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ABSTRACT

The accumulation of static charge on the surface of spacecraft

can produce unknown potential fields that may cause error in the

measurement of scientific data. Therefore methods for determining

potential fields are being sought. This report describes a general

technique for expanding an unknown potential field in terms of a linear

summation of weighted dipole or quadrupole fields. Laplace's equation

describes the unknown potential in regions that are devoid of electric

charge when the nearby surface charge distribution is assumed to be

independent of time. Therefore, general solutions to Laplace's equa-

tion can be generated by summing multipole fields (i.e., particular

solutions to Laplace's equation) as long as the multipole locations

where the multipole fields have singularities are not included in the

spatial region of interest. The general solution approximating an un-

known potential near a charged surface can be developed if suitable

boundary conditions are available or if measurements of charged

particle trajectories in the unknown potential can be obtained.

The classical boundary value problem in electrostatics

can be described as finding the solution to Laplace's equation when

the electric potential is known on a boundary enclosing a spatial do-

main of interest. In this report, computational methods are developed

for the iterative addition of dipole fields until solutions to the

classical boundary value problem can be obtained. Various solution

potentials are compared inside the boundary with a more precise cal-

culation of the potential to derive optimal schemes for locating the

singularities of the dipole fields (e.g., dipoles should not be placed



iv

too close to the boundary). Then, the problem of determining solutions

to Laplace1s equation on an unbounded domain as constrained by pertinent

electron trajectory data is considered. The initial electron coordinates

and velocities, as well as the final electron coordinates, comprise a

set of constraints on the various schemes that are developed for dipole

and quadrupole synthesis of approximations to the test potential. The

various schemes are then compared in terms of convergence limits and

rates and in terms of their accuracy on a finite domain. The report is

concluded with a description of an electron-beam apparatus used for

making trajectory measurements in a bell jar. The best computational

schemes are used to synthesize approximations of a simulated test poten-

tial created in the bell jar.
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I. INTRODUCTION

The accumulation of electrostatic charge on the surface of a

spacecraft produces an electric potential field in nearby spatial re-
2

gions. Laplace's equation, V ty = 0, defines a class of functions which

may represent this potential field everywhere outside the spacecraft

(i.e., spatial regions having little charge). If the surface charge is

known, the potential field fy can be determined by an integration over

the spacecraft of the field due to a point charge weighted with the

known surface charge distribution. However, for many applications the

surface charge is unknown and must be determined by solving Laplace's

equation constrained by the pertinent boundary conditions that may be

known. The potential fields of the ideal dipole, quadrupole, octapole,

etc. are solutions of Laplace's equations in regions bounded away from

the sites of these ideal poles. Therefore, the unknown potential 4>

can be synthesized as a linear sum of multipole potential fields, with

all point multipoles located outside the region of interest (ref. 1).

The classical boundary value problem may be considered for

Laplace's equation in terms of a potential cj> unknown in region R, but

known at a finite number of points on a simple closed curve containing

the region R. In two dimensions, the method of finite differences

could be employed to solve for the unknown potential <j> at the nodes of

a grid covering region R subject to the known boundary values of the

potential fy (e.g., the specification of the potential at 4N points on

2
a square boundary determines an approximation of the potential at N

points on the interior of the square boundary). Consider instead,



an iterative solution technique. Suppose some potential <|> exists as an

estimate of fy. Then a measure of the discrepancy D between ij; and <{>

can be defined as the sum of the absolute differences between \JJ and <j>

at the finite number of nodes on the boundary where 4" is known. The

estimated potential <$> can be said to be converging toward ijj if the dis-

crepancy D is reduced upon successive applications of the iterative

scheme which may include operations of rotation, shifting or scaling.

However, discrepancy reduction and the shaping of the potential approxi-

mation will be primarily accomplished by the summation of multipole

fields successively centered at points outside the boundary near loca-

tions where the discrepancy D is largest.

The expansion of potential fields is most often expressed as the

linear sum of weighted multipole fields (e.g., one each of monopole,

dipole, quadrupole, etc.) with all pole locations superimposed. This

practice produces only one singularity in the spatial solution space.

However, we have adopted the practice of allowing multipole locations

along a line parallel to the surface and at a specified distance from

it (i.e., usually all alike dipoles or quadrupoles). Thus, field shaping

is facilitated but many field singularities are produced.

When considering the potential field existing near a charged sur-

face, the potential may be unknown in an unbounded spatial region.

Due to insufficient boundary conditions, additional constraints must be

specified in order to approximate the potential on a finite spatial re-

gion. Actually, in mathematical terms, the region is bounded at

infinity where the potential must equal zero. In order to obtain

measurements of potential fields existing near charged surfaces,



consider an electron beam emanating from a source point (XO,YO) on a

zero potential reference plane. If the- reference plane were

located far from the charged surface, it would approximate the boundary

condition at infinity. Practically speaking, the reference plane can

be moved to a finite and measurable distance from the charged surface

while producing only minimal distortions of the potential field. If

the spacecraft surface is negatively charged the electron beam will be

deflected back toward the reference plane where the coordinates of a

sink point (XT,YT) can be recorded. As seen in Figure 1, a displace-

ment vector measured from the beam source point to the beam sink point

represents one constraint on the family of functions that satisfy

Laplace's equation. Suppose that a potential field, partially bounded

by a charged surface and the reference plane, is to be determined based

on measurements of many such displacement vectors associated with

electron beams with known energies and initial directions. Suppose

further that some estimate ({> of the potential 41 exists on the region

of interest. Estimated displacement vectors can be obtained from the

initial electron beam data and the estimated potential by programming

the laws of electron mechanics. These estimated displacements can be

compared to those measured as data to define the error related to the

electron trajectory constraints. A discrepancy DD can be defined as

the sum of the absolute differences between the estimated displacement

vectors and the measured displacement vectors. The estimated potential

((> is said to be converging toward \l> if the discrepancy is reduced upon

successive applications of some iterative scheme which may include

scaling or rotating operations. However, major alterations in the

estimated potential can be accomplished by adding the potential fields
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of pairs of ideal multipoles. One multipole can be located above the

charged surface at a given distance from the reference plane, while

another multipole is located an equal distance below the reference

plane. This imaging technique maintains a potential of zero on the

reference plane while allowing for the shaping of the estimated poten-

tial in the region between the reference plane and the charged surface.

The nature and substance of the iterative schemes referred to in

the above discussion are defined depending arbitrarily on the data that

are available and the ingenuity of the programmer. A particular iter-

ative scheme may have different convergence properties when applied to

a number of different problems. A particular iterative scheme may have

better convergence properties than other schemes when applied to a

common problem. Furthermore, the selection of data defining a given

problem may influence the convergence of a particular iterative scheme

and the selection of an initial approximation may also influence the

convergence toward a potential solution. Therefore, there are a broad

range of topics that can be investigated and discussed relative to the

synthesis of electric potentials by the iterative addition of ideal

multipole fields. For the purposes of this report, the effects of

boundary geometry, data selection and initial potential estimation will

not be considered. Attention will be focused on the development of

optimal iterative schemes based upon a well-defined model problem.



II. THE BOUNDARY VALUE PROBLEM

The classical boundary value problem in electrostatics may be

stated as the problem of calculating values of a potential field exist-

ing on a spatial region devoid of electric charge (i.e., where Laplace's

equation is valid) when given the value of the potential on a simple

boundary enclosing the region of interest. When the potential is

specified as a continuous function on the boundary, the problem can be

solved by a separation of variables technique and the expansion of the

potential in terms of a complete set of orthogonal eigenfunctions

(ref. 2). The geometric shape of the boundary influences the choice

of an appropriate coordinate system and the particular set of eigenfunc-

tions used for the expansion of the potential field. The solution is

continuous inside the boundary and the error depends on the number of

terms used in the eigenfunction expansion.

In a practical situation, the value of the potential may be known

only at a finite number of points on a boundary. The separation of

variables and eigenfunction expansion method can be applied to obtain

a continuous solution, if some approximation is used to interpolate a

continuous functional value of the potential on the boundary from the

finite number of known boundary values. The error of the solution de-

pends on the approximation of the potential on the boundary as well as

the number of terms in the expansion of the potential. The method of

finite differences may also be used to approximate the potential inside

a closed boundary when only a finite number of boundary values are

known (ref. 3). The solution is developed by using Taylor series ex-

pansions to derive a finite number of linear potential equations in



terms of an equal number of unknowns (e.g., the potential values at all

points on the grid enclosed by the boundary) and a finite number of

knowns (e.g., the potential values at all points on the grid coincid-

ing with the boundary). A solution may then be obtained by using

Gaussian elimination procedures to solve the system of linear equations.

A finite difference solution is not continuous since it is defined only

at nodal points on the grid. Therefore, interpolation errors will

exist in addition to Taylor approximation errors, both of which depend

on the spacing of the grid lines. Boundaries with irregular shapes will

be problematic; since either a very fine grid will be required, leading

to lengthy computer calculations, or some boundary approximations will

be required to accommodate a larger grid spacing.

A. Dipole Synthesis of Potential Fields

Consider an iterative scheme for summing the potential fields of

ideal electric dipoles to develop solutions to Laplace's equation on a

domain enclosed by a boundary where the potential is known at a finite

number of points (i.e., Dirichlet boundary condition). An initial esti-

mate of the potential satisfying Laplace's equation is an average of

the known boundary values plus any linear terms suggested by the bound-

ary values (e.g., 4> (x,y) = a + bx + cy). This estimated potential can

be improved by the iterative addition of an ideal dipole outside the

boundary and nearest the location exhibiting the largest discrepancy

between estimated and known boundary values. The potential field of an

ideal dipole is itself a solution to Laplace's equation. Hence, the

linear sum of the fields due to many such electric dipoles is also a

solution to Laplace's equation. We will assume to have synthesized a
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particular solution to the boundary value problem when the sum of all

the absolute discrepancies between estimated and known boundary poten-

tial values is reduced below some tolerable limit. Such a solution is

not unique, since the choice of dipole locations is arbitrary. If the

above procedure for the reduction of discrepancy is pursued indefinite-

ly, ultimately one dipole of optimal magnitude will be located outside

the boundary near each one of the points where a boundary value is

given. Thus, the iterative scheme expands the potential as a linear

sum of the fields associated with .dipoles located outside the

boundary. If the dipoles are allowed infinitely close to the boundary

points, then each dipole magnitude will be chosen to reduce the dis-

crepancy existing at one boundary location and have no effect on the

discrepancies at the other boundary locations. Solutions developed in

this manner are unacceptable since the field singularities introduced

near the boundary produce only localized reduction of discrepancy. Con-

sequently, the continuity of the potential solution on the boundary is

jeopardized by placing dipoles too near the boundary itself. There-

fore, we shall expect to synthesize solutions to the boundary value

problem, if the dipoles are located well outside the bounded domain of

interest. Convergence (e.g., discrepancy reduction) will be slower as
s

dipoles are moved further from the boundary, but better approximations

will result on the boundary between the pointwise specified values.

Irregularly shaped boundaries can be easily accomodated by the iterative

procedure for dipole synthesis. In addition, the estimated potential

is defined in a continuous manner as the sum of dipole fields at all

points on the bounded domain and no interpolation from a coordinate

grid is required.



To define a specific class of boundary value problems, assume that

•the boundary S of region A in the two-dimensional r-6 plane can be rep-

resented by N points distributed around the origin with no two points

having the same 9 coordinate value. Assume also that the potential

2
\|;(r,9) satisfies Laplace's equation (i.e., V ̂  = 0) and is given at the

same N points on the boundary

*<Rn»9n) = \ 5 n = 1'2'3<"N (II-1>

In order to allow calculations of the potential on the interior region

A, as well as the boundary S; construct a 2N x N coordinate grid with

its origin at the geometric center or centroid of region A and including

2
the N points of equation (II-l). Define the 2N points (r , 9 ) letting

rm = Rm f°r m = 1'2»3'"' N and r
m
 = ' for m = N+l, N+2,--- 2N;

where R is the radius of the smallest circle having its center at the

origin of the coordinate grid which also encloses the region of interest.

In order to begin an iterative procedure for approximating the

potential at points on the interior, given the potential at N points on

the boundary, define an initial estimated potential <£ existing as an

approximation to ijj.

, , ... .. ,„, . max , min, , n /„, . max . min, Q ,__ „.d> (r ,9 ) = 1/2 [^ - ill ] + 1/2[̂  - ty ] r cos 9 (II-2)Yo m' n irn rn J yn ^n J m n v

This choice is arbitrarily based on the maximum and minimum values of

the N known boundary potentials; it satisfies Laplace's equation Ci.,e.,

2
V 4> =0) and it guarantees that the difference between ^ and <f> on the

boundary is no larger than tj; max minus ty

As a general procedure for improving the accuracy of the estimated

potential on the boundary S, consider the iterative addition of dipole
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potential fields <j>,(r ,9 ) due to the ideal dipoles located at
d m n

(r,,9 ) outside of the boundary S enclosing region A.

E

m o m n ^_^ m

The following algorithm is used for calculating in two dimensions

(i.e., the r-9 coordinate system) the potential fields associated with

ideal electric dipoles at (r,,9,),
d d

A /_ fl A - A I*,-
 r cos(9 -9)](p. (.r ,fc) ; — d d m n d ,TT. /Nd m n —2 o » (H-4)

r, + r - 2r,r cos(9 -9J
d m dm n d

as derived in Appendix A. We will assume that the estimated potential

is a good approximation to iji on the interior of region A, as well as on

the boundary S, when a sufficient number of dipole potentials 4>, have
d

been added to d> such that d> matches the boundary potential ill at all
o E n

points where the latter quantity is given.

,9 ) ; n = 1,2,--N

The arbitrary constant A, = qAr represents the charge magnitude q of an
d

ideal dipole having separation Ar as measured along a radius extending

from the centroid of region A to the location (r,,9,) of the dipole.d d

For the purpose of calculating the error of the approximation of if;

by <j) , define the discrepancy function D as the difference between i[j
Ci n

and tj> at each of the N boundary locations where ^ is known.
E

Dn E *<Rn»9n> - VW (II'6)

The average discrepancy and average absolute discrepancy, as defined

by equations (II-7) and (II-8), -can be used as measures of the accuracy
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of the estimated potential.

5 = * J! °n (II-7>

1 N

n=l n

We are interested in developing iterative procedures for reducing D

and |D|. A uniform shift of the estimated potential can be used to

reduce D to zero. Suppose the average discrepancy D exists for

estimated potential $ . If a new estimated potential <{>' is formed by
I*» £i*

adding the average discrepancy D to <J> , then we wish to show that the
E

_t
average discrepancy D for <J>' is equal to zero.

E

• l8 1 ?V T \ f — V t \ A I \

n=l n n=l n n

n
n=l n n

Then by rearranging terms and recalling the definition of D expressed

by equation (II-7), we derive the desired result.

' 1 N 1 N
D =u I O^ - 4» ) - ̂  I D = D-D = 0 (11-10)

N n=l n n N n=l

Thus, the estimated potential can be shifted so that its average

discrepancy with known boundary values is reduced to zero.

The reduction of the average absolute discrepancy is not as

easily accomplished. Consider the rotation of the estimated potential,

with respect to the coordinate grid, as one operation for reducing

T5]~ on the boundary. Define N rotated potentials <t>T,(rm'̂ r,̂  'K. m n

R = 1,2,- • • N such that
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for n

for all m = 1,2,-"2N. Then one might choose, as the best estimated

potential, the rotated potential yielding the lowest average absolute

discrepancy and zero average discrepancy.

The average absolute discrepancy might also be reduced by scaling

the estimated potential after the rotating and shifting operations.

The following algorithm is proposed for scaling the estimated potential

so as to reduce the average absolute discrepancy whenever the average

discrepancy is zero.

N

<Kr,e)m,n
I |<KR ,.e )

n=l n n

N

n=l

N

After the rotation, shifting and scaling operations, the addition of

ideal dipole potentials can be used to further reduce |D| and improve

the approximation of i|) by <)>. The definition of a specific iterative

scheme depends on the general criteria that can be established for

determining optimal locations and magnitudes for each successive

electric dipole that is added near the boundary enclosing the re-

gion of interest.



13

B. Iterative Schemes for the Dipole Synthesis of Solutions to the
Boundary Value Problem

VMODGR.F4 is the name of the main Fortran routine used for solving

boundary value problems. Initially, subroutine DATA is called to set

up the problem in the X-Y coordinate system corresponding to the user's

particular reference frame. The subroutine asks the user for up to

forty points representing the boundary and for the potential value at

each of the points which must be specified in a clockwise sequence

around any plane boundary. The main routine generates an r-9 coor-

dinate grid with origin at the centroid of the region enclosed by the

boundary.

The determination of a lower bound on the distance between the

boundary and the dipole locations is the primary objective of the

study. It is assumed that all dipoles will be best aligned if their

axes, extending in the direction of charge separation, pass through the

centroid of the bounded domain. Subroutine ADPOLE locates a dipole at

the angular coordinate 9 where the discrepancy D is greatest between

the estimated potential <}> and the boundary potential I|K Then a param-

eter G is defined in subroutine ADPOLE so that all dipoles are located

a fixed radial distance from the centroid. This distance

rd = R(1+G/N) (11-16)

is calculated in terms of the number N of known boundary potentials

and the largest radius R needed to construct a circle centered at the

centroid and enclosing all of the region of interest. Dipoles will be

allowed closer to the boundary as the value of the G parameter, speci-

fied by the user interactively with subroutine DATA, is allowed to

decrease toward a limiting value of zero. Once a dipole location has
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been determined, subroutine ADPOLE choses a dipole magnitude A, that
d

reduces the discrepancy at the boundary location nearest the dipole

to approximately zero. Alternatively, subroutine TADPOLE may be called

by the main routine to select dipole locations and magnitudes. In this

subroutine, dipoles are also located at the angular coordinate 9,
d

corresponding to the greatest boundary discrepancy DI and the dipole

axis is aligned with the centroid of the region of interest. However,

for the TADPOLE scheme, the G parameter does not fix the radial coor-

dinate for dipole location but specifies a minimum value that can be

allowed. Whenever possible, a dipole magnitude A, and dipole radius

r, are chosen simultaneously so that

and
D

where the coordinates (R ,9 ) represent the point on the boundary nearest
c c

the point (Rj»^j) where the discrepancy has a sign opposite from the sign

of the largest discrepancy D. . Whenever, the criterion expressed in

equations (11-17) and (11-18) cannot be achieved without placing the

dipole inside the minimum radius, as expressed by equation (11-16), r, is

chosen equal to this minimum radius on the basis of the G parameter

specified in subroutine DATA. Thus, the T parameter, also entered

interactively with subroutine DATA, balances discrepancy reduction at

the boundary point where the discrepancy is maximum with the accompaning

discrepancy increase at a nearby boundary location.

The main routine VMODGR.F4 first defines an initial estimated

potential according to equation (II-2) and then calls subroutine
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ROTATE to achieve discrepancy reduction by the rotation of the initial

estimated potential relative to the coordinate grid. An iterative

scheme, calling subroutines SHIFT, SCALE and either ADPOLE or TADPOLE;

is then applied to accomplish the reduction of boundary discrepancies.

Subroutines SHIFT and SCALE, listed in Appendix B, accomplish discrep-

ancy reduction according to equations (11-10) and (11-13) respectively.

The other Fortran routines described in this section are also listed

in Appendix B.

The particular problem of a square boundary with a potential of

10 volts specified on three sides and 0 volts specified on the fourth

side has been chosen to demonstrate the method of dipole synthesis and

to investigate various criteria for choosing dipole locations in an

iterative scheme. Figure 2 shows how twelve boundary points were

selected at uniform angular intervals and how one interior point at

(r = .471, 9 = 90°) was selected for comparing synthesized potentials

with a precise series expansion which yields a value of 9.59 volts

just inside the unit square boundary. Tables 1 and 2 show the poten-

tial values synthesized at the test point with the main routine VMODGR

using subroutines ADPOLE and TADPOLE, respectively. The fields of

ideal dipoles were added at each boundary point and at the test point

in an iterative process, one dipole per iteration, until the sum of the

absolute discrepancies was reduced below 10 volts. Note, in Table 1,

that the estimated potential converges to its precise value at the test

point as the dipoles are moved further from the boundary. However, the

number of iterative computer calculations required is large. When di-

poles are allowed closer to the boundary (i.e., smaller G parameter),

convergence is much faster but errors in the estimated potential at the
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Table 1

Potential Synthesis With Constant Dipole Radius

Iterations Test Potential
(volts)

1

2

4

2-n

10

15

20

65

73

109

157

354

791

1718

10.42

10.08

9.83

9.67

9.61

9.59

9.59

Table 2

Potential Synthesis With Variable Dipole Radius, G = 2ir

T Iterations Test Potential
(volts)

0.01 157 9.67

0.30 157 9.67

0.50 161 9.64

0.70 169 9.59

0.90 214 9.59
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4
\

(.471,90°)

11

10

Figure 2. Polar Coordinate Frame of
Reference for The Boundary Value Problem
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test point are substantial. Note, in Table 2, that the G parameter

is set equal to 2iT thereby establishing the minimum radial coordinate

available for the location of point dipoles. The convergence of the

estimated potential to the specified boundary values is fastest when

the T parameter forces many dipoles close to the boundary (i.e., smaller

values of T). The occasional placement of dipoles at greater distances

from the boundary, using both the G and T parameters, provides a flex-

ibility that allows compromise between the speed of the convergence and

the accuracy of the estimated potential at interior locations. Thus,

convergence with the required accuracy at the test point can be achieved

with 791 iterations using the G factor alone and with 169 iterations

using the G and T factors together.

Once convergence is achieved, VMODGR calls subroutine VGRAPH to

plot equipotential lines as determined on the interior coordinate grid.

Figures 3 and 4, corresponding to G parameter values of 2 and 2TT re-

spectively, show solutions to the boundary value problem for 20 points

on the square boundary spaced at equal angular intervals. Figure 5

shows the potential solution for a G parameter of 2ir and a T parameter

value of 0.1. A comparison of Figures 4 and 5 reveals no major dif-

ferences between the potential solutions generated by the two iterative

schemes. However, the solution shown in Figure 5 was generated by

using subroutine TADPOLE and required less than half the computer time

needed when subroutine ADPOLE was used. Figure 6 shows the improvement

in the solution potential resulting from the specification of 36 bound-

ary values as compared to only 20 boundary values. It should be noted

that the grid structure used inside the boundary results in linear

interpolation errors in the drawing of equipotential lines. These
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10' 10'

Figure 3. Equipotential Lines for Dipole Synthesis
with G=2 and 20 angular grid lines
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10V

Figure 4. Equipotential Lines for Dipole Synthesis
with G=2ir and 20 angular grid lines
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10

Figure 5. Equipotential Lines for Dipole Synthesis
with G=2ir, T=0.1 and 20 angular grid lines
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10V

Figure 6. Equipotential Lines for Dipole Synthesis
with G=2ir, T=0.1 and 36 angular grid lines
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errors are not a consequence of the procedure for potential field

synthesis but result when an attempt is made to display a potential

field based upon its value at a finite number of points. The potential

display could be improved by a better interpolation procedure or by

calculating the potential at more points. However, the accuracy of

the potential estimate synthesized at a particular point of interest

does not depend on the number of interior points considered. Therefore,

potential estimates could be synthesized at as many, or as few, in-

terior points as desired with accuracy depending on the number of

boundary values specified.
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III. THE DEFINITION OF A MODEL PROBLEM

The electric potential resulting from a distribution of surface

charge can be shown to satisfy Laplace's equation everywhere except

on the surface itself. Since the potential fields associated with

ideal multipoles are also solutions of Laplace's equation, we assume

that a linear sum of weighted multipole potentials can be used to

construct a particular solution that approximates the potential field

created by the surface charge distribution. This particular solution

will have singularities at the spatial locations of the multipoles.

Therefore, the spatial domain near a charged surface can be partitioned

into two subspaces; one subspace defined as the region where a valid

potential approximation is desired and another subspace reserved for

the location of ideal multipoles. In the boundary value problem con-

sidered previously, the closed boundary separated the interior subspace

(where solutions were desired) from the exterior subspace (where dipoles

were located). In a general situation, the charged surface may only

partially define the subspace where multipole location is allowed. In

any event, an iterative scheme for summing multipole potentials to

approximate the potential near a charged surface will depend on the

geometry of the particular problem under consideration.

Furthermore, in contrast to the boundary value problem, the sur-

face charge and surface potential may be unknown in the general problem.

Trajectory data for electrons moving in an unknown potential field

created by an unknown charge distribution can be used as constraints

on the class of functions that approximate the potential field (ref. 4).

Electron deflection measurements can be defined, in the absence of
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boundary values, as a basis for calculating the discrepancy between

the potential in the region probed by the electron trajectories and

the multipole potential approximation generated by an iterative pro-

cedure. In such a case, the electron trajectories define a subspace

where the potential approximation is desired and where ideal multipoles

cannot be located. Therefore, a particular iterative scheme for deter-

mining the optimal locations of dipoles, quadrupoles or multipoles will

be influenced by the electron trajectory data provided as part of a

general problem.

To define a particular problem that can be used to compare the

convergence properties of various iterative procedures, consider the

potential field created by two uniformly biased fins in the vicinity

of a zero potential ground plane. So that calculations may be per-

formed in a two-dimensional space, assume that both the ground plane

and the biased fins extend infinitely in the positive and negative z

coordinate directions. Note, in Figure 7, that the fins begin at x-y

DX 3DX
coordinate values C7~,DY) and (—-j— ,DY) respectively and extend in-

finitely in the positive y dimension. Suppose the x-y coordinate plane

can be mapped onto the x'-y1 coordinate plane by shifting the origin by

amounts DY and —, by scaling the axes by factors of — and —, and by

rotation of the axes through 90°.

x' = ̂  (DY-y) and y' = ̂  (x-̂ ) (IH-1)

The conformal mapping of the complex z plane (z = x' + iy') onto the

complex w plane (w = u + iv) is

w = sin"1(eZ) (III-2)
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Biased Fins-

O'l

z plane

4>(v) = v:0

I
X

v=v
0

w plane

Figure 7. The Reference Frames of the Biased Fins

and the Conformal Mapping w=sin~ [exp(z>]
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which collapses the infinite fins onto a finite interval (i.e., [0",0'])

along the u-coordinate axis (ref. 5). The value of this transformation

lies in the fact that the potential field created by the biased fins

in the x-y plane transforms to a potential with a uniform gradient in

the u-v plane. Thus,

4>(z)-C - v(z) = Im[w] = Imfsin^Ce2)] (HI-3)

can be used with an appropriate expression for sin (e ) to construct

an algorithm

1/2
(j>(x',y')-C = Im{-i-ln[ieX'eiyI + (l-e2x'e2iy? ) ]} (III-

that can be used to calculate the biased fin potential at selected

points in the x-y plane. The constant C is required so that the

potential can be shifted enough to simulate the zero potential line

xf = DY (i.e., y = 0) . In order to simplify the algebraic evaluation

of the natural logarithm in equation (III-4) , convert the complex

argument of the square root to polar form.

4x' 2x'
r = (1+e -2e -cos 2y') (HI-5)

2x'
6 = TT + tan'V* > ]. (III-6)

r 2x>
1-e -cos

These expressions lead to the form

Im[-i-ln(ieX'eiy' + / r e ) ] + C.

To further simplify the calculations, let

9-v* ,— v'1 1/7
RE [r+e -2>/Te-sin(y '-9/2)] ' (III-8)
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and

ft = ir + tan'V cos ^ + 'Y1" ] (III-9)

v^r cos 6/2 -ex sin y1

to obtain

4>(R)-C = Im[-i-ln(Re )] = Im[-i'ln(R)±fi] = -dn(R) . (111-10)

Therefore, to find the potential anywhere in the x-y plane; we first

calculate values of x* and y', then find the corresponding values of

r and 9, and finally determine a value of R. The potential at point

(x,y) is then equal to the natural logarithm of R plus an arbitrary

constant .

This algorithm for calculating the potential field in the x-y

coordinate space of the biased fins is implemented by main routine

TEST.F4 (ref. Appendix C) . When the additive constant is properly

chosen, the potential falls to zero along the x axis within a tol-

erance of 1% of the fin potential if the spacing of the fins is not

greater than the distance from the fins to the x axis by more than a

factor of 1.8. Thus, the gound reference plane could be moved to

within a distance DY = DX/3.6, when the spacing' of the fins is DX/2,

without altering the potential field of the biased fins by significant

proportions. TEST.F4 calculates potential values on an 80 x 27

coordinate grid corresponding to a region DX by 1.4DY in the x-y plane.

The I and J indices are used to identify points in a region with dimen-

sions DX by DY according to

X(I) = (I-2)DX/80 (III-ll)

and Y(I) = (J-2)DY/20. (111-12)
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These values are written into a storage file POTL.DAT which may be

accessed by other routines that require the test potential. Table 3

lists values of the biased fin potential at 110 points within the

spatial regtion of interest. TEST.F4 also includes a graphic sub-

routine, VPLOT, that utilizes a linear interpolation technique to

plot equipotential lines in the space between the biased fins and the

ground reference plane. Figure 8 shows the graphical plot generated

by TEST.F4 with input parameters, DX = 3.6 and DY = 1.0.

Also consider six electron trajectories, emanating at six loca-

tions along the x axis, that probe the region between the fins before

falling back to the reference plane. Assume that the initial coordinate

values and the initial coordinate velocities are known as well as the

final coordinate values of the six trajectories that serve as con-

straints placed upon approximations of the biased fin potential. In

particular, let five trajectories emanate from locations (0.900,0),

(1.305,0) , (1.710,0), (2.105,0) and (2.520,0) along the x axis and

with an initial direction parallel to the y axis and with initial

kinetic energy equal to 85% of the fin bias. Also let a scaling tra-

jectory emanate from the location (0.855,0) on the x axis with an

initial velocity in the x direction equal to 1.1 times the velocity

in the y direction. The main routine DATA.F4 is used to determine the

final coordinates of the six trajectories defined by the initial electron

parameters and the test potential. DATA.F4 calls subroutine DVOGEL in

an iterative manner to calculate successive electron steps through a

test potential specified by reading file POTL.DAT. DVOGEL solves the

electron's second order equations of motion according to a method pro-

posed by the mathematician DeVogelaire (ref. 6). Electric fields
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Table 3

Values of the Test Potential at 110 Selected Points

y-coordinate index (J)

21

19

17

15

13

11

9

7

5

3

2.02 1.82 1.67 1.57 1.52 1.50 1.52

1.69 1.61 1.50 1.43 1.38 1.37 1.38

1.44 1.40 1.33 1.27 1.24 1.23 1.24

1.23 1.20 1.16 1.11 1.09 1.08 1.09

1.02 1.01 0.98 0.95 0.93 0.92 0.93

0.83 0.82 0.80 0.78 0.76 0.76 0.76

0.65 0.64 0.63 0.61 0.60 0.59 0.60

0.46 0.46 0.45 0.44 0.43 0.43 0.43

0.28 0.28 0.27 0.27 0.26 0.26 0.26

0.10 0.10 0.10 0.09 0.09 0.09 0.09

x-coordinate index (I)

22 26 30 34 38 42 46

J=22

l̂ ^̂ -̂  — Ŝ̂ :

^̂ ^̂ ^̂ ^̂ ,
•

^- :

1.57 1.67 1.82

1.43 1.50 1.61

1.27 1.33 1.40

1.11 1.16 1.20

0.95 0.98 1.01

0.78 0.80 0.82

0.61 0.63 0.64

0.44 0.45 0.46

0.27 0.27 0.28

0.09 0.10 0.10

50 54 58

— • — Each line

o.iv

2.02

1.69

1.44

1.23

1.02

0.83

0.65

0.46

0.28

0.10

62

22 (1) 62 82

Figure 8. Equipotential Lines for the Test-Biased Fin
Potential on The Domain 22<I<62, 2< J <22
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required by subroutine DVOGEL at points between the grid lines are ob-

tained by a call to subroutine NEWTON which implements a divided

difference interpolation (ref. 7) of the electric fields based upon the

grid potential values provided by POTL.DAT. The electric fields at the

16 grid points (i.e., a 4 x 4 minigrid) closest to the point where an

interpolated electric field is required, are used to determine a spatial

step size (not in excess of 0.01 times a typical diagonal measurement of

the region of interest) used for the piecewise development of electron

trajectories.

The object of routine DATA.F4 is the determination of the final

coordinate values (0.901,0), (1.848,0), (1.824,0), (1.709,0) (2.086,0)

and (2.691,0) for the six constraining trajectories. These final

coordinate values, in addition to the initial coordinate values and

velocities are written into file TRAJ.DAT which can be referenced by

routines that approximate the potential field of the biased fins.

DATA.F4 includes a graphics routine for plotting the constraining

electron trajectories and calls subroutine VPLOT to superimpose

equipotential lines representing the test potential as shown in

Figure 9.
J=22

Figure 9. Equipotential Lines for the Test-Biased Fin Potential
and Constraining Electron Trajectories on the Domain 2< I <82, 2<J<22



32

IV. DIPOLE SYNTHESIS OF ELECTROSTATIC POTENTIALS

Preliminary investigation was begun with the intention of de-

veloping methods for dipole synthesis of three-dimensional electrostatic

potentials assuming a uniform potential in one coordinate direction.

The problem can be considered two dimensional if a line dipole is con-

structed by letting two infinite lines of opposite charge approach each

other in the limit of superposition. The result is a line dipole

potential which is uniform in the coordinate direction parallel to the

line dipole. Furthermore, in a plane perpendicular to the line dipole;

a difference results from integration along the line charges pro-

ducing a 1/r variation of the potential with distance from the line

2
dipole, rather than the 1/r dependence associated with a point dipole.

The line dipole described above is to be used as the basic build-

ing block for synthesizing unknown potentials in a two-dimensional

space that can be probed by electron beams. This space is bounded

above by the charged surface that produces the potential of interest

and bounded below by the zero potential reference plane of the electron

beam apparatus. Since the potential must be zero on this boundary,

line dipoles can be placed in pairs, one on either side of the boundary

so as to be electrostatic images of each other. Figure 1 shows the

space of interest, the zero-potential boundary and a line dipole pair.

Notice that the pair of line dipoles is located outside the space of

interest so that Laplace's equation will hold on the interior.

The model problem under consideration requires the determination

of the magnitude, location and number of line dipole pairs that best

approximate the potential existing in the space of interest resulting
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from an unknown surface charge distribution. The potential in the

region of interest is described by electron trajectory data including

initial electron coordinates and velocities and final electron coor-

dinates. The basic method begins with a uniform field approximation

of the potential which can be modified by the iterative addition

of line dipole potentials until a potential is created that reproduces

the electron trajectory data.

To formulate an iterative scheme for the dipole synthesis of

solutions to the model problem, suppose that the potential fy exists

as a result of the biasing of two fins relative to a zero potential

reference plane. The last of the six trajectories listed in the state-

ment of the model problem (i.e., the scaling trajectory) can be used

for a uniform field approximation of i|i in order to develop an initial

estimated potential $ . The equations of motion describing the scaling

trajectory are

.2 3<{) .2 d<|>3 x q o _ , 9 y q ro q . ,TTT ..,—r = -* -5— = 0 and —£ = -^ -r— = -^ A . (IV-1),..2 m o x ^ 2 m 3 y m o
ot ot

A linear system of two equations

XT(6) = X0(6) + T-VXO(6) (IV-2)

and

YT(6) = Y0(6) + T-VYO(6) + ̂  a A . T2 (IV-3)Z m o

in two unknowns (i.e., the constants A and~T) is developed by integrating

equations (IV-1) twice and substituting the data for the scaling tra-

jectory. When YT(6) = Y0(6) = 0, the result is
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A ,2m VXO(6).VYQ(6)
o q [XT(6)-XO(6)]' U '

Thus, an initial estimated potential, <j> =A y, can be calculated at allo o

points in the region of interest based upon the scaling trajectory data

and the electron charge to mass ratio ̂ :. The estimated potential <j> can

be synthesized from (j> and a number of dipole fields (see Appendix A) ,

y-y,
<J> (x,y) = A [ 2—S 2+d d (x-xdr + (y-yd) <

x-x

to improve the estimation of the biased fin potential,

<!>(x,y) = <J>0(x,y) + Z 4>d(x,y),
d

according to some iterative scheme that specifies optimal dipole param-

eters A,, x,, y, for meeting the constraints imposed by the electron
a d d

trajectory data (i.e., trajectories 1-5). For each iteration of the

scheme, estimated electron trajectories are developed from the initial

trajectory data (i.e., XO(K), YO(K); K=l,2,...6) and the equations of

motion (IV-1) substituting, for <j> , the best estimate of the potential

field <j)(x,y) calculated from equation (IV-6). The coordinates XM(K)

and YM(K) at the highest points on the estimated trajectories are re-

corded as well as the exit coordinates XE(K) and YE(K); for K=l,2,---6.

A discrepancy is defined

n(v\ - [XT(K)-XE(K)] , - fTV-TI
D(K) ' [XT(K)-XO(K)] ' K-1'2'"'5 CIV 7)

based upon estimated trajectory data XE(K) and actual trajectory data

XT(K) and XO(K). In order to reduce the discrepancies, dipoles should

be located between trajectories having discrepancies opposite in sign.

Therefore, the trajectory with the largest absolute discrepancy
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(e.g., K^ ) is identified and the nearest trajectory having a dis-

crepancy of opposite sign (e.g. , K=K0) is identified. The dipole x,
i d

parameter,

+ XM(K2) ] ,

is chosen midway between these two trajectories. The dipole y param-

eter is fixed, y =1.4-DY, at a reasonable distance from the region of

interest (e.g. , as close to the region as possible without introducing

local singularities, as discussed for the boundary value problem).

Then a dipole magnitude A, can be chosen which reduces the discrepancy

of the 1C. trajectory to approximately zero.

Toward this end, consider the integration of the equations of

motion (IV-1) , with 4> replacing (J> , for electrons following the K.

estimated trajectory through the estimated potential. If the time T

represents the time required for electrons to traverse this trajectory,

then the results of the integration are

XE(K.) = XO(K-) + T-VXO(K-) +-|-a I I |£ dt dt1 . (IV-9)
1 1 1 2 m JQ J0 9x

and
fT ft'

YEOO = YO(Kn) + T'VYO(K-) + \
 £ |^ dt dt1 . (IV-10)

1 1 1 2 m J0 JQ 3y

The K.. trajectory consists of a number of points whose coordinates have

been determined by a stepwise solution of the equations of motion. The

electric fields, ^ and -JT% at these points were calculated along with

the time steps for electron motion between the points in the development

of the K- trajectory. Therefore, the integrals in equations (IV-9) and

(IV-10) can be replaced by a pointwise summation of the electric fields
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over the N points of the K- trajectory using trapezoidal integration to

develop

rT rt1 _. .. N
XI (K.) = -p dt dt1 - ± Z (S ^ + s >At (IV-11)

1 J0 Jo
 8x 2 n=l "-1 n n

where

and

where

s -n 2

C ̂ dt dt>

Substituting the approximation of equation (IV-13) into equation

(IV-10), we have for YEÔ ) = YO(K ) = 0,

-, YKK.)'
T = - — -3. _ i — (IV-15")1 2 m VYOCK^' ^ ;

Substituting the approximation of equation (IV-11) into equation (IV-9) ,

we have

XE(K̂ ) = XOCK^ + T'VXOO^) + XI (K̂ . (IV- 16)

Now, we wish to add a dipole potential <j>d to the estimated potential

<j), altering the K.. trajectory only slightly and shifting the exit
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coordinate from XE(K ) to the data coordinate XT(IL). The equations

of motion for this new estimated potential are

dV-17)'
.

gt2 m 3x dx g 2 m 3y 3y

Integration of the first of these equations (IV-17), yields

1 „ fT ft' a* ^
XI (BL) = XO(K ) + T-VXOOO + ± a (|* + ̂dt dt? . (IV-18)

1 1 T. 2 m JQ JQ 3x 3x

When trajectory K_. is shifted only slightly, the integral in equation

(IV-18) can be replaced by the summation of electric fields over the

same N points used to generate equation (IV-16) . Hence,

where

VKK,) = i Z (V . + V )At (IV-20)
1 2. , n-1 n n

n=l

and where

n 9<j) 3<j

Vn=l L A "fcP + (3n l i=l Ad d 1-1 d i

Subtracting equation (IV-16) from equation (IV-20) , we may solve for

the dipole magnitude

- XE(K )
Ad=f t vi(V

 ]- (IV'22)

After the addition of a dipole with magnitude A, at coordinates
d

(x ,y ), one iteration of the scheme for discrepancy reduction is
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completed by scaling the dipole modified estimated potential,

<f>'(x,y) = SF-<j>(x,y). (IV-23)

The scale factor,

= XE(6) - X0<6) (
bi! XT(6) - X0(6)' UV /4;

is calculated using the exit coordinate XE(6) obtained for the stepwise

development of the scaling trajectory in the dipole modified estimated

potential.

Appendix D lists the main Fortran routine PTENT.F4 which imple-

ments the iterative routine described by equations (IV-1) through

(IV-24). The user has the option of entering electron trajectory data

by reading from file TRAJ.DAT or by answering pertinent questions in an

interactive user mode. Table 4 shows the reduction of discrepancy and

and of error estimates obtained for 15 iterations of the routine. Note

that these quantities do not decrease monotonically and limits are

reached after about 8 iterations of the routine. Figure 10 shows

equipotential lines drawn with a linear interpolation subroutine of

PTENT similar to the VPLOT subroutine described for the boundary value

problem. The solution to the model problem depicted in Figure 10 can

be compared to the test potential in Figure 8.

Appendix E contains a listing of the main Fortran routine RTENT.F4

which is also an iterative routine for the dipole synthesis of solutions

to the model problem. RTENT.F4 differs from PTENT.F4 only in the

methods used for determining the dipole x,,y, and A, factors. For thisd a d

new scheme, the x, parameter can be calculated by equation (IV-8) when
d

Hi- is identified as the trajectory having the largest positive dis-

crepancy and K2 is identified as the trajectory having the largest
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Table 4

Error Estimates for Dipole Synthesis with PTENT.F4

ration

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Discrepancy, DD
5
£ IXTCBL) - XECK^I

1.51

1.29

1.28

1.33

0.92

0.92

0.70

0.45

0.42

0.45

0:43

0.45

0.43

0.45

0.43

0.45

Average
Error

(%)

4.6

3.5

1.9

1.7

3.7

3.0

2.3

2.9

1.7

3.0

1.8

3.0

1.9

3.1

2.0

3.1

Average
Absolute
Error

(%)

5.8

5.0

4.6

3.8

4.4

4.2

2.6

3.7

3.5

3.7

3.4

3.7

3.4

3.7

3.4

3.8

Maximum
Absolute
Error

(%)

20.0

21.6

20.0

16.8

18.3

18.1

14.4

17.9

16.8

17.9

16.8

17.9

16.9

17.9

16.9

18.0
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J=22

— Each line
V

0.1

22 (I) 62 82

Figure 10. Solution to the Model Problem Synthesized with PTENT.F4

J=22

Each line

0.1V

22 (I) 62 82

Figure 11. Solution to the Model Problem Synthesized with RTENT.F4
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negative discrepancy. The y, parameter is arrived at by a trial and

error procedure designed to reduce the discrepancies of both the K

and K- trajectories. This is accomplished by finding a minimum value

of

D(K.)
1

D(K ) 3<j>
[̂XM(K2),YM(K2)]

as y, is allowed to run through a range of values. When the values

of x, and y, have been chosen, a value of A. is chosen to reduce the
d d d

discrepancy of the K- trajectory (or the K« trajectory if its dis-

crepancy is larger in absolute magnitude than the K_ trajectory) to

approximately zero as described by equations (IV-9) through (IV-22).

Table 5 lists the error estimates for 15 iterations of the RTENT.F4

routine as compared to Table 4. Note that error estimates are larger

for RTENT.F4 than for PTENT.F4 and that the reduction of discrepancy

is slower. However, RTENT.F4 consistently underestimates the biased

fin potential while PTENT.F4 consistently yields an overestimation.

Therefore, upper and lower bounds can be established for the solution

of the model problem. Figure 11 shows the estimated potential gen-

erated by RTENT.F4 which can be compared to Figures 10 and 8 to

appreciate the accuracy of these iterative dipole routines.

Tables 6, 7 and 8 show the potential error estimates at 110

selected locations in the region of interest for 5, 10 and 15 iter-

ations of routine RTENT.F4; respectively. First note that the largest

errors occur at the edges of the region of interest in spatial regions

unprobed by the electron trajectories. Note also that the errors at



fable 5

5 DlscrePancy, DD Average
Z IXT^ , Brror
i=1 '

 (V ~ XEOC ) / Error
U i ' (%) Error

1 -4.6
, i-20 5.8
1 -3.6 20.Q
, i-13 4.5
J -3.5 i7.4
. i-OS 4.8
4 -3.9 18.9

0.99 4.9
5 -3.9 19.1
, 0-95 4.5
6 -2.8 18.3
, 0-95 4.0
7 -2.3 16.4
fl 0-93 3.9
d -4.2 17.6

0.91 4.7
y -3.8 19.2

10 °'73 4'510 -2.2 18.8
77 °-66 3.3
11 -3.3 16.2
70 0-67 3.8
12 -2.7 17.9
77 °.69 3.5
13 -2.0 17.3
7/ 0-64 3.3
14 -3.6 16.7

°-69 4.0
15 -3.2 18.2

0.64 3.7
-2.3 17.7

3.4
17.0
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nearly all of the selected locations decrease monotonically from the

fifth to the tenth to the fifteenth iteration.
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V. QUADRUPOLE SYNTHESIS OF ELECTROSTATIC POTENTIALS

The two iterative routines for dipole field synthesis of electric

potentials yield good approximations of the biased fin potential. However,

the addition of dipole fields individually chosen to reduce trajectory dis-

crepancies may result in slow convergence and lengthy computer runs (e.g.,

the 15 iterations appearing in Table 4 required 30' 38" of CPU time).

Efforts to speed the convergence of the synthesis process by adding dipole

arrays, rather than single dipoles, have been unsuccessful. Note, in Fig-

ure 12, that the x-component of the electric field associated with the line

dipole is not symmetric about the axis of the line dipole. The five

curves of Figure 12 represent the electric field in the x-y reference plane

of the biased fins (see Figure 7) along a line midway between the reference

plane (y=0) and the biased fins (y=DY), as the result of a line dipole and

its image located at five perpendicular distances from the reference plane.

Note also that the dipole has equal and opposite effects at two spatially

distinct locations in the region of interest. These characteristics of

the dipole field are problematic when considering the placement of several

line dipoles simultaneously in an effort to reduce the discrepancies associ-

ated with several electron trajectories. Consequently, the optimal place-

ments of dipole array elements are not easily deduced since it is difficult

to associate discrepancy reduction for one trajectory with a particular

element of the dipole array.

A. Quadrupole Synthesis of Solutions to the Model Problem

Although the difficulties associated with synthesizing potential fields

with dipole arrays may not be insurmountable, we have chosen to investigate
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DY _

» yd=1.8xDY

» yd=1.7xDY

« y =1.6xDY

* y=1.5xDY

« y =1.4xDY

Ideal Dipole

yd=1.4xDY

DY -

»y =1.8xDY

«y =1.7xDY

=1.6xDY

Ideal Quadrupole

Figure 12. Electric Fields for Five Dipole and Quadrupole
Locations along a Line inside the Region of Interest
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the quadrupole synthesis of electric potentials. In analogy to the

ideal line dipole, consider the ideal line quadrupole consisting of four

lines of alternating charge extending infinitely in a direction perpen-

dicular to the two dimensional region of interest. Figure 12 shows

these four lines of charge which are allowed to approach each other in

the limit of superposition to derive the potential field of the ideal

line quadrupole. Since, we are interested in the synthesis of poten-

tials which fall to zero along a reference plane, an image line

quadrupole is simultaneously located an equal distance from the refer-

ence plane but on the side opposite the location of the line quadrupole

itself. The potential field, as derived in Appendix A, due to a line

dipole at (x ,y ) and its image at (x ,-y ) isq q q q

(y+y )
<j> (x,y)=A (x-x ) a
q q q

[(x-xq)
2 + (y+yq)

2]2 + [(x-xq)
2 + (y-yq)

2]2 J . (V-l)

Notice that this potential vanishes along the reference plane (y=0)

regardless of the values of the quadrupole parameters A , x , and y .

In analogy with dipole synthesis, the line quadrupole potential can be

used for the synthesis of unknown potentials existing in a two dimen-

sional space of the biased fins (i.e. , along a line, y=constant, midway

between the fins and the reference plane) as the result of an ideal

line quadrupole and its image located at the same five perpendicular

distances that were considered for the ideal dipole field of Figure 12.

In comparing these two diagrams, notice that the quadrupole field.is

symmetric about its axis. Furthermore, the quadrupole field is largest
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on its axis, rather than at locations on either side of the axis as was

found for the dipole field. These quadrupole field characteristics

facilitate the definition of iterative schemes for the synthesis of un-

known potentials. In particular, a number of ideal quadrupoles can be

located simultaneously with that quadrupole which is placed directly

over each trajectory being primarily responsible for the reduction of

discrepancy associated with that trajectory. However, before consider-

ing the topic of potential synthesis using the fields of quadrupole

arrays, the synthesis of electric potentials by the iterative addition

of single quadrupole fields will be considered. This will provide a

basis for comparing dipole and quadrupole methods for the synthesis of

solutions to Laplace's equation subject to the constraints imposed by

electron trajectory data.

To formulate an iterative scheme for quadrupole synthesis of

solutions to the model problem, suppose that the potential \l> exists

as the result of the biasing of the fins relative to a zero potential

reference plane. An initial estimated potential <j) can be defined as

the uniform-field approximation of fy which satisfies the data for the

last of the six trajectories listed in the statement of the model prob-

lem (i.e., the scaling trajectory). In analogy with equations IV-1) to

(IV-4) , an initial estimated potential ({> = A y, can be calculated at

any point in the region of interest based upon the data for the scaling

trajectory and the electron charge to mass ratio. After determining the

uniform field approximation of the estimated potential, the estimated

potential can be modified according to an iterative scheme that adds

quadrupole fields 4> (x,y) to (J> (x,y) in order to improve the approxi-

mation of the biased fin potential î (x,y).
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<j>(x,y) = <t>0(x,y) +qZ1 4>q(x,y) (V-2)

For each iteration of the scheme, estimated electron trajectories in

the estimated potential field are developed from a knowledge of initial

electron coordinates and velocities for the first five electron tra-

jectories listed as data for the model problem. The coordinates (XM(K) ,

YM(K)) at the highest points on the estimated electron trajectories are

recorded as well as the exit coordinates (XE(K), YE(K)) for K = 1, 2,

3, 4, 5. Then trajectory discrepancies,

D(K) = XT(K) - XE(K), (V-3)

are defined for each trajectory as the difference between the final

x-coordinate XT(K) listed as data and the final x-coordinate XE(K)

found for the estimated trajectories in the estimated potential. The

sum of the absolute discrepancy values

5
DD -̂  |D(K) | (V-4)

is calculated in order to obtain a quantitative measure of the error

in the approximation of ij;(x,y) by (J>(x,y). The object of each iteration

is the reduction of DD by the addition of an ideal line quadrupole and

its image with a magnitude and spatial location that is optimal in some

regard. In particular, let the quadrupole be located a fixed distance

from the region of interest (e.g., y = 1.4DY) and let the trajectory

K- having the largest absolute discrepancy, |D(K')|, define the x-

coordinate location of the quadrupole (e.g., x = XM(K..)). Then a quad-

rupole magnitude A can be chosen which reduces the largest absoluteq
trajectory discrepancy to approximately zero. Toward this end, con-

sider the equations of motion for electrons following the estimated

trajectory 1C. through the estimated potential <j>(x,y).
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* m 3. $.
2 m 3x ' 2 m 9y

The integration of these equations over the time T required for elec-

trons traveling along trajectory 1C yields

i fT ftf':
f J dt1. (V-6)

and

1 n f f %fh

dt dt1. (V-7)
1 f l^

f^

Recall that the trajectory K.. consists of a number of points whose

coordinates were determined by a stepwise solution of the equations of

motion. Furthermore, the electric fields -5^ and -5̂ - were determined at
3x 3y

these points by interpolation from a grid in order to proceed with the

stepwise development of the trajectory. Since these electric fields

and corresponding coordinate values are available, the integrals in

equations (V-6) and (V-7) may be replaced by a pointwise summation over

the trajectory K.. Using the trapezoidal rule for numerical integration,

we obtain

fT ft' N .
VXI(K1) ̂  Ix dt dt' = S 2 (Sn + Sn-l)Atn (V~8)

where

ĵ

S = £ £ [(!*) + (!*) ]At.. (V-9)
n i=l 2 dx i dxi-l i

Similarly, we obtain
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(T ft1 .. N
VYI(IC) = -g dt dt' = Z - (V + V )At (V-10)

T. JQ JQ 37 n=1 2 n n-1 n

where

and N represents the number of time steps At. used in the development

of trajectory K_. Substituting these expressions for the integrals in

equation (V-6) and (V-7) , we obtain estimates of the time T required for

electrons following trajectory K- and the electron exit coordinate

. With YE) = YOO) = 0, we have

T = - —
• 2m

1 q VYI(K1>
-*

and

Notice that T > 0 for negatively charged electrons.

We wish to add a quadrupole field <j>(x,y) altering the trajectory

K only slightly and shifting the exit coordinate from its estimated

value XE(K..) to the data value XT (1C). The equations of motion for

electrons in this new potential field are

*, t. m ox dx . / m

The integration of the first of these equations yields

^

XT(K) + XO(K) + TVXO(K) +
0
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When K trajectory is not too different from the K. trajectory, the

*
time T is not much different from the time T and the integral ex-

pression in equation (V-15) can be evaluated by summation of electric

fields over the same N points used for the evaluation of the integral

in equation (V-6). Therefore,

* 1 q

where

N
VI(O = E 4 (v + v )At (V-17)1. , 2 q q - n

n=l n̂ Ti-1

and

n i 3d) 3d)
Vn = E 7Z~ [<â > + <a^> ]At-' (X
qn 1-1 q dx i dX 1-1 x

Subtracting equation (V-13) from equation (V-16), and solving for A ,

we find

2m XT(K̂ ) - XE(KI)

This expression for A can be used to calculate the magnitude of the

ideal line quadrupole which, when located above the trajectory ex-

hibiting the largest discrepancy, reduces that discrepancy approximately

to zero.

After a quadrupole field with the appropriate magnitude is added

to the estimated potential, a scaling operation is executed to complete

one iteration of the scheme. The estimated potential is scaled by

an amount sufficient to reduce the discrepancy of the scaling trajectory

approximately to zero. To derive an algorithm for this purpose, we
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assume that electrons following the scaling trajectory experience no

net force in the x-direction. More specifically, this implies that

XE(6) = X0(6) + T-VXO(6) (V-20)

with

1 5. VYI(6) f
1 2 m VYO(6)' W-zj.;

Then, scaling the potential by a factor SF, we shift the exit coordinate

to a value

XT(6) = X0(6) + T -VXO(6) (V-22)

where

* 1 q
T = - i -3- SF

L m

Therefore, using equations (V-20) to (V-22) to solve equation (V-23)

for the scale factor, we obtain

_ T*_ XT(6) - X0(6) , .
SF ' T " XE(6) - X0(6)' (V~24)

Recall that this same,algorithm was used for scaling the estimated

potential when solving the model problem by dipole synthesis.

The main routine QPOLE.F4 implements the iterative scheme des-

cribed above for the quadrupole synthesis of solutions to the model

problem. QPOLE.F4 is similar to the dipole routines PTENT.F4 and

RTENT.F4, particularly in regard to the iterative procedures used for

scaling the estimated potential and for determining an optimal pole

magnitude after a pole location has been specified. The major

difference between the dipole and quadrupole routines is the criteria

used for selecting optimal pole locations. Table 9 lists error
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Table 9

Error Estimates for Quadrupole Synthesis with Routine QPOLE.F4

Iteration

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Discrepancy

(DD)

1.51

0.99

1.00

0.97

0.60

0.56

0.55

0.48

0.44

0.51

0.49

0.47

0.45

0.43

0.22

0.20

Average
Error

(%)

-4.6

-3.4

-1.4

-1.9

-1.5

-1.7

-2.0

-2.5

-2.9

-0.9

-1.4

-2.0

-2.5

-3.1

-1.5

-1.7

Average
Absolute
Error

(%)

5.8

4.5

4.1

4.1

2.7

2.7

2.7

3.1

3.3

3.0

3.0

3.0

3.1

3.4

1.9

2.0

Maximum
Absolute
Error

(%)

20.0

19.0

17.5

17.8

16.2

16.5

16.7

17.6

18.1

16.3

16.8

17.2

17.7

18.1

13.5

13.6
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estimates obtained after 15 iterations of the scheme for quadrupole

synthesis which can be compared to the equivalent error estimates for

dipole synthesis appearing in Tables 4 and 5. Note that in 15 iter-

ations of the quadrupole routine, the discrepancy is reduced to a

value considerabley lower than the discrepancy values achieved with 15

iterations of the dipole schemes. This discrepancy reduction for the

quadrupole scheme is accomplished in 30'32" of CPU time representing

only a small improvement in the amount of time expended per iteration.

Although convergence limits are not reached in 15 iterations of the

QPOLE.F4 routine, the indication is that the method would ultimately

converge to a better approximation of the biased fin potential than

solutions obtained with the dipole methods. Tables 10, 11 and 12 show

the error percentages, after 5, 10 and 15 iterations respectively,

associated with the estimated potential at 110 points chosen arbit-

rarily from a much finer grid (i.e., the interpolation of electric fields

with subroutine NEWTON requires a finer grid spacing) in the reference

frame of the biased fins. Notice that the error percentages for points

near spatial regions probed by the electron trajectories (e.g., 30<I<54

and 5<J<17) decrease with successive iterations of the quadrupole

scheme. The improvement of the estimated potential in these regions

is accomplished while a degradation in the accuracy of the estimated

potential results for points further from the space probed by the

electron trajectories. This result for quadrupole synthesis of solu-

tions to the model problem can be compared to similar results for dipole

synthesis which have been discussed previously with references to Tables

4, 5 and 6. Figure 13 shows equipotential lines for the QPOLE.F4 rou-

tine which can be compared to Figures 8, 10 and 11 depicting the test



58

Table 10

Estimated Potential Error Percentages for Quadrupole
Synthesis (5 Iterations of Routine QPOLE.F4)

Y 21 -16.5 - 6.8 0.9 5.0 5.5 2.9 0.4 1.1 -0.4 - 1.6 - 5.7

C 19 -10.8 - 6.4 - 0.6 3.0 3.9 2.5 1.0 0.6 -0.3 - 1.4 - 1.8

jj 17 7.9 - 5.5 - 1.4 1.7 2.7 2.1 1.1 0.5 -0.2 - 0.8 - 0.2

R 15 - 6.2 - 4.8 - 1.8 0.8 1.9 1.7 1.1 0.5 -0.0 - 0.2 0.6

° 13 - 5.1 - 4.2 - 2.0 0.1 1.2 1.3 0.9 0.4 0.1 0.1 1.1

N 11 - 4.5 - 3.9 - 2.2 -0.4 0.7 1.0 0.8 0.4 0.1 0.3 1.3

£ 9 - 4.3 - 3.9 - 2.5 -0.8 0.3 0.7 0.6 0.2 -0.1 0.1 1.1

E 7 - 4.7 - 4.4 - 3.0 -1.3 -0.1 0.5 0.3 -0.1 -0.5 - 0.4 0.5

I 5 - 6.4 - 6.0 - 4.3 -2.2 -0.5 0.2 -0.0 -0.9 -1.8 - 2.1 - 1.4

^ 3 -15.3 -14.2 -10.7 -5.9 -1.8 -1.8 -1.3 -4.7 -8.3 -10.7 -10.8

E
X 22 26 30 34 38 42 46 50 54 58 62

X COORDINATE INDEX (I)
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Table 11

Estimated Potential Error Percentages for Quadrupole
Synthesis (10 Iterations of Routine QPOLE.F4)

21 -16.8 - 7.1 0.1 3.5 4.4 4.0 2.6 2.9 0.7 - 0.9 - 5.3

19 -11.1 - 6.8 - 1.3 2.0 3.3 3.3 2.6 2.1 0.8 - 0.7 - 1.3

17 - 8.3 - 6.0 - 2.0 1.0 2.4 2.7 2.4 1.8 0.9 - 0.0 0.3

15 - 6.5 - 5.2 - 2.3 0.2 1.7 2.2 2.1 1.6 0.9 0.5 1.2

13 - 5.5 - 4.7 - 2.5 -0.3 1.2 1.8 1.8 1.4 1.0 0.9 1.7

11 - 4.9 - 4.3 - 2.6 -0.7 0.7 1.4 1.5 1.3 1.0 1.0 1.8

9 - 4.7 - 4.3 - 2.8 -1.1 0.4 1.1 1.3 1.0 0.8 0.9 1.7

I 5 - 6.7 - 6.3 - 4.6 -2.4 -0.4 0.6 0.6 -0.2 -1.1 - 1.4 - 0.8

|J 3 -15.6 -14.5 -11.1 -6.1 -1.7 0.4 -0.7 -3.9 -7.6 -10.1 -10.3

E
X 22 26 30 34 38 42 46 50 54 58 62

X COORDINATE INDEX (I)
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Table 12

Estimated Potential Error Percentages for Quadrupole
Synthesis (15 Iterations of Routine QPOLE.F4)

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

-12.4

- 7.1

- 4.7

- 3.3

- 2.6

- 2.2

- 2.2

- 2.7

- 4.5

-13.6

1O

- 1.6

- 2.7

- 2.7

- 2.5

- 2.4

- 2.3

- 2.5

- 3.0

- 4.7

-13.0

oc

2.7

0.4

- 0.7

- 1.2

- 1.5

- 1.7

- 2.0

- 2.5

- 3.9

-10.3

or>

-0.6

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.8

-2.6

-6.3

ii.

-1.4 -0.1

-0.9 -0.2

-0.7 -0.3

-0.6 -0.3

-0.7 -0.3

-0.8 -0.4

-0.9 -0.5

-1.1 -0.7

-1.5 -0.8

-2.7 -1.0

oo /. o

0.3

0.4

0.3

0.1

0.0

-0.1

-0.3

-0.5

-0.8

-2.0

/. c.

1.8

1.0

0.6

0.4

0.2

0.1

-0.1

-0.5

-1.3

-5.0

en

0.4

0.3

0.3

0.3

0.3

0.2

0.0

-0.4

-1.8

-8.3

CA

- 0.8

- 0.7

- 0.2

0.3

0.6

0.7

0.5

- 0.1

- 1.8

-10.4

CO

- 5.0

- 1.1

0.5

1.3

1.7

1.8

1.7

1.0

- 0.9

-10.4

C.̂ 1

X COORDINATE INDEX (I)
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potential and the dipole synthesized solutions.

B. Potential Synthesis with Quadrupole Arrays

In order to speed the process of discrepancy reduction,, consider

the placement of five ideal line quadrupoles upon each iteration of a

new scheme for quadrupole synthesis of solutions to the model problem.

The procedure for calculating an initial estimated potential, 4> (x,y),

based upon a uniform field approximation and the data for the scaling

trajectory (i.e., K=6) is unchanged and described by equations IV-1)

through (IV-4). The estimated potential can then be modified by an

iterative scheme that locates five quadrupoles simultaneously in order

to achieve discrepancy reduction for all five of the electron tra-

jectories. Equation (V-25) depicts this situation

N 5
<Kx,y) = <fr-(x,y) + £ I <J>v(x,y) (V-25)

i-1 K=l K

where 4>,,(x>y) is given by equation (V-l) and the i index runs up to
K

the total number of iterations that are needed for adequate discrepancy

reduction. In developing this scheme, we expect that each iteration

will require more CPU time since five quadrupoles are located as com-

pared to only one with the old scheme. However, we hope that fewer

iterations will be required to achieve a given reduction in discrepancy

and that the total CPU time expended will decrease. To define the new

scheme, let all five quadrupoles be located with a y-coordinate value

of 1.4DY. Let the x-coordinate values of the quadrupole locations be

equal to the x-coordinates corresponding to the highest points on the

five estimated trajectories that have been developed for the estimated

potential.
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x^ = XM(K) ; 1,2,3,4,5 (V-26)

Once the five quadrupole locations have been chosen, we seek five

quadrupole Biagnitudes (i.e. , A^K = 1, 2, 3, 4, 5) which reduce the

discrepancies associated with all five trajectories to approximately

zero. Toward this end, consider the equations of motion for electrons

moving in the estimated potential 4>(x,y). Then, in analogy with equa-

tions (V-5) through (V-13), an equation for each estimated trajectory

can be determined.

XE(K) = XO(K) + T,VXO(K) + ̂  -^ VXI(K) ; K = 1,2,3,4,5 (V-27)
2 m

Now, we wish to add five quadrupole fields to the estimated potential

so as to alter the five estimated trajectories only slightly and shift-

ing the estimated exit coordinates (XE(K) ; K= 1, 2, 3, 4, 5) over to

the exit coordinates (XT(K) ; K= 1, 2, 3, 4, 5) measured as data.

The equations of motion in this new estimated potential are

(v-28)
3t* K=l

and

>• (v-29)3t m 3y K-l 3x

An integration of the equations of motion subject to the initial and

final conditions available as trajectory data results in five equations

describing the electron trajectories in a new estimated potential.

Thus,

5
XT(K) = XO(K) +T-VXO(K) + j ̂  [VXI(K) + I A£VI(K)], (V-30)

K."~J.

with VI(K) defined by equations (V-17) and (V-18) and where
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K = 1, 2, 3, 4, 5. The subtraction of equation (V-27) from equation

(V-30) yields,

XT(K) - XE(K) = 7 ^ 2 Â VI(K) ; K= 1,2,3,4,5. (V-31)
2 m K=1 -R

Equation (V-31) represents a linear system of five equations in

five unknowns (i.e. , Â .;K = 1, 2, 3, 4, 5) which can be solved by

gaussian elimination procedures to determine the magnitude of the five

ideal line quadrupoles. When the potential fields associated with

these quadrupoles are added to the estimated potential, a new estimated

potential is synthesized* Then the discrepancies associated with the

new estimated trajectories, developed in the new estimated potential,

should individually be approximately equal to zero. Thus, complete

discrepancy reduction could be accomplished with a single application

of the new scheme. However, the scheme involves several approximations

which produce a less than total reduction of discrepancy. For example,

the time T in equations (V-27) and (V-30), as well as the VXI(K)

terms, depend upon the old and new estimated potentials respectively.

Therefore, the terms involving these expressions will not cancel ex-

actly as indicated in the derivation of equation (V-31). The approx-

imation as implied by equations (V-27) and (V-30) is that the five

electron trajectories are not altered greatly by the addition of five

quadrupoles for the reduction of discrepancy. Therefore, the errors

introduced by these approximations will result in a less than total

reduction of discrepancy for any one iteration of the scheme. However,

on successive iterations, the approximations will produce lesser errors

and for a suitable initial potential estimate <j> , the method of
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successive approximation will result in a convergent iterative scheme.

The main routine QPOLES.F4 (Appendix E) implements the method

described above for the synthesis of solutions to the model problem.

Table 13 shows the error estimates generated at 110 points on a grid

located between the biased fins and above the zero potential reference

plane. These results can be compared to Tables 10, 11 and 12 which

list the results of routine QPOLE.F4 also used for quadrupole synthesis

of solutions to the model problem. Note that the single pole scheme

results in solutions that are scaled better than the solutions syn-

thesized by the addition of five poles simultaneously. However,

discrepancy reduction is much more rapid for the latter method. A

reduction in discrepancy from 1.5 to 0.4 can be accomplished with a

single iteration of the QPOLES.F4 scheme requiring 3'24" of computer

processing time (CPU time) as compared to 14 iterations of the QPOLE.F4

scheme requiring 28'29". Although 4 iterations of the method have been

listed, the reduction of discrepancy and of approximation errors reaches

a limit after only 2 iterations. This is in contrast to the single pole

scheme where convergence limits had not been reached after 15 iterations.

Figure 14 shows equipotential lines for the QPOLES.F4 routine.

Although convergence is rapid for the main routine QPOLES.F4, the

synthesized solution to the model problem underestimates the biased fin

potential at 109 of the 110 points considered. The scaling procedure

itself is unchanged from the successful procedure used previously for

the single quadrupole and dipole routines. The difficulty seems to be

manifested in balancing the strategies of field scaling and field shap-

ing depending on whether the addition of quadrupoles, reducing discrep-

ancies for the first five trajectories, has a sufficiently detrimental

effect on the discrepancy of the scaling trajectory. To possibly save
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Table 13

Error Estimates for Routine QPOLES.F4 with Step Size d
(0.013 <d< 0.025) and Scale Tolerance of 1.0%

Scale
Iterations Discrepancy Error

(DD) (%)

0 1.51 0.05

1 0.38 0.02

2 0.08 0.16

3 0.05 0.02

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

(J)

21 -.

17 •

13 -

9 '

5 -

4 0.06

21 -12.4 - 2.

19 - 7.3 - 3.

17 - 5.0 - 3.

15 - 3.8 - 3.

13 - 3.1 - 3.

11 - 2.8 - 3.

9 - 2.8 - 3.

7 - 3.4 - 3.

5 - 5.1 - 5.

3 -14.2 -13.

22 26

2

3

3

2

0

0

1

6

4

7

0.

1.3 -1.

- 0.6 -1.

- 1.5 -1.

-2.0 -1.

- 2.3 -1.

- 2.5 -2.

- 2.8 -2.

- 3.3 -2.

- 4.7 -3.

-11.0 -7.

30 34

22

3

2

4

7

9

1

4

8

6

2

-1.

-1.

-1.

-1.

-1.

-1.

-2.

-2.

-2.

-3.

38

X COORDINATE

Average
Error

(%)

-4.6

-3.2

-3.3

-3.2

-3.3

5

5

5

7

8

9

1

3

7

9

-1.

-1.

-1.

-1.

-1.

-1.

-2.

-2.

-2.

-2.

42

4

5

6

7

9

9

0

2

4

6

INDEX

-1.3

-1.4

-1.6

-1.8

-2.1

-2.0

-2.2

-2.4

-2.7

-3.9

46

(D

Average Maximum
Absolute Absolute
Error Error

(%) (%)

5.8 20.0

3.3 14.0

3.3 13.7

3.3 14.1

3.3 14.5

-1.1 - 2.5 - 3.7

-1.6 - 2.5 - 3.8

-1.9 - 2.5 - 3.3

-2.0 - 2.5 - 2.8

-2.4 - 2.4 - 2.4

-2.2 - 2.4 - 2.3

-2.4 - 2.6 - 2.4

-2.8 - 3.1 - 2.9

-3.5 - 4.3 - 4.6

-7.2 -10.7 -13.0

50 54 58

- 8.8

- 4.7

- 3.0

- 2.0

- 1.4

- 1.3

- 1.4

- 2.0

- 3.9

-13.0

62

2.0% ^ *̂

2.5%-

•

•-»
^

•̂ ^

—̂̂

•-.•̂ ^̂
"̂̂ N

' .

•̂ ^

«̂.

1 •
30

— -»^

— --1
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*»

^̂̂̂

_̂ **

^̂

42

•̂  ̂
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^̂

• 1 —
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time, a decision to scale or not is made by comparing the scale error

(i.e., discrepancy) of this trajectory with an arbitrary scale tolerance.

Tables 14, 13 and 15 show error estimates for the synthesis of

solutions to the model problem for scale tolerances of 5.0%, 1.0% and

0.1% respectively. Note that a scale tolerance of 0.1% is preferable.

Decreasing the scale tolerance further will not improve the accuracy

of the solution, since the routine already scales at every opportunity

with a scale tolerance of 0.1%. Thus, invoking the scaling operation

after each shaping operation facilitates the reduction of discrepancy

and produces a better approximation of the biased fin potential. How-

ever, the synthesized solution to the model problem still underestimates

the biased fin potential at 109 of the 110 points considered. Thus,

field shaping by the addition of five quadrupoles simultaneously re-

sults in a rapid convergence at the expense of accurate scaling.

Recall that the terms VI(K) and VXI(K) in equations (V-17) and

(V-8) are calculated by summing terms generated by the trapezoidal

rule for integration over the estimated electron trajectories. The

accuracy of this integration depends upon the number of trapezoidal

terms as determined by the size of the time step used for tracking

electrons through a potential field. Subroutine DVOGEL monitors the

trajectory arc length corresponding to a particular time step to

determine the acceptance or rejection of that time step. Whenever the

arc length surpasses some upper limit, the time step is reduced and

conversely whenever the arc length falls below some lower limit, the

time step is increased. Table 16 shows x and y coordinate values at

points along a particular electron trajectory as well as the electric

field at those points for an ideal line quadrupole that will be added
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Table 14

Error Estimates for Routine QPOLES.F4 with Scale Tolerance of 5.(

Iterations Discrepancy

(DD)

0 1.51

1 0.62

2 0.26

3 0.05

4

Y 21 -16.2

C 19 -11.3

3 17 - 9.0

R 15 - 7.8

^ 13 - 7.1

N 11 - 6.7

T 9 " 6'7

E 7 - 7.2

I

D
E
X

(J)

21 -

17 "

13 •

9 •

5 •

5 - 8.9

3 -17.6

22

0.03

- 6.5

- 7.4

- 7.3

- 7.1

- 6.8

- 6.7

- 6.9

- 7.4

- 9.0

-17.0

26

5%

Scale Average
Error Error

(%) U)

0.05 -4.6

2.78 -7.0

2.64 -6.9

2.51 -6.8

2.51

- 3.0

- 4.5

- 5.3

- 5.7
_ ^ QJ * y

- 6.1

- 6.3

- 6.8

- 8.1

- 4.3

- 4.2

- 4,5

- 4.8

- 5.1

- 5.3

- 5.6

- 6.0

- 6.8

-3.2

-3.7

-4.0

-4.3

-4.6

-4.8

-5.1

-5.4

-5.7

-6.7

-3.0

-3.5

-3.9

-4.2

-4.5

-4.7

-4.9

-5.1

-5.3

-14.2 -10.3 -6.9 -5.6

30 34 38 42

X COORDINATE INDEX

\̂

\

— — j —

-^ — _̂\
-\̂
^̂

-̂̂

\

""""••̂-̂->.

\.

-3.7

-3.9

-4,2

-4.5

-4.7

-4.9

-5.2

-5.4

-5.8

-6.9

46

CD

*̂ -̂-

*̂ x̂

1 —

Average
Absolute
Error

5.8

7.0

6.9

6.8

6.7

- 3.7

- 4.5

- 4.9

- 5.1

- 5.3

- 5.5

- 5.7

- 6.0

- 6.8

-10.3

50

*̂*

^̂

^

- 5.8

- 6.0

- 6.1

- 6.1

- 6.0

- 6.1

- 6.2

- 6.7

- 7.9

-14.0

54

^̂

^̂̂̂

Maximum
Absolute
Error

20.0

17.4

17.3

17.3

17.6

- 8.4

- 8.2

- 7.5

- 6.9

- 6.5

- 6.3

- 6.4

- 6.9

- 8.5

-16.5

58

"̂̂***̂

~̂

-13.7

- 9.5

- 7.6

- 6.5

- 5,9

- 5.7

- 5.7

- 6,3

- 8.0

-16.8

62

,— *

f̂

-4

30 42 54
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Table 15

Error Estimates for Routine QPOLES.F4 with Scale Tolerance of 0.1%

Iterations

0

1

2

3

4

Discrepancy

(DD)

1.51

0.38

0.06

0.04

0.02

Scale
Error

(%)

0.05

0.02

0.00

0.01

0.01

Average
Error

(%)

-4.6

-3.2

-3.1

-3.0

-3.0

Average
Absolute
Error

(%)

5.8

3.3

3.1

3.0

3.0

Maximum
Absolute
Error

(%)

25.4

17.4

14.1

14.2

14.3

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

(J)
21 -T

17

13

9

5

-12.3 - 1.6 1.9 -0.9 -1.3 -1.2 -1.1 -0.8 - 2.2 - 3.3 - 8.4

- 7.1 - 2.8 - 0.1 -0.8 -1.2 -1.2 -1.2 -1.3 - 2.2 - 3.4 - 4.3

- 4.8 - 2.9 - 1.1 -1.0 -1.2 -1.3 -1.3 -1.6 - 2.2 - 2.9 - 2.6

- 3.6 - 2.8 - 1.6 -1.3 -1.3 -1.4 -1.5 -1.7 - 2.2 - 2.4 - 1.7

- 2.9 - 2.7 - 1.9 -1.5 -1.5 -1.5 -1.6 -1.8 - 2.1 - 2.1 - 1.2

- 2.6 - 2.7 - 2.2 -1.8 -1.6 -1.6 -1.7 -1.9 - 2.1 - 2.0 - 1.0

- 2.6 - 2.9 - 2.5 -2.1 -1.8 -1.7 -1.9 -2.1 - 2.3 - 2.1 - 1.1

- 3.2 - 3.4 - 3.1 -2.5 -2.0 -1.9 -2.1 -2.4 - 2.8 - 2.6 - 1.7

- 5.0 - 5.1 - 4.4 -3.3 -2.4 -2.1 -2.4 -3.2 - 4.0 - 4.3 - 3.6

-14.0 -13.4 -10.7 -6.9 -3.6 -2.3 -3.6 -6.9 -10.4 -12.7 -12.8

22 26 30 34 38 42 46

X COORDINATE INDEX (I)

50 54 58 62

1.5%

54



70

Table 16

Quadrupole Electric Fields at Points Defining Estimated
Electron Trajectories in the Uniform Field Potential

STEP SIZE

.008 <d<.025 .013 <d< .025 .013 <d< .050

STEP Y E Y E Y E
x

0.00 0.00
0.05 -0.08
0.10 -0.16
0.15 -0.24
0.20 -0.33
0.24 -0.42
0.29 -0.54
0.34 -0.66
0.39 -0.80
0.44 -0.97
0.49 -1.17
0.54 -1.41
0.59 -1.73
0.64 -2.13
0.69 -2.65
0.74 -3.33
0.78 -4.18
0.83 -5.43
0.88 -7.13
0.82 -5.03
0.65 -2.24
0.48 -1.13
0.30 -0.56
0.12 -0.19

Y

0.00
0.03
0.07
0.10
0.13
0.16
0.20
0.23
0.26
0.30
0.33
0.36
0.39
0.42
0.46
0.49
0.53
0.56
0.59
0.62
0.65
0.69
0.72
0.75
0.78
0.82
0.85
0.88
0.84
0.75
0.66
0.57
0.48
0.40
0.30
0.21
0.12
0.04

E
X

0.00
-0.05
-0.11
-0.16
-0.21
-0.27
-0.33
-0.40
-0.46
-0.54
-0.62
-0.71
-0.81
-0.92
-1.05
-1.19
-1.35
-1.54
-1.76
-2.01
-2.31
-2.68
-3.08
-3.57
-4.17
-4.94
-5.89
-7.04
-5.73
-3.57
-2.38
-1.65
-1.14
-0.82
-0.56
-0.36
-0.20
-0.06

Y

0.00
0.05
0.10
0.15
0.20
0.24
0.29
0.34
0.39
0.44
0.49
0.54
0.59
0.64
0.69
0.74
0.78
0.83
0.88
0.82
0.73
0.64
0.55
0.46
0.38
0.29
0.20
0.11
0.02

E
X

0.00
-0.08
-0.16
-0.24
-0.33
-0.42
-0.54
-0.66
-0.80
-0.97
-1.17
-1.41
-1.73
-2.13
-2.65
-3.33
-4.18
-5.43
-7.13
-5.03
-3.30
-2.18
-1.50
-1.06
-0.75
-0.53
-0.33
-0.17
-0.04
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for field shaping. This trajectory shows no variation in the x coor-

dinate since the estimated potential field used to generate the tra-

jectory from the initial electron data is the uniform field approximation

developed as the first operation in all of the iterative routines that

have been discussed. Note that decreasing the lower limit on the step

size results in more steps as the electron moves against the potential

gradient (increasing y coordinate). Note also that increasing the upper

limit on the step size results in fewer steps as the electron moves with

the potential gradient (decreasing y coordinate). Tables 17 and 18 when

compared to Table 15 show that the three different bounds on the step

size result in synthesized solutions to the model problem which are

only slightly different from each other.

It is interesting to consider the effects of erroneous measurements

of initial electron energy or initial electron direction. Tables 19 and

20 show error estimates for the approximations of the biased fin poten-

tial which result from erroneous measurements of electron initial

energies of 3% and 6% respectively. Note that this type of error affects

the field scaling operation but has little effect on the field shaping

operations. Tables 21 and 22 show error estimates for approximations

of the biased fin potential resulting from erroneous measurements of

electron initial directions of 1° and 3° respectively. Note that this

type of error severely affects field shaping operations as well as the

scaling operations.
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Table 17

Error Estimates for Routine QPOLES.F4 with Step Size d

(0.008 <d< 0.025)

Iterations

0
X

1

2

3

4

Discrepancy

(DD)

1.51

0.38

0.09

0.04

0.02

Scale
Error

(%)

0.05

0.02

0.22

0.18

0.21

Average
Error

(%)

-4.6

-3.2

-3.4

-3.3

-3.3

Average
Absolute
Error

(%)

5.8

3.3

3.5

3.4

3.4

Maximum
Absolute
Error

(%)

20.0

14.1

13.9

14.1

14.3

c
0
0
R
D
I
N
A
T
E

I
N
D
E
X

(J)

21

17

13

9

21

19

17

15

13

11

9

7

5

3

5 --

-12.7 - 2.1 1.5 -1.1 -1.4 -1.3 -1.3 -1.1 - 2.6 - 3.8 - 8.9

- 7.6 - 3.3 - 0.5 -1.0 -1.4 -1.4 -1.4 -1.6 - 2.6 - 3.8 - 4.8

- 5.3 - 3.4 - 1.5 -1.3 -1.4 -1.5 -1.6 -1.9 - 2.6 - 3.3 - 3.0

- 4.0 - 3.2 - 2.0 -1.6 -1.6 -1.6 -1.7 -2.0 - 2.5 - 2.8 - 2.1

- 3.3 - 3.1 - 2.3 -1.8 -1.7 -1.7 -1.9 -2.1 - 2.5 - 2.5 - 1.6

- 3.0 - 3.1 - 2.5 -2.1 -1.9 -1.9 -2.0 -2.2 - 2.5 - 2.3 - 1.4

- 3.0 - 3.2 - 2.8 -2.4 -2.1 -2.0 -2.1 -2.4 - 2.6 - 2.4 - 1.5

- 3.6 - 3.8 - 3.4 -2.8 -2.3 -2.2 -2.4 -2.8 - 3.1 - 3.0 - 2.1

- 5.3 - 5.5 - 4.7 -3.6 -2.7 -2.3 -2.7 -3.5 - 4.4 - 4.7 - 3.9

-14.4 -13.8 -11.0 -7.2 -3.9 -2.5 -3.9 -7.2 -10.7 -13.0 -13.1

22 26 30 34 38 42 46

X COORDINATE INDEX (I)

50 54 58 62

42 54
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Table 18

Error Estimates for Routine QPOLES.F4 with Step Size d

(0.013 <d< 0.050)

Iterations

0

1

2

3

4

Discrepancy

(DD)

1.51

1.01

0.85

0.28

0.08

Scale
Error

(%)

0.43

0.01

0.02

0.03

0.37

Average
Error

(%)

-6.9

-3.2

-3.9

-3.1

-3.3

Average
Absolute
Error

(%)

6.9

3.3

4.3

3.3

3.4

Maximum
Absolute
Error

(%)

17.4

14.2

17.3

14.8

15.1

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

(J)
21 -r

17

13

9

5

-13.7 - 3.3 0.2 -2.0 -1.9 -0.6 -0.5 1.1 - 1.9 - 4.2 - 7.8

- 8.6 - 4.4 - 1.5 -1.8 -1.8 -0.9 -0.6 -0.2 - 1.9 - 3.6 - 3.9

- 6.3 - 4.4 - 2.4 -2.0 -1.8 -1.2 -0.9 -0.9 - 1.8 - 2.8 - 2.2

- 5.0 - 4.2 - 2.9 -2.2 -1.9 -1.4 -1.2 -1.2 - 1.8 - 2.2 - 1.3

- 4.2 - 4.0 - 3.1 -2.4 -2.0 -1.6 -1.4 -1.4 - 1.7 - 1.8 - 0.8

- 3.9 - 3.9 - 3.3 -2.6 -2.1 -1.8 -1.6-1.6 - 1.8 - 1.6 - 0.6

- 3.9 - 4.1 - 3.6 -2.9 -2.3 -1.9 -1.8 -1.8 - 2.0 - 1.7 - 0.7

- 4.4 - 4.6 - 4.1 -3.3 -2.5 -2.1 -2.0 -2.2 - 2.4 - 2.3 - 1.8

- 6.2 - 6.3 - 5.4 -4.1 -2.9 -2.3 -2.3 -3.0 - 3.7 - 3.9 - 3.2

-15.1 -14.5 -11.7 -7.7 -4.1 -2.5 -3.6 -6.6 -10.1 -12.4 -12.4

22 26 30 34 38 42 46

X COORDINATE INDEX (I)

50 54 58 62

-1.

-2.2%

30 42 54
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Table 19

Error Estimates for Routine QPOLES.F4 with 3% Error in Beam Energy

Iterations

0

1

2

3

4

Discrepancy

(DD)

1.51

0.36

0.09

0.03

0.01

Scale
Error

(%)

0.05

0.02

0.18

0.17

0.18

Average
Error

(%)

-1.7

-0.1

-0.2

-0.2

-0.2

Average
Absolute
Error

(%)

5.0

1.8

1.6

1.6

1.6

Maximum
Absolute
Error

(%)

17.6

10.9

10.7

11.0

11.1

Y

C
o
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

- 8.9

- 3.6

- 1.3

- 0.1

0.5

0.8

0.7

0.1

- 1.8

-11.1

oo

(J)

21 -r

17

13

9

5

2.7 5.7 1.4 0.5 0.7 0.5 1.0 0.2 0.0 - 4.7

1.0 3.4 1.8 0.9 0.7 0.6 0.7 0.4 - 0.2 - 0.7

0.6 2.2 1.7 1.0 0.7 0.7 0.6 0.4

0.6 1.6 1.5 1.0 0.8 0.7 0.6 0.6

0.7 1.2 1.2 1.0 0.8 0.7 0.6 0.6

0.6 0.9 1.0 0.9 0.8 0.6 0.6 0.6

0.4 0.6 0.7 0.8 0.7 0.5 0.4 0.5

0.1 - 0.3 -2.7 0.3 0.6 0.6 0.4 0.1 0.0

1.8 - 2.0 -1.4 -0.5 0.2 0.4 0.1 -0.7 -1.3 - 1.3 - 0.3

11.1 -10.6 -8.0 -4.3 -1.0 0.2 -1.2-4.4 -7.8 -10.0 -10.0

0.3

0.7

1.0

1.1

1.0

0.4

0.9

1.8

2.2

2.4

2.2

1.6

26 30 34 38 42 46

X COORDINATE INDEX (I)

50 52 58 62

0.2%

54
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Table 20

Error Estimates for Routine QPOLES.F4 with 6% Error in Beam Energy

Iterations

0

1

2

3

4

Discrepancy

(DD)

1.51

0.38

0.07

0.04

0.02

Scale
Error

(%)

0.05

0.02

0.16

0.14

0.15

Average
Error

(%)

1.2

2.7

2.6

2.7

2.7

Average
Absolute
Error

(%)

5.2

3.8

3.6

3.7

3.7

Maximum
Absolute
Error

(%)

15.1

8.8

8.5

8.8

9.0

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

(J)
21 T

17

13

9

5

-7.2 4.1 7.8 4.9 4.6 4.7 4.9 5.1 3.6 2.3 -3.2

-1.7 2.8 5.7 5.0 4.7 4.7 4.7 4.5 3.5 2.2 1.2

0.7 2.6 4.6 4.8 4.6 4.6 4.5 4.2 3.5 2.7 3.0

2.0 2.8 4.0 4.5 4.5 4.5 4.4 4.1 3.6 3.3 4.0

2.7 3.0 3.8 4.2 4.4 4.4 4.2 4.0 3.6 3.6 4.6

3.1 3.0 3.5 4.0 4.2 4.2 4.1 3.8 3.6 3.8 4.8

3.0 2.8 3.2 3.7 4.0 4.1 3.9 3.7 3.4 3.6 4.7

2.5 2.2 2.6 3.3 3.7 3.9 3.7 3.3 3.0 3.1 4.0

0.6 0.4 1.2 2.4 3.1 3.7 3.1 2.5 1.6 1.3 2.9

-9.0 -8.9 -5.5 -1.5 2.1 3.5 2.1 -1.4 -5.1 -7.6 -7.7

22 26 30 34 38 42 46

X COORDINATE INDEX (I)

50 54 58 62
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Table 21

Error Estimates for Routine QPOLES.F4
with 1% Error in Initial Electron Direction

Iterations

0

1

2

3

4

Discrepancy

(DD)

1.57

0.43

0.11

0.06

0.03

Scale
Error

(%)

0.05

0.01

0.37

0.38

0.44

Average
Error

(%)

-4.9

-3.7

-4.0

-3.9

-4.0

Average
Absolute
Error

(%)

6.0

3.8

4.0

3.9

4.0

Maximum
Absolute
Error

(%)

20.3

-15.0

-15.7

-16.2

-16.5

Y

C
0
0
R
D
I
N
A
T
E

I
N
D
E
X

21

19

17

15

13

11

9

7

5

3

(J)

21 T

17

13 f

-16.1 - 4.7 0.1 -1.5 -1.9 -1.7 -1.9 -1.4 - 2.9 - 3.4 - 6.3

-10.8 - 5.8 - 2.0 -1.8 -2.0 -1.9 -1.9 -1.9 - 2.6 - 3.1 - 2.7

- 8.3 - 5.8 - 3.1 -2.3 -2.1 -2.0-2.0 -2.0 - 2.4 - 2.4 - 1.3

- 6.8 - 5.6 - 3.7 -2.7 -2.3 -2.1 -2.1 -2.1 - 2.2 - 1.9 - 0.6

- 6.0 - 5.4 - 4.0 -3.0 -2.5 -2.3 -2.2 -2.1 - 2.1 - 1.6 - 0.2

- 5.6 - 5.3 - 4.3 -3.3 -2.7 -2.4 -2.3 -2.2 - 2.1 - 1.5 - 0.1

- 5.5 - 5.4 - 4.6 -3.6 -3.0 -2.6 -2.4 -2.4 - 2.2 - 1.6 - 0.3

- 6.0 - 5.9 - 5.1 -4.1 -3.2 -2.7 -2.6 -2.7 - 2.7 - 2.2 - 1.0

- 7.7 - 7.5 - 6.4 -4.9 -3.6 -2.9 -2.9 -3.5 - 3.9 - 3.9 - 2.9

-16.5 -15.6 -12.6 -8.5 -4.8 -3.1 -4.1 -7.1 -10.3 -12.3 -12.2

22 26 30 34 38 42 46

X COORDINATE INDEX (I)

-2%

-3.0%̂

50 54 58 62

30 42 54
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Error Estimates for Routine QPOLES.F4
with 3% Error in Initial Electron Direction

77

Scale
Iterations Discrepancy Error

0

1

2

3

4

(DD)

1.83

0.58

0.21

0.13

0.07

Y 21 -22.3 - 9.6

C 19 -16.2 -10.3

° 17 -13.1 -10.0
0
R 15 -11.3 - 9.4

? 13 -10.1 - 9.0
I
N 11 - 9.5 - 8.7
A
T
E

I
N
D
E
X

(J)

21 -

17 -

13 -

9

5

9 - 9.2 - 8.8

7 - 9.6 - 9.2

5 -11.1 -10.7

3 -19.5 -18.5

22 26

(%)

0.05

0.04

0.80

0.05

0.31

- 2.3 - 1.6

- 4.6 - 2.8

- 5.8 - 3.7

- 6.5 - 4.4

- 6.8 - 4.9

- 7.0 - 5.3

- 7.3 - 5.6

- 7.8 - 6.0

- 9.0 - 6.9

-15.1 -10.4

30 34

Average Maximum
Average Absolute Absolute
Error Error Error

(

-6

-4

-5

-4

-4

-2.4

-2.7

-3.1

-3.4

-3.7

-4.0

-4.3

-4.5

-4.9

-6.1

38

%)

.0

.9

.6

.3

.5

-2.6 -2.7

-2.7 -2.6

-2.8 -2.5

-2.9 -2.5

-3.0 -2.4

-3.1 -2.5

-3.3 -2.5

-3.4 -2.7

-3.6 -3.0

-3.8 -4.2

42 46

(%)

6.7

5.0

5.6

4.7

5.1

-2.6

-2.4

-2.1

-1.9

-1.7

-1.7

-1.7

-2.0

-2.7

-6.3

50

(

21

20

21

21

-22

-2.9 -2.

-2.1 -0.

-1.4 0.

-1.0 0.

-0.6 1.

-0.5 1.

-0.6 1.

-1.0 0.

-2.3 -1.

-8.7 -9.

54 58

%)

.2

.1

.9

.6

.3

1 -0.1

8 2.7

2 3.5

8 3.8

2 3.9

3 3.8

1 3.4

5 2.6

2 0.6

9 -9.0

62

X COORDINATE INDEX (I)

-3.6%
. \ v̂̂  -3.07=

\1 \
X̂*

I

30

\

^

V
Xx\>» .

i
42

\r
54
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VI. EXPERIMENTAL RESULTS

The biased fin potential referred to in sections III, IV and V of

this report has been a conceptual entity rather than a physical entity.

The same can be said for the electron trajectories that are used to

measure and probe the biased fin potential. In this section, however,

we will describe a laboratory experiment that was conducted to test

the computer codes that have been developed for the synthesis of

approximations to the biased fin potential.

The potential developed in section III was proposed to approximate

the field existing near an infinite number of parallel-planar fins, all

of which extended infinitely in both parallel directions. Thus, the

conceptual system extended infinitely in three spatial directions. How-

ever, the physical system was constructed inside a cylindrical bell jar

and consisted of six parallel plates approximately five inches high

and were biased with -100 volts at a distance of 1.7 inches from a zero

potential ground plane. Due to the finite size of the system, we ex-

pect that the physical potential field existing inside the evacuated

bell jar will be somewhat different from the biased fin potential as

derived in section III. In spite of this dimensional limitation, we

hoped to use the computer codes described in section V to process

electron trajectory data and develop a synthesized potential field for

comparision with the biased fin potential plotted in Figure 8.

An electron beam was generated by an electron gun consisting of a

wire filament inside a cylindrical aluminum can having a pinhole at the

center of one end. The electron gun was positioned below a grounded

wire mesh (i.e., the reference, plane) so that the electron beam emanating
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from the can would pass through the wire mesh on a traj ectory that

ultimately returned to the wire mesh due to the deflection of the

electron beam by the negatively charged fins. The source and sink

points in the reference plane were recorded for six trajectories as

listed in Table 23. Although the dimensions of the physical system

(e.g., 3.17 inches by 1.7 inches) are different from those of the con-

ceptual system (e.g., 1.8 units by 1 unit), it is apparent that the

trajectories listed as physical data do not correspond to those tra-

jectories defined conceptually in the statement of the model problem.

Thus, it is interesting to speculate what the electron trajectories

might have looked like in the conceptual biased fin potential given the

initial electron parameters measured as physical data. Figure 15 shows

projected trajectories developed for an assumption of the biased fin

potential as expressed in equation (111-10) and for the initial electron

velocities listed in Table 23. Note that the sink points along the

reference plane do not correspond to the sink points measured as phy-

sical data. Therefore, we conclude that the physical potential field

of the biased fins must be somewhat different from the conceptualized

potential. With the knowledge that the unknown potential field in the

bell jar is similar to, but not identical to, the conceptualized biased

fin potential; it is appropriate to apply the computerized methods des-

cribed in section V in order to synthesize approximations of the unknown

potential. Figure 16 shows the results obtained with five iterations

of the QPOLE.F4 routine using all the data that appears in Table 23.

Note that this solution indicated a lower potential midway between the

fins when compared to the potential field of Figure 8. This may well

be the result of approximating an infinite fin height (measured
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J=22

line

Figure 15. Trial Electron Trajectories for Experimental Electron
Data and the Ideal Biased Fin Potential

J=22

Each line

0.1V

22 (I) 62 82

Figure 16. Approximation of the Experimental Potential Synthesized
with QPOLE.F4

J=22

Each line

0 22 " ' ' '(I)r ?~* ^62 ' 82

0 .9 (x) 2.7 3.6
Figure 17. Approximation of the Experimental Potential Synthesized

with QPOLES.F4
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perpendicular to the reference plane) with a fin only 5 inches high.

Figure 17 shows the results obtained when only four of the tra-

jectories (i.e. , K = 2,3,4 and 6) are used with the QPOLES.F4 routine.

Attempts to use more of the data in Table 23 caused instabilities in

the method preventing the synthesis of approximations to the potential

field existing in the bell jar. Thus, by concentrating only on the

interior trajectories, a potential field can be created which reproduces

the sink points of those interior trajectories. However, as seen in

Figure 17, the sink points for the K=l and K=5 trajectories are in

error since the data for these trajectories is not used.

Thus, we have demonstrated that the quadrupole methods developed

for an idealized biased fin potential and a particular set of trajectory

data can be used to synthesize approximations of the similar potential

field existing in the bell jar by using a different set of trajectory

data. We see that the choice of data for a particular scheme does

affect the convergence properties of that scheme, to the extent that no

solution is a possibility. Therefore, we conclude that data selection

is important for the application of these iterative routines. Con-

versely, the definition of a particular iterative scheme may depend

heavily on the data that can be obtained.
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Table 23

Experimental Electron Trajectory Data

Trajectory

K

1

2

3

4

5

6

Source

XO(K)

(inches)

0.73

1.25

2.27

2.54

2.91

0.12

Points

YO(K)

(inches)

0.0

0.0

0.0

0.0

0.0

0.0

Source Ve

VXO(K)

- m. .
sec

0.0

0.0

0.0

0.0

0.0

3.4xl06

locit

VYOO

m .
sec

5.5x

5.5x

5.5x:

5.5x

5.5x

3.4x

Sink Points

XT(K) YT(K)

(inches) (inches)

2.72

2.29

1.52

0.96

0.33

3.29

0.0

0.0

0.0

0.0

0.0

0.0
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VII. CONCLUSIONS

The synthesis of electric potentials from the fields of electric

dipoles and quadrupoles has been considered as a method for approxima-

ting unknown potential fields in two dimensions. Although we were most

interested in determining potential fields on an unbounded spatial do-

main; computational methods were developed first for the classical

boundary value problem in electrostatics, since other well-known meth-

ods exist for its solution.

Several iterative schemes for the dipole synthesis of solutions

to a square boundary value problem were developed and their accuracy

was compared to a series expansion solution. We found that as the di-

pole singularities were moved farther away from the boundary, the syn-

thesized solutions became more accurate at the expense of more compu-

tation (i.e. , more iterations of a scheme were required for convergence

to a desired limit). Additionally, procedures for scaling, shifting

and rotating the estimated potential were developed to assist in the

solution of the boundary value problem. The rotational procedure was

found to be of assistance only in determining an initial estimated

potential that best matched the known boundary values. The scaling and

shifting procedures were found to be helpful immediately after each

successive addition of a dipole field. The dipole fields were chosen

to reduce the discrepancy between a known potential value and its

estimated value at the point on the boundary where the discrepancy was

largest. This scheme showed good convergence properties. We found that

convergence could be hastened by considering potential discrepancy

reduction at two boundary points simultaneously and then allowing the
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location of dipole field singularities at variable distances from the

boundary. Extensions of this work on the boundary value problem could

be interesting if quadrupole synthesis is explored and if other bound-

ary shapes are considered.

Both dipole and quadrupole methods have been developed for the

synthesis of unknown potential fields in two dimensions of an unbounded

spatial domain. Our first step was to introduce the concept of a ref-

erence plane existing near the surface charge distribution responsible

for the potential field existing in some spatial region of interest.

The reference plane represents an artificial boundary condition, since

we have required a potential of zero on it in order to allow the pres-

ence of a measuring device (i.e. , an electron beam probe) in the vicinity

of the charged surface. Charged particles emanate from the reference

plane, they are deflected by the potential field of a charge distribu-

tion and fall back to the reference plane. The energy of the charged

particle and it's initial and final coordinate values have been used

as constraints upon acceptable dipole and quadrupole synthesized

approximations to the potential resulting from the charge distribution.

Dipole and quadrupole fields have been added as image pairs to insure

a zero potential on the reference plane.

Basic schemes have been developed for the dipole synthesis of

electric potentials as constrained by electron trajectory data. A

uniform field approximation is determined so as to meet the constraining

data for a particular trajectory called the scaling trajectory. Then

a dipole field is added in order to meet the constraints of two other

trajectories while keeping the dipole field singularity at a fixed

distance from the reference plane. A potential shifting operation has
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not been required since the dipole fields have been added in a manner

that kept the potential at zero on the reference plane. However,

potential scaling has been found to be beneficial after the addition

of each dipole field in order to meet the constraints of the scaling

trajectory. Convergence limits for this scheme have been adequate,

although for the model problem, the synthesized solution overestimated

the test potential. We found that an underestimation of the test

potential could be obtained by altering the criterion used for deter-

mining which two sets of trajectory constraints are satisfied when

adding a dipole field. Therefore, we were able to establish bounds on

the unknown potential created by the surface charge distribution of the

model problem. We also found that convergence to a desired accuracy

could be hastened by allowing the location of the dipole field sin-

gularities at a variable distance from the reference plane.

Quadrupole fields were also used for synthesis of solutions to the

model problem. When used in the same way as the dipole fields, we found

that better convergence limits were achieved with about the same amount

of computation time. In addition, we were able to develop procedures

for the addition of one quadrupole field for each trajectory during a

single iteration of a scheme designed to meet the constraints of all the

trajectories, excepting the scaling trajectory, simultaneously. This

scheme reduced by a factor of 5 (i.e., the number of trajectories con-

sidered) , the number of iterations and the amount of computational time

required to obtain a desired accuracy. Future possibilities for ex-

tending this work include the development of schemes that combine the

scaling operation and the quadrupole synthesis operation into a single

operation which meets the constraints for all of the the trajectories.
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This would not alter the speed of the procedures appreciably but might

improve the scale accuracy. Also of interest are schemes which com-

bine the dipole and quadrupole methods for potential field synthesis.

Finally, a test potential was created in the laboratory to test

the computer codes developed for the synthesis of unknown potentials.

An electron-beam probe was used to collect constraining electron tra-

jectory data. Potentials were synthesized which seemed like reason-

able approximations considering that the biased-fin potential that

we attempted to create in the laboratory was undoubtably altered some-

what by the finite size of the physical apparatus. We learned that

data selection is important for the best determination of unknown

potentials when applying the particular codes that we have developed.

Therefore, the challenge in the area of dipole and quadrupole field

synthesis lies in the determination of optimal schemes depending on

whatever data are available.
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APPENDIX A

Calculating Potential Fields for

Ideal Line Dipoles and Quadrupoles
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To determine the potential field <j>. existing near an ideal line
d

dipole located at point (x ,y ) , consider a line of point dipoles ex-

tending to infinity in the positive and negative z-directions as in

Figure Al. At any given distance z., from the x-y plane, there exists

an electric dipole contributing a potential field,

j. / \ A cos B(x,y) ,. ,.
<j)d(x,y,z]L) = Ad ~2 — " , (A-l)

b (x.y.Zĵ )

at all points in the x-y plane (ref. 1). The electric potential at an

arbitrary point (x,y) due to the ideal line dipole

(A-2)

is found by integrating the potential field due to an electric dipole

at distance z.. from the x-y plane over all values of z from - °° to + °°.

Note that

b2(x,y,Zl) = 2;L
2 + (x-xd)

2 + (y-yd)
2 (A-3)

and

(A-4)a, ,
cos 3(x,y) = 5 5 T"I/O-

'. <y-yd> ]"

Therefore,

f dzi
(A-5)

( «i
4> (x,y) = A (y-y ) 2 -T— ~

L tzi + (x'xd) + (y'yd}

Evaluating the integral, we find

A,, (y-y,)
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X
Point Dipole,

Figure Al. X-Y Reference Frame for the Ideal Line Dipole
Consisting of an Infinite Number of Ideal Point Dipoles
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with the aid of CRC Integral Tables (ref. 8). Then, if an image line

dipole is also present at point (x,, -y ), the combined electric

potential at point (x,y) is

(y-yd)
<j> (x,y) = A [ - 5 - 5- + - x - =•]. (A-7)
d Q / \ ̂ , / \ * / \ ̂ , / , \^(x-xd) + (y-yd) <x~xd) + (y

4^

In a similar manner, the potential <j> existing near an ideal line

quadrupole may be considered as an integral of the field due to a

point quadrupole.

* (x.y.z ) = a sin E(x,y) cos B<x,y) (A_g)
q q b

located a distance z1 from the x-y plane, over all values from - °° to

(x,y) = 4)q(x,y,z1)dzi (A-9)

Using equations (A-3) and (A-4), along with

(x-x,)
sin g(x,y) = — =- . , (A-10)

we obtain the integral expression;
CO

•IÎ ;-00 IZ1 ^ VX 1

((x,y) = aq(x-xd)(y-yj) | ^ 5 5-,..,,. (A-ll)

Evaluating the integral, we find

A (x-x ) (y-y )
. q d d

[(x-xd)
2 + (y-yd)

2]:



92

2
where A = — a . Then, if an image line dipole is also present at point

(x , -y ), the combined electric quadrupole potential at point (x,y) is

(x,y) = A (x-x

For an r-0 coordinate system, consider the potential field due to

an ideal line dipole intersecting the r-6 plane at the point (rj,6.)
d d

and oriented so that the axes of all the point dipoles comprising the

line dipole extend through points on a perpendicular line at the origin

of the r-0 plane. This situation is shown in Figure A2. The point

dipole located a distance z. from the r-9 plane contributes a potential

field

= A.c°s

at all points (r ,9 ) in the r-6 plane. The electric potential due to
m n

the entire line dipole

<J>d(r,9)

is found by integrating equation (A-14) for all point dipoles located

along the line (i.e. - °° < ẑ  <»).

2 2 2
Applying the Pythagorean Theorem, b = z. + d , and the law of

cosines,

d2 = r2 + r,2 - 2rrJcos(9J-9), (A-16)
d d d

and recognizing in Figure A2 that
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X
X
X
X

(r,8)

Figure A2. R-9 Reference Frame for The Ideal Line Dipole
Consisting of an Infinite Number of Ideal Point Dipoles



we derive

A [r -r cos (9 -0)]
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r -r cos(9 -9)
cos 8 = — ; (A-17)

<|>H(rfe) = -— - —- - dz .

Then the integral may be evaluated with the result

A [r -r cos(9 -9)]

r,2 + r2 - 2rr, cos(9 -9)a d u
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APPENDIX B

Fortran Routines for Dipole Synthesis of Solutions

to The Boundary Value Problem
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cROUTINE VMODGR.F4
IMPLICIT REAL *8(A-K,0-Z)
COMMON/l- IVD/XB(40) ,YB(40) ,PPHI(40) , IB,F ,S
COMMOK/ALL/PSI(80,40) ,PHI(40) ,M,N
COMMON/MVPA/R(80) ,TIIETA(40)

IT=0
CALL DATA
XMAX=-1.0D38
XMIN=1.0D38
YMAX=-1.0D38
YMIH=1.0D38
XB(IB+1)=XB(1)
YB(IB+1)=YB(1)
XL=0.0
YL=0.0
AL=0.0
DO 120 K=1,IB
IF(XB(K) .CT.XMAX) XMAX=XB(K)
IF(XB(K) .LT.XMIN) XMIM=XB(K)
IF(Y3(K) .GT.YMAX) Y?1AX=YB (K)
IF(YB(K) .LT.YMIN) YMIN=YB(X)
IF(XE(K+1).1!E.X3(K)) GO TO 100
XL=XL+XB(K)*DABS(YB(K+l)-Y3(K))
YL=YL+(Y3(K+l)+YB(X))*0.5*DABS(YB(K+l)-YB(K))
AL=AL+DABS(YB(K+l)-YB(K))
GO TO 120

100 IF(YB(X+1).ME.Y3(K)) GO TO 110
XL=XL+(XB(K+l)+XB(K))*0.5*DABS(XB(X+l)-XB(K))
YL=YL+YB(K)*DABS(XB(K+l)-XH(K))
AL=AL+DAI5S(XB(K+1)-XB(K))
GO TO 120

110 TA1JB=(YB(X+1)-Y3(X)) / (XB(K+1)-XB(K))
XL=XL+(1+TANB**2)A*0.5*0.5*(XB(K+l)**2-XB(K)**2)
YL=YL+(1+1/TAM3**2)**0.5*0.5*(YB(K+1)**2-YB(K)**2)
AL=AL+((XB(K+l)-XB(K))**2+(Y3(K+l)-Y3(K))**2)**0.5

120 CONTINUE
XO=XL/AL
YO=YL/AL
TYPE 125,XO,YO

125 FORMAT(' X0=',D,'Y0=',D)
PHIMAX=-1.0D38
PHI1-IIH=1.0D33
R!-L\X=0.0
PI=4*DATAN(1.DO)
DO 290 J=l,n
JK=0
THETA(J)=2*PI*J/H

160 IF(DABS(DSIN(TI!ETA(J))) .LE.1.D-10) GO TO 170
IF(DAB5(DCOS(TI!ETA(J))) .LE.1.D-10) GO TO 180
TAiIJ=DSIN(THETA(J)) /DCOS(TIiETA(J))
GO TO 190

170 JI'=1
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GO TO 190
ISO JK=-1
190 DO 230 K=1,IB

THETA1=DATA1-I2 (YB(K+l)-YO, XE (K+l)-XO)
THETA2=DATAN2(YB(K)-YO,XB(K)-XO)
IF(T1IETA1.GE.O.) GO TO 195
THETA1=THETA1+2*PI

195 IF(THETA2.GE.O.) GO TO 197
THETA2=THETA2+2*PI

197 IF(THETA1.GT.THETA2) GO TO 198
IF(T11ETA(J).LE.TI!ETA1) GO TO 280
IF(THETA(J).GT.THETA2) GO TO 280
GO TO 888

198 IF(THETA(J).LT.PI) GO TO 199
IF(THETA(J).LE.THETA1) GO TO 280
GO TO 888

199 IF(THETA(J).GT.THETA2) GO TO 280
888 IF(DABS(XB(K)-XB(K+1)).LE.1.D-10) GO TO 230

IF(DABS(YB(K)-YB(K+1)).LE.1.D-10) GO TO 240
IF(JK) 210,220,200

200 Y=YO
X=XB(K)- (YB(K)-YO)*(XB(K)-XB(K+1)) / (YB(K)-YB(K+1))
GO TO 270

210 X=XO
Y=Y3(K)-(XB(K)-XO)*(YB(K)-Y3(K+1)) / (XB(K)-XB(K+1))
GO TO 270

220 YN=YB(K)MXB(K)-XB(K+1))/(Y3(K)-YB(K+1))-XB(K)+XO+YO/TANJ
YD=(XB(K)-XB(K+1)) / (YB(K)-YB(K+1))
Y=YN/YD
X=XO+(Y-YO)/TAiTJ
GO TO 270

230 X=XB(K)
IF(JK) 280,236,232

232 Y=YO
GO TO 270

236 Y=YO+(X-XO)*TANJ
GO TO 270

240 Y=YB(K)
IF(JK) 244 ,246 ,280

244 X=XO
GO TO 270

246 X=XO+(Y-YO)/TANJ
270 R(J)=(X**2+Y**2)**0.5

IF (R ( J) . GT. Rl1AX) RMAX=R (J)
PHI(J)=PPHI(K)
IF(PHI(J) .LT.PHDIIK) PHIMIM=PHI(J)
IF(P!II( J) .GT.PIIIMAX) PHIIIAX=PHI(J)

230 COMTI1-IUE
290 CONTINUE

H=2*N
I1T=M+1
00 291 I=IM,M
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291 CONTINUE
DO 295 J=1,N
DO 294 1=1,M
PSI(I,J)=(PHIMAX-PHIMIN)*R(I)*DCOS(THETA(J))/(2*R!IAX)+(PHIMAX+PHI

1 MIM)/2
294 CONTINUE
295 CONTINUE

CALL ROTATE
CO TO 301

300 CALL SHIFT
301 CALL SCALE

DAN=0.0
DO 310 J=1,N
DAN=DAN+DABS(PHI(J)-? SI(J,J))

310 CONTINUE
IF(DAN.LE.0.00001) GO TO 320
CALL TADPOLE(F.S)
IT=IT+1
GO TO 300

320 PAUSE
CALL INITT
CALL DU!NDO(Si!GL(XMIN) .SNGLOCiAX) ,SHGL(YMIN) ,SNGL(YHAX))
CALL TWINDO(0,1023,0,780)
CALL ERASE
CALL VGRAPH(XO,YO,PHIMIN,PHIrlAX)
PAUSE
CALL PRINT(IT)
STOP

330 TYPE 340
340 FORMAT(' THE POINT XO,YO LIES ON THE BOUNDARY')

CALL FINITT
STOP
END
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SUBROUTINE DATA
IMPLICIT REAL *3 (A-H.O-Z)
COMMON/MVD/XB(40),YB(40),PPHI(40),IB,F,S
COMMON/ALL/PSK80,40),PHI (40) ,M,N
TYPE 1

1 FORMAT(' ENTER NUMBER OF ANGULAR GRID LUTES')
ACCEPT 2,M

2 FORMAT(I)
TYPE 3

3 FORMAT(' ENTER NUMBER OF STRAIGHT BOUNDARY SEGMENTS')
ACCEPT 2,IB
DO 8 K=1,IB
TYPE 4,K

4 FORMAT(' ENTER X-COORD. AT BEGINNING OF SEGMENT ',13)
ACCEPT 5,X3(K)

5 FORMAT(D)
TYPE 6,K

6 FORMAT(' ENTER Y-COORD. AT BEGINNING OF SEGMENT ',13)
ACCEPT 5,YB(K)
TYPE 7,1'.

7 FORMAT(' ENTER POTENTIAL ON BOUNDARY SEGMENT ',13)
ACCEPT 5,PPHI(K)

8 CONTINUE
TYPE 28

28 FORMAT(' ENTER DIPOLE G PARAMETER')
ACCEPT 5,F
TYPE 29

29 FORMAT(' ENTER DIPOLE T PARAMETER')
ACCEPT 5,S
RETURN
END
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SUBROUTINE ADPOLE(T)
IMPLICIT REAL *8 (A-H,0-Z)
COMMON/ALL/PSI(80,40),PHI(40),M,N
COMMON/MVPA/R(80),THETA(40)
DIMENSION D(45)
DAN=0.0
DMAX=0.0
DO 41 J=1,N
D(J)=PHI(J)-PSI(J,J)
DAN=DAN+DABS(D(J))
IF(DABS(D(J)).LE.DMAX) GO TO 41
DMAX=DABS(D(J))
JD=J

41 CONTINUE
AVDAN=DAN/N
KL=0
Jfl=JD+N
DO 44 J=JD,JU
IF(J.GT.N) CO TO 42
JL=J
GO TO 43

42 JL=J-N
43 IF(D(JL)/D(JD).GT.O.O) GO TO 44

KL=KL+1
IF(KL.EQ.l) L=JL
LL=JL

44 CONTINUE
IF(L.GT.JD) GO TO 45
IL=JD-L
GO TO 46

45 IL=L-JD
46 IF(LL.GT.JD) GO TO 805

ILL=JD-LL
GO TO 806

805 ILL=LL-JD
806 IF(IL.GT.ILL) GO TO 807

JC=L
GO TO 47

807 JC=LL
47 A=DABS(D(JD))-T*AVDAN

B=R(JC) *DCOS (THETA( JC) -THETA( JD) ) * ( 2*T*AVDA1I-DABS (D(JD)))-
1 R(JD)*DABS(D(JD))

C=R(JD)*R(JC)*DCOS(THETA(JC)-THETA(JD))*DABS(D(JD))-
1 R(JC)**2*T*AVDAI-I

IF(B**2-4*A*C.LT.O.O) GO TO 60
IF(B.LT.O.O) GO TO 48
RDl=(2*C)/(-E-(B**2-4*A*C)**0.5)
RD2=(-B-(B**2-4*A*C)**0.5)/(2*A)
GO TO 49

48 RDl=(-3+(B**2-4*A*C)**0.5)/(2*A)
RD2=(2*C)/(-3+(BA*2-4AA''-C)**0.5)

49 IF(RD1.LE.R(JD)) GO TO 50
RD=RD1
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GO TO 51
50 IF(RD2.LE.R(JD)) GO TO 61

RD=RD2
51 IF(RD.LT.R(JD)*(1.0+6.2835/1-0) RD=R(JD)*(6.2835/K+1.0)

AD=(RD-R(JD))*D(JD)
TYPE 515,RD,TKETA(JD)

515 FORMAT(' RD=',D,' THETA=',D)
M=2*N
DO 53 J=1,H
DO 52 1=1,M
PSI(I,J)=PSI(I,J)+AD*(RD-R(I)*DCOS(THETA(J)-THETA(JD)))/(RD**2

1 +R(I)**2-2*RD*R(I)*DCOS(THETA(J)-THETA(JD)))
52 CONTINUE
53 CONTINUE

RETURN
60 TYPE 62
62 FORMAT(' DIPOLE RADIUS INCLUDES IMAGINARY ROOT')

RETURN
61 TYPE 63
63 FORMAT(' DIPOLE LOCATED INSIDE BOUNDARY')

RETURN
END
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SUBROUTINE TADPOLE(G.T)
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/ALL/PSI(SO,40),PHI(40),M,N
COMMON/MVPA/R(80),THETA(40)
DIMENSION D(45)
DAN=0.0
DMAX=0.0
DO 41 J=1,N
D(J)=PHI(J)-PSI(J,J)
DAN=DAN+DABS(D(J))
IF(DABS(D(J)).LE.DMAX) CO TO 41
DMAX=DABS(D(J))
JD=J

41 CONTINUE
AVDAN=DAN/N
KL=0
JN=JD+N
DO 44 J=JD,JN
IF(J.GT.M) CO TO 42
JL=J
GO TO 43

42 JL=J-N
43 IF(D(JL)/D(JD).GT.O.O) GO TO 44

KL=KL+1
IF(KL.EQ.l) L=JL
LL=JL

44 CONTINUE
IF(L.GT.JD) GO TO 45
IL=JD-L
GO TO 46

45 IL=L-JD
46 IF(LL.GT.JD) GO TO 805

ILL=JD-LL
GO TO 806

805 ILL=LL-JD
806 IF(IL.GT.ILL) GO TO 807

JC=L
GO TO 47

807 JC=LL
47 A=DABS(D(JD))-T*AVDAN

B=R(JC)*DCOS(THETA(JC)-THETA(JD))*(2*T*AVDAM-DABS(D(JD)))-
1 R(JD)*DABS(D(JD))

C=R(JD)*R(JC)*DCOS(THETA(JC)-THETA(JD))*DABS(D(JD))-
1 R(JC)**2*T*AVDAN

IF(B**2-4*A*C.LT.O.O) GO TO 60
IF(B.LT.O.O) GO TO 48
RDl=(2*C)/(-B-(B**2-4*A*C)**0.5)
RD2=(-B-(B**2-4*A*C)**0.5)/(2*A)
GO TO 49

48 RD1=(-S+(B**2-4*A*C)**0.5)/(2*A)
RD2=(2*C)/(-B+(B**2-4*A*C)**0.5)

49 IF(RD1.LE.R(JD)) GO TO 50
RD=RD1
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GO TO 51
50 IF(RD2.LE.R(JD)) GO TO 61

RD=RD2
51 IF(RD.LT.R(JD)*(1.0+C/N)) RD=R(JD)*(G/N+1.0)

AD=(RD-R(JD))*D(JD)
TYPE 515,RD,THETA(JD)

515 FORMATC RD=',D,' THETA=',D)
M=2*N
DO 53 J=1,N
DO 52 1=1,M
PSI(I,J)=PSI(I,J)+AD*(RD-R(I)*DCOS(THETA(J)-THETA(JD)))/(RD**2

1 +R(I)**2-2*RD*R(I)*DCOS(THETA(J)-THETA(JD)))
52 CONTINUE
53 CONTINUE

RETURfl
60 TYPE 62
62 FORMATC DIPOLE RADIUS INCLUDES IMAGINARY ROOT')

RETURN
61 TYPE 63
63 FORMATC DIPOLE LOCATED INSIDE BOUNDARY')

RETURN
END
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SUBROUTINE SHIFT
IMPLICIT REAL*8(A-H,0-Z)
COMMON/ALL/PSI(80,40),PHI(40),M,N
DIMENSION QPSK40)
DON=0.0
DO 85 J=1,N
DON=DON+PHI(J)-PSI(J,J)

85 CONTINUE
ADON=DON/N
DO 88 1=1,M
DO 86 J=1,M
QPSI(J)=PSI(I,J)

86 CONTINUE
DO 87 J=1,N

PSI(I,J)=QPSI(J)+ADON
87 CONTINUE
88 CONTINUE

RETURN
END

49 IF(RD1.LE.R(JD)) GO TO 50
RD=RD1
CO TO 51

50 IF(RD2.LE.R(JD)) GO TO 61
RD=RD2

51 IF(RU.LT.R(JD)*(1.0+6.2835/H)) RD=R(JD)*(6.2835/N+1.0)
AD=(RD-R(JD))*D(JD)
TYPE 515,RD,THETA(JD)

515 FORMAT(' RD=',D,' THETA=',D)
M=2*H
DO 53 J=1,N
DO 52 1=1,11
PSI(I,J)=PSI(I,J)+AD*(RD-R(I)*DCOS(THETA(J)-THETA(JD)))/(RD**2

1 +R(I)**2-2*RD*R(I)*DCOS(THETA(J)-THETA(JD)))
52 CONTINUE
53 CONTINUE

RETURN
60 TYPE 62
62 FORMAT(' DIPOLE RADIUS INCLUDES IMAGINARY ROOT')

RETURN
61 TYPE 63
63 FORMAT(' DIPOLE LOCATED INSIDE BOUNDARY')

RETURN
END
SUBROUTINE VGRAPH(XO, YO ,PHI1-1II-I, PHIMAX)
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/MVD/XB(40) ,YB(40) ,PPHI(40) , IB ,S
COMMON/ALL/PSI(80,40) ,PHI(40) ,M,N
COMMON/MVPA/R(30),THETA(40)
DIMENSION X(190) ,Y(190)
CALL MOVEA(SNGL(XB(I3)) ,SNGL(YB(IB) ))
DO 500 K=1,IB
CALL DRA',JA( SNGL (X3 (K) ) , SNGL (YB ( K) ))

500 CONTINUE
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PI=4*DATAN(1.DO)
MR=N+1

DO 595 K=l,39
V=PHIMIN+K* (PHIMAX-PHIMIN) /40
L=0
DO 515 J=1,N
DO 510 I=MN,M
IF(R(I).GT.R(J)) CO TO 515
IF((PSI(I-1,J)-V)*(PSI(I,J)-V).GT.O.O) GO TO 510
L=L+1

X(L)=RR*DCOS(THETA( J) )
Y(L)=RR*DSIN(THETA(J))

510 ' CONTINUE
515 CONTINUE

THETA(N+1 ) =THETA( 1 )
DO 525 I=MR,M

DO 520 J=2,HR
JJ=J
IF(JJ.EQ.N+1) JJ=1
IF(R(I).GT.R(JJ)) CO TO 520
IF(R(I).CT.R(J-1)) GO TO 520
IF((PSI(I,J-1)-V)*(PSI(I,J)-V).GT.O.O) GO TO 520
L=L+1
TT=THETA(J)+(V-PSI(I,J))*2*PI/((PSI(I,J)-PSI(I,J-l))':--;3)
X(L)=R(I)*DCOS(TT)

520 CONTINUE
525 CONTINUE

LMAX=L
DG=0.0
DO 570 L=l,UL\Z
IF((XO-X(L))**2+(YO-Y(L))̂ *2.LT.DG) GO TO 570
DG=(XO-X(L) ) **2+(YO-Y(L) ) **2
LY=L

570 CONTINUE
XX=X(1)
YY=Y(1)
X(1)=X(LY)
Y(1)=Y(LY)
X(LY)=XX
Y(LY)=YY
CALL MOVEA(SNGL(X(1)),SNGL(Y(1)))
LL=1

535 LL=LL+1
DSQ=1.0D38
DO 540 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) GO TO 540
DSQ=DSQL
LDMIM=L
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540 CONTINUE
XX=X(LL)
YY=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIM)=XX
Y(LDM1N)=YY
CALL DRAWA(SNGL(X(LL)),SNGL(Y(LL)))
IF(LL.EQ.LMAX) GO TO 595
GO TO 535

595 CONTINUE
RETURN
END
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SUBROUTINE SCALE
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/ALL/PSI(80,40),PHI(40),M,N
AVPHI=0.0
AVPSI=0.0
DO 80 J=1,N
AVPHI=AVPHI+PHI(J)
AVPSI=AVPSI+PSI(J,J)

80 CONTINUE
AVPHI=AVPHI/N
AVPSI=AVPSI/N
ABPHI=0.0
ABPSI=0.0
DO 81 J=1,N
ABPHI=ABPHI-4-DA3S(PHI(J)-AVPHI)
ABPSI=ABPSI+DABS(PSI(J,J)-AVPSI)

81 CONTINUE
M=2*N
DO 83 J=1,N
DO 82 1=1,M
IF(ABPSI.EQ.O.O) CO TO 32

PSI(I,J)=(PSI(I,j)_AVpSI)*A3pHI/ABpSI+AVpsi
' 82 CONTINUE
33 CONTINUE

RETURN
END

49 IF(RD1.LE.R(JD)) GO TO 50
RD=RD1
GO TO 51

50 IF(RD2.LE.R(JD)) CO TO 61
RD=RD2

51 IF(RD.LT.R(JD)*(l-0+6.2835/N)) RD=R(JD)*(6.2S35/N+1.0)
AD=(RD-R(JD))*D(JD)
TYPE 515,Rn,THETA(JD)

515 FOR!!AT(' RD=',D,' THETA=',D)
M=2*N
DO 53 J=1,N
DO 52 1=1,M
PSI(I,J)=PSI(I,J)+AD*(RD-R(I)*DCOS(THETA(J)-TP.ETA(JD)))/(RD**2

1 +R(I)**2-2*RD*R(I)*DCOS(THETA(J)-T!IETA(JD)))
5 2 CONTINUE
53 CONTINUE

RETURN
60 TYPE 62
62 FORMATC DIPOLE RADIUS INCLUDES IMAGINARY ROOT')

RETURN
61 TYPE 63
63 FORMATC DIPOLE LOCATED INSIDE BOUNDARY')

RETURN
END
SUBROUTINE VGRAPI! (XO ,YO, PHIMIN, P HIT (AX)
IMPLICIT REAL *3 (A-H.O-Z)
CO:iMON/:IVD/XB(40) , YB (40) , PPHI (40) , IB , S
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COMMON/ALL/PSI(80,40) , PHI (40) ,M,N
COMMON/MVPA/R(80),THETA(40)
DIMENSION X(190),Y(190)
CALL MOVEA(SNGL(XB(IB)) ,SNGL(YB(I3) ) )
DO 500 K=1,IB
CALL DRAUA(SNGL(XB(K) ) ,SNGL(YB(K) ) )

500 CONTINUE
PI=4*DATAN(1.DO)
MR=N+1
MM=N+2
DO 595 K=l,39
V=PHIMIN+K* (PHDIAX-PHIMIN) /40
L=0
DO 515 J=1,N
DO 510 I=MH,M
IF(R( I ) .GT.R(J ) ) GO TO 515
IF((PSI(I-1,J)-V)*(PSI(I ,J)-V).GT.O.O) GO TO 510
L=L+1

X(L)=RR*DCOS(THETA(J))
Y(L)=RR*DSIN(THETA(J))

510 CONTINUE
515 CONTINUE

THETA(!H-1)=THETA( 1)
DO 525 I=MR,M

DO 520 J=2,ilR
JJ=J
IF(JJ.EQ.M+1) JJ=1
IF(R(I).GT.R(JJ)) GO TO 520
IF(R(I).GT.R(J-1)) GO TO 520
IF((PSI(I,J-1)-V)*(PSI(I,J)-V).GT.O.O) GO. TO 520
L=L+1
TT-THETA(J)+(V-PSI(I,J))*2*PI/((PSI(I,J)-PSI(I,J-1))*M)
X(L)=R(I)*nCOS(TT)
Y(L)=R(I)*DSIN(TT)

520 CONTINUE
525 CONTINUE

LMAX=L
DG=0.0
DO 570 L=I,L:LAX
IF((XO-X(L))**2+(YO-Y(L))**2.LT.DG) CO TO 570
DG=(XO-X(L))**2+(YO-Y(L))**2
LY=L

570 CONTINUE
XX=X(1)
YY=Y ( 1 )
X(1)=X(LY)
Y(1)=Y(LY)
X(LY)=XX
Y(LY)=YY
CALL MOVEA( SNCL (X( 1 ) ) , SMCL (Y ( 1 ) ) )
LL=1
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535 LL=LL+1
DSQ=1.0D33
DO 540 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) GO TO 540
DSQ=DSQL
LDMIN=L

540 CONTINUE
XX=X(LL)
YY=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIM)
X(LDMIN)=XX
Y(LDJIIN)=YY
CALL DRAUA(SNGL(X(LL)) ,S!1GL(Y(LL) ) )
IF(LL.EQ.LMAX) GO TO 595
GO TO 535

595 CONTINUE
RETURN
END
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APPENDIX C

Fortran Routines for Generating the Biased Fin

Potential and the Associated Electron Trajectory Data
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cROUTINE TEST.F4
IMPLICIT REAL *8 (A-U.O-Z)
COMPLEX Z,ZZ
DIMENSION PHI(82,22) ,XX(200),YY(200),X(82),Y(22)

PI=4*DATAH(1.0DO)
TYPE 10

10 FORMAT(' ENTER X DIMENSION^ ,$)
ACCEPT 20.DX

20 FORMAT(D)
TYPE 30

30 FORMAT(' ENTER Y DIMENSION-',$)
ACCEPT 20.DY
X(1)=-DX/30
DO 40 1=2,82
X(I)=(I-2)*DX/30

40 CONTINUE
Y(1)=-DY/20
DO 50 J=2,22
Y(J)=(J-2)*DY/20

50 CONTINUE
S=PI/1.8
PSI=DLOG(-DEXP(S)+DSQRT(1+DEXP(2*S)))
TYPE 55,PSI .

55 FORMAT(D)
DO 70 1=22,41
DO 60 J=2,22
S=PI*(1-Y(J)/DY)/1.8
T=PI*(2*X(I)/DX-0.5)
Z=CMPLX(SNGL(S),SNGL(T))
ZZ=CSQRT(1-CEXP(2*Z))
D=REAL(ZZ)
E=AIMAG(ZZ)
ZZ=CEXP(Z)
DD=-AIMAG(ZZ)"
EE=REAL(ZZ)
ZZ=CMPLX(SMGL(D+DD),SNGL(E+EE))
ZZ=CLOG(ZZ)
PHI(I,J)=-REAL(ZZ)-PSI

60 CONTINUE
70 CONTINUE

DO 75 J=2,22
S=PI*(1-Y(J)/DY)/1.S
PHI(42,J)=DLOG(-DEXP(S)+DSQRT(l-!-DEXP(2*S)))-PSI

75 . CONTINUE
DO 90 K=2,21
DO 80 J=2,22
PHI(K,J)=PHI(44-K,J)

80 CONTINUE
90 CONTINUE

DO 110 L=3,42
DO 100 J=2,22
PHI(40+L,J)=PHI(L,J)
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100 CONTINUE
110 CONTINUE

CALL INITT
CALL DWINDO(SNGL(X(2)),SNGL(X(82)),SNGL(Y(2)),SNGL(Y(22)))
II=INT(SNGL(780*DY/DX))
CALL TWINDO(0, 780, 0,11)
CALL MOVEA(SNGL(X(2)),SNGL(Y(2)))
CALL DRAWA(SNGL(X(82)),SNGL(Y(2)))
PHIMIN=1.0D38
PHIMAX=-1.0D38
DO 140 1=2,82
DO 130 J=2,22
IF(PHI(I,J).GT.PHIMIN) GO TO 125
PHIMIN=PHI(I,J)

125 IF(PHI(I,J).LT.PHIMAX) GO TO 130
PHIMAX=PHI(I,J)

130 CONTINUE
140 CONTINUE

TYPE 290,PHIMIN,PHIMAX
290 FORMATC PHIMIN-' ,D12.6,' PHIMAX=' ,012.6)

K=0
142 K=K+1

V=PHIMIN+K*0 . 2
L=0
DO 160 J=2,22
DO 150 1=3,82
IF((PHI(I-1,J)-V)*(PHI(I,J)-V).GE.O.O) GO TO 150
L=L+1

YY(L)=Y(J)
150 CONTINUE
160 CONTINUE

DO 180 1=2,82
DO 170 J=3,22
IF((PHI(I,J-1)-V)*(PHI(I,J)-V).GE.O.O) GO TO 170
L=L+1
XX(L)=X(I)

170 CONTINUE
180 CONTINUE

LM=L
XMIN=X(82)
DO 190 L=1,LM
IF(XX(L).GT.XMIN) GO TO 190
XMIN=XX(L)
LMIN=L

190 CONTINUE
XS=XX(1)
YS=YY(1)
XX(1)=XX(LMIN)
YY(1)=YY(LMIN)
XX(LMIN)=XS
YY(LMIN)=YS
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CALL MOVEA(SNGL(XX(1)),SNGL(YY(1)))
LL=1

195 LL=LL+1
DSQ=1.0D38
DO 210 L=LL,LM
DSQL=(XX(L)-XX(LL-1))**2+(YY(L)-YY(LL-l))**2
IF(DSQL.GT.DSQ) GO TO 210
DSQ=DSQL
LDM=L

210 CONTINUE
XS=XX(LL)
YS=YY(LL)
XX(LL)=XX(LDM)
YY(LL)=YY(LDM)
XX(LDM)=XS
YY(LDM)=YS
CALL DRAWA(SNGL(XX(LL)),SNGL(YY(LL)))
IF(LL.EQ.LM) GO TO 220
GO TO 195

220 IF(V+0.2.LE.PHIMAX) GO TO 142
PAUSE
OPEN(UNIT=1,FILE='POTL.DAT')
WRITE (1,20) X(l)
WRITE (1,20) Y(l)
DO 240 1=2,82
WRITE(1,20) X(I)
DO 230 J=2,22
IF(I.GT.2) GO TO 222
WRITE(1,20) Y(J)

222 WRITE(1,20) PHI(I.J)
225 FOR!IAT(D12.8)
230 CONTINUE
240 CONTINUE

STOP
END



114

cROUTINE DATA.F4
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,22),XX(82),YY(22),DX,DY
COMMON/DATA/X0(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(250),Y(250),FX(250),FY(250),DT(250),KT
OPEN(UNIT=1,FILE='POTL.DAT')
READ(1,50) XX(1)
READ(1,50) YY(1)
DO 200 1=2,82
READ (1,50) XX(I)

50 FORMAT(D)
DO 100 J=2,22
IF(I.GT.2) GO TO 80
READ(1,50) YY(J)

80 READ(1,50) PHI(I,J)
100 CONTINUE
200 CONTINUE

CALL INITT
CALL DWINDO(SNGL(XX(1)),SNGL(XX(82)),SNGL(YY(1)),SNGL(YY(22)))
DX=XX(82)-XX(2)
DY=YY(22)-YY(2)
II=INT(SNGL(780*DY/DX))
CALL TWINDO(0,780,0,11)
K=0

300 K=K+1
XO(K)=XX(13+K*9)
YO(K)=0.0
CALL MOVEA(SNGL(XO(K)),SMGL(YO(K)))
VXO(K)=1.0
VYO(K)=7.35D5
KT=0
DT(1)=DY/(100*VYO(K))

400 KT=KT+1
CALL DVOGEL(K)
CALL DRAUA(SNGL(X(KT+1)),SNGL(Y(KT+1)))
IF(Y(KT+1).LE.O.O) GO TO 500
GO TO 400

500 XT(K)=X(KT+1)
YT(K)=0.0
IF(K.EQ.S) GO TO 600
GO TO 300

600 K=K+1
XO(K)=XX(21)
YO(K)=0.0
CALL MOVEA(SNGL(XO(K)),SNGL(YO(K)))
VXO(K)=5.5D5
VYO(K)=5.0D5
KT=0
DT(1)=DY/(100*VYO(K))

700 KT=KT+1
CALL DVOGEL(K)
CALL DRAUA(SNGL(X(KT+1)),SNGL(Y(KT+1)))
IF(Y(KT+1).LE.O.O) GO TO 800
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GO TO 700
800 XT(K)=X(KT+1)

YT(K)=0.0
OPEN(UNIT=1,FILE='TRAJ.DAT')
IL=6
WRITE (1,1500) IL
DO 1400 K=l,6
WRITE( 1,1600) XO(K),VXO(K)
WRITE( 1,1600) YO(K),VYO(K)
WRITE ( 1,1600) XT(K),YT(K)

1400 CONTINUE
1500 FORMAT(l)
1600 FORMAT (2D)

CALL VPLOT
STOP
END
SUBROUTINE NEWTON(X,Y,EX,EY,PSI,IK)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,22),XX(82),YY(22),DX,DY
DIMENSION FM(4,4,4),FMN(4,4,4),XM(4),XM1(4),YN(4),Y1U(4)
IF(X.GT.XX(82)) GO TO 220
IF(X.LT.XXd)) GO TO 220
IF(Y.GT.YY(22)) CO TO 220
IF(Y.LT.YY(1)) GO TO 220
HX=DX/SO.O
HY=DY/20.0
1=0

10 1=1+1
IF(X.GT.XX(I)) GO TO 10
IF(I.EQ.2) GO TO 12
IB=I-2
GO TO 14

12 IB=I-1
14 IF(I.EQ.82) GO TO 16

GO TO 18
16 IE=I
18 J=0
20 J=J+1

IF(Y.GT.YY(J)) GO TO 20
IF(J.EQ.2) GO TO 25
JB=J-2
GO TO 30

25 JB=J-1
30 IF(J.EQ.22) GO TO 35

JE=J+1
CO TO 40

35 JE=J
40 MM=IE-IB+1

XM(1)=1.0
XM1(1)=0.0
DO 70 M=2,HM
IM=IE4-M-2
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XM(M)=XM(M-1)*(X-XX(I!1))
XM1(M)=0.0
DO 60 1=2,11
Xl=1.0
DO 50 K=2,M
IF(K.EQ.I) GO TO 50
Xl=Xl*(X-XX(IB+K-2))

50 CONTINUE
XM1(M)=XM1(M)+X1

60 CONTINUE
70 CONTINUE

NN=JE-JB+1
YN(1)=1.0
YN1(1)=0.0
DO 100 N=2,NN
JN=JB+N-2
YN(N)=YN(N-1)*(Y-YY(JN))
YN1(N)=0.0
DO 90 J=2,H
Yl=1.0
DO 80 L=2,N
IF(L.EQ.J) CO TO 80
Yl=Yl*(Y-YY(JB+L-2))

80 CONTINUE
YIU(1I)=Y1T1(N)+Y1

90 CONTINUE
100 CONTINUE

DO 110 M=1,MM
DO 105 N=1,NN
FM ( 1 ,M, N) =PHI (IB+M-1, JB+i-1-1)

105 CONTINUE
110 CONTINUE

DO 140 L=2,NN
DO 130 N=L,mi
DO 120 M=1,MM
Fn(L,M,N)=(FM(L-l,M,M-l)-FM(L-l,M,M))/(HY*(l-L))

120 CONTINUE
130 CONTINUE
140 CONTINUE

DO 160 M=1,MM
DO 150 N=1,NN
FMN(1,H,N)=FM(H,M,N)

150 CONTINUE
160 CONTINUE

DO 190 K=2,MM
DO 180 M=K,b21
DO 170 N=1,NN
F1-!N(K,M,N) = (F!̂ T(K-1 ,H-1 ,N)-FHN(K-1 ,M,N) ) / (!1X*( 1-K) )

170 CONTINUE
ISO CONTINUE
190 CONTINUE

EX=0.0
EY=0.0
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PSI=0.0
DO 210 M=1,NN
DO 200 M=1,MM
EX=EX-XM 1 (M) *YK (N ) *FM (H, M, N )
EY=EY-YN1(N)*XM(M)*FMN(M,M,N)
PSI=PSI+XM(M)*YN(N)*FMN(M,M,N)

200 CONTINUE
210 CONTINUE

GO TO 230
220 IK=-1
230 RETURN

END
SUBROUTINE DVOGEL(K)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/P1II(82,22),XX(82),YY(22),DX,DY
COMMON/DATA/X0(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(250),Y(250),FX(250),FY(250),DT(250),KT
QM=1.76D11
DIM=DSQRT(DX**2+DY**2)
IK=0
IF(KT.GT.l) GO TO 200
VX=VXO(K)
VY=VYO(K)
X(1)=XO(K)
Y(1)=YO(K)

100 CALL NEWTON(X(KT),Y(KT),EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=OM*EY
XH=X(KT)-(0.5*VX-0.125*AX*DT(KT))*DT(KT)
YH=Y(KT)-(0.5*VY-0.125*AY*DT(KT))*DT(KT)
CALL NEWTON(XH,YH,EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY

200 Xl!=X(KT) + (0.5*VX+(4.0*AX-A]ni)*DT(KT)/24.0)*DT(KT)
YH=Y(KT)+(0.5*VY+(4.0*AY-AYH)*DT(KT)/24.0)*DT(KT)
CALL NET/TON (XH, YH, EX, EY, PS I, IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY
X(KT+1)=X(KT)+(VX+(AX+2.0*AX11)*DT(KT)/6.0)*DT(KT)
Y(KT+l)=Y(KT)-f(VY+(AY+2.0*AY!t)*DT(KT)/6.0)*DT(KT)
AAX=AX
AAY=AY
CALL NEWTON(X(KT+1) ,Y(KT+1) ,EX,EY,PSI , IK)
IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=QM*EY
FX(KT)=EX
FY(KT)=EY
A1SQ=AAX**2+AAY**2
DELD=DSQRT((X(KT+l)-X(KT))**2-f- (Y(KT+l)-Y(KT))**2)
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IF(DELD.GT.DIM/80) GO TO 320
IF(DELD.LT.DIM/400) GO TO 330
IF(AlSQ.LT.l.D-6) GO TO 300

280 VX=VX+DT(KT)*(AX+4.0*AXH+AAX)/6.0
VY=VY+DT(KT)*(AY+4.0*AYH+AAY)/6.0
DT(KT+1)=DT(KT)
GO TO 440

300 V1SQ=VX**2+VY**2
DVSQ=A1SQ*DT(KT)**2
IF(V1SQ.CT.DVSQ*1.D4) GO TO 280
IK-1
GO TO 410

320 DT(KT)=DT(KT)/1.5
GO TO 100

330 DT(KT)=DT(KT)*1.5
GO TO 100

400 TYPE 420
GO TO 440

410 TYPE 430
420 FORMAT(' ELECTRON HAS ESCAPED POTENTIAL REGION

1 INCLUDED IN X-Y COORDINATE GRID')
430 FORMAT(' PARTICLE VELOCITY AND ACCELERATION BOTH

1 EQUAL ZERO')
440 RETURN

END
SUBROUTINE VPLOT
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/COORD/PHI(82,22) ,XX(32) ,YY(22) ,DX,DY
DIMENSION X(180),Y(180)
CALL INITT
CALL DUINDO(SNGL(XX(1)),SNCL(XX(82)),SNGL(YY(1)) ,SNGL(YY(22)))
II=INT(SNGL(7SO*DY/DX))
CALL TWINDO(0,780,0,11)
CALL MOVEA(SNGL(XX(2)),SHGL(YY(2)))
CALL DRAWA(SNCL(XX(82)),SNGL(YY(2)))
PHIMIN=1.0D38
PHI!!AX=-1.0D38
DO 10 1=2,82
DO 5 J=2,22
IF(PHI(I,J).CT.PHIMIN) GO TO 2
PHIMIN=PHI(I,J)

2 IF(PHI(I,J).LT.PHIMAX) GO TO 5
PHIMAX=PHI(I,J)

5 CONTINUE
10 CONTINUE

K=0
12 K=K+1

V=PHIMIM+K*0.2
L=0
DO 20 J=2,22
DO 15 1=3,82
IF((P1!I(I-1,J)-V)*(P11I(I,J)-V).GE.O.O) GO TO 15
L=L+1
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X(L)=XX(I-1H(XX(I)-XX(I-1))*(V-PHI(I-1,J))/(PHI(I,J)
1 PHI(I-l.J))

Y(L)=YY(J)
15 CONTINUE
20 CONTINUE

DO 30 1=2,82
DO 25 J=3,22
IF((PHI(I,J-1)-V)*(PHI(I,J)-V).GE.O.O) CO TO 25
L=L+1
X(L)=XX(I)
Y(L)=YY(J-1)+(YY(J)-YY(J-1))*(V-PHI(I,J-1))/(PHI(I,J)

25 CONTINUE
30 CONTINUE

LMAX=L
XMIN=XX(82)
DO 35 .1=1 ,LMAX
IF(X(L).GT.XMI1I) GO TO 35
XMIN=X(L)
LMIN=L

35 CONTINUE
XS=X(1)
YS=Y(1)
X(1)=X(LMIN)
Y(l)=Y(LI-iIN)
X(LIIIN)=XS
Y(LMIN)=YS
CALL MOVEA(SMGL(X(1) ) ,SNGL(Y(1) ) )
LL=1

40 LL=LL+1
DSQ=1.0D3S
DO 45 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(L'L-1))**2
IF(DSQL.GT.DSQ) GO TO 45
DSQ=DSQL
LDMIN=L

45 CONTINUE
XS=X(LL)
YS=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIM)=XS
Y(LDMIM)=YS
CALL DRAUA(SNGL(X(LL) ) ,SNGL(Y(LL) ) )
IF(LL.EQ.LMAX) CO TO 50
GO TO 40

50 IF(V+0.2.LE.PHIMAX) GO TO 12
CALL FINITT(800,500)
RETURN
END
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APPENDIX D

Fortran Routines for Dipole Synthesis of Solutions

to The Model Problem
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cROUTINE PTENT.F4
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(S2,32) ,XX(32) ,YY(32) ,DX,DY
CO>E-fON/DATA/XO(50) ,YO(50), VXO(50) ,VYO(50) ,XT(50) ,YT(50)
COMMON/SAVE/X(110) ,Y(110) ,DT(250) ,KT
DIMENSION XS(110) ,YS(110) ,SX(110) ,SY(110) ,TD(110) ,DDX(50)

1 ,YN(50) ,XN(50)
EXTERNAL TEKHAN.PLTHAN.SCPHAN
CALL INITTG
TYPE 1

1 FORMAT(' ENTER X AND Y DIMENSIONS OF POTENTIAL REGION',$)
ACCEPT 2,DX,DY

2 FORMAT(2D)
TYPE 19

19 FORMAT(' ENTER 1 TO INPUT DATA FROM FILE TRAJ.DAT, ENTER 0
1 TO INPUT DATA MANUALLY',$)

ACCEPT 4, NT
IF(NT.EQ.l) GO TO 140
TYPE 3

3 FORMAT(' ENTER NUMBER OF ELECTRON TRAJECTORIES',$)
ACCEPT 4,KK

4 FORMAT(I)
DO 3 K=1,KK
TYPE 5

5 FORMAT(' ENTER INITIAL X COORDINATE AND VELOCITY',$)
ACCEPT 2,XO(K),VXO(K)
TYPE 6

6 FORMAT(' ENTER INITIAL Y COORDINATE AND VELOCITY',$)
ACCEPT 2,YO(K),VYO(K)
TYPE 7

7 FORMAT(' ENTER FINAL X AND Y COORDINATES',$)
ACCEPT 2,XT(K),YT(K)
type 67,k,xO(k),xt(k)

67 format(12,2dl2.6)
8 CONTINUE
9 EQ=1.60210D-19

EM=9.1091D-31
QM=EQ/EM
AO=2*VXO(KK)*VYO(KK)/(QM*(XT(KK)-XO(KK)))
TYPE 15.AO

15 FORMAT(' AO=',D)
XX(1)=-DX/80
XX(2)=0.0
DO 20 1=3,82
XX(I)=XX(I-1)+DX/80

20 CONTINUE
YY(1)=-DY/20
YY(2)=0.0
DO 30 J=3,32
YY(J)=YY(J-1)+DY/20

30 CONTINUE
32 DO 50 1=1,82

DO 40 J=l,32
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PHI(I,J)=AO*YY(J)
40 CONTINUE
50 CONTINUE

PAUSE
IT=0

60 DD=0.0
D=0.0
TYPE 65,IT

65 FORMAT(' ITERATION=',14)
IT=IT+1
DO 90 K=1,KK-1
YN(K)=0.0
KT=0
TYPE 82,XO(K),YO(K)
DT(1)=DY/(100*VYO(K))

70 KT=KT+1
CALL DVOCEL(K)
IF(Y(KT+1).LT.YN(K)) GO TO 75
YN(K)=Y(KT+1)
XN(K)=X(KT+1)

75 IF(Y(KT+1).GT.YO(K)) GO TO 70
80 TYPE 82,X(KT+1),Y(KT+1)

DDX(K)=(XT(K)-X(KT+1))/(XT(K)-XO(K))
82 FORMAT(' X=',D12.4,' Y=',D12.4)

DD=DD+DABS(XT(K)-X(KT+1))
IF(D.GT.DA3S(DDX(K))) GO TO 90
D=DABS(DDX(K))
XM=X(KT+1)
KM=K
DO 85 KI=1,KT+1
XS(KI)=X(KI)
YS(KI)=Y(KI)
SX(KI)=FX(KI)
SY(KI)=FY(KI)
TD(KI)=DT(KI)

85 CONTINUE
90 CONTINUE

TYPE 95,D
TYPE 95,DD

95 FORMAT(D)
IF(DD.LT.0.01*DX) GO TO 130
K=KM

180 K=K+1
IF(K.EQ.KK) GO TO 190
IF(DDX(K)*DDX(K-1).GT.O.O) GO TO 180
LP=K-KM
GO TO 200

190 LP=KK-KM
200 K=KM
210 K=K-1

IF(K.EQ.O) CO TO 220
IF(DDX(K)*DDX(K+1).GT.O.O) GO TO 210
LL!=K-KM
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GO TO 230
220 LN=-KM
230 IF(LP.LT.-LN) GO TO 240

IF(LP.GT.-LN) GO TO 235
IF(DABS(DDX(KM+LP)).GT.DABS(DDX(KM+LN))) GO TO 240

235 L=LN
CO TO 250

240 L=LP
250 IF(L.EO.-KM) GO TO 260

IF(L.EQ.KK-KM) GO TO 270
XL=0. 5* (XN (KM+D+XN (KIH-L-1) )
GO TO 300

260 XL=1.5*XN(1)-0.5*XN(2)
GO TO 300

270 XL=1.5*XN(KK-l)-0.5*XN(KK-2)
300 YL=1.4*DY

VXI1=0.0
DVXI1=0.0
VXXI=0.0
DO 93 1=1,KT
DVXI=DVXII
DVXII=2*(XS(I)-XL)*((YL-YS(I))/((XS(I)-XL)**2

1 +(YL-YS(I))**2)**2-(YS(I)+YL)/((XS(I)-XL)**2
2 +(YS(I)+YL)**2)**2)

VXI=VXII
vxi i=vxi+o.5*(DVXII+DVXI)*TD(i)
vxxi=vxxi+o. 5* (vxn+vxi) *TD (i)

98 CONTINUE
AL=(XM-XT(KM))/(QM*VXXI)
TYPE 95,AL
IF(AL.LT.-O.l) GO TO 100
IF(AL.GT.O.l) GO TO 99
GO TO 101

99 AL=0.1
GO TO 101

100 AL=-0.1
101 TYPE 105,AL,XL,YL
105 FORMATC AL=',D12.5,' XL=',D12.5, ' YL=',D12.5)

PAUSE
DO 120 1=2,82
DO 110 J=2,32
PHI(I,J)=PHI(I,J)+AL*((YY(J)+YL)/((XX(I)-XL)**2

1 +(YY(J)+YL)**2)-(YL-YY(J))/((XX(I)-ia)**2
2 +(YL-YY(J))**2))

110 CONTINUE
120 CONTINUE

KT=0
DT(1)=DY/(100*VYO(KK))

121 KT=KT+1
CALL DVOGEL(KK)
IF(Y(KT+1).CT.YO(KK)) GO TO 121
SF=(X(KT+1)-XO(KK))/(XT(KK)-XO(KK))
TYPE 122,SF
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122 FORMAT(' SF=',D12.6)
DO 125 1=2,82
DO 124 J=2,32
PHI(I,J)=SF*PHI(I,J)

124 CONTINUE
125 CONTINUE

GO TO 60
130 DO 134 1=10,70

TYPE 132, PHI(I,3),PHI(I,5)1PHI(I,7),PHI(I,9),PHI(I,11),
1 PHI(I,13),PHI(I,15),PHI(I,17),PHI(I,19),PHI(I,21)

132 FORMAT(' '.10D12.5)
134 CONTINUE

CALL VPLOT
GO TO 160

140 OPEN(UNIT=1,FILE='TRAJ.DAT')
READ (1,4) KK
DO 150 K=1,KK
READ(1,2) XO(K),VXO(K)
READ(1,2) YO(K),VYO(K)
READ(1,2) XT(K),YT(K)
type 155,xO(k),xt(k)

155 formatC xO=',d!2.6 ,' xt=',d!2.6)
150 CONTINUE

GO TO 9
160 STOP

END
SUBROUTINE HEWTON(X,Y,EX,EY,PSI,IK)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
DIMENSION FM(4,4,4),FMN(4,4,4),XM(4),XM1(4),YN(4),YN1(4)

5 FORMATC2D12.6)
IF(X.GT.XX(82)) GO TO 220
IF(X.LT.XX(1)) GO TO 220
IF(Y.GT.YY(32)) GO TO 220
IF(Y.LT.YYU)) GO TO 225
HX=DX/80.0
HY=DY/20.0
1=0

10 1=1+1
IF(X.GT.XX(I)) GO TO 10
IF(I.LE.S) GO TO 12
IB=I-2
GO TO 14

12 IB=2
14 IFU.EQ.82) GO TO 16

IE=H-1
GO TO 18

16 IE=I
18 J=0
20 J=J+1

IF(Y.GT.YY(J)) GO TO 20
IF(J.LE.3) GO TO 25
JB=J-2
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GO TO 30
25 JB=2
30 IF(J.LE.32) GO TO 35

JE=J+1
GO TO 40

35 JE=32
40 MM=IE-IB+1

XM(1)=1.0
XM1(1)=0.0
DO 70 M=2,MM
IM=IB+M-2
XM(M)=XM(M-1)*(X-XX(IM))
XM1(M)=0.0
DO 60 1=2,M
Xl=1.0
DO 50 K=2,M
IF(K.EQ.I) GO TO 50
Xl=Xl*(X-XX(IB+K-2))

50 CONTINUE
XM1(M)=XM1(MHXI

60 CONTINUE
70 CONTINUE

NN=JE-JB+1
YN(1)=1.0
YN1(1)=0.0
DO 100 N=2,NN
JN=JB+N-2
YN(N)=YN(N-1)*(Y-YY(JN))
YN1(N)=0.0
DO 90 J=2,M
Yl=1.0
DO 80 L*2,H
IF(L.EQ.J) GO TO 80
Y1=Y1* (Y-YY (JB4-L-2 ) )

80 CONTINUE
YN1(N)=YN1(N)+Y1

90 CONTINUE
100 CONTINUE

DO 110 M=1,MM
DO 105 N=1,NN
FM(1,M,N)=PHI(IB+M-1,JB+N-1)

105 CONTINUE
110 CONTINUE

DO 140 L=2,MN
DO 130 N=L,NN
DO 120 M=1,MM
FM(L,M,M)=(FM(L-1,M,N-1)-FM(L-1,M,N))/(HY*(1-L))

120 CONTINUE
130 CONTINUE
140 CONTINUE

DO 160 H=1,MM
DO 150 N=1,NN
F!-IN(1,M,N)=FM(N,M,M)
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150 CONTINUE
160 CONTINUE

DO 190 K=2,MM
DO 180 M=K,MM
DO 170 N=1,NN
FMN(K,M,N) = (FMN(K-1,M-1,N)-F?-IN(K-1,M,N))/(HX*(1-K))

170 CONTINUE
180 CONTINUE
190 CONTINUE

EX=0.0
EY=0.0
PS1=0.0
DO 210 N=1,NN
DO 200 M=1,MM
EX=EX-XM1(M)*YN(N)*FMN(M,M,N)
EY=EY-YN1(N)*XM(M)*FMN(M,M,N)
PSI=PSI+XM(M)*YN(N)*FMN(M,M,N)

200 CONTINUE
210 CONTINUE

GO TO 230
220 IK=-1

GO TO 230
225 IK=2
230 RETURN

END
SUBROUTINE DVOGEL(K)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
COMMON/DATA/XO(50) ,YO(50) ,VXO(50) ,VYO(50) ,XT(50) ,YT(50)
COMMON/SAVE/X(110),Y(110),DT(250),KT
DIM=DSQRT(DX**2+DY**2)
QM=1.76D11
IK=0
IF(KT.GT.l) GO TO 200
VX=VXO(K)
VY=VYO(K)
X(1)=XO(K)
Y(1)=YO(K)

100 CALL NEWTON(X(KT),Y(KT),EX,EY,PSI,IK)
101 FORMATC EX=',D12.-4,'EY=',D12.4)

IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=QM*EY
XH=X(KT)-(0.5*VX-0.125*AX*DT(KT))*DT(KT)
YH=Y(KT)-(0.5*VY-0.125*AY*DT(KT))*DT(KT)
CALL NEWTON(XH,YH,EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY

200 XH=X(KT)+(0.5*VX+(4.0*AX-AXH)*DT(KT)/24.0)*DT(KT)
YH=Y(KT)+(0.5*VY+(4.0*AY-AYH)*DT(KT)/24.0)*DT(KT)
CALL NEUTON(XH,YH,EX,EY,PSI,IK)
IF(IK.!IE.O) GO TO 400
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AXH=QM*EX
AYH=QM*EY
X(KT+1)=X(KT)+(VX+(AX+2.0*AXH)*DT(KT)/6.0)*DT(KT)
Y(KT+1)=Y(KT)+(VY+(AY+2.0*AYH)*DT(KT)/6.0)*DT(KT)

260 FORMAT(21)
AAX=AX
AAY=AY
CALL NEWTON(X(KT+1) ,Y(KT+1) ,EX,EY,PSI , IK)
IF(IK.ME.O) GO TO 400
AX=QM*EX
AY=QM*EY
A1SQ=AAX**2+AAY**2
IF(AlSQ.LT.l.D-6) GO TO 300
DELD=DSQRT((X(KT+1)-X(KT))**2+(Y(KT+1)-Y(KT))**2)

275 FORllATC DELD=' ,D12.6, ' DIM=',D12.6)
IF(DELD.CT.DIM/40) GO TO 320
IF(DELD.LT.DIM/120) GO TO 330

280 VX=VX+DT(KT)*(AX+4.0*AXH+AAX)/6.0
VY=VY+DT(KT)*( AY+4.0*AYH+AAY)/6.0
DT(KT+1)=DT(KT)
GO TO 440

300 V1SQ=VX**2+VY**2
DVSQ=A1SQ*DT(KT)**2
IF(V1SQ.GT.DVSQ*1.D4) GO TO 280
IK=1
GO TO 410

320 DT(KT)=DT(KT)/1.1
GO TO 100

330 DT(KT)=DT(KT)*1.1
GO TO 100

400 IF(IK.EQ.-l) TYPE 420
GO TO 440

410 TYPE 430
420 FORMAT(' ELECTRON HAS ESCAPED POTENTIAL REGION

1 INCLUDED IN X-Y COORDINATE GRID')
430 FORMATC PARTICLE VELOCITY AND ACCELERATION BOTH

1 EQUAL ZERO')
440 RETURN

END
SUBROUTINE VPLOT
IMPLICIT REAL *8 (A-H.O-Z)
COMHON/COORD/PHI(82,32),XX(S2),YY(32),DX,DY
DIMENSION X(250),Y(250)
CALL INITT
CALL SELINI
CALL DWINDO(SNGL(XX(1)),SNGL(XX(S2)),SNGL(YY(1)),SNGL(YY(22)))
II=INT(SNGL(780*DY/DX))
CALL TUINDO(0,780,0,11)
CALL MOVEA(SNGL(XX(2)),SNGL(YY(2)))
CALL DRAUA(SNGL(XX(82)),SNGL(YY(2)))
PHIHIN=1.0D38
PHI!-L\X=-1.0D38
DO 10 1=2,82
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DO 5 J=2,22
IF(PHI(I,J).GT.PHIMIN) GO TO 2
PHIMIN=PHI(I,J)

2 IF(PHI(I,J).LT.PHIMAX) GO TO 5
PHIMAX=PHI(I,J)

5 CONTINUE
10 CONTINUE

K=0
12 K=K+1

V=PHIMIN+K*0 . 2
L=0
DO 20 J=2,22
DO 15 1=3,82
IF((PHI(I-1,J)-V)*(PHI(I,J)-V).GE.O.O) GO TO 15
L=L+1

1 PHI(I-l.J))
Y(L)=YY(J)

15 CONTINUE
20 CONTINUE

DO 30 1=2,82
DO 25 J=3,22
IF((PHI(I,J-1)-V)*(PHI(I,J)-V).GE.O.O) GO TO 25
L=L+1
X(L)=XX(I)
Y(L)=YY(J-1)+(YY(J)-YY(J-1))*(V-PHI(I,J-1))/(PHI(I,J)

25 CONTINUE
30 CONTINUE

LMAX=L
XMIN=XX(82)
DO 35 L=1,LMAX
IF(X(L).GT.XMIM) CO TO 35
XMIN=X(L)
LiMIN=L

35 CONTINUE
XS=X(1)
YS=Y(1)
X(1)=X(LMIN)
Y(1)=Y(LMIN)
X(LMIN)=XS
Y(LltIN)=YS
CALL MOVEA(SNGL(X(1)) ,SNGL(Y(1)))
LL=1

40 LL=LL+1
DSQ=1.0D38
DO 45 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) CO TO 45
DSQ=DSQL
LDMIN=L

45 CONTINUE
XS=X(LL)
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YS=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIN)=XS
Y(LDMIN)=YS
CALL DRAUA(SNGL(X(LL)),SNGL(Y(LL)))
IF(LL.EQ.LIIAX) GO TO 50
GO TO 40

50 IF(V+0.2.LE.PHIMAX) GO TO 12
CALL FINITT(800,500)
RETURN
END
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cROUTINE RTENT.F4
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHK82.32) ,XX(82) ,YY(32) ,DX,DY
COMMON/DATA/X0(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(110),Y(110),DT(250),KT
DIMENSION XS(110),YS(110),SX(110),SY(110),TD(110),DDX(50),XM(50)

1 ,YN(50),XN(50)
EXTERNAL TEKHAN.PLTHAN.SCPHAN
CALL INITTG
TYPE 1

1 FORMATC ENTER X AND Y DIMENSIONS OF POTENTIAL REGION', $)
ACCEPT 2,DX,DY

2 FORMAT(2D)
TYPE 19

19 FORMATC ENTER 1 TO INPUT DATA FROM FILE TRAJ.DAT, ENTER 0
1 TO INPUT DATA MANUALLY',$)

ACCEPT 4, NT
IF(NT.EQ.l) GO TO 140
TYPE 3

3 FORMATC ENTER NUMBER OF ELECTRON TRAJECTORIES',$)
ACCEPT 4,KK

4 FORMAT(I)
DO 8 K=1,KK
TYPE 5

5 FORMATC ENTER INITIAL X COORDINATE AND VELOCITY', $)
ACCEPT 2,XO(K),VXO(K)
TYPE 6

6 FORMATC ENTER INITIAL Y COORDINATE AND VELOCITY',$)
ACCEPT 2,YO(K),VYO(K)
TYPE 7

7 FORMATC ENTER FINAL X AND Y COORDINATES',$)
ACCEPT 2,XT(K),YT(K)
type 67,k,xO(k),xt(k)

67 forraat(i2,2dl2.6)
8 CONTINUE
9 EQ=1.60210D-19

EM=9.1091D-31
QM=EQ/EM
AO=2*VXO(KK)*VYO(KK)/(QM*(XT(KK)-XO(KK)))
TYPE 15,AO

15 FORMATC AO=',D)
XX(1)=-DX/80
XX(2)=0.0
DO 20 1=3,82
XX(I)=XX(I-1)+DX/80

20 CONTINUE
YY(1)=-DY/20
YY(2)=0.0
DO 30 J=3,32
YY(J)=YY(J-1)+DY/20

30 CONTINUE
32 DO 50 1=1,82

DO 40 J=l,32
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PHI(I,J)=AO*YY(J)
40 CONTINUE
50 CONTINUE

PAUSE
IT=0

60 DD=0.0
D=0.0
TYPE 65,IT

65 FORMATC ITERATION**' ,14)
IT=IT+1
DO 90 K=1,KK-1
YN(K)=0.0
KT=0
TYPE 82,XO(K),YO(K)
DT(1)=DY/(100*VYO(K))

70 KT=KT+1
CALL DVOGEL(K)
IF(Y(KT+1).LT.YN(K)) GO TO 75
YN(K)=Y(KT+1)
XN(K)=X(KT-I-1)

75 IF(Y(KT+1).GT.YO(K)) GO TO 70
80 TYPE 82,X(KT+1),Y(KT+1)

DDX(K)=(XT(K)-X(KT+1))/DABS(XT(K)-XO(K))
82 FORMATC X=',D12.4,' Y=',D12.4)

DD=Dn+DASS(XT(K)-X(KT+l))
IF(D.GT.DABS(DDX(K))) GO TO 90
D=DABS(DDX(K))
XM(K)=X(KT+1)
KM=K
DO 85 KI=1,KT+1
XS(KI)=X(KI)
YS(KI)=Y(KI)
SX(KI)=FX(KI)
SY(KI)=FY(KI)
TD(KI)=DT(KI)

85 CONTINUE
90 CONTINUE

TYPE 95,D
TYPE 95,DD

95 FORMAT(D)
IF(DD.LT.0.01*DX) GO TO 130
k=kra

180 k=k+l
if(k.eq.kk) go to 220
if(ddx(k)*ddx(km).gt.0.0) go to 180

190 k=k+l
if(k.eq.kk) go to 200
if(ddx(k)*ddx(km).gt.0.0) go to 200
if(dabs(ddx(k)).lt.dabs(ddx(k-l))) go to 200
go to 190

200 lp=k-l-km
go to 230

220 lp=kk



132

230 k=km
240 k=k-l

if(k.eq.O) go to 270
if(ddx(k)*ddx(kia).gt.0.0) go to 240

250 k=k-l
if(k.eq.O) go to 260
if(ddx(k)*ddx(km).gt.0.0) go to 260
if(dabs(ddx(k)).It.dabs(ddx(k+l))) go to 260
go to 250

260 ln=k+l-km
go to 280

270 ln=-kk
280 if(lp.ne.kk) go to 340

if(ln.ne.-kk) go to 340
DDN=0.0
DO 285 K=1,KM
DDN=DDN+DDX(K)

285 CONTINUE
DDP=0.0
DO 290 K=KM,KK-1
DDP=DDP+DDX(K)

290 CONTINUE
IF(DABS(DDN).GT.DABS(DDP)) GO TO 300
XL=XN(D-0.5*(XN(2)-XN(1))
GO TO 365

300 XL=XN(KK-l)+0.5*(XN(KK-l)-XN(KK-2))
GO TO 365

340 IF(LP.GT.-LN) GO TO 350
L=LP
GO TO 360

350 L=LM
360 XL=XN(KM)+0.5*(XN(KM+L)-XN(KM))
365 YL=(1+0.1)*DY

DDE=1.0D30
370 YL=YL+0.05*DY

D1=((YN(KM)-YL)**3-3*(YN(KM)-YL)*(XN(KM)-XL)**2)/
1 ((XN(KM)-XL)**2+(YN(KM)-YL)**2)**3

D2=((Y1KKM)+YL)**3-3MYN(KM)+YL)*(XN(KM)-XL)**2)/
1 ((XN(KM)-XL)**2+(YN(KM)+YL)**2)**3

DDA=DDE
DDE=DABS(D1-D2)
IF(DDE.LT.DDA) GO TO 370
VXI1=0.0
DVXI1=0.0
VXXI=0.0
DO 98 1=1,KT
DVXI=DVXII
DVXII=2*(XS(I)-XL)*((YL-YS(I))/((XS(I)-XL)**2

1 +(YL-YS(I))**2)**2-(YS(I)+YL)/((XS(I)-XL)**2
2 +(YS(I)+YL)**2)**2)

VXI=VXII
VXI I=VXI+0. 5* (DVXI I+D VXI) *TD (I)
VXXI=VXXI+0.5*(VXII+VXI)*TD(I)
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98 CONTINUE
AL=(XM(KM)-XT(KM))/(QM*VXXI)
TYPE 95,AL
if(al.lt.-0.1) go to 100
if(al.gt.0.1) go to 99
GO TO 101

99 AL=0.1
GO TO 101

100 AL=-0.1
101 TYPE 105,AL,XL,YL
105 FORMAT(' AL=',D12.5," XL=',D12.5, ' YL=',D12.5)

DO 120 1=2,82
DO 110 J=2,32
PHX(I,J)=PHI(I,J)+AL*((YY(J)+YL)/((XX(I)-XL)**2

1 +(YY(J)+YL)**2)-(YL-YY(J))/((XX(I)-XL)**2
2 +(YL-YY(J))**2))

110 CONTINUE
120 CONTINUE

KT=0
DT(1)=DY/(100*VYO(KK))

121 KT=KT+1
CALL DVOGEL(KK)
IF(Y(KT+1).GT.YO(KK)) GO TO 121
SF=(X(KT+1)-XO(KK))/(XT(KK)-XO(KX))
TYPE 122,SF

122 FORMAT(' SF=',D12.6)
DO 125 1=2,82
DO 124 J=2,32
PHI(I,J)=SF*PHI(I,J)

124 CONTINUE
125 CONTINUE

GO TO 60
130 DO 134 1=10,70

TYPE 132, PHI(I,3),PHI(I,5),PHI(I,7),PHI(I,9),PHI(I,11),
1 PHI(I,13),PHI(I,15),PHI(I,17),PHI(I,19),PHI(I,21)

132 FORMATC ',10012.5)
134 CONTINUE

CALL VPLOT
GO TO 160

140 OPEN(UNIT=1,FILE='TRAJ.DAT')
READ (1,4) KK
DO 150 K=1,KK
READ(1,2) XO(K),VXO(K)
READ(1,2) YO(K),VYO(K)
READ(1,2) XT(K),YT(K)
type 155,xO(k),xt(k)

155 forraatC xO=',d!2.6 ,' xt=',d!2.6)
150 CONTINUE

GO TO 9
160 STOP

END
SUBROUTINE NEWTON(X,Y,EX,EY,PSI,IK)
IMPLICIT REAL *8(A-H,0-Z)
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COMMON/COORD/PHI(82,32),XX(82) ,YY(32) ,DX,DY
DIMENSION FM(4,4,4),FMN(4,4,4),XM(4),XM1(4),YN(4),YN1(4)

5 FORMAT (2D12. 6)
IF(X.GT.XX(82)) GO TO 220
IF(X.LT.XX(1)) GO TO 220
IF(Y.GT.YY(32)) GO TO 220
IF(Y.LT.YY(1)) GO TO 225
HX=DX/80.0
HY=DY/20.0
1=0

10 1=1+1
IF(X.GT.XX(I)) GO TO 10
IFd.LE.3) GO TO 12
IB=I-2
GO TO 14

12 IB=2
14 IF(I.EQ.82) GO TO 16

GO TO 18
16 IE=I
18 J=0
20 J=J+1

IF(Y.GT.YY(J)) GO TO 20
IF(J.LE.3) GO TO 25
JB=J-2
GO TO 30

25 JB=2
30 IF(J.EQ.32) GO TO 35

JE=J+1
GO TO 40

35 JE=J
40 MM=IE-IB+1

XM1(1)=0.0
DO 70 M=2,MM
IH=IB+M-2
XH(M)=XM(M-1)*(X-XX(IM) )
XM1(M)=0.0
DO 60 1=2 ,M
Xl=1.0
DO 50 K=2,M
IF(K.EQ.I) GO TO 50
Xl=Xl*(X-XX(IB+K-2))

50 CONTINUE
XM1(M)=XM1(M)+X1

60 CONTINUE
70 CONTINUE

NN=JE-JB+1
YN(1)=1.0
YM1(1)=0.0
DO 100 N=2,NN
JN=JB+N-2
YN(N)=YN(N-1)*(Y-YY(JN))
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YN1(N)=0.0
DO 90 J=2,N
Yl=1.0
DO 80 L=2,N
IF(L.EQ.J) GO TO 80
Yl=Yl*(Y-YY(JB-t-L-2))

80 CONTINUE
YN1(N)=YN1(N)+Y1

90 CONTINUE
100 CONTINUE

DO 110 M=1,MM
DO 105 N=1,NN
FM(1,M,N)=PHI(IB+M-1,JB+N-1)

105 CONTINUE
110 CONTINUE

DO 140 L=2,NN
DO 130 N=L,NN
DO 120 M=1,MM
FM(L,M,N)=(FM(L-1,M,N-1)-FM(L-1,M,N))/(HY*(1-L))

120 CONTINUE
130 CONTINUE
140 CONTINUE

DO 160 M=1,MM
DO 150 N=1,NN
FMN(1,M,N)=FM(M,M,N)

150 CONTINUE
160 CONTINUE

DO 190 K=2,MM
DO 180 M=K,MM
DO 170 N=1,NN
FMN(K,M,M)=(F1-IM(K-1,M-1,N)-F1IN(K-1,M,N))/(HX*(1-K))

170 CONTINUE
180 CONTINUE
190 CONTINUE

EX=0.0
EY=0.0
PSI=0.0
DO 210 N=1,NN
DO 200 M=1,MM
EX=EX-XM1(M)*YN(N)*FMN(M,M,N)
EY=EY-YN1(N)*XM(M)*FMN(M,M,N)
PSI=PSI+XM(M)*YtI(N)*FMN(M,M,N)

200 CONTINUE
210 CONTINUE

GO TO 230
220 IK=-1

GO TO 230
225 IK=2
230 RETURN

END
SUBROUTINE DVOGEL(K)
IMPLICIT REAL *8(A-H,0-Z)
COJ!MON/COORD/PHI (82 ,32 ) ,XX(S2) ,YY(32 ) ,DX,DY
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COMMON/DATA/XO(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/XUlO) ,Y( 110) ,DT(250) ,KT
DIM=DSQRT(DX**2+DY**2)
QM=1.76D11
IK=0
IF(KT.GT.l) GO TO 200
VX=VXO(K)
VY=VYO(K)
X(1)=XO(K)
Y(1)=YO(K)

100 CALL NEHTON(X(KT),Y(KT),EX,EY,PSI,IK)
101 FORMAT(' EX=',D12.4,'EY=',D12.4)

IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=QM*EY
XH=X(KT)-(0.5*VX-0.125*AX*DT(KT))*DT(KT)
YH=Y(KT)-(0.5*VY-0.125*AY*DT(KT))*DT(KT)
CALL NEWTON(XH.YH,EX,EY.PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY

200 XH=X(KT)+(0.5*VX+(4.0*AX-AXH)*DT(KT)/24.0)*DT(KT)
YH=Y(KT)+(0.5*VY+(4.0*AY-AYH)*DT(KT)/24.0)*DT(KT)
CALL NEWTON(XH,YH,EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY
X(KT+1)=X(KT)+(VX+(AX+2.0*AXH)*DT(KT)/6.0)*DT(KT)
Y(KT+1)=Y(KT)+(VY+(AY+2.0*AYH)*DT(KT)/6.0)*DT(KT)

260 FORMAT(21)
AAX=AX
AAY=AY
CALL NEWTON(X(KT+1) ,Y(KT+1) ,EX,EY,PSI,IK)
IF(IK.ME.O) GO TO 400
AX=QM*EX
AY=QM*EY
A1SQ=AAX**2+AAY**2
IF(AlSQ.LT.l.D-6) GO TO 300
DELD=DSQRT((X(KT+1)-X(KT))**2+(Y(KT+1)-Y(KT))**2)

275 FORIIATC DELD=',012.6,' DIM=',D12.6)
IF(DELD.GT.DIM/40) GO TO 320
IF(DELD.LT.DIM/120) GO TO 330

280 VX=VX+DT(KT)*(AX+4.0*AXH+AAX)/6.0
VY=VY+DT(KT)*(AY+4.0 *AYH+AAY)/6.0
DT(KT+1)=DT(KT)
GO TO 440

300 V1SQ=VX**2+VY**2
DVSQ=A1SQ*DT(KT)**2
IF(V1SQ.GT.DVSQ*1.D4) CO TO 280
IK=1
GO TO 410

320 DT(KT)=DT(KT)/1.1
GO TO 100
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330 DT(KT)=DT(KT)*1.1
GO TO 100

400 IF(IK.EQ.-l) TYPE 420
GO TO 440

410 TYPE 430
420 FORMATC ELECTRON HAS ESCAPED POTENTIAL REGION

1 INCLUDED IN X-Y COORDINATE GRID')
430 FORMATC PARTICLE VELOCITY AND ACCELERATION BOTH

1 EQUAL ZERO')
440 RETURN

END
SUBROUTINE VPLOT
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
DIMENSION X(250),Y(250)
CALL INITT
CALL SELINI
CALL DWINDO(SNGL(XX(1)),SNGL(XX(82)),SNGL(YY(1)),SNGL(YY(22)))
II=INT ( SNGL ( 780*DY/DX) )
CALL TWINDOCO, 780, 0,11)
CALL MOVEA( SNGL(XX( 2) ) , SNGL (YY( 2) ) )
CALL DRAUA(SNGL(XX(82)) ,SNGL(YY(2) ) )
PHIMIN=1.0D38
PHIMAX=-1.0D38
DO 10 1=2,82
DO 5 J=2,22
IF(PIII(I,J).GT.PHIMIN) GO TO 2
PHIMIN=PHI(I,J)

2 IF(PHI(I,J).LT.PHIHAX) CO TO 5
PHIMAX=PHI(I,J)

5 CONTINUE
10 CONTINUE

K=0
12 K=K+1

V=PHIMIN+K*0.2
L=0
DO 20 J=2,22
DO 15 1=3,82
IF((PHI(I-1,J)-V)*(PHI(I,J)-V).GE.O.O) GO TO 15
L=L+1

1 PHI(I-l.J))
Y(L)=YY(J)

15 CONTINUE
20 CONTINUE

DO 30 1=2,82
DO 25 J=3,22
IF((PHI(I,J-1)-V)*(PHI(I,J)-V).GE.O.O) GO TO 25
L=L+1
X(L)=XX(I)
Y(L)=YY(J-1)+(YY(J)-YY(J-1))*(V-PHI(I,J-1))/(P!!I(I,J)-

1 PHKI.J-I))
25 CONTINUE
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30 CONTINUE
LMAX=L
XMIN=XX(82)
DO 35 L=1,LMAX
IF(X(L).GT.XMIN) GO TO 35
XMIN=X(L)
LMIN=L

35 CONTINUE
XS=X(1)
YS=Y(1)
X(1)=X(LMIN)
Y(1)=Y(LMIN)
X(LMIN)=XS
Y(LMIN)=YS
CALL MOVEA(SNGL(X(1)),SNGL(Y(1)))
LL=1

40 LL=LL+1
DSQ=1.0D38
DO 45 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) GO TO 45
DSQ=DSQL
LDHIN=L

45 CONTINUE
XS=X(LL)
YS=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIM)=XS
Y(LDMIN)=YS
CALL DRAUA(SNGL(X(LL)),SNGL(Y(LL)))
IF(LL.EQ.LMAX) GO TO 50
GO TO 40

50 IF(V+0.2.LE.PHIMAX) GO TO 12
CALL FINITT(800,500)
RETURN
END
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APPENDIX E

Fortran Routines for Quadrupole Synthesis of

Solutions to The Model Problem
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cROUTINE QPOLE.F4
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
COMMON/DATA/XO(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(110),Y(110),DT(250),KT
DIMENSION XS(llO),YS(110),TD(110),DDX(50)

1 ,YN(50),XN(50)
EXTERNAL TEKHAN.PLTHAN.SCPHAII
CALL INITTG
TYPE 1

1 FORMATC ENTER X AND Y DIMENSIONS OF POTENTIAL REGION', $)
ACCEPT 2.DX.DY

2 FORMAT(2D)
TYPE 19

19 FORMATC ENTER 1 TO INPUT DATA FROM FILE TRAJ.DAT, ENTER 0
1 TO INPUT DATA MANUALLY',$)

ACCEPT 4, NT
IF(NT.EQ.l) GO TO 140
TYPE 3

3 FORMATC ENTER NUMBER OF ELECTRON TRAJECTORIES',$)
ACCEPT 4,KK

4 FORMAT(I)
DO 8 K=1,KK
TYPE 5

5 FORMATC ENTER INITIAL X COORDINATE AND VELOCITY', $)
ACCEPT 2,XO(K),VXO(K)
TYPE 6

6 FORMATC ENTER INITIAL Y COORDINATE AND VELOCITY',$)
ACCEPT 2,YO(K),VYO(K)
TYPE 7

7 FORMATC ENTER FINAL X AND Y COORDINATES',$)
ACCEPT 2,XT(K),YT(K)
type 67,k,xO(k),xt(k)

67 format(i2,2d!2.6)
8 CONTINUE
9 EQ=1.60210D-19

EM=9.1091D-31
QM=EQ/EM
AO=2*VXO(KK) *VYO(KK) / (QM* (XT(KK)-XO(K1C) ) )
TYPE 15.AO

15 FORMATC AO=',D)
XX(1)=-DX/80
XX(2)=0.0
00 20 1=3,32
XX(I)=XX(1-1)+DX/80

20 CONTINUE
YY(1)=-DY/20
YY(2)=0.0
DO 30 J=3,32
YY(J)=YY(J-1)+DY/20

30 CONTINUE
32 DO 50 1=1,82

DO 40 J=l,32
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PHI(I,J)=AO*YY(J)
40 CONTINUE
50 CONTINUE

PAUSE
IT=0

60 DD=0.0
D=0.0
TYPE 65,IT

65 FORMAT(' ITERATION-',14)
IT=IT+1
DO 90 K=1,KK-1
YN(K)=0.0
KT=0
TYPE 82,XO(K),YO(K)
DT(1)=DY/(100*VYO(K))

70 KT=KT+1
CALL DVOGEL(K)
IF(Y(KT+1).LT.YN(K)) GO TO 75
YN(K)=Y(KT+1)
XN(K)=X(KT+1)

75 IF(Y(KT+1).GT.YO(K)) GO TO 70
80 TYPE 82,X(KT+1),Y(KT+1)

DDX(K)=(XT(K)-X(KT+1))/(XT(K)-XO(K))
82 FORMAT(' X=',D12.4,' Y=',D12.4) -

DD=DD+DABS(XT(K)-X(KT+1))
IF(D.GT.DABS(DDX(K))) GO TO 90
D=DABS(DDX(K))
XM=X(KT+1)
KM=K
DO 85 KI=1,KT+1
XS(KI)=X(KI)
YS(KI)=Y(KI)
TD(KI)=DT(KI)

85 CONTINUE
90 CONTINUE

TYPE 95,D
TYPE 95,DD

95 FORMAT(D)
IF(DD.LT.0.01*DX) GO TO 126
XL=XN(KM)
YL=1.4*DY
VXI1=0.0
DVXI1=0.0
VXXI=0.0
DO 98 1=1,KT
nVXI=DVXII
DVXII=((YS(I)+YL)**3-3*(YS(I)+YL)*(XS(I)-XL)

1 **2)/((XS(I)-XL)**2+(YS(I)+YL)**2)**3
2 +((YS(I)-YL)**3-3*(YS(I)-YL)*(XS(I)-XL)**2
3 )/((XS(I)-XL)**2+(YS(I)-YL)**2)**3

VXI=VXII
VXII=VXI+0.5*(DVXII+DVXI)*TD(I)
VXXI=VXXI+0.5 *(VXII+VXI)*TD(I)
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98 CONTINUE
AL=(XM-XT (KM) ) / (QM*VXXI)
TYPE 95, AL
IF(AL.LT.-O.l) GO TO 100
IF(AL.GT.O.l) GO TO 99.
GO TO 101

99 AL=0.1
GO TO 101

100 AL=-0.1
101 TYPE 105,AL,XL,YL
105 FORIIATC AL=',D12.5, ' XL=',D12.5, ' YL=' ,D12.5)

DO 120 1=2, 82
DO 110 J=2,32
PHI(I,J)=PHI(I,J)-t-AL*(XX(I)-XL)*((YY(J)+YL)/((

1 XX(I)-XL)**2+(YY(J)+YL)**2)**2+(YY(J)-YL)/
2 ((XX(I)-XL)**2-KYY(J)-YL)**2)**2)

110 CONTimJE
120 CONTINUE

KT=0
DT(1)=DY/(100*VYO(KK))
TYPE 82, XO ( KK) , YO ( KK)

121 KT=KT+1
CALL DVOGEL(KK)
IF(Y(KT+1) .GT.YO(KK)) GO TO 121
TYPE 82,X(KT+1),Y(KT+1)
SF=(X(KT- f l ) -XO(KK)) / (XT(KK) -XO(KK))
TYPE 122.SF

122 FOR1LYTC SF=',D12.6)
DO 125 1=2,82
DO 124 J=2,32
PHI(I,J)=SF*PHI(I,J)

124 CONTINUE
125 CONTINUE

GO TO 60
126 DO 128 1=10,70

TYPE 129 ,PHI(I,3),PHI(I,5),PHI(I,7),PHI(I,0),PHI(I,11)

128 CONTINUE
129 FORIIATC 10D12. 4)
130 CALL VPLOT

GO TO 160
140 OPEN(UMIT=1,FILE='TRAJ.DAT')

READ (1,4) KK
DO 150 K=1,KK
READ(1,2) XO(K),VXO(K)
READ(1,2) YO(K),VYO(K)
READ(1,2) XT(K),YT(K)
type 155,xO(k),xt(k)

155 forraatC xO=',d!2.6 ,' xt=',d!2.6)
150 CONTINUE

GO TO 9
160 STOP

END
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SUBROUTINE NEWTON ( X , Y , EX , EY , PS I , IK)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
DIMENSION FM(4,4,4),FMN(4,4,4),XM(4),XM1(4),YN(4),YN1(4)

5 FORMAT(2D12.6)
IF(X.GT.XX(82)) GO TO 220
IF(X.LT.XXd)) GO TO 220
IF(Y.GT.YY(22)) GO TO 220
IF(Y.LT.YY(1)) GO TO 225
HX=DX/80.0
HY=DY/20.0
1=0

10 1=1+1
IF(X.GT.XX(I)) GO TO 10
IFd.LE.3) GO TO 12
IB=I-2
GO TO 14

12 IB=2
14 IF(I.EQ.82) GO TO 16

GO TO 18
16 IE=I
18 J=0
20 J=J+1

IF(Y.GT.YY(J)) GO TO 20
IF(J.LE.3) GO TO 25
JB=J-2
GO TO 30

25 JB=2
30 IF(J.EQ.32) GO TO 35

JE=J+1
GO TO 40

35 JE=J
40 MM=IE-IB+1

XM(1)=1.0
XM1(1)=0.0
DO 70 M=2,MM
IM=IB+M-2
XM(M)=XM(M-1)*(X-XX(IM) )
XM1(M)=0.0
DO 60 1=2, M
Xl=1.0
DO 50 K=2,M
IF(K.EQ.I) CO TO 50
Xl=Xl*(X-XX(IB+K-2))

50 CONTINUE
XM1(M)=XM1(M)+X1

60 CONTINUE
70 CONTINUE

NN=JE-JB+1
YN(1)=1.0
YN1(1)=0.0
DO 100 N=2,NN
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JN=JB+N-2
YN(N)=YN(N-1)*(Y-YY(JN))
Y?-I1(N)=0.0
DO 90 J=2,N
Yl=1.0
DO 80 L=2,N
IF(L.EQ.J) GO TO 80
Yl=Yl*(Y-YY(JB+L-2))

80 CONTINUE
YN1(N)=YN1(N)+Y1

90 CONTINUE
100 CONTINUE

DO 110 M=1,MM
DO 105 N=1,NN
FM(1,M,N)=PHI(1B+M-1,JB+N-1)

105 CONTINUE
110 CONTINUE

DO 140 L=2,NN
DO 130 N=L,NN
DO 120 M=1,MM
FM(L,M,N)=(FM(L-1,M,N-1)-FM(L-1,M,M))/(HY*(1-L))

120 CONTINUE
130 CONTINUE
140 CONTINUE

DO 160 M=1,MM
DO 150 N=1,NN
FMN(1,M,N)=FM(N,M,N)

150 CONTINUE
160 CONTINUE

DO 190 K=2,MM
DO 180 M=K,MM
DO 170 N=1,HN

R£KK,M,N) = (FMN(K-l,M-l,N)-F?tN(K-l,M,N))/(HX*(l-K))
170 CONTINUE
180 CONTINUE
190 CONTINUE

EX=0.0
EY=0.0
PSI=0.0
DO 210 N=1,NN
DO 200 M=1,MM
EX=EX-XM1(M)*YN(H)*FMN(M,M,N)
EY=EY-YN1(N)*XM(M)*FMN(M,M,N)
PSI=PSI+XM(M)*YN(N)*FMN(M,M,N)

200 CONTINUE
210 CONTINUE

CO TO 230
220 IK=-1

GO TO 230
225 IK=2
230 RETURN

END
SUBROUTINE DVOGEL(K)



145

IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
COMMON/DATA/XCK50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(110),Y(110),DT(250),KT
DIM=DSQRT(DX**2+DY**2)
QM=1.76D11
IK=0
IF(KT.GT.l) GO TO 200
VX=VXO(K)
VY=VYO(K)
X(1)=XO(K)
Y(1)=YO(K)

100 CALL NEWTON(X(KT),Y(KT),EX,EY,PSI,IK)
101 FORMATC EX=',D12.4,'EY=',D12.4)

IF(IK.HE.0) GO TO 400
AX=QM*EX
AY=QM*EY
XH=X(KT)-(0.5*VX-0.125*AX*DT(KT))*DT(KT)
YH=Y(KT)-(0.5*VY-0.125*AY*DT(KT))*DT(KT)
CALL NEWTON(XH,YH,EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY

200 XH=X(KT)+(0.5*VX+(4.0*AX-AXH)*DT(KT)/24.0)*DT(KT)
YH=Y(KT)+(0.5*VY+(4.0*AY-AYH)*DT(KT)/24.0)*DT(KT)
CALL NEWTON(XH.YH,EX,EY.PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY
X(KT+1)=X(KT)+(VX+(AX+2.0*AXH)*DT(KT)/6.0)*DT(KT)
Y(KT+1)=Y(KT)+(VY+(AY+2.0*AYH)*DT(KT)/6.0)*DT(KT)

260 FORMAT(2I)
AAX=AX
AAY=AY
CALL NEWTON(X(KT+1),Y(KT+1),EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=QM*EY
A1SQ=AAX**2+AAY**2
IF(AlSQ.LT.l.D-6) GO TO 300
DELD=DSQRT((X(KT+1)-X(KT))**2+(Y(KT+1)-Y(KT))**2)

275 FORMATC DELD=',D12.6,' DIM=',D12.6)
IF(DELD.GT.DIM/40) GO TO 320
IF(DELD.LT.DIM/120) GO TO 330

280 VX=VX+DT(KT)*(AX+4.0*AXH+AAX)/6.0
VY=VY+DT(KT)*(AY+4.0*AYH+AAY)/6.0
DT(KT+1)=DT(KT)
GO TO 440

300 V1SQ=VX**2+VY**2
DVSQ=A1SQ*DT(KT)**2
IF(V1SQ.GT.DVSQ*1.D4) GO TO 280
IK=1
GO TO 410
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320 DT(KT)=DT(KT)/1.1
GO TO 100

330 DT(KT)=DT(KT)*1.1
GO TO 100

400 IF(IK.EQ.-l) TYPE 420
GO TO 440

410 TYPE 430
420 FORMATC ELECTRON HAS ESCAPED POTENTIAL REGION

1 INCLUDED IN X-Y COORDINATE GRID')
430 FORMATC PARTICLE VELOCITY AND ACCELERATION BOTH

1 EQUAL ZERO')
440 RETURN

END
SUBROUTINE VPLOT
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/COORD/PHK82.32) ,XX(82) ,YY(32) ,DX,DY
DIMENSION X(250),Y(250)
CALL INITT
CALL SELINI
CALL DWINDO(SNGL(XX(1)),SNGL(XX(82)),SNGL(YY(1)),SNGL(YY(22)))
II=INT(SNGL(780*DY/DX) )
CALL TWINDO(0,780,0,II)
CALL MOVEA(SNGL(XX(2)),SNGL(YY(2)))
CALL DRAUA(SNGL(XX(82)),SNGL(YY(2)))
PHIMIN=1.0D38
PHIMAX=-1.0D38
DO 10 1=2,82.
DO 5 J=2,22
IF(PHI(I,J).GT.PHIMIN) GO TO 2
PHIMIN=PHI(I,J)

2 IF(PHI(I,J).LT.PHIMAX) GO TO 5
PHIMAX=PHI(I,J)

5 CONTINUE
10 CONTINUE

K=0
12 K=K+1

V=PHIMIN+K*0.2
L=0
DO 20 J=2,22
DO 15 1=3,82
IF((PHI(I-1,J)-V)*(PHI(I,J)-V).GE.O.O) GO TO 15
L=L+1

1 PHI(I-l.J))
Y(L)=YY(J)

15 CONTINUE
20 CONTINUE

DO 30 1=2,82
DO 25 J=3,22
IF((PHI(I,J-l-)-V)*(PHI(I,J)-V).GE.O.O) GO TO 25
L=L+1
X(L)-XX(I)
Y(L)=YY(J-1)+(YY(J)-YY(J-1))*(V-PHI(I,J-1))/(PHI(I,J)-
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1 PHI(I.J-l))
25 CONTINUE
30 CONTINUE

LMAX=L
XMIN=XX(82)
DO 35 L=1,LMAX
IF(X(L).GT.XMIN) GO TO 35
XMIN=X(L)
LMIN=L

35 CONTINUE
XS=X(1)
YS=Y(1)
X(1)=X(LMIN)
Y(1)=Y(LMIN)
X(LMIN)=XS
Y(LMIN)=YS
CALL MOVEA(SNGL(X(1)),SNGL(Y(1)))
LL=1

40 LL=LL+1
DSQ=1.0D38
DO 45 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) GO TO 45
DSQ=DSQL
LDMIN=L

45 CONTINUE
XS=X(LL)
YS=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIN)=XS
Y(LDMIN)=YS
CALL DRAWA(SNGL(X(LL)),SNGL(Y(LL)))
IF(LL.EQ.Ll-IAX) GO TO 50
GO TO 40

50 IF(V+0.2.LE.PHIMAX) GO TO 12
CALL FINITT(800,500)
RETURN
END
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cROUTINE QPOLES.F4
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
COMMON/DATA/XO(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COMMON/SAVE/X(110),Y(110),DT(110),KI(50)
COMMON/COEFF/VI(5,6),AL(5)
DIMENSION XN(6)
EXTERNAL TEKHAN,PLTHAN,SCPHAN
CALL INITTG
TYPE 1

1 FORMATC ENTER X AND Y DIMENSIONS OF POTENTIAL REGION',$)
ACCEPT 2.DX.DY

2 FORMAT(2D)
TYPE 19

19 FORMATC ENTER 1 TO INPUT DATA FROM FILE TRAJ.DAT, ENTER 0
1 TO INPUT DATA MANUALLY',$)

ACCEPT 4, NT
IF(NT.EQ.l) GO TO 140
TYPE 3

3 FORMATC ENTER NUMBER OF ELECTRON TRAJECTORIES',$)
ACCEPT 4,KK

4 FORMAT(I)
DO 8 K=1,KK
TYPE 5

5 FORMATC ENTER INITIAL X COORDINATE AND VELOCITY',$)
ACCEPT 2,XO(K),VXO(K)
TYPE 6

6 FORMATC ENTER INITIAL Y COORDINATE AND VELOCITY', $)
ACCEPT 2,YO(K),VYO(K)
TYPE 7

7 FORMATC ENTER FINAL X AND Y COORDINATES',$)
.ACCEPT 2,XT(K),YT(K)
type 670,k,xO(k),xt(k)

670 fornat(i2,2d!2.6)
8 CONTINUE
9 EQ=1.60210D-19

EM=9.1091D-31
QM=EQ/EM
AO=2*VXO(KK)*VYO(KK)/(QM*(XT(KK)-XO(KK)))
TYPE 15.AO

15 FORMATC AO=',D)
XX(1)=-DX/80
XX(2)=0.0
DO 20 1=3,82
XX(I)=XX(I-1)+DX/80

20 CONTINUE
YY(1)=-DY/20
YY(2)=0.0
DO 30 J=3,32

YY(J)=YY(J-1)+DY/20
30 CONTINUE
32 DO 50 1=1,82

DO 40 J=l,32
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PHI(I,J)=AO*YY(J)
40 CONTINUE
50 CONTINUE

IT=0
ITT=0
DD=1.0D30

69 D=DD
DD=0.0
RD=0.0
DO 90 K=1,KK
KT=0
YMAX=0.0
DT(1)=DY/(100*VYO(K))
TYPE 80,XO(K),YO(K)

70 KT=KT+1
CALL DVOGEL(K,KT,KIK)
IF(Y(KT+1).LT.YMAX) GO TO 75
YMAX=Y(KT+1)
XN(K)=X(KT+1)

75 IF(Y(KT+1).GT.YO(K)) GO TO 70
TYPE 80, X(KT+1),Y(KT+1)
IF(K.EQ.KK) GO TO 90

80 FORMAT(' X=',D12.6,' Y=',D12.6)
DD=DD+DABS(XT(K)-X(KT+1))
RD=RD+(X(KT+1)-XO(K))/(XT(K)-XO(K))

85 FORMATC IT=',I3,' DD=',D12.6,' RD=',D12.6)
YL=1.4*DY
DO 87 L=1,KK-1
XL=XN(L)
VI1=0.0
DVI1=0.0
VI(K,L)=0.0
DO 86 1=1,KT
DVI=DVII
DVII=((Y(I)+YL)**3-3*(Y(I)+YL)*(X(I)-XL)**2)/((X(I)-XL)**2

1 +(Y(I)+YL)**2)**3+((Y(I)-YL)**3-3*(Y(I)-YL)*(X(I)
2 -XL)**2)/((X(I)-XL)**2+(Y(I)-YL)**2)**3

VVI=VII
VII=VVI+0.5*(DVII+DVI)*DT(I)
VI(K,L)=VI(K,L)+0.5*(VII+VVI)*DT(I)

86 CONTINUE
VI(K,L)=VI(K,L)*QM
TYPE 88,K,L,VI(K,L)

87 CONTINUE
88 FORMATC K=',I3,' L=',I3,' VI(K,L) = ',D12.6)

VI(K,KK)=X(KT+1)-XT(K)
TYPE 89,K,VI(K,KK)

89 FORMATC K=',I3,' DISCREPANCY=' ,012.6)
90 CONTINUE

TYPE 85,IT,DD,RD
IF(D.LT.DD) ITT=ITT+1
IFUTT.GT.3) GO TO 125
IF(DD.LT..01*DX) GO TO 126
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ERR=DABS((X(KT+1)-XT(KK))/XT(KK))
IF(ERR.LT.0.03) GO TO 905
SF=(X(KT+1)-XO(KK))/(XT(KK)-XO(KK))
TYPE 901.SF

901 FORMATC SCALE FACTOR=' ,D12.6)
DO 903 1=2,82
DO 902 J=2,32
PHI(I,J)=SF*PHI(I,J)

902 CONTINUE
903 CONTINUE

GO TO 69
905 CALL GAUSS(KK-l)

AA= .0
DO 906 K=1,KK-1
IF(DABS(AL(K)).LT.AA) GO TO 906
AA=DABS(AL(K))

906 CONTINUE
DO 908 K=1,KK-1
IF(AA.LT.O.l) GO TO 908
AL(K)=0.1*AL(K)/AA

908 CONTINUE
IT=IT+1
YL=1.4*DY
DO 95 L=1,KK-1
XL=XN(L)
TYPE 91,AL(L),XL,YL

91 FORMATC AL=',D12.6,' XL=',D12.6,' YL=',D12.6)
DO 93 1=2,82
DO 92 J=2,32
PHI(I,J)=PHI(I,J)+AL(L)*(XX(I)-XL)*((YY(J)+YL)/((XX(I)-XL)**2

1 +(YY(J)+YL)**2)**2+(YY(J)-YL)/((XX(I)-XL)**2
2 +(YY(J)-YL)**2)**2)

92 CONTINUE
93 CONTINUE
95 CONTINUE

GO TO 69
124 FORMATC FOUR DEPARTURES FROM MONOTONE DECREASING

1 SUM OF ABSOLUTE DISCREPANCIES HAVE OCCURED')
125 TYPE 124
126 DO 128 1=10,70

TYPE 129,PHI(I,3),PHI(I,5),PHI(I,7),PHI(I,9),PHI(I,11),

128 CONTINUE
129 FOR1IAT(10D12.6)
130 CALL VPLOT

GO TO 160
140 OPEM(UNIT=1,FILE='TRAJ.DAT')

READ (1,4) KK
DO 150 K=1,KK
READ(1,2) XO(K),VXO(K)
READ (1,2) YO(K),VYO(K)
READ (1,2) XT(K),YT(K)
type 155,xO(k),xt(k)
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155 formatC xO=',d!2.6 ,' xt=',d!2.6)
150 CONTINUE

GO TO 9
160 STOP

END
SUBROUTINE GAUSS(N)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COEFF/VI(5,6) ,AL(5)
DO 20 K= 1,11-1
B=VI(K,K)
DO 5 J=K,N+1
VI(K,J)=VI(K,J)/B

5 CONTINUE
DO 15 I=K+1,N
B=VI(I,K)
DO 10 J=K,N+1
VI(I,J)=VI(I,J)-B*VI(K,J)

10 CONTINUE
15 CONTINUE
20 CONTINUE

AL(N)=VI(N,N+1)/VI(N,N)
K=N

25 K=K-1
AL(K)=VI(K,N+1)
DO 30 J=K+1,N
AL(K)=AL(K)-VI(K,J)*AL(J)

30 CONTINUE
IF(K.GT.l) GO TO 25
RETURN
END
SUBROUTINE NEWTON(X,Y,EX,EY,PSI, IK)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
DIMENSION FM(4,4,4) ,FMN(4,4,4) ,XM(4) ,XM1(4) ,YN(4) ,YN1 (4)

5 FORMAT(2D12.6)
IF(X.GT.XX(82)) GO TO 220
IF(X.LT.XX(1)) GO TO 220
IF(Y.GT.YY(32)) GO TO 225
IF(Y.LT.YYd)) GO TO 220
HX=DX/80.0
HY=DY/20.0
1=0

10 1=1+1
IF(X.GT.XX(I)) GO TO 10
IF(I.LE.3) GO TO 12
IB=I-2
GO TO 14

12 IB=2
14 IF(I.EQ.82) GO TO 16

GO TO 18
16 IE=I
18 J=0
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20 J=J+1
IF(Y.GT.YY(J)) GO TO 20
IF(J.LE.3) GO TO 25
JB=J-2
GO TO 30

25 JB=2
30 IF(J.EQ.32) GO TO 35

JE=J+1
GO TO 40

35 JE=J
40 MM=IE-IB+1

XM(1)=1.0
XM1(1)=0.0
DO 70 M=2,!1M
IM=IB+M-2
XM(M)=XM(H-1)*(X-XX(IM))
XM1(M)=0.0
DO 60 1=2, M
Xl=1.0
DO 50 K=2,M
IF(K.EQ.I) GO TO 50
Xl=Xl*(X-XX(IB+K-2))

50 CONTINUE
XM1(M)=XM1(M)+X1

60 CONTINUE
70 CONTINUE

NN=JE-JB+1
YN(1)=1.0
YN1(1)=0.0
DO 100 N=2,MN
JN=JB+N-2
YN(N)=YN(N-1)*(Y-YY(JN))
YN1(N)=0.0
DO 90 J=2,N
Yl=1.0
DO 80 L=2,N
IF(L.EQ.J) CO TO 80
Yl=Yl*(Y-YY(JB+L-2))

80 CONTINUE
YN1(N)=YN1(N)+Y1

90 CONTINUE
100 CONTINUE

DO 110 M=1,MM
DO 105 N=1,NN
FM(1,M,N)=PHI(I3+M-1,JB+N-1)

105 CONTINUE
110 CONTINUE

DO 140 L=2,NN
DO 130 N=L,MN
DO 120 M=1,MM

120 CONTINUE
130 CONTINUE
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140 CONTINUE
DO 160 M=1,MM
DO 150 N=1,NN
FMN(1,M,N)=FM(N,M,N)

150 CONTINUE
160 CONTINUE

DO 190 K=2,MM
DO 180 M=K,MM
DO 170 N=1,NN
FMN(K,M,N)=(FMN(K-1,M-1,N)-FMN(K-1,M,N))/(HX*(1-K))

170 CONTINUE
180 CONTINUE
190 CONTINUE

EX=0.0
EY=0.0
PSI=0.0
DO 210 N=1,NN
DO 200 M=1,MM
EX=EX-XM1(M)*YN(N)*FMN(M,M,N)
EY=EY-YN1(N)*XM(M)*FMN(M,M,N)
PSI=PSI+XM(M)*Y1T(N)*FMN(M,M,N)

200 CONTINUE
210 CONTINUE

GO TO 230
220 IK=-1

GO TO 230
225 IK=2
230 RETURN

END
SUBROUTINE DVOGEL(K.KT.KIK)
IMPLICIT REAL *8(A-H,0-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
COMMON/DATA/XO(50),YO(50),VXO(50),VYO(50),XT(50),YT(50)
COM1-10N/SAVE/X(110),Y(110),DT(110),KI(50)
DIM=DSQRT(DX**2+DY**2)
QM=1.76D11
IK=0
IF(KT.GT.l) GO TO 200
VX=VXO(K)
VY=VYO(K)
X(1)=XO(K)
Y(1)=YO(K)

100 CALL NEWTON(X(KT),Y(KT),EX,EY,PSI,IK)
101 FORMAT(' EX=',D12.4,'EY=',D12.4)

IF(IK.NE.O) GO TO 400
AX=QM*EX
AY=QM*EY
XH=X(KT)-(0.5*VX-0.125*AX*DT(KT))*DT(KT)
.YH=Y(KT)-(0.5*VY-0.125*AY*DT(KT))*DT(KT)
CALL NEWTON (XH, YII, EX, EY, PS I, IK)
IF(IK.NE.O) GO TO 400
AXH=OM*EX
AYH=OM*EY
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200 XH=X(KT)+(0.5*VX+(4.0*AX-AXH)*DT(KT)/24.0)*DT(KT)
YH=Y(KT)+(0.5*VY+(4.0*AY-AYH)*DT(KT)/24.0)*DT(KT)
CALL NEUTON(XH,YH,EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AXH=QM*EX
AYH=QM*EY
X(KT+1)=X(KT)+(VX+(AX+2.0*AXH)*DT(KT)/6.0)*DT(KT)
Y(KT+1)=Y(KT)+(VY+(AY+2.0*AYH)*DT(KT)/6.0)*DT(KT)

260 FORMAT(2I)
AAX=AX
AAY=AY
CALL NEWTON(X(KT+1),Y(KT+1),EX,EY,PSI,IK)
IF(IK.NE.O) GO TO 400
AX=OM*EX
AY=QM*EY
A1SQ=AAX**2+AAY**2
IF(AlSQ.LT.l.D-6) GO TO 300
DELD=DSQRT((X(KT+1)-X(KT))**2+(Y(KT+1)-Y(KT))**2)

275 FORMATC DELD=' ,D12.6,' KT=',13)
IF(DELD.GT.DIM/40) GO TO 320
IF(DELD.LT.DIM/120) GO TO 330

280 VX=VX+DT(KT)*(AX+4.Q*AXH+AAX)/6.0
VY=VY+DT(KT)*(AY+4.0*AYH+AAY)/6.0
DT(KT+1)=DT(KT)
GO TO 440

300 V1SQ=VX**2+VY**2
DVSQ=A1SQ*DT(KT)**2
IF(V1SQ.GT.DVSQ*1.D4) GO TO 280
IK=1
GO TO 410

320 DT(KT)=DT(KT)/1.1
CO TO 100

330 DT(KT)=DT(KT)*1.1
GO TO 100

400 IF(IK.EQ.-l) TYPE 420
IF(IK.EQ.2) GO TO 402
GO TO 440

402 KI(K)=1
KIK=1
TYPE 425
GO TO 440

410 TYPE 430
420 FORMATC ELECTRON HAS ESCAPED COORDINATE GRID')
425 FORMATC ELECTRON HAS ESCAPED POTENTIAL REGION')
430 FORMATC PARTICLE VELOCITY AND ACCELERATION BOTH

1 EQUAL ZERO')
440 RETURN

END
SUBROUTINE VPLOT
IMPLICIT REAL *8 (A-H.O-Z)
COMMON/COORD/PHI(82,32),XX(82),YY(32),DX,DY
DIMENSION X(250),Y(250)
CALL INITT
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CALL SELINI
CALL DWINDO(SNGL(XX(1)) ,SNGL(XX(82) ) ,SNGL(YY(1) ) ,SNGL(YY(22) ) )
II=IHT(SNGL(780*DY/DX))
CALL TWINDO(0, 780, 0,11)
CALL MOVEA(SNCL(XX(2)) ,SHGL(YY(2) ) )
CALL DRAWA(SNGL(XX(82)),SNCL(YY(2)))
PHIMIN=1.0D38
PHIMAX=-1.0D38
DO 10 1=2,82
DO 5 J=2,22
IF(PKI(I,J).GT.PHIMIN) GO TO 2
PHIMIN=PHI(I,J)

2 IF(PHI(I,J).LT.PHIMAX) GO TO 5
PHIMAX=PHI(I,J)

5 CONTINUE
10 CONTINUE

K=0
12 K=K+1

V=PHIMIN+K*0 . 2
L=0
DO 20 J=2,22
DO 15 1=3,82
IF((PHI(I-1,J)-V)*(PHI(I,J)-V).GE.O.O) GO TO 15
L=L+1

1 PHI(I-l.J))
Y(L)=YY(J)

15 CONTINUE
20 CONTINUE

DO 30 1=2,82
DO 25 J=3,22
IF((PHI(I,J-1)-V)*(PHI(I,J)-V).GE.O.O) GO TO 25
L=L+1
X(L)=XX(I)
Y(L)=YY(J-1)+(YY(J)-YY(J-1))*(V-PHI(I,J-1))/(PHI(I,J)

25 CONTINUE
30 CONTINUE

LMAX=L
XMIN=XX(82)
DO 35 L=1,LMAX
IF(X(L).GT.XMIN) GO TO 35
XMIN=X(L)
LMIN=L

35 CONTINUE
XS=X(1)
YS=Y(1)
X(1)=X(LMIN)
Y(1)=Y(LMIM)
X(LMIN)=XS
Y(LMIN)=YS
CALL HOVEA(SNGL(X(1)) ,SNGL(Y(1)))
LL=1
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40 LL=LL+1
DSQ=1.0D38
DO 45 L=LL,LMAX
DSQL=(X(L)-X(LL-1))**2+(Y(L)-Y(LL-1))**2
IF(DSQL.GT.DSQ) GO TO 45
DSQ=DSQL
LDMIN=L

45 CONTINUE
XS=X(LL)
YS=Y(LL)
X(LL)=X(LDMIN)
Y(LL)=Y(LDMIN)
X(LDMIN)=XS
Y(LDMIN)=YS
CALL DRAUA(SNGL(X(LL)),SNGL(Y(LL)))
IF(LL.EO.LMAX) GO TO 50
GO TO 40

50 IF(V+0.2.LE.PHIMAX) GO TO 12
CALL FINITT(800,500)
RETURN
END




