (range-rate and range-difference) observations to
artificial satellites.

The philosophy of the analysis is based on non-Bayesian statis-
tics. DMNot only no a priori knowledge for the parameters (in termsg of
probabilities) is assumed, but alsc the mathematical models are
developed with unconditional estimable parameters (avoiding minimum
constraints), It is argued that the Bayesian approach might lead to
too optimistic results.

In particular, the simulation studies centered arocund laser
range observations to LAGEOS. The capabilities of satellite laser
ranging especially in connection with relative station positioning are
evaluated. The satellite measurement system under investigation may
fall short in precise determinations of the earth's orientation (preces-
sion and nutation) and the earth's rotation {(UT1l) as opposed to systems
as Very Long Baseline Interferometry (VLBi} and Lunar Laser Ranging
(LLR). Relative station positioning, determination of (differential)
polar motion, positioning of stations with respect to the earth's cen-
ter of mass and determination of the earth's gravity field should be

easily realized by Satellite Laser Ranging (SLR). The last two features



should be considered as best (or solely) determinable by SLR in con-

trast to VLBI and LLR.
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1. INTRODUCTION

"In the cosmogony favored by the Cartesians the earth elongated at the
poles; . . . "

D. J. Struik [1967]

1.1 Philosophy of the Investigation

Although it can be argued to call René Descartes (Cartesius) the
inventor of the Cartesgian coordinate systems, e.g., in the thirteenth
century B.C. the Egyptians are known to have reproduced figures by
covering them with a rectangular network [Coolidge, 1940, p._12], the
publication of La GEomdétrie in 1637 meant a large step forward in the
progress of the sciences, Descartes and Fermat can safely be considered
the founders of analytic geometry. The application of algebra and
analysis to geometry and the reverse, the fact that many problems in
analysis have their counterparts in geometry, gave the insight to men in
science to accelerate the development of their various fields. Although
physics is one of the prime examples, surveyors and geodesists (global
surveyors) can be considered as the almost eternal geometry-into-
algebra~into-geometry translators. However, the acceptance of the
Cartesian coordinate system as the natural algebraic translation of
geometrical problems became the cause—-célébre for many investigations in
recent vears. If at this stage a finger needs to be pointed, it is not
only to the geodesist as the Cartesian coordinate follower but also to

1



his enviromment (i.e., contractor, employer, client, etc.). One still
has to imagine a geodesist, after being asked to supply information con-
cerning the position of a point, who would dare to express the position of
this point in anything else than some of the convential coordinates
(absolute coordinates are always most welcome!). Many geodetic measure-
ment systems yield only relative positions and then not even expres-—
sable in Cartesian coordinates. The geodesist having chosen a
particular measurement system (geometry) must realize that he cannot
translate certain geometries into any arbitrary algebraiec representa-
tion. As an example, a surveyor equipped with a level instrument cannot
measure heights, only height differences. The nature of the (obser-
vational) geometry will dictate the algebra in which it can be trans-—
lated if it is to preserve uniqueness if one wants to translate this
algebra back into geometry. More than once the algebra does not con-
tain the popular Cartesian coordinates. The geodesist can go two

ways: inform the contractor of the non-estimability of the required
Cartesian coordinates or keep the contractor ignorant but use outside
information to work towards the desired product of (Cartesian) coordi-
nates. It is this latter approach which became widely used with the
advent of weighted least gquares or similar adjustment methods.

This (Bayesian) approach is probably better known as the "the-best~you~-
can-do" method, its name describing an often heard answer if questions
concerning estimability become too pressing. Although the scope of this
investigation does not intend to be a fulmination against weighted

least squares and its azbuse, it still hopes to adhere strictly to the
first mentioned approach: investigate ameasurement system first from

2



the non-Bayesian point of view as to accurately pinpoint its defi-
ciencies and contributions in reaching the goals it was designed for.
Usage of cutside information which is not inherent in the measurements,
tends to obscure the contributions. To quote the very first sentence in
the earlier mentioned book La GEométrie [Descartes, 1637]:

Any problem in geometry can easily be reduced "to such terms

that a knowledge of the lengths of certain straight lines is

sufficient for its comstruction."
To paraphrase this: mnever should a geodesist be caught adding outside
information because of a lack of sufficient straight lines to constructhis

Cartesian mathematical model. After all, in the seventeenth century the

Cartesian cosmogonists were the ones who favored a prolate earth.

1.2 Historical Background

One does not need to go far back in history to notice the growing
awareness among geodesists that one cannot arbitrarily put any para-~
meter at the right hand side of the equality sign in an observation equa-
tion. It is probably no coincidence that this question was addressed
more and more frequently when thrée dimensional geodesy made his claim of
here~to-stay with the launchof artificial satellites in the late fifties
and early sixties. Although much attention to this question was paid in
earlier years, e.g., in [Bjerhammer, 1973] cne finds a full account of
papers publighed by him between 1948 and 1955, thp; geodetic interest in
estimability was revived after publication of [Rinner, 1966] and
[Meissl, 1969] in Europe and some time later after a similar publication

by Blaha {1971a] "in the United States. Teaking the latter as an example

(the emphasis of the study was on range measurements to satellites) the



idea expressed therein is to have the mathematical models set up as
generally as possible and subsequently, investigate Which additional
information (inner or minimal constraints) needs to be added to make
the originally rank deficient normal matrix just invertable. The con-
trasting method, also applied to satellite ranging, in [Aardoom, 1970
and 1971] is favored in this investigation: investigate thg measurement
system in such a way that the mathematical model is directly expressed
in (the maximum number of) estimable parameters. The need for finding
inner constraints is hereby circumvented: first of all, finding the
proper inner constraints is not always an easy task and secondly, the
non-estimable quantities {(and their variance/covariance_matrix) need to
be mapped into estimable ones anyway as to make a variance analysis
meaningful, For a more theoretical discussion the reader is referred
to [Bossler, 1973] or [Grafarend and Schaffrin, 1974]. An application
of this reasoning one can find in [Mueller et al., 1975].

Questions concerning estimability in dynamic satellite geodesy
were upto recently either ignored, not explicitly stated or tacitly
assumed to be known. Some publications as [Brown and Trdttef, 19731,
[Condon, 1974], [Agreen and Smith, 1975] and [Arur, 19771 do not pursue
the above outlined reasoning to its fullest extent, therefore
did not clarify the problem. A latest systematic attempt to handle
the problem of estimability in satellite geodesy can be found in
[Grafarend and Livieratos, 1978] and [Grafarend and Heinz, 1978] which
are at the time of this writing (March, 1978) still in print. It is
against this historical background that one has to view this inves-

tigation.



1.3 Scope of the Investigation

The previous section leadsone directly into the scope of the
investigation: Using very simple dynamical models, what are in general
the future appldications of (very precise) range, range-rate and range-
difference observations to artificial satellites and in particular-of laser
range measurements to LAGEOS? A relative precision in the parameters of
10'.9 is envisioned., Given a set of assumptions, the mathematical models are
directly expressed in the maximum number of unconditional estimable para-
meters. The unconditiopality expresses the independence from inner, mini-
mum or any other (over) constraints.. The set of parameters does not only
include orbital parameters but also parameters concerning the positions of
the observing stations and some earth related parameters.

Although mathematically the setup is such that it reflects sta-
tionary positions of the oﬁservatories and a rigid earth, the maximum
allowable time span over which the observations are amalyzed, was chosen
to be between one hour and one day. A survey of the magnitudes, but in
this respect more importantly, the spectra of important dynamical
phenomena to be monitored can be found in [Fedorov, 1974]. The approach
of considering only short time spans allows the recovery of time variable
parameters (moving stations on a non-rigid earth) which are only con-
sidered constant during the period under investigation.

The analysis of range, range-rate and range-difference observa-
tions to artificial satellites is restricted to very simple dynamical
models. Circular, elliptic and secularly perturbed (due to J2) ellip-

tic orbits have been investigated.

Although the maximum number of estimable parameters forms the

essential set for a variance analysis, during this study the quality of
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estimabili;y for the various derived parameters are indicated. In many
cases, the derived parameters are shown to be the best estimable quanti-
ties. At this point it should be noted that the particular choice of
estimable parameters is completely arbitrary. The soundness of the
mathematical model as derived from observations is reflected by the
structure of the weight coefficient matrix of the (estimable) para-
meters, It is thig geometry spanned by -observations and parameters on
which one's attention should be focussed. Redefinition of parameters
does not minimize the estimates of precision or correlation. The cor-
relation for instance is determined by the observational and parametric
geometry and nothing else [Leick and Van Gelder, 1975].

Since the investigations centered around deficiency in the
orbit/station/earth geometry, treatment of perturbing factors as gravi-
tational perturbations of higher degree and order than J2, and other
perturbations due to atmospheric drag, solar radiation pressure,
attraction of the sun and moon, earth and ocean tides, etec, was con-—
sidered to be beyond the scope of this investigation.

The wvalue of a simulation study which should be characterized
by you-get-out-what-you-put—-in is also expressed as follows: because of
the simplicity of the models the study is one of lower bounds. Given a
set of assumptions concerning the model, the precision and frequency of
the observations, the variance analysis shows the highest attainable
estimates of precision. Especially in those cases where the precision
estimates of the recovered parameters are bad or at least marginal the
conclusion of the variance analysis will be in view of the influence of

the various non-considered perturbing factors: reality can only



be worse. Consequently, the standard deviations can only be larger in
reality: a study of lower bounds.

Another aspect of this invesiigation concerns the question of
internal consistency of the observations. A favored approach in (geo-
detic) data analysis is the initial check for internal consistency of
the observations. This often being referred to as the first step
adjustment (seee.g., [Baarda, 1968]) deserves the predicate of 'pre-
cision evaluation'. A subsequent (second step) adjustment fitting the
results of the initial adjustment into a network of (known) data of
higher order would (hopefully) deserve the predicate ‘accuracy evalua-
tion',

The validity and necessity of the philosophy outlined in the
three sections of this chapter is probably best summed up with the fol-
lowing thought: a satellite geodesist should not have as his carica~
ture a surveyor who successfully Eomputes the coordinates of two bench

marks after having measured the distance between them.



2. REFERENCE FRAMES- AND SOME

UNDERLYING ASSUMPTIONS

"The FIRST problem to be considered is the method employed to describe

the relative position of points."”

W. Baarda [1975]

2,1 Introduction

Even in the simplest simulation studies which deal with laser
range observations to earth orbiting satellites one haé almost always to
establish several reference frames (i.e., coordinate systems) despite
the blindness of this measurement system. Only in the case of simul-
taneous range observations from at least four stations one can pursue
the blindness of the observations into their model. This particular
case is usually referred to as the geometric mode of satellite observa-
tion analysis (also applicable to simultaneous direction measurements).
The validity of a geometric analysis of simultaneous range-difference
measurements 1s unclear to the author.

As soon as one deals with range and direction observations in a
non-simultaneous mode or range-rate and range~difference observations
in (either the simultaneous or) the non~simultaneous mode the estab-
lishment of reference frames in which the positions and motions of the

satellite and its observer will be given, becomes an unavoidable fact.



The choice of the reference frames in this study reflects the
philosophy that no a priori knowledge is assumed. This refers not only
to the non-Bayesian character of the estimation process (ne a priori
weighting of parameters) but also to the behavior of the reference
frames, especially in the past. The positions and motions of the
reference frames are only reconstructed from the time span of the avail-
able observational data. If one has chosen a reference epoch to suit-
ably half way during an observation campaign the change in reference
frames igs investigated bhetween thé epochs marking the beginning and the
end of this campaign and is preferably referenced against the position
of that particular frame at reference epoch to'

The reference frames used in the study can be divided in three
categories:

i. inertial frame,
ii. dinstantaneous terrestrial frame, and
iii. axis of figure frame.

The parameters which will connect the different frames are rota-
tional in nature if it is assumed that the center of mass of the earth
is common to all three frames. Consequently, each two frames will be
rotationally displaced by three angles. Since the orientation of the
frames are not stationary with respect to each other, another three
parameters of the angular velocity type are needed in order to transform
one frame to another. This model}ing of course tacitly assumes that
during the interval of observations the rotation angles vary only
linearly with time. In general frame i will be related to frame j as

follows



x, = R(a_toAt, B +BAe, y +YAL)X,

where ao, Bo, Yo are the transformation angles at reference epoch t0
and o, B, ¥ are the corresponding angular velocities assumed to be con-—

stant during the observation campaign.

2.2 The Inertial Reference Frame

Preferably, one would describe the equations of motion of a
satellite in a pure inertial frame. Because of the motion of the earth
around the sun, the motion of the sun in our galaxy, the motion of
our galaxy among other galaxies, etc., the reference frame can be called
at best a quasi-inertial reference frame.

Various (quasi) inertial frames for the modelling of the orbital
equations of motion are used in satellite geodesy. A widely used iner-
tial frame is the frame defined by the mean equinox and equator at a
certain epoch, often at 1950.0 or at the beginning of the year. The
geocentric coordinates of a satellite in such a frame are not inertial
anymore (e.g., because of the motion of the geocenter around the sun)
but they have to be corrected for this difference between pure and
quasi-inertiality. This is often treated in the form of perturbations.
The Smithsonian Astrophysical Laboratory (SA0) refers its inertial frame
to the mean equinox of date of 1950.0 but chose the direction of the
z-axis to be perpendicular to the equator of date. In the underlying
study this principle has been carried one step further: the (quasi)
inertial frame adopts not only the equator of date but also the equinox
of date. The postfix "of date" refers to the reference epoch t which

is often chosen about halfway the observation campaign. Precession and
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nutation influencing the equinox and equator of date were either neg-
lected (maximum 1 day of obs%rvations) or assumed to be corrected for.
For instance, the precession in right ascension amounts to about 4
meters per day on earth scale and is therefore not negligible. For more
detailed discussions concerning the influence of precession and nutation
on satellite orbits the reader is referred to publications as [Kozai,

1960], [Kozai and Kinoshita, 1973]1, [Lambeck, 1973] and [Kozai, 1974].

2.3 The Instantaneous Terrestrial Reference Frame

The instantaneous terrestrial reference frame is chosen such
that its z—axis coincides with the instantaneous spin axis of the earth
at all times. If one assumes the separation between the angular momen—
tuﬁ vector and the instantaneous rotation axis to be known, the latter
can be transformed to the z-axis of the inertial reference frame (sec-—

tion 2.2) at reference epoch to' The x-axie of this terrestrial frame

will be oriented with respect to the x-axis of the inertial frame by the

angle GASTO: the Greenwich Apparent Sidereal Time at reference epoch
to. The instantaneous terrestrial reference frame rotates with an

inertial angular velocity of
w, = 7.292 115 1467 * 10™° rad/sec

with respect to an inertial frame fixed to the stars. Its angular velo-
city with respect to the equinox of date is slightly higher because of
precession in right ascension.

The frames of this section and section 2.2 are then in its s?m—

plest form related through a rotation about the z—axis with an angle of
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(GAST0 + weAt) where At denotes the difference between the time of

interest (e.g. in case of an observation) and the epoch to.

2.4 The Axis of Figure Frame

Although the results of the conference 'On Reference Coordinate
Systems for Earth Dynamics' held in Torufi, Poland [Kolaczek and
Weiffenbach (eds.), 1974] indicate a preference for a "quasi-earth-
fixed" coordinate system which follows the motion of the mantle rather
than the crust, still in the underlying study a crust-fixed rather than
a mantle~fixed earth reference system has been chosen. Since laserx
range measurements are the subject of the investigation and they are
connected via the observatories directly to the crust, the crust—fixed
reference frame seems to be more operational. The orientation of such
a crust—fixed system is chosen to be determined by the mass distribution
of the earth: the z-axis of this reference frame should coincide at all

times with the principal axis of the maximum moment of inertia (axis of

figure). Assuming the axis of figure fixed to the crust is a good
approximation for short time spans (1 d;y). Seventy years of latitude
observations however indicate a secular motion of the axis of figure
[Soler, 1977]. The center of the path (Chandler wobble) of the instan-—
taneous spin axis will be close to the z—axis of this axis of figure
frame. As a matter of fact, this is how the C.I.0. pole was defined
from the adopted latitudes of some statioms, based on latitude observa-
tions between 1900 and 1905 [Mueller, 1969, p. 82]. Unfortunately, the
closeness between the two other moments of inertia does not provide an

accurate physical reason for the o;ientationofthe x- and y-axes (e.g., to
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diagonalize the inertial tensor). The precise definition of the orienta-
tion of these two axes will become irrelevant as subsequent studies will
show. The axis of figure and instantaneous spin axis frameswill be connected
by eithertwodifferentiallysmailrotations (Mueller, 1969, p. 80] or in

an alternative way whichwill be described in more detail in section 5.4.

If one wants to call these transformations polar motion, one
has to realize that in this investigation it is meant to be the dif-
ference between the positions of the instantaneous spin axis and the
(instantaneous) position of the principal axis of the maximum moment of
inertia (axis of figure). The more detailed sections of Chapter 5 will
reveal that the instantaneous terrestrial frame is the ome in which the
positions of the observatories will be determined and that the axis of
figure frame which has a more crust-fixed character, is the one in
which the gravity field of the earth is represented. This assumes that
the old practice of sEttigg the spherical harmonic coefficients 021 and
821 equal to zero is carried on in the future [Newton, 1974]}. One
might say then that the function of the axis of figure frame is not
only to minimize the time variations in the station positions but also
to minimize the time variat:ic;ns of the gravity field coefficients.

2.5 The Establishment of World Wide and
Regional Geodetic Reference Frames

The plans as laid down in NASA's Earth and Ocean Physics Appli-
cations Program [NASA, 1972] called for the establishment of a World
Wide Geodetic Reference Frame (WWGRF)., The realization of such a frame
is required to satisfy ge‘ophysical needs to describe phenomena such as

continental drift, fault motions, etc. The magnitudes and spectra of
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the various dynamic phenomena are such that parameters of 10_9 precision
(about 3 em, 0Y001, 1 ugal, 1 E, etc.) are required to monitor these
phenomena,

To quote from [Baarda, 1975]:

A geodesist ., ., . should aim at standard deviations of 5 em or
less in his results. This means a relative precision of 10-8
Should the reliability . . . also be included in this figure
of 5 cm, then the relative precision should be of the order of
109, This, because the analysis of national primary networks
or f£illing-in networks for surveying purposes has shown that
the reliability sometimes is of the order 5-10 tlmes the
standard deviation."

Although it was beyond the scope of this investigation to check
whether this statement is also true for networks which are derived by
space—-geoadetic measurement systems such as Very long Baseline Inter-
ferometry (VLBI), Lunar Laser Ranging (LLR) and Satellite Laser Ranging
(SLR) in particular, the 10-9 relative precision requirement is sure
not too stringent for future geodynamic putrposes,

Can the geodesist adopt the average terrestrial frame (as
described in section 2.4) as a realization of a WWGRF? 1If dome so, he
surely did not answer the question as raised in the quote which heads

this chapter.

Think of a WWGRF made up by a polyhedron of points. Two main
aspects can be recognized:

a. external (or absolute) motions by the points-defining the poly-
hedron. By external motions is meant that part of the point's
movementé which is common to all points and takes place with respect
to an inertial frame (possibly defined by a polyhedron of quasars).
Known (absolute) motions which are common to all points are

precession, nutation, earth rotation, polar motion, etc.
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An alternative way of describing these motions is as follows: the
external motions result in different coordinates of the points of
the polyhedron at different epochs, but the coordinates can be
brought togather with only translational and rotational transfor-
mations.

b. dinternal (or relative) motions by the points defining the poly-
hedron. By internal motions is meant that part of the point's
movements which is not common to all points. Known (relative)
motions are continental drift, fault motions, earth and ocean tides,
ocean loading effects, etc.

Let the polyhedron which forms such a WWGRF be called a Funda-
mental Polyhedron (FP). Its'realization will be first of all a coordi-
nate free problem. The FP's shape, formed by length ratios and/ox
angles, and size, determined by a scale factor (e.g., velocity of
light) are the essential features to be established first. Problems of
optimization from geometrical, statistical and geophysical points of
view need to be resolved. Secondly, the description of the absolute
motions of the FP requires only then the establishment of a coordinate
system which is a much more difficult and intriguing task:

a. The orientation of the ¥P with respect to the quasars from VLBI
measurements, with respect to either the instantaneous spin axis orxr the
axes of figure from satellite observations or with respect to a coor-
dinate system defined by the lunar ephemeris from lunar laser ranging.

b. the position of the FP with respect to the earth's center of mass
from satellite or absolute gravity measurements and with respect to

the earth-moon baryéenter from lunar laser ranging.
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In this line of thinking it is easy to foresee that the creation
of some sort of an "International Fundamental Polyhedron Service" (IFPS)
which has to monitor both the relative and absolute behavior of the FP,
may be necessary.

In this investigation the spotlight is mainly on the relative
realization of station polyhedrons and £o a smaller extent on some abso-
lute aspects of the orientation and position of the station geometry.
The relative positioning (size and shape of the station polyhedron) does
not require very stringent definitions of any coordinate system: as
said earlier, it is a coordinate-free problem. The position of a point
can be expressed for example by three distances to three mutually
perpendicular planes (Cartesian coordinates), or by three distances
to three other points. This last approach can be viewed as a (Cartesian)
coordinate—free one and the usefulness of this type of relative point
positioning in case of the analysis of similarity transformations can
be found in [Leick and Van Gelder, 1975].

The analysis of the distances (baselines) between points form
the nucleus around which also other problems as estimability in dynami-
cally analyzed satellite observations are discussed. The line of
thought expressed for the establishment of a WWGRF can be similarliy
applied for regionallpoint positioning: the same distinction between
relative and absolute motions can be made. In this report only stations
in the United States were examined. This implies that more and more
phenomena originally listed as having non—common (relative, interna15
motions will now_ﬁave common ‘(absolute, external) motions if mere

regional type 5£ polvhedra are considered. If a station polyhedron is
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situated on one continental plate, continental drift will become mainly
an external motion: translational and rotational transformation models
are sufficient to monitor the changes in station positions. These rede-
finitions of the two types of motions are important when satellite
measurements are applied for the establishment of Regional Geodetic
Reference Frames (RGRF). A nice example of the establishment of such a
RGRF is the readjustment of the North American Datum: the analysis of
the contribution of either Doppler or laser satellite observations to
the strength of the station geometry might be an easy task as compared
to the evaluation of the absolute position of the North American Datum
because of the increased burden placed on the coordinate system defini-
tion due to its regional character.

Although the contribution of neither laser range nor Doppler
measurements to the explicit (re)establishment of a world wide or a
local datum are analyzed, the reasoning followed in the subsequent sec~—
tions is very much influenced by it and tries at the same time to be

responsive to the question raised in the quote heading this chapter.
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3. THE INTERMEDIATE OEBIT

"Seven elements are required for the complete determination of the

motion of a heavenly body in its orbit, . . . "

K. F. Gauss [1857]

3.1 Introduction

In this chapter the analytics involved in simple orbital geo-
metries will be investigated. At each step of the investigation the
number of parameters (orbital elements) will be carefully examined.

Two sets of widely used orbital elements will be the subject
of examination: the Keplerian orbital elements and the Cartesian
orbital elements (statevectors, i.e. position and velocity vector).
Special attention will be devoted to the interchangeabiiity of the
two sets. The estimability of the orbital elements depending on the
various measurement systems will be treated in Chapter 4.

The survey starts with the simple twe dimensional circular
motion of a particle and will be gradually generalized to the three
dimensional elliptic motion and will end with the first order secu-
larly perturbed elliptic motion.

The section from which the quotes heading Chapters 2 and 4
have been taken, mentions the term "Keplermanship" as the art of mani~
pulation of the two-body formulas. In this very sense part of the
investigation in this chapter might be characterized by "restricted
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Keplermanship”: although Kepler's First and Second Law, dealing with
the ellipticity of planetary orbits and the equal area swept in equal
time by the radius vector, will not be tarnished, the determination of
the geocentric gravitational comstant GM (in Kepler's Third Law) will
not be considered as a fait accompli. The geocentric gravitatiomal
constant of the primary body (or the mean motion of the satellite)-
will be consldered both unknown and known., The reazons for this

approach is fully explained in sections 5.3 and 6.10.

3.2 Two Dimensional Circular Motion

3.2.1 GM (or n) Unknown
The circular motion of a particle (satellite) in a reference
system which origin coincides with the center of the circular orbit

can be represented in the following figure

o
REFERENCE
AXIS

Figure 3.1. 2-D Circular Motion, Keplerian elements
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Dencting the radius of the orbit by a, the angle between’the
radius vector and an inertial reference axis at reference epoch t0 by
u and the (constant) angular velocity by n one is able to compute at
any instant t the position of the satellite from
a
u

and = u_ + n(t-t_) (3.2-1)

Denoting the position and velocity of the satellite by means of

a (Cartesian) statevector, one has

=
x = w (302—2)
Yy
.’ % T
and F (3.2-3)

In a figure,

Ao

CM

Figure 3.2, 2-D Circular Motion, Statevector
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Easily transformation formulas between the Keplerian elements

and the statevector c¢an be derived.

X, cos[u0+n(t~to)]
x, = = a (3.2-4)

)] .
Y sin[u in(t-t )]

By differentiating the above formulas with regard to time, one

obtains
. X, —31n[uo+n(t—to)]
x = = an (3.2"'5)
(i3] .
Y cosfu 4n(t-t )]
Two remarks with respect to the above derived equations can be
made:

— in celestial mechanics often the time T, denoting the passage

of one of the reference axes (line of apsides) is chosen as an
" orbital parameter instead of the angle u - Since this time T
might be far ouvtside the time domain of the observational data
available preference is given to the angular parameter ug {one
of the polar coordinates). Later in the investigation an
‘appropriate choice for U, will be developed.

—-in the transformation equations (3.2-4) and (3.2-5) only the
difference between t and t oceurs. Consequently, the choice
of the reference epoch t will be arbitrary and can be set
equal to zero., In this case t will denote the time elapsed
since the satellite's passage of the reference argument U
Without loss of generality (3.2-4) and (3.2-5) become

+nt
X cos(uo )

5 = = an (3.2-6)

Y 91n(uo+nt)
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x -sin(uo+nt)

[i)]
= an (3.2-7)
cos(uo+nt)

o |
i

and

T

A more careful inspection of these transformation formulas
reveals that the set of Feplerian orbital elements consists of three
independent variables (a, u s n) but that the statevector consist of

four variables (xm, ym) and (x ). Clearly, the Cartesian elements

w? 3.700
do not form an independent set which will readily become apparent

during the derivation of the reversed transformation formulas.
Equation (3.2-6) yields
a =yx + ya (3.2-8)

and tan(uo+nt) = yw/xw (3.2-9)

Similarly, from (3.2-7) one has

an =yi* + 37 (3.2-10)

and tan (uo-l-nt) = %,/ (3.2-11)

The identity of equations (3.2-9) and (3.2-11) yields the con—

straint between the four statevector elements which eliminates their

dependency.
Yo
Xl.l) §m
or XX, Yy T 0 (3.2-12)
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Geometrically, this can be verified from Figure 3.2, In a

circular motion the velocity vector Ew is perpendicular to the radius
vector Ew at any instant of the orbit. This perpendicularity condi-
tion is just what the constraint (3.2-12) reflects.

Summarizing, one finds for the direct transformation (Keplerian

to statevector) formulas

3 Xy cos(u0+nt)
xm = = a
sinfu +nt)

RET o (3.2-13)
. im —sin(uo+nt)
2, =| . [Fan

Yo cos(uo+nt)

with me(m + ywiw =0

The reversed transformation (statevector to Keplerian) formulas are

(3.2-14)

with X x + ywi =0

3.2.2 GM {or n) Known
Kepler's Third Law describing the inverse proportional

relationship between the squared period and the cubed radius of

the orbit can be denoted in the following way
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n233 = GM (3.2-15)

in which GM is the geocentric gravitational constant of the primary
mass (in this relationship the mass of the orbiting particle is

being neglected). This dynamical law will eliminate one of the

three dependent (Keplerian) parameters (see section 5.2).

Insertion of (3.2-15) into the direct transformation formulas

GM
= cos(uo+t -ji)
_ w Va
%

= = a (3-2-16)

)
y jeM
w sin(uo+t 3 )
a
GM
im —siu(uo+t‘/a3 )
GM

and xm = i = oy = (3.2-17)
w cos (uo+t‘ ";3' )

However, the sets (3.2-16) and (3.2-17) describe the relation-

(3.2-13) yields

ship between two Keplerian elements (a, uo) and four, thus very

dependent, statevector elements (xw, Y im, im). Once again, the
development of the reversed transformation formulas reveals the two
constraints which need to be carried along with the transformation

formulas. Equation (3.2-16) yields

T
a=yx; + Yy {3.2-18)

ce _
and tan(u°+t ;3- = ym/xw (3.2-19)
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Similarly, from (3.2-~17) one has

M/a = % + 32 (3.2-20)

and tanCo ey /@)= % /3 (3.2-21)
o a3 w 7w

As in section 3.2.1 the identity of equations (3.2-19) and (3.2-21)

produces the comnstraint,

A second constraint is the result of equations (3.218) and (3.2-20)

after elimination of the parameter a,

(:‘:f,ﬂ‘rf,) \‘x,_zo + yf) = &M (3.2-23)

The geometrical interpretation of comnstraint (3.2-22) is already
explained in section 3.2,1. The interpretation of comstraint (3.2-23)
is nothing else than the Kepler's Third Law (3.2-15) but now expressed
in statevector elements.

Summarizing, one finds for the direct transformation under

enforcement of Kepler's Third Law

GM
< cos(uo+t -3)
@ @ a
a
w - GM
| Y s:|.'l:1(1.to-i-tE ’.;3-)
Cin(a 4t Gt (3.2-24)
2 sin(u 3
Wl e a

® ]
n
n

= |-y
w . a
y /ﬂ
L Y cos (uo+t 3)
a
with X% + Yo = 0
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2.2 /2 7
and (xhﬁyw) X, + Yy, = GM

The reversed transformation under Kepler's Third Law is

‘[__

= grctan -Jﬁ - GM (3.2-25)
X, x2+y2)
w W
with XX, + ymym =
and ('2+y2) y2 ——

In the latter set the addition of the two constraints is actu-
ally superfluous since the velocity components of the statevector are
successfully eliminated from the reversed transformation formulas. In
other words, the velocity vector of the statevector does not contain any
additional information in case of two dimensional cirecular orbit with GM

known.

3.3 Three Dimensional Circular Motion

The generalization to the third dimension will add two angles,
describing the orientation of the orbital circle, to the set of
Keplerian elements, but also two elements (Z and i) to the statevector.
It is expected that in the geometrically more free theory (GM or n
unknown) one constraint needs to be carried along whereas the case in
which GM or n are considered known, eliminates a second parameter from

the orbital elements reflected in a second constraint.

3.3.1 GM (or n) Unknown
The following figure illustrates the three dimensional circular

motion of a satellite around a primary mass.
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Figure 3.3. 3-D Circular Motion, Keplerian elements
and Statevector
In this depiction the conventional Keplerian elements are
being approached.
Two rotations Rl(—i) and R3(—Q) of the iw system (equations
(3,2-6) and (3.2-7)) will immediately furnish the direct transforma-

tion formulas
X = R3 (—Q)Rl (*l)xw (3.3-1)

and after differentiating (3.3-1) with regard to time (f2 and 1 are

time independent)

X = R3(-9)Rl(-i)‘£w (3.3-2)

.

Eé and 5@ are defined as in the equations (3.2-6) and (3.2-7) except

for the addition of the third elements 2, and 2 (both equal to zero).
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Evaluating the rotation matrices R3(-Q) and Rl(—i) and upon

insertion of equations (3.2-6) and (3.2-7) into (3.3-1) and (3.3-2)

one has
(X ”cochos(u°+nt)-sichosi.sin(uo+nt)
X=|t|= a sichos(uo+nt)4~cosﬂcos:1sin(uo+nt) (3.3-3)
L Z ! sini.sin(uo+nt)
. %] '-cosﬂsin(uo+nt)-sinﬂcosi.cos(uo+nt)
and X=|Y%Y|=an —sinﬂsin(uo-’r-nt) + cosflcos 1 cos (uo-l-nt) (3.3-4)
| 7 ] | gin i cos (uo-i-nt)

The reverse transformation (from statevectors to Keplerian
orbital elements) will reveal the constraint which has to accompany the
six Cartesian orbital elements (X, ¥, Z, X, ¥, 2) to uniquely transform
into the five Keplerian elements (a, i, 8, U n). From (3.3-3) one

obtains

a= sz + Y2 + 22 (3.3-5)
and from (3.3-4)
an = ‘/f:2+§2+é2
2 22 52
X
yielding n= VI 5 Y2 + 22 (3.3-6)
X“+¥ +2z

The evaluation of the cross product of the positional and velocity

parts of the statevector enables the computation of € and i
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YZ - Y2 sinfsin i
XxX=]2ZX-2X|= azn -cosfisin i {3.3-7)
Xi - XY cos 1

Consequently, one arrives at

= .'a.r»::tzam(E’-:'Z—_—-?—Z - (3.3-8)
Xz - XZ
V-1t + (z5-13) 2
and i = arctan - — (3.3-9)
¥ - Xy

The last Keplerian element u, can be obtained from equations

(3.3~1) and {(3.3~2). Reversing these transformation formulas we have

x o = Rl(i)Rs(Q)-i (3.3-10)
and Ew = 31(1)33(9)3'2 (3.3~11)

From these equations after division of the first two statevector ele-

ments one obtains

Y %
tan{u 4nt) = — = ~ 5 (3.3-12)
) e Yy

This relationship constitutes the constraint which needs to be

enforced between the six dependent Cartesian orbital elements.

xwxm + ymyw = {

This might be written as the vector product
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which gives after substituting (3.3-10) and (3.3-11)
=T T,00 T L
X RB(Q)Rl(i)Rl(i)R3(9.)X = 0
This reduces to }?Ti =0

or X+YW+22=0 (3.3-13)

This condition eliminates the dependency of the six Cartesian ele-

ments.

The remaining element u  can be computed from {3.3-12)

Yﬂ)
u_ = arctan| — } - nt (3.3-14%)
) %,

or after evaluating (3.3-10) and using (3.3-6)

~XsinfQcos i + Ycosflcos i + Zsini
X cosii+ Y sinfd :

uo = arctan(

%+ 2 + 32
VXZ +Y2 + 22

(3.3-15)

5till, we need to compute the sine and cosine terms in expression

(3.3-15). TUsing (3.3-8) and (3.3-9) one has

cinf = —tanf ¥z - Y2
\/l + tanzﬂ \}(Yﬁ - i2)2 + (2% - 2X)2
cosfl = 1 7% - 7X (3.3-16)

VI + tan® N2 - ¥2)2 + (2% - 7%)2
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and

sini = tan i = (Yﬁ-—‘l'z) 2 + (Z.{(—éX) 2
] 2 2 2 22 23 <2
V1 + tan“i

(XY +2)Y (XY T+Z2)
.. (3.3-17)
1 _ XY - XY

cosi =

\E + tan?t  V vz 222

The substitution of (3.3-16) and (3.3-17) inte (3.3-15) will have
expressed the variable u, in terms of all the Cartesian orbital ele-
ments.

At thig point it has become clear that a simple three dimen-
sional circular motion leads already to very lengthy expressions.

Before summarizing we will clean up our notation by setting

r=X
T=X
_ - {3.3-18)
r = 1X| = |xw| =T,
v = [x]

At this point a notation might be added which can be used to
one's advantage in a later stage.
View the orbital elements
cos(u0+nt)
§Q = a sin(ud+nt) (3.3-19)

0

as the result of a rotation of a unit vector El and a scaling by the

satellite's orbital radius a.
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oY

X
w

x
w

cos(uo+nt) -sin(uo+nt) all a

= | sin{u 4+nt) cos(u 4nt) O0}|0
() ° ilo
0 0

= aRB(---uo—nt)e1

(3.3-20)

(3.3-21)

For the velocity part of the statevector one finds after differenti-

ating (3.3-21) with regard to time

or

oxr

or

with

For an explanation of L

with

_. 3R3(-uo—nt)‘g
e at 1

b=

= —anR3(-u0—nt)L39.1
= -anL3R3(-u0—nt)el

= —nL3xm

5, See Appendix D.

.The direct transformation formulas become

;=a%0mﬁﬁﬁ%ﬁ%mﬂ%

T = ~anR, (-0)R, (~1)R, (~u_-nt)Lg,

r*r=10

The indirect transformation formulas become

n=V/zr
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(3.3-23)

-(3.3-24)

(3.3-25)

(3.3-26)



tani=
(rxr)s
-r.sinQcos i + rzcochos i+ r3cos i
u_ = arctan - (3.3-27)
o rlcosﬂ + rzsan
Y.
T
-(rxr)l
with sin@ =
(rxr)‘l + (rxr)2
(rx1),
cosfl =
(rxr)l + (r:e:r)2
— = 3 — =
(rxr) + (r=xr)
1 2
sini=
Vv
- (?x?)s
cos =
and rer=0

(?x';)i denotes the i-th element in the vector (rxr).

3.3.2 GM (or n)} Known

Kepler's Third Lew will eliminate the variable n from all
transformation formulas in section 3.3.1. Now skipping the tedious but

relatively simple derivations one arrives directly at
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H|
([

thM -
aR3 -2 P\1 (-1) R3 (_uo “aVa el

{3.3-28)
=~ M crfeM [ —
- Ty p o, (o - YE
and r = 5 R00R DRy (u -4 Lyey
For the reversed transformation formulas one has
a=r1
('r"x'{)l
tanll = -~ ——=—=
(rxr)2
@xD), 2+ Gxo), ° (3:3-29)
. 1 2
tani-= —
(rxr)3
] -r.sinflcosi + r.cosficosi + r.cosi
u &= arctan 1 2 3
o " r cosfl + r,sinQ
1 2
.t fa
rYr

with 8inf}, cosfl, sin i and cos i as defined in (3.3-27).

Since we have because of Kepler's Law a transformation between
four Keplerian elements' (a:, i, 9, uo) and six Cartesian orbital ele-
ments (X, ¥, Z, }'{, ‘f, 2), two conditions need to be added.

The first condition can be verified from the set of equations

(3.3-28)

TTr = \facH Zi"LsEl =0 (3.3-30)

1

The second condition follows from the lengths of the posi-

tional and velocity parts of the statevector



Eliminating a from the above expressions gives the desired condition

Vo = GM (3.3-31)

Conditions (3.3-30) and (3.3-31) need to be added at all times to the
3
transformation sets (3.3-28). and' (3.3-29) to make the sets of orbital

parameters uniquely interchangeable.

3.4 Two Dimensional Elliptic Motion

Releasing the restriction of sectioms 3.2 and 3.3 which dealt
with orbits of zero eccentricity at this point the geometry of ellip-
tic orbits will be reviewed as well as the relationship between

Keplerian orbital elements and the statevector approach.

3.4.1 GM (or n) Unknown

At any instant the position of a satellite will be determined
along its elliptical path by five elements: two parameters describing
the size and shape of the ellipse: a, the semimajor axis and e, the
eccentricity; the average angular velocity with which the satellite
moves along that ellipse as described by the mean motion n; the refer-
ence angle at the reference epoch t = 0 as described by either v, . the
true anomaly or Mb, the mean anomaly or Eo’ the eccentric anomaly and
finally the orientation angle w which describes the orientation of the
ellipse with respect to a reference axis (the argument of perifocus or

perigee). These parameters can be illustrated in the following figure.
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I

Figure 3.4, ©2-D Elliptic Motion, KepTerian

elements and Statevector
Ie

As explained in section 3.2.1 the often used element T, time
of perifocal passage, is not considered in this investigation. The
statevector is easily expressed in terms of the eccentric anomaly E
because of which Eo became the preferred variable.

From Figure 3.4. one derives

xm cos v
x' = =r (3.4-1)
w '
ym sinv

This representation is not convenient at this moment since
both r and v are dependent on the chosen orbital parameters a, e, Eo

and n. The following well known formulas can be set up

(3.4-2)




After differentiation of (3.4-2) with regard to time one obtains

E -

~sinE

(3.4-3)

£

1
Ul 1l - e2 cosE

In these formulas the eccentric anomaly E and its time derivative E
have to be viewed as intermediate wvariables which still need tc be
related to the chosen variables a, e, E0 and 1.

The mean anomaly M as defined by
M=n(t - T) (3.4~4)
is related to E through Kepler's equation as follows
M=E - esink (3.4-5)

Equating (3.4-4) to (3.4-5).and introducing the reference epoch to

(=0) and the corresponding reference anomalies Mo and Eo one has

n(t - T) = E - esinE
n(t—to) -+ n(to—T) = E - esink
n(t-t ) + M = F - esink

o o
n(t—to) -+ Eo - es:i.nE0 = E - esinFE

With t0 = ( the following represgﬁtatibﬁ of Kepier's equation is

referred te throughout the rest of this investigation

(Eon) - e(sinE—sinEO) -nt =0 (3.4-6)
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This equation expresses the functional relationship between the inter-
mediate variable E and the parameters e, E0 and n. Because of the
transcendental nature of equation (3.4-6), no explicit expression for
E in terms of e, E0 and n can be obtéined. In contrast, an explicit
expression for the second intermediate variable & can be obtained from
(3.4-6)

_ (E—EO) - e(sinEmsinEo)

+ o= (3.4-7)
n

Computing the derivative of (3.4-~7) with regard to E one gets
ot _ 1 - ecosE
¢E - n

which yields the required E

PR, 4 n
S — 3.4-8
E 1l ~ ecosE ( )

The required statevector (Ew, Ew) still needs to be computed. TFrom

Figure 3.4. it is clear that

%, ¥ cost) ~ Ysin®
X, = = (3.4-9)
' ]
Yy stinw + ywcosw

and upon differentiation of (3.4-9) with regard to time

. X, Xjcost ~ &&sinw
. ; ‘%! 5!
Vi ‘stinw + ymcosm
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Using the expressioms (3.4~2), (3.4-3), (3.4-6) and (3.4-8) in (3.4-9)
and (3.4~10) one arrives at the direct transformation formulas between

statevector and Keplerian elements

. cosW wsinW [ cosE - e ] (3. 6-11)
X. = a 3.4-11
() \
sin  cosw 1 - e2 sinE
a . an cosw -sinw -ginE (3.4-12)
an X = m——— ‘ 3.4-12
w1~ ecosk sinw  cosw || V1 - ezcosE
with (E-E)) - e(sinE - sinE ) - nt = 0

Careful inspection of the expressions above reveal that one
has four statevector elements as a function of five Keplerian elements.
A completely different effect occurs inm the elliptic orbit as opposed
to the circular orbits. Had oné too many Cartesian elements in the
case of circular orbits the reverse appears to be true in case of
elliptic orblts: one has apparently tcoco many Keplerian elements; Fol-
lowing the same reasoning as developed in the previous sections one
tends to search for the condition which brings the five (dependent?)
Keplerian elements down to four. This reasoning is false since it
was shown at the beginning of this section that five parameters were
needed to position a satellite along an elliptic orbit. One has at
this point to reach the opposite conclusion: the statevector supplies
too few (four ;nstead of five)-parameters to suceessfully represen&_a
satellite in position along an ellipticgl path. Consequently, the

transformation formulas (3.4-11) and (3.4-12) are not allowed to be
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used in case of elliptical motions where GM {or n) is considered

unknown,

3.4.2 GM (or n) EKnown

Does one enforce the more restricted behaviour of the ellipti-
cal motion of a satellite as expressed by Kepler's Third Law (3.2-15)
one arrives. at -a- legitimate set of transformation formulas. Elimi-
nating the mean motion m from (3.4-11) and (3.4-12) by means of

{(3.2-15) one immediately arrives at

cosw -—-sinw|[ cosE ~ e -
a[ ][ ] {3.4-13)

X
w

sinw cosw Vl - e2 sinE

w 1 - ecosE

. costy ~sinw| | ~sinE
< JoW/a [°S - HS - ] (3.4-14)

and x 5
Vl ~ ¢ cosE

sinw cost

with' (E-E_) - e(sinE-sink ) Va3t =0 (3.4-15)

Inspection of these formulas reveals the.relationship between four

statevector elements (xm, Y2 iw’ &w) and four Keplerian elements

(a, e, m, Eo).

3.5 Three Diménsional Elliptic Motion

As in section 3.3 the generalization to the third dimension
will add éwo angles, describing the orientation of the orbital ellipse,
to the set of Keplerian elements but also two elements to the state-
vector. Once again, it is expected that in the éeometrically more free

theory (GM (or n) considered unkﬁown) no transformation between

Keplerian and Cartesian orbital elements is possible because of the
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deficlency in the number. of available parameters in the latter
set. Only din the case of "GM known" the transformation is a

legitimate cne.

3.5.1 GM (or n) Unknown~

The fellowing figure illustrates the three dimensional ellip-

tiec motion of a satellite around a primary mass.

Figure 3.5, 3-D Elliptic Motion, Keplerian
elements and Statevector

As in section 3.3.1 the direct transformation formulas are
obtained after two rotations Rl(—i) and R3(—Q) of the Ew system

(equations (3.4-11) and (3.4-12)):
X = Ry ()R, (-1)%, (3.5-1)

and after differentiating (3.5-1) with regard to time

X = Ry (DR (DX (3.5-2)
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Ew and §w are defined as in the equations (3.4-11) and (3.4-12) except
for the addition of the third elements 2, and éw (both equal to zero).
This addition of the third dimension allows the equations (3.4-11) and

(3.4-12) to be rewritten as

cosE ~ e -
x = aRy(-w) Vi - o2 sinE (3.5-3)
0
-sinBE
and ég = Ef:fﬁ%EE§§R3(—m) Vl - € cosE (3.5~4)

0

Substituting (3.5-3) and (3.5-4) into (3.5-1) and (3.5-2) and recalling

Kepler's equation (3.4-6) one finds

cosE — e
X = aR, ()R, (-1)R, (-w) Vi - e sinE (3.5-5)
and 0
-sink
=B » (OB DR -WVL - e? cos B| (-570)
0
with (E—Eo) - e(;inE—sinEo) -nt=20

These two sets of formulas represent the relationships between
six Cartesian orbital elements (X, Y, Z, X, Y, Z) and seven Keplerian
elements (a, e, i, 8, W, Eo’ n). These latter ones are the seven ele~
,ments Gauss is referring to in thé quote at the beginning of this
chapter. More precisely, he refers to GM instead of n as the seventh

required element. As will be shown in later chapters, the seven
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parameter orbit allows greater geometrical freedom than the six para-—

meter orbit would do.

3.5.2 GM (or n) Known

Kepler's Third Law will eliminate the variable n from the
transformation formulas in section 3.5.1. Without derivation one

obtains directly

cosE ~ ¢
X = aR3("9)R1(-i)R3(-m) V1 - 2 sinE (3.5-7)
0
and
~sinE
< _ YGM/a P
X = 5 e cosE Ry (-R; (-DIR, (-w) Vi - e? cosE (3.5-8)
0]
i -E ) - InE- - E‘fEM_ =
with (E Eo) e(sinE sinEo) -\ 0

As in section 3.4.2 one has arrived at a legitimate transformation
because of the relationship between six statevector elements
(X, Y, 2, i, i, 7) and six Keplerian elements (a, e, i, I, w, Eo)'

3.6 Three Dimensional Secularly Perturbed
Elliptic Motion

In this section a simple orbital geometry will be developed in
case that secular perturbations change the .right ascension of the
ascending node, the argument of perigee and mean anomaly in a linear
fashion with respect to time. The particular Keplerian elements can

be expressed as
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szt = 90 + 0t (3.6-1)
W, = W + ot (3.6-2)
= ' Y -
Mt MB + Mt {3.6-3)

Rather than having M as the secular parameter, it is easier
to view this rate of change of the mean anomaly to the rate of

change M has anyway on basis of its definition
M = n(t-T)

This correction to the mean motion n which in the case of secular
perturbations should be referred to as the mean anomalistic motion

(defined between perifocal passages), yields

Mt = n(t-to) + n(to-T) + Mt
M£ = (mi)t + (thesinEo) (3.6-4)

One recognizes that in equation (3.6-4) only the combination (n + M)
appears, consequently making n and M not separable. In the geometri-

cal model define

*

u(new) = n(old) + M (3.6-5)

3.6.1 GM (or n) and J2 (or é, Q, n)
‘Unknown .
A geometrical .orbital theory will be developed in this section.
This theory does not take any dynamical laws into consideration;
however the choice of the geometric parameters is based on the
experience given us by dynamical considefations: it will be acknow-

ledged that the satellite's orbit is elliptical, however the

&4



relationship between a, n and GM contains two independent parameters;
also it will be ackmowledged that the satellite's orbital ellipse
changes its orientation in a secular way: two parameters will be
added to describe the changing right ascension of the ascending node
Q and the argument of perigee ©; the mean motion n will now be simply
defined as the mean anomalistic motion (which will differ from the
mean nodal motion).

Substituting (3.6-1), (3.6~2) and (3.6-5) in the previously
derived expression (3.5-5) the transformation formulas will have the

following structure

cosE - e

X = aR3(~Q—ﬁt)R1(—i)R3(—wr&t) Vi - 32 sinE {(3.6-6)
0

Differentiating (3.6-6) with regard to time yields the velocity part
of the statevector. The time dependency of the rotation matrices

RB(—Q-Qt) and RB(—m—ét) has to be considered

BR,(-0-0t) | )
—_——— = 0T, R, (002D
It . 373 - (3.6-7)
= -QRs(-Sz—Qt)L3
8R3(-w-(ht)
and —_—— = L. R, (~w-kt)

= —wRS(-w-wt)L3

where L3 is defined by equatiom (3.3-25).
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The velocity statevector will be

~sinE
.. . an ol _ NN 2
X = T T ecoss Ry(-i-RB)R, ( R, (~w-be)[ V1 ~ e cosE
0
cosE - e ]
~aiR, (-0 R, (=) Ry (-u-bt)L,[V1 - & sinE (3.6-9)
0 -
[ cosE - e i
~afil. R, (-2-R)R, (DR, (-w-3t)V1 - & sinE
373 3
0

This expression can be simplified by back substitution of equations

(3.4-2), (3.4-3) and (3.6-6)

"fc‘ = R, (—Q—Qt)Rl(—i)Rs(—w—o'Jt) (;JJ-G)LSE’L) - s'ZLB'f{' (3:6—10)

One has to realize that ié and Eé have been made three dimensional vec-
tors by amending zeros. Similarly, the expression for X can be rewrit-

ten as
X = R, (-Q—Qt)R.l(—i)RB (—w—ﬁjt)-}—{-(:’ (3.6-11)

Denoting the time dependent rotation matrix as IRt, one can summarize

the transformation formulas ag follows

(3.6-12)



with (E—Eo) - e(sinE—sinEo) - nt =0

This set of formulas represents the relationships between six Cartesian
orbital elements (X, Y, Z, i, ?, 2) and nine Keplerian elements

(a, e, 1, &, Q, w, w, Eo, n). The orbital model as represented by

(3.6-12) allows even greater geometrical freedom than any previously

derived orbit.
3.6.2 GM (or n) and Iy {or &, 2, n)
Known
If one enforces the dynamical law as Kepler's Third Law and
considers the gravitational constant GM to bea constant, then one para-
meter (n) can be eliminated, In a very similar reasoning the dynami-

cal "laws" defining Q, W, and n as a function of J, and considering

2
J'2 to be a constant will successfully eliminate two more parameters
(Q, ) from the orbital model (3.6-12). WNeglecting the secular pertur-—

bations caused by J22 and higher order zonal harmonic coefficients

(Jn, n > 3) one has from e.g., [Escobal, 1976},

2 2
3 Jp2, Yl-e 3 2
n=n |1+= {(1-<sin™i) (3.6-13)
0 2 2 2.2 2
a"(1-e7)
2
S = 3 JZae 4
——'Z—Wﬂcosi (3.6-14)
a“(1-e™)
2
J.,a
b=2—2& _(2-2 sin’i) (3.6-15)
2 2 2.2 2
a”"(1-e™)

n, = VGM/aB (3.6-16)
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Substituting (3.6-16) into (3.6-13) one has for the mean anomalistic

motion

J azdl - e:Z
n={mm3k+% 22 u-iﬁﬁn] (3.6-17)

a (1—32) 2 2

Inspecting (3.6-14), (3.6-15) and (3.6-17) one has expressed S-Z, ® and
n as functions of the orbital parameters a, e and i. Substitution of
these three expressions into the transformation formulas (3.6-12) gives
the orbital model with the two dynamical laws enforced. The complete

orbital transformation model has to be writtem as follows.

x1
_ W
= 1
X IRt ym
0

TR S | _

. s ~ovg] [

X=1IR y' +ox' |+ 0 X

t w w
0 0
with (E—Eo) - e(sinE—sinEo) -nt =0

(3.6-18)
R, = R3(-Q-Qt)R1(—i)R3(—m—&t)

J a2 \‘1 - e2
n =QGM/3,3 [1 + 32 ; (].-é sinzi)jl
a

2 (lme2)2 2
2
d=_3 Ja3e
=-3"7 55 ncosi
a " (1-e%)
2
J.a
. 3 2 5 2
and R R P LGl
a“ {(1-e%)

The set of formulas (3.6-18) represents the relationships

between six Cartesian orbital elements (X, Y, Z, I'{, 'ff, ﬁ) and six
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Keplerian elements (a, e, i, 2, w, EO). Because of this compatibility
a set of reversed transformation formulas might be derived. Several
remarks need to be made:
- GM and J2 are considered to be constants. Not doing so, one
has merely replaced one parameter by another parameter
(in case of Kepler's Third Law: n by GM).
~ Because of the dependency of the mean anomalistic motion on
the ineclination (3.6-17), the intermediate variable E becomes
dependent on the inclination. This fact in turn makes the
orbital parameters ié and ;é dependent on the inclination!

This needs to be taken inteo account when developing the dif-

ferential relationships (see Appendices A and B).

3.7 Summarz

From Table 3.1 the 9 parameter orbital model ig the most
general one: it retains the highest geometrical freedom-which
should result in an intermediate orbit which can follow the real
orbit accurately for long periods of time. Its flexibility does
not only concern the gravitational constant GM but also the secular
perturbations. It scolves with the help of geometric parameters Q,

w and n for the secular changes in the parameters @, ® and M without
specifying the cause of these gecular perturbatiéns. It 1s known that

22, 33, J4’ etc., cause secular perturbations as well in

terms as J
these parameters.
The comparison between the Keplerian and statevector approach

was given here because if an orbit determination takes place with the
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Table 3.1

The Relationship Between Keplerian Elements and

Statevectors for the Various Orbital Models

Keplerian 1) Compati-  Con—
Orbital Model Elements No.| Statevector ™ No,} bility  stants Remarks
Circular Motion 2D a,u_,n 3tx .,y ,ﬁm,i no - condition for
° W w statevector
a,u 2% ¥ % ,¥ 1o GM conditions for
° Wt W statevector
3D a,i,Q,uo,n 5 X,Y,Z,i,',i no - condition for
statevectoyx
a,i,fl,u 4 X,Y,Z,i,?,ﬁ 1no GM conditions for
° statevector
Elliptic Motion 2D a,e,u,E ,n 5 LR AT 0 no - deficiency for
° statevector
a,g,w,Eo 4 :»:m,yw,:::m:'(p yes GM -
3D a,e,i,%,0,E ,n 7 |%,Y,2,X,Y,Z no - deficiency for
© statevector
a,e,i,ﬂ,w,Eo 6 X,Y,Z,ﬁ,f,i ves GM -
Secularly Perturbed - , s . . . _ deficiencies
Elliptic Motion 3D a,e,lqﬂ,ﬂ,w,w,Eo,n 2 |%1,2,%,1,2 ne for statevector
< GM +
a,e,i,0,w,E 6 |X,Y,2,%,Y,2 yes -
o J2

lGM (and Jz) were considered known in all cases for the statevecior.



help of range, range-rate or range difference observations, the state-
vector approach is often resorted due to the simplicity of the mathe-
matics. As it has been shown in this chapter, there are several hidden
constraints or deficiencies among the statevector elements in the

various orbital models.

51



4, ORBIT, OBSERVER AND OBSERVATIONS

"Certainly all these problems can be solved by subjection to the can-

nounade of numerical analysis . . . "

P. R. Escobal [1976]

4.1 Introduction

Throughout the literature in celestial mechanics and related
sciences chapters on the various orbit determination techniques play
important roles. Starting with analytical‘methods of orbit determina-
tion, often having its roots in the Keplerian representation, detailed
procedures are worked out on how to update the state of a planet,
satellite, etc. Two assumptions are often being made: the first deals
with the fact that an initial state of the satellite is known, the
second deals with the description of the satellite's enviromment which
is prescribing the satellite's path (e.g., the force field of the primary
planet). It is this second item which gives all too often the fatal
blow to analytical theories of orbit determination. The complexity of
the satellite's environment prescribes a path for the satellite which
is very difficult to represent in an analytical way. At this point
methods of numerical integration come to help. They solve numerically
a set of differential equations according to which the prescribed path

can be calculated (iterated, corrected, etc.). The real test comes

52



only then when the ceclestial mechanic has a set of observations at his

disposal. These observations enable him in addition to the internal

checks (for which no observations are necessary) to perform the external
check between theory and reality. The position from which the observa-
tions are made, is often of second interest to the astronomer and his
methods and accuracies are such that this (lack of) knowledge does not
influence his orbital theory. In this respect the interest of the
celestial geodesist is reversed: the satellite is a nuisance object
having in its trail many nuisance parameters. However, the position of
the celestial geodesist and the description of the satellite's environ-
ment {e.g. the earth's gravity field) are of primary interest to him.

Reality must be between these two apparent extremes.

If observational evidence forms thé cornerstone of our
knowledge, then we have to build on them: a description of the satel-
lite's path, a description of the observer's path and a description of
the satellite's and observer's enviromment. Agsuming no a priori
knowledge of any of the parameters several questions need to be
answered:

(a) Given a certain measurement system can it describe the observer's
and satellite's paths as well as some of the environmental para-
neters?

(b) Given & certain measurement system will any set of parameters be
able to perform this task?

(¢) Given a certain measurement system can it recover all parameters
necessary to describe the satellite's and observer's paths and

their environment?
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The previous chapter tried to answer question (b) by stressing the care
to be exercised in employing Cartesian orbital elements. This chapter
will attempt to answer the remaining questions. As an illustration the

reader is referred to the following story.

4,2 The Clock Problem

Once upon a time there was a little country named Temporaria.
Its reigning king, an enlightened despot, used to punish his subjects by
having them take place at the ends of the hands of clocks. This not
being an enviable position to be in, the punished ones quickly devised
games to alleviate the boredom of their revolutionary stay. The
inhabitants of Temporaria were scientifically minded, so it was no sur-
prise that their favorite game was rather intellectual. By calling each
other as soon as they came in hearing distance and noting the time it
took to get the call returned by his fellow inmate and also the change
in pitch of the call, they derived ranges and range-rates. These obser-
vations provided them with the puzzle how far they were separated from
each other and how they moved with respect to each other, Preferably,
they solved their puzzle in .an. inertial--clock-fixed frame (see Figure
G.1).

If one denotes the position and velocity vector of subject A
occupying the big hand by X, ¥, ﬁ, é and the position and velocity vec—
tor of subject B on the short hand by X, ¥, X, § and the origins of the
rotations by X s ¥, One might believe that making more than ten let say
range observations will furnish the principal characters of the story

with the required 10 parameters.
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Figure 4.1. Rotations in a Reference Frame

The discussion of section 3.2.1 explained that in case of two
dimensional circular motion with constant angular velocity only three
out of the four state vector elements are independent. This fact
directly reduces our set of parameters to eight.

The orbital elements of subject A are (equation 3.2-13)

R | cos(u +4nt) X
-3 I 0 4+ | o (4.2-1)
:Y: :sin(uo-l-nt) | Y,
. X -sin{u +nt
X = =an o ) (4.2-2)
Y cos (uo+nt)
with (x-xo)fc + (¥-y )i =0 (4.2-3)
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and for subject B

with

cos(STHo_t) [
R[ € ] 4
LY

sin(STHnet)

—sin(STHo t) |
R e

cos(SI%wet)_

(z=x )% + (y~y )7 = O

(4.2-4)

(4.2~5)

(4.2-6)

The new variables a, u,s n, R, 8T and'me are illustrated in Figure 4.2.

Figure 4,2,

Two Dimensional Circular Motions

The range equation will be, from (4.2-1) and (4.2-4)

r
n

F-x)2 + (T-y)2

[acos(uo+nt)— Rcos(ST+wet)]2-+

[a sin (uo+nt)' - Rsin(smmet) ]2
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This equation reduces to

r2 = a2 + R2 - 2aRcos[(uo—ST) + (n—me)t} (4.2~7)

Since the pairs U, 5T and n, we only appear as differences in equation

(4.2-7) only their differences are estimable.

Setting
u - 8T =nq
o 0
and n ~w =&
e
one obtains
r2 = a2 + R2 - ZaRcos(uo+dt) {4.2-8)

One hardly has to describe the disappointment of the already so unfor-
tunate inhabitants of Temporaria when upon inspection of equation
(4.2~8) they found only four out of the ten parameters to be estimable:
a, the distance of subject A to the center of rotation;
R, the distance of subject B to the center of rotationj
ao, the angle between the ﬁands of reference epoch t = 0 and
&, the difference of the angular velocities of the two hands.
In case of range-rate observations one obtains by differentiation of

equation (4.2-8) with regard to time

dr dX dx

2r £ = 2(x-x%) ("EE‘EE) + 2(2-y) (d

G
Ao
ik

Substitution of equations (4.2-1), (4.2-2), (4.2-4) and (4.2-5) into

the equation above yields
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= [acos (uo-i-nt) ~Reos (ST-i-met)] [-an sin (uo+nt) + Bwesin(ST-Ime_t)] +

[asin(u°+nt)-Rsin(ST+met)][ancos(ub+nt) - Rwecos(ST+met)]

which reduces after some manipulations to

ri = aR Gsin(a +ot) (4.2-9)

This range-rate equation can also be written as

aR &sin(a +ét)
.o o (4.2-10)

Rz - 2aRcos(ao+&t)

This equation could have been obtained directly from equation (4.2-8)
after differentiation with regard to time. Inspection of thel range—
rate equation (4.2-10) reveals similar con'clusions as far as esti~
mability is concerned: only four parame'ters a, R, 0 s & are estimable.
This means that the same variables are estimable from range and range-
rate observations.

In case of range-difference observations the range-difference

equation can be obtained by differencing two range equations evaluated

for epochs (t + At) and t. From equation (4.2-8) one has

Ar = LAt T Ja + R - 2aRcos[ao+&(t+At)] -

#a + R - 2aRcos (a0+o'f.t) (4.2-11)

Once again, the same four parameters, a, R, R and ¢ are esti-
mable.
An alternative for the range-difference equation can be obtained

from the original (squared) range equations

58



T = Ar (r (ll-- 2—12)

- +
T At t pat T T

I

—23R{cos[a0+&(t+ﬂt)] - cos(ao+&t)} (4.2-13)
Combining equations (4.2-12) and (4.2-13) yields

4aRsin[o +&<t%z\t)]sin%ém
AT = o = (4.2-14)
Terar 7 Te

If 1/2c¢At is small one has by approximation

1 1.
siniaAt e EaAt

and rt+At + rt o zrt+%ﬂt
. . l
Rosi +0, (At
yielding Ar = 2 51n[u0 ¢ 2 )] (4.2-15)

az + R? - 2aRcos[a;+é(t+%ﬂt)]
which is upon division by At equal to the range-rate equation evaluated
at half way the time interval between t and (t + At): the range-rate
for epoch (t + 1/2At). Néte that equations (4.2-11) and (4.2-14) are
rigorous (and identical).

The difference between range-rate and range—difference observa-
tions comes into play only then when the range-differences are con-
sidered to be correlated or uncorrelated. For a further discussion see
Appendix B, section B.8.

Recapitulating, the moral of this story is:

a. having two points with constant circular motions around a common
point in a reference frame leads to three sets of variables

~ the state vector of point A (X, ¥, ﬁ, i) in the reference frame
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- the state vector of point B (x, v, %X, ¥) in the reference frame
- the position of the center of rotation (xo, yo) in the reference
frame
b. making range, range-rate or range-difference observations between
point A and B only four combinations of the ten variables mentioned
under a. are estimable:
- parameter 1: the distance between point A and the center of

rotation (see equation 3.2-~8)

x2 + Y2 =g (4.2-16)

-~ parameter 2: the distance between point B and the center of rota-

tion {see equation 3.2-8)

2 +y° =R (4.2-17)

- parameter 3: the angle between the two radius vectors at

reference epoch t = 0 (see equations 3.2-10 and 3.2-11)

2 o2 2,.2
arctan (—;—) - arctan (l) - t(#}-(z*-?z"dxz-byz =u -8T=qa (4.2-18)
x X+ x4y ° °

~ parameter 4: the difference between the angular velocities of

the two radius vectors {(see equation 3.2-10)

2 2 2 2
‘/}.‘2"“?2 —d‘fz*’?fn-w =& (4.2-19)
+ ¥ X +v¥ €

Transforming the story in a more realistic one, point A will be

identified as an earth orbiting satellite and point B will be an
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earthbound ohserver. The clock problem reflecfs an observer at the

equator making range, range-rate or range~difference observations to a

satellite in an orbit with an inclination of 0° or 180° and eccentri~

city equal to zero. From the mentioned observations one can only

estimate

— the radius a of the orbit

- the distance R between the observer and the geocenter

- the longitude difference o (or difference between right ascensions)
between the satellite and the observer at t = 0. A little bit dif-
ferently stated, the difference between local sidereal time of the
observer (hour angle of the vernal equinox) and the right ascension
of the satellite at reference epoch t = 0

- the difference O between the mean motion n of the satellite and the
angular velécity we of the earth.

This rather artificial example should serve as an illustrative

warning of the limitations of the observations under discussion. In the

coming sections more realistic examples will be handled.

4.3 Satellite, Station and Earth Parameters

In the investigation of the range, range-rate and range—
difference observations and their contributions to the recovery of
various parameters, the latter have been grouped in three categories:

satellite, station and earth parameters.

4.3,13 Satellite Parameters
Keplerian orbital elements referring to the equinox and equator

of date have been chosen. The parameters are:
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- at the semimajor axis of the orbit ellipse

- e: the eccentricity of the orbit ellipse

- i: the inclination of the orbit plane

~ w: the argument of perigee

- f: the right ascension of the ascending node

- EO: the eccentric anomaly of the satellite at the reference epoch

t=20
- n: the mean moéﬁon of the satellite
_— the rate of chaﬁge in the éréuménf of'pefigée
- Q: the rate of change in the right ascension of the ascending node

- n: the mean anomalistic motion of the satellite (measured between
perigee passages).
The last three variables are used in the secularly petrturbed orbits.
In the special orbits as circular and zero inclination orbits
certain orbital elements are-equal to zero or not defined. TIn the sub-
sequent study the orbital elements are accordingly redefined or omitted

as dictated by the various special circumstances.

4.3.2 Station Parameters
The usual geodetic way of expressing the locations of stations

around the globe is with respect to a reference ellipsoid

X (N+h)cosdeosA
v { = | (N+h)cos¢sin) (4.3.1)
z [N(1-e2) + hlsind

with N being the radius of curvature in the prime vertical

N = = (4.3-2)




However, in the investigation at hand the reference ellipsoid is
completely immaterial. Consequently, the position of the observer will

be expressed in geocentric coordinates as depicted in Figure 4.3

Figure 4.3. Geocentric Reference Frame

From the figure one obviously has

X cosPcosA
X =|y |= R|lcosyPsinr (4.3-3)
Z sind
where R, ¥ and A denote respectively the geocentric radius, the geocen—
tric latitude and the geocentric longitude,

;n light of the coming derivations a more unusual representat-
tion can be used to one's advantage: one can view the geocentric
cocrdinates of the observer as two consecutive rotations of a unit vec-
tor El scaled by the length R of the radius vector. From equgtion

(4.3-3) one has
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x =RR, (-«1)32 (zp)zl (4.3-4)

- T
with ey = {1, 0, 0]

R
or X = Ry(-MIR, (V) | O (4.3-5)
. (o]

This representation of the observer's location will mainly be

adhered to in the following sections.

4,3.3 Earth Parameters

In the sometimes purely geometrical and other times partly
dynamical analysis of orbit, station and earth parameter determination
four variables for the earth are included in the (initial) study as
presented in this chapter. The parameters are

=W, the instantaneous inertial spin rate of tﬁe earth about the
instantaneous rotation axis., The variable in this study is
simply referred to as the angular velocity of the earth.

- GM: :the geocentric gravitational constant of the earth, being
the product of the universal gravitational constant G and
the mass M of the earth including the atmosphere.

- J,¢ the dynamical form factor of the earth, the largest spherical
harmonic coefficient (after GM) describing the oblateness
of the earth's gravity field.

- GASTO: the Greemwich Apparent Sidereal Timé at reference epoch t = 0
describing the orientation of the Greenwich Meridian with
respect to the equinox of date, as measured along the equator'
of date.

Refinements of these simple (i.e. crude) models will be treated in Chapter 5:
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polar motion, precession, nutatioﬁ, non~coincidence of the spin axis
and the axis of figure are discussed in section 5.4.
4.4 The Circular Intermediate Orbit, Station and Earth

Rotation/Orientation Determination from Range
Obsexrvations

The ground work for this section has been laid in Chapter 3,
sections 3.2 and 3.3.
4.4.1 Two Dimensional Case with
GM (or n) Unknown
The two dimensional circu{ar motion with Kepler's Third Law
containing two independent parame;ers has been discussed in section 4.2
as an introductory illustration. 'From equation (4.2-8) ome had the fol-

lowing range equation.

r2 = a2 + R? - ZaRcos(adhit) (4.4-1)

The interpretation of the four estimable-parameters is given at the end
of section 4.2. The third estimable parameter o is illustrated in

Figure 4.4, From the figure one has the interpretation

Q
n

A4+ GAST - u =A+GAST -~ Q0 -w-FE (&.4-2)
0 o . o )

n- we (4.4-3)

and (¢

it
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GREENWICH >

Figure 4.4. The Equator and Orbit Plane

4.4.2 Two Dimensional Case with
&M (or n) Knowm~

If one considers the geocentric gravitational comstant GM to

be a constant, one has for the range equation

2 a2 + R? - 2aRcos|a +(‘IEE-m ) t] (4.4-4)
o a3 e

A+ GAST ~u = A+GAST ~Q-w-E
o o o o

~
It

with o

Once again four estimable parameters are the result with a, R
and oy having the definition as explained in section 4.2.  However, the
fourth estimable parameter is the angular velocity W, of the earth.

It is worth noting that although the consideration of GM being
known reduced ‘the number of estimable orbital parameters from three
to two as explained in sections 352.1 and 3.2.2, the number of esti-
mable parameters in the range equation is not reduced.

66



4.4.3 Three Dimensional Case with
GM {or n) Unknown

The three dimensional circular motion results in a still simple
range equation. Initially, a geometric derivation is given with the

help of Figure 4.5.

satellite

Figure 4.5. Three Dimensional Circular Motion

The angle ¢ can be obtained from the projection of Figure 4.5 onto the
celestial sphere. The following relations can be set up from spheri-

cal trigonometry (Figure 4.6):

APRS: cosa = cosucosy+ sinusiny cos (i—ilp) (4.4-5)

it

APQR: cosy = cos (MGASTO—Q) cosy+ sin(?\-i-GASTO—SE) siny cos ilp {4.4-6)
cos y = coslcos (l—i—GASTO—Q) : {4.4=7)

siny = siny sin ilp ) (4.4~8)

Substituting (4.4-7) into (4.4-5) and writing out (4.4~5) one has
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satellite

l
l
2
/

station

A +casT -

Figure 4.6. The Celestial Sphere and the Fundamental
Triangles of Satellite Geodesy

cos0 = cos u cosfcos (A+GAST ~Q) +
sinu giny cos i cos iﬂ; +

sinusiny sini sin i‘,U (4.4-9)

Substituting into equation (4.4~9) expressions for sin y cos i o

(from 4.4-6) and sin y sin :I.l!J (from 4.4-8) one gets

cost = cos u cos (AHGAST-0) cosP +
sin u sin(A+GAST-R) cosPcos 1 +

sinu sinYsin i (4.4-10)

Substituting the expression (4.4-10) for cosdt into the range equation

(see Figure 4.6) one obtains

rz = z-;.2 + R“2 ~ 2aRcosd (4.4~11)
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with cosO = cosficosB + sinPsinusini
cosB = cosAlecosu + sinAdsinucosi
A?\=?\+GAST-Q=K+GASTO—Q+U381:
u =

u +nt=w+4+E +nt
o o

Evaluation of the range equation yields the following eight

estimable parameters

—~ satellite parameters ta, i, v+ Eo’ n
— station parameters TR, ¥
- earth parameter : me

mixed station/earth/satellite parameter: A -+ GASTo ERY

4.4.4 Three Dimensional Case with
GM (or n) EKnown

If one considers GM in Kepler's Third Law to be a constant

one obtains for the range equation

£ = a2 + R2 - 2aRcoso. (4.4-12)
with cos = cosPcosf + sinPsinusini
cosf = cosAlcesu + sinAdsinucosi
Al=]\+GAST-S'2=X+GASTO-~Q+wet
u=u +VGM/a3 t=w+ Eo +VGM/a3 t

Evaluation of the range equation yvields the following seven
estimable parameters:
-~ satellite parameters : a, i, w+ Eo

- station parameters : R, ¢
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-~ earth parameter H we

-~ mixed station/earth/satellite parameter: X + GASTO - Q

4.4.5 Three Dimensional Case, Alternate Approach

The limitations of the estimability of the various parameters
can be arrived at along more algebraic ways rather than the geometrical
approach presented above.

The starting point will be the Cartesian orbital elements,
X, Y; Z, i, i, 7 and the Cartesian coordinates for the station (x,y, z).

The range equation can be written directly as

r? = (X2 + (T-y)? + (2-2)> (4.4-13)

assuming that X, Y, Z are the coordinates of the satellite in the
station's reference frame.

Equation (4.4-13) can be written as

2 = G ¢ (F%)
= X + %% - =X (4.4-14)

Recalling from equation (4.3-5) that

x = Ry(-)x' (4.4-15)
R
with x' = R, | 0
0
and from equation (3.3-1) that
—' = - - = —
X RB(‘Q)Rl( i)x& (4.4-16)
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cosu
with ;; =3a| ginulf
0
the satellite coordinates X' defined in the instantaneous inertial

frame (equator and vernal equinox, true of date) have to be transformed

into the station's reference frame:
X = —' 4- [l-"l
X R3(GAST0+wet)X ( 7)

Equation (4.4~17) can be expressed in a similar way as is done for the

station coordinates:

= - 1" -
X = R3(GAST0 Q)RB(wet)X {(4.4-18)
with X' = Rl(—i)xw

- In evaluating the range equation (4.4-14) one finds directly

for the first two terms, because of the orthogonality of the rotation

matrices,

- 2 2 2

XX=x " + ¥y e =2 (4.4~19)
and % =’ (4.4-20)

Upon substitution of (4.4-15) and (4.4-18) into the third term

of (4.4-14) ome gets

- T = o _IT o~ >
25X 2x RB(K)R3(GAST0 9)R3(met)X

e _oo1L - T -
2x RB(K+GAST0 Q)RB(wet)X {(4.4-21)

. The range equation (4.4-14) becomes upon substituticn of

(4.4-19), (4.4-20) and (4.4-21)
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r2 = a2 + R2 - 2§'TR3(A+GASTO-9+met)E" (4.4-22)
with X'T = [Reos¥ O Rsind] (4.4-23)
cos
and X" = a|sinucosi (4.4-24)
sinusini
u=W+E +nat

From this range equation it becomes clear too that a, i,

w + E, n, R, U, w, and A + GASTO - © are the only eight estimable
quantities.

Upon substitution of (4.4~23) and (4.4-24) into equation
(4.4-22) the very same result is obtained as reflected by equation
(4.4-11).

Some remarks concerning the parameter u need to be made. The
parameter has been equated to w -+ Eo +qat (= u, 4+ nt). The constant

part a of this parameter can be viewed in a more conventional way as
uo =uw+ vo

whereby w is the argument of perigee and Y, the true anomaly of the

satellite at reference epoch t = 0. u (and uo) is one of the Hill

variables and known as the argument of latitude. Because of the zero

eccentricity of the orbit the true anomaly, mean -anomaly and eccentric

anomaly are equal. With an eye upon future derivations the argument of

latitude has been set equal to W + Eo + nt rather than W + v, + nt.
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4.5 The Elliptic Intermediate Orbit, Station and
Earth Rotation/Orientation Determination
from Range Observations

The ground work for this section has been laid in Chapter 3,

sections 3.4 and 3.5.

4.5.1 Two Dimensional Case with
6M (or n) Unknown

Figure 4.7 illustrates the geometry involved in a two dimen-

sional Keplerian orbit.

Q Inot defined]

Figure 4.7. Two Dimensional Elliptic Motion

From Figure 4.7 one has the range equation

2 2 2 _
r, + R” - 21 Rcosa (4.5-1)

ko

with A+GAST - Q ~w-v

e
1l

A+ GAST - Q-w-v+ut
o] e
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and r, = a{l-e cosE)

from equation (A.2-1) in Appendix A.

4

In the elliptic motion the true anomaly v does not vary linearly with

time so one has to write the range equation as
2 2 2
=t + R" ~ erRcos[(l+GAST—S2—m) - v]

rzw + R2 - erR[cosOH-GAST-Q-w) cosv +

n

sin (A+GAST-0-w)sin v] (4.5-2)

Recalling from equation (A,2-1) that

Y CoOsSv =X

W W
and r sinv =

1] yw

the range equation (4,5-1) becomes

r2 = r2 + Rz‘— 2R{x cos[ (MGAST --w) + w t] +
) W o e

v wsin[ (7\+GASTO-Q—UJ) + me't]]L {4.5-3)

with Kw’ A r‘-0 and their functional relationships as described in
Appendix A, sections A.2, A.3.1, A.4.1 and A.5.1.
Evaluation of the range equation yields the following seven

estimable parameters:

~ gatellite parameters : a,eE, 1 (see sectionA.5.1)
- station parameter : R
— earth parameter : we

mixed station/earth/satellite parameter: A + GASTO -2-uw
The generalization from the two dimensional circular motion to

the two dimensional elliptic motion increased the number of estimable

74



quaﬁtities from four to seven. This increase by three can be explained
easily: the first additional parameter is meeded to describe the =zccen—
tricity of the orbit; the second parameter is needed to position the
satellite in the elliﬁse, the latter having now a defined orientation in
the reference frame: the thifd added parameter deals with the sepa-
rability of the angular velocities: the satellite's variable angular
velocity is separable from the assumed constant angular velocity of the

earth,
4,5.2 Two Dimensional Case with
GM {or n) Known
The case with GM known in Kepler's Third Law yields the same

range equation as in section 4.3.1

2 2 2
"= + R - 2R{chos[(l+GASTo—9—w) + wet] +

ymsin[(l+GASTo-Q-m) + wet]} (4.5-4)

with X Ty rw and their functional relationships as described in
Appendix A, sections A.2, A.3.2, A.41. and A.5.2,
Evaluation of the range equation yields the following six esti-

mable parameters:

~ satellite parameters ta, e, Eo (see section A.5.2)
~ state parameter + R
—~ earth parameter : we

|

mixed station/earth/satellite parameter: A + GASTo -2 -w
Note that in the case of the elliptic motion with GM known in
Kepler's Third Law reduces the number of estimable quantities with one

in contrast to the circular motion (see section 4.4.2).
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4.5.3 Three Di.mensional Case with
GM (or n) Unknown

The three dimensional elliptic motion can be directly derived
from the three dimensional circular motion. In Figure 4.8 (similar to
Figure 4.5) one has to split up the argument of latitude u into the

argument of perigee w and the true anomaly Vv and to replace a by r »*

satellite

WICH

Figure 4.8. Three Dimensional Elliptic Motion

From Figure 4.8 one has the following range equation

2 2 2
=z + R - erRcosm (4.5~5)

Figure 4.6 and the relations from spherical trigonometry in the two funda-

mental triangles of satellite geodesy (APRS and APQR, Figure 4.6) yield

cost. = coscosf + sinPsin(wtv)sini (4.5-6)

ft

with  cosf = cos(AHGAST-Q)cos (wtv) + sin(A+GAST-Q)sin(uwv)cos 1
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Writing out the sine and cosine terms with argument (W + v) in equation

(4.5-6) one gets

costt = cosfcos (AHGAST-R)coswcos v~ cosPcos (AHGAST-Q) sinwsin v +
cosPsin(AHGAST-) sinwcos i cos v+ cosfsin (A+HGAST-Q) cosuwcos 1 sinv +

sinPsin 1 sinwcos v+ sinPsin i coswsinv (4.5-7)

Recalling from equation (A.2-1) that

X =Y CosV
w w
=7t sinv
and Yw W

the range equation (4.5-5) becomes

2 2 2
r =T w + R - ZR(wa-i-Qyw) (4.5-8)

with P = Pccosﬂ) + Pssinlp

Q= Qccoslp + stinlb

Pc = cosAlcosw + sinAdsinwcos i
PS = ginwsin i
Qc = —cosA.\sinm 4 sinAlcoswcos i
Qs = coswsin i

=
5
It

AL +wt=X+GAST -Q 4wt
o] e . Q e

and X2 Yy Ty and their functional relationships as described in
Appendix A, sections A.2, A.3.1, A.4.1 and A.5.1.
Evaluation of the range equation yields tlie follc;wing ten esti-

mable parameters:

-~ satellite parameters : a,e,i, W, E , n (seesection
o
A.5.1)
- station parameters : R, ¥
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- earth parameters H we

- mixed station/earth/satellite parameter: A + GAST0 -
4.5.4 Three Dimensional Case with
GM (or n) Known
The case with GM known in Kepler's Third Law yields the sanme

range equation as in sectiomn 4.5.3

2 = rzw + % - 2R(Px ;HQy,,) (4.5-9)

i

with P Pccos¢ + Pssiﬁ¢

Q= Qccos¢ + stin¢
Pc = cosbAcost + sinfAsinWeos 1
P_ = sinWsini

Qc =ecoshAsinw + sinAlcoswcos i
Q, = coswsini
AN =

AN +twt=A+GAST ~Q+uw t
o e o : e

and s Yy Ty and their functional relationships as described in
Appendix A, sections A.2, A.3.2, A.4.1 and A.5.2.

Evaluation of the range equation yields the following nine esti-

mable parameters:

- satellite parameters : a, e, i, w, E_(see section
o
A.5.2)
- gtation parameters T R, ¥
- earth parameters : we

- mixed station/earth/satellite parameter: A +GAST - Q
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4.6 The Secularly Perturbed Elliptic Intermediate
Orbit, Station and Earth Rotation/Orientation
Determination from Range Observations

The ground work for this section has been laid in Chapter 3,
section 3.6. From theory and experience the most dominant effects of

the oblateness of the earth's gravity field as expressed by the spheri-

2a§,section5.4.3) are the secu-

lar changes in the ascending node, the argument of perigee and the mean

cal harmonic coefficient Jz(betterGM J

anomaly other than one would expect from Kepler's Third Law. The secu-
lar change of the latter one is usually attributed to a revised mean
motion of the satellite: the satellite moves differently from perigee
to perigee as one might conclude from Kepler's Third Law.

Section 4.6.1 describes how a pure geometrical orbit is able to
handle these secular pertutrbations as derived from range observations,
whereas section 4.6.2 includes the functional relationships between GM,

J2 {(both considered constants) and the secular perturbations.

4,6.1 GM (or n) and Jz {oxr &, @, n)
Tnknown

From the range equation of section 4.5.3 one obtains directly,
incorporating the secular perturbations in the ascending node and the

argunent of perigee

2 _ 2 2 X _
=1 +R" - 2R(me+Qyw) (4.6-1)

Before evaluating P and Q one has as the range equation using 2 simi-

lar approach as in section 4.4.5
=YX +%x - 25X (4.6-2)
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R

with X = Ry (-MR, () g = Ry (-A)x' (4.6-3)
and X = R,(GASTIR, (-0 -Q)R; (~1)R, (00 ~Bt)x, (4.6-4)

with Ew as defined in Appendix A, section A.2.

Substitution of (4.6-3) and (4.6~4) into the range equation (4.6-2)

vields

2? = % + B - 2% TR, (MEAST -0 )R, [ DI (4.6-5)
with ;'T = [Rcosy 0 Rsinl] (4.6-4)
and X" = Rl(—i)R3 (—-{no-t.bt);m (4.6=7)

Equating the corresponding terms in the range equations (4.6-1) and

(4.6-5) one obtains

2 = 1.-2m + 8% - 2R (PxyiHdy) (4.6-8)
with P =P cosy + P cosl

Q = Qccosw + stinw

P = cosfAcost + sindAsinWcos i

PS = sinWsin i

Q, =~cosfAgin® + sinfAcoscos i

QS = coswsin i

Ad =X+ GAST - Q + (u -t

W= * Wt

and Xy Yo Ty and their functional relationships as described in

Appendix A, sections A.l, A.3.1, A.4.1 and A.5.1.
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Evaluation of the range equation yields the following eleven

estimable parameters:

a, e, i, v , 0, Eg, 1
(see section A.5.1)

satellite parameters

station parameters : R, ¥

I

mixed station/earth/satellite patameter: A + GASTO - Qo

mixed earth/satellite parameter Py - Q

I

Note that n is the mean anomalistic motion (perigee to perigee)
without changing the expressions for Xy o rw!

At this point of the secularly perturbed orbit one looses the
capability of earth rotation (UT 1) determination: one can only
recover the~-what might be called--effective earth's angular velocity
with respect to the regressing orbital plane. Consequently, the J2 term
cannot be determined from the secular perturbation in the ascending node
(only one satellite is considered)}. The mean motion n plays in the
range equation the same mathematical role as in the unperturbed case.

Consequently from the mean (anomalistic) motion J, cannot be determined

2
either. The only difference in geometry between the unperturbed {(sec~
tion 4,5.3) and the secularly perturbed (this section) orbit is the
motion of the perigee w. This secular rate furnishes us with the only
source for a JZ determination.

The range model as described in this section should be con-

sidered a very powerful one since it inecludes all secular perturbations

in w, @ and n due to Jz, Jg, J3, Jé’ ete! The model solwes for the full
secular perturbations in the three elements, not being able to dif-

ferentiate between sources of the various secular perturbations.
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4,6.2 GM (or n) and Iy (or &, &, n)
Known

Enforcing the four dynamical relationships between the mean
motion n, the argument of perigee w, the ascending node 2, the gravi-
tational constant GM and the dynamical form factor of the earth 32 two
of the eleven estimable parameters of the range model of section 4.6.1
will be eliminated.

The four dynamical relationships are

n§a3 = oM (4.6-9)
Jzag_ 1-e” 3 .2
n=nll+—F——=(1-=sin"1)] {(4.6-10)
o 2 2,2 2 g
a (1-e)
Q=0 + &
o
: 3 Jzaﬁ
with Q= —-—-—F"—"——Fnecosi (4.6=-11)
2 2 2.2
a (1-e7)
W= w + &t
0
2
J.a
with b=2r2e o n(2-2 sin’1) (4.6-12)
2 2 2.2 2
a (1-e)

The range equation is as in section 4.6.1
r? =2+’ - 2R(Px ;+07,) (4.6-13)

with P, Q, Pc’ Ps’ Qc, QS as described in section 4.6.1.

ns o, Q, ® as described in equations (4.6-9) through (4.6-12)

and Xy Ty Ty and their functional relationships as described in

Appendix A, sections A.2, A.3.3, A.4.1 and A.5.3.

82



Evaluation of the range equation yields the following nine
estimable parameters:

—~ satellite parameters

a, e, i, w , E; (see sec-
tion A.5.3

R, ¥

- earth parameter : we

~ station parameters

mixed station/earth/satellite parameter: A + GAST0 - SZO
In this version of the range model it should be realized as in every
other section where GMwas considered known (sections 4.4.2, 4-.4.4, £.5.2,
4.5.4and 4.6.2) a value for GM has been kept constant. Not doing so, by
considering GM a parameter, the models of the five sections mentioned
above '"degenerate" into the {geometric) models which are described in the
sections which precede those five sections. In this section not only GM
but also J2 is considered constant. This may put unwanted strains on the
model, especially for UT 1 determinations from low inclination orbits (see
section 6.10). Itmight also be expected that a slight "wrong" value for
Jz will cause an erroneous earth rotation (UT 1) determination since it
was shown in section 4.6.1 that in the range model with "everything
loose" the only estimable quantity was the difference between the earth's
angular velocity we and the secular change in the ascending node Q
me— Q. Inother words , a small change in Q will change the recovery of Wy
directly! The argumentation for "more geometrically free' orbital models
becomes even more apparent since it is suggested in [Kozai, 1970] that
certain time variations (e.g., seasopal variations) inUT 1 and J, are of

2

the game frequency and consequently difficult to separate,
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4.7 The Intermediate Orbit, Station and Earth Rotation/
Orientation Determination from Range-Rate Observations

In section 4.2 the range-rate observations were already intro-
duced for a simple model: the two dimensional circular motion. The
range-rate equation is directly obtained from the differentiation of the
range equation with regard to time., The derivation followed in that sec-
tion will be similar for all the different cases treated in the sections
4.3 through 4.6, Toavoid overduplication only the three most general
cases will be discussed:. the three dimensional circular, elliptic and

secularly perturbed elliptic orbits with GM and J, as unknown parameters.

2

4.7.1 Three Dimensional Circular
Intermediate Orbit

The corresponding range equation for this case was given in sec-
tion 4.4.3, equation (4.4-11). Taking the time derivative of the range

equation (4.4-11) one obtains

dr _ _ d cosa _
2r 95 = —2aR —— (4.7-1)
with dcosa_ cosy deosB, sinycos usin i (4.7-2)
dt dt
and dcosp

—w sinAdcosu<4 w cosAAsinucosi
dt e e

- necoshisinu + nsinAicosucosi {4£.7-3)
Upon substitution of. (4.7-2) and (4.7-3) into the range-rate equation

{(4.7-1) one obtains

rt = aR[cosysinAicos u (me—n cos i) +
cosPeosAAsin u (n-wecos i) +
sinycosu ( ~nsini)] (4.7-4)

with r as given by equation (4.4-11).
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Evaluation of the range-rate equation yields the following

eight estimable parameters:

- satellite parameters - : a; i, wt Ed,.n
- station parameters : R, 0
- earth parameter : we

mixed station/earth/satellite parameter: A + GAST - Q

Congidering GM known will eliminate the parameter n reducing the

set to seven estimable parameters.

4.7.2 Three Dimensional Elliptic
Intermediate Orbit

The corresponding range equation for this case was given in sec-
tion 4.5.3, equation (4.5-8). Taking the time derivative of the range

equation (4.6-8) one obtains

dr dx . dy
dr _ o Tw g fde 40 0, T .__ta) i}
2r it 2rm dt 2R (dt xm'*'dt yw+P dt +Q dt (4.7-5)
dp
. dP _ ¢ -
with . == 1§E1c?s¢ (4.7-6)
dQ
dqQ c -
dr = dc oV (4.7-7)
dP- )
7§§-= we(—sinAlcosw+cosAAsinwcosi) (4.7-8)
dQ
-Eéi = b, (sinAAsinwtcosAicosucos 1) (4.7-9)

Upon substitution’ of (4.7-6), (4.7-7), (4.7-8) and (4.7-9) into the

range-rate equation (4.7-5) one obtains
s . . . A" ty 07 -
T =t R(de%Qym? + Rmecosw(P X, Q yw) (4.7-10)

r
W W
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with r, P, Q, Xy T Ty

W w

r as described in section 4.5.3

X, §w, f and their functional relationships as described in

Appendix A, sections A.2, A.3.1, A.4.2 and A.5.1.

and

Pl

Ql

sinAlcosw - cosAlsinwcos i (4.7-11)

sinAlsing + cosAlcoswceos i (4.7-12)

Evaluation of the range-rate equation yields the following ten

estimable parameters:

|
(3]

satellite parameters

station parameters 3

earth parameter :

mixed station/earth/satellite parameter:

a, e, i, W, EO’ n

R, ¥

W

e

A4 GAST - Q
o

Considering GM kaown will eliminate the parameter n reducing

the set to nine estimable parameters.

4.7.3 Three Dimensional Secularly Pertubed

Elliptic Intermediate Orbit

The corresponding range equation for this case was given in

section 4.6.1, equation (4.6-8). Taking the time derivative of the

range equation (4.6~8) one obtains

dr dz ‘" dy
dr _ gy W ar . ,.49Q —u -
2t qe T Py Ee 2R(dt LTS ym"‘P"ci?q'Q at ) (4.7-13)
P ap

]

with ——_ cosy + d_ts- siny

4t dt
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q %@ aqQ

—_— == —.__C.'. ._._.§ 3
at cosy + s,:Lij

dt dt
dP
—EEC- = (me~Q) (-sinAAcosw + cosAAsinwcos i) +
W(-cosAAsinw + sinAlcoswecos 1)
= (me—fZ) (-sinAlcosw + cosAisinwcos i) + L'ch
ar ’

it wcoswsini= wQS

:TTC = (me-ﬂ) (sinAdsinw + cosAlcoswcosi) +
®(-cosAlcosw - sinAisinwcos 1)
= (we-fl) (sinAAsinw + cosAlcostcos i) - thPc
dqQ

8 _ .- P
at wsinwsin i wPS

(4.7-15)

(4.7-16)

(4.7=17)

(4.7-18)

(4.7-19)

Upon substitution of (4.7-16) through (4.7-19) into the equations

(4.7-14) and (4.7-15) one obtains

a
dt

49

(we-ﬁ) (-sinAlcosws + cosAieinwcos i )cosy + @Q

it - (me-ﬁ) (sinAAsinm + cosAlcostwcos i)cosP — GP

(4.7-20)

(4.7-21)

Upon substitution of (4.7-20) and (4.7~21) into the range~rate equation

(4.7-13) one obtains

W

rh = r b~ R(PEHQS,) - OR(Qx,Py,) + R(w;-é)cosw(ytxw-q'yw) (4.7-22)

with'r, P, Q, X, ¥, T, a8 described in section 4.6.1

w
Appendix A, sections A.2, A.3.1, A.4.2 and A,5.1,

87

x s 3.7 w? i’w and their functional relationships as described in



and . P' = ginMAcosw - cosAAsinwcos i (4.7-23)

I

Q' = sinAksinw + cosAicosucos i (4.7-24)

w, + ot (&4.7-25)

e
I

An alternate range-rate equation might be written as

ri = r f - R(P% Q7)) - R{[EQ - (0 - Q)P'cosPlx, +

[-wP + J(we—fz)q'cosl,b_]yw} (4.7-26)

Evaluation of the range-rate equation yields the following

* eleven estimable parameters

satellite parameters : a, e, i, W,s w,.Eo, n

ES

station parameters : R, ¥

mixed -station/earth/satellite parameter: A + GAST - Qo

mixed earth/satellite parameter o -

1

Considering GM and J, knowﬁ will eliminate the parameters ¢ and
n redﬁcing-the set to nine estimable paramgteré.

The sections (4.7.1), (4.7.2) and (4.7.3) confirm the
general principle that the simple example of '"The Clock Problem"
(section 4.2) already revealed: range and range-rate observations
yield £he same }esults as far as éhe egtimability of the parameters is

concerned.

4.8 The Intermediate Orbit, Station and Earth
Rotation/Orientation Determination from .
Range-Difference Observations

In section 4.2 the range~difference observations were already

introduced for a simple model: the two dimensional circular motion.
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The range-difference equation can be obtained in two ways: the first
approach is to take the square root of the (quadratic) range equations
and subsequently, to subtract them for epochs t + At and t; the second
approach 1s to derive the range-difference equation from differencing
the original quadratic range equations. The latter method enabled an
easy comparison hetween range=rate and range-—difference observations:

a range~difference observation is about equal to a range-rate observa-
tion taken half way the time interval between epochs t and t + At,
Since no difference between range and range-rate observations exists

as far as the estimability of the various parameters is concerned, the
same properties of estimability must.hold for range-differencée observa-
tions. The first -approach of deriving range-difference observations
confirms these properties: taking the difference of two (square
rooted) range .equations evaluated for epochs t + At and t none of the
parameters will be either eliminated or appear in a linear combination
with any other parameter. This is true for all cases discussed in
sections 4.3 through 4.6. Consequently, all the conclusions drawn for
the estimability of parameters in case of range and range-rate observa-—
tions apply also to range-difference observations. At this point no
statements have been made how well certain parameters are estimable in

the various measurement systems. This item is addressed in Chapter 6.

4.9 Summary

Chapter 4 dealt mainly with the investigation of the esti-
mability of the various parameters in ten orbital models and for three
measurement systems: range, range-rate and range-difference observa-

tions.
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The most general (and geometrically free) model developed is the
11 parameter model which iIs able to account for secular perturbations
in the mean motion, the argument of perigee and the ascending node due
to J2, Jg, 33, J4, ete.

Often in the literature the guestion of rank deficiency is
addressed. In the philosophy of this investigation the answer to that
question must simply be: that just depends on how erronecus the initial
set of parameters is!

Despite all of this in Table 4.1 the followed approach in
Chapter 4 is compared to the widely (used) Cartesian treatment in
case of the three measurement systems. The Cartesian treatment concerns
not only the satellite's orbit (statevector representation) but also the
station position.

For a detailed description of the partial derivatives needed

for the observation equations in the various orbital models and measure-~

ment systems one is referred to Appendix B.
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Tahble 4.1

The Estimable Parameters and Rankdeficiencleg of the Measurement Systems:
Range, Range-Rate and Range-Difference Observations {Non-Simultaneous)

Rank
Orbital Model Estimable Paramcters No. Cartesian Representation 1) No.|Deficiency Constants
Circular Motion 2D 8,00, R, MGAST —-0-E_ 4 |%,,% .,GM,me,GASTD,x,y 9 5 -
a, W ,RMGAST - i |x,Y,%,%, w_,GAST_,x,y 8 4 oM
k) a4, L,0HE 0,00, R, P, MEAST -0 8 X,Y.Z,I;{,‘I’,i,GM.we.GASTO,x,y,z 12 4 -
a,4,0¢E _, u!e,R,lP,?L-i-GASTO—R 7 |%,Y,2,%,1,2, w ,GAST_,%,y,2 11 4 GM
Elliptic Motion 2D 2,,B_,n,W0_,R, WHGAST Q- 7 x,Y,k,i.cM,we,GAsro,x,y 9 2 -~
a,e,B , ®_,R,MCAST Q- 6 |X,Y,%,¥, 6 ,CAST_,x,y 8 2 GM
3D a,,1,0,E_,n,6 , R, MGAST - 10 x,Y,z,}'{,i,é,cu,me,GAswo,x.y,z 12 2 -
a,e,1,0,E , ©,R,¥,MGAST -0 9 1%,v,2,%.1.%, W, GAST, , XY,z 11 2 M
Secularly Perturbed 3D . . ‘ ...
Elliptic Motion a.e,i,wo,m.Eo,n,mE—Q,R,m,k+GASTO-QO 11 X,Y,Z,X,Y,Z,GM,Jz,me,GASTo,x,y,z 13 2 -
ae, i, , E . 0, RUMGAST -0 9 IX,Y,2,X.Y.Z, w,,GAST ,x,y,2 11 2 M + 3,

1y cCapital lettexs

refer to the satellite, smell letters to the station.



5. VALIDATION OF AND REFINEMENTS TO

THE OBSERVATION MODELS

"Nevertheless, the construction of increasingly more accurate analytical
theories remains the central task of celestial mechaniecs.™

J. Kovalevsky [1967]

5.1 Introduction

Starting in the late forties a large series of articles have
appeared (e.g. in The Astronomical Journal) treating the equations of
motion of a satellite around an oblate spheroid amalytically. Now,
names of scientists as Brouwer, Garfinkel, Hori, Iszak, Kozai, Vinti are
connected to the development of analytical theories. The name of one
which should have headed this alphabetical list is mentioned last (but
not least): K. Aksnes. An extensive list of references can be found in
[Gaposchkin, 1973]. In a series of articles from 1965 Aksnes has showed
a way to be taken: once the literal computer algebra is developed toits
fullest extent one of the main obstacles in the analytical perturbation
theories, the almost unsurmountable quantity of tedious algebraic work,
can be handled with his theories which belong to the most elegant ones
to treat analytically satellite perturbations. In [Aksnes, 1972] his
first-order theory (the intermediate orbit is a fixed ellipse) based on
Brouwer's first-order theory claims an accuracy {as compared to the

numerically integrated solution) of 60 meters for a six day orbit
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(100 revolutions, terms up to .]‘4 were included in the gravity model).
In [Aksnes, 1970] a second-order theory (the intermediate orbit is a
rotating ellipse) shows an accuraéy of 1 meter for a six day orbit.
In comparison, presently (1978) the numerical analysis of laser range
measurements to STARLETYE shows r.m.s. fits for five arcs in the 1-2
neter range [Marsh and Williamson, 1978].

The theory presented in Chapters 3 and 4 includes as the most
general model the rotating intermediate orbit. It is this secularly
perturbed ellipse which forms the basis for Aksnes' second-order
theory. Not so much from the perturbational point of view but
from the point of view of system definition the validation (why
unweighted parameters and why a secularly perturbed orbit?) and the
refinements (the nature of the influences of polar motion, gravity

field, timing, ete.) on these models will be discussed in this chapter.

5.2 The Influence of Weighting on Parameter Egtimation

It has become common geodetic practice (and not only geodetic) to
add to "clean'" models as the observation ;quations model La = F(Xa), fol-
lowing the notation of [Uotila, 1967], or the condition equations model
with parameters F(La’ Xa)==0 accuracy (precision) estimates for the para-
meters. The mathematical model(e.g.,La==F(XaD does not then only
include accuracy estimates for thé observations tLb but also for the
parameters ZX' Since not all parameters are usually weighted one can

write

z
%

i
|
5 =___r__ (5.2-1)
:0 | 0

0
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where EX1 represents the variance/covariance matrix of the subset of
parameters Xl' From the mathematical (and statistical) point of view
one simply has changed parameters into observations!

Two main cases can be differentiated at the cutset: the
welghting of pérameters when the original set of parameters is estimable
and the weighting of parameters when the original set of parameters is
not estimable. In both cases it will be shown that the application of
weighted parameters (Bayesian estimation) may lead to tco optimistic or
even unrealistic standard deviations for the weighted parameters. Two
subgroups of parameters welghting will be differentiated: the first.
deals with the heavy welghting of parameters or in the limit the abso~
lute constraining of parameters, the second deals with the .weighting of
parameters where the apriori accuracy estimates of the parameters do not

exceed the aposteriori accuracy estimates of the parameters of the un-

weighted case (non-Bayesian estimation).

5.2.1 Strongly Weighting or Absolute Constraining
of Estimable Parameters

The strongly or absolute weighting of parameters has to be
exercised with care in that sense that in general the a priori esti-
mate of the variance-of-unit-weight can increase to such an extent
(as reflected by the a posteriori variance-of-unit-weight) that it
leads to an unacceptable statistical test and rejection (better,
non—-acceptance) of the added (strong or absolute) constraints, This
test as described in [Hamiiton, 1964, p. 136] is a tool which gives the
sclentist/systems analyst a clear indication of the legitimacy of the
added information. A failing test will lead to a search almost

immediately for different ways of analyzing (developing models for) the
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observations since the added constraints corrupted inra convincing way
the accuracy and internal consistency of the observations. This parti-
cular case will not be elaborated upon because of its self-evident
repercussions. The subtleness and its repercussions of weighting

parameters will be the subject of subsequent sections.

5.2.2 Moderate Weighting of Estimable Parameters

Since the title of this (and the previous) section d;scribes
the estimability of the parameters, this feature (of estimability)
needs to be eléborated on a little bit further. In general, the esti-
mability of a parameter is a way of saying that the expected value of a

parameter is equal to the value of that parameter
E(X) = X (5,2-2)

It is not so much this statistical property as much as its implication
in the estimation algorithm we are interested in. Restricting one self
to an estimation procedure as the method of least squares the estima-
bility of parameters is reflected directly in the. invertability of the
normal matrix. Amore precise discussion concerning estimability and dits
necessary .and sufficient conditions can be found for example in [Rao,

1973,.p. 224). . The familiar definition of the normal matrix is.adhered to
T
N = A"PA (5.2-3)

where P is the weight matrix of the observations L as reflected by

1

s -1 2.1 -
P = QLb—UOZLb (5.2-4)

and A is the design matrix of the linearized model
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A= (5.2-5)

A second issue raised in the title of this section is the moderacy of
the parameter weighting: the average value of the aprioriweight esti-
mates of the parameters are not higher than the a posteriori.ones of

the parameters of the unweighted case.

(@ j_(A:PA)ij (5.2-6)

%13
The following notation of [Uotila, 1967 and 1973] one has as the model

(observation equations)

L = F(X)
a a (5.2-7)
Lx T Xl,a
and the variance/covariance matrix
i _q1 |
1 0 o 2o
A i =0, |m - (5.2-8)
0 |3z, 0 | -1
| 1 | Xl

The solution for the parameters, after minimizing VTPV + XTPXX, is

X = ~(ATPA + P.) 13Ty, (5.2-9)

= AL -
with | Py = Ay Ay (5.2-10)

where AX is a dl xumatrix and u is the total number of parameters out
of ?éhich u, are weighted. Equation (5.2~9) assumes that the '"observed"
values of the parameters is equal to the used approximate values.
Denoting the (Bayesian) solution solution vector of the para-
metérs after weighting by XW and the (non-Bayesian) solution of the para-
meters before weighting by X and similar notations for their weight

coefficient matrices, one has
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A -(ATPA+PX) 1Ty = —ﬁéu (5.2-11)
X = -(ATPA)"IATPL = oty (5.2-12)
W_, T ~1 =]

Q = (a'Patr) = N, (5.2-13)
Qy = (aTpay~t =yt (5.2-14)

Rather than following the approach as described in [Uotila, 1973] which
expresses the newly obtained estimates as functions of the unweighted

estimates and some additive corrections

X = X + A% (5.2-15)
QY = q, + AQ (5.2-16)
x T O t 8%

it will be shown that the comparison between weighted and unweighted

estimates can be viewed as a scaling process.

W

X' = AX (5.2-17)
W o_
Q = A0, (5.2-18)

The additional advantage of this approach is that the Scaling matrices
Al and Az are identical for the parameters as well as their weight
coefficient matrix.

‘ It was assumed that the parameters are known worse apriori (in
terms of their variances) than the parameters abosterioriin the
unweighted case. Thisimplies.that one might view the addition ofPXtm
A%PA as a differential one. The individual element of Py (under which
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many zeros for the unweighted parameters) are in general smaller than
the normal matrix N of the unwelghted parameters (see equation
5.2-6). In this light the matrix NW can be viewed as having the

form

B + AB (5.2-19).

The inversion of such a matrix (see Appendix D, section D.2) retaining

only first-order terms is

-1 1

(B + AB)"l = 3% - 37 laps” (5.2-20)
Recognizing that
B = ATPA
and AB = PX
one finds for the inversion of the normal matrix NW
(ATPA+PX) e aTeny™t - (ATPA)"]‘PX(ATPA) -1 (5.2~21)
or nw‘l «§ L N‘lPXN"l (5.2-22)

At this point it needs to be stressed that this relationship only holds
for estimable parameters otherwise N_l is an invalid expression.

Substituting (5.2-22) in (5.2-11) one obtains a solution to a
fair amount of accuracy (terms as erPXN_IPXN”I - ... are omitted in
5.2-22)
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¥ = (N"l-éN“lng'l)U
= (1-1pYX (5.2-23)
) W
The result is X' = Alx (5.2-24)
with A =I-nN1p (5.2-25)
1 X :

Similarly, for the weight coefficient matrix one has

W . -1 - -1
Fext - le
-1
. W
The result is QK o AZX (5.2-27)
with Ay =T -N 'R, (5.2-28)

Combining the results of (5.2-23) through (5.2-28) and recognizing the

similarity of the two scaling matrices Al and A2 one can write symboli-

= 1 X
w{ = (I-N PX) (5.2-29)
% %

The repercussions of these derived relationships is that the weighting

cally

of parameters leads. to smaller variances. of the estimated parameters.
Equation (5.2-22) shows that every diagonal element in the weight coef-
ficient matrix Qg will be smallef than the corresponding value in QX
because of the semi-positive definite nature of the matrices N_l and PX.

Consequently, a characteristic result of the weighted parameter approach

is that the method lowers the variances of the parameters. In other
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words, without adding any observatioms to a given set of data one may
obtain too optimistic statistics for those parameters which were
weighted, Except for the exposure of the possible danger of weighted
parameter techniques (Bayesian gstimation) a recommendation is clearly
that every scientist publishing an analysis of a measurement system
clearly has to indicate how the weighting procedure influenced

(= improved!) the statistics of the parameters analyzed the
non-Bayesian way (unweighted). An even more dangerous case will be

discussed in the next section.

5.2.3 Weighting of Non-Estimable Parameters

The approach followed in the previous section which was pri-
marily designed to investigate the influence of weighting procedures,
cannot be followed here because the non-estimability of the parameters

leads to a rank deficient normal matrix:

-1 -1 -1, 1
NW F¥ T - N PXF
because IN| = 0

If one analyzes a given measurement system and expresses the
observations (homogeneous in naturé and precision) as a funection of
parameters which are also homogeneous in nature but non-estimable
because of the very nature of the observations, the weighting of a sub-
set of these parameters to make the complete set of parameters esti-

mable will have the following two effects. First of all, it will

bemisleading as far as the usefulness of a certain measurement
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system is concerned. A measurement might contribute nothing to the
recovery of certain parameters. However, the weighting procedures
mask this faect by the mere inclusion of inadmissable parameters.
Secondly, the weighting of the subset of parameters will have a direct
impact on the overall statistics of the complete set of parameters.
This statement can be illustrated with a simple example: measuring
height differences (the measurement system is leveling) every geodesist
knows that the heights are non-estimable. However, weighting the
height of only one station makes the complete level network estimable (mis-
leading) but worse, the weighting of the station will have a dominant
influence on the overall precision of the heights of the other stations.
A short numerical example will be illustrative.

Imagine three height stations between which in each possible way

a levelling took place. (See Figure 5.1.)

iz

Figure 5.1. Levelling between Three Stations
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The following model can be set up as a function of the (non-estimable)

heights
hlz -1 0
his -1 1 Hl
haoq 1 -1 0
hysl 1o -1 1R (3.2-30)
h31 1 -1 H3
h32 0 -1
The non-invertible normal matrix is
L -2 =2
N=APA=|-2 & -2 (5.2-31)
=2 =2 &4

The preciéion for the observation was assumed to be
L =01
ij

Assume the height of station 1 to be "known" with the following accur-

acy
%
2 2 1 _ 2 -1 _
XH = 0H1 =0 02 g Py (5.2-32)

With the help of equation (5.2-9) the following normal matrix is

obtained

=AA+P_= -2 & -2 (5.2-33)
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The inversion of NW becomes

6 6 6
-1 w1

=——16

= = 5.2-34
NW Qq 6oy ( )

2pX+6 pX+ 6
6 pX+6 %ﬁ+6

Assuming that the adjustment procedure did not change the a priori

variance-of-unit-weight appreciably (if it did, there is no problem

present and the reader is referred to the discussion in section 5.2.1),

one might write

W 2 W
= . 2—
EX 0% Qy (5.2-35)
Replacing PX by 02/0311 in (5.2-34) one obtains as a variance/
covariance matrix:
o2 o2 o2
Hy Hy Hy
W 2 2 .1 2 2 1 2
I"=]a c =0 o =g 5.2-36
x| %y “m*3 m, e ( )
02 o2 412 g2 4142
B H; 6 i 73

The structure of this variance/covariance matrix shows the over—
powering influence of weighting (non-estimable parameters), especially
if one computes some numerical examples. Witha levelling precision of
i cm2 (which is not going to be changed in the two following examples)
assume that Hy is determined first with the low precision (moderate
weighting) of 1 mz, then with a high precision of 1 mmz. Substitution

of these values into (5.2-36) reveals for the precision estimates for

H2 and H3:

= 1.00003 m°!



=1 mm2 then ¢, =0, = 0.31 cm2!
1 2 3

g
Without adding one observation one could have manipulated one's results
any imaginable way.

It should be noted that the estimable parameters, the height

differences, are not influenced by the weighting procedure:

B
H32 = H2 - HB = [0 1 -1] Hz (5.2-37)
Hy
This leads immediately to
" 2 2 2 17 67
Oy %, a1y 0
2 2 2,1 .2 2,1 2
532 [0 1 1] UHI H14-3 14-6 1
2 ded &b |a
- "1 1 1 W -

=142
This necessary mapping-back-into-estimable-quantities is explained in
[Grafarend‘and Schaffrin, 1974] and applied for examplé in [Mueiler
et al.,h1975].

‘ A typical example in satellite geodesy is thé geometric mode
(e.g., simultaneous range observations). Such an analysis indicates
directly that the coordinates of the stations are non-estimable (the
only estimable quantities are the baselines/angles between the stations,
see section 6.8 or Appendix C). If one weights six coordinates distri-

buted over three stations in order to guarantee a coordinate system

3
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definition all other stations in the network will be recovered with a
precision about equal to the weighted stations no matter how good or
bad the quality of the observationms.

Consequently, it cannot be emphasized encugh that in basic
research attention should be devoted to the non—-Bayesian investigation
of models (i.e., models which do not assume any apriori knowledge as far
as the parameters are concerned) before one ventures into the Bayesian
world in which the influence of the weighting processis often forgotten.

The recommendation given above stems from the differences
between the foundations on which Bayesian and non-Bayesian statistics
are built. Asstated by a Bayesian statistician [Phillips, 1973, p. 5]:

"Opinions are expressed in probabilities, data are collected,
and these data change the prior probabilities, through the
operation of Bayes' theorem, to yield posterior probabilities.
That is the essence of Bayesian methods.”

The view expressed in this investigation is that as long as these
"opinions" are not based on observational evidence to its fullest
extent (i.e., the correlations between the weighted parameters are con-
sldered and the weighted parameters would also have been estimable in
the unweighted case) it is preferred to restrict oneself to
non-Bayesian estimation methods, especially in analyses as measurement
system validations.

In section 6.7.3 the (improving effect on the variance analysis
of some short arc mode experiments due to the application of (unneces-—

sary) constraints (quasi-minimum constraints) is clearly demonstrated.
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5.3 1Is Kepler's Third Law a Law?

A question which might have arisen from the geometric modelling
of the equations of motion of satellites in the previous two chapters,
concerns the validity of the relationship between the geocentric gravi-
tational constant GM, the semi-major axis a of the orbit and the mean

motion n of the satellite. Thewell-known formula is (Kepler's Third Law)

GM = n2a3 {(5.3-1)

In dynamic analyses of satellite observations often a GM is adopted (or
weighted) as based on the results of, for example, the Deep Space Net-
work observations by the Jet Propulsion Laboratories. A recent recom-

mended estimate for GM (earth including the atmosphere) is (IAG, 1975):

398600.5 + 0.3 kn>/sec’

Having then a as a parameter in the model n is not solved for but is
coﬁputable from the adopted (weighted) value of GM and the recovered
value of a. In the more geometrical amalysis of the dynamic mode
(Chapter 3) the physical law (Xepler's Third Law) haslbeen "omitted”
for the following two reasons:
~ the mean motion of a satellite and the semi major axis of its
orbit can be more accurately determined from precise range observa-
tions than one would believe from an adopted GM and its precision.
In section 6.10 this is illustrated with some numerical examples.
- Since Kepler's Third Law is a relationship between three parameters,
still two are independent and can be recovered from observatioms.
The set a,n was preferred above the set a,GM because it is
probably not realistic to assume that GM can be precisely determined

106



from observations to a satellite which orbits the earth relatively
closely. Inother words, GM determined in this way is thought to be physi-
cally less meaningful (although the future might contradict this state-
ment!)

If only this reasoning is extended to the inclusion of all secu~
lar perturbations (due to Jz,etc.)the recovered mean motion n neither
reflects the anomalistic peried (equation 3.6-13) which is the period
between perigee crossings nor the nodal period which is the period
between equator crossings. A secular theory (based on secular perturba-
tions in the orbital elements) assumes a rotating ellipse of which the

spin rate is dictated by the value of J The average speed (mean

2
motion) with which the satellite travels along this rotating ellipse

is much more complex éhan for instance a formula for the anomalistic
period lets us believe. This argument is illustrated with the same
examples in section 6.10: the mean motion is a very good recoverable
geometric parameter, no matter what its physical cause ig for its (numer-

ical) value.

Considering GM now the third dependent vardiable, differentia-

tion of (5.3-1) leads to

dGM = 21:1&13 dn + 3n2a2 da (5.3-2)
yielding
02 = 4n2a602 + 9n4a402 + 12n3a56 (5.3-3)
GM n a an

Substituting (5.3~1) back into (5.3-3) one obtains
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9. 2 403 902 120an
oy = GM 5 5 (5.3~4)
AN ¢ a an

This formula forms the base for the discussion of section 6.10.

For similar reasons the geometrical parameter é,'the rate of
change in the argument of perigee, was included in the orbital models.
Also here it was assumed that range analyses of up to one day would
result in a physically less meaningful value for J2 (although the

future might conclude otherwise in this case too!)}

5.4 The Influence of the Gravity Field and
Polar Motion on Satellite Orbits

In the discussion of the various reference frames (Chapter 2)
factors infldencing a satellite's orbit such as precession, nutation,
polar motion, etc. surfaces. The stand was taken in section 2.2 that the
influence of precession and nutation in this siﬁulatio£ was assumed to
be known or corrected for in the observations: thenatﬁre of a measure-
ment system as laser ranging to artificial satellites from the earth is
such that the observations %ill be very bilased in this earth-satellite
system. Conclusions based on such observations tend to be %ery
earth-satellite dependent or earth-oriented.

Especially the description of the earth's behavicr in inertaal
space might be very difficult since the satellite's behavior in that
inertial space is not earth independent at all., Similar reservations
are expressed concerning the UT/length—of-day/angular velocity determi-
nations in section 6.9.1. Consequently, the influence of thé gravity
field and polar motion are left to be discussed in conjunction with the
reference frames used in the simulation study. Perturbations due to
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atmospheric drag, solar radiation pressure, etc., although important,
are considered beyond the scope of this investigation.

As far as polar motion is concerned the more geometric aspects of
polar motion are discussed in section 5.4.1, the dynamical aspects in

section 5.4.2.

5.4.1 Polar Motion

Three types of polar motion can be differentiated. The motion of
the instantaneous spin axis with respect to the Conventional Interna-
tional Origin (C.I.0.), with respect to the principal axis of the maximum
moment of inertia and with respect to the position of the instantaneous
spin axis at an earlier epoch (differential polar motion). As will
become evident from the subsequent discussion the first type of polar
motion (w.r.t the C.I.0.) is non-estimable but is based on convention: a
set of station latitudes.

Range equations developed in Chapter 4, sections 4.4 and 4.5,

were of the following type:

2 _ 2 2 — T _ u -
LS + R - 2x R3(l+GAST0 Q)RB(wet)X (5.4-1)

where X' and X" are for instance represented by equations (4.4~23) and
(4.4-24). The important feature to realize from equation (5.4~1) is
that these vectors refer to reference frames which have the z-axes in
common. Since the inertial frame is true of date the station vector E‘T
refers to the instantaneous spin axis (better the instantaneous angular
moment axis, but the difference between the two axes is neglected in

this simulation study, see section 2.3)., Consequently, the geocentric

coordinates Y, A, R of the {changing) station positions are better
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expressed as ¥, L, R, "satellite observed coordinates™, similarly to the
observed astronomic coordinates in geodetié astronomy. It should be
noted that the similarity between these observed coordinates stops her;,
e.g., the "satellite observed coordinates" do not refer to the direction
of the local gravity vector at all (in case of range observations).
Comparing the observed geocentric station coordinates at different

epochs, the change in latitude and longitude (~difference) can be

explained as differential polar motion. (See Figure 5.2.)

Yero clo
.@_

path of the
spin axis

Figure 5.2. Differential Polar Moéotion
Denoting the two instantaneous reference frames at epochs t0 and

ty by Eg and §i respectively, one obtains the following, at first
e e

sight remarkable, transformation between the two reference frames

w

-....1 _ _ i _0 _
X ) = R3( Alwle(ABQ)RB(ARm)xwe . (5.4-2)
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Since the maximum change in the spin axils at the pole is around
12 cm per day, ome has for Aaw

0.12 ~ "8
88, < 356775 = 2 * 10 " rad

Approximating sin Aem by Aﬁm and cos ABw by 1 is allowed in

GM~geodesy since the error committed is less than 2% 10"16 (for cos Aew:

cos Aem=1—‘l/ 2 A62+ « ++ ). Carrying out the transformation (5.4-2)
one has '
1 0 —Aew cos Alm
-1 pl -
xme = 0 1 Aem gin AJ\m xwe (5.4-3)
Aem cos A)Lw Aem sin AJ\w 1
Having
cos ‘Fl cos Aﬂ
;i = R |cos ‘Pl sin Al (5.4~4)
e 1
L sin ¥ i
and
co8 ‘il’o cos AO
;‘:—3 = R |cos ‘PO sin Ao {(5.4~5)
€ 0
sin ¥

the changes in the latitudes and longitudes (-differences) will yield
the parameters Aem and A)\m of the differential polar motion. Setting

0

AY =yl oy (5.4-6)

and

ar = At - 20 (5.4-7)

the goal i1s to find the transformations which relate A¥, AA to Aew and

A “ and vice versa. - It should be noted that AA isthe difference
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between longitude differences (e.g., Al = 11+GAST—SZ) and that A?\w is not

a differentially small angle. Writing out (5.4-3) one gets

cos ‘l’l cos Al = cos y0 cos AO - ABw"cos A}Lw sin ‘1’0 (5.4-8)
cos ¥ sin Al = cos ¥ sin A% - A0 sin Ab sin V0 (5.4-9)

sin ‘{’1 = gin ‘}’O-i-!_\.ew cos ‘Po(cosflcos Alm-!- sin /A sin Alﬁ? (5.4-10)

The last expression leads immediately to

sin ‘Yl - gin ‘i’o

‘cos ¥

= Aem cos(A—Alw)

or av = vl 40

= 48, cos(A-iAAw) (5.4-11)
Equations (5.4-8) and (5.4-9) can 1:|=T written as

cos AO - cos Al

]

A8 s €OS Alm tan ¥

sin Ao - sin Al

n

AB  sin A)Lm tan ¥
1,,0 ,1
or 2 sinAsin -2-(A =AY = -Aew cos N\w tan ¥ {5.4-12)

2 cos Asin %(AO-AI) = Aﬁm sin A)\w tan ¥ (5.4-13)

After multiplying (5.4-12) by sinA and (5.4-13) by cosA the addition

of the two equations gives
i 0
M=A - A = Aew sin(A-A) w) tan ¥ (5.4-14)

Combining the results of (5.4~11) and (5.4-14) a differential polar
motion of Aem, A}tw results in changes in the latitudes and longitude-

differences as given by
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]

AY = A8 , €os (A-Alm)

(5.4-15)

H

AN cotan ¥ Aew sin(A—M\w)

This set of equations forms the basis on which some numerical results
are reported in section 6.9.2.

Conversely, the differential polar motion Aew,’ Alw is given as
a function of  the changes in latitudes A‘Pi and longitude-differences

Mi of station i by the following set of equations

— 2 2
Aew = J(A‘Pi) + (AAi cotan ‘{’i)

(5.4-16)
AA ; cotan ‘i’i

A?\m = A, ~ arctan
+ A

Until so far the geometrical aspects of polar motion were discussed.
The dynamical aspects of polar motion will lead to a different type of

polar motion,

5.4.2 Polar Motion and t‘he Gravity Field
The spherical harmonic representation of the potential of the

earth's gravity field is including terms up to &egree and order two!

GM ae ‘
v =-—-£- 1- -]-:-2- (Cloz-l-cllx—l-slly) +

2
8e 2 1.2 1.2
(?) (CZO(Z 5 -3y ) +021(3xz) +
8,1 (3yz) + Cog (3x2 - 3y2) + 822(6:{51')] } (5.4-17)

If the center of the coordinate system coincides with the center of mass
of the earth and the z-axis lies along the princlpal axls of the maximum
moment of inertia, the equation (5.4-17) simplifies to [Heiskanen and
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Moritz, 1967]

|0

£~

_ oM a 2 12 12 ‘.2 2
V== {l—(r )I:Czo(z 3% -3y )+022(3X -3y )+

+ 522(6xy)] } (5.4-18)
In Chapter 2, sections 2.3 and 2.4, a distinction was made between the
instantaneous spin axis and the axis of figure frame, Because of the
definitions of these reference frames one might view equation (5.4-17) as
the potential expressed in the instantaneous terrestrial system and
equation (5.4-18) as the potential expressed in the axis of figure sys-
tem. For this reason the first potential equation will be supplied with
the sub— and superscript & for the coordinates and potential coeffi-
cients respectively. Likewise, the second potential equation with the
sub~ and superscript I.

This leads us to the dynamical aspects of polar motion: polar
motion here is the difference between the instantaneous spin axis and
the principal axis of maximum moment of inertia. (See Figure 5.3.)

Very similarly as in the previous section one obtains a trans—

formation between the two terrestrial systems:

%ﬁé = R3(-Am)R2(6w)R3(Aw)xI (5.4-19)

Since the maximum amplitude of the Chandler wobble is in the
order of 8 meters, one has for

8 -6

8y X 5356775 = 1.3 * 10

rad

Approximating sin Bw by Bw and cos Bw by 1 is still allowed in

CM~geodesy since the error committed is less than g % 10-13 {for cos Gw:

114



Yei0 clo
- -

path of the
spin axis .

principal I
axis of

Figure 5.3. ©Polar Motion

cos Gw =1 - 92/2 + ...). Carrying out the transformation (5.4-19) one

has
1 0 T -0 ecos A
w w
x&e = 0 1 -Gw sin lw x; (5.4-20)
Bw cos Aw Bw sin lw 1
or reversely,
1 0 @ cos A
w w
X = 0 1 Bw sin lw xwe_ (5.6-21)
—8 cos A "~8 sin A 1 )
w w I )

The axis of figure reference frame has five "inadmissible"
potential coefficients because of the éoincidence of its origin with the
center of mass and because of the alignment of its z-axis with the

principal axis of the maximum moment of inertia., However, in the
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previous section and section 4.3.1 it was argued that the range equa-
tion and the equations of motion are expressed in the Instantaneous
terrestrial system. This causes not only certain inadmissible coeffi~
cients to become admissible but also makes the gravity field time
dependent. Implications will be studied below.

At the outset it can be noted that both the instantaneous spin
axis and the axis of figure systems were assumed to coincide as far as
their origins were concerned (sections 2.3 and 2.4). Consequently, the
first degree coefficients stay inadmissible.

The computation of the transformation formulas between the
potential coefficients as expressed in both reference systems needs

the following equalities, from (5.4-21)

xI = xwd-ew cos hmzm
= + WA4=-22
Y1 =Y, Bw sin Amzm {5 )
=z - - i
2y = 2, Bw cos wam Bw sin Awyw

and, dropping second order terms as ez,

2 _ .2

X =X + 26 cos A Wi

y2 = i +20 sin Ay z (5.4-23)
2. 52 _ -

2] = 2 26 cos A %o 2em sin Awymzw

These six equations will be substituted in equation (5.4-18) but now

with the added sub- and superscripts:
a2
o), (% 2121 2
Vi = r{ (r4>[20(zl 2 ¥ 730 ¢t
I 2,2 I
CZZ(BXI-SYI) + 522 (GXIYI{]} (5.4-24)
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As said earlier equation (5.4-17) needs to be viewed as

vw = v{xm’ sz

IV

) ) {1 [}
2o 0180y 5,C1168513C500Cs9

)

Syys-e+}  5.4-25)

}

The three terms of (5.4-24) between the square brackets become

upon substitution of (5.4-22) and (5.4-23):

2

2 1,2
[z] -5z tyy

2

2. I
[3x; - 3y71¢;,

1
[6x;y,1S,,

e

I
20

2 1,2 2
= [zw-—-i-(xm-lyw) - SGN cos J\wxmzw
I
- 39m sin Amywzw}(lzo

2 2
= [3x -3y . +60 cos A xz
) W W W w W (5.4-26)

I
- 66&) sin Awywz{n]CZZ

sin A x =z

= [GKUJYU)+ 660.\ W

I
+ 66w cos lwywzwlszz

Now equating terms of equal identity of [5.4-25] and the right hand

side of [5.4-26] one gets (term by term),

for

- %’ Cyo + 3¢y, = '% Céo + 30;2 (5.4-27)
- 3 Ty = 3, = = Cpp = 36, (5.4-28)
Cop = Cyg (5.4-29)
6, = 65, (5.4-30)
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. I I
for Xz 3 3021 39m cos AmCZO + 66m cos AwCZZ

I
+ 68w sin AmSZZ {5.4-31)
o _ T I
Y%’ 3821 = 36w sin AmCZO 69w gin Amczz
+ 68 cos A ST (5.4-32)
w w 22 *

The first four equations (5.4-27) through (5.4-30) lead to

w X
C20 = 020 (5.4-33)
w T
022 = 022 (5.4-34)
) I
822 = 822 (5.4-35)
The last two equations (5.4-31) and (5.4-32) lead to
® =0 cos ACL 420 cos ACE + 20 sin A 8L (5.4-36)
21 w w20 v w 22 w w 22 '
w I 1 I
521 = —Gw sin AmCZO - 2ew sin Amc22 + Zﬁw cos leZZ (5.4-37)

The implications of equations (5.4-33) through (5.4-37) are
—~ the already admissible gravitational coefficients are virtually the
same in both reference frames and time independent (terms of Bi are
neglected).
- two inadmissible coefficients 021 and 821 become admissible in the

instantaneous terrestrial reference frame (in which the equations of
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motion are defined). Only the first terms in equations (5.4-36) and

(5.4-37) are not negligible (terms including BmC and edsz are of

22 2
second order). The two coefficients C?l and Sgl are fully dependent
on the Chandler wobble: the amplitude of Cgl and 821 in phase with

the Chandler wobble (ew) and as well as their periods (main periods

w and S"u ‘are in

about 12 and 14 months). The maximum magnitudes of 021 21

the order of

6 6

1.3 % 10 ° * 1082.6 * 10

w
Co1

=g o
Sw w 20
21

Although these (maximum) values are seven times smaller than the

il

0.0014 % 10”°

current precision estimates for J2 [TAG, 1975]

-6
= - = + &
J2 020 1082.63 0.01 10

it is safe to say that the time dependency and the admission of certain
gravity potential céefficients camnot be avoided depending on the choice
of the reference coordinate system. However, in this simulation study
the gravity field was assumed to be constant in time and to be referred
to the instantaneous terrestrial frame. For similar conclusions the
reader is referred to [Lambeck, 1971] or [Newton, 1974].

Does this discussion lead to the conclusion that this type of
polar motion {(non-coincidence of the instantaneous spin axis and the
axig of figure) is not estimable, contrary to the differential polar

motion (section 5.4.1)? To answer this question one has to return to the
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range equation (5.4-1). This equation has been expressed in the
instantaneous terrestrial frame, so one has to add the subscript me to

the vector %'.:

2 2 2 _ oo T - = -
=T + R 2x meR3(A+GASTo R)R3(wet)x {5.4~-38)

The station wvector ;I is related to the "instantaneocus"
station vector ;m by equation (5.4-20). Using it in (5.4-38) and

e
setting

X" = R, (met)f" (5.4-39)

the range equation (5.4-38) in the average terrestrial system becomes

r2 = ri + R2 - ZR{ [cos ¥ cos (A-I-GASTO-—Q) - ew siny cos (}\+GAST0—SZ) XM 4

[cos® sin(?t-l-GASTo—ﬂ) - Bwsinw sin ()L%-GASTO-Q) ™ o+

[sin +8 cos P cos (A-2 ) 12"} (5.4-40)

From this equation one sees that in theory the positional para-
meters of the spin axis ew’kw are separable from the geocentric coordi-
nates of the stations. Thus, the geocentric coordinates and the "polar
motion" are estimable quantities with the following provisions: Bw and
P are in principal estimable but of the four parameters A, lw, GASTO;
and 2, only the following two are estimable (because of their combina~-

tions in the range equation (5.4-40):

(A+GASTO-Q) and (Aw-I-GASTO-SZ)
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More careful ingpection of the range equation (5.4-40)} reveals
that the coefficients of X", Y"' and Z"' consist of a sum of which the
first term is equal to about one, but the second term is in the order of
8, which is 1.3 % 10°%. The numerical value of 8, causes weakly dif-
ferentiable parameters. For this reason one has to prefer range equa-—
tions as expressed in the instantaneous terrestrial frame above those
expressed in thé average terrvestrial frame. In addition, one would have
to wait until Bm and lw have gone through an appreciable part of their
cycle (12-14 months) in order te become well estimable. Consequently,
the idea is to solve for the iﬁstantaneous geocentric latitude and

longitude difference of the observing stations and to make the "polar

motion" indirectly estimable.

5.4.3 Estimability of the Potential Coefficients
In a more precise evaluation of the two-body equations of

motion

W
3

(5.4-41)

where X and V represent the position of the satellite and in an inertial
frame of reference and potential of the gravity field, one recognizes
from equation (5.4-17) that the spherical harmonic coefficients Cnm’

Snm are not estimable. Collecting constants in (5.4~17) one obtains
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—G?I--(GMac

T 10) - (GMa ‘311) - (GMa 511)

V =

..1 x2-1 y2
~(eMa’c, )—F 2 - (GMa2C )—33—‘-5+
e 20 i r5

(5.4-42)

5 a2
~(aa’s 22 - (ama’c,,) FErAT s

5

) <z
e’2l’ 5 B

bxy
99) r5+...

- (GMa s
From the analysis of satellite orbits by means of laser ranging
the coefficients Ahm and Bnm [Heiskanen and Moritz, 1967, p. 60] are

the only estimable quantities,

A = -GMa"C
nm e nm

(5.4-43)
B = -CMa's
nin e nm

As already stated in section 4.3.2 when the station parametri-
zation was discussed, the ellipsoid of revolution is virtually
immaterial in case of laser ranging to a satellite. This agrees with
the result of equation (5.4-43) too: the close to the moments of
inertia related quantities Ahm and Bnm are theoretically the only esti-
mable quantities in the representation of the earth's gravity field
from satellite observations. A connecting link might be studies of
vgrious satellite orbits which all tend to generate their own gravity
field. The remarkable effect occurs when a gravity field generated
from countless gravimetric data, terrestrial as well as from satel-
lites, not necessarily generates optimum orbit predictions. In [Marsh
and Williamson, 1978] it is again reported that a well determined
gravity field as GEM 7 generates a prediction error of 8 to 10
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meters over 3 days, whereas a gravity field specially suited to
STARLETITE reduced this precision estimate to 1-2 meters in the same
time span (5 days). Future studies of this phenomena are therefore a

must.

5.5 Time, Time Synchronization and Estimability

In the simulation studies it was tacitly assumed that the obser-
vations made at the various sites refer to the same time scale. This
of course requires very stringent requirements for the time standards
kept by the various clocks at the observing éites. In principle, one
could introduce parameters in the mathematical models which describe
the clock-offsets. If not, to what precision need clocks to be synchro-
at the various sites? In section 6.2.4 it is indicated that ranges to
LAGEOS vary between 5900 and 8500 kilometers. This corresponds to a
maximum rate of change of about 3 km/sec at an altitude of 20°. If
one decides that due to timing errors the distance may not be in error
by more than 1 centimeter (the standard deﬁiatiqn of the range measure-
ments was set at 5 cm) then the accuracy of the (relative) time kept
at the various sites should be 1 part per million (1 Usec). The
proceedings of the meeting on Precise Timing and Time Intervals
(PTTI, 1977) indicate that relative clock errors are easily kept
within 1 usec,

A similar reasoning from the satellite's position point of view
leads to an identical requirement of relative timing. If a satellite
needs to be positioned with an accuracy of 10 mm (its velocity is

around 10 km/sec) a relative timing error of around 1 psec will suf-

fice.
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In previous sections it was neglected to mention that laser
ranging to a satellite is rather a timing than a ranging measurement
system: the time a photon needs for travelling between the laser
equipment, satellite and-back is recorded. Officially, this leads to
a relative station recovery, for instance expreséed in terms of base~
lines, but the unit of length in which the latter are expressed, is
time rather than distance. However, ¥ecent determinations of the
velocity of light have become so accurate that the veloeity of Ilight
might become the standard for the meter rather than the otﬁer way
around [IAG, 1975, p. 399]. This was reason enough for this study to
consider the range as measured in meters rather than seconds. How-
ever, it should be brought to one's attention that light travel time
variations as well as deviations from a "straight" 1light path (refrac-
tion} makes that the adaptation of the speed of light as-a scale factor
should be approached with extreme caution. Techniques as introducing
a scale factor per observatory and/or observational time span [Baarda,
1975, p. 46] are serious candidates for modelling highly precise range
measurements to satellites. However, they did not form a part of this

study.
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6. NUMERICAI, EXPERIMENTS AND RESULTS

"it should be apparent that judicious use of two-body analysis is of
paramount importance , , . "

P. R. Escobal [1976]

6.1 Introduction

In early 1976 a Satellite Laser Ranging Working Group was ini-
tiated by Goddard Space Flight Center. Their proposed:charter was to
" . . . review the progress of the satellite laser validation program
and provide guidance on the accomplishment of the validation objectives
and on the application of the methods and techniques that are
developed" [GSFC, 1976].

One of the objectives was the verification whether ¥ . . . dyna-
mical techniques of satellite geodesy can measure intersite distances
of several hundred to several thousand kilometers and polar motion with
a precision of about five centimeters' [GSFC, 1976]. One of the sug-
gested analyses was a comparison between the results of the dynamical
techniques against those of geémetrical techniques. 1In the first half
of 1976 a series of experiments was performed at Ohio State University
using-geometrical techniques. The logical follow-up, a series of exper-

iments using dynamical techniques became the nucleus around which this

report eventually grew. The numerical experiments reported below
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mainly concern the geometric aspects (orbit and station configuration,
estimability of parameters, etc.) of dynamical techniques in satellite
geodesy. The focus is not only on range measurements but also on
range-rate and range-difference observations because of the similarity
between the three measurement systems. In certain cases the dynamical
approach is compared to an equivalent geometrical approach. TUnder .the
dynamical approach is understood the paéametrization of the behavior of
the satellite irrespect whether the observations are simultanecus or
not. Under the geometrical approach is understood the technique which
takes geometrically advantage of the simultaneity of the observations
only. In other words, the dynamic behavior of the satellite is not
parametrized and the stations only in a very limited way. As one can

see later, the advantages of this technique are very limited.

6.2 The Experiments

6.2,1 ‘The Satellite and Types of Orbit

On May 3, 1976, the satellite LAGEOS was launched in a near cir-
cular orbit. A dream come true for many (satellite) goedesists who had
pushed the idea of a high flying, low area-to-mass satellite for many
years. Originally known under the name Cannonball the concept of the
satellite is to minimize the hard-to~model perturbations as atmospheric
drag, solar radlation pressure, earth shine, etc. The most important
motive was highly precise, hopefully accurate station positiocning not
corrupted by many perturbing factors to take full advantage of very
precise laser range measurements. The satellite should be high enough

to be observable from many stations at the same time and to minimize
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perturbations (e.g., because of atmospheric drag), low enough nelther
to loose all information on the earth's gravity field nor to create
instrumental problems and at the proper altitude to avoid problems
arising from resonance.

The orbital elements of LAGEOS based on long range predictions

{Vonbun, 1976] were

semi-major axis (a) 12267.6926 km
eccentricity {(e) 0.003845
inclination (i) 109285396
right ascension of the ascending node () 43995923
argument of perigee (w) | 245207169
mean anomaly (Mb) 55220345

The epoch of the orbital elements is August 18, 1976, OhUT. An orbit

was generated over a two-day period starting August 16, 1976, 23hUT and
ending August 18, 1976, 23MyT.

Several experiments were performed to Lageos-type satellites:
the satellites have some but not all orbital elements with LAGECS in
common. The types of orbit can be classified as follows:

Type 1: a Lageos orbit except for two elements: e = 0 and i = 0°
(a circular orbit in the equatorial plane). To reduce the
situation to a complete two-dimensional case the stations
were assumed to be in the equatorizl plane as well (¢ = 0°).
This case was referred to as "The Clock Problem" in Chapter 4,
section 4.2,

Type 2: a Lageos orbit except for one element: e = 0 (a circular

orbit).
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Type 3: a iageos orbit except one element: i = 0° (an elliptic orbit
in the equatorial plane). As for Type 1 the statioms also
were thought to be in the equatorial plane.

Type 4: LAGEQS in an elliptic (Keplerian) orbit with elements as
reported above,

Type 5: LAGEQS in an elliptic orbit but with secular perturbations in
three elements: §, w and n because of the non-sphericity of
the earth's gravity field mainly due to Iy

In the actual reporting of the experiments the designation of

the type of orbit is combined with the designation for the type of

observation (see section 6.2.53).

6.2.2 The Stations and Observation Campaigns

The stations used in the simulations are those originally
planned for the validation, phase 1 in the summer of 1976 [GSFC, 1976].
The six stations, and inter-gtation distances are represented in
Table 6.1. The coordinates of the stations are approximate only. The
simulated experiments mainly were to verify the claims of the preceding
chapters. The geodetic coordinates were only to give a good approxi-
mation of the station geometry.

Many simulations have been performed with subsets of the six sta-
tions. To make identification easier the different combinations have
received codes. For brevity only the first two letters of the station
names are used,

Representative four station configurations are the ones reported
in the literature as the San Andreas Fault Experiment [Agreen and Smith,

1973]. One experiment called SAFE 4 consists of the four statioans all
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6z1

TABLE 6.1

STATION COORDINATES AND INTERSTATION DISTANCES

Identification Geodetic Coordinatesl Baseline Lengths in km
étation Number Latitude Longitude Height Qu RA SA ST UT
o ' 0 oo m
Hopkins 1977011 31 41 3.0 249 7 19.0 2350 1290 2912 572 3148 1126
Quincy 1977012 39 58 24.0 239 3 38.0 1060 - 3845 896 3703 828
Ramlas 1977013 28 13 41.0 279 23 39.0 - 30 - - 3455 1245 3135
San Diego 1977014 32 36 3.0 243 9 33.0 990 - - - 3606 1130
Stalas 1977015 39 1 13.0 283 10 20.0 20 - - - - 2907
Utah 1977016 41 50 3.0 248 35 0.0 1980 - - - - -
1 1

a_ = 6378.160 km and £ — = 298.247 167 427 [TAG, 1971].



located in the western part of the United States: HO, QU, SA and UT.
In the other four station experiment SAFE 1l station HO was replaced by
a station in the eastern part of the United States ST. Experiments
which are two and three station subsets of SAFE 4 have been designated
respectively SAFE 2 and SAFE 3. Since the bulk of the experiments are
analyses using dynamic techniques the prefix SAFE also designates the
dynamic nature of the data analysis. The geometric experiments cor-
responding to SAFE 1 and SAFE 4 have been denoted respectively by

GRAM 1 and GRAM 4, Table 6.2 is a summary of the above.

TABLE 6.2

STATION CONFIGURATIONS

Station Combination Stations

SA¥E 4/GRAM 4 HO, QU, SA, UT
SAFE 3 QU, SA, UT
SAFE 2 Qu, SA

SAFE 1/GRAM 1 Qu, SA, UT, ST

Two simulations will be reported where. no more than one or two sta-
tions observe each pass of the sgatellite but in the total observatioq
campaign all four stations (SAFE 4) are involved. The station com—
bination names are respectively SAFE 4(1) and SAFE 4(2).

Before specifying the exact observation schemes of the éarious
combinations, it should be noted that during the 48 hour period of
investigation the satellite LAGEOS is observable by the six laser sta-
tions in 31 passes. By observable is meant that the satellite is above
a specified minimum altitude. In all simulations, but the ones reported
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in section 6.7.4, this minimum altitude has been set to 20°., If one
looks at the pattern of observability for a local region in the
mid-latitudes, one recognizes the following patterr: LAGEOS is observ—
able in groups of five passes. The passes, which are consecutive (I)
are at 2-1/2 hour intervals. The interval between groups of consecutive
passes is around 8 hours. This seemingly nice pattern might not be very
favorable for the monitoring of the local geophysical phenomena. For
the specified orbital elements and time span the Table 6.3 lists the
observable passes during the two days.

The average length of a pass as seen by at least one station is
about 55 minutes. The average length of a pass as seen by at least four
stations is around 30 minutes which means a2 45% reduction of available
measurement time in case of a geometrical analyses. Two other factors
will further reduce the amount of data in a geometric analysis. First
of all, complete passes will be lost when four or more stations have to
observe the satellite. In our example 11 passes were observable by at
least one station, however only 10 passes by at least 4 stations.
Secondly, the probability that the satellite will be observed by four
or more stations is simply small due to unfavorable weather conditions
at the various sites [Mao and Mohr, 19761, instrumental breakdowns, etc.
These latter factors are not considered in this investigation. Correc-
tions to the reported numbers can easily be made considering certain
quotas for loss of passes (data groups). The percentage of 33 [GSFC,
1976] is the ratio of actual observed passes over all possible passes a

station could have observed under ideal conditions (mo cloud coverage,
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TABLE 6.3

OBSERVABLE PASSES DURING TWO DAYS

LAGEOS as seen by at least

Interval
Pass Dbetween } station 4 gtations
Passes i 1 T T
Start End Duration Start End Duration
1 ~268 38™ 2P 42® 5™ 4P 26™ -23P 507 36"
2B 36®
2 =21 06 =20 10 56 =20 54 =20 16 38
2 22
3 -17 48 -~16 54 54 -17 24 =17 08 i6
2 26
4 . -14 28 ~13 28 60 -14 12 =13 34 38
2 44
5 =10 44 -09 54 50 =10 36 -10 04 32
7 54
6 -02 00 -01 08 52 -01 40 =01 26 14
2 40
7 01 32 02 30 58 01 42 02 24 42
2 26
8 04 56 05 50 54 05 18 05 38 20
2 22
9 08 12 09 10 58 08 30 09 02 32
2 38
10 11 48 12 42 54 11 56 12 36- 40
7 56
11 20 38 21 24 46 - - -

1All times are with respect to August 18, 1976, Oh UT.
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instrumental problems, etc.). For simultaneous range observations this
means a chance of 1 in 80, whereas for a dynamical analysis the chance

is 1 in 10 for the two station configuration.

The ground tracks (observable by at least one station) of
LAGEOS in the area of interest is shown in Figure 6.1. The segments
between the dots on each groundtrack denote the positions of LAGEOS

between which it can be observed by at least four statioms.

6.2.3 Modes of Analysis
Three modes have been anglyzed for various time spans:

a. the geometric mode using the station combinations GRAM 1 and GRAM 4
(see section 6.2.2) for the time span of 1 day (4 or 5 passes
depending on the four stations involved) and 2 days (10 passes).

b. the long arc dynamic mode for the duration of 1 day (6 passes of
which 5 are comnsecutive) and the "short" long arc dynamic mode for
the duration of 4-1/2 hours (2 passes). The latter mode approaches
very closely the next mode.

¢c. the short arc dynamic mode (for the duraticn of 1 hour). This
(extreme) short arc mode solves for all parameters every time a
group of observations becomes available. The long arc mode con-
siders all parameters to be constant for the time span under
inveséigation. Some (compromise) short arc mode simulaFions have
been made using two and three passes (only interstation distances
were considered constant during the time of investigatiom).

The observability per station plus the various modes can be repre-

seanted in the following table.
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200 250 200 A

Figure 6.1. Ground Tracksl of LAGEOS (Two Days)

lGround track segments between dots ( @) denote observability from at least 4 statioms, between
pass numbers ((i)) denote observability from at least 1 station.




TABLE 6.4

. STATTIONS AND THEIR OBSERVABLE PASSES

Geometric Bynamic  Dynamic
Geometric  and dynamic mode mode
mode node (long {short
Pass As seen by (long arc) arc) arc)
For the period of
1  HO QU RA SA ST UT A 1 hr.
2 HO QU RA SA ST UT
3 HO QU RA SA ST UT
4 HO QU RA SA ST UT
5 HO QU SA uT
6 HO RA ST UT 2 days
7  HO QU RA SA ST UT 4_142 TS 1 hr.
1 day
8 HOQU  SA ST UT
9 HO QU RA SA ST UT
10  HO QU RA SA ST UT Y I hr. 1hr.
11 RA ST

The two special cases (see section 6.2.2) where less than four sta-

tions made observations to each pass can be represented in the fol-

lowing table.
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TABLE 6.5

4 STATIONS WITH 1 OR 2 OBSERVING EACH PASS
(1. day, long arc mode)

Pass SAFE 4(1)l SATE 4(2)1
5 ho qu 5A ut HO qu SA ut

6 - ho UT HO Ut

7 ho qu SA ut ho qu SA UT

8 ho QU sa ut ho QU SA ut

9 HO gu sa ut HO QU sa ut
10 ho QU sa ut ho QU sa UT

1Capita1 letters denote that observations
were made from that statiom.

6.2.4 The Observations and Their Accuracies

Different Lageos-type satellites are considered not only
because of their different orbital geometries (circular, elliptic,
secularly perturbed orbits) but also because of the different type of
observations. LAGEOS being a passive satellite equipped with corner
cube reflectors allows only laser range measurements and with some
effort camera observations. However, the range models developed in
Chapter 4 easily make a comparison possible with models based on
range-rate and range-difference observations. To verify claims
concerning estimability made in Chapter 4 the two measurement systems
{range~rate and rangefdifference) have been compared to an equivalent
simulation with range observations. The three measurement systems

have been coded as RANGE n, RRATE n and RDIFF n, where n is an integer
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denoting the type of orbit (see section 6.2.1). The last two measure-
ment systems have been merely included in the discussion to clarify
problems of estimability in case of Doppler measurements either in
long or short arc amalyses.

The interval between the observations in each simulation has
been (arbitrarily) set to one minute. In the geometric analysis the
ranges were, of course, simultaneous. In the dynamic analysis each
set of observations was offset by an amount of seconds to avoid even
one pair of simultanecus observations. As an example, in the four
station solution the observations of one station were offset by 15,

30 and 45 seconds with respect to the observations at the other three
stations.

The precision of the individual range observations was set
at 5 cm, a goal envisioned to be reached in 1978/79 [GSFC, 19761.
Comparable precision estimates for the range-rate and range—différence
observations are not easily arrived at. First of all, one has to set-
tle the question concerning the relativity of 5 cm precision range
measurements to a satellite as TAGEOS. The observable ranges to LAGEOS
(the satellite is within 70° from the zenith!) vary between 5300 and
8500 #ilometers. The observable range-rate to a Lageos—type satellite
will range between -2.94 and 2.94 km/sec. One may sketch the range

and range-rate as a function of time as in Figure 6.2.
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Figure 6.2. Range and Range-Rate as a Function of Time

Probably the best way to estimate the standard deviation of an observ-
able is to compare it to the range of values over which the observable
varies rather than to the value of the observable itself.

Reasonings comparing the standard deviation of an observable to
the average value (common practice!) or the smallest absolute value of
that observable cannot be used here since the range-rate observable

fluctuates around the value of zero.

Gr 5 em

Tmin (8500 - 5900),  ~ 1:50,000,000

Tmax "

To find the standard deviation of the range-rate one has

0'-=(£ ”

3 max‘rmin) * (1:50,000,000) =~ 0.1 mm/sec
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In section 6.11 it will become clear that this reasoning leads already
to a close approximation (it is overestimated by a factor of two) if
one tries to answer the question: How accurately does one have to
perform range-rate cbservations (at the same observational intervals)
to a Lageos—type satellite im order to recover the relative station
positions among other parameters with the same precilsion as ranging
with a specified precision would have done?

Once the standard deviation of the range-rate observations has
been chosen, the compatible precision of the range~difference observ—

ables can be computed from
Ar = rAt

leading to

Having observations spaced at 60 seconds interval, one obtains with a

g: of 0.1 mm
r

o = 6 mm .

Ar

In section 6.11 it slso will become clear that this precision is under-
estimated by a factor of two since ci waé overestimated by the same
factor,

In all simulations the standard deviation of the observ-
ables have been kept constant independently of the value of the

cbservable itself. This might be a little unrealistic since for
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the longer ranges the satellite is nearer to the horizon. A constant
ranging precision would imply the refraction correction to be of

the same uncertainty through the range of admissable zenith distances.

6.2.5 The Earth

All data were simulated using a set of data as adopted by the
International Association of Geodesy in Moscow, 1971, during the XVth
General Assembly of the I.U.G.G. [TAG, 19713]. The values for the

four parameters are:

gravitational constant (GM) 398603 km.3/sec2

equatorial radius (ae) 6378.160 km

dynamical form factor (Jz) 0.0010827

angular velocity of the earth (me) 7.292 115 1467 % 10_5 rad/sec

The Greenwich Apparent Sidereal Time for the reference epoch
August 18, 1976, thT has been taken from the American Ephemeris and

Nautical Almanac [AENA, 1976, p. 17].
GAST = 21" 45™ 56°.302

Throughout the investigation the principle was to consider all possible
parameters unknown. Two of the most important earth parameters, the
gravitational constant of the earth and the dynamical form factor are
often the subject of some kind of (weighted) comstraints. To study the
influence of these constraints, the values of these parameters were pur-
posely changed: in the data generation the in 1971 adopted values were

used wHile in the data analysis the in 1975 recommended values by
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the XVIith General Assembly of the I.U.G.G. in Grenoble [IAG, 1975] were

used

GM

398600.5 + .3 kn/sec”

108263 + 1 * 1070

€
1]

For a further discussion, the reader is referred to section 6.10.

6.3 Testing Procedure

Simulation studies, which can be characterized by you-get—-out-
what-you~put-in, make several statistical tests superfluous. Still, a
testing procedure for the a posteriori variance-of-unit-weight 32 was
performed during each simulation mainly for the two following reasons:
1. It i; one of the tests which gives an internal check on the compu-

tational procedures, e.g., the linearization process. Each simnla-
tion was performed in two steps: first of all, the "adjustment"” was
carried out with observations fitting the model perfectly. In other
words, no noise was added to the observations. This procedure
should result in an a posteriori variance-of-unlt-weight close to
zero as compared to the a priori variance. Secondly, the adjustment
was performed using observations with a noilse of a specified level.
This second procedure should result in an a posteriori variance
close to the a péiori varlance. In principle, a variance analysis
can take place without the seconq step but it was found that in
borderliine cases where the mathematical model was weakly determined

by a set of observations the normal matrix was invertible with the
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"noiseless" observations but non-invertible with the "noisy"
observations. The second step was consequently the safeguard
against erroneous conclusions.

2. 1In several numerical experiments a bilas was introduced in the
model. The sensitivity of the observations to the introduced
bias is nicely reflected in the behavior of the a posteriori
variance,

The a posteriori variances &2 are tested with the x?-test:

2 2
P%XDF1~OL/2<§3<XDF a/2}=l_a
DF c2 DF

where DF and @ denote the degrees of freedom and the level of signi-
ficance respectively. A failure of the test in case of introduced
biases indicates that the modéel was conditioned enough that the obser-
vatlons could detect the bias. The non-failure of the test could form
a warning that the observations were insensitive to the bias introduced
and left it undetected possibly causing a blased parameter recovery.

In most cases it is unjustified to speak of biased observations or
removing a bias from observations. From a philosophical standpoint
observations are never bilased (excluding instrumental errors, blunders,
ete.): 1t is the model, uncapable of representing reality, which is
biased.

Since the majority of the experiments were performed with
degrees of freedom between 100 and 1000 and statistical tables often
stop at 100 degrees of freedom, a table was constructed with approxi-
mate x?rvalues for various large degrees of freedom. An accurate
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approximation is given in [Kreyszig, 1970]. For degrees larger than 100

one has for o = 5%

1 2
Xi a2 = 301,96
t]
with - h = v2DF - 1

Rewriting the two equations above, one has

J 2
2Xm,u/2 ~ ¥2DF - 1 = ~1,96

which means that xz can be found by treating the wvariable 2x2-f2DF-1
as a normally distributed variable with unit variance. Similarly for

the lower bound, one has

2

Xg.1- /2 = 396"

In general, for o = 5% one obtains

2
%R ., 1.42 % 1.96 Y2DF - 1
DF DF

in which the positive sign denotes the upper bound and the negative sign
the lower bound.
As an example for DF = 100, one obtains for

73.77 (74.22)

2 -
X100,97-1/2%"
and .

2 T
X100,2—1/22 129.07 (129.56)

vhich result in errors of only .6% and .4% (the numbers between brackets
are. tabulated values, e.g. [Hamilton, 1964]1). The upper and lower
bounds for degrees of freedom between 100 and 1000 are represented in

Table 6.6.
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TABLIE 6.6

LOWER AND UPPER BOUNDS FOR THE RATIO BETWEEN THE
A POSTERIORI AND A PRIORI VARTANCES-OF-UNIT-WEIGHT
FOR LARGE DEGREES OF FREEDOM,

Testing level of significance o = 5%3

i Bound. <8< o
100 0.74 1.29
200 0.81 1.20
300 0.84 1.16
400 0.87 1.14
500 0.88 1.13
600 0.89 1.12
700 0.90 1.11
800 0.90 1.10
900 0.91 1.09
1000 0.91 1.09

6.4 Standard Deviations of the Parameters as a Function
of the Number of Observations per Pass and the
Precision of the Single Range Measurements

Because of the "non-Bayesness'" (no weighted parameters, see
section 6.5) of the reported simulation studies the following two pro-
perties hold:

a. the standard deviations of the parameters are reduced by a factor
of v/n when the number of observations per pass are increased by a
factor of n. This not too surprising remark was (unnecessarilf!)
checked by a simulation in which the time interval between obser-
vations’ was reduced from 60 sec to 15 sec: the standard deviations
of the parameters were.reduced by a factor of 2. Obviously, this

reasoning cannot be followed for increasingly denser cobservatiomns,
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e.g., observations measured 0.1 seconds apart cannot be considered
uncortrelated anymore,

b. the standard deviations of the recovered parameters have a constant
ratio to the standard deviations of the observations (assuming of
course that In cage of a change the standard deviations of all
observations are changed by the same factor). This also rather tri-
vial remark is left to the reader to proof.

The correct way of reporting the results of these studies is to mention

the weight coefficients of the parameters rather than their variances or

standard deviations (seee.g., Aardoom, 1971). Having second and third
generation lasers in mind a single shot precision of 5 cmhad been chosen
and consequently, the (dimensioned) standard deviations of the recovered
parameters are reported rather than the square root of their weight

coefficients.

6.5 Baseline Precision as a Function of thé
Orbital Geometry (Shape and Length)

A variance analysis of the relative station position recovery,
in particular the interstation distance recovery, is performed varying
the shape of the orbit, i.e., circular, elliptic and secularly perturbed
eliiptic orbits. The observations were laser range measurements (Or =
5 cm, At = 60 sec), thus the three solutions were coded RANGE 2, 4 and 5
(see sections 6.2.1 and 6.2.4). Asecond variable, the length of the
analyzed orbit, was also investigated. First it was assumed that the
observatories measured ranges during all available (6) passes during 1
day. Secondly, only 2 passes were observed during 1 day. The observa-
tories belonged to ;he SAFE 4 group (HO, QU, SA, UT). No constraints were

applied initially: GM and J9 were left free which meant that in this
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dynamical anal&sis in the cases of RANGE 2 and RANGE 4 the mean motion
was also solved for and in the case of RANGE 5 the mean anomalilstice
motion and the secular perturbation in perigee were the (unweighted,
of course) parameters. As a comparison two simulations were performed
having GM constrained (compatible with six orbital elements, rather

than seven in case of RANGE 4).

6.5.1 Long Arc Analysis (1 day, 6 passes, 4 stations)
The standard deviations of the interstation distances, expres-

sed in centimeters are listed in Table 6.7.

TABLE 6.7

LONG ARC ANALYSIS (1 DAY, 6 PASSES, 4 STATIONS) FOR
CIRCULAR, ELLIPTIC AND SECULARLY PERTURBED ELLIPTIC ORBITS

Interstation Distance Recovery with Standard Deviation
in em. No Constraints for GM and J,. g, = 5 em, At = 60 sec

2

SAFE 4 RANGE 2 RANGE 4 RANGE 5
HO-QU 1.0 cm‘ 1.0 cm 1.0 cm
HO-SA 1.1 1.2 1.2
HO-UT 0.8 0.8 0.8
QU-SA 0.9 6.9 0.9
QU-UT 1.0 1.0 1.0
SA-UT 0.8 0.8 0.9
22V .956 .963 .962
Ohservations 864 871 872
DF 847 852 852

1 62 is the a posteriori variance~of-unit-weight in case of simulated
observations.

A first inspection of Table 6.7 reveals the small standard deviations

for the recovered interstation distances. This is the result of the
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more or less unrealistic feature that all stations observed all passes
for one day (later more realistic examples are discussed). Still, it
means that one day of nice weather in the western part .of the United
States may result in a highly precise baseline recovery. But this was
not the objective of this section. Themain purpose of this section,
namely investigating the influence of the shape of the orbital geometry
is clearly illustrated in Table 6.7. As one might intuitively have
expected, the influence between a circular, elliptic and secularly per-
turbed elliptic orbit on the precision of interstation distance geometry
is virtually negligible. This is very important insofar that not very
complicated orbital models need be employed to investigate the geodetic
potentials of laser ranging to artificial satellites. TIn the rest of
this chapter repeatedly advantage is taken from this feature,

If one considers GM (or n) known the same conclusions hold as

Table 6.8 shows,

TABLE 6.8

LONG ARC ANALYSIS (1 DAY, 6 PASSES, 4 STATIONS) FOR
CIRCULAR AND ELLIPTIC ORBITS

Interstation Distance Recovery with Standard Deviation in
cil, Constraint on GM (or mean motion). crr =5 cm, At =60 sec.

SAFE 4 RANGE 2 RANGE 4
HO-QU 1.0 cm 1.0 cm
HO-5A 1.1 1.1
BO-UT 0.8 0.8
QU-SA 0.9 0.9
QU-UT 1.0 1.0
SA-UT 0.8 0.8
o?/a? .957 .964
Observations 864 871
DF 848 853
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6.5.2 Long Arc Analysis (4-1/2 hours, 2 passes, & staéions)
Once again the SAFE 4 group of stations observed LAGEOS but now
with a reduced set. of observations. All observatories observed only 2
passes during a 4-1/2 hour period. Thé geometry of the stations with
" respect to the two {consecutive) passes was sgch that the first pass
could be observed only by HO and UT while the next pass was observed
by all four stations (see Table 6.4).  The standard deviations of the

interstation distances (in centimeters) are found in Table 6.9.

TABLE 6.9

LONG ARC ANALYSIS (4-1/2 HOURS, 2 PASSES, 4 STATIONS)
FOR ELLIPTIC AND SECULARLY PERTURBED ORBITS

Interstation Distance Recovery with Standard Deviation in cm.
No Constraints on GM and J2. Ur = 5 em, At = 60 sec.

SAFE 4 RANGE 4 RANGE 5
HO-QU 116 cm 135 cm
HO-SA 30 35
HO-UT 9 11
QU-SA 85 95
QU~UT 77 86
SA-UT 6 7
1o 1.015 1.008
Observations 238 238

DF 219 218

This example, which starts to approach a short arc analysis, shows
clearly the influence of the bad geometry (only 2, better 1-1/2 pass is
observed), 8till, this more realistic simulation (LAGECS could be

observed on a particular day for only 4-1/2 hours, just enough to be
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observed twice by two stations and once by two other stations) has
implications for the daily monitoring of geophysical phenomena.

Assume that one wants to monitor the baseline between Hopkins and
Quincy with a precision not exceeding 5 cm., Table 6.9 shows that

the standard deviation needs a reduction by a factor of 25, implying an
increase in the single-shot frequency by a factor of 600, Since éll
simulations were performed with a frequency of one shot per minute,

it means that range measurements to LAGEOS with a single-shot precision
of 5 em and a frequency of 10 shots per second would be necessary.
Alternatively, one may have a single shot precision of 2 cm reducing
the precision of the recovered baseline HO-QU (RANGE 5) to 54 cm. In
this case the single-shot frequency has to be only (54 + 5)2 = 120 per
minute or 2 shots per second. On the correctness of both reasonings
has been elaboéated in the previous section (e.g., increasing frequency
implies increasing correlation bgtween observ;tions!)

A similar experimené with the *short" iong arc but with
GM constrained (known) shows identical results (Table 6.10).

The general conclusion of section 6.5 is that while the vari-
ances of the baselines are virtually independent of the orbital models
(circular, elliptic, etec.), the time~span of the observations is of
great importance.

In section 6.7 two other geometrically significant aspects are
discussed, Firstof all (sections 6.7.1 through 6,7.3), the shortest
dynamical long arc analysis, the short arc mode is-investigated,
Secondly (section 6.7.4), the influence of the minimum altitude, above
which the satellite is allowed to be obser;éd, is investigated.
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TABLE 6.10

LONG ARC ANALYSIS (4-1/2 HOURS, 2 PASSES, 4 STATIONS)
FOR ELLIPTIC ORBIT

Interstation Distance Recovery with Standard
Deviation in em. Constraint on GM.
Gr = 5 cm, At = 60 sec.

SAFE 4 RANGE 4
HO-QU 115 em
HO-SA 30
HO-UT 9
QU-SA 85
QU-UT 76
SA-UT 6
Pie? 1.011
Observations 238

DF 220

6.6 Baseline Precision as a Function
of the Number of Stations

In contrast to a geometric analysis of laser ranpe measurements
which require four or more stations observing simultanecusly, in a
dynamic analysis this stringent requirement is not present. Two cases
can be differentiated: the first where a group of stations observes
each pass in a specified time span and the second where a subset of a
group of stations observes each pass. The experiments reported in the

next two sections are with the station group SAFE 4 and its subsets.
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6.6.1 All Stations Observing Each Pass

A long arc analysis (1 day, 6 passes) is performed on LAGEOS in
the RANGE 2 mode (circular orbit, no constraints on GM). The base-
line precision for four, three and two stations is reflected in

Table 6.11.

TABLE 6.11

LONG ARC ANALYSIS (1 DAY, 6 PASSES, 4, 3 AND 2 STATIONS)
FOR CIRCULAR ORBIT

Interstation Distance Recovery with Standard
Deviation in cm. WNo Constraints on GM.
0, =5 cm, At = 60 sec.

RANGE 2 SATFE 4 SATE 3 SAFE 2
HO-QU 1.0 cm - -
HO-SA 1.1 - -
HO-UT 0.8 T -
QU-SA 0.9 0.9 cm 0.9 em
QU-UT 1.0 1.0 -
SA-UT 0.8 0.8 -
/o> 956 .936 .952
Observations 864 647 413
F 847 633 402

Table 6.11 shows clearly the independence of the number of stations on
the relative position recovery in a dynamic analysis when the geometry
of the orbit is good (arc of 1 day long). However, when the long arc
starts to approach the short arc, the degeneration is very drastic if
one reduces the number of observing statigns. This is illustrated in

Table 6.12.
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TABLE 6.12

LONG ARC ANALYSIS (4~1/2 HOURS, 2 passes, 4, 3 and 2 STATIONS)
FOR CIRCULAR ORBIT.

Interstation Distance Recovery with Standard
Deviation in cm. No Constraints on GM.
Oy = 5 cm, At = 60 sec.

RANGE 2 SAFE 4 SAFE 3 SAFE 2

HC-QU 116 cm - -
HO-SA 30 - -
HO-UT 9 - -
QU-SA 85 206 cm 8966 cm
QU-UT 77 153 -
SA=UT 6 7 -
5210 . 1.015 1.108 1.041
Observations 238 166 97

DF 219 152 86

As recalled from Table 6.4 passes 6 and 7 are the ones useggfgr the
"short" long arc analyses. From this table it can be seen that pass 6
cannot be observed by the SAFE 2 group (QU and SA) of stations. So
the baseline, - with a precision of %0 meters, is the result

of range observations to a single arc (pass 7). In section 6.7 more

attention will be given to the short arc mode.

6.6.,2 Some Stations Observing Each Pass

Whereas in the previous section all stations of the SAFE 4
group obser;ed each pass, two experiments have been performed with only
one and two stations (out of the possible four) observing each pass. It

should be realized that now the subsets of the SAFE 4 group changed

152



from pass to pass (see section 6.2.3, Table 6.5).. The results are as

follows.

TABLE 6.13

LONG ARC ANALYSIS (; DAY, 6 PASSES, 4, 2 AND 1 STATION)
FOR ELLIPTIC ORBIT.

Interstation Distance Recovery with Standard
Deviation in em. No Constraints on GM.
Or = 5 cn, At = 60 sec.

RANGE & SAFE 4(4) SAFE 4(2) SAFE 4(1)
HO-QU 1.0 em 1.7 em 7 cm
HO-SA 1.2 2.0 48
HO-UT 0.8 1.8 100
QU-SA 0.9 1.7 58
QU-UT 1.0 1.8 47
SA-UT 0.8 1.5 23
*/o” .963 .997 1.012
Observations 871 462 234
DF 852 443 215

Two important results may be drawn from this table:

1. It is almost a necessity that each arc (pass) is observed by more
than one station. Arcs observed by a single station do not contri-
bute very much to the total recovery of a group of stations.

2. In case arcs are observed by single stations the best results are
obtained from consecutively observed arcs: as Table 6.5 shows
passes 5, 6 and 7 are observed by SA, UT and SA respectively and
passes 8, 9 and 10 by QU, HO and QU. Ind;ed, the baselines SA-UT
and HO-QU are determined with the highest precision. Even the fact
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that QU and SA are the only two stations which observed two arcs
each, their baseline (QU-SA) is the one but worst determined.
Expanding on these results one has to recognize the implica-
tions for LAGEOS as a tool for the establishment of a global reference
frame. As the distances between stations increase, the chance that
arcs are co-observed by two or moré stations, decreases. Especially,
the monitoring of phenomena with high frequency (periods of 1 day or

shorter) might be difficult to realize with the help of satellites.

However, in local areas chances are that monitoring by satellites is
more successful. The future role of satellites might be seen as an
interpolating one as opposed to a measgsurement system as Very Long

Baseline Interferometry.

6.7 Short Arc Mode

In the last ten years the short arc mode analyses of satellite
observations have become increasingly popular. As will be explained
later, the short arc mode can take various identities.

In Chapters 3 and 4 models have been developed for the dynamic
analysis of mainly range observations. Since the equations of these
mathematical models do not dictate any specifications regarding the
minimum time span of the observation campaign, one might expect that
there is no fundamental difference between long and short arc analyses
of satellite data. ‘The conclusion must then be that the same para-
meters are estimable in the short arc mode as in the long arc mode.
0f course, because of the unfavorable geometry of the short arc mode
(recall the effect of shortening the long arcs as described in section
6.5), the various parameters in the short arc mode will be determined
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worse than in the long arc mode. In this respect the "inner constraints"
for origin and orientation applied in the short arc mode,e.g., by

[Brown and Trot;er,1973]mnst be qualified as "over constraints" (see
section 6.7.3). As it follows from the detailed discussions in Chapter 4
the only inner constraint to be applied stems from the lack of system
definition in longitude. Consequently, only one (not six) inner con-
straint is needed if one has as one's parameters the orbital elements
and the station coordinates (two inner constraints if alsc the orienta-
tion of the earth at some epoch was entered as a parameter, see e.g.,

section 4.,9),.

6.7.1 Short Arc Mode, One Pass at a Time

The different identities a short arc mode can have is based on
the time span certain parameters are kept constant. It follows from
the line of the discussion presented here that with the (geophysical)
applications in mind the parameters should not be considered constant
longer than the time in which a phenomena to be monitored varies
appreciably. A satellite geodesist who has a set of observed arcs at
his disposal, which are somewhat spaced in time and who wants to
analyze the data in the short arc¢ mode, might have to resort to this
extreme: resolve all parameters for each pass. A different compromise
type of short arc mode will be discussed later.

The first experiments were performed with the SAFE 4 group of
stations with three passes: pass 1, 7 and 10 (see Table 6.3). 3Between
pass 1 and 7 is a time lapse of about 25 hougs,betwemnpass 7 and 10
about 9 hours. The three passes have the following geometrical charac~

teristics:
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pass 1: this pass is low at the horizom for all four stations.

pass 7: this pass reaches a high altitude for all four stations and
the (short) arc is parallel to the interstation baseline
SA-UT (see Figure 6.1).

pass 10: this ﬁass also reaches a high altitude for all four stations
but its arc is parallel to the baseline QU-SA

The standard deviations of the six interstation 'distances are reported

below.
TABLE 6.14
SHORT ARC ANALYSIS (2 DAYS, 3 PASSES, 4 STATIONS)
For ELLIPTIC ORBIT
Interstation Distance Recovery with Standard
Deviations in c¢m. No Constraints on GM.
Oy = 5 em, At = 60 sec.
ggg}gf Pass 1 Pass 7 Pass 10
HO-QU 1578 cm 1111 cm (187 cm
HO-SA' 1331 204 327
HO-UT 194 200 206
QU-SA 296 750 13
Qu-UT 1013 565 690
SA-UT 59 19 429
~2, 2
g /o 1.116 _1.042 1.033
Observations 166 192 194
DF 147 173 175

From this table the following conclusions can readily be drawn:

— the overall precision of the relative positioning of. the short arc

mode is very disappointing if restricted to-the one-pass—analysis.

156



In general, the standard deviations of the interstation distances are
far above the one meter level. As an example, the standard deviation
of the baseline HO-UT is in the order of 2 meters in all three passes.
One only has to recall the shortest long arec analysis reported in sec~
tion 6.5.2 (in 1-1/2 passes the standard deviation of this baseline is
9 cm) in order to appreciate the superiority of long arc analyses no

matter how short they may bel!

the influence of.the geometry is felt as strongly in the short arc
mode as in the geometric mode (see section 6.8): if an arc is
"parallel" to a baseline a very precise recovery of that baseline

is made. This phenomena is easily explained geometrically. One

does not have to have a great geometrical insight to see that a dis-
tance between two points is determined the best if distance measure-
mente are madé from the two end points to a third poinﬁ which dis
situated on a line through those two points. Consequently, a satel-
lite which flies "parallel" to the direction of an interstation
distance and preferably reaches a high altitude provides a good recovery
of that baseline, especially when it enters and leaves the cone of
observability (the points of intersection of the orbit with this cone

are situated the closest to that most ideal "third point" as

described earlier). 1In this respect the minimum altitude above which
a satellite is allowed to be observed, plays an important role (sec~

tion 6.7.4).

6.7.2 Short Arc Mode, Several Passes at a Time
To return to the definition of "short arc analyses" one has to
compare the already reported long, "short" long and short arc solutions
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for one particular case (Table 6.15), In all these three solutions all
parameters have been kept constant for the time span under investiga-
tion. In this light one has to classify the short arc algorithms as in
[Brown and Trotter, 1969, 1973] as a compromise between the long and
short arc methods as reported above. Instead of going to the extremes
of solving for all parameters for each pass, one could for instance
consider certain parameters as the latitude, longitude~difference (!)
and the distance of the earth's center-of-mass of the participating
stations constant during, let's say, 1 day but solve for the orbital

parameters in each pass. Good reasons for the (compromise} short arc

TABLE 6,15
DYNAMIC ANALYSES FOR ELLIPTIC ORBIT
Interstation Distance Recovery with Standard

Deviations in cm. XNo Constraints on GM.
Or = 5 cm, At = 60 sec.

Short

RANGE 4 Long Are
SAFE 4 Long Arc (4-1/2 hrs., Short Arc

(1 day, 6 passes) 1-1/2 passes) (1 hr., 1 pass)
HO-QU 1.0 en 116 cm 1111 cm
'HO-SA 1.2 30 204
HO-UT 0.8 9 200
QU-SA 0.9 85 750
Qu-ut 1.0 77 565
SA-UT 0.8 6 19
&%1o? .963 1.015 1,042
Observations 871 238 192
DF 852 219 173
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method exist: basically the station parameters can be classified as
slowly varying parameters, whereas the orbital parameters are often
rapidly varying parameters due to various secular and pericdic per-
turbations (please note: 1in case of a Keplerian orbit the orbital
parameters do not vary)}. The catch is, of course, that the compro-
mise short arc mode cannot be applied limitless in time, especially
viewing the future goals of satellite ranging. The method will

defeat itself with highly precise measurements. In a short campaign of
a week the latitude of a station may vary more than half a meter due to
polar motion, thus clearly coming in confiict with one of its assump-
tions: the station parameters are considered constant during the cam-
paign. Obviously, the (compromise) short arc method has to be used with
great care not to introduce biases in the solution as result of its
assumptions.

A different type of (compromise) short arc method is analyzed
here: instead of considering the station coordinates (R, ¥, AA) con-
stant only the baselines are assumed to be time invariant. This method
allows for a larger geometrical freedom because it reduces the number
of invariant parameters. In case of 4 stations only 6 instead of 12
station parameters are assumed to be constant in time. Geometriczlly,
it implies that the size and shape of the station polyhedron does not
vary with time but its orientation is allowed to change (e.g., due to
polar motion).

Instead of results reported for individual passes (Table 6.14,
passes 1, 7 and 10) the standard deviations of the baselines from the

four possible combinations between these passes are reported (Table 6.16).
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TABLE 6.16

SHORT ARC ANALYSIS FOR ELLIPTIC ORBIT
(2 DAYS, 2 AND 3 PASS SOLUTIONS, 4 STATIONS)

Interstation Distance Recovery with Standard Deviations
in em. No Constraint on GM. g, = 5 em, At = 60 sec.

RANGE 4 Passes 5

SAFE 4 1+7 1+ 10 7 + 10 1+7+10
HO-QU 91 cm 73 em 46 cm (10 em) 36 cm
HO-SA 46 85 43 (11 ) 34

HG-UT 44 30 23 (5 ) 18

QU~-SA 47 9 9 (2 ) 9

QU-UT 52 120 57 {15 ) 43

SA-UT 14 35 i5 (3 ) i3

1) The standard deviations between brackets from the comparable long
arc analysisg.

Comparison with Table 6.14 reveals that the standard deviations
of the baselines reduce more than one would initially expect from the
results of the individual passes, This effect is due to the correla-
tions between the baselines from the one~pass solutions. The results

of Table 6.16 are computed with the following relatiomship

-1 -1 -1 -1

z:com.'b:h:La,t:T.cn:t - Epass 1 ¥ zpass g ¥oeee ? pass n

where each I denotes a full variance/covariance matrix.

The best short arc solution using only two passes (passes 7 and
10 cross each other almost perpendicularly over the area under Investi-
gation, see Figure 6.1) cannot compete with the comparable long arc
solution: the standard deviations of the ﬁaselines range between 9 and
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57 cm for the short arc analysis but between 2 and 15 cm for the long
arc analysis. This means as far as the organizatiop of observation cam-
palgns 1s concerned, that full advantage should be taken of the conse—
cutive character Pf LAGEOS' passes (five consecutive passes per day, see
section 6.2.2), Data analyzed in the long arc mode (arcs4up to 1 day)
are capéble of making more precise "snap shorts" of-ground networks. than
multiple short arcs would do. The gain in precision by evaluating the
satellite parameters over longer periods of time (long arc mode) is
apparently much higher than by evaluating only the (constant) station
parameters over long periods (short arc mode).

6.7.3 The Influence of Weighting in the

Short Arc Mode

In section 5.2 it was argued that weighting of parameters may
resultrin éoo optimistic precision estimates. In a series of tables it
is shown that welghting of paramekers (in this case, the sfation‘para-
meters) will yield optimistic standard deviations not only for the
baseline réﬁoveries {Tables 6.17 fhrougﬁ;6.19) but also for the other
station, satellite and earth parameters (Table 6.20).

The first case (Table 6.17) deals with the weighting of one
station (HO). In“the literature it has been suggested that the lack of
coordinate sysﬁem definition of the shorf arc mode findé mainly iis
cause in the "1aék—of-origin." .Thé constraint may be viewed aé a
"quasi—minimumrcoﬁstraint" since it has been shown (Chagter 4) that‘the

set of estimable quantities is already established.
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TABLE 6.17

SHORT ARC ANALYSIS FOR ELLIPTIC ORBIT (2 DAYS, 3 PASS
SOLUTYON, 4 STATIONS) WITH VARYING WEIGHTS
ON ONE STATION (HO: R, y, AA)

Interstation Distance Recovery with Standard Deviations
in em. No Constraint on GM. Ur = 5 em, At = 60 sec.

Weighting (o)

RANGE 4

SAFE 4 o 10 m 1m 10 em
HO-QU 36 em 25 cm 20 cm 19 cm
HO-SA 34 23 18 17
HO~-UT 18 i3

Qu-SA 9 8

QU-UT 43 30 24 23
SA-UT 13 11 10 - 10

Tﬁe reduction in the standard deviations of thé baselines
proves that a lack 6f origin definition is not present in the short arc
mode solution. It should be noted that estimable éuantities-are not
affected by weighting of (non-estimable) parameters (see section5.2.3}.

Another quasi-minimum-constraint is the five parameter con-
straint. This constraint might be compared to similar minimum con-
straints which are used in the geometric mode analyses of simultaneous
range observations to satellites. Not six but five quasi minimum con-

" straints (HO: R, ¥, AX and QU: R, ¥) are needed since the longitudinal
rank defect has already been eliminated from the model (Chapter 4).

This case (Table 6.18) and the case whereby all four stations are
weighted (Table 6.19) are merely included t; demonstrate the (dangerous)

influence of (over-) weighting.
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TABLE 6.18

SHORT ARC ANALYSIS FOR ELLIPTIC ORBIT (2 DAYS, 3 PASS
SOLUTION, 4 STATIONS) WITH VARYING WEIGHTS ON
TWO STATIONS (HO: R, ¥, AA AND QU: R, W)

Interstation Distance Recovery with Standard Deviations
in em. No Constraint on GM. o, = 5 em, At = 60 sec.

Weighting (0)

RANGE 4

SAFE 4 m 10 m 1m 10 cm
HO-QU 36 cm 23 cm 18 cm 16 cm
HO-SA T34 19 14 12
HO-UT 18 11 8 6
QU-SA 9 8 6 6
QU-UT 43 24 18 16
SA-UT 13 11 - 9 - 6

TABLE 6.19

SHORT ARC ANALYSIS FOR ELLIPTIC ORBIT (2 DAYS, 3 PASS
SOLUTION, &4 STATIONS) WITH VARYING WEIGHTS ON
FOUR STATIONS (HO, QU, SA, UT: R, ¥, AX)

Interstation Distance Reccvery with Standard Deviations
in cm. No Constraint on GM. g, = 5 em, At = 60 sec.

Weighting (o)

RANGE 4

SAFE 4 o 10 m 1m 10 em
HO-QU 36 em 21 cm 17 em 7 em
HO-5A 34 16 13 5
HO-UT 18 10 4
QU-SA 9 8 3
QU-UT 43 21 17 6
SA-UT 13 11 9 5
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So far only the influence of weighting has been investigated on
the quantities which are dependent on the (weighted) station parameters:
the baselines. However, the influence varies from parameter group to
parameter group. Table 6.20 shows the impact on the various parameters

in the case of a short arc mode analysis using only one pass (7).

The influence of the weighting procedure is the strongest for
the latitudes and longitude differences and the weakest for the geocen-
tric radii as far as the station parameters are concerned. Similarly,

a latitude related satellite parameter, the inclination of the orbit, is
strongly influenced by the weighting. The largest factors by which the
standard deviations decreased, are 400 for UT's latitude (UT is almost
exactly north of HO) and 75 for SA's longitude (SA is almost exactly
west of HO). The standard deviation of the inclination reduced by a
factor of 8. Thg strong dependency of tlhie precision of these three
types of parameters (wi, Ali, i) might indicate the largest wea#nesses

in the short arc mode.

6.7.4 The Influence of the Cut Off Angle

In section 6.7.1 the most ideal geometry to determine the
length of a baseline very precisely has been elaborated upon. In
Table 6.21 this is cnce more illuétrated by the overpowering influence
of the minimum altitude above which range observations to a satellite

are permissable.
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TABLE 6.20

SHORT ARC ANALYSIS FOR ELLIPTIC ORBIT (1 PASS, 4
STATIONS) WITH VARYING WEIGHTS ON ONE STATION
(BO: R, ¥, AY)

Interstation Distance, Station, Satellite and
Earth Parameters Recovery. No Constraint on GM.
Ur = 5 ¢cm, At = 60 sec.

Weighting (o)

10 em

SAFE 4 o 10m ln
HO-QU 1111 cm 494 cm 372 em 369 cm
HO-SA 204 89 74 73
HO-UT 200 112 76 74
QU-SA 750 341 252 248
Qu-UT 565 234 182 181
SA-UT 19 17 13 12
R 771 cm 407 cm 100 cm 10 cm
HO ¥ 81 o3 003 0003
Ad 3v9 ov4 004 0004
R 773 cm 693 cm 461 cm 442 em
Qu ¢ 516 o'g ov42 ovaz
AX 79 1v2 060 Ov55
R 568 cm 238 cm 210 cm © 209 cm
SA ¢ 6V7 ove ov26 n%23
AX 474 ov4 ovo7 Y06
R 545 cm 238 cm 213 em 212 cm
UT ¢ 8v0 ov3 ov04 ovo2
AA 749 yRA] ov72 oves4
a 1448 em 1295 cm 833 cm 795 cm
e 9.9 % 10~/ 8.5 % 10” 4.2 % 1077 3.8 % 107/
i i7» 51 215 212
w 50" 321 21" 20"
Eo 47 35" 23" azn
n 0.00140 "/sec 0.00068 "/sec 0.00035"/sec 0.00032"/sec

W, 0.00071 "/sec 0.00040"/sec 0.00020"/seec 0.00018'"/sec
Observations 192 192 4+ 3 192 + 3 192 + 3
DF 173 173 + 3 173 + 3 173 4+ 3
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TABLE 6.21

SHORT ARC ANATLYSIS FOR ELLIPTIC ORBIT (HALF A DAY,
2 PASS SOLUTION, 4 STATIONS) WITH VARYING
MAXIMUM ZENITH ANGLE

Interstation Distance Recovery with Standard Deviations
in cm. No Constraint on GM. 0. = 5 em, At = 60 sec.

Maximum Zenith Angle

RANGE 4

SAFE 4 70° 60° 50°
HO-QU 46 cm 101 cm 211 cm
HO~-SA 43 96 197
HO-UT 23 52 120
QU-SA 9 23 59
QU-UT 57 127 260
SA-UT 15 35 . 81

Table 6.21 geems to indicate the following rule of thumb: for
every 10° decreage in the maximum zenith angle the precision (standard
deviation) decreases by a factor of two. Since the frequency of the
observations has not been varied during these experiments, this seems to
imply that the frequency of the observations has to be increased by a
factor of four to compensate for the worsening geometry. This increase
in the number of observations is much larger than actually was lost in
observations by raising the minimum altitude, clearly showing the nega-

tive power of the worsened satellite-station geometry.

6.8 Geometric Mode

Before discussing some variations on the theme of the dynamic

mode (application of constraints, usage of different measurement systems
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and evaluation of other than station parameters) it may be worthwhile to
compare the various dynamic experiments with the geometric mode, espec—
ially because of the similar nature and quality of their parameters, In
the geometric mode the interstation baselines are the only estimable
quantities whereas in the dynamic mode these are the best estimable
quantities (see section 6.11).

Of the six stations many combinations of four stations can be
formed. Before discussing the results for the station groups SAFE 1 and
SAFE 4 (or GRAM 1 and GRAM 4 as they are called in the geometric analy-
sis), other combinations of stations are worth noting because many of
them form critical or near critical configurations [Blaha, 1971b}. The
stations HO, RA, ST and UT and also the stations SA,RA,ST and QU form
roughly trapezoids with equal sides. Sincea.plané can almost be fitted
through the four stations, the geometric recovery of the interstation
distances proves to be impossible. The GRAM 1 and GRAM 4 groups turn out
to be more representative station combinations. GRAM & (or SAFE 4) con-
sists of four relatively close stations in the western United States,
capable of generating "many" simultaneous observations (because of their
closeness) but with the danger of being close to a critical configura-
tion. GRAM1 (or SAFE 1) breaks up this "closeness" by exchanging ome
station (HO) in the West for a station (ST) in the eastern United States.
This GRAM 1 combination proveg to be far from"ecritical™ but has fewer
observations (events) because of its spaced-out geometry. As in all other
experiments the data acquisition was one range measurement per minute
with a standard deviation of 5 cm. Because of its lower ability to col-

lect large quantities of data, a one and a two day solution have
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been performed. Although this experiment is completely unrealistic
(every possible simultaneous event in the one or two day time span is
being used!) it clearly shows the very severe limitations of the geo-
metric analysis even in this over-idealized situation (i.e., reality
is worse!). The results as compared to the long arc analyses of 4-1/2

hours and 1 day, are as follows.

TABLE 6,22
GEOMETRIC AND DYNAMIC ANALYSES
Interstation Distance Recovery with Standard

Deviation in em. (Dynamic Mode: Elliptic Orbit,
no Constraints on GM.) Or =5 cm, At = 60 sec.

Geometric Mode Dynamic Mode

SAFE 4

GRAM 1 GRAM &
or or GRAM 1 GRAM 4

SAFE 1 SAFE 4
' 1day 2 days 1 day 2 days 4-1/2 hrs. 1 day

HO-QU - - 66 cm 48 cm 116 cm 1.0 em
HO-SA - - 55 36 30 1.2
HO-UT - - 142 90 9 0.8
- QU-5A 10 em 6 cm 80 53 85 0.9
QU-ST 56 42 - - - -
QU-UT 11 8 111 72 77 1.0
SA-ST 63 41 - - - -
SA-UT 17 9 185 117 6 0.8
ST-UT 43 32 - - - -
52/02 0.858 0,936 1.128 0.981 1.015 .963
Observations 376 772 676 1180 238 871
DF 88 187 163 289 219 852

Pagses 5 g9 4 8 2 (1-1/2) 6
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From Table 6.22 the following conclusions can be drawn:

.= The geometry of GRAM 1 is superior to that of GRAM 4, e.g., the stand-
ard deviation of the baseline Quincy-San Diego is reduced five times
(from 53 cm- to 10 cm) with less than one third of the observations
(1) if recovered in a good geometry.

~ Not only is the geometric mode limited in terms of estimable
quantities the analysis shows clearly that it is also limited
as far as the precision of the baseline recovery is concgrned:

4-1/2 hours of dynamié analysis (2 or better 1-1/2 pass) does an
equivalent job as two days of geometric analysis (8 passes). Keep
also in mind, 1-1/2 pass per day in the dynamic mode is feasible,
2 days with (all!) 8 passes in a geometric analysis is completely
unrealistic.

~ The previous conclusion-leads to the inefficiency of the geometric
mode: in two days the GRAM 4/SAFE 4 group collected 1180 range
observations but in the geometric analysis the model has only 289
degrees of freedom. The same group collects only 238 range observa—
tions in 4-1/2 hours but still has 219 degrees of freedom in case of
a dynamic analysis.

6.9 Precigionof Parameters not Directly
Related to Station Positioning

At the end of Chapter 4, Table 4.1 gives a detailed discussion
of the estimability of the various parameters in dynamic analyses. So
far our discussion has been limited to best estimable quantities, the
interstation distances. Other estimable quantities are the
orbital parameters, the station coordinates P, AA, R and the angular
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velocity of the earth W, . The estimability of these parameters indi-
cates the possible monitoring of the following important phenomena the
length of day/UTl determination from the angular velocity Wy and polar
motion determination from the (variation in the)} latitudes of the

stations.

6.9.1 ZLength of Day/UTl Determination

Striving for relative accuracies of 10“9

implies a length~of-
day determination with a precision of about 0.086 msec (per day) or
an angular velocity determination of 7.3 # 10_14 rad/sec (we = 7,292
115 1467 * 10™° rad/sec).

Concerning the above apparently stringent requirement of deter-
mining the length-of-day to about 0.086 msec/day one only has to remem—
ber that the largest short periodic variations in the spinrate are in
the order of 0.15 msec/day [Rochester, 1973]. The standard deviation
being hardly half of that value is not an exaggerated requirement. See
also section 2.5.

If limited to the discussion of secular perturbations of the
gravity field, the estimable quantity in case of range cobservations is
(we- ﬂb (see Chapter 4, section 4.7.3). Since the rate of change in the
argument of perigee 1s also estimable, 32 is estimable and W, and Q can
be determined separately. (In Chapter 4 thg two geometrical parameters

we-ﬁ and w were preferred over the set W, and J2; gimilarly, the para-

meter n (mean motion) was preferred over GM.) Does this mean that J
2,

2

also has to be known with a relative accuracy (precision) of 10~ The

answer to this question will be given in the following discussion.
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To be on the safe side, let the uncertainty of the contribution
of J2 to the parameter (wé-é) be half of the specifications mentioned
above, This means that 9 should be known with a relative precision of
3.5 % 10—14 ?ad/sec. However, for a satellite as LAGEOS (a = 12.000 km)
the rate of change in the ascending node is around $34/day or 6.9*10_8

rad/sec. This yields a relative accuracy for § of

3.5 % 10714

6.9 % 10°°

=5 %1077

Since ! is proportional to J, the dynamical form factor needs also to

7

be known with a relative accuracy of 5 % 10 '.

2

The recommendad wvalue

of the XVI General Assembly of the TUGG (1975) for 32 is

8

J, = 108263 + 1 * 10" [IAG, 1975]

5

which indicates a relative accuracy of about 10 ~. The conclusion

is that J2 needs to be known with an accuracy at least 200 times

better than the currently recommended value. This seems to make UT1
determinations by means of satellite ranging to LAGEOS very diffi-

cult. For lower satellites as STARLEITE (a = 7000 km) the rate of
change In the ascending node is much larger. For example, Q = -3°9/day
for STARLETTE which is ten times larger than LAGEOS' node rate. This

in turn implies that for UT1 determinations from range observations to
STARLEITE J, needs to known 2000 times better than the recommended value

2
of 1975.
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If one expresses the spinrate in arcseconds per time seconds the
requirement for spin rate determinatioms is 15 * 107° "/sec. Several

experiments are grouped in the following table.

TABLE 6.23

EARTH'S SPIN RATE DETEBMINATIONS WITH STANDARD
DEVIATIONS IN ARCSECONDS PER TIMESECONDS

Or = 5 cm, At = 60 sec

Stations Orbit Time Span cwe we-ﬁ
SAFE 4(1) elliptic 1 day 370 * 1077 "/sec
SAFE 4(2) n n 16 % 107
SAFE 4 n " . g %107
" " 4-1/2 hrs. 5118 * 1077
n elliptic with 1 day 18 * 10—9
sec. perturb. -9
n n 4-1/2 hrs. 8286 % 10

The results of this table are in apparent contradiction to the rea-
soning at the beginning of this section. If the geometry of orbit
and station configuration is not too bad (more than one station,
long arc not too short), the spin rate of the earth can indeed be
determined with a precision of 0.1 msec/day. The earlier reasoning

told us that J, is insufficiently known to guarantee proper UT 1 deter-

2
minations. The one but last experiment in Table 6.23 shows that if &
stations observe LAGEOS for 1 day (6 passes) with a ranging precision

of 5 cm (and At = 60 sec) the épin rate not only can be determined with
a relative precision of II.O—9 but also must have inherently determined

J2 with a higher precision than currently known. Reasoning further,
this implies that eight orbital parameter models are not only preferable
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but also a necessity (see also section 6.10). In this investigation
simple apalytic expressions are used for the dynamical analysis: the
eight parameter model consists of a, e, i, W, Q, K, Eo and n., As
the fourth example in Table 6.23 shows: 2all eight pa;ameters are
estimable even from a long arc as short as 4~1/2 hours (which was 1-1/2
pass: four stations observed one pass (f#f7) two stations the other pass
(#6)). The above mentioned model is capable of incorporating all secu~
lar perturbations (due to J2, J;, J3, J4= ete.) in w, Q (better we—ﬁ)
and n (or Eo). If one would have opted for the orbit determination by
numerical integration the eight parameters could be: a, e, i, &, &,
Eo, GM and JZ' The advantage of this approach is that it includes all
perturbations due to J2 (long and short periodic) but it does not
include any other perturbations as the aﬁalytic eight parameter model
does.

However, one should not forget that in the next to last
experiment (of Table 6.23) the recovery of the spin rate was a little

above the set requirements (18 x 10_9 "/sec instead of 15 x lO_9

"/sec)
whereas the very same simulation recovered the baselines with an aver-—
age precision of less than 1 cm! (see Table 6.7). This might also

serve as an example why in the dynamic mode the interstation distances
are called the best estimable quantities. Consequently, these optimis-
tic but still marginal results leads to the following opinion:
length-of-day/UT1/earth rotation determinations are preferably to be
derived from Very Long Baseline Interferometry as long as a blind system

such as laser ranging to a satellite cannot successfully separate the

rotation of the satellite's orbit with respect to the earth into two

173



components: the (inertial) angular velocity of the earth and the (iner-
tial) fluctuating rotations of the orbit caused by the non-central grav-
ity field of the primary. Other phenomena, as tides, will cause similar
fluctuating effects both in the angular velocity of the earth and in the
rotations of the orbit., Future research has to show how well these

effects are separable from satellite laser ranging.

6.9.2 Polar Motion Determination

Limiting our discussion to polar motion determinations in short
time spans the only estimable polar motion is the differential one: the
change in latitude and longitude difference of the observing stations
determines the change in position of the instantaneous rotation axis

(see Figure 6.3).

PATH OF
SPIN AXIS

AX1iS OF

FIGURE @

A

Figure 6.3. Differential Pelar Motion

Derivations in section 5.4.1 gave for the changes in latitude and longi-

tude difference
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A = ABm cos(l—Ahw) (6.9~1)
A?\cotan¢==A.9m sin(k-&lw) (6.9-2)

At maximum amplitude of the Chandler wobble the pole might displace
some 10-12 cm/day. Opting for standard deviations of the latitudes
less than 3 em or OVOO1 (10—9 relative accuracy) is not untrealistic.
JFor the same experiments as used for the spin rate determination one
fiﬁds the results in Table 6.18. Even in the cases of good geometry
(the second, third and fifth experiments) the ability of polar motion
estimation seems to be marbinal. This is only apparent since Table 6.24
reflects only the range of precision for the four stations individually.
The differential polar motion parameters Aew and Alw will be determined
from several stations, consequently their precision estimates will be
lower than the ones from the individual stations. From equations

(6.9-1) and (6.9-2) it can be derived that

2 27H/2
Aem = [(A¢i)i + (Alicotan¢i) ] (6.9-3)
Alicotanwi
and Alm = li - ar?tan _—_—TEET-H_ (6.9-4)

where i =1, ... , 1.

From formulas (6.9-1) and (6.9-2) it caﬁ be seen that the con-
tribution from the changes in longitude difference to polar motion is
negligible for stations in the low latitudes: polar motion is mainly

determined from latitude changes. However, in the mid-latitude or
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TABLE 6.24

DIFFERENTTAL POLAR MOTION DETERMINATIONS WITH STANDARD
DEVIATION FOR LATITUDE AND LONGITUDE DIFFERENCES
(TIMES cotany) IN ARCSECONDS AND cm

o, = 5 cm, At = 60 sec.

fime Span

Stations Orbit 0¢ GAl.cotanw
SAFE 4(1) elliptic 1 day (34 em)0V011 <0,<0%027 (83 cm) (28 em)0U009 <o <0V029 (90 cm)
- Y Al.cotany
o\ SATE 4(2) n n (5.3 )0.0017< <0.0020(6.2 ) (1.0 )0'0006< <0.0012(3.7 )
SAFE 4 " " (3.7 )0.0012< <0.0013(4.0 ) (0.9 )0.0003< <0.0006(1.9 )
" n 4-1/2 hrs. (136 )0.044 < <0.076 (235 ) (442 )0.143 < <0.157 (485 )
elliptic
" with sec. 1 day (4.3 )0.0014< <0.0017(5.3 ) (1.5 )0.0005< <0,0009(2.8 )
perturb. '
" " 4-1/2 hrs. (284 )0.092 < <0.186 (575 ) (1301 )0.421 < <0.487 (1505 )




higher regions the changees in longitude difference and latitude .are
equally important for the polar motion determination.

It may be concluded that differential polar motion determination
from range measurements to LAGEOS is feasible depending again on the
geometry. Not only needs the geometry of orbit and station configura-
tion be of high quality, the relative geometry of the stations with
respecf to the path of the spin axis is important too. TFor example,

Bm is best determined by the changes in latitude of stations in the
£ath of the spin axis, whereas stations in a direction perpendicﬁlar
to the péth (A-Alw==90° or 270°, see equation 6.9-2) contribute to the
polar motion through their changes in longitude difference. Having

14 months as a main period of the Chandler wobble stations in a local
region (as the experiments with the. stations in the United States) will
every 3-1/2 months alternate the nature of polar motion determining
quantities. TFor congistent polar determinations world wide stations

equally spaced in longitude are desirable.

6.10 The Influence of Constraints on GM (and le

The seven (a, e, 1, 2, ©, Eo’ n) and eight {(a, e, i, &, w, é,
Eo’ n) parameter models Introduced in Chapter 4 to represent the orbit
of a satellite had the purpose to allow for greater geometric freedom
in the orbit determination. In algorithms using numerical integration
the equivalent models are: a, e, i, 2, W, Eo’ GM and a, e, i, 0, w,
Eo’ GM and Jz. The advantage of the analytic seven and eight para-

meter models was briefly touched upon in section 6.9.1: the analytic

models allow for all secular perturbations in £, ®w and n and if used
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over short time spans short and long periodic perturbations in the seven
or eight elements are taken care of as well.

The subtle differences between the six and seven parameters will
now be elaborated on (the eighth parameter J2 was the subfect already
of some extensive discussion in section 6.9.1).

In principle there is hardly any difference between the six and
seven orbital parameter model if "one had constrained GM to the proper

value." In the first model one parameter has been simply eliminated
changing the degrees of freedom by one and consequently the standard
deviation of the recovered parameters (recall Tables 6.7 through 6.10),

see Table 6.25.

TABLE 6.25

LONG ARC ANALYSIS (ELLIPTIC ORBIT) WITHOUT AND WITH A
PROPERLY CONSTRAINED GM

Interstation distance and spin rate recovery with standard
deviations in cm and "/sec. G = 5 cm and At = 60 sec.

SAFE 4, 1 day SA¥E 4, 4-1/2 hours
RANGE 4
GM free GM constrained GM free GM constrained
HO-QU 1.0 em 1.0 cm 116 cm 115 em
HO-SA 1.2 1.1 30 30
HO-UT 0.8 0.8 9 9
QU-SA 0.9 0.9 85 85
QU~UT 1.0 1.0 77 76
SA-UT 0.8 0.8 6 6
w, 851077 "/sec 7#107° "/sec 5118%107° "/sec 1348%107° "/sec
5%/a? .963 .964 1.015 1.011
Observa. 871 871 238 238
DF 852 853 219 220

178



In reality, of course, one does not know the right value of GM. In the
following experiment it was assumed that the constrained value of GM is
as far from the truth as the latest recommended walue of GM [IAG, 1975]

from the one but latest recommended wvalue [IAG, 19711].

3 2
GM1971 398603 Im™ /zec

3 2
GM1975 398600.5 + .3 km /sec

The latest value claims a precision of 1 part per million. The dif-
ference between the values is around 6 parts per million. In the past
scientists have proved often to be much farther away from the truth
than one might have concluded from their precision estimates: e.g., in

[Deutsch, 1963] a wvalue and a precision for J2 was estimated to be

J, = 108219 # 2 * 1078

Compare this against the [IAG, 1975] value of
3, = 108263 + 1 % 107

The 1963 value was different from the 1975 value by a factor of
about 25 times its precision estimate. In fairness, in [0'Keefe et al.,
1959, p. 248] and [Kozai, 1964] the reported values were respectively

108260 + 6 * 107° and 108264.5 + 0.6 * 10701

In Table 6.26 the same experiments are repeated but now GM is
constrained to the 1975 value whereas the orbit and range were generated

with the 1971 value (it does not matter whether GM

1975 is actually

better than GMlQ?l):
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TABLE 6.26

LONG ARC ANALYSIS (ELLIPTIC ORBIT) WITH A
WRONGLY CONSTRAINED GML

Interstation Distance and Spin Rate Recovery with Standard
Deviation in em and "/sec. o= 5 em and At = 60 sec.

SAFE 4, 1 day SAFE 4, 4-1/2 hrs

HO-QU 66 cm 180 cm
HO-SA 77 47
HO~-UT 57 14
QU-SA 62 133
QU-uUT 69 120
SA-UT 58 9
R 483 * ].0—9 "/sec 2109 * 10_9 "/zec
G 4577 2,474
Observations 871 238
DF 853 220

1 = 398603 km>/sec’; GM = 398600.5 km>/sec’

data generation recovery

From this table it becomes clear that a long arc analysis of one
day is geometrically conditioned enough to detect the erroneously con-
strained GM: the xz-test on 82/02 fails without looking up the statis-
tical tables. However, a 4-1/2 hour long arc analysis barely fails the
xz—test. In reality, a satellite geodesist might be tempted to think
that he underestimated his ranging precision: a small increase from
o, = 5 cm to 7 cm will make 52/02 pass the XZ test. To illustrate the
danger, the change in GM introduced a bias in the San Diego-Utah base~

line of 45 cm, its standard deviation still being only 2 cm!
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This experiment hopes to show two features: £first of all, the
importance to have a very accurate estimate of the ranging precision,
secondly at a ranging precision of 5 cm a short long arc analysis is
already long enough to inglude either GM or the mean motion n as a
parameter,

In this respect the short arc mode (Table 6.27) has the advantage

to be insensitive to a'wrongly applied constraint' aswas done with GM,

TABLE 6.27
SHORT ARC ANALYSIS (ELLIPTIC ORBIT) WITHOUT
AND WITH A WRONGLY CONSTRAINED GM

Interstation Distance Recovery with Standard
Deviation in cm. g = 5 e¢m and At = 60 sec.

CM free GM wrongly constrained
Pass 1 Pass 7 Pass 10 Pass 1 Pass 7 Pass 10
HO-QU 1578 cem 1111 cm 187 cm 1188 em 1107 cm 186 cm
HO-SA 1331 204 327 1015 203 ) 324
HO-UT 194 200 206 150 200 204
QU-SA 296 750 i3 223 747 13
QU-UT 1013 565 690 796 563 691
SA-UT 59 19 429 58 19 429
&2/ 1.116 1.042 1.033 1.110 1.036 1.036
Observa. 166 . 192 194 166 152 194
DF 147 173 175 148 174 176

The short arc mode is so elastic, which is not in the last place
reflected by its large standard deviations (asign of weakness), that

the introduced wrong value of GM causes in pass 10 an "error" in the
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baseline Quincy-San Diego of only 17 ¢m, whereas its standard deviation
was 13 cm. 1In the unconstrained case the "error" was 15 cm, so an
increase of only 2 e¢m in a bageline of 896 km because of a GM which was
"in error" by 6 parts per million.

The conclusions following Table 6.23 (section 6.9.1) included

one concerning the recovery of J,: based on the highly precise

2
recovery of the spin rate of the earth inherently J2 must have been
determined with a higher precision than currently estimated. The basis
for this remark is illustrated with some examples. Because of the atten—

tion already paid to 32 two examples concerning the recovery of GM will

follow.

First, one can similarly say on behalf of GM: based on the highly
precise recoverable parameters a (semi major axis) and n (mean motion)
the gravitational constant GM must have been determined with a higher

precision than currently estimated,

From section 5.3 Kepler's Third Law led to the following statis-

tic for GM

2
2 40n 9Ua 12 Uan

n a an

Range observations from 4 stations (SAFE 4) during 1 day (6 passes) led

to the following result

_ 3 2
Oey = 0.0012 km™ /sec

Even a 4-1/2 hour (2, or better 1-1/2, passes) long arc analysis

T

recovers "a'" GM with a high preecision
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Oy = 0.14 km3/sec2

These two examples clearly show the importance of seven parameter {(or
including J2, eight) orbital analyses or in general, the inclusion of
parameters as GM, 32, ete., is a necessity in orbital analyses (using
numerical integration techniques) nomatter how short the time span of
the precise data fs. One ghould not give too much physical significance
to the value of GM determined in such a way: e.g., perturbations in the

semi-major axis and mean motion would cause a rapid varying value of GM,

which 1is of course nonsense.

A last example shows the influence of constraining GM on low
;i.nclination satellites. The "Clock Problem" (Chapter 4, section 4.2)
forms an excellent example of wrongly applied constraints, and best esti-~
mable parameters. One pass -of ranges was measured to a Lageos—type
satellite in an elliptic equatorial orbit (i=0°). Two equatorial sta-
tions with a difference in 1ongitud§ of 25° measured ranges with a pre-
cision of 5 em and at an interval of 60 sec (Table 6.28).

Despite the flexibility of the short arc it cannot absorb the
"wrong" GM constraint in the spin rate recovery. Geometrically, this has
a simple explanation: by constraining an "erroneous" GM the satellite is
forced around its orbit with the wrong mea;:z motion due to Kepler's Third
Law. Because the orbit is equatorial and blind range measurements
recover the earth's spin rate against the satellite's orbit, the only way
the "wrong' mean motion .can be compensated for is by the spin rate. This
is the reason for the very large discrepancy in the recovery of the

earth's spin rate. In general, it should be concluded that for low
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TABLE 6.28

SHORT ARC ANALYSIS (ELLIPTIC EQUATORIAL ORBIT)
. WITH A PROPERLY AND WRONGLY CONSTRAINED GM

Gr = 5 cm, At = 60 sec.

RANGE 3 (i=0°)

GM properly constrained

GM wrongly constrained

Parameter Value o] Al o A"
Rl 6378.140 km 232 cm =47.0 cm 232 cm ~84.6 cm
Xl ~12%5 iva3 ov29 w23 0422
R2 6379.140 km 233 cm ~45.6 cm 233 cm ~73.8 cm
12 12235 " 1v24 I ov30 13 124 B -0Y21 1
W, .72921151467%10 'rad/sec 4767%10 ""/sec <5%10 ““rad/sec 4765%10 “'/sec -144806%10
a 12267.6926 km 252 cm -56.2 cm 252 cm -39.7 cm
e 0.003845 34 % 1077 5.7 % 107° 34 % 1070 40.1 % 107°
Eo 55920345 1V24 0v30 V24 =-2%22
R12 2761.181 km 21.8 cm ~-4.5 em 24.6 cm ~4.2 cm

% /a? 1.116 1.115

Observa. 120 120

DF 112 112

lA = recovered parameter - "true" parameter.



inclination satellites the UT1 determinations are very vulmerable for
constraints affecting the satellite's mean motion, argument of perigee,

mean anomaly, etc.

A second feature which is only shown here but could have been
added as a conclusion almost to all experiments is that despite the fact
that the distance between the stations and the earth's center-of-mass
cannot be determined with a high precision (Table 6.28,0§f>2 meters!)
the distances between the stations are very well recoverable (Table 6.22,
O, . =22 cm!) and therefore often referred to as "best-estimable~

R12
parameters,”

6.11 Range, Range-Rate and Range-Difference Observations

With the help of a very simple geometrical example, the Clock
Problem, the predictions were made that as far as estimability of para-
meters is concerned the three measurement systems range, range-rate and
range-difference observations are equivalent. The following experiments
not only verify this but also give some insight in the ﬁrecision
standards one has to impose on these three systems in order to arrive
at similarly precise results. In section 6.2.4 the standard deviations
Gr = 5 cm, 0£ = 0.1 mm/sec and UAr = b mm were estimated to be equiva~
lent. The first test concerned the range-rate observations (Table 6.29).

Since the standard deviations of the baselines recovered with
range-rate observations are twice the standard deviations of those
recovered with range observations, it is concluded that the following

standard deviations are equivalent for a Lageos—type satellite (Table 6.30).
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TABLE 6.29

LONG ARC ANALYSIS (CIRCULAR ORBIT, 1 DAY) WITH
RANGE (Gr = 5 cm) AND RANGE-RATE OBSERVATIONS

(Ui = 0.1 mm/sec). At = 60 sec.

SAFE 4 RANGE 2 RRATE 2
HO~-QU 1.0 cm 2.0
HO-SA 1.1 2.3
HO-UT 0.8 1.8
QU-SA 0.9 1.8
QU-UT 1.0 2.2
SA-UT 6.8 2.0
&2 j? .956 .965
Observa. 864 862
DF 847 845

TABLE 6.30

LONG ARC ANALYSIS (CIRCULAR ORBIT, 1 DAY) WITH RANGE,
RANGE-RATE AND RANGE DIFFERENCE OBSERVATIONS

At = 60 sec.
SAFE 4 URAEG§ i; o =R§%g§ im/sec o] RDiFg im
T T Ar
HO-QU 1.0 cm 1.0 cm 1.0
HO-8A 1.1 1.1_ 1.1
HO-UT 0.8 .9 0.9
QU-8A 0.9 0.9 0.9
Qu-UT 1.0 1.1 1.1
SA-UT 0.8 1.0 1.0
o*/ .956 .959 941
Observa. 864 864 864
DF 847 847 847
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o =5 cm

T

0; = 0.05 mm/sec
GAr = 3 mm

Not only the interstation distances but all other estimable

parameters (e.g., orbital parameters) were recovered with the same

precision.
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7. SUMMARY AND CONCLUSIONS

"Episodic determinations of UT and/or the variation in latitude have
been obtained by VLBI, artificial satellite ranging, and LLR, ... .
True, there are semsitivity studies and projections for several of
them, but most of these are believed at most by-their authors,"

{J. D, Mulholland and 0. Calame, 1977]

Simple dynamical models have been analyzed from the non-Bayesian
point of view (no a pri;ri weighting of parameters, models expressed in
(the maximum number of unconditional) estimable parameters only) in the
cases of range (LAGEOS), range-rate and range-~difference observations.

The parameters which are estimable from a dynamical analysis of
laser range observations to artificial satellites are also estimable in
case of range-rate or range-difference observations. The different
nature of these three types of observations does not influence the esti-
mability of any of the parameters.

The rank deficiency of the three measurement systems (range,
range-rate and range-difference) in case of simple dynamical analyses of
Keplerian orbits is equal to two. The most general set of parameters
consists of twelve parameters: 6 satellite parameters a, e, i, 2, W,

Eo (orX, ¥, 2, X, ¥, ), 3 station parameters R, ¥, A (or x, y, z) and

3 earth parameters GM, w, and GASTO. Of these parameters ten parameters
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are estimable: a, e, 1, w, Eo’ R, ¥, GM, 0, and (A + GASTo - ). Tor
(secularly) perturbed orbits due to Jz the rank deficiency is still two.
In this case the most general set of_parameters consists of thirteen
parameters: a, e, i, 2, w, Eo’ R, ¥, A, GM, JZ’ me and GASTO. Of these
parameters eleven are estimable: a, e, i, w, EO, R, U, GM, JZ’ we and
(A + GAST0 - Q).

Since rapidly changing dynamical phenomena are to be monitored
(periods as short as half a day, for example) preference was given to a
more geometric approach of the dynamical analysis of satellite data.

In the Keplerian model GM was replaced by the mean motion n and in the

secularly perturbed case J, was replaced by the rate of the argument of

2
perigee Q. It has been argued that very short analyses might yield
unrealistic values for GM and J2. However, n and @ have been shown to
be very well recoverable parasmeters. The additional advantage is that
the now anomalistic mean motion, é and ) are capable of modelling all
secular perturbations (due to Jg, J3, J4, J2J3, ete.). A disadvantage
is thg possible loss in capability to determine UT. In the secularly
perturbed case it is clearly shown that because of the estimability of

(we - ﬁ) instead of W, variations in UT might be hard to separate from

any variations in the right ascension of the ascending node. Worse,

the variations might have the same frequencies (e.g., seasonal varia-

tions in J, and UT).

2
Although in a geometric mode analysis (simultaneous range
measurements) called the only estimable quantities, the baselines are

still the best estimable quantities in a dynamic mode analysis. It is

expected that this is alsc true for more complicated dynamical models
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in which more perturbations (due to the earth's gravity field, atmos-
phere, etc.) are included.

In the dynamic mode the estimability of the various parameters
is in theory independent of the length of the arcs under investigation.
This results in a rank deficiency of two also for the short arc mode.
Obviously, because of the deteriorating geometry the parameters in the
short arc mode are determined much worse than in the long arc mode.
This (relative) deterioration of the strength of the geometry in case
of short arc analyses is to such an extent that its future usefulness
needs to be reconsidered. In those cases whereby a baseline has a short
arc overhead and parallel to itself, the relative station recovery (the
length of that particular baseline) is the best. It is shown that more
in accuracy is gained by analyzing satellite observations over longer
time spans (e.g., a short lomg-arc of two passes).

With the help of some short-arc experiments it was shown that
wedighting of parameters (Ba&esian estimation) may lead to too optimis-—
"tic statisties.

Another geometric effect, the maximum zenith angle (cut off
angle) plays an important role: for every 10° decrease in the maximum
zenith angle (70°, 60°, 50°) the standard deviations of the recovered
parameters increase by a factor of two.

The consecutiveness of passes of LAGEOS (in average one set of
five comsecutive passes per day for a local area) provides an excellent
opportunity of relative station position to a high degree of precision.
Because of the nature of the various reference systems, the instan—

taneous geccentric latitudes of the stations are precisely recoverable.
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This makes in turn day-to-day monitoring of (differential) polar motion
easily possible.

Because of the closeness in the earth-satellite relationship
and the excelleﬁt capabilities of re}ative station positioning, the
role of LAGEOS must mainly be seen as an interpolating ome. A measure-
ment system as VLBI has to provide the absolute (external) angular
. ¥
orientation of satellite networks because it lacks the biases which are
go inherent to an earth-satellite system. However, satellite systems
will provide the positioning of networks with respect to the earth's
center—of-mass.

Because of the longitudinal rank deficiency satellite networks
determined by laser range and/or Doppler measurements will even in the
most ideal case (perfect internal and external consistency) be related
by an one—paramefer similarity transformation (one reotation in longi-
tude).

Even in short time spans (two consecutive passes) GM and J2 {or
n and &) are easily recoverable. The high precision range measurements
require the inclusion of these parameters. Although erronecus con~
straints on GM and J2 in longer arc analyses are easier to detect, a
short arc analysis is very insensitive to these. It was shown that a
bias in a baseline (1130 km) of 45 cm was statistically undetectable
despite the fact that the baseline was recovered with an estimated pre-
cision of 9 cm.

Whereas the geometric mode analyses of (simultaneous) range

observations requires at least four stations the minimum number of sta-

tions in dynamically analyzed range cobservations seems to be two.
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For simulation studies it is worth to note that identical
results from a variance anaijsis on the relative station positioning
are obtained if just simple orbital models as the circular one are
used, provided that: a. proper care is taken of introduced rank defi-
ciencies (e = 0, w and Eo are not separable, etc.), b, the (proposed)
satellite has a near-circular orblt as not to devia%e too much from the

geometric structure of orbit and observatiomns.

Recommendations for future studies may include the investiga-
tions (centered around the question of estimability) of the effects of
a. an extended gravity field (coefficients higher in degree and order

than J., b. other non-gravitational perturbations, c. correlated

2’
observations (in case of dense range observatioms, e.g., 10 measure-
ments per second), d. the earth's orientation (precession, nutation)

and its influence on the satellite's orbit.
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APPENDIX A

DIFFERENTIAL. FORMULAS IN ORBIT DETERMINATION

IN THE ORBIT PLANE

A.1 Introduction

In the determination of orbits one often makes use of geocen-
tric coordinate systems which refer to the focus of the orbit and whose
orientation is referred to the line of apsides. In Chapter 4 and
Appendix B repeatedly the same differential formulas are needed for
the setup of observation equations necessary in the variocus range,
range-rate and range-~difference models.

The reader is also referred to references as Brouwer and
Clemence [1961, Chapter IV], Escobal [1976, Chapter 3] and Dubyago

[1961, Chapter 11].

A.2 Geocentric Orbital Coordinates

The coordinates X Yy as well as the radius T, and their time

derivatives can be deduced from Figure A.l
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Figure A.1. Keplerian Orbital Geometry

One finds
wa— rwcos v cosE —- e
Yol =T sin v|=2ajvi- e sinE (A.2-1)
2 2 -
-rw x& +- yw 1l - e cosE
and ib ~ ginE
.ﬂ = aE |Vl - e cosE (A.2-2)
" e ginE

These six quantities are functions of a, e and two intermedi-
ate variables E and E which are related to time through Kepler's
equation.

A.3 Kepler's Equation and the Intermediate
Variables E and %

The eccentric anomaly E is related to time through Kep%?f's

equation. Three cases have to be distinguished: - the free geometric
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orbit where two out of the three parameters in Kepler's Third Law are

independent, the semi-major axis a, the mean motion n and the gravita-
tional constant GM, the case where GM is considered known (in Kepler's
Third Law) and the case whereby the mean anomaly is secularly perturbed

by the dynamical form factor of the earth J2.

A.3.1 GM (or n) Unknown

Kepler's equation was derived in section 3.4.1. TFrom equa-—

tion (3.4-6) one had
(E-—Eo) - e(sinE-sinEo) -nt =0 (A.3-1)
The intermediate variable E was given by equation (3.4-8)

n

= ——————— = A.3—'2
1l - e cosE ( )

E

ng

E

In evaluating the functional dependencies of E and E one has

from (A.3-1) and (A.3-2)

t=
I

£(e,E,;n) (A.3-3)

[ea 3
f

and = g(e,E,n) = g[e,f(e,Eo,n) ,n] (A.3-4)

or in differential matrix form

_ de
oE oE o
= | &2 o = ek A.3-
dE e 3E Bn] dE_ ( 4)
0
dn
and ™ . . de
hd oE ok oF _
" dE = 3e 3% Bn] dE (A.3-5)
- dn
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With substitution of (A.3-4) into (A.3-5) one has

de
. OE L SE QE QJE OE  OE , OF OE
S| LA, 855 ohoR  oR, Ob ok A, 3-
aE [3e+3E e OE 3L an""aEan] dE (4.3-6)
dn
The Evaluation of 2%
From equation (A.3-1) one obtains
.- (E—Eo) - nt
sinE-sinE
()
g de _ (sinE~51nE0) - cosE(E—Eo-nt)
o {sinE-sinEo)2
Tw
= a(sinE—sinEo) (A.3-7)
Consequently, one has from (A.3-7)
a(sink-sinE )
g—ﬁ - —2° (A.3-8)
@
The Evaluation of =5
qu
From equation (A.3-1) one obtains
nt = (E-—Eo) - e(sinE-—sinEo)
and Snt _ 1l - e cosE = f@, (A.3-9)
oE a
and - 0t . 1 4 e cosE = o (A.3-10)
BEO o a
whereby r, = a(l-e cosEo) (A.3-11)

o

Consequently, one has from (A.3-9) and (A.3-10)
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3E_ _ _3(at) /3(t) _ “o

SE 3E S T (4.3-12)
[»] o w

The Evaluation of-gg

on

From equation (A.3-1) one obtains

(E-EO) - e(51nE—51nE0)

n= £
r
and fn_l-ecosh.. v (A.3-13)

Consequently, one has from (A.3-13)

g'f'; = %5 (A.3-14)
[iU}

Combining the results of (A.3-8), (A.3-12) and (A.3-14) in

the differential equation (A.3-4) one has

de
dE = ﬁi-{sinE-sinEo; 1-e cosE 3 t] dE (A.3-15)
w
dn

The above derived expressions are needed for the observation
equations in the case of range and range-difference observations.
Range-rate observations require the partial derivatives of E in addi-

tion.

The expressions for these partial derivatives require the addi-

tional partial derivative %%u From equations (A.3-2), (A.2-1) and

(A.2-2) one finds
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) - en sink W (A.3~16)

9 (1 -e cosE)2 )

The Evaluation of Se

From equation (A.3-6) one obtains

9E _ 3E , 3E 3E
Je ~ de | 3E Be (4.3-17)

Substituting (A.3-16) and (A.3-8) into (A.3-17) and from (A.3-2) one

has
3E _ a2n coSE arw(sinE—sinEo)
de 2 2
T Tw
= i%{an cosE ~ iw(sinE-sinEo)] (A.3-18)
r
i}
The Evaluation of gﬁ_
E
0
From equation (A.3-6) one obtains
OF JE 9
o o
Substituting (A.3-16) and (A,3-12) into (A.3-19) one has
Bi: .w ro roi(ﬂ
= e e = - (A.S'—ZO)
5E0 I, I, r2
w
The Evaluation of Ky
From equation (A.3-6) one obtains
(A.3-21)

SE _ JE  9E JE
on on  8E 9n
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Substituting (A.3-16) and (A.3-14) into (A.3-21) and from (A.3-2) one

has

s
1l

(A.3-22)

Combining the results of (A.3-18), (A.3-20j and (A.3-22) in the

differential equation (A.3-6) one has
de

(A.3-23)

bt a - . -
dE = r2 [an cosE - rw(sinE—sinEo) 3 - rw(l-e cosEo) 3T, rwt] dEo
w dn

A.3.2 GM (or n) Known
From equation

Kepler's equation was derived in section 3.4.2.

(3.4-15) one had

(E—Eo) - e(sinE—sinEo) -at =0 (A.3-24)

The intermediate variable E was given by
E = et = 20 A.3-25
E 1 -~ e cosE T, ( )

But the variable n in equations (A.3-24) and (A.3-25) has become an

intermediate variable as well and is given by (Kepler's Third Law)

n = \fGI{/aB

In evaluating the functional dependencies of n, E and £ one has

(A.3-26)

from (A.3-24), (A.3-25) and (A.3-26)
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txie

or in differential

dn =

dE

f(a)

g(nse:Eo) = g[f(a):e:Eo]
h(n,e,E) = hif(a),e,glf(a),e,E 1)

matrix form

3n
= sg-da
_ - | én
~|3E BOE 23E
“[3n 9%e 9E de
- °7| aE
o
_ . .of dn
_.ag_ag_ag]d
~ | on de JE €
) | dE

With substitution of (A.3-30) into (A.3-31) one has

(A.3-27)

(A.3-28)

(A.3-29)

(A.3-30)

(A.3-31)

(A.3-32)

(A.3-33)

With substitution of (A.3-30) and (A.3-33) into (A.3-32) one has

i1

;- |(2E
i - (2

L ] .. - . da
ok 38\ on 9%, 0 om 2% 8E || o
9E on / 3a’ 9e  OE De’ OFE BE

o
. dEo

The Evaluation of 32

Differentiating (A.3-26) with regard to a, one has

on

Ba

rafo
o
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The Evaluation of g—%

From Equation (A.3-33) one obtains

dE 3E 9n
B2 - 3n Sa (A.3-36)
Substituting (A.3-14) and (A.3-35) into (A.3-36) one has
9F 3 nt
B2 - 21 (A.3-37)
[\
3
with n = \/GM/a
The Evaluation of gg-and §%~
A~ U o

The partial derivatives of E with regard to e and Eo yield the
same results as the case whereby Kepler's Third Law is not constrained

(see section A.3.1). Consequently, one has directly from (A.3-8) and

(A.3-12)
3E _ a(sinE—sinEo)
5a = rw (A.3-38)
3 _ Fo
and ‘E = -];;)- (A.3—39)

Combining results of (A.3-37), (A.3-38) and (A.3-39) in the

differential equation (A.3-33) one has

_1_[_
r
[iV]

with n = \YeM/a

da
nt a(sinE-sinEo) ro] de (A.3-40)

dE
o

dE

(X[

3
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The above derived expressions are needed for the observation
equations in the case of range and range-~difference observations.

Range-rate obgervations require the partial derivatives of E in

addition.

The Evaluation of %E

From equation (A.3-34) one obtains

'g-a-.' (A.B-llvl)

‘Substituting {A.3-21) (from equation (A.3-21) and (A.3-35) into
(A.3~-41) one has

*

ra{wo

,9E _ 3 n_ e _
da 2 (rw rwt) (4.3-42)
Tw

with n =VaM/a>

The Evaluation of Eg-and OF

de BEO

The partial derivatives of E with regard to e and E0 yield the

same results as the case where GM is unknown {(see section A.3.1).

Con~-

sequently, one has directly from (A.3-18) and (A.3-20)

3E a . . .

e = —E-[an cosE - rw(51nE—51nEo)} (A.3-43)

L)

)2 T .m

and 3F = - 02 (A.3-44)
() Ty,

with n =\/GM/33
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Combining the results of (A.3-42), (A.3-43) and (A.3-44) in

the differential equation (A.3-34) one has

da

= _ 113 s iy, o2 Al g . -y (A.3-45)
dE = -—-i-[—?z-n (rw-rwt), a’n cosE arw(sinE s:v.nEo), roru;l de
Tw . dE

A.3.3 Secular Perturbations due to

J2 (GM and J2 Known)

Kepler's equation was derived in section 3.6.2. TFrom equa-—

tion (3.4-6) one had

(E-E) - e(sinF-sink) - nt = 0 (A.3-46)

The intermediate variable E was given by

_n _____an
"1 - e cosE T, (4.3-47)

E

But the variable n in equations (A.3-46) and (A.3-47) has become an
intermediate variable and is given by the modified Kepler's Third Law

J azdl - ez
3 2 e 3 2
n =\/GM/a3 [1 *3 "3 gz (Fgsin i’} (A.3-48)
a“(I1-e™)

3 .2
=n () = no[l + A (-5 sin i) ] (A.3-49)
with n = GM/a> (A.3-50)
3 Jzai 1- e 3 .2
A == — (1-= sin” 1) (A.3-51)
n 2 2 2 2
a (I-e™)
3 J2a2 1 - e2
and by =% 2e. R (A.3-52)
a (1-e”)
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In evaluating the functional dependencies of n, E and E one has

from (A.3-46), (A.3-47) and (A.3-48)

n = f(a,e,i) {A.3-53)
E = 8(nse,Eo) = g[f(a,e,i),e,Eo] (A.3-54)
E = h(n,e,E) = hlf(a,e,1),e,8(n,e,E )]

h{f(a,e,i),e,g[f(a,e,i),e,Eo}} (A.3-55)

or in differential matrix form

_ da
[em 2 o i}
an=|& 2o ai] de (A.3-56)
- | 41
e
- |9E oJE 9E -
dE = an EY 3E0_ de (A.3-57)
) dE
o
i 0k oi]l
i - |35 5 ﬁ] de (A.3-58)
| ox

With substitution of (A.3~56) into (A.3-57) omne has

da

= -QE.QE..QE QE.EEJ §Eﬂ§3_ oFE de
dE = [Bn da’ de + on de’ 2n gi,‘gg—] . (A.3-59)

o di

| dE,

With substitution of (A.3-56) and (A.3-59) into (A.3-58) one has

da
. de
dE = [al 3, 9 34] - (A.3-60)
- - ,dEo_
, _ (2&, 3828\ .
with 9 = (an + 3K an) Sa (A.3-61)
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4

3E , B 3E\dn
83 = (Bn T3 Bn)ai
3 _ 3E 3E
4" 3E OE_

In the evaluations of (A.3-59) and (A.3-60) one needs

tial derivatives of n with regard to a, e and i respectively.

The Evaluation of 2—2—

Differentiating (A.3-48) with regard to a, one has

n Bno aAn
P2 9a (1+An) + B 82
n (I+A ) _
-. 2.0 Eo4+nA = -2
2 o n a

_1 1 .
= g (2n0-3§n)

The Evaluation of %-2—-

2T
on _ 1
de o de
An
=n * -5 * -2e
o (1-e%)
3e
= (n-n_)
1l - ez °

The Evaluation of g—;’:

— =1 A ¢ -3ginicosi
ol

= -3n A,sinficosi
o i
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(A.3-64)

the par-

" (A.3-65)

(A.3-66)

(A.3-67)



. oF
The Evaluation of#?;

From equation (A.3-59) one abtains
%a  9n 9a (4.3-68)

Substituting (A.3-14) and (A.3-65) "into (A.3~68) one has

BE _t oy __3%ﬂ) (A.3-69)
r (o]

W

The Evaluation of-%%

From equation (A.3-59) one obtains

®E _ SE , 3E fn i}
de  9e + on de (4.3-70)

Substituting (A.3-8), (A.3-14) and (A.3-66) into (A.3~70) one has

3E .a(sinE-sinEo) +.§E . 3e

Be r T
€ W w 1 -

]

p) (n-no)
e

a(l—ez)(sinE—sinEo) + 3aet(n—n0)

= 5 (A.3-71)
rw(l—e )
. JE
The Evaluation of =+
—d1
From equation (A.3-59) one obtains
9E  SE 5n )
oL _ o= o .3-72
9i n oi (A.3-72)
Substituting (A.3-14) and (A.3-67) into (A.3-73) one has
3E _ —SatnOAisini.cosi
EE r (A.3-73)

o
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The Evaluation of %%—
ko

The partial derivative of E with regard to Eo yvields the same

result as section A.3.1 or A.3.2. Consequently, one has directly from

(A.3-12) or (A.3-39)

3 _ o

w5 T T (A.3-74)

(s}

E

Combining the results of (A.3-69), (A.3-71), (A.3-73) and

(A.3-74) in the differential equation (A.3-59) one has

a2 _ _
4F = }}_I:(an B 392'-1:1)1:; a{l-e<¢) (ginE sinEg) + 3aet{n no);
u rm(l‘e )
da

de
- 3atn°Aisin icosi; ro] ai (A.3-75)

_ dEq
with n, n_ and A, given by (A.3-48), “(A.3-50) and (A.3-52) respec-

tively.
The above derived expressions are needed for the observation
equations in the case of range and range-difference observations.

Range-rate observations require the partial derivatives of E in addi-

tion.

The Evaluation of-%%

From equation (A.3-60) and (A.3~61) one obtains
o8 (BE _ 3E 3E ) dn
Ba - (an * 3z E) 3a (4.3-76)

Substituting (A.3-22) (from equation A.3-21) and (A.3-65) into

{A.3~76) one has
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OE

5= = 55 (r,-f,0) (2n_ - 350) (A.3-77)
T
w

The Evaluation of-%%

From equation (A.3-60) and (A.3-62) one obtains

3E _ 8E E BE , (9E , OE 8E \on _
3e e T BE e T ("a}I 3E an)ae (&.3-78)

Substituting (A.3-18) from equation (A.3-17), (A.3-22) and (A.3-66)

into (A.3-78) one has

3E e

-é-— 2 (n"n )
(=3

_a s o

=5 [an cosE rm(s:mE s:s_nEo)] (r -t t)l
r b, r
w al

_.a . _ 3e s _ _
= rzi}n cosE rm(sinE sinEo) + T 82(rm rmt)(n no)] (A.3-79)
)

The Evaluation of %%

From equation (A.3-60) and (A.3-63) one obtains

SE _ (2E , 3E 3E)3n _
i ( oF Bn) 3i (A.3-80)

Substituting (A.3-22) and (A.3-67) into (A.3-80) one has

BE —3anoAisin:.cosi.(rw~rmt) (8.3-81)

3 2
T
W

The Evaluation of

9E,
The partial derivative of E with régard to EO yields the same

result as section A.3.1 or A.3.2. Consequently, one has directly

from (A.3-19) or (A.3-44)
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: r t
—3%—- =- °2“’ (A.3-82) .
o] rw

Combining the results of (A.3-77), (A.3-79), (A.3-81) and

(A.3-82) in the differential equation (A.3-60) one has

.1 1 . 2 ) 3ae .
dE = —-2-[ (2n -3 s ) (rw-rwt) ;a"n cosE - arw(sinE—sinEo)-!- Z(n-—no)(ll’n"l‘wt) H
T, l-e
da
. . de
3anoAisini.cos:i(rm-rwt),—rorw] i (A.3-82)
dE
)

A.4 Cartesian Orbital Elements and the
Intermediate Variables E and &

A.4.1 Range and Range-Difference Observations
In case of range and range—differénce observations the partial

derivatives of X0 Yy and r , are needed with regard to E.

x(o - SinE
3 2
E Yul= 2 1 - e cosE (A . 4"'1)
Tw e sinE

Back substituting (A.2-2) into (A.4-1) one has

Xy i . | %

a "'l . - i) [3

3E [TulE E 7 [YulT 55| e (A.4~2)
Tuw ".l.'.'w fw

A.4.2 Range-Rate Observations
In case of ramge-rate observations the partial derivatives of
X

° &w and fm are needed with regard to E and E. In addition the par-—

tial derivatives of section A.4.l1 are needed
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by
3 w
3E | Tl
r
w

cosE

-aE Vl - e2 sinE

- e cosE

Back su stituting (A.2-1) into (A.4-3) one has

oF

= 08‘4- EN.

il

I
g e g

- sinE

a ﬂl - e2 cosE

e sinkE

Backsubstituting (A.2-2) into (A.4-5) one has

3

oE

P
Note that E

11
] EH

d

b4 %
1 [{A] T i1}
E- |y |21y
0] an {
rw rw
X
a [4\]
=.y
3E iw
(i3]

I
ta
€

A.5 Cartesian Orbital Elements

(A.4-3)

(A.4-k)

(A.4~5)

(A.4-6)

(A.4=T7)

With the development of the partial derivatives E and E with

respect to the various parameters the differential equations for the

Cartesian orbital elements (A.2-1) and (A.2-2) can be derived.

A.5.1 GM (or n) Unknown
{Parameters a, e, Eo’ n)

From (A.2-1) and (A.3-4) the functional relationships for range

and range~difference observations can be set up

(xmsyuprw) = fi(a,e,E) = fi[a,e,g(e,Eo,n)]
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with i=1,2,3

or in differential matrix form

Xw Xl@ xt-l! }?JJ
Il 3 3 | PlE 3% .. .-BE
d Yy | =317 a+3e ywde+aE Yy (Be de+BEo dEo+8ndn (Aa.5-2)
T T r T
w W W w

The Evaluation of the p.d.'s with Regard to a

From equations (A,5-2) and (A.2-1) one has

cosE -~ e

xll) Xw
53; v,|" \/1 - &% sinE =~‘,1; v, (A.5-3)
rm 1l - e cosE rw

The Evaluation of the p.d.'s with Regard to e

From equation (A.5-2) one obtains

XUJ X X
Aol e[ 2ee (4.5-4)
de | | de |w | 3E | T |Te <2~
% T o

Substituting (A.4-2) and (A.3-8) into (A.5-4) and developing the deri-

vative of (A.2-1) with regard to e one has

5 %o 1 T, % a(sinE—sinEo)
Be | T|™ @ > S | T
rw l1-e 1;0
cosE
1 sinE-sink_ e
= -a | -——"— gink |+ ———-2 ¥ (A.5-5)
5 n w
l-e r
cosE

This expression {A.5-5) can also be written as
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5 . A.5-6
= =aly |+ 8|3, (4.5-6)
rm r
with A= CosEte (A.5-7)
2 .
1 -e
5 = LE=Eo)=(M-Mp) _S1uE (A.5-8)
en E(l-e2)

and E given by equation (A.3-2).
The reader is referred for similar expressions to Brouwer and Clemence

[1961, Chapter IXj.

The Evaluation of the p.d.'s with Regard to Eo

From equation (A.5-2) one obtains

p.4 XUJ
3 JE ;
' o == A.5-9
3 | w + 3E | Tw oF (A.3-9)
o] r o]
Tw w

Substituting (A.4-2) and (A.3-12) into (A.5-9) one has

x p. 4
I il I (A.5-10)
3E |“w| an|’w )
r
i)}

The Evaluation of the p.d.'s with Regard to n

From equation (A.5-2) one obtains

XUJ XLI]

3 39 oFE

3| % | 58| Y |5 (571D
r r
w w

Substituting (A.4-2) and (A.3-14) into (A.5-11) one has
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5 X o | T
To T

Note that from (A.5-10) and (A.5-12) the following relationship holds

3 X0 .3 Xw
= |70 | 15| T (A.5-13)
Tw Tw

From (A.2-2) and (A.3-6) the functional relationships for

range-rate observations can be set up

(:'cm,irw,i'w) = fi(a,e,E,i:) = fi{a,e,gl(e,Eo,n),gz(e,E,n)] =

fi{a,e,gl(e,Eo,n) ,gz[e,h(e,Eo,n)),n] } (A.5-14)

with

[
|

=1,2,3

or in differential matrix fornm

%, \ X, ) xw‘
d4Yy| = 32l Tw (4 * 3eTul| T
Ty - e Tw
_*w-
3 |. OE JE JE
38| Y (—é-é-de+ BEO dE0+ Bndn) + (A.5-~15)
_rw_
3 |.°» [BE 3}:3(3E 3E 3E o
—ly, Hr—de+ soli-de+ s=—dE_+ a—dn |+ —é--dn
ol W de 9E\de BEO o ¢dn n
LT,
The Evaluation of the p.d.'s with Regard to a
From equations (A.5-15) and (A.2-2) one has
% =sinE x
J w . 2 1 v (A.5-16)
37 [l B[V - e cosE | = 2Dy,
rw e sinkE w



The Evaluation of the p.d.'s with Regard to e

From equation (A.5~15) one obtains

% % £ 3

IS N N 2 1. {38, 8 (,7(38 [ BE BE) (A 5-17

de |Yw|” e |w |7 3E (w3 T 37 | Yo (55‘* §E‘ae) (4.5-17)
rw r(.L) W w

Substituting (A.4-4), (A.3-8), (A.4~6) and (A.3-18) into (A.5-17) and

developing the derivative of (A.2~2) with regard to e one has

g

: +
X 2 azn(sinE—sinE ) T Be
31y |=2ml £ cosE | - 2 +
de |[“w r 2 T
S w 2 T
I, 1-e w Ty~ @
sinkE
. . X
an cosE - rw(sinE—51nE Y 1w
°_ 1y (A.5-18)
nr w
T
w
The Evaluation of the p.d.'s with Regard to E0
From equation (A.5-15) one obtains
im iw iw
3 1. 9 |. [BE 8 |.” |3E 9E
L _ = e s S S _— == A.5-19
9E | Tw 3E |Yw]3E. T 2 Y 9E 9OE ( )
°|. : o JE : o
(i w w

Substituting (A.4-4), {(A.3-12), (A.4-6) and (A.3-20) into (A.5-19) one

has

X X + ae X
3 an r rofw w
—_—1F = - - ¥ A,.5-20
BEO 7 r2 Y an T, Yo ( )
T ) r -a fw

The Evaluation of the p.d.'s with Regard to n

From equation (A.5-15) one obtains

214



»
X

e
e

9 (.21 3 |.Blor o |.MI{oE o oE
9 i L on N oL S8 oi .5-2
9n |‘w 3E | Yw |30 T or |“w |\ 9n T on (A.5-21)
T T t
iM] (3] [{3]

Substituting (A.4~4), (A.3~14), (A.4-6) and (A.3-22) into (A.5-21) one

has
X X <+ ae . x
— | ¥ - 9 A,5-22
an ym’ r2 yw + nr Y ( )
i‘w w r, -2 T,

Note that from (A.5-20) and (A.5-22) the following relationship holds

X, :'cw }':w .
3 . at 3 . 1.
3 0|7 55 o |t | (4-3-23)
N * UJ 0 f .
w [0} W

A.5.2 @M (or n) Known (Parameters a, e, EO)

From (A.2-1) and (A.3-33) the functional relationship for

range and range-difference observations can be set up
(%59, = f,(a,e,E) = £, la,e,8(a,e,E )] (A.5-24)

with i=1,2,3

or in differential matrix form

Kw Xw . Xw' Xm
9 3 9 oF ) OE
-2 =3 2oy H2E qas B ges 2B gp A.5-2
%P5z |Tu {9275 Y0 |42t 3E |V (aa datje det3E dEo)( 5723)
r r r T ©
w w (0}

The Evaluation of the p.d.'s with Regard to a

From equation (A.5-25) one obtains

3 [ ®1 8 | Wl 35 | ©isg

L =2 . = .5-26

9a | Tw 3a [Tw + 5E {Tw | 9a (4 )
rw ru} rw



Substituting (A.4-2) and (A.3-37) into (A.5-26) and developing the

derivative of (A.2-1) with regard to a, one has

SEN e X
3 _ 1 3t
92 1Tw] a2 |w |7 2% Yu (&.5-27)
T r i
)} w t
The Evaluation of the p.d.'s with Regard to e
From equation (A.5-25) one obtains
XLL) XL\) xu)
] _ 3 ] 9E
3e Y0 |~ 36 |Yu |T 3E |Tw |3e (4.5-28)
T r T
W W W

Substituting (A.4-2) and (A.3-38) -into (A.5-28) and developing the

derivative of (A.2-1) with regard to e one has

1 .
5 Xm e - sinE—sinEo xm
x Y(JJ = —a ""—'—“—2‘ sinE | + o w (A.5—29)
T l-e iw
cosE
which, as in section A.5.1, can be written as
x x %
3 [H}] [i}} .(.U
e [T | = A Yy + B Yo (A.5-30)
T r T
[44] W w
-with A =-Sostie (A.5-31)
l-e
(E-E ) -~ (M-M ) .
nk
B =S S (8.5-32)
E(1-e7)
and . E = %E
w



but now n = V(}M/a3

The Evaluation of the p.d.'s with Regard to E

From equation (A.5-25) one obtains

xw xw
d 3 oE _
%, |Yw |= 8 Yo [, (:3-33)
r r
w W
Substituting (A.4~2) and (A.3-39) into (A.5-33) one has
xw T iw
d o |.
= — .5-34
E_ {Yw an |7 (A.5-34)
° t
w o

From (A.2-2) and (A.3-34) the functional relationships for

range-rate observations can be set up

(iw’ﬁm’fm) = fi(a’e’E’E) = fi[a,e,gl(a,e,Eo),gz(a,e,E)]

A.5-35
fi{a,e,gl(a,e,Eo),gz[a,e,h(a,e,Eo)]} ( )
with i=1,2,3

or in differential matrix form

%, %, % X
. |8 |. 1. 3 3E BE, , BE
d Y ==z 1Y da + e | Y de 4+ NE yrm (3 da+ e de + —— BE dEo)
3 : e £ :
t 3 W w w {A.5-36)
d ,“’ o o 3% fom 3 E
g—ﬁ? Vo [Ba da+ —— e de+3E( da +5€ de+ E)E dE
urm-i

The Evaluation of the p.d.'s with Regard to a

From equation (A.5~36) one obtains
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bde

) e o Eolime o
? 9 . d . g o |, 9E O O (A.5-37)
B2 Yo [T | Yo |t Ve {9 T 38 [Fu\Ta ‘

Ty w T

»

£

Substituting (A.4-4), (A.3-37), (A.4-6) and (A.3-42) into (A.5-37) and

developing the derivative of (A.2-2) with regard to a, one has

x, x, 9 ¥t ae r -t | %
9 R T +_§_a nt 3w w .
da |7 a | Tw 2 r2 W 2 arw w
I t 0 r, - a £
3 ant o T2 T _Bimt “u
2 r2 W T T2ar w (4.5-38)
®w {r - a T
w

The Evaluation of the p.d.'s with Regard to e

From equation (A.5-36) one obtains

iw X im . .

o |21 2 |, e, 2 | Ulak , b 28

Be [Yw| %e [Tu de + BE Yo (Be * 3 8e) (8.5-39)
+ t - T
w W w

Substituting (A.4-4), (A.3-38), (A.4-6) and (A.3-43) into (A.5-39) and

developing the derivative of (4.2—2) with regard to e omne has

X + ae
3' X a2n e 0 azn(sinE—sinEo) w +
v |Ju | % ~ cost | - 7 7
fw l-e T r,— a
sinE

an cosE - fw(sinE—sinEo) W
3 (A.5-40)

nr
]

The Evaluation of the p.d.'s with Regard to E0

From equation (A.5-36) one obtains
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ﬁw im iw
3 . O | |8E 3 |.°{3E BE oy
38, |7 |98 |Tu {35, * oF |Yu |3E o5, (4.5-41)
[»] - - 0 E =
r r T
[i1] w [iA]

has
. xw am:o X 4 ae # Xw
: - 3
rw ] rw a w

Note that every n in section A.5.2 is given by Kepler's Third Law,

A4.5.3 Secular Perturbations due to Jo (GM and
Ty Known) (Parameteks a, e, i, Eo)

From (A.2~1) and (A.3-59) the functional relationship for

range and range-difference observations can be set up

(xy2¥y»1,) = £5(a,8,E) = £ [a,e,8(a,e,1,E )] (A.5-43)
with 1=1,2,3

or in differential matrix form

xw . X, . ; X,
d yw =E yw da+$ ym+
T rw rw .
- {A.5-44)
X
[ %
] oF 9E oE JdE
ﬁyw(-é;da+a—e-d Bidi+3E dE)
r
w

The Evaluation of the p.d.'s with Regard to a

From equation (A.5-44) one obtains

Kw X Xw
> | ©|_2 2 |9 e _
92 {70 | 9a{u!| T 3E Yo |2a (A.5-45)
T r r



Substituting (A.4-2) and (A.3-69) into (A.5-45) and developing the

derivative of (A.2-1) with regard to a, one has

5 % 1 *» | (2n —3%n)t 0
da {'uw a |"w an w
o i T
The Evaluation of the p.d.'s with Regard to e
From equation (A.5-44) one obtains
e X X
) w w
) d d JE
£ = — -— - A.5-47
9e | Y|~ 3e {Yw | T 3E |Yu |30 (4.5-47)
Tw T an

Substituting (A.4~2) and (A.3-71) into (A.5-47) and developing the

derivative of (A.2-1) with regard to e, one has

1

5 0 e (l-ezﬂkinE—sinEo)*-Bet(n—no) X
— = —g|=———— gink |+ v | (A.5-48)
%e |7u 2 (1-e%) v
r 1-e n T
A w
cosE
The Evaluation of the p.d.'s with Regard to i
From equation (A.5-44) one obtains
X X,
2 9 9L
31 |V |7 3E |Tw |3 (&.5-49)
T T
Substituting (A.4-2) and (A.3-73) into (A.5-49) one has
3 xw 3n0tAisin icosi xm
— = - 7 A.5-50
31 | T n Y ¢ )
I Tw
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The Evaluation of the p.d.'s with Regard to E0

From‘equation (A.5-44) one obtains

X X

3 ol B T R
T-E YLO = -g-E— 'yw T_E (A. 5"‘51)
e rw rw [a)

Substituting (A.4-2) and (A.3-74) into (A.5-51) one has

3 X T X
o] -
o] -
Tw T

with n, n, and ai glven by equations (A.3-48), (A.3-50) and (A.3-52).
From (A.2-2) and (A.3-60) the functional relationships for

range-rate observations can be set up

(% syw:r ) = fi[ase:glcaae’i:Eo):gz(asesi:E)]

= fi{a,e,gl(a,e,i,Eo),gz[a,e,i, (A.5-53)
h(a,e,i,Eo)]}

[N
]

with 1,2,3

or in differential matrix form

w 1} W W
. _E__ . E_ . 9 | OE QE_ OE OF
d e " 32 yw da.+3 yw de+3E © (3 da+3 de +3.’L di + +— °E dE)
t T T T
w ;w: w w (A.5-54)
w . - - -
4 i, JE oF 9 9E [0F 9E oE oF
gt [5?‘“3;&&*5?“ E(a"zda"a_ede*ﬁdi*“—dmﬂ Eo)]
T
w

The Evaluation of the p.d.'s with Regard to a

From equation (A.5-54) one obtains

W w w w d
2 |0 a0 o [ e, a0l ek a8 am) ,, .
3a |Yw | " 3 |w | 3E [Ju| %2 T 3 w(3a+3E Ba) (&.5-55)
2 i 7 ;
V) w w
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Substituting (A.4~4), (A.3-69), (A.4-6) and (A.3-77) into (A.5-55) and

developing the derivative of (A.2-~2) with regard to a, one has

b4 x 1 x  + ae
3 'w 1 .w -an(2no—32n)t w
3a | 7w a[‘w rz Yo
o w v Ty~ 8
. 1 %
N (rm-ru-)t) (2n0 -35n ) W 556
anr Y -5-56)
w *
rw
. 1 x Y x +ae
_ o+ (r, -t t) (2no -35n ) w an(2n0 -35 n)t 0
anr Yo |~ 2 Yo
w . I'w _
T, r,-a
The Evaluation of the p.d.'s with Regard to e
From equation (A.5-54) one obtains
% x b4 x
a1 ee, 8 | |(3k , BE 3K
e |Yw|” %e [0 |7 BE |Yu |Te T 5 [Yw|\Be T IE Te, (A.5-37)
rw ru) rw . r(.l)

Substituting (A.4-4), (A.3-71), (A.4-6) and (A.3-79) into (A.5-57) and

developing the derivative of (A.2-2) with regard to e, one has

. th azn . 0 , xw+ae
SelTw T coskE —_fg’"BT[(l-e ) (sinE-sinE )+3et(n-n )] Y
: w 1 2 r {(1~e”) © o
W —e w r,—a
sinE
%
1. . 3e v
+ -ﬁr—[an cosE - T, (sinE—smnEo) +;—?-(rm-rmt) (n—-no)] Y
T E
“YA.5058)

The Evaluation of the p.d.'s with Regard to i

From equation (A.5-54) one obtains
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be
bde
Mo

w w w = !
Sl | =22 |5 J2E 8 |.U3E  OE 3E A.5-59
5170 | T 3E |Yu |35 T o5 [T (31 + 35 Bi) ( )
by T T
w W W

Substituting (A.4-4)}, (A.3-73), (A.4-6) and (A.3-81) into (A.5-59) one

has
3 xw 3a2nontAisini cos i xw +ae
ENECEN 2 Y ¥
t, w r,~ 2
. %
_ 3noAisini cos i (rw—rwt) im (A.5-60)
nr, L
b
w
The Evaluation of the p.d.'s with Regard to E
From equation (A.5-54) one obtains
i{w s{m 1.{w .
9 . 9 . |OE 9 . 9E OE
g = Ao 2= 2= A.5-61
38 |Yw |~ 3 |Tw|3E T 5% |Yw | 3E IE ( )
o1. . o . 0
t o T
w w w
Substituting (A.4-4), (A.3-74), (A.4-6) and (A.3-82) one has
X X + ae . | %
3 w anr | “w R ) (. 5-62)
3E (Pw| T Z | Yw " anr W '
o1. r W] .
b wlr —-a t
w W w

Note that every n, n and Ai in section A.5.3 are given by equations

(A.3-48), (A.3-50) and (A.3-52).
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APPENDIX B

OBSERVATION EQUATIONS FOR RANGE, RANGE-RATE

AND RANGE-DIFFERENCE OBSERVATIONS

B.1 Introduction

In the determination of orbits, station positions and earth
parameters the partial derivatives for the observation equations in the
various measurement systems follow certain patterné. Special attention
will be given to the order in which the partial derivatives will be
computed as to take fully advantage of previous calculations. Since in
the Chapte;s 3 and 4 the models were set up in the alrea@y estimable
quantities no analysis of the partial derivatives and their possiﬁle
linear combinations needs to take. place.

B.2 Two Dimensional Circular Motion
in Case of Range Observations

E.2.1 GM (or n) Unknown

The range equation derived in sections 4.2 and 4.4.1 was

r2 = a2 + R? - ZaRcos(ao%it) {(B.2~1)
do = A+ CGAST - -w-E
with . ° ©
& =n-uw
e

In order to take advantage of certain equalities the range-rate equation

as derived in section 4.2 will be used as well
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It = aRdsin(ab+at) (8.2-2)

The Evaluation of the p.d. with Regard to a

3r

2r Yy 2a - 2Rcos(ao+dt)

8y 2 - Rcos(ad+at)

Pa r

Substituting the trigonometric part of the range equation (B.2-1) into

the equation above yields

S 2 2 2

a +r - R
— B.2-3
da 2ar ( )
The Evaluation of the p.d. with Regard to R

3 _ R-2a cos(a0+dt)
oR T

_ R2 + r2 - a2

- 2Rr (B-2.4)

The FEvaluation of the p.d. with Regard to o

or _ aR’
'5?‘;— - Sin(do'i'dt)

Substituting the trigonometric part of the range-rate equation (B,2-2)

into the equation above yields

«
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with

The Evaluation of the p.d. with Regard to &

or aRt Tt or
—_— = —— i + = —— = —
o r ° n(a at) & t 3(10

B.2.2 GM (of n) Unknown

The range equation derived in section 4.4.2 was

2 a2 + R2 -~ 2aR cos[ao+(n—me)t]

T

n =. GM/a3

The range-rate equation is

rY = aR(n—me)sin{a0+(n~we)t]

The Evaluation of the p.d. with Regard to o

dr _ aR +
"‘“‘—‘aao =5 Sin[OL +(n—w ] = 'IFI-'-_UJe

The Evaluation of the p.d. with Regard to ®

3r _  aRt -
r = snx[ao-l-(n—we)t] =T we = -t -‘—'—aao

The Evaluation of the p.d. with Regard to a

2 2 2
9r _a +r - R aR 3 nt
Na Par + -;— sin¥ao+(n-we)t] . - E?
- a2 + r2 - R2 2_-1_1'_ ar
2ar T2 a 3
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(B.2-7)

(B.2-8)

(B.2-9)

(B.2-10)"
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The Fvaluation of the p.d. with Regard to R

_Rlaxt - (8.2-12)
dR 2Rx ’

In the equations (B.2-8) through (B.2-12) the mean motion n is equal

to "GM/aB.

B.3 Three Dimensional‘ Circular Motion in Case
of Range Observations

B.3.1 GM (or n) Unknown

The range equation derived in section 4.4.3 was

r2 = a2 + R2 - ZaRcoso, (B.3-1)

with coso, = cosyPcosf + sinysinusini

cosf = cosAlcosu+ sinAisinu cos i

i

u=u +nt = (WE) + nt
) o

A

1

AX +w t = (AHGAST -Q) + w t
) e o e

The range-rate equation derived in section 4.7.1 was

rf = aR[cos¥sinAlcosu (we-n cos i) +
cosfeosAhsinu (n-w cos i) + (B.3-2)

- nsinpcos usin i]

aRn[cosYP(cosAAsin u —sinAlcos u cos 1)
- sinPcosusini] + (B.3-3)

aRmecosw(sinA}\cos u ~cosAAsinu cos 1)
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The Evaluation of the p.d. with Regard to a

a2 + r2 — R2
2ar

x. (B.3-4)

The Evaluation of the p.d. with Regard to R

2 2 2
or R+ r" -a . (B.3-5)

9R 2Rr

The Evaluation of the p.d. with Regard to i

%§-= éBﬁ%EJi (cosPsinAlsin i - sinycos i) (B.3-6)

The Evaluation of the p.d. with Regard to ¥

%%—=f%§l(sin¢cosB—cos¢sin11siniJ (B.3-7)

The Evaluation of the p.d. with Regard to u

or _ &R [cosw(cosAlsintzw_sinAAcosr;cosiJ

du T
(o)
~sinfcosusini] (B.3-8)

Substituting the trigonometric part of the first term of the range-rate

equation (B.3-3) into the equation above yields

P : aRwecosw
T T T (sinfAlcos u - cosAAsinu cos 1) (8.3-9)
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The Evaluation of the p.d. with Regard to n

9r aRt

T [cosP(cosAAisinu — sinAXEos u cos i)

- sinlcosusini]=t -g—z——'
8]

The Evaluation of the p.d. with Regard to A?\ﬂ

or  _ aRcosy (sinAicos u~ cosAlsinu cos 1)
3&1\0 T

(B.3-10)

Substitution of the ‘trigonometric part of equation (B.3-9) into the

equation above yields

or + n or 1 or )

N % "w du o Forgg
O e e [ e o

The Evaluation of the p.d. with Regard to w
L=

or
ow
e

= aRt;COS‘JJ (sinAAcos u - cosAAsinu cos i)

_ . or
=t aAn
o
B.3.2 GM (or n) Known
The range equation derived in section 4.4.4 was

r2 = a2 + R2 ~ 2aRcosg

with coso. = cosfcosf + sinPsinusini
cosf = cosAlcosu+ sinAisinucosi
u=u + nt = (w-l'Eo) + \/GM/aB t
AX =

Mo + wet = (}d-GASTo-Q) 4+ met
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The range-rate equation as in section B.3.1 is

+
H
n

r = aRn[cos¥(cosAisinu - sinAAcos u cos i)
- sinPcosusini] + (B.3-14)
aRwecosl,b (sinAlcos u - cosAlsinu cos 1)

M/ a3

fl

with n

The Evaluation of the p.d. with Regard to u

A similar expression as in section B.3.1 applies here

rt - aRwécoslp(sinAlcos u - cosfAAsinu cos i)

or
du_ ar (B.3-15)
o
The Evaluation of the p.d. with Regard to a
2 2 2
or _ & + r —~ R aR . . )
da 2ar + {COS‘I’(CDSN\SH}H— sinAlcos u cos 1)
. 3 nt
-~ sinycosusindi} -5

Substituting the equation (B.3-8) into the expression above one obtains

_B_r=a2+r2—-R2_§_1_1£Br B.3-16)
da 2ar 2&131.10 (B.3-

The Evaluation of the p.d.'s with Regard to R, i, ¥, AA and W,
L)

The partial derivatives with regard to R, i, ¥, Alo and w, are
given in section B.3.1 by the equations (B.3-5), (B.3-6), (B.3-7),
(B.3-11) and (B.3~12) respectively. Wherever the mean motion n ap-pears

in the partial derivatives of this section it needs to be evaluated as

\’GM/aB.

230



B.4 Two Dimensiomnal Elliptic Motion
in Case of Range Observations

B.4.1 GM (or n) Unknown

The range equation derived in section 4.5.1 was

]
1]

2 Lg% : B.4-1
r, + R 2R(chosA?L+ywsinAl) ( )

with AX

AN+ w t = (AMGAST --u0) + w t
e} e o} e
and X 0 Yy T, 28 given in Appendix A, sections A.2, A.3.1, A.4.1 and

A.5.1.

The range~rate equation is

b o= Fo- 3 7 — B.4~-2
i =1 & R(chosA}H-ywsinA)\) + Rme(stinﬂl\ y,,COSAX) ( )

with }.cw, frw, ;'”w as developed in Appendix A, sections A.2, A.3.1, A.4.2

and A.5.1.

The Evaluation of the p.d. with Regard to a

3r Brw wa Byw
21 5= = 2r o— = 2R | = cosdM —— sinldA
da a da da

Using equation (A.5-3) one obtains

or ~ ri - R(chosﬁk+ywsinﬂl)

da ar

r2 + r2 - R2
=2 (B.4-3)
2ar

The Evaluation of the p.d. with Regard to EU

ar ax oy

L or W W W -

2r E 2rw T 2R (—-—-—aE cosA) +-—--—BE sinA)\)
o] o] (o) 0
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Using equation (A,5-10) cone cbtains

r
& __o [r fw - R(iwcosAA+§wsinAl)] (B.4~4)

r
9r _ _To [ . _ £ A B b=
E = anr [T Rwe(xw51nAA ywcosAl)] ( 5)

The Evaluation .of the p.d. with Regafd to n

With the help of equation (A.5-13) one obtains

or at ro
= T . ;5;-[rmrm - R(chosA1+ywsinA})]
_ at or -
T T oF (B-4-6)
O O

The Evaluation of the p.d. with Regard to e

From equation (A.5-6) one had

X X x
5 w W o (B.4-7)
e yw = A yw + 3B |y .
r ‘r T
w w
Substituting (A.5-3) and (A.S—Id) into (B.4-7) one obrains
X % X
3 ] B 3 .
S|y o= 2 nB 9 B.4-8
de yw aja da yw + r, BEO yw ( )
T T T
w w

This relationship plays an important role in the analytical orbit

determination theory. With the help of equation (B.4-8) one arrives
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directly at the partiél derivative of the observed range with regard

to e
ar 8r . nB or
—=ald =+ —= (B.4~9)
de ( da T, BEO)

The Evaluation of the p.d. with Regard to R

2 2 2
or R+ r° - 1
R TRy (B.4-10)

The Evaluation of the p.d. with Regard to AA
A

r  _ R
3 r
0

(st inA)\—ywcos AA)

Substitution of the trigonometric part of equation (B.4-5) into the

equation above yields

or _ % __an 9r _ 1 f. an 3r ~
ML w _row E  w (r T BEO) (B.4-11)

The Evaluation of the p.d. with Regard to w
L=

or Rt
-.-aw—e == (stinAl—ywcosAJ\)
=g O -
= BARO (B.4-12)

B.4.2 @M (or n) Known

The range equation derived in section 4.5.2 was

H
I

2 2,
r'w + R - 2R(chosAJ\+ywsinA}\) {B.4-13)

with A = AA +tw t = (AGAST ~Q-w) + w t
0 e o} R e

233



and Xy Yo T, 28 given in Appendix A, sections A.2, A.3.2, A.4.1 and

A.5.1.

The range-rate equation is

rf =x t - R(xmcosﬂl+ywsinAl)'+ Rme(stinAA—ywcosAA) (B.4-14)

with im, §w,-£w as developed in Appendix A, sections A.2, A.3.2,

A.4.2 and A.5.2.

The Evaluation of the p.d. with Regard to EO

A similar expression as in section B.4.1 applies here

0 _ ‘o . _ oo S )
9E_ ~ anr [r t - R(E cosihy sinfid)] (B.4-15)

The Evaluation -0of the p.d. with-Regard to a

With the help of equation (A.5-27) one obtains

24,2 g2
ar W

3 3t . ae :
e e e [rwrw R(chosAA+ymsinAA)]

Substituting equation (B.4-15) into the'equatiOn above yvields

r2 + r2 - R2
or )

_ 3nt 3r ~
%2 = ZaK 5r BE_ (B.4-16)
o o
The Evaluation of the p.d. with Regard to e
From equation (A:S—BO) one had
X 1x x
3 [ w
e =Al|ly {+B|7¥ (B.4-17)
r T b
w
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Substituting (A.5-27) and .(A.5-35) into (B.4~17) one obtains

X, (x| X X
9 S 4 3 ant 3 4 anmB 3
%e | 7w 9a | 7w 21 9E |7w r OE |
r T e r T
w | "w ] w W
[z b4
3 w n ] w
= a A-EE Y +_§;_ (3At+2B) S5 1Ty (B.4-18)
o o
K | T

This relationship plays a similar recle as equation (B.4—8) in the range
observation equation with non-enforcement of Kepler's Third Law.
With the help of equation (B.4-18) one arrives directly at the partial

derivative of the observed range with regard to e.

or _ 9r , an or
e alA et —-—21_0 (3At+2B) an (B.4-19)

The Evaluation of the p.d.'s with Regard to R, AN and w
18y L

The partial derivatives with regard to R, AAO and we are given
in section B.4.1 by the equations (B.4-10), (B.4-11) and (B.4-12),
Wherever the mean motion n appears in the partial derivatives of this

section it needs to be evaluated as VGM/aB. Similarly;wherever the

X,yw,r

variables x T
w? Yw Tw X

, 2ppear in the partial derivatives of
this section, they need to be evaluated as in the sections A2, A.3.2,

A.4.1, A.4.2 and A.5.2 of Appendix A.
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8.5 Three Dimensional Elliptic Motion
in Case of Range Observations

B.5.1 €M (or n) Unkanown

The range equation derived in section 4.5.3 was

2 2 2
r=r + R” - ZR(me+Qym)

with P = Pccosw + Pssin¢
Q = Q cos{p + Q siny
c - T
Pc = cosAlcosw + sinAlsinuwcos 1
PS = sinwsini
Qc = —cosAAsing + sinAlcosucos i
'QS = goswsin i

Ak = AN "+ wt = (MGAST -Q) + w t
(o] e [a] e

(B.5-1)

and X s Y, T, a8 given in Appendix A, sections A.2, A.3.1, A.4.1 and

w
A.5.1.
The range-rate equation derived in section 4.7.2 was
s _ T . . T 0t .5-2
tt =t R(wa+Qym) + Rmecosw(P x,Q yw) (B.5-2)
with P' = sinAAdcosw — cosAAsinwcos i
Q" = sinAlsinw + cosAlcoswcos i
and im, §m’ éw as developed in Appendix A, sections A.2, A.3.1, A.4.2

and A.5.1. Several partial derivatives can be taken directly from

section B.4.1.
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The Evaluation of the p.d. with Regard to a

ar
da

i

T

+ r2 - R2

2aR

The Evaluation of the p.d. with Regard to EU

Sr

dE
0

T
Q -
anr [ rwrw R (wawyw) ]

Using the range-rate equation (B.5-2) one has

or

= -2 [rf - Rmecosw(P'xurQ’yw)]

anr

The Evaluation of the p.d. with Regard to n

or
on

at or
r oJE-
8] o}

The Evaluation of the p.d. with Regard to e

or
de

or nk or
a("‘*ﬁ*‘r BE)
[s] [a]

The Evaluation of the p.d. with Regard to i

ar
a1

N =

(stintuhFosm)(coswsinAAsini.— sinycos 1)
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The Evaluation of the p.d. with Regard to w

oP
Since £ = Qc
Sw
BPS
3w Qs
R .,
RN c
8Q
and —= - p
3w s

or R

or _ & - B.5-9

w T (wa wa) ¢ )
The Fvaluation of the p.d. with Regard to R

- Rz + r2 - ri (B.5-10)

LI B,5~

oR 2Rr

The Evaluation of the p.d.

with Regard to ¥

¥

gr =-§1[(Pcsinw-PScosw)xw + tQésin¢—QScosw)yw] (B.5-11)

The Evaluation of the p.d. with Regard to AAU

or
A
o

= Rgosw [ (sinA)cosw—-cosAAsinwcos 1) Xy T
(sinAdsinurtcosAlcoswcos 1) yw]

= 3%229.(vam_qtyw) (B.5~12)

Substitution of the second term of equation (B.5-5) into the equation

above yields
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Ez_=£__~.a_n_§£_=.l_(f_é.‘lﬂf_) (B.5-13)
0

The Evaluation of the p.d. with ﬁegard to w
L=

9r _ Rt cosy ,_, ' _ . or
T T A vy (B.5-14)
e o
B.5.2 GM {(or n) Enown
The range equation derived in section 4.5.4 is
2 2 2
= —_ B. e
T r +R ZR(wa-i-Qyw) (B.5-15)
The range-rate equation derived in section 4.7.2 was
- - » — . - - ] —_ ' o
=71 or R(P§w+Qyw) Rwecosw(P X, Q yw) (B.5-16)

All the variables are as defined in section B.5.1 with the
exception of X Yo T ?hese variables are as developed in AppendixA,
sections A.2, A.3.2, A.4.2 and A.5.2,

The evaluation of the partial derivatives of the range with
respect to the various parameters is identical to the ones as described
in section B.5.1 with the exception of:

—~ the omission of dr/dn (not applicable in this case)
— the revised version of 9r/%9a and consequently 98r/de

— the replacement of n in all the partial derivatives of section B.5.1

by VGM/aB.

The Evaluation of the p.d. with Regard to a

A similar expression as in section B.4.2 applies here
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2 2
pr_Tw¥F TR 3arr
oa 2ar 2 r B8E

o [a]

The Evaluation of the p.d..with Regard to e

(B.5-17)

A similar expression as in section B.4.2 applies here

r _ jﬁ;' an or
e = alA 3 +-§;: (3At+2B) EE;

(B.5-18)

The Evaluation of the-p.d.'s with Regard to E , i, w, R, W,

AN and w
—o———¢

The partial derivatives with regard to EO, i, w, Ry, Ako an@

w, are given in section B.5.1 by the equations (B.5-4), (B.5-8),

(B.5~9), (8-5-10), (B.5-11), (B.5-13) and (B.5-14).

Wherever the mean

motion n appears in the partial derivatives of this section it needs to

be evaluated aé\’GM/a3. Similarly, wherever the variables X0 Vo I

w

m’

"X V? rm appear in the partial derivatives of this section, they need

to be evaluated as defined in sections A.2, A.3.2, A.4.1, A 4.2 and

A.5.2 of Appendix A.

B.6 Three Dimensional Secularly Perturbed Elllptlc
Motion in Case of Range Observations

The range and range-rate equations for this case were developed

in sections 4.6.1 and 4.7.3 respectively.

The partial derivatives for

the various parameters will be very similar as developed in section B.5

and will not be repeated as the pattern déveloped in the sections B.2

through B.5 must be clear to the reader by now.

tions to the above mentioned similarities should Be noted.

The following excep-

Wherever the

argument of perigee w appears in the equations it needs to be evaluated
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as W + ot, Similarly, the longitude difference AMA has now to be
evaluated as (A+GASTO-Q) + (me—ﬁ)t and the angular velocity R has to be
replaced by (we—ﬁ). The partial derivative of the only new parameter

W is easlly obtained

3 _ 3T 3
36.) =t awo (B-G l)

with arlamo equal to 9r/dw as in section B.35.

B.7 Partial Derivatives in Case of
Range-Rate Observations

In the sections concerning the partial derivatives in case of
range observations (sections B.2 through B.6) the corresponding
range-rate equation was always given (to simplify the expressions of
the partial derivatives for range observations). With the help of the
range equation and the corresponding partial derivatives for the
ranges the partial derivatives for range;rate observations are easily
obtained. Denoting the parameter for which a partial derivative is
computed, by py one has

a(rt) . or ot

=t +r (B.7-1)
Bpi Bpi Bpi
from which easily is cobtained
a]..' = _:!_._ B(ri') _ _i; Br (B 7_2)
9p; T 8py T 9py

The only term left to be determined is a(rf)lapi and is left to

the reader to derive.
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B.8 Range-Difference Observations as Viewed as
a Transformation of Range Observations

Large simplifications in the analysis of range-difference
observations are obtained if the range-difference model is viewed as

a transformation of the range model.
Ar,. =r - r, (3.8-1)

In matrix form (B.8-1) becomes, using the notation as developed 'in

[Uotila, 1967]

L) py = 6L (8.8-2)
i i
with
-1 1
-1 1 0
-1 1
G = -1 1 (B.8-3)
0
-1 1
Similarly, one has - -
(Lo)Ari = G(Lo)r (B.8-4)
i
and

D, = Cp = Gy
= el@)_ - ()
i i

= G@)ri (B-8-5)

Assuming uncorrelated range observations
L =0’I (B.8-6)
o]
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the variance/covariance matrix for the. range-difference observations

becomes

_ T 2 7 _
£y, =6I_ G = 07GG (B.8-7)

The weight coefficient of the range differences is then

2 -1
o 2 -1 0
-1 2 -1
-2 LT -1 2 -
QAr = Go EAr. = GGT = {B.8-8)
i i

0 2 -1
-1 2
s -

The computation of the weight matrix, the inverse of the weight coefl-
ficient matrix, would be time consuming if one does not take advantage
of the elegant structure of the matrix Qﬂr .

i

Empirically, it was found that the inverse can be computed in an analy~

tic manner:

. Llatl-c) _
[Fﬁri] = T fore>r (B.8-9)

r,e
where n, r and ¢ are integers denoting respectively the number of
range-difference observations, the row number of the matrix element and
the column number of the matrix element.

As an example, assume n = 5.

. "2 1 0 0 0]
Then 9 -1
Qéri - 2 -1 0
2 -1
8 2
L. —
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and

(=]
[ B o) TR R o §

(S B - R FL R U R

s

Not only the observation vector but alsc the design matrix for

the range difference model is obtained by transforming the design matrix

for the range model. Without derivation, one clearly has

A = GAr, (B.8-10)
Ar, i

1

The normal matrix for the range difference observations becomes

T
N =AT P. A (B.8-11)
Ari Ari Ari Ari

Using (B.8-8) and (B.8-~10) in (B.8-1l) one obtains

N, o= A" ety Lea (B.8-12)
T T, T
i i S A
which might be written as
N = AT T A (B.8-13)
T, Ty T

with the special weight matrix f; being
i

P =clwe) e (B.8-14)
T4

Empirically, it was found that

n forr =c
iefeeh e = }_ . (8.8-15)
r.¢c o n -1 forr#ec
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Using the same example for n = 5 one has

G(GGT)"IG = %- 5 -1 -1 (B.8-16)
5 -1
s 5

A similar reasoning for the U-vector in the normal equations leads to

T
U = A" P L {B.8-17)
Ari Ari Ari Ari

Substituting (B.8-10), (B.8-8) and (B.8-5) in (B.8-17) one obtains

AT GT(GGT)_IGL
i Ty Ty

=]
fl

Ar

A$ P L (B.8-18)
1 %1%y

i}

This makes the similarity between the range and range-difference models

complete:
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Range Observations Range-Difference Observations

ri Ari = Gr
5. o= o2t = 6’1 % =gL e = g2eer
r, or, o} Ar, T o
i i i i
T -1.T T — -1, T =
X=-(A_P_A_) A P L X=-(A_P_ A ) AP L
SR T S T et | Ty ity LTy %y
~2,.T -1 A2 T — -1
I =g (A P_A_) I =0 (A_P_A_)
X ChE T 'Y o r Ty
with with
P =1 T =elee)y Lo
T, T,
i 1
and and
1l forr=c n forr=
T T.-1 1
[I]r c ={ - [67(ee) ‘G]r e n+l{
’ o forr #c > -1 for r #

It should be understood that this transformation needs to be
applied each time a new pass of ranges/range-differences has been

observed.
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APPENDIX C

SIMULTANEOUS RANGE OBSERVATIONS AND THE GRAM DETERMINANT

The International Dictionary of Applied Mathematics [IDAM, 1960,
p. 412} gives the following definition of a Gram Determinant:

"The Gram Determinant of n functions (or vectors) £, f2, eeny £
is the determinant of the n x n matrix whose general tefm dis
(£.,£,), namely the scalar product of fjand fj. The wvanishing
of “thd Gram Determinant {or Gramian) is necesSary and sufficient
for linear dependence of the functions (or vectors).”

n

This definition becomes once clear if one considers the normal
‘rix in least squares methods as a Gram matrix.,

Having a design matrix A,

a

i1 12
A=1ay a5, (C-1,
431 932
theWnorﬁal matrix N becomes, omitting weights,
2 2 2 '
a . +ta . +a . a . .a..+ta, .a. ., +ta, .a
N = A?A | 21 31 11712 "21722  “31732 (c-2)

2
319311 T 89989y T 35,84 a7y taj, +ag,

If one considers the design matrix A as built up from two

column vectors, (C-1) becomes

247



A= I:al’ az] (¢-3)
The normal matrix becomes, written in scalar products,

G, 3) G, 3y

=
I

N o (C-4)
(a,, al) (az, a,)

The rephrased definition will read as follows?!

"The Gram Determinant (i.e. the determinant of the normal
matrix) of u vectors aj, ap, ..., a, is the determinant of
a u x u matrix whose general term is (aj, a:). The van-
ishing of the Gramian (the determinant of tﬂe nermal matrix
being zero) is necessary and sufficient for linear depen~
dence of the vectors." )

This fact is well known to geodesists: you cannot invert the normal
matrix when the columns in the design matrix are linear dependent.

Applying this knowledge to geometry: four vectors in three dimensional

space are linearly dependent (Fig. C.l), see also [Kowalevsky, 1948].

Figure C.l. Four Vectors in Three Dimensional Space
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Using the approach followed above the Gram Determinant must be equal to

zero for these four vectors

Gepox)) () (xpaxg)  (xp.%,)
' T (x,x)  (x,xy) (x,,x,)
IGA!= 2272 ._2 _3 _2 ﬁ =0 (C-5)

Equation (C-5) is exactly the one condition which corresponds to the
difference bet&een the ten possibie dist;nces and the nine necessary
and sufficient distances to determine a polyhedron with five vertices
(Figure c.1). Writing out each scalar product in the Gram Determinant
in terms of the distances between the five points one has with the help

of Figure C.1:

(E;,E%) = rirj cos-¢ij (C;G)
Using the cosine rule,
R2, = % + 2 - 2r.7, cos $. . (C-7)
ij i ij
equation (C-6) becomes
(Ei,;%) = 1/2 (ri + r? - sz) (C-8)

If 1 = j, then Rij = 0 and (C-8) still holds (for the diagonal elements

,of the Gramian):
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2 2, 2 .2 2. 2 2 2. 2 2
2ry Tyt oRy, ryFrgoRyy ryHr oRy,
2 2 2 2 2 2 2
2r2 1"2+r3-—R23 11:2+r4--R24
lel= : =0  (C-9)
2 - 2 2 2
2r3 ]:3+r4--R34
2
2r4
s

Viewing the origin of the four vectors as a satellite and the
end points of the vectors as ground.stations,'the Gram Determinant forms
the mathematical model for simultaneous ranging analyzed in the geo-
metric mode. The model is a function of the measured ranges r, and
the unknown interstation distances Rij' This elegant method, which
circumvents the necessity of inner constraints since it comsists of
estimable parameters, is applied in [Aardoom, 1970 and 1971].

The simulations in the geometric mode as reported in section 6.8
is solely based on this Gramian approach.

One pf the disadvantages of this model is its high non-
linearity: the Gramian consists of terms eachAa function of distances
(either observations or unknowns) raised to the eighth power! Despite
this the linearized form of the Gramian takes on an easily programmable
identity. The partial derivatives of the Gramian with respect to the

parameters (Rij) and the observations (ri) are, using [Uotila, 1967]

oF
% A (C~10)
a
and EE— = B (C~-11)
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with ¥ o= F(La,Xa) =0

Equation (C~12) becomes in this case

lel= P %) = (xR, )

=0

- The Evaluation of the p.d. with Regard to'Rij

k11 T Aadnta T

241251%ad

alel _ 43 _
%, = AT = AR (e iapagg magagag F
! - a,, a.,.a
t a1 T
with a,, =r?+r? —R%.
1] X J 1]

(C-12}

(C-13)

(C-14)

(C-15)

For the six parameters the indices in (C-14) go through the following

cycle
P i i k 1
1 i 2 3 4
2 I 3 2 4
3 I 4 3 2
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The Evaluation of the p.d. with Regard fo X,

3jal - 4

3 A T L T L R

a,.a .

- a,,a,. a + a §1%K1 4

k3K T 2K
- +

T aa®®a T A1%51%k
" 2011t 245%a . t

+ +

2kt 2153510 T

© 853518 T 2352518 T (C-16)
T 25185 T %3P t
211%51%k ¥ 243%51% T

+ a

ila a

= A43y4%11 338 Tt
aikajjakl + aikajlajl +
T 2%k T 2l T

T 851%55%k 201210

For the four observations the indices in (C-16) go through the fol.

lowing cycle
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The evaluation of !G]n7= W= F(

lelg = 25355203, - 2

T %1%

23%5%fn T
2Bi®yf T
- llalla Jakk

+ 2(a a ka lakl

1Jailajlakk *

- aikailajkajl)

with i=1
j=2
k=3
1=24

In equation (C-16) as well as (C-17) aii
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#13%%51%a

L +X)

11%57% 1% T

- a,.a

ii Jl i1 kk
1jaljaklak1
1kalka laJl +
ilailajkajk
aikajkall +
235201% %1

2i0%41253%a Tt

is given by (C-15).

(c-17)



~ APPENDIX D

SOME MATRIX PROPERTIES

D.1l Differentiation of Rotation Matrices

Designating positive (counter clockwise) rotations of a coordi-
nate system over angles ¢, B, Y about the x, vy, z-axes (as viewed from
the positive ends of these axes) by Rl(a), RZ(B) and RB(Y) respectively,

one has

1 0 0
Rl(a) =t 0 cosa  sing (D.1-1)
o —sina cost |
cosB 0 -sinf j
R,(B) =| © 1 0 " (D.1-2)
sinB O cosfB
cosy siny O
RBCY) =| -siny  cosy O (p.1-3)
H 0 1 ]

For instance, in the development of observation equations it is
necessary to differentiate rotation matrices whenever the rotation
angles are part of the set of parameters to be estimated. Often simplexr

formulas can be obtained by viewing the differentiated rotation matrix
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as the product of the original matrix and an auxiliary matrix., This
transformation matrix is often referred to as the "Lucas matrix" in the
geodetic and photogrammetric literature [Lucas, 1963].

Differentiating (D.1-1) with respect to o one has

o ] 0
R, (o)
— =10 -sing cosQ
o (D.1-4)
g ~COos{ ~sing
This matrix can be viewed as
0 0 0 0 c ofj1 0 0
0 -sing cosal=]0 0 1]{0 ‘eosq  sing (D.1~-5)
0 ~-cosg  sing 0 -1 0 0 -ging cosa

1 G 0 0 0 0

=|0 cosg  sina {{ 0 0 1 (D.1-6)

0 -ginx coso 0 -1 ..0

or in short
BRl(a)
R LlRl(a) = Rl(a)Ll (D.1~7)
with 0 0 0
Ll =|0 0 1 (D.1-8)
0 -1 0

Similar expressions can be derived for rotations around the y-- and

Z—axes:
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3R, ()

38 = LR, (B) = R, (B)L, (D.1-9)

with 0 0 -1
L,=|{0 0 © (D.1-10)

1 o o

4 R, (Y)

an T = LaRy(N) = Ry, (D.1-11)

with 0 1 0
Ly=|-1 0 O (D.1-12)

0 0 0

Two examples will illustrate the advantage of the use of Lucas-matrices:

Example 1: Informing the observation equations during satel-
lite data analyses, what are the partial derivatives of the positional
part of the inertial state vector with respect to the right ascension
of the ascending node §?

The inertial vector X, in terms of the co?rdinates of the sateilite in

in

the orbital planeng are (Keplerian case):
X = TRx (D.1-13)
with IR = R3(~9)Rl(—i)R3(—w) (D.1-14)

Differentiating (D.1-13) with regara to §, one gets

X 9x
T A w, * R (.1-15)
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Now is L Ry

oR, (-0
3R _ 773 (=) iR (e
R ) R1( i)R3( w)

and

This equation simplifies to, using (D.1-11) and (D.1~12)

SR _
I

Substituting (D.1-16) and (D.1-18) into (D.1-15) one has

_ -y
X - -
50 - "DLgRE = LX< | X

0 in

(D.1-16)

. (D.1~-17)

(D.1-18)

(D.1-19)

This is a rather simple expression if one considers the alter-

native of differentiating each individual element of the R-matrix with

regard to f.

p : i X the stat t
Example 2: Compute the velocity part Xe. of the state vector

£
in an earth-fixed system.

Having _ _
Xin =R xu) ‘
d X .= -+ X,
an Xe £ R3 (90 wet)_ }gin

(D.1-20)

(D.1-21)

which neglects precession and nutation, the time derivatives of (D.1-20)

become
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L RO D)
at ef ot

ox,
+ R3 ( Bo+we§2 IR'-B-t—-

— 3R —
]Rxw + R3 (90+wet) —a"t—xm

(D.1-22)

With the help of (D.1-11), (D.1-12) and (D.1-21) and the assumption that.

the R matrix is time independent, (D.1-22) simplifies to

£ = weLBXef + R3(Bo+wet)IRxm
or Y
xef = R2(90+wet)Xin + w, -X

0 ef

(D.1-23)

(D.1-24)

Combining the results of (D.1-20), (P.1-21) and (D.1-24) into a full

state vector representation -one has

lx X X X
Y L] - -
Y R3(60+wet) Y Y

7z Z of zZ Z in

(D.1-25)

ef

In computing algorithms, the implication of (D.1-25) is that the

left column of the earth-fixed state matrix needs to be computed before

the right column because of the appearance of two earth-fixed posi-

tional elements at the right hand side of (D.1-25).

Example 3:

Lucas matrices can also be appiied to rotation

matrices in case of differentially small angles.

Applying (D.1-1) to a small angle Ac:
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R, (Aa)

]
o
2]
o)

B
e

sinAag (D.1-26)

0 ~sinAo cosig

1 0 0
=10 1 Ao (D.1-27)
0 ~Ag, 1

Using the Lucas matrix (D.1-8) Rl(Aa) can clearly be written as
R, (do) = T + oL, (D.1-28)

"Similar expressions can be derived for small rotations around the

y- and z-axes

= .1-26¢
R2(AB) I+ ABLZ (@

and

(D.1-30)

R3(Ay) I+ AYL

3‘.

D.2 Inversiocn of a Differentially Changed Matrix

In weighted least-squares procedures it ‘may happen that one

Y
~

only wants to consider the weighting of parameﬁers after one has already
solved the unweighted case. Rephrased, what is the new iaverted normal
matrix (with weighted parhmetersj expre;sed in terms of the inverse of
the original normal matrix.(ﬁith unweighted parameters)? The purpose is
to avoid a (probably costly) second inversion of the normal matrix.

. The problem is to express (A + AA)“I in terms of A_l and AA,

assuming that A is.a (square) invertable matrix.
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(A+AA) (A“1+A1A"1) =1 (0.2-1)

Multiplying (D.2-1) out, one has

g oaaat A[AlA'l + AAAlA"l = I (D.2-2)
Assuming AAAlA"l = [0], one finds
Al e a7t (D.2-3)

1

As an example from weighted least squares procedures (A is now the

design matrix), one has

(A?PA&PX)—I e aTpmy ™t - (A:PA)‘IPX(A?PA)‘l (D.2-&)

1R

-1 -1y _ - -1 -
N (I—PxN } = (I-N lPX)N (D.2-5)

1f AAAlA—l is not negligibly small, one continues the above followed

reasoning once more,
(arany ™t A -a A A = 1 (D.2-6)
Multiplying (D.2-6) out and solving for AZA_]‘ one finds,
-1

AN = A Taaa™t (D.2-7)

In general, one has
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(aran) (M = 1 (D.2-8)

with M= zaat (D.2-9)
=1
and AiA"l = I Tt (D.2-10)
= -1 st (D.2-11)
Consequently,
' -1 o -1a, -1
(AHAA) © = A T L (“AMA ) (D.2-12)
=0
- 1, .i.-1
or = I (-AAA)TAT (D:2-13)
i=0

The mnotation used in (D.2-12) and (D.2-13) assumes that a matrix
raised to the zero power is equal to the identity matrix.
Similar exﬁressions ere derived in [Bodewig, 1959, p. 36] by

differentiating the expression AA_l = T, obtaining a Taylor series for

(4 + AA),"l.

Example: A small example illustrates the power. of the method and
in addition it is shown that the addition AA to the original matrix A -
dogs not necessarily has to have a differential characters: However,
convergence of the Taylor series still depends on the nature of AA

[Bodewlg, 1959, p. 37].
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Invert the matrix B

by splitting up B in a matrix Bd and a matrix AB with

AB =3B - 3B

d

The matrix Bd is assumed to be equal to

yielding

AB

3 1
1 1
[0 0
0 1

The sclution using (D.2-12) term by term

- first term

- second term

— third term

— fourth term

-1 -1
—Bd (ABBd )

-1 ~1.2
+Bd (ABBd )

Ll an-1.3
By (8BB")

i
2
1
2
i
&
3
4
5
[ 7
9
-3
.9
16
27
T 16
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is

]

o B ofw pofps
1

(D.2-14)

(D.2-15)

(D.2-16)

(D.2-17)



EY)
. _l _1 4
ifth term +Bd (ABBd )] [_ﬂ 243
a9 29
- ete,
b! B!
Setting B-l =[ 11 12 j!
-1 H
by;  Byy
> T
We.fl?d for hl1
¢l 13 .9 ~1.31,_.3.9_27
e A R e I A i TR
The second term in the product is the binomial series
(1—X)—1=1+X+X2+ LI
: : 3
ith = - 2
W X = >
: R U e )
1 = e o a— —_— = e LY
Consequently, bll > 4(1-{-2) 2 (D.2-18)
.In a similar fashion-we find from binomial series with x =~ %
: -1 _ 3 '
. béz =1-(1x) " = 5 (D.2-19)
1 = 1 = - .-l- - -1 —_ 1
and b12 b21 ; 2(1 ®) =-3 {D.2-20)

Equations (D.2-18) through (D.2-20) vield the following ihverse
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o
1]
vt
I
w2
i
|
N
1
=~

(D.2-21)

|
uﬂuf

which agrees with the "normally" computed inverse of (D.2-14).
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