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INTRODUCTION

The Demonstration Problem Manual is one of four manuals that constitute the documentation for

NASTRAN. The other three are the Theoretical Manual, the User's Manual and the Programmer's Manual.

The Theoretical Manual contains discussions of the underlying theory relative to the eingineer-

ing equations utilized and mathematical operations. There is some discussion relative to data

processing techniques and software organization.

The User's Manual is an instructional and encyclopedic reference that describes finite element

modeling techniques and shows the requirements for data preparation to obtain solutions in several

engineering disciplines.

The Programmer's Manual contains descriptions of the Functional Modules, subroutines and oper-

ating systems from a software point of view. It also contains detailed derivations of the mathe-

matical equations employed by the program.

The Demonstration Problem Manual illustrates the types of problems that can be solved with

NASTRAN and shows that the results obtained are valid. Generally, this manual discusses the nature

of the problem, the underlying theory, the specific geometric and physical input quantities, and

the comparison of theoretical and NASTRAN results. At least one problem for each of the rigid

formats and nearly all of the elements is provided. The features of NASTRAN demonstrated by speci-

fic problems are listed in tables which follow.

The data decks necessary to execute these problems are contained on a tape compatible with

each of the NASTRAN computers (See the Programmer's Manual, Section 5.4 for system descriptions.)

The driver decks include the Executive, Case and Substructure Control decks plus changes to the

Bulk Data (where restarts are involved). The Bulk Data decks are contained on a NASTRAN generated

UMF (User Master File). To obtain the decks, it is necessary to print the contents of the tape

By using the provided driver decks, NASTRAN may be executed as a UMF job to obtain the results

for a particular demonstration problem (or the user's desired variation thereof).

Each demonstration problem is assigned a problem number to key it to the Rigid Format. In

turn, the UMF problem identification (pid) is an adaptation of the problem number The UMF tape

identification (tid) is the year in which the set of demonstration problems was generated so this

would tend to change from level to level of NASTRAN caused by the inclusion of new capabilities.

Furthermore, it may not always be possible to execute the new UMF on a previous level due to

changes in data handling techniques.
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A UMF problem identification number is made up of four elements: The Rigid Format number,

d problem number, the version number, and a trailing dummy zero. Thus the general UMF number

> xxyyzO. The Rigid Format number is one or two digits; the problem number is always two digits;

,he version number is always one digit; and the 0 always trails to allow the insertion of additional

iroblems. A UMF pid of 10210 means the problem runs on Rigid Format 1, it is the second demonstra-

tion problem on that Rigid Format, and it is version 1 of that problem. Another example, 110110,

is a problem for Rigid Format 11, problem 1, version 1, and the trailing zero is a dummy.

A table of pid numbers for each demonstration problem is included in this manual. Restart

problem driver decks do not contain a UMF card because the data is already stored on a checkpoint

tape which must have been created by the user.
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UMF pid (tid 1976}

10110

RESTART

RESTART

10120

10130

10140

10210

RESTART

10310

10320

10330

10410

RESTART

10420

10430

10440

10510

10610

10710

10810

10910

11010

11110

11120

11210

11220

11310

11320

11330

11410

NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

Delta Wing with Biconvex Cross Section, Load on Trailing Edge

Delta Wing with Biconvex Cross Section, Load on Leading Edge

Delta Wing with Biconvex Cross Section, Switch to Rigid Format 3

Delta Wing with Biconvex Cross Section Using QDMEM1 and QDMEM2 Elements

Delta Wing with Biconvex Cross Section Using QDMEM1 Elements

Delta Winq with Biconvex Cross Section Using QDMEM2 Elements

Spherical Shell with Pressure Loading, No Moments on Boundary

Spherical Shell with Pressure Loading, Clamped Boundary

Free Rectangular QDMEM Plate with Thermal Loading

Free Rectangular QDMEM1 Plate with Thermal Loading

Free Rectangular QDMEM2 Plate with Thermal Loading

Long, Narrow, 5x50 Orthotropic Plate

Long, Narrow, 5x50 Orthotropic Plate, Modified Output

Long, Narrow, 5x60 Orthotropic Plate

Long, Narrow, 5x50 Orthotropic Plate (via INPUT Module)

Long, Narrow, 5x60 Orthotropic Plate (via INPUT Module)

Nonsymmetric Bending of a Cylinder of Revolution

Solid Disc with Radially Varying Thermal Load

Shallow Spherical Shell Subjected to External Pressure Loading

Bending of a Beam Fabricated with HEXA1 Solid Elements

Thermal and Applied Loads on HEXA2 Solid Elements

Thermal Bending of a Bar

Simply-Supported Rectangular Plate with a Thermal Gradient

Simply-Supported Rectangular Plate with^ a Thermal Gradient (via INPUT Module)

Linear Steady State Heat Conduction Through a Washer Using Solid Elements

Linear Steady State Heat Conduction Through a Washer Using Ring Elements

Thermal and Pressure Loads on a Long Pipe Using Linear Isoparametric Elements

Thermal and Pressure Loads on a Long Pipe Using Quadratic Isoparametric Elements

Thermal and Pressure Loads on a Long Pipe Using Cubic Isoparametric Elements

Static Analysis of a Beam Using General Elements

1 (3/1/76)



UMF pid (tid 1976) NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

11510 Asymmetric Pressure Loading of an Axisymmetric Cylindrical Shell

11610 Fully Stressed Design of a Plate with a Reinforced Hole

20110 Inertia Relief Analysis of a Circular Ring Under Concentrated and Centrifugal
Loads

20210 Windmill Panel Sections for Multi-stage Substructuring (Run 1, Phase 1)

20220 Windmill Panel Sections for Multi-stage Substructuring (Run 2, Phase 1)

20230 Windmill Panel Sections for Multi-stage Substructuring (Run 3, Phase 1)

20240 Windmill Panel Sections for Multi-stage Substructuring (Run 4, Phase 2)

20250 Windmill Panel Sections for Multi-stage Substructuring (Run 5, Phase 3)

20260 Windmill Panel Sections for Multi-stage Substructuring (Run 6, Phase 3)

20270 Windmill Panel Sections for Multi-stage Substructuring (Run 7, Phase 2)

30110 Vibration of a 10x20 Plate

30120 Vibration of a 20x40 Plate

30130 Vibration of a 10x20 Plate (via INPUT Module)

30140 Vibration of a 20x40 Plate (via INPUT Module)

30210 Vibration of a Compressible Gas in a Rigid Spherical Tank

30310 Vibration of a Liquid in a Half Filled Rigid Sphere

30410 Acoustic Cavity Analysis

30510 Nonlinear Heat Transfer in an Infinite Slab

30610 Nonlinear Radiation and Conduction of a Cylinder

40110 Differential Stiffness Analysis of a Hanging Cable

50110 Symmetric Buckling of a Cylinder

60110 Piecewise Linear Analysis of a Cracked Plate

70110 Complex Eigenvalue Analysis of a 500-Cell String

70120 Complex Eigenvalue Analysis of a 500-Cell String (via INPUT Module)

70210 Third Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder

70220 Fifth Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder

80110 Frequency Response of a 10x10 Plate

80120 Frequency Response of a 20x20 Plate

80130 Frequency Response of a 10x10 Plate (v ia INPUT Module)

80140 Frequency Response of a 20x20 Plate (v ia INPUT Module)

90110 Transient Analysis with Direct Matrix Input
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UMF pid (tid 1976)

90210

90220

90310

90410

100110

100210

110110

RESTART

110210

110220

120110

130110

140110

150110

NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

Transient Analysis of a 1000-Cell String, Traveling Wave Problem

Transient Analysis of a 1000-Cell String, Traveling Wave Problem (via INPUT Module)

Transient Analysis of a Fluid-Filled Elastic Cylinder

Linear Transient Heat Transfer in a Plate

Complex Eigenvalue Analysis of a Rocket Control System

Aeroelastic Flutter Analysis of a 15° Swept Wing

Frequency Response and Random Analysis of a Ten Cell Beam

Frequency Response and Random Analysis of a Ten Cell Beam, Enforced Deformation
and Gravity Load

Frequency Response of a 500-Cell String

Frequency Response of a 500-Cell String (via INPUT Module)

Transient Analysis of a Free One Hundred Cell Beam

Normal Modes Analysis of a One Hundred Cell Beam with Differential Stiffness

Static Analysis of a Circular Plate Using Dihedral Cyclic Symmetry

Normal Modes Analysis of a Circular Plate Using Rotational Cyclic Symmetry
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DEMONSTRATED FEATURES OF NASTRAN

A. PHYSICAL PROBLEMS

Structures

1. Line

2. Plate or Shell

3. Solids

4. Rotational Symmetry

Fluid Dynamics

5. Flexible Boundary

6. Rigid Boundary

7. Sloshing

8. Acoustic

9. Aeroelastic

Heat Transfer

10. Conduction

11. Convection

12. Radiation

B. SOLUTION METHODS

Steady State

1. Linear Statics

2. Inertia Relief

3. Nonlinear Geometry

4. Material Plasticity

5. Fully Stressed Design

6. Linear Heat Transfer

7. Nonlinear Heat Transfer
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DEMONSTRATED FEATURES OF NASTRAN

Eigenvalue Analysis

8. Real Modes

9. Complex Modes

10 Inverse Power

11. Determinant

12. Givens

13. Upper Hessenberg

Dynamic Response

14. Direct Formulation

15. Modal Formulation

16. Transient Response

17. Frequency Response

18. Random Analysis

19. Flutter Analysis

C. ELEMENT TYPES

1. Bar, Rod, Tube or Conrod

2. Shear or Twist Panel

3. Plate or Membrane

4. Scalar Springs, Mass and Dampers

5. Concentrated Mass

6. Viscous Dampers

7. Plot (PL0TEL)

8. General (GENEL)

9. Conical Shell

10. Toroidal Shell

11. Axisymmetric Solids

12. Linear Solids

13. Isoparametric Solids

14. Solid Heat Conductors

15. Heat Transfer Boundary Elements
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DEMONSTRATED FEATURES OF NASTRAN

16. Fluid Elements

17. Acoustic Elements

18. Aerodynamic

D. CONSTRAINTS

1. Single-Point Constraints

2. Multipoint Constraints

3. Omitted Coordinates

4. Free-Body Supports

5. Fluid Free Surface

6. Symmetry Used on Boundary

7. "Grounded" Stiffness Terms

E. GEOMETRY AND PROPERTY DEFINITIONS

1. Property ID Default

2. Local Coordinate System

3. Resequenced Grid Points

4. Thermal Dependent Materials

5. Nonlinear Materials

6. Anisotropic Materials

7. Offset BAR Connections

8. Structural Mass

9. Nonstructural Mass

10. Structural Element Damping

11. Compressibility of Fluid

12. Fluid Gravity Effects

13. Multiple Fluid Harmonics
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DEMONSTRATED FEATURES OF NASTRAN

F. SPECIAL MATRIX OPTIONS

1. General Element (GENEL)

2 Direct Input Matrices

3. Transfer Functions

4. Extra Points

5. Direct Damping Matrix Input

6. Modal Damping

7. Substructuring

8 Cyclic Symmetry

9. Uniform Structure Damping

G. LOADING OPTIONS

Static

1. Concentrated Loads

2. Pressure Loads

3. Gravity Loads

4. Thermal Loads

5. Harmonic Loads

6. Centrifugal Field Loads

7. Enforced Element Deformation

8. Enforced Displacement

Dynamic Excitation

9. Tabular Loads vs. Frequency or Time

10. Direct Time Function Loads

11. Loading Phase Angles

12. Loading Time Lags

13. Load Combinations (DL0AD)

14. Transient Initial Conditions

15. Random Analysis Power Spectral Density Functions
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DEMONSTRATED FEATURES OF NASTRAN

Heat Transfer

16. Volume Heating

17. Area Heating

18. Radiation Heating

19. Enforced Boundary Temperature

H. EXECUTION OPTIONS

Multiple Solution Techniques

1. Loads

2. Boundary Constraints

3. Cyclic Cymmetry

4. Direct Input Matrices

5. Aerodynamic Coefficients

Operational Techniques

6. Checkpoint

7 Restart with Modified Case Control

8. Restart with Rigid Format Change

9. Restart with Modified Bulk Data

10. Altered Rigid Format Using DMAP Statements

11. Multi-stage Substructuring

I. OUTPUT OPTIONS

Print anA/or Punched

1. Point Output Selections

2. Element Output Selections

3. Subcase Level Request Changes

4. Sorted by Frequency or Time (S0RT2)

5. Magnitude and Phase of Complex Numbers

6. Mode Acceleration Data Recovery
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DEMONSTRATED FEATURES OF NASTRAN

7. Solution Set Output Requests

8. Frequency Set Selections

9. Punched Output Selections

10. Weight and Balance

11. Grid Point Force Balance

12. Element Strain Energy

Plot

13. Structures Plot of Undeformed Structure

14. Structures Plot of Deformed Structure

15. Curve Plotting vs. Frequency

16. Curve Plotting vs. Time

17. Curve Plotting vs. Subcase
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RIGID FORMAT No. 1, Static Analysis

Delta Wing with Biconvex Cross Section (1-1-1)
Delta Wing with Biconvex Cross Section Using QDMEM1 and QDMEM2 Elements (1-1-2)

Delta Wing with Biconvex Cross Section Using QDMEM1 Elements (1-1-3)

Delta Wing with Biconvex Cross Section Using QDMEM2 Elements (1-1-4)

This problem illustrates the use of various NASTRAN elements in the solution of an actual

structural problem. Figure 1 shows the delta wing to be modeled and Ficures 2 and 3 shows the

finite element model. The delta wing model is composed of membrane, shear panel and rod elements.

Due to the existence of symmetry or antisymmetry in the structure and loadinq conditions, only

one-quarter of the wing needs to be modeled. The midplane of the wing (the plane dividing the wing

into upper and lower halves) is a plane of symmetry as is the center plane (the nlane that divides

the wing into left and right halves). The loading conditions are an ti symmetrical with respect to

the midplane of the wing and symmetric with respect to the center plane.

The surface skin of the wing is modeled with membrane elements while the ribs and spars are

modeled with a combination of shear panels and rods. The shear load carrying capability of ribs

and spars is represented by shear panels. The bending stiffness of the ribs and spars is modeled

with rod elements placed in the plane of the skin surface.

Since a quarter model is used, the loading conditions require that an antisymmetric boundary

be provided on the midplane and a symmetric boundary must be provided on the center plane. These

boundary conditions are provided by constraining all grid points on the midplane in the x and y

directions and all grid points on the center plane in the x direction. Supports for the structure

are provided by constraining grid points 13, 33, 53, 73 and 93 in the z direction. Since no rota-

tional rigidity is provided by the elements used in the model, all rotational degrees of freedom

have been removed by the use of the GRDSET card.

Figure 4 shows the two loading conditions analyzed. The modified restart capability is used

to perform the analysis associated with the second loading condition. The ability of NASTRAN to

change rigid formats on a restart is demonstrated by the third case. The natural modes of the

structure are extracted using the inverse power method. Since the symmetric boundary conditions

are used, only the modes with symmetric motion about the center line will be extracted. If the

unsymmetric modes were required, a separate run with the aporopriate boundary conditions could be

submitted.
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A comparison of the displacements due to the loads calculated by NASTRAN and the experimentally

measured displacements from Reference 2 is shown in Tables 1 and 2. Also included in these tables

are the displacements calculated on a passive analog computer (Reference 1). A comparison of the

natural frequencies and modal displacements is shown in Tables 3 and 4.

Another variation of this problem can be obtained by replacing the quadrilateral membrane

elements (CQDMEM) with the newer CQDMEM1 and CQDMEM2 elements. This modification demonstrates the

ability to reproduce previously derived theoretical results. Table 5 shows the difference in dis-

placements obtained when elements 1 through 9 are CQDMEM1 elements and the other quadrilaterals

are CQDMEM2 elements.
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Table 1 Comparison of NASTRAN and Experimental Deflections - Concentrated Load on Outboard

Trailing Edge

GRID
NUMBER

14

15

16

34

35

36

54

55

74

Z DISPLACEMENT

NASTRAN

-.082

- 221

-.424

'-.063

-.162

-.293

-.043

-.104

-.025

EXPERIMENTAL

-.08

-.22

-.39

-.07

-.16

-.28

-.05

-.12

-.03

ANALOG

-.080

-.210

-.400

-.061

- 157

-.286

-.044

-.144

-.030

Table 2 Comparison of NASTRAN and Experimental Deflections - Concentrated Load on Outboard

Leading Edge

GRID
NUMBER

14

15

16

34

35

36

54

55

74

Z DISPLACEMENT

NASTRAN

-.063

-.163

- 293

- 057

-.148

-.280

-.046

- 118

- 030

EXPERIMENTAL

- 06

-.15

-.28

-.06
-.15

- 30

-.05

- 13

-.04

ANALOG

- 060

- 157

- 286

- 057

-.150

-.290

- 048

-.127

- 035

1.1-3



TABLE 3 Comparison of NASTRAN and analog computer analysis eigenvalues.

Mode No.

1

2
3

NASTRAN (cps.)

40.9

115.3

156.2

ANALOG (cps.)

41.3

131.0

167.0

TABLE 4 Comparison of mode displacements for first mode.

GRID

NUMBER

14
15

16

34
35

36

54
55

74

Z DISPLACEMENT

NASTRAN

.250

.601

1.000

.210

.504

.854

.162

.391

.112

ANALOG

.273

.630

1.000

.239

.558

.902

.192

.462

.148
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TABLE 5. Comparison of Z Displacements

Grid
Point

H

15

16

34

35

36

54

55

74

Trailing Edge Load

CQDMEM Elements

-.082

-.221

-.424

-.063

-.162

-.293

-.043

-.104

-.025

CQDMEM1 and
CQDMEM2
Elements

- 082

- 224

-.433

-.064

- 166

- 300

- 044

-.108

-.026

Leading Edge Load

CQDMEM Elements

- 063

-.163

- 293

- 057

- 148

-.280

- 046

-.118

- 030

CQDMEM1 and
CQDMEM2

Elements

-.064

-.167

-.300

-.059

-.154

-.294

- 047

- 123

-.031
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Loading Condition 2
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Figure 4. Loading conditions for Delta wing.
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RIGID FORMAT No. 1, Static Analysis

Spherical Shell with Pressure Loading (1-2-1)

This problem demonstrates the finite element approach to the modeling of a uniform spherical

shell. A spherical coordinate system is chosen to describe the location and displacement deqrees

of freedom at the grid points. Triangular plate elements are chosen to provide a nearly uniform

pattern. Two symmetric boundaries are used to analyze the structure with a symmetric pressure

load. Figure 1 describes the model.

Two boundary conditions are used on the outside edge to demonstrate the ability of NASTRAN

to restart with different constraint sets by simply changing the case control request. The

effective boundary constraints are shown in Figure 2. The membrane support, under a uniform

pressure load, should result in uniform in-plane compression in two directions. The clamped

support produces bending moments in addition to in-plane stresses.

The grid point numbering sequence used minimizes the computer time required to perform the

triangular decomposition of the constrained stiffness matrix. This numbering sequence results in

a partially banded matrix with all terms outside the band located in a single column. The grid

points are arranaed to form five rings; the center point is sequenced last.

Analytic solutions for the continuum shell were obtained from Reference 4 using the first 20

terms of the series shown in Equation (j) of Section 94. Comparisons of the answers obtained

using NASTRAN and the analytical solution for the membrane boundary condition are shown in Figures

3 and 4. Also included on these figures are the NASTRAN answers obtained usina a 10-ring model

Figures 5 thru 7 show a comparison of the NASTRAN answers and the analytical solution for the

shell with a clamped boundary.

The slight differences between theoretical and computed answers are due to- 1) The finite

element model assumes a constant in-plane stress and a linearly varying bending moment for each

element. In the clamped edge case these quantities have large chances, and 2) the irregularities

of the finite element model cause some extra coupling between the bendina and membrane action.

Since the elements are planar the curvature is modeled, in effect, by the dihedral angles between

elements. Since the elements are different sizes and shapes these dihedral anales vary, which

results in slight differences in curvature that cause small errors.
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Figure 1. 5 ring spherical shell model.
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Thickness = 3 in.

35

Uniform Pressure
Load 1 lb/in.2

Clamped Support
(Problem l-2a)

Membrane Support
(Problem 1-2)

Figure 2. Spherical shell loading and edge suoport conditions.

1.2-4



-0

o

X

- -4
^~^ t
4_>
c

o
(O

"a.
52 -2
Q

re
•5
re

0

_
/T\ VW J\. f^.

r1 Z2J S3 W S lil Q

A

— Analytical Displacement
—

O NASTRAN Displacement (10 Ring)

A NASTRAN Displacement (5 Ring)

1 1 1 1 1

0 10 20 30 40 50

6 (deg)

6

Figure 3. Comparison of NASTRAN and analytical displacements
for spherical shell - membrane boundary

i — i
</i
^ -16

i/>
OJi.

c
re

I -12
OJ
5:

-
A A A

^ *^ *— ' /-\

— Analytical

A NASTRAN (5 Ring)

r
i i i i iD

0 10 20 30 40 50 6

9 (deg)

Figure 4. Comparison of NASTRAN and analytical stresses for
spherical shell - membrane boundary

1.2-5



A NASTRAN Displacement

— Analytical Displacement

Figure 5. Comparison of NASTRAN and analytical displacements for
5 ring spherical shell - clamped boundary.
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RIGID FORMAT No. 1, Static Analysis

Free Rectangular (QDMEM) Plate with Thermal Loading (1-3-1)
Free Rectangular (QDMEM1) Plate with Thermal Loading (1-3-2)
Free Rectangular (QDMEM2) Plate with Thermal Loading (1-3-3)

This problem demonstrates the use of thermal loading conditions and temperature dependent

materials. The model, a rectangular plate shown in Figure 1, is given a temperature gradient

which causes internal loads and elastic deflections. Since there are two planes of symmetry,

only one-quarter of the structure needs to be modeled (the shaded portion shown in Figure 1).

The finite element model for the quarter section is shown in Figure 2. Fiaure 3 shows the

thermal loading condition. The temperature load is constant in the y direction and symmetric

about the y-axis. Since membrane elements are used to model the structure, it is necessary to

remove all rotational degrees of freedom and translational degrees of freedom normal to the plate.

The symmetric boundary conditions were modeled by constraining the displacements normal to the

planes of symmetry. The material used has temperature dependent elasticity (as defined in Reference

5) therefore the INPUT module cannot be used for this application. The CNGRNT bulk data card can

be used if the congruency is defined in one direction.

Figures 4 and 5 show a comparison of NASTRAN stresses and the experimentally measured stresses

reported in Reference 5.
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Figure 2. Free rectangular plate model.
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X = 1.5

A Measured Stress

— NASTRAN (CDMEM)
— NASTRAN (QDMEM1, QDMEM2)

Figure 4. Comparison of NASTRAN and experimental stresses for free rectangular
plate with thermal loading - temperature dependent properties.
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Figure 5. Comparison of NASTRAN and experimental stresses for free rectangular
plate with thermal loading - temperature dependent properties
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RIGID FORMAT No. 1, Static Analysis

Long, Narrow, 5 x 50 Orthotropic Plate (1-4-1)
Long, Narrow, 5 x 60 Orthotropic Plate (1-4-2;

Long, Narrow, 5 x 50 Orthotropic Plate (INPUT, 1-4-3)
Long, Narrow, 5 x 60 Orthotropic Plate (INPUT, 1-4-4)

This problem demonstrates triangular decomposition spill logic, Orthotropic materials, and

the use of a modified restart to obtain additional output. A sketch of the rectangular plate and

the applied loading is shown in Figure 1.

The 5 x 50 finite element quarter-section model shown in Figure 2 is constructed with quadri-

lateral bending elements. In order to demonstrate the triangular decomposition spill logic (i.e.

the necessary computation space is larger than available core storage), the model is internally

resequenced for a wide bard as shown in Figure 3. Although the 5 x 50 model is sufficient to

create spill on the IBM 7094 DCS, the number of elements in the longitudinal direction must be

increased to create spill on machines having larger random-access memories.

The analytical solution for the infinitely long continuum plate is given in Section 37 of

Reference 4. A comparison with the NASTRAN solutions are given in Tables 1 and 2.

A modified restart was used to obtain additional output.
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Table 1. Comparison of NASTRAN and Analytical Displacements for Long, Narrow, Orthotropic Plate.

GRID

1

2

3

4

5

7

13

19

25

31

37

43

Z DISPLACEMENT x 10"

THEORY

3.048

2.899

2.466

1.792

0.942

2.949

2.723

2.446

2.157

1.880

1.625

1.397

NASTRAN

3.037

2.889

2.457

1.785

0.939

2.940

2.714

2.435

2.145

1.866

1.611

1.383

Table 2. Comparison of NASTRAN and Analytical Displacements for Long, Narrow, Orthotropic Plate.

EL.
ID.

1

2

3

4

5

7

13

19

25

31

37

STRESS X

THEORY

19.05

17.19

13.64

8.76

3.02

15.86

13.27

11.14

9.37

7.90

6.67

NASTRAN

18.90

17.05

13.53

8.69

2.99

15.76

13.20

11.08

9.33

7.86

6.63

STRESS Y

THEORY

20.35

18.36

14.57

9.35

3.22

12.91

8.28

5.38

3.55

2.38

1.64

NASTRAN

20.40

18.40

14.60

9.38

3.23

12.90

8.23

5.33

3.51

2.36

1.63

SHEAR STRESS

THEORY

-0.39

-1.12

-1.74

-2.19

-2.43

-0.84

-1.03

-1.07

-1.02

-0.94

-0.84

NASTRAN

-0.39

-1.13

-1.76

-2.22

-2.46

-0.88

-1.06

-1.09

-1.04

-0.95

-0.85
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Figure 1. Simply-supported long narrow orthotropic plate
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RIGID FORMAT No. 1, Static Analysis

Nonsymmetric Bending of a Cylinder of Revolution (1-5-1)

A. Description

This problem illustrates the application of the conical shell element and its related special

data. This element uses the Fourier components of displacement around an axisymmetric structure

as the solution coordinates. The geometry of the structure is defined by rings instead of grid

points. Its constraints must be defined by the particular Fourier harmonics, and the loads must

be defined either with special data or in a harmonic form. This element may not be used in conjunc-

tion with any of the other structural elements.

The structure to be solved is described in Reference 6 and illustrated in Figure 1. It con-

sists of a short, wide cylinder with a moderate thickness ratio. The aoplied loads and the out-

put stresses are pure uncoupled harmonics. The basic purpose of this problem is to check the

harmonic deflections, element stresses, and forces. Figures 2 and 3 compare the NASTRAN results

with the results given in Reference 6.

B. Input

The Fourier coefficients of the applied moment per length are:

mn = cos(ne)

!
The applied input loads are defined as:

2ir

n cos(ne) R de

The values of applied moment on the M0MAX cards are:

M
n(|) = ̂  ' n > °

The applied moments for each harmonic are shown in Figure 1. The bendina moments in the

elements are defined as:
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M = Moment about u,
v q

M = Moment about u

Positive bending moments indicate compression on the outer side.

1. Parameters:

R = 50 Radius

s = 50 Height

t = 1.0 Thickness

E = 91.0 Modulus of Elasticity

v = 0.3 Poisson's Ratio

2. Loads:

Mn(100) = 157.0796 Force-Length

Mn(50) = -157-0796 Force-Length

3. Single Point Constraints:

Ring ID Harmonic Coordinates

50

100

all

all

all

all

Wuz

Wuz

Radial, tangential and axial translations

Radial, tangential and axial translations

Rotation normal to surface

The AXISYM = C0SINE statement in case control defines the motions to be symmetric with

respect to the x-z plane.

C. Answers

Theoretical and NASTRAN results for element bending moments and radial deflections for 4 of

the 20 harmonics used are given in Figure 2 and 3. Notice that for higher harmonics the effect of

the load is limited to the edges. A smaller element size at the edges and a relatively large

size in the center would have given the same accuracy with fewer degrees of freedom.
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Figure 1. Cylinder under harmonic loads.
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Figure 2. Element bending moments and radial deflections
along length of cylinder.
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Figure 3. Element bending moments and radial deflections
along length of cylinder.
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RIGID FORMAT No. 1, Static Analysis

Solid Disk with Radially Varying Thermal Load (1-6-1)

A solid free circular disk in a plane is subjected to a radially varying thermal load of the

form

T = 100(1 - {£)

where

r = the radius at any point in the disk

b = the outside radius = 0 10 inches

The structure is shown in Figure 1 along with its associated material properties and pertin-

ent dimensions The finite element idealization employed for this structure is shown in Figure 2.

The thermal loading on the solid disk is established via an internally generated thermal load

vector derived from data specified grid point temperature values.

Figure 3 displays the radial displacement utilizing the idealization shown in Figure 2.

Figure 4 presents radial and circumferential stress values which result from the thermal loading.

Reference 14 provides an analytical solution to this problem which is based on the theory of

elasticity. Note that the solid lines represent the analytical solution while the circles and

squares represent the solution obtained utilizing the finite element solution
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Figure 1. Solid circular disk Figure 2. Finite element idealization and
temperature distribution.
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Figure 3. Radial displacement, solid disk with radially varying thermal load.
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Figure 4. Radial and circumferential stress in solid disk at the centroid
of the elements with radially varying thermal load.
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RIGID FORMAT No. 1, Static Analysis

Shallow Spherical Shell Subjected to External Pressure Loading (1-7-1)

A shallow spherical shell with a built-in edge is subjected to an external pressure loading of

1 psi. The shell is shown in Figure 1 along with its pertinent dimensions and associated material

properties. The finite element idealization for the shell is displayed in Figure 2.

Due to symmetry only one half of the shell was analyzed. The primary purpose of this analysis

was to demonstrate the applicability of the shell cap generalization of the toroidal ring to this

class of problem.

The meridional bending moment is taken to characterize the behavior predicted for this struc-

ture. The exact solution from Reference 4 is compared to the 13 element finite element solution

in Figure 3. The reference solution is designated by the solid line while the finite element sol-

ution is designated by the circles. Figure 4 displays the radial displacement obtained utilizing

this idealization and compares it to that obtained in the Reference Solution.
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P = 1.0 PSI

Figure 1. Shallow spherical shell

E = 3.0 x 106 PSI
v = 0.167

Figure 2. Finite element idealization
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Figure 3. i'.eridional moment, shallow spherical shell.
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RIGID FORMAT No. 1, Static Analysis

Bending of a Beam Fabricated from HEXA1 Solid Elements (1-8-1)

A. Description

The properties of solid bodies nay be modeled with the NASTRAN tetrahedra, wedge, or hexa-

hedron finite elements. This problem demonstrates the analysis of a solid fabricated from the

six-sided HEXA1 solid elements. The problem consists of a rectangular parallelepiped subdivided

into forty cubic subelements as shown in Figure 1.

The loads were chosen to approximate the stress distribution due to a moment on one end of

a beam; the other end is constrained to resist the moment. Two planes of symmetry were used to

simulate an actual problem having twice the width and twice the height.

B. Input

1. Parameters:

«, = 20.0 (length)

w = 4.0 (width of full section)

h = 16.0 (height of full section)

E = 3.0 x 10 (modulus of elasticity)

v = 0.2 (Poisson's ratio)

2. Boundary Constraints:

on y = 0 plane, u = u = 0 (antisymmetry)
X Z

on z = 0 plane, u = 0 (symmetry)

on x = 0 plane, u = 0 (symmetry)

3. Loads:

Total Moment: M = 2.048 x 103

This moment will produce bending about the z axis. It is modeled by a set of axial

loads at x = A which, in turn, represent an axial stress distribution:

C. Analysis and Results

A prismatic beam with an axial stress which varies linearly over the cross section has an

exact solution. In the demonstration problem, the theoretical stress distribution is:
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•„•-'
V ' 0zi " Txy " V ' V

where I = ~" wh .

The displacements are:

ux = ' FT

uy =

Tables 1 and 2 are comparisons of displacements and stresses for the theoretical case and

the NASTRAN model .
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POINT/DIRECTION

21 /y

41 /y

61 /y

81 /y

101/y

109/x

110/z

DISPLACEMENT x 10"4

THEORY

.0400

.1600

.360

.640

1.000

0.800

.016

NASTRAN

M17

.1607

.366

.651

1.016

0.844

0.007

Table 1. Comparisons of Displacement

ELEMENT

1

2

3

4

°xx

-1.5

-4.5

-7.5

-10.5

THEORY

0yy

0

0

0

0

Txy "

0

0

0

0

"axx

-1.56

-4.53

-7.39

-9.95

NASTRAN
-
ayy -

.02

.036

.06

"-".11

!

v
.-.01

-.05

-.06

.12

NOTE: NASTRAN stresses are average; theoretical stresses
"are calculated at the center of the element.

Table 2. Comparisons of Stress
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Figure 1. Model of solid using hexahedrons.
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RIGID FORMAT No. 1, Static Analysis

Thermal and Applied Loads on HEXA2 Solid Elements (1-9-1)

A. Description

This problem demonstrates the use of the HEXA2 solid hexahedron elements. Forty rectangular

elements are used to model a 2x2x10 beam. The dimensions and boundary conditions are shown in

Figure 1. Two loading conditions are applied: axial stress and thermal expansion. Symmetry

boundary conditions are used.
i

i

B. Input

1. Parameters:

i = 20 (length)

.w = 4.0 (width)

h = 4.0 (height)

E = 3.0 x 105 (modulus of elasticity)

v = 0.2 (Poisson's ratio)

a = .'001 (thermal expansion coefficient)

TQ = 10° (reference temperature)

2. Boundary Constraints:

u = 0 at x = 0

u = 0 at y = 0

uz = 0 at z = 0

3. Loads:

Subcase 1,

FX = 24 x 10
3 (total axial force)

Subcase 2,

T = 60° (uniform temperature field) '

T = 10° (reference temperature)
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C. Analysis and Results

1. Subcase 1

The distributed axial load is equivalent to a stress field of:

axx = 1 . 5 X 1 0 3 ,

ayy = azz = V = Txz = Tyz

The displacement field is:

-
uv = -- x = 0.5 x 10

X t

"wxx -3
uy = —^y = -0.1 x 10 Jy

-va .,
uz = —g^- z = -0.1 x 10 z

2. Subcase 2

The uniform expansion due to temperature will not cause any stress. The strains, however,

are uniform and equal. The displacements are, therefore:

u = a(T-TQ)x = .05x

u
y
 = a(T-T

0
)y = -05y

U2 = a(T-TQ)z = .05z

where T is the uniform temperature and T is the reference temperature.

3. Results

The results of both subcases are exact to the single precision limits of the particular

computer used.
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Figure 1 Model of solid using HEXA2 elements

1.9-3 (6/1/72)

>



RIGID FORMAT No. 1, Static Analysis

Thermal Bending of a Beam (1-10-1)

A. Description

This problem demonstrates the solution of a beam subjected to a thermal gradient over the

cross-section. Two end conditions are solved, clamped-free and clamped-pinned end conditions.

An equivalent linear gradient in the normal direction was used for the input data. However,

the actual temperatures at points on the cross-section were input on the TEMPRB card in order to

produce correct stresses. The beam was subdivided into 14 variable lengths for maximum efficiency.

B. Input

Figure 1 describes the beam and the thermal field to be analyzed and Figure 2 shows the finite

element model.

C. Theory

For subcase 1, the effective temperature gradient, T', (see NASTRAN Theoretical Manual) is:

T'(x) = }f J T(x,y,z)y dy dz , (1)

z y
where

I = f f y2 dy dz . (2)
z y

Using the given temperature distribution the effective gradient is:

T1 = Tc x
3 , (3)

where T is calculated to be 0.170054°/in by substituting the temperature distribution into

Equation 1 and evaluating the expression:

Tc = Y f j Cy4 dy dz (4)

z y
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Since the bar is not redundantly constrained the curvature at the center line is:

= -a! (5)

The slope is:

The deflection is:

^
dx

d2v dx = . a T 1
4 'c x

—20 c

(6)

(7)

The moment, M, shear, V, and axial stress, a , are:

u y_ , T t i — n

dx2

(8)

oy(x,y) = E(e - aT) = E(ayT' - aT) = Ea(T y - Cy3) x3
A A I-

where C = 1 has dimensions of degrees/length .

For subcase 2, with a simple support at x = 10.0, we calculate the deflection due to subcase 1

and apply a constraint load P. to remove the deflection at the end.

PK --20 (9)

Note: Transverse shear deflection is neglected.

The deflections and slopes are the sum of the results for the two independent loads as follows

deflection:

-lope:

K . „ , a l r a I o o - 3 9
v(x) = -^r (3Lx* - xj) - -*£- xb = -^- (3LJ - L*x - 2x j) x* ,

3v aTrez(x) = |J = -£

(10)

(ID
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The net stress is the sum of the stress due to each load:

(x,y) = Ea(Tcy - CyV - ^= Ea [(^ - Cy3)x3 - ^ TCL2(L - x) y] (12)ox

where M. is the moment due to the constraint load.

D. Results

Tables 1 and 2 compare the analytical maximum value of displacement, constraint force, ele-

ment force, and stress to the maximum deviation of NASTRAN in each category. All results are

within 2.66%.
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v (x )

L = 10.0 in. 1.0 in 0.2 in.

0.2 in. ,0.6 in.

fi O

E = 10.0 x 10 Ib/in11 (Young's modulus) 0.2 in.

v = 0.3 (Poisson's ratio)

a = 13.0 x 10" in/in/°F (Thermal expansion coefficient)

0.0°F (Reference temoerature)

The beam is loaded by the temperature distribution:

where C = 1.0 °F/in

T(°F) = Cx3y3

Figure 1. Thermal loading of a beam.
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Figure 2. Finite element model,
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Table 1. Comparison of NASTRAN and analytical results, clamped-free ends (subcase 1).

CATEGORY

Displacement

Constraint Force

Element Force

Element Stress

MAXIMUM
ANALYTICAL

VALUE

-1.1054 x 10"2

0

0

5.1965 x 10"̂

MAXIMUM
NASTRAN

DIFFERENCE

2.9424 x 10"4

*

*

0.671

PER CENT
ERROR

2.66

*

*

0.01

*These results vary with the computer. The very small numbers are essentially zero when

compared to subcase 2 results.

Table 2. Comparison of NASTRAN and analytical results, clamped-pinned ends (subcase 2).

CATEGORY

Displacement

Constraint Force

Element Force

Element Stress

MAXIMUM
ANALYTICAL

VALUE

4.3936 x 10~3

-2.2859 x }Q+d

2.2859 x 10+2

5.1965 x 10+3

MAXIMUM
NASTRAN

DIFFERENCE

8.024 x 10"6

6.0841

6.0846

4.4136 x 10

PER CENT
ERROR

0.18

2.66

2.66

0.85
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RIGID FORMAT No. 1, Static Analysis

Simply-Supported Rectangular Plate with a Thermal Gradient (1-11-1)
Simply-Supported Rectangular Plate with a Thermal Gradient (INPUT, 1-11-2)

A. Description

This problem illustrates the solution of a general thermal load on a plate with the use of an

equivalent linear thermal gradient. The thermal field is a function of three dimensions, demonstra-

ted by the TEMPP1 card. The plate is modeled with the general quadrilateral, QUAD!, elements as

shown in Figure 1. Two planes of symmetry are used. This problem is repeated via the INPUT module

to generate the QUAD1 elements.

(Youngs modulus)

(Poisson's ratio)

(Mass density)

(Thermal expansion coefficient)

(Reference temperature)

(Temperature difference)

(Width)

(Length)

(Thickness)

T = TQ(cos -^) (cos

B. Input

E

V

P

a

TR

T
0

a

b

t

5
= 3.0 x 10 pounds/inch'

= 0.3

= 1.0 pound-sec, /inch

= 0.01 inch/°F/inch

= 0.0 °F

= 2.5 °F

= 10.0 inch

= 20.0 inch

= 0.5 i nch

The thermal field is:

= 160.0(cos ?£) (cos ̂ ) z3 °F »•.".

C. Theory

The plate was solved using a minimum energy solution. The net moments, {MN}, in the plate

are equal to the sum of the elastic moments, {MeJ, and the thermal moments, {M.}.

{MN} = {Mt} (1)

where the thermal moment is
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{Mt} = Or D(l+v) jljcos^- cos

and D = Et"

and TO = 6T /5t is the effective thermal gradient.

The elastic moment is defined by the curvatures, x, with the equation:

{Ml = D

xy

(2)

(3)

Assuming a normal displacement function, W, of

then

n nt

= - II "\m (5) cosn m
cos

(4)

I I /W m cos HM cos
n m

(5)

3x9y n m i

The work done by the thermal load is:

f {x>T{Mt} dA + 1 | {X}
T

A A
'{Me> dA , (6)

where A is the surface area. Performing the substitution and integrating results in the energy

expression:
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T; D(l+v)ir2 (a2+b2) D

4ab

The static solution exists at a minimum energy:

3U _ naW — - 0 •3Wnm

This results in all but W,, equal to zero. The displacement function is therefore:

aT' (l+v)a2b2

"^ - 2,2 h2>
 C°S T COS ?• ' M

•n (a + b )

Solving for moments by differentiating W and using equation (3) results in the equations for

element moments:

cos . cos ,
a b

My

D. Results

Figure 2 compares the element forces given by the above equation and the NASTRAN results.

Figure 3 compares the normal displacements. The maximum errors for displacements, constraint

forces, element forces and element stresses are listed in Table 1.
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Figure 1. Simply-supported rectangular plate with a thermal gradient.
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Table 1. Comparison of analytical and NASTRAN results.

CATEGORY

Displacement

Constraint Force

Element Mom. , M

Element Stress

MAXIMUM
ANALYTICAL

6.2898 x 10"1

150.0

1.4770 x 102

7.764618 x 103

MAXIMUM
DIFFERENCE

-1.5464 x 10"3

-.9594

-1.1767

-90.33275

PER CENT
ERROR

-0.25

-0.65

-0.80

-1.16
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RIGID FORMAT No. 1 (APR HEAT), Heat Conduction Analysis
Linear Steady State Heat Conduction Through a Washer

Using Solid Elements (1-12-1)

Linear Steady State Heat Conduction Through a Washer
Using Ring Elements (1-12-2)

A. Description

This problem illustrates the capability of NASTRAN to solve heat conduction problems. The

washer, shown in Figure 1, has a radial heat conduction with the temperature specified at the out-

side and a film heat transfer condition at the inner edge. Due to symmetry about the axis and the

assumption of negligible axial gradients, the temperature depends only upon the radius.

B. jnput

The first NASTRAN model is shown in Figure 2. The solid elements (HEXA1, HEXA2, WEDGE and

TETRA) and boundary condition element (HBDY, type AREA4) are used. The conductivity of the material

is specified on a MAT4 card. Temperatures are specified at the outer boundary with SPC cards.

Punched temperature output is placed on TEMP bulk data cards suitable for static analysis.

Another variation of the problem is shown in Figure 3. Solid of revolution elements (TRIARG

and TRAPRG) and boundary condition element (HBDY, type REV) are used. The conductivity of the

material and the convective film coefficient are specified on a MAT4 card The CHBDY card references

a scalar point at which the ambient temperature is specified using an SPC card. An SPC1 card is

used to constrain the temperature to zero degrees at gridpoints on the outer surface.

C. Theory

The mathematical theory for the continuum is simple, and can be solved in closed form. The

differential equation is

The boundary conditions are

and

1 _L frklU)
r 8r lrK8r;

_k|M = H(Ua - U) at r =

U = 0 at r = r-,

(1)

(2)

(3)
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The solution is

U(r) =
HU,

= 288.516 £,n(2/r)

D. Results

A comparison with the NASTRAN results is shown in Table 1.

Table 1. Comparison of Theoretical and NASTRAN Temperatures for Heat Conduction in a Washer.

r(radius)

1.0

1.1

1.2

1.3

1.4

1.5

1.6 ,

1.7

1.8

1.9

2.0

Theoretical
Temperatures

199.984

172.486

147.381

124.288

102.906

83.001

64.380

46.889

30.398

14.799

0.000

NASTRAN Temperatures
(Solids)*

202.396

173.904

148.833

124.783

102.852

82.913

64.306

46.832

30.356

14.773

0.000

NASTRAN Temperatures
(Rings)*

199.932

172.448

147.355

124.269

102.894

82.992

64.375

46.886

30.397

14.798

0.000

*These are the average temperatures at a radius.
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Film heat transfer,
film coefficient H = 1,0
ambient temperature U = 488.5

d

Section to be modeled

U 0.0
Teinoerature
Soecif ied

Figure 1. Washer Analyzed in Heat Conduction Demonstration Problem
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Notation

HI is a hexahedron, ID = 1
T4 is a tetrahedron, ID = 4
W9 is a wedge, ID = 9
6 is a grid point, ID = 6

112

HBDY 701
Figure 2. Elements and Grid Points
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U = 0.0 at right end
a

Figure 3. Section of a pipe, modeled with ring elements
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RIGID FORMAT No. 1, Static Analysis

Thermal and Pressure Loads on a Long Pipe Using Linear Isoparametric El-^iients (1-13-1)

Thermal and Pressure Loads on a Long Pipe Using Quadratic Isoparametric Elements (1-13-2)

Thermal and Pressure Loads on a Long Pipe Using Cubic Isoparametric Elements (1-13-3)

A. Oescri£ticiti

These problems demonstrate the use of the linear, quadratic and cubic isopnramp uric solid

elements, IHEX1, IHEX2 and IHEX3, respectively. A long pipe, assumed to be in a state of plane

strain, is subjected to an internal pressure and a thermal gradient in the rad^l direction The

structure modeled is shown in Figure 1. The finite element NASTHAN models for each of the elements

are shown in Figures 2, 3 and 4.

B. Input

1. Parameters:
rinner = a = 4 in.

router = b = 5 in.

E = SO.xlO6 psi

v = 0.3

a = 1.428 x 10"5

p = 7.535 x 10- lb"s^2

p = 10 psi

Tn = 100.0°F

T. = 0.0°F

(radius to the inner surface)

(radius to the outer surface)

(Young's Modulus)

(Poisson's Ratio)

(thermal expansion coefficient)

(mass density)

(inner surface pressure)

(inner surface temperature)

(outer surface temperature)

2. Boundary Conditions:

UQ = 0 at all points on the right sidetj
u = 0 at all points on the left side
B

u = 0 at all points on the bottom surface

u = 0 at all points on the top surface
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3. Loads:

Subcase 1,

p = 10 psi (internal pressure)

Subcase 2,

Tr = ~^ ln(r} = 1n(?°25) ^ ' where r 1S any radius"
a

C. Theory

1. Subcase 1

The normal stresses due to the pressure load (Reference 24) are obtained by

. a2b2 p + pa2

°r (b2-a2) r2 (b2-a2)

a = £ + Pa2
6 (b2-a2) r2 (b2-a2)

and a = 2v —--—•—
Z (b2-a2)

where r is the radius and all shearing stresses are zero.

The displacement in the radial direction is

pa2 , (1+v) 1 pa2b2r

(b2-a2) E r (b2-a2) '

and all other displacements are zero.

2. Subcase 2

The stresses in the radial and tangential directions due to the thermal load
(Reference 24) are given by

°r 2(l-x, ...,a,

and - On - ^ k [l - In (£) - ~^~ (1 + ̂) In (|l
(b-a2) r2
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The stress in the axial direction is obtained via the procedure contained in the
reference as

o = i
 b |"v - -&*— ln(|) - 2 ln(£

z 2(l-v)ln(£) [ (b2-a2) a r

All shearing stresses are zero.

The displacement in the radial direction is

D. Results

Representative displacements and stresses for the finite element results com-

pared to theoretical predictions are plotted in Figures 5 and 6. Note that five

IHEX1 elements were used along the radial thickness whereas one element was used for

each of the IHEX2 and IHEX3 cases. Two values for the stress occur at the boundary

of two adjacent IHEX1 elements resulting in a sawtooth pattern.
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Figure 1. Long pipe with pressure and thermal loads.
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Figure 2. Model of section using forty IHEX1 elements.
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Figure 3. Model of section using two IHEX2 elements.
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Figure 4. Model of section using one IHEX3 element.

1.13-7 (3/1/76)



01
tu

(11
<J
to

in
o>
u
c

<D
O

6.5x10-6

5.5

5.0

4.0

4.5x10

3.5 -

3.0

— Theoretical
O IHEX1
Q IHEX2
A IHEX3

4.2 4.4 4.6

Radius, inches

(a) Radial deflections, pressure load.

4.8 5.0

— Theoretical
O IHEX1

IHEX2
A IHEX3

4.4 4.6

Radius, inches

(b) Radial deflections, thermal load.

Figure 5. Deflection comparisons.

1.13-8 (3/1/76)



2.0

QJ
S_

(U
S-

4 4 4.6
Radius, inches

(a) Radial stress, pressure load.

5.0

48.0

4.2 4.4 4.6
Radius, inches

(b) Circumferential stress, pressure load.

Figure 6. Stress comparisons.

4.8 5.0

1.13-9 (3/1/76)



Approach

Flexibility
Stiffness
Stiffness
Stiffness

Flexibility

Matrix Size

3
6
3

3
3

{ud}

No

No
Yes
Yes

Yes

[S]

No
No
Yes

No

No

RIGID FORMAT No. 1, Static Analysis

Static Analysis of a Beam Using General .Elements (1-14-1)

A. Description

This problem demonstrates the use of general GENEL elements having various types of input

format in the static analysis of a cantilever beam subjected to tension and bending. The beam

consists of five GENEL elements and one BAR element as shown in Figure 1

The GENEL elements are constructed as follows:

GENEL Element

1
2

3
4
5

B. Input

1. Parameters

*• = 6.0 m (length)

E = 6.0 N/m2 (modulus of elasticity)

V = 0.3 (Poisson's ratio)

A = 1,0 m2 (cross-sectional area)

I = .083 m" (bending moment of inertia)

FX = 1.0 N (axial load)

P = 1.0 N (transverse load)

C. Theory

The stiffness matrix for the BAR element in its general form is given in section 8 of the

NASTRAN Programmer's Manual.

Define [Z] as the matrix of deflection influence coefficients (flexibility matrix) whose terms

are {u.} when {u.} is rigidly constrained,

[K] as the stiffness matrix,

[S] as a rigid body matrix whose terms are {î } due to unit motions of {ud} , when all {f^} = 0,

{f.} as the vector of forces applied to the element at {u.} ,
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and {f.} as the vector of forces applied to the element at tu.}. They are assumed to be statically

related to the {f.} forces, i.e., they constitute a nonredundant set of reactions for the element.

If transverse shear is neglected and the beam is confined to motion in the X-Y plane, then

{f,l = [K] (u^ ,

where

[K] =

" 6E
a

0

0

{f •

0

12EI
£3

6EI

( F ) 6x)
} = V2 {u } = 6y ,

( M I ) n 9z '

0

6EI
£2

4EI

=

"6 0 0 "

0 6 3

0 3 2

and

[S]

[F] = [K]
-i

0 Au.

Au.

0 0

2
3

-1

0 0

where Au = u. - u., i.e., the difference between the dependent displacement degree of freedom

{u.} and the independent displacement degree of freedom {u }.

D. Results

The theoretical maximum deflection of the cantilever beam subjected to tension and bending

(for the input values) are

6x = TTF- = 1.0 m (tension)

and
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These results are obtained by NASTRAN.
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GENEL elements 1 thru 5
R0D element 6

Figure 1. NASTRAN General Element model.
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RIHID FORMAT No. 1, Static Analysis

Axisymmetric Cylinderical Thick Shell Subjected to Asymmetric Pressure Loading
(1-15-1)

A. Description

This problem demonstrates the use-of elements TRAPAX and TRIAAX in the analysis of asymmetri-

cally loaded solids of revolution The structure, illustrated in Figure 1, consists of a circular

cylindrical shell loaded with a uniform external pressure over a small square area.

The cylindrical shell wall is assumed to be simply sunported, i.e., the radial and circumferen-

tial deflections and the hendina moments are zero at the ends.

The upper half of the structure is modeled as shown in Figure 2. Trapezoidal elements having

small and large dimensions, are used in the vicinity of the load and away from the load, respectively.

A transition area, between the two trapezoidal configurations, is modeled with triangular elements

to illustrate their use.

The loads and deflections, not reguired to be axisymmetric, are exoanded in Fourier series

with respect, to the azinuthal coordinate. Hue to the one plane of symmetry of this nroblen with

resoect to the <j> = 0 Diane, the deflections are represented by a cosine series selected bv the

AXISYfl Case Control card. The hmhest harmonic used, in, is defined on the AVIC ̂ ulk Data card.

The oressure load is defined usinn PRESAX bulk Oata cards.

R. Input

1. Parameters:

r, = 15 in. (Average radius)
a

t = 1 in. (Thickness)

H = 45 in. (Length)

?c = 3.75 in. (Load Lenath)

6 = 0.125 radians (Load Arc (f5 = c/rJ)
a

E = 66666.7 psi (Modulus of Elasticity)

v = 0.3 (Poisson's Ratio)

n = 10 (Harmonics)

2 Loads'

p = 7.11111 psi (Pressure)

A = 14.063 in2 (Area of Load (A = &c2))
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3. Supports:

Simply supported at the ends- u = 0, u, = 0

Symmetry at the midplane: u = 0

C. Theory

Theoretical results for this problem are taken from Reference 20, D. 568. The following

theoretical values occur at the center of the load (z = j, § = 0):

ur = 272 Er^~ = °-0272 in- (Radial Deflection (inward))
a

M, = 0.1324 pA = 13.24 in-lb/in (Circumferential Bendinq Moment)

M = 0.1057 pA = 10.57 in-lb/in (Lonqitudinal Bendinq Moment)

F, = -2.6125 ~- = -17.42 Ib/in (Circumferential Membrane Force)<p ra

F = -2.320 ̂  = -15.A? Ih/in (Lonaitudinal Membrane Force)
ft

Theoretical stresses on the inside and outside walls at this point (z = p <J> = 0) are

computed as follows:

FZ 6M 47.95 psi (Inside Wall Longitudinal Stress)

z t " t2 -78.89 psi (Outside Wall Longitudinal Stress)

F 6M 62.02 psi (Inside Wall Circumferential Stress)_ __
* t ~ t2 -96.86 psi (Outside Wall Circumferential Stress)

D. Results

Figure 3 shows ths NASTRAN radial deflection at the center of the load as a function of the

number of harmonics selected for the solution. As can be seen, the solution is near convergence

with ten harmonics.

Figure 4 ohows stresses, a and a , through the shell wall, at the center of the load. Ten

harmonics shows very good convergence to nearly the theoretical values computed above. However,

seven harmonics would result in relatively poor convergence even through Figure 3 indicates the

displacement was close to convergence. Thus, displacement convergence alone may be an invalid

indicator of an adequate solution.
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Figure 1. Cylindrical shell loaded by a uniformly distributed load
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RIGID FORMAT No. 1, Static Analysis
Fully Stressed Design of a Plate with a Reinforced Hole (1-16-1)

«

A. Description

A flat plate with a reinforced hole in the center is optimized for stresses due to a uniform

end load. Restrictions on the minimum thickness are maintained. The plate is shown in Figure 1

and the finite element idealization is illustrated in Figure 2. This problem has been investigated

by G. G. Pope (Reference 21).

Due to symmetry, only one quadrant is modeled. Due to the membrane load all rotations and

normal displacements are constrained. The QDMEM and TRMEM elements are used for the plate and R0D

elements for the reinforcement around the hole.

The problem demonstrates several features unique to fully stressed design capability in NASTRAN.

These features are:

1. Elements with no limits on the range of the property change, i.e., the R0D has no
PLIMIT data.

2. Elements with a lower limit on the property optimization card. All membrane elements are
required to have a resultant thickness which must not be less than a minimum thickness.

This minimum is determined from the thickness obtained when the plate without a hole is
subjected to an end load at a prescribed stress limit.

3. Elements whose stress is not inspected but being in an area of nearly uniform stress have
their properties changed due to another element's stress. Element 7 has no stress request
but does have the same property identification number as element 17. This type of optimiza-
tion can save computer time at the expense of a design that may not be truely optimized.

4. A property whose value depends on the maximum stress of two elements. Elements 5 and

15 have the same property card. This option may be necessary if insufficient core is

allocated.

5. Temperature dependent stress limits for material 3

6. Using one stress limit only. The membrane elements use the maximum principle shear

only. This is 1/2 the major principle stress allowed. This stress limit was chosen

to better model the octahedral limit in Reference 21.

The rod elements use only the tension and compression stress appropriate to the given

property, namely area.

7. An additional load case that was not included in the fully stressed design because a

stress request was not made. The second subcase may be considered a displacement

verification of this load case.
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B.

1 . Parameters

«, = 30.0 in (total length)
w = 20.0 in (total width)

d = 10.0 in (hole diameter)
t = 3.348 in (initial plate thickness)
A = 1.674 in (initial rod cross sectional area)

E = SO.x lO 6 psi (modulus of elasticity)
v = 0.3 (Poisson's ratio)
t = 1.0 in (lower limit for plate thickness corresponding to a 25.0xl03 maximum

principle stress)

2. Boundary conditions:

on y = 0 plane, u = 0 (symmetry)

on x = 0 plane, u = 0 (symmetry)
X

all points u = 8 = 0 = 8 = 0 (permanent constraints)

3. Loads-
First subcase: uniform load, F,Q = 25.0xl03 Ib/in

Second subcase: at grid points 69 and 79, F,2 = -1000.0 Ib

at grid point 78, F12 = -2000.0 Ib

(contact load on rim of hole - displacement check only)

C. Theory

The theoretical approach developed for the property optimization technique in NASTRAN is

contained in the NASTRAN Theoretical Manual, Section 4.4. This technique is a fully stressed

design approach. A mathematical programming technique is used in reference 21 from which the

example problem was taken.

The two techniques might be expected to give similar results when the same model is used.

However, reference 21 employs elements which allow varying properties and stresses while NASTRAN

elements allow only constant properties and constant stresses. Somewhat different geometry is

used in the NASTRAN model, i.e., the use of quadrilateral elements for illustration. Additional

features of the NASTRAN model are discussed in items 3, 4 and 5 of Part A.
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D. Results

The optimization process in this problem is terminated at 5 iterations. The initial weight to

final weight ratio is 2.70 compared to Pope's results of 2.63. Tables 1 and 2 show the optimized

nondimensional properties of the elements around the arch. Note that the results from reference

21 are averaged to provide an equivalent constant property element for comparison.

Table 1. Optimized Nondimensional Thickness Comparisons.

Element

37

38
39
46

47
57

59

67

68

69

Original
t/te

3.348

3.348

3.348

3.348

3.348

3.348

3.348

3.348

3.348

3.348

Reference 21
Average

t/'e
1.24

1.00

1.00

2.10

1.34

3.32

3.19

4.58

3.26

4.52

NASTRAN
t/te

1.00

1.04

1.00

1.14

2.00

^1.34

'4.40

5.47

1.00

5.49

Table 2. Optimized Nondimensional Area Comparisons.

Element

101

102

103

104

105

Original
A/dtfi

.1674

.1674

.1674

.1674

.1674

Reference 21
Average
A/dte

.0249

.0238

.0636

.1880

.3540

NASTRAN
A/dte

.00716

0.0 effective

.05019

.1839

.3287
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Figure 2. Finite element model.
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RIGID FORMAT No. 2, Inertia Relief Analysis

Inertia Relief Analysis of a Circular Ring Under Concentrated and Centrifugal Loads (2-1-1)

A. Description

This problem illustrates the use of inertia relief analysis to solve a free-body problem. In

inertia relief the structure is under constant acceleration due to the applied loads; the reac-

tions to the applied load are due to the masses of the structure. Ficticious, nonredundant, sup-

port points must be provided to define a reference system attached to the body. The displacements

of the body are measured relative to the supported coordinates.

The basic problem is illustrated in Figure 1. The structure consists of a spinning ring with

a constant radial load applied to one point. The rotational velocity creates centrifugal loads

and the point load causes inertia reactions. The actual dynamic motion of the whole structure

is a cyclic motion of the center point coinciding with the rotation of the ring. The displace-

ments measured by the inertia relief analysis, however, will be the static motion relative to the

support point displacements.

The displacements are defined in a cylindrical coordinate system (u, = u , u^ = u,, u, = u ).

The elements used are BAR elements with a large cross-sectional area to minimize axial deforma-

tions. The BARs were offset a uniform radial distance from the grid points to demonstrate the

offset option of the BAR element.

B. Input

1. Parameters:

R = 10.0 (radius at end of BAR elements)

R, = 11.0 (Radius at grid points)

I = 10.0 (Bending inertia)

p = 0.5 (Mass density)

E = 1000. (Modulus of elasticity)

A = 1000. (Cross-sectional area)

2. Loads:

Pr,13 ' 10°

f = 1.59 cps (Rotational velocity, u = 1.0 radians per second)
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3. Supports'

a) The u -, direction is supported to restrict vertical translation.r » i
b) The u, , and u, ̂  directions are supported to restrict rotation and horizontal

translation.

4. Grid Point Weight Generator Input:

Weight and moment of inertia are defined relative to point 19.

Answers

1. The Element Forces and Moments may be solved by the following analysis, as explained in

Reference 7, Chapter 12.

a) Using symmetry the structure may be defined by the free-body diagram in figure 2.

The static equilibrium equations at any angle are:

A = A cos<(> + y<f> sin<f> (Axial Force)

V = A sin<j> + y<(> cos<f> (Shear)

M = M + r[y(l - cost)) - <}> sin<j>) + A (1 - cos<J>)] (Bending Moment)

b) Using energy and Castigl iano's Theorem:

U = / M2 d*

6MQ

0

= 0

_ -
6Ao -

These are the deflections at the bottom which are fixed. The resulting two equa-

tions are used in step c.

c) Solving the equations in (b) gives the redundant forces-

«o • - ! > • - -5?
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d) Adding a dummy load and solving the problem with the above boundary conditions gives

the displacement due to the point load:

•3 y
, FfT ,7i
6f -

e) The axial stress and radial displacement due to the centrifugal load is:

a = pR2 u>2 = 5.0 x 102

f) The total result of summing the two loads is:

THEORY NASTRAN

6 = Displacement u ,., 1.75r, I j 1.734

MQ = Moment BAR #1, end A -79.5 -80.48

M1 = Moment BAR #12, end B -238.5 -236.0

g) The structural mass characteristics as calculated by the grid point weight

generator are:

Theoretical NASTRAN

XCG = 1 1 . 0 from point 19 • 11.0

Mass = TT x 104 = 3.14159 x TO4 3.1326 x 104

I =i = £ x 106 = 1.5708 x 106 1.5663 x 106

xx yy d.

Izz = TT x 106 = 3.14159 x 106 3.1326 x 106

(Inertias are about center of gravity)

NASTRAN gives slightly different answers due to the polygonal shape of the finite element model.
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Note: Grid points are offset from center line of ring.

Figure 1. Ring under concentrated and centrifugal loads.
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y - Inertia Loads per Length

Figure 2. Free body diagram of loads in bending ring.
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RIGID FORMAT NO. 2, Inertia Relief Analysis

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 1, (2-2-1)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 2, (2-2-2)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 3, (2-2-3)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 4, (2-2-4)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 5, (2-2-5)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 6, (2-2-6)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run 7, (2-2-7)

A. Description

This problem illustrates the fully automated multi-stage Substructuring capability of NASTRAN.

The single structure model for the Windmill panel problem is shown in Figure 1. Indicated in this

figure are the three basic substructures used for the analysis. As can be seen, the entire structure

can be composed of only these three components, thus taking advantage of symmetry. The detailed

idealizations for the three basic substructures are shown in Figures 2 and 3. These figures show

the three separate basic coordinate systems and the local coordinate systems for each of the three

basic substructures created.

Of the total of seven runs involved, three Phase 1 runs are made, one for each basic substruc-

ture, using Rigid Format 2 in order to generate mass matrices. The combination and reduction to

the final model is accomplished in seven distinct Phase 2 steps, plus eight equivalence operations.

The sequence of combination steps taken is illustrated in Fiaures 4a and 4b. Figure 5 details the

points retained in the "analysis set" following the Phase 2 Guyan reduction. A static solution,

Rigid Format 1, is obtained for each of the three load cases specified. Run 4 produces actual

plot output. Runs 5 and 6 demonstrate the Phase 3 data recovery for two of the basic substructures.

A seventh run is made to extract normal modes using Rigid Format 3 for the same reduced struc-

ture shown in Figure 5.

B. Input

1. Parameters.

rQ = 50.0 in (outer radius)

ri = 10.0 in (inner radius)

t = 0.1 in (plate thickness)

E = 10 x 1,0 psi (modulus of elasticity)

v = 0.25 (Poisson's ratio)
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2. Boundary Conditions:

All points u = e = e = 6 = 0 (permanent constraint)
£- X j Z

ux = 0 at HUB grid points 13, 19, 37, 43

u = 0 at HUB grid points 1, 7, 25, 31

3. Loads:

First Subcase: centrifugal force due to unit angular velocity

Second Subcase: unsymmetric load - right panel in tension, bottom panel in

compression, F = 100 uniformly distributed over each loaded edge

Third Subcase: F = 1.0 applied at HUB grid point 4 inward radially

4. Substructuring Parameters:

S0F(1) = S0F0.950 $ CDC

S0F(1) = FT18.950 $ IBM

S0F(1) = INPT.950 $ UNIVAC

PASSW0RD = DEM0

0PTI0NS = K, M, P

C. Theory

This problem is designed to illustrate the use of automated multi-stage substructuring. No

closed form solution is available. Results are compared with non-substructured NASTRAN solutions.

D. Results

The solutions of the final reduced structure using both Rigid Format 1 and Rigid Format 3 are

in excellent agreement with the non-substructured solutions. Displacements at selected points and

eigenvalues are compared in Table 1. The values presented were obtained from executions on IBM

equipment. Values obtained from CDC and UNIVAC are of the same order of magnitude with slight

differences attributable to round-off of very small numbers.
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Vane 1

Root 1

Figure 1. Windmill model, basic substructures.
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Figure 2. Hub substructure.
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Figure 3. Windmill section substructures.
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Vane 2- -Vane 1

Step I - Generates VANET0P

•Root 2 Root 1

Step II - Generates R00TT0P

•Vanetop

Roottop-

Vanelft

Rootbot

-Vanebot

Step III - Generates RING and VANERGT

Figure 4. Sequence of combination steps.
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Step IV - Generates BLADES

Vanergt-

Blades

Step V - Generates WINDMILL

Figure 4. Sequence of combination steps (continued).
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Multi-point constraint connection

Figure 5. Solution grid points for windmill model,
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Vibration of a 10x20 Plate (3-1-1)
Vibration of a 20x40 Plate (3-1-2)

Vibration of a 10x20 Plate (INPUT, 3-1-3)
Vibration of a 20x40 Plate (INPUT, 3-1-4)

A. Description

This problem demonstrates the solution for natural frequencies of a large-order problem. The

structural problem consists of a square plate with hinged supports on all boundaries. The 10x20

model, as shown in Figure 1, uses one half of the structure and symmetric boundary constraints on

the mid-line in order to reduce the order of the problem and the bandwidth by one-half. The 20x40

model is the same dimensions with a finer mesh. Both configurations are duplicated via the INPUT

module to generate the QUAD1 elements.

Because only the bending modes are desired, the in-plane deflections and rotations normal to

the plane are constrained. The inverse power method of eigenvalue extraction is selected and both

structural mass density and non-structural mass-per-area are used to define the mass matrix.

Table 1 lists the NASTRAN and theoretical natural frequencies as defined in Reference 8.

Figures 2 and 3 are comparisons of the first two mode shapes. The modal masses for these modes

>are equal to one-fourth the total mass or m^ = 10302.2 .

An undeformed structure plot is executed without plot elements. This is expensive on most

plotters since all four sides of each quadrilateral are drawn. Plot elements are used to draw

an edge only once and to draw selected coordinate lines (every second or fourth line depending on

the model used) for the deformed plots of each eigenvector.

B. Input

1. Parameters:

I = w = 20.0 (Length and width)

I = j2 (Moment of inertia)

t = 1.0 (Thickness)

E = 3 x 107 (Modulus of elasticity)

v = 0.30 (Poisson's ratio)

p = 206.0439 (Mass density)
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2. Boundary constraints:

along x = 0, 9=0

along y = 0, u
z
 = 8^

along x = 10, u = 6

along y = 20, uz = 6 = 0

Eigenvalue extraction data:

Method: Inverse power

Region of interest: .89 £ f £ 1.0

Number of desired roots: 3

Number of estimated roots: l

Symmetric Boundary

Hinged Supports

Table 1. Natural Frequency Comparisons, cps.

Mode
No.

1

2

3

Theoretical

.9069

2.2672

4.5345

N AST RAN
10x20

.9056

2.2634

4.5329

N AST RAN
20x40

.9066
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0
m EO]

«, =

(22)
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— ̂ »- y

00© ^Hinged Supports,
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Figure 1. 10 x 20 Half plate model
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Figure 2. Comparison of displacements, first mode.
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Figure 3. Comparison of displacements, second mode.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Vibration of a Compressible Gas in a Rigid Spherical Tank (3-2-1)

A. Description

This problem demonstrates a compressible gas in a rigid spherical container. In NASTRAN a

rigid boundary is the default for the fluid and, as such, no elements or boundary lists are

necessary to model the container.

Aside from the NASTRAN bulk data cards currently implemented, this problem demonstrates the

use of the hydroelastic data cards: AXIF, CFLUID2, CFLUID3, and RINGFL.

i
The lowest mode frequencies and their mode shapes for n = 0, 1 and 2 are analyzed where n is

the Fourier harmonic number. Only the cosine series is analyzed.

B. Model

1. Parameters

R = 10.0 m (Radius of sphere)

p = 1.0 x 10"3 Kg/m3 (Mass density of fluid)

B = 1.0 x 103 Newton/m2 (Bulk modulus of fluid)

2. Figure 1 and 2 show the finite element model. The last 3 digits of the RINGFL identifica-

tion number correspond approximately to the angle, 6, from the polar axis along a

meridian.

C. Theory

From Reference 18, the pressure in the cylinder is proportional to a series of functions:

v.
where: Qn Pressure coefficient for each mode

n , m
u \f

X Nondimensional radius = -j-J- r
a

u> . Natural frequency for the kth_ mode number and mth_ radial number in radians
per second

Ĵ j.1 Bessel function of the first kindm+i
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r radius

ATa =w — speed of sound in the gas

P" associated Legendre functions

6 meridinal angle

4> circumferential angle

n harmonic number

m number of radial node lines

The solution for X and hence w. is found by the use of the boundary condition that the flow

through the container is zero.

where R is'the outer radius . i I
1 i

This results in zero frequency for the first root. Multiple roots for other modes can be

seen in Table 1. The finite element model assumes different pressure distributions in the two

angular directions which causes the difference in frequencies.

D. Results

Table 1 and Figure 3 summarize the NASTRAN and analytic results for the lowest nonzero root

in each harmonic. Table 1 lists the theoretical natural frequencies, the NASTRAN frequencies, the

percent error in frequency, and the maximum percent error in pressure at the wall as compared to

the maximum value. Figure 3 shows the distribution of the harmonic pressure at the wall versus

the meridinal angle. The theoretical pressure distributions correspond to the Legendre functions

P (cos 6), P (cos 6), and P (cos 6) which are proportional to cos e, sin 8, and sin 9 respec-

tively.
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Table 1. Comparison of NASTRAN and analytical results.

Harmonic

0

1

2

Natural Frequency (Hertz)

Analytical

33.1279

33.1279

53.1915

NASTRAN

33.2383

33.2060

53.3352

% Error

0.33

0.24

0.27

Pressure

Max. % Error
at Wall

1.19

0.47

0.91
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Figure 2. Gas f i l l ed rigid spherical tank model.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Vibration of a Liquid in a Half-Filled Rigid Sphere (3-3-1)

A. Description

The model is similar to Demonstration Problem No. 3-2 except that a hemispherical fluid model

with a free surface is analyzed. Additional cards demonstrated are the free surface list (FSLIST)

and free surface points (FREEPT). The effective gravity for the fluid is found or the AXIF card.

The fluid is considered incompressible.

The lowest three eigenvalues and eigenvectors for the cosine and sine series of n = 1 are

analyzed, where n is the harmonic order.

B. Input

1. Parameters

g = 10.0 ft/sec2 (Gravity)

R = 10.0 ft (Radius of hemisphere)

p = 1.255014 Ib-sec2/ft4 (Fluid mass density)

B = °° (Bulk modulus of fluid, incompressible)

2. Figure 1 shows the finite element model.

C. Result^

Reference 17 gives the derivations and analytical results. In particular, the parameters

used in the reference are:

e = 0 (half-filled sphere) ,

o:
2

A = -— (dimensionless eigenvalue)

Table 2 of Reference 17 lists the eigenvalues, A-,, A?, and \3 for the first three modes.

Figure 13 of Reference 17 shows the mode shapes.

The analytic and NASTRAN results are compared in Table 1. The frequencies are listed and

the resulting percentage errors are given. The maximum percent error of the surface displacement,

relative to the largest displacement, is tabulated for each mode.
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The free surface displacements may be obtained by the equation:

u =
P9

(2)

where p is the pressure at the free surface recorded in the NASTRAN output. Note that, since an

Eulerian reference frame is used, the pressure at the original (undisturbed) surface is equal to

the gravity head produced by motions of the surface. Special FREEPT data cards could also have

been used for output. Since the results are scaled for normalization anyway, the harmonic pres-

sures may be used directly as displacements.

Figure 2 is a graph of the shape of the free surface for each distinct root. Both analytic

and NASTRAN results are scaled to unit maximum displacements. Because the cosine series and the

sine series produce identical eigenvalues, the resulting eigenvectors may be linear combinations

of both series. In other words the points of maximum displacement will not necessarily occur at

<f> = 0° or <(> = 90°. Since the results are scaled, however, and the results at <j> = 0 are propor-

tional to the results at any other angle, the results at 4> = 0 were used.

Table 1. Comparison of natural frequencies and free surface mode shapes from the reference and
NASTRAN.

Mode
Number

1

2

3

Natural Frequency (Hertz)

Reference

0.1991

0.3678

0.4684

NASTRAN

0.1988

0.3691

0.4766

NASTRAN
% Error

-0.1

0.3

1.8

Mode Shape

Maximum
% Error, e

e < 1 %

e < 2.6%

e < 4 %
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Figure 1. Rigid sphere half filled with a liquid.
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Figure 2. Free surface mode shapes.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Acoustic Cavity Analysis (3-4-1)

A. Description

This problem illustrates the use of NASTRAN to determine the acoustic modes in a cavity

containing both axisymmetric regions and evenly spaced radial slots. The solution is based

on an analogy between pressure and displacement, and between fluid particle acceleration and

internal structural force described in the Theoretical Manual.

B. Input

The finite element model for the motor cavity of the Minuteman III, Stage III, is shown in

Figure 1 As may be seen, it consists of six slots and a long, slender central cavity of

irregular shape. The model consists of AXIF2, AXIF3, and AXIF4 finite elements in the central

cavity, and SL0T3 and SL0T4 finite elements in the slotted region

C. Results

The vibration mode frequencies for harmonic n = 0 as determined with NASTRAN are shown in

Table 1. Also shown are the vibration mode frequencies as determined with an acoustic model

and reported in Reference 19.
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Table 1. Natural frequencies for the third stage, Minuteman III, motor cavity.

Mode

1

2

3

4

5

6

7

Frequency, Hz

NASTRAN

0.0

90.1

199.5

310.4

388.0

449.1

512.8

Experi-
mental

0.0

93.0

200.0

312.0

388.0

466.0

518.0
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Figure 1. Minuteman III, Stage III, Rocket Motor Cavity
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RIGID FORMAT No. 3 (APR HEAT), Nonlinear Heat Conduction

Nonlinear Heat Transfer in an Infinite Slab (3-5-1)

A. Description

This problem demonstrates NASTRAN's capability to solve nonlinear steady state heat conduction

problems. The infinite slab is subjected to uniform heat addition per unit volume. There is no

heat flux on one face and the other face is kept at zero degrees. The conductivity is temperature

dependent. This is a one dimensional problem, since there is no temperature gradient parallel to

the surfaces of the slab

B. Input

The NASTRAN model is shown in Figure 1 Linear elements BAR, C0NR0D, R0D and TUBE with areas

of ir square units and boundary condition element HBDY (P0INT) are used. The heat addition is spec-

ified on a QV0L card and is referenced in Case Control by a L0AD card. The area factor for the

HBDY is given on the PHBDY card and heat flux is zero. The initial temperatures are given on a

TEMPO card and referenced in Case Control by a TEMP (MATERIAL) card. The conductivity is specified

on a MAT4 card and is made temperature dependent by the MATT4 card referencing table TABLEM3. The

convergence parameter, the maximum number of iterations and an option to have the residual vector

output are specified on PARAM cards. The temperature at the outer surface is specified by an SPC

card. Temperature output is punched on TEMP bulk data cards for future,use in static analysis

C. Theory

The conductivity, k, is defined by

k(T) = 1 + T/100 ,

where T is the temperature.

The heat flow per area, q, is

q(x) = -k^= -(1 + T/100) £ . (!)

The heat input per volume, q , affects the heat flow by the equation

=
dx qv

A convenient substitution of variables in Equations (1) and (2) is

u = -/q(x)dx = (T + T2/200) . (3)

Differentiation and substitution for q in Equation (2) results in the second-order equation

in u:
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From the following boundary conditions

and

the solution to Equation (4) is

d2u-2 = -qv
dx

u = 0 at x = !L

= ° at x =

u = U2- x2)

(4)

(5)

(6)

Therefore the solution for the temperature is

-. . . T.= 100 t-i - x2)/ioo)2]

Since heat is flowing into the system, the positive temperature solution will occur.

D. Results

A comparison with NASTRAN results is shown in Table 1.

Table 1. Comparison of theoretical and NASTRAN temperatures for nonlinear heat conduction in

an infinite slab.

(7)

Grid
Point

1
2
3
4
5

Theoretical
Temperature

73.20
69.56
58.11
36.93
0.00

NASTRAN
Solution

73.13
69.53
58.11
36.93
0.00
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Figure 1. Slab modeled with linear elements
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RIGID FORMAT No. 3, Approach Heat,

Nonlinear Radiation and Conduction of a Cylinder (3-6-1)

A. Description

This problem illustrates the solution of a combined conduction and radiation heat transfer

analysis. The model is a two-dimensional representation of a long cylinder subject to radiant

heat from a distant source. The shell has internal radiation exchange, external radiation loss,

and conduction around the circumference.

B. Input

The NASTRAN Model, shown in Figure 1, uses R0D elements to represent the circumferential heat

flow and HBDY elements to represent the inside and outside surfaces. The radiation exchange

factors for the inside of the cylinder are defined on the RADMTX data cards. The incoming vector

flux is defined on the QVECT data card. The model parameters are:

R = 2.0 ft (Radius of shell)

t = .001 ft (Thickness)

A = 20.306 ft (Axial length)

e = a = 0.1 (Emissivity and absorptivity)

qy = 425 BTU/(ft2-hr) (Source flux density)

k = 94.5 BTU/(hr-ft-°F) (Conductivity of shell)

a = .174 x 10"8 BTU/(ft2-hr-°R4) (Stefan-Boltzmann radiation constant)

C. Theory

A closed-form solution to this problem is not available. However, the solution may be

validated by checking the global net heat flow, the local net heat exchange, and the estimated

average temperature.

An estimate of the average temperature may be obtained from the eguations:

IT/2

-TT/2

Q.n = aqv£R | cos 6 d9 = 2a*.Rqu , (1)

Qout = eaf4 (2irRa) , (2)
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where Q is the total input from the source, Q t is the net flux radiated outward and T is

the average absolute temperature.

Since the net heat flow must be zero in a steady-state analysis, Equations (1) and (2) are

equated to obtain:

T4 = ̂  (3)

D. Results

The resulting temperature distribution around the circumference of the shell is shown in

Figure 2. The average value of temperature from the NASTRAN results shows 57.87° F. The esti-

mated average temperature from Equation (3) above is 68°. The difference is due to the non-uniform

radiation effects.

A second check is provided by computing the global net heat flow error in the system. Summing

the net flow into each element gives a net heat flow error several orders of magnitude less than

the total heat from the source. As a further check, the local net heat flow error at grid point 2

was calculated by summing the contributions from the connected elements. The heat flow terms

shown in Figure 3, as calculated by NASTRAN, were:

Q2 = 59.420 (Flow through R0D #2 (flux • area))

Q3 = 97.862 (Flow through R0D #3 (flux • area))

Qr42 = -133.564 (Inside radiation flow into HBDY #42)

Qr43 = -85.352 (Inside radiation flow into HBDY #43)

Qr22 = -305.418 (Outside radiation into HBDY #22)

Qr23 = -257.930 (Outside radiation into HBDY #23)

Qv22 = ^81.157 (Vector flux input to HBDY #22)

Qv23 = 381.848 (Vector flux input to HBDY #23)

The net flow error into grid point 2 is-

Q2 - \ (Qr22 + Qr23 + Qr42 + Qr43 H- QV22 + QV23) + Q2 - Q3 = 1-9 BTU (4)

This errorisless than 1% of the total heat flow input at the point.
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rod elements

— heat elements

Figure 3. Illustration for heat exchange computation at a grid point.
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RIGID FORMAT No. 4, Differential Stiffness Analysis

Differential Stiffness Analysis for a Hanging Cable (4-1-1)

A. Descrintion

Advanced versions of NASTRAN provide an iteration procedure for nonlinear differential stiff-

ness (or geometric stiffness) solutions. As described in Section 7 of the NASTRAN Theoretical

Manual, the internal loads are recalculated for each iteration. The changes in direction of these

internal loads are used to correct the previous solution. External loads retain their original

orientation, however, they do travel with the grid ooint.

A classical nonlinear geometric problem is that of a hanrnnn cable which assumes the shape of

a catenary when a uniform gravity load is aoolied. As shown in Figure 1, the model is given a

circular shape initially. The resulting displacements of the qrid points, when added to their

oriainal locations provide a close approximation to the catenary.

B. Input

The NASTRAN model consists of nine BAR elements connected to ten grid points evenly spaced

on a guarter circle. The bending stiffness of the elements is a nominally small value necessary

to provide a non-singular linear solution.

The axial stiffness of the elements is a sufficiently large value to limit extensional dis-

placements. The basic parameters are

R = 10.0 ft. (initial radius),

w = 1.288 Ib/ft (Height per length),

and L = 5ir.

C. Theory

With reference to the coordinate system illustrated on the next page, the basic differential

eguation, obtained from Reference 25 is

-5('*<y )')'«. (i)

where

w is the weight per unit length,

H is the tension at x = 0,

and y' = dy/dx is the slope of the resulting curve.
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(symmetric)

Dividing both sides of Equation (1) by the radical term and integrating, results in the equation,

sinh'V = if + ci • W

Since y' = 0 at x = 0, C, = 0 and

y' = sinh (~-\ • (3)

Integrating again and applying the known boundary condition y = 0 at x = 0, the equation for the

shape is

y- = J [cosh (f H]

Since the length of the cable is known but the horizontal force, H, is unknown, the two may

be related by integrating for the length, L, which is

wx,
L = a sinh -^ , (5)

where x is one-half the distance between supports. If w, x , and L are qiven, Equation (5) is

solved for H (for XQ = 10.0, w/H = .1719266) and Equation (4) is evaluated to obtain the actual

shape. However, for purposes of comparison to the NASTRAN solution the location of several points

fixed on the string are determined. For a given position, s, along the cable, the coordinates x

and y would be

-1 / w s '(f) •

and

(6)

(7)
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D. Results

The following table compares theoretical results to those of NASTRAN. Deflections are

measured from the initial shape at selected locations.

Table 1. Comparison of NASTRAN Results to Theoretical Predictions.

Grid
Point

11

13

15

17

19

s

13.962

10.472

6.981

3.491

.0

u - Horizontal

Theory

-.4856

-.8043

-.5175

-.1110

.0

NASTRAN

-.4739

-.7666

-.4612

-.0877

.0

u - Vertical

Theory

-.1119

-.2286

.0030

.5698

.9338

NASTRAN

-.0408

-.1269

.1470

.7973

1.2167
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Figure 1. Hanging cable.
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RIGID FORMAT No. 5, Buckling Analysis

Synmetric .Buckling of a Cylinder (5-1-1) . ___ _

A. Description

This problem demonstrates the use of buckling analysis to extract the critical loads and the

resulting displacements of a cylinder under axial loads. The Buckling Analysis rigid format solves

the statics problem to obtain the internal loads in the elements. The internal loads define the

differential stiffness matrix [K ] which is proportional to the applied load. The load factors,

X. , which causes buckling are defined by the equation:

where [K] is the linear stiffness matrix. This equation is solved by the Real Eigenvalue Analysis

methods for positive values of X.. The vectors {u } are treated in the same manner as in real

eigenvalue analysis.

The problem is illustrated in Figure 1, it consists of a short, large radius cylinder under a

purely axial compression load. A section of arc of 6 degrees is used to model the axisymmetric

motions of the whole cylinder as shown in Figure 2.

All three types of structure plots are requested: undeformed, static and modal deformed. The

undeformed perspective plot is fully labeled for checkout of the problem. The modal orthographic

plots specify a range of vectors {u.} which includes all roots. A longitudinal edge view of the

model is also plotted for easy identification of mode shapes.

B. Inpujt

1. Parameters'

R = 80 (Radius)

h = 50 (Height)

E = 1.0 x 104 (Modulus of elasticity)

v = 0.0 (Poissons rat o)

t = 2.5 (Thickness)

I. = 1.30208 (Bending inertia)
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2. Loads:

p = 1.89745 x 103/3° ARC

3. Constraints:

a) The center point (17) is constrained in uz>

c) All points are constrained in u0, 6r> and 6Z<

d) The top and bottom edges are constrained in ur-

4. Eigenvalue Extraction Data:

a) Method: Unsymmetrical Determinant

b) Region of Interest: .10 < A < 2.5

c) Number of estimated roots ='4 -

d) Number of desired roots = 4 [

e) Normalization: Maximum deflection

C. Answer

The solution to this problem is derived in Reference 9, p. 439. For axisymmetric buckling,

the number of half-waves which occur when the shell buckles at minimum load are-

R2 t2

where m is the closest integer to the right-hand values.

The corresponding critical stress is:

cr
Et2mV

12h2(l-v2)

Eh2

Using the values given, the lowest bulkling mode consists of a full sine wave. The NASTRAN results

and the theoretical solutions for the critical load for each buckling mode are listed below

Number of
Half Waves

m

1
2
3
4

NASTRAN

2.2889
.99424
1.2744
2.UO/0

ANALYTICAL

2.2978
1.0
1.26402
1 86420
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Section of Structure
Used in Model

Figure 1. Cylinder under axial load.
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Grid Point ID

/\ Element ID (22

Figure 2. Finite element model of cylinder.
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RIGID FORMAT No. 6, Piecewise Linear Analysis

Piecewise Linear Analysis of a Cracked Plate (6-1-1)

A. Description

This problem illustrates elastic-plastic deformation of a thin plate uniaxially loaded across

a crack at the center of the plate shown in Figure 1. The same problem was solved by J. L. Swedlow

(Reference 10).

Piecewise Linear Analysis involves loading the plate in incremants and recalculating the

material properties for each element as a function of the eTemenl stresses for the last load

increment.

B. Input

1. Parameters:

L = 9.0 inch (Total length of plate)

W = 6.0 inch (Total width of plate)

w = 2.0 inch (Total width of crack)

t = 1.0 inch (Thickness)

EQ = 10.8 x 106 lb/in2 (Modulus of elasticity at zero strain)

v = .3333 (Poisson's Ratio at zero strain)

2. Loads: 0 is the applied load (Figure 1)

Load Factor a 1b/in2 Load Factor g lb/in2

1 2,300

2 2,500

3 2,800

4 3,100

5 3,400

6 3,700

7 4,000

8 4,400

9 4,800
10 5,200

11 5,600

12 6,000

13 6,500
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14
15
16

17

18

19

20

21

22

23

24

25
26

7,000
7,500

8,000

8,500

9,000

9,500

10,000

10,500

11,000

11,500

12,000

12,500

13,000



3. Constraints:

a) All grid points are constrained in u , 6 , 6 , and 0 .
z A y z

b) Grid points along the Y-axis are constrained in the u direction.
X

c) Grid points along the X-axis from the crack tip (x = 1.0) to the edge (x = 3.0) are

constrained in the u direction.

C. Modeling Techniques

The finite element model, shown in Figures 2 and 3, utilizes two planes of symmetry so only

one quarter of the structure (the first quadrant) is modeled. All membrane elements use stress-

dependent materials, duplicating the model in Reference 10.

The octahedral stress used in the determination of the material properties was defined in

Reference 10 as:

To = T ^x - V* + °y + 3oxy

The octahedral strain was defined by.

, V1+V/Eo
'" ep

where

ep = 9.716 x 10"3

Tlimit =

"limit - H»5001b/iV

NASTRAN uses an equivalent uniaxial stress-strain curve defined by

a = 3//2 To

e = o/E + /2 ep
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This curve is shown in Figure 4. A complete discussion of the equations may be found in

Reference 10.

D. Answers

Comparisons of analytical and calculated stresses in the elements along the axis of the crack

are given in Figures 5 and 6. The analytical results, based on linear analysis, are compared with

the calculated results at the end of the first load increment.

Figures 7 through 9 show the displacement at the center of the crack and stresses for elements

near the tip of the crack for all load factors. In the NASTRAN analysis, the octahedral stress is

calculated for each load factor as a function of the current values of the stresses. In

Reference 10 the current value of the octahedral stress is obtained by accumulating incremental

values of the octahedral stress. This procedure results in a generally more flexible model as can

be seen from the displacements in Figure 7. The resulting differences in calulated stresses are

particularly noticeable at the higher load levels.
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Figure 1. Cracked plate with uniaxial load.
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Planes of Symmetry

-Crack *-|

Figure 2. Triangular membrane element identification numbers.
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Figure 4. Uniaxial stress-strain curve.
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Figure 7. Crack opening vs. load at center of crack (x = 0.0),
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RIGID FORMAT No. 7, Complex Eigenvalue Analysis - Direct Formulation

Complex Eigenvalue Analysis of a 500-Cell String (7-1-1)

Complex Eigenvalue Analysis of a 500-Cell String (INPUT,7-1-2)

A. Description

This problem demonstrates both the use of direct complex eigenvalue analysis and the various

methods of supplying damping to the structure. The simulated model is a string under tension having

uniform viscous and structural damping as shown in Figure 1. The stiffness due to tension is modeled

with scalar springs, the mass is represented by scalar masses, and the viscous damping is provided by

scalar dampers connected on one end to the points and fixed on the other end. The structural damp-

ing is provided by the scalar springs and an overall damping factor, g,. The INPUT module is used

to generate the scalar springs, dampers and masses.

Complex Eigenvalue Analysis is used to solve the following general matrix equation:

([M]p2 + [B]p + [K]){u> = 0

where

p is the complex root

[M] is the complex mass matrix

[B] is the complex damping matrix for viscous damping

[K] is the complex stiffness matrix which contains imaginary components representing
the structural damping

According to Reference 11, Chapter 6, the differential equation for this model is:

T 32u = _ 32u o I".
3x2 3t2 3t

where

T is the string tension (In this problem T is complex)

y is the mass per unit length

3 is the damping per unit length

The finite difference representation for this equation is

T d2u. du

<ui-i - 2 ui +W • -"-ar - 6dr
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The finite element model which corresponds to this equation is shown in Figure 2. Its

equation is:

where

9 = 93 + 9S

is the structural damping.

B. Input

1 . Parameters

k. =10 - scalar springs

m = 10.0 - scalar masses

b. = 6.28318 - scalar dampers

g = 0.05 - structural element damping

g^ = 0.05 - overall damping parameter

N = 500 - number of scalar springs

2. Constraints

The end scalar springs are fixed on the outer ends so constraints are unnecessary.

3. Eigenvalue Extraction Data

Method: Determinant

Region of Interest: 5 < to < 16, -5.9 < a < 4.5 where p = a + ito ,

Normalization: Maximum deflection

C. Answers:

The natural frequency for an undamped string, according to Reference 11, is:

HL1/I Hf\/_l
£ Vy ~ N vrn

Its deflection shape is:

u ( x ) = sin^M

or

7-1-2 (6/1/72)



The modal masses are:

m N
Mn = / pu2(x)dx = H| = -L-

Substituting the real eigenvectors and eigenvalues into the complex equation for complex

roots we obtain for each mode, n:

The solution is :

V2 +

P = • 7^

Mn =

A comparison of the complex roots is given in Table 1. The eigenvectors, which are the same

as the real eigenvectors, are nearly exact for the finite element model.

Table 1. Comparison of NASTRAN and Analytic Complex Roots

n

1 •

2

3

Real Natural
Frequency

1.0

2.0

3.0

Theoreti cal Roots
(radians per second)

-.6285 ± 6.2753i

-.9425 ± 12.5621

-1.2566 ± 18.850i

NASTRAN Roots
(radians per second)

-.6283 + 6.28321

-.9419 + 12.5781
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1 u

J' ' Viscous Medium

P = Mass/Length
1

Figure 1. String with damping.

Figure 2, Finite element model of string.

7.1-4



RIGID FORMAT No. 7, Complex Eigenvalue Analysis - Direct Formulation

Third Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder (7-2-1)

Fifth Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder (7-2-2)

A. Descri ption

This problem demonstrates the use of symmetry to analyze specific harmonics of a fluid-filled

structure. The problem to be solved consists of a cylindrical section filled with a compressible

fluid. The end conditions for the cylinder and the fluid are two planes of antisymmetry, perpen-

dicular to the axis. These end conditions correspond to the conditions that exist at periodic

intervals along a long, fluid-filled pipe vibrating in one of its vibration modes. The antisym-

metric boundary for the structure is defined by constraining the motions which lie in the plane.

An antisymmetric boundary for the fluid corresponds to zero pressure. This may be modeled, in

NASTRAN, by defining the plane of antisymmetry as a free surface with zero gravity.

The lowest natural frequencies and mode shapes for the third and fifth harmonics are analyzed

separately. For the third harmonic, the structure is defined by a section of a cylinder having an

arc of 30 degrees or 1/12 of a circle. The fifth harmonic analysis uses a section having an arc

of 18 degrees or 1/20 of a circle. The longitudinal edges, which were cut, are planes of symmetry

and antisymmetry in order to model a quarter cosine wave length.

The bulk data cards used are; AXIF, BDYLIST, CFLUID2, CFLUID4, C0RD2C, CQUAD1, EIGC, FLSYM,

FSLIST, GRIDB, MATT, PQUAD1, RINGFL, and SPC1.

B. Input

The finite element model for the third harmonic is shown in Figures 1 and 2. Parameters used

are:

B = 2.88 x 103 lb/in2 (Bulk modulus of fluid)

p.: = 1.8 x 10"2 Ib-sec /in (Fluid mass density)

-2 2 4Ps = 6.0 x 10 Ib-sec /in (Structure mass density)

C O

E = 1.6 x 10 lb/in (Young's modulus for structure)

4 2G = 6.0 x 10 lb/in (Shear modulus for structure)
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a = 10.0 inch (Radius of cylinder)

£ = 10.0 inch (Length of cylinder)

h = 0.01 inch (Thickness of cylinder)

The model for the fifth harmonic is similar to the third harmonic model except that the angle

covered by the structure is 18° instead of 30°. This is accomplished by simply removing the struc-

tural elements and boundary GRIDB points corresponding to the two right-hand layers of structure

(between 18° and 30°). The FLSYM, FSLIST and SPC1 cards are changed to reflect the 1/20 symmetry.

C. Theory

The derivations and results for this problem are described in Reference 16. The results for

various dimensionless parameters are listed. The particular parameters for the problem at hand

are:

Pfa
- - T 300.0 , '

c = V^ = 2.5
s

P a
= 0.0

where n is the ratio of fluid mass to structure mass. C is the ratio of the wave velocity in the

structure material to the wave velocity in the fluid, fi is the factor describing static pressuri-

zation, P .

The basic assumptions for this analysis are:

1. Thin shell theory is used for the structure. The bending moment terms in the force

equilibrium equations are ignored in the results.

2. The fluid is nonviscous, irrotational, and small motions are only considered.

This particular problem becomes relatively easy to solve since the mode shapes for the fluid

in a rigid container and the modes of the structure with no enclosed fluid have the same spatial

function at the interface. Each mode of the fluid is excited by only one mode of the structure

and each mode of the structure is excited by one mode of the fluid. The pressure in the fluid is

7.2-2 (9/1/70)



assumed to be a series of functions:

P = P cos n* sin*2-Qn(r,u) (1)

where Q is a Bessel Function or a modified Bessel Function of the first kind.

The characteristic shapes of the structure are a series of the form:

u = A ei(ot cos n* sin ~ (2)

where u is the displacement normal to the surface. The fundamental momentum equation for the

fluid flow at the boundary is: ;

v(P(r))-e r = - Pf u (3)

where e is a unit vector in the radial direction.

The forces on the structure at the boundary are:

'l 92pl
P(a) = }—j1 hii (4)

where the function F, is defined by the differential equation on the surface:

V4 F Eh 9 u} ~ * ̂
The solution for F, is obtained by assuming that

F, = B eiut cos n<(, si

(5)

(6)

Combining Equations 1 through 6 results in the relationships:

A '
3Q(r,u)

r=a
(7)

Qn(a.aO Pn
a2ir4Eh ' . 2-*—- =- + p hws (8)
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Equation (7) is a statement of the continuity of displacement. Equation (8) states the

ilance of the pressures. The above equations may be solved by iterating on u>. Reference 16

rovides solutions for to over a wide range of parameters.

•3. Rgsul ts

The analytic and NASTRAN eigenvalues are listed in Table 1. The corresponding errors in the

eigenvalues are tabulated and the maximum errors in displacement at the container wall are given

as the percentage of the maximum value. The container displacements in the radial direction at

<t> = 0.0 are compared in Figure 3.

Table 1. Comparison of analytical and NASTRAN results.

Harmonic

3

5

Natural Frequency (Hertz)

Analytical

1.579

1.011

NASTRAN

1.595

1.049

% Error

1.0

3.4

Mode Shape

Max. % Error
in Radial Displ .

~ 0.0

0.5
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ĵ.
o
CD
VO

ro
CD
o
vo

CM
o
o
VO

o
o
vo

o
o
r-.

cn
O
o
r--

00
o
o

o
o

vo
o
o

m
o
o

q.
o
o

CO
o
o

CM
CD
o
|s*

0
o

o

i
cn
CD
o
CO

oo
o
o
oo

o
o
00

VO
o
CD
CO

in
o
§

•=!•
O
O
00

ro
o
o
co

CM
o
0
oo

o
o
00

o
o
cn

cn
0
0
cn

CO
o
o
cn

o
o
en

vo
0
o
cn

in
o
o
cn

,3.
o
o
cn

ro
O
O
cn

CM
O
O
cn

0
O
cn

O
O
O

cn
O
O
O

oo
O
o
o

o
o
o

vo
o
o
o
1—

in
o
o
o

.̂
o
o
o

ro
O
o
o

CM
o
o
o

o
o
o

in
to
cn

01
-a
c

>!
u

TJ

3

i-
<D

JD

3
01
O
ra<t-
s- c
3 O

OO r-
+J

<D ID
Ol <J

cu
i.
3
D>

ra (/)

'o x

7.2-5 (9/1/70)



o
n

T

CM CO ^T O L£
CM CO «3" O LO I — CM ^J- LO P*
CO «3" LO CO Cn r— r— i — r— 1 —

r—
CO

o
CO

Cn
CM

CO
CM

r-
CM

r-
•3-

LD
«3-

LO

•*

•3-
«a-

co
•a-

ro
LO

CM
ID

^_
ID

O
LO

01
in

en
r--*

oo
r-^

r^
i —

LO
r-

in
r^

in
en

f
cn

CO
en

CM
en

f—m

en

f—
_

o
r—

en
o

co
o

r-.
o

î
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RIGID FORMAT No. 8, Frequency Response Analysis - Direct Formulation

Frequency Response of a 10x10 Plate (8-1-1)

Frequency Response of a 20x20 Plate (8-1-2)
Frequency Response of a 10x10 Plate (INPUT, 8-1-3)
Frequency Response of a 20x20 Plate (INPUT, 8-1-4)

A. Description

This problem illustrates the use of the direct method of determining structural response to

steady-state sinusoidal loads. The applied load is given in terms of complex numbers which reflect

the amplitudes and phases at each selected frequency. The steady-state response of the structure at

each frequency is calculated in terms of complex numbers which reflect the magnitudes and phases of

the results. Both configurations are duplicated via the INPUT module to generate the QUAD! elements.

The particular model for this analysis is a square plate composed of quadrilateral plate

elements as shown in'Figure 1. The exterior edges are supported on hinged supports and symmetric

boundaries are used along x = 0 and y = 0. The applied load is sinusoidally distributed over the

panel and increases with respect to frequency. Although the applied load excites only the first

mode, the direct formulation algorithm does not use this shortcut and solves the problem as though

the load were completely general.

B. Input

1. Parameters:

a = b = 10 - length and width of quarter model

t = 2.0 - thickness

E = 3.0 x 107 - Young's Modulus

v = 0.3 - Poisson's Ratio

y = 13.55715 - nonstructural mass per area

2. Loads:

The frequency dependent pressure function is:

P(x,y,f) = F(f) cos 7j| cos ̂ y.

where F(f) = 10. + 0.3f
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3. Constraints:

Only vertical motions and bending rotations are allowed. The exterior edges are hinged

supports. The interior edges are planes of symmetry. This implies:

along x = 0 , 6=0

along y = 0, 6 = 0
A

along x = a, u = 8 = 0

along y = b, uz = 6 = 0

all points, u = u = 6 = 0

D. Answers

The excitation of the plate is orthogonal to the theoretical first mode. An explanation of

the equations are given in Reference 8. The equations of response are:

uz(f) = F(f)
- f2)

where f, is the first natural frequency (10 cps).

The following table gives the theoretical and NASTRAN results:

Frequency

cps

0

8

9

10

n

uzj x 104

Theory

1.868

6.435

12.489

oo

-11.833

10x10 NASTRAN

1.874

6.49

12.69

824.92

-11.67

20x20 NASTRAN

12.538
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RIGID FORMAT No. 9, Transient Analysis - Direct Formulation

Transient Analysis with Direct Matrix Input (9-1-1)

A. Description

This problem demonstrates the capability of NASTRAN to perform transient analysis on a system

having nonsymmetri c stiffness, damping and mass matrices. The problem also illustrates the use of

time step changes, selection of printout intervals, application of loads, initial conditions, and

a simple curve plot package.

The matrices and loads used are actually the product of a transformation matrix and diagonal

matrices. The resulting answers are easily calculated while the input matrices are of general

form. The matrix equation solved is:

The problem is actually four disjoint single degree of freedom problems which have been

transformed to a general matrix problem. Figure 1 illustrates the problems schematically.

The resulting diagonal matrices are premultiplied by the matrix:

[X]

The answers for the disjoint problem above will be the same as for the general matrix problem

since the general case:

[X]([M0]{u} + [B0]{u} + [K0]){u> =

has the same results as the disjoint case: . .

[MQ]{u} + [Bo]{u} + [KQ]{u} = {P}

2

-1

0

0

-1

2

-1

0

0

-1

2

-1

0

0

-1

2
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B. Input

1. The actual matrix input is:

[M] =

[B] =

[K] =

20

-10

0

0

0

0

0

0

2000

-1000

0

0

-1.5

3.0

-1.5

0.0

-15

30

-15

0

0

0

0

0

0

-4

8

-4

0

-24

28

-24

0

-TOO

200

-100

0

0

0

0

0

0

-2

4

0

0

-20

40

2. The initial conditions are:

10 10

n

u12 = o u12 = o

u13 = -10.0 13

3. At t = 1.0 a step load is applied to each point. The load on the uncoupled problems is:

0

1.5

4.0

20
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The transformed load is:

{P} [X]{P0>
-1.0

-13.5

k 36.0 )

C. Answers

The results are responses of single degree of freedom systems. Equations are given in

Reference 12, Chapter 9.

0 < t < 1.0 , At = .005

U,Q = sin lot

u = 0.05(1 - e"10t)

12

-lOe-lot

UIQ 10 cos lOt

.-lOt0.5e

u12 = 0

lOOe-lOt

t > 1.0 , At = .015

u-jg = sin lOt

un = 0.05(1 - e"10t) + 0.1(t - 1.1 + .1(

u12 = 0.04 {l - e"3t[cos4(t-l) + | sin4(t-l)]|

ino-lOt * i Q-10(t-l)u]3 - -lOe + 1 - e

Figures 2 through 5 are tracings of the NASTRAN plots of the functions. The deviations of

the NASTRAN results and the theoretical response are due to the selection of time steps. For

instance point 11 has a time constant equal to two time steps. The initial error in velocity due

to the first step causes the displacement error to accumulate. Using a smaller time step has

resulted in much better results.
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J10

m = 10

k = 1000

J12 J13

f m = 1.5

b = 15

m = 4

k = 100

b = 24 b = 2

m = 0

k = 20

Figure 1, Disjoint equivalent systems.
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Figure 2. Point 10, displacement.
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Figure 3. Point 11, displacement.
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RIGID FORMAT No. 9, Transient Analysis - Direct Formulation

Transient Analyisis of a 1000 Cell String, Traveling Wave Problem (9-2-1)

Transient Analysis of a" 1000 Cell String, Traveling Wave Problem (INPUT, 9-2-2)

A. Description

This problem illustrates the ability of NASTRAN to perform time integration studies using

the structural matrices directly. At each time step the applied loads, the structural matrices,

and the previous displacements are used to calculate a new set of displacements, velocities, and

accelerations. Initial displacements and velocities are also allowed for all unconstrained coor-
c

dinates. The INPUT module is used to generate the scalar springs and masses.

The structural model consists of a 1000 cell :tring under constant tension modeled by scalar

elements. The string is given an initial condition at one end consisting of a triangular shaped

set of initial displacements. The wave will then travel along the string',' retaining its initial

shape. The ends of the string are fixed causing the wave to reflect with a sign reversal.

Figure 1 illustrates the problem and the scalar element model for each finite increment of

length.

B. Input

1. Parameters:

k = -ĵ - = 10 - scalar spring rates

m = yAx = 10 - scalar masses

N = 1000 - number of cells

where

T is the tension

Ax is the incremental length

p is the mass per unit length
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2. Loads:

The ini t ial displacements are;

= .2 u12 = 1.8

u3 = .4 u13 = 1.6

U4

u,, = 2.0 u21 = 0.0

= 0, r> 21

C. Answers

As shown in Reference 11. Chapter 6, the wave velocity c is,

TT• *VJ • -V* = ±1000 points/unit time

The in i t ia l displacement may be divided into two waves, traveling in opposite directions.

The first wave travels outward; the second wave travels toward the fixed support and reflects with

a sign change. The theoretical and NASTRAN results are compared in Figure 2, when both waves have

traveled their complete width.
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U999 U1000

>
V = Mass/Length

1000 Cell String

Finite Element Model

Figure 1. Representations of dynamic string.
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Figure 2. Traveling Wave on string.

9.2-4 (12-1-69)



RIGID FORMAT No. 9, Transient Analysis - Direct Formulation

Transient Analysis of a Fluid-Filled Elastic Cylinder (9-3-1)

A. Description

The fluid-filled shell, used for analysis of the third harmonic, in Demonstration Problem

No. 7-2 is subjected to a step change in external pressure at t = 0 of the form

p = pQ sin —• cos n<(>

The fluid is assumed incompressible in order to obtain an analytical solution with reasonable

effort. The harmonic used is n = 3.

In addition to the cards of Demonstration Problem No. 7-2, DAREA, PRESPT, TL0AD2, and TSTEP

cards are also used. Selected displacements and pressures are plotted against time.

Input

The finite element model is shown in Figures 1 and 2. Parameters used are:

B = oo (Bulk modulus of fluid - incompressible)

pf = 1.8 x 10 Ib-sec /in (Fluid mass density)

? 2 4
Ps = 6.0 x 10 Ib-sec /in (Structure mass density)

5 2E = 1.6 x 10 Ib/in (Young's modulus for structure)

G = 6.0 x 104 Ib/in2 (Shear modulus for structure)

a = 10.0 inch (Radius of cylinder)

fc = 10.0 inch (Length of cylinder)

h = 0.01 inch (Thickness of cylinder wall)

P0 = 2.0 (Pressure load coefficient)
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C. Theory

The theory was derived with the aid of Reference 16 as in Demonstration Problem No. 7-2.

Since the fluid is incompressible, it acts on the structure like a pure mass. Neglecting the

bending stiffness, the equation of force on the structure is:

1 Aps = (m + mf ) w + 1 3_£ , (1)
oZ

where:

p is the loading pressure on the structure (positive outward).

m = p h is the mass per area of the structure.

m- is the apparent mass of the fluid.

w is the normal displacement (positive outward)

The function F is defined by the equation,

V4F = ^. . (2)

The spatial functions of pressure, displacement, and function F may be written in the form

Ps = P0 sin Y cos n<J>

w = WQ sin Y cos n<j> , (3)

F = F sin Y cos n*

where p , w , and F are variables with respect to time only.

Substituting Equations 3 into Equation 2 we obtain:

(4)

.Ih m
a VTT/

Wo

MS)2?
Substituting Equations 3 and 4 into Equation 1 we obtain:
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The incompressible fluid is described by the differential equation:

V2 p = 0 ' (6)

Applying the appropriate boundary conditions to Equation 6 results in the pressure distribu-

tion:

p = pr sin f cos(n4>) In(3f) , (7)

where I is the modified Bessel function of the first kind and pr is an undetermined variable. The

balance of pressure and flow at the boundary of the fluid, with no structural effects, is described

by the equations:

p_ = . p_ :_ (2«) , (8)

, 0)Pi = ' r=a

Substituting Equations 3 and 7 into Equation 9 results in:

Eliminating P with Equations 8 and 10 gives the expression for apparent mass, mf:

' -5 • '"'TT i f-na

Substituting the expression for m, from Equation 11 into Equation 5 results in a simple single

degree of freedom system. When the applied loading pressure is a step function at t = 0,
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w = o (i - cos ut) sin^j- cos n*
K

where

ano

•'[' *
and

I f—H. Lr\\i
f = psh + pf ¥

x
- m + m

D. Results

A transient analysis was performed for the case n = 3 on the model and various displacements

and pressures were output versus time up to one second. The theoretical frequency is calculated to

be 1.580 Hertz and the period is 0.633 seconds. The displacements at two points on the structure

(Point 91 is located at <j> = 0, z = 5.0; Point 94 is located at $ = 18°, z = 5.0) are plotted

versus time in Figure 3.

The maximum error for the first full cycle occurs at the end of the cycle. The ratio of the

error to maximum displacement is 4.75%. Changes in the time step used in the transient integration

algorithm did not affect the accuracy to any great extent. The most probable causes for error were

the mesh sire of the model and the method used to apply the distributed load. The applied load was

calculated by multiplying the pressure value at the point by an associated area. The "consistent

method" of assuming a cubic polynomial displacement and integrating would eliminate the extraneous

response of higher modes. The method chosen in this problem, however, is typical of actual

applicdtions.
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RIGID FORMAT No. 9 (APP HEAT), Linear Transient Heat Transfer Analysis

Plate with Suddenly Applied Flux and Edge Temperature (9-4-1)

A. Description

The time history of the temperature in a long thin plate initially at zero degrees is analyzed

using NASTRAN's transient heat analysis capability. At time t=0 a heat flux is applied on one sur-

face of the plate and simultaneously the temperature along the edges is increased. These tempera-

tures are maintained at a value by using a large heat flux through a good conductor to ground. The

problem is one dimensional since it is assumed that no temperature variation exists along the length

or through the thickness. Since the plate is symmetric about the center plane, only one half of the

plate is modeled.

B. Input

The plate is shown in Figure 1 and the idealized NASTRAN model, shown in Figure 2, is repre-

sented by five R0D elements going from the centerplane to the edge. The conductor-ground arrange-

ment is modeled by an ELAS2 element and an SPC card referenced in Case Control. The injected heat

flux at the edge is specified using DAREA and TL0AD2 cards which are referenced in Case Control

through a DL0AD card. The surface heat flux is specified on a QBDY1 card and references the TL0AD2

card. The time step intervals at which the solution is generated are given on the TSTEP card. The

initial temperature conditions are specified on the TEMPO card and referenced in Case Control by an

1C card. The heat capacity and conductivity are given on the MAT4 card.

C. Theory

The analytic solution is

0.5

T(x,t) =

50. _
Tr3 n=0

D. Results

A comparison of theoretical and NASTRAN results is given in Table 1.
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Table 1. Theoretical and NASTRAN temperatures.

Theory*
t = 0

NASTRAN

Theory*
t = 1

NASTRAN

Theory*
t = 2

NASTRAN

Theory*
t = 3

NASTRAN

\. = °° Theory

GRID(X)

10(0.)

0.

0.

31.282

30.641

43.430

43.117

47.916

47.755

50.500

12(.2)

0.

0.

30.222

29.612

41.776

41.478

46.026

45.890

48.500

14(.4)

0.

0.

26.952

26.433

36.780

36.527

40.396

40.280

42.500

16(.6)

0.

0.

21.204

20.826

28.344

28,160

30.971

30.887

32.500

18(.8)

0.

0.

12.562

12.362

16.316

16.218

17.696

17.652

18.500

20(1.)

0.

0.

.500

.500

.500

.500

.500

.500

.500

* n = 0 term only.

9.4-2 (12/31/74)



Centerplane of symmetry-

Idealized model

Figure 1. Long thin plate.
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Figure 2. Idealized NASTRAN model.
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RIGID FORMAT No. 10, Complex Eigenvalue Analysis - Modal Formulation

Rocket Guidance and Control Problem (10-1-1)

A. Description

This problem, although a simplified model, contains all of the elements used in a linear

control system analysis. The flexible structure, shown in Figure 1, consists of three sections:

two sections are constructed of structural finite elements; the third section is formulated in

terms of its modal coordinates. A sensor is located at an arbitrary point on the structure and

connected to a structural point with multipoint constraints. The measured attitude and position

of the sensor point is used to generate a control voltage for the gimbal angle of the thrust

nozzle. The nozzle control is in itself a servomechanism consisting of an amplifier, a motor,

and a position and velocity feedback control. The nozzle produces a force on the structure due

to its mass and the angle of thrust. The motion of any point on the structure is dependent on

the elastic motions, free-body motions, and large angle effects due to free-body rotation.

The guidance and control system is shown in block diagram form in Figure 2. The definitions

for the variables and coefficients along with values for the coefficients are given in Table 1.

The use of the Transfer Function data card (TF) allows the direct definition of the various rela-

tions as shown in Figure 2.
(

B. Modeling Techniques

1. A section of the structure is defined by its modal coordinates by using a modification

of the method given in the NASTRAN Theoretical Manual. The algorithm is given as

follows: • • • v .

Define £., i = 1, n - modal deflections scalar points

u - grid point components used as nonredundant supports for modal
test. These may or may not be connected to the rest of the
structure.

u - grid point components to be connected to the remaining
structure (not u points)

x , i = 1, n - rigid body component degrees of freedom for the nonzero modes

The relations between these variables are defined by using,multipoint constraints .wi.th

the following relationships-
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<)> • is the angular deflection of point u for mode i. D is the deflection of
C1 C Cr

point u when the structure is rigid and point u is given a unit deflection.
C i

b) {xn.} = [Kir
1[H]T{ur) = [G](ur]

[K-] is a diagonal matrix. Each term K , the modal stiffness, is defined as:

K! = m-uj (^ f 0)

where m. is the modal mass and w is the natural frequency in radians per second. [H]

is determined by the forces on the support points due to each nonzero eigenvector

Pr = 'I Hn ?1 (u / 0)

c) Scalar masses and springs are connected to each modal coordinate as shown by

Figure 3a.

d) The structure to be added in this problem consists of a simply supported uniform

beam as shown in Figure 3b. The support points, u , are y,g and y-,g. The additional

degree of freedom to be connected is u = 6-,g. Four modes are used in the test

problem. The following data is used to define and connect the modal coordinates of this

substructure.

The mode shapes are:

+n(x) - sinlHX

The modal frequencies, masses, and stiffness in terms of normal beam terminology are:

2 2
n i r E l T O O / Iwn = "IT ^A n = 1, 2, 3, 4

J6

.AX,

K =
n " 2S?

The forces of support for each mode are:
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Py(19) =

The motion e-,g is defined by multipoint constraints:

The free-body components of the modes are defined, using multipoint constraints, as:

El7T3\

3 )

'

1

1
2

1
3

1
4

1

1
' 2

1
I

1
" 4

'16

2. The mass of the nozzle would normally be included with the structural modeling. How-

ever, to demonstrate the flexibility of the Transfer Function data, it is modeled as part of

the guidance system as shown in Figure 4a.

Defining the angle of thrust, y, to be measured relative to the deformed structure, the

forces which result are:

T = (I no

= mn yl * xn mn el ) ' Fn

Using the thrust force, F , as a constant, the transfer functions are:

In s
2
 Y - T + In s

2 xn mp s y, =0

(x ' xn mn 91

where:

(O)e1 + T = o

_ T i ..^

= 50°
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3. The large angle motion must be included in the analysis since it contributes to the

linear terms. The equations of motion of the structure are formed relative to a coordinate

system parallel to the body. As shown in Figure ^b, the accelerations are coupled when the

body rotates.

Since the axial acceleration, *x, is constant throughout the body, the vertical acceler-

ation at any point, to the first order, is:

• • •• •» •• ••
yabs = yrel + xel = yrel + ye

An extra degree of freedom y is added to the problem and coupled by the equations:

V , = V i + Vyabs ^rel •'e

4. The center of gravity (point 101) and the sensor location (point 100) are rigidly con-

nected to the nearest structural point with multipoint constraints. For instance the

sensor point is located a distance of 4.91 from point 8 as shown in Figure 4c.

It is desired to leave point 101 as an independent variable point. Therefore point 8

is defined in terms of point 101 by the equations:

y8 = y101 + 4.9le1Q1

68 = 6101

C. Answers

A comparison of the NASTRAN complex roots and those derived by a conventional analysis

described below are given in Table 2. The resulting eigenvectors were substituted into the

equations of motion to check their validity. The equations of motion for a polynomial solution

may be written in terms of the rigid body motions of the center of gravity plus the modal dis-

placements. The equations of motion using Laplace transforms are:

ms2 ycg = Fn(6l + Y)

Is 9cg = 'Fn xl Y
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The inertia forces of the nozzle on the structure may be ignored.

The motion of the nozzle, as explained in section B-2, is:

8,

(y is defined as the relative angle between the nozzle and the structure.)

The flexible motions at the sensor point, y and e . may be defined in terms of the modal

coefficients and the rigid motions of the center of gravity.

^ = ycg + X2 ecg + I *100,i *1

6s = % * f Vi Ci

The motions of the nozzle point, in terms of the modal and center of gravity motions are:

cg

yl = ycg - X l 9 c g + l,i

The modal displacements are due primarily to the vertical component of the nozzle force. Their

equation of motion is:

where

$. • is the deflection of point j for mode iJ ji
i

<f>- j is the rotation of point j for mode iJ ji

m is the modal mass of mode i

m is the natural frequency of mode i

C is the modal displacement of mode i

Using two flexible modes the characteristic matrix of the problem is given in Figure 5. The

determinant of the matrix forms a polynomial of order 10. The roots of this polynomial were
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,sd by a standard computer library routine and are presented in Table 2 as the analytical

its. The rigid body solution is also presented.

The differences between the two sets of answers is due to the differences in models. The

IRAN model produces errors due to the finite difference approximation and the number of modes

oen to model the third stage. The polynomial solution produces errors due to the approxima-

,ns used in the,equations of motion as applied to control system problems.

As a further check the first eigenvalue (A = -1.41) was substituted intoj the matrix given in

Figure 5 and the matrix was normalized by dividing each row by its diagonal value. The NASTRAN

eigenvector was multiplied by the matrix, resulting in an error vector which theoretically should

be zero. Dividing each term in the error vector by its corresponding term in the eigenvector

resulted in very small error ratios.
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Table 1. Variables and Parameters

Extra Point
Number

1010

- ion
1020

1021

1030

1040

1050

1060

1070

1080

Parameters

Ks

Km

T

Xn

In

Fn

mn

Be
6Py

a

b

c

d

m

Symbol

ey
ee
Eyc
Eec
E

Y

e
T

Em

T

V

ye

Value

1.0

500

.1414

3.0

500.0

4. 25x1 O6

50

100.0

1.0

.16

.28

15.0

7.0

8.5xl04

Description

Voltage describing y

Voltage describing e

Control voltage for y (Input)

Control voltage for e (Input)

Attitude error function

Nozzle position error

Voltage for Nozzle servo

Torque for Nozzle servo

Nozzle Thrust angle relative to structure

Position increment due to attitude

Description

Servo amplifier gain

Servo gain

Nozzle angular velocity feedback

Distance from nozzle C.G. to Gimbal axis

Inertia of Nozzle about gimbal axis

Thrust of Nozzle

Nozzle mass

Overall voltage-to-angle ratio

Overall voltage to postton ratio

Position feedback coefficient

Velocity feedback coefficient

Angle feedback coefficient

Angular velocity feedback coefficient

Mass of structure • '
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Table 2. Comparison of Complex Roots for NASTRAN Modeling vs. Simplified Polynomial Expansion

Rigid Body Model

NASTRAN*

- 540 ± .8211

-1.68 ± Oi

+.751 ± 5.96i

POLYNOMIAL

-.522 ± .8021

-1.74 ± Oi

+.774 ± 5.981

2 Flexible Modes Model

NASTRAN

-.507 ± .8191

-1.41 ± Oi

+.520 ± 3.82i

POLYNOMIAL

-.494 ± .8011

-1.46 ± Oi

+.522 ± 3.83i

*Not published.
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Figure 1. Rocket structural model,

10 1-9



t—yioo

100

SENSOR AND
COMPENSATOR CIRCUIT

_J

Figure 2. Overall system diagram.

10.1-lC



I

Structure

<•

M

V

(.

? X 1

1

>—

}

d

<

Uri

-WV p

% " £

rci
!

d

c

M

V

(.

*J1

1

1) U
' i i

P X 2

2

K2 ^) 'VW y

!>
£, * fl)^

?"C2 9»C

I

A

<j

M

V

(!

3

j
<

? X 3

3

t
) v

j

<!

MPC Equations

Modal Masses

Modal Springs

^^ MPC Equations

Structure

a) Diagram for input of modal data

y19

)919

b) Structure used for modal data

Figure 3. Modal data input diagrams.

10.1-11



Nozzle

(a) Nozzle displacements and forces

/77//77/7//

(b) Relative motion due to large angles

t I
|̂ 4.91 ft

(c) Relationship for multi -point constraints
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RIGID FORMAT No. 10 (APP AER0), Aeroelastic Analysis
Aeroelastic Flutter Analysis of a 15° Swept Wing (10-2-1)

A. Description

This problem illustrates the use of the aeroelastic analysis to determine flutter frequencies

and mode shapes for an untapered wing having 15° sweep and an aspect ratio of 5.34 as shown in

Figure 1.

B. Input

Bulk data cards used include CAER01, PAER01, SPLINE2, SET1, AER0, MKAER01, FLUTTER, and FLFACT

as illustrated in User's Manual Section 1.11.

C. Theory

Reference 22 specifies the reduced frequency k = .1314 (p.17), frequency ratio u/wa = 0.51

(p.35) and torsion frequency w = 1488 (p.17).

The flutter velocity is found from
REFC x (o x u
— « -

V = bfil = _ a = 5ggo in/sec>

where REFC is the reference length input on the AER0 bulk data card.

The flutter frequency is found from

a to
f = — = 121 Hz

D. Results

The results obtained are compared with both theoretical results using the modified strip

analysis method and with experimental results. The flutter velocity is in good agreement. (See

Figure 2.)

Frequencies are automatically output while mode shapes used in the modal formulation are

obtained using an ALTER to the Rigid Format following the Real Eigenvalue Analysis Module.

Mode shapes for all points in the model may be obtained by checkpointing the problem using the

Normal Mode Analysis (Rigid Format 3) and subsequently restarting using the Aeroelastic Analysis.
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b. Structural model.

c. Aerodynamic model.

Figure 1. Fifteen degree sweep model.
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RI&ID FORMAT No. 11, Frequency Response - Modal Analysis

Frequency Response and Random Analysis of a Ten-Cell Beam (11-1-1)

A. Description

This problem demonstrates the frequency response solution of a structure using uncoupled

modal formulation. With modal formulation, the structural degrees of freedom used in the solu-

tion are the uncoupled modal displacements. The solution equations are simple and efficient.

The saving in time, however, is offset by the operations necessary to extract the modes, transform

the loads to modal coordinates, and transform the modal displacements to structural displacements.

This problem also illustrates the various methods of applying frequency response loads.

Loads may be input as complex numbers, with phase lag angles and/or time lag factors. The loads

may be added together for each subcase.

The structure to be solved consists of a beam with simple supports on the end as described

in Figure 1. The parameters selected produce natural frequencies of 50, 200, 450 and 800 cps.

The applied loads for the three subcases are applied to the center with variations in phase angles,

time lags and input formats. The first two subcases use three loaded points which, in essence,

simulate a load on the center.

Included in the structural representation is a "general element" representing the first two

cells of the ten-cell beam. The flexibility matrix, [Z], of the element represents the displace-

ments of grid points 2 and 3 when point 1 is fixed. The rigid body matrix, [S], represents the

rigid body motions of points 2 and 3 when point 1 is displaced in the x, z, or 6 directions.

The random analysis data consists of a flat power spectral density function ("white noise")

for the three loading subcases. The first subcase spectral density is connected to the third

subcase spectral density, simulating two interdependent probability functions. The XY-plotter is

used to plot the displacement and acceleration power spectral density function of grid 6 (center

of the beam). The displacement autocorrelation function is also plotted for the same point. All

values are tabulated in the printout. The NASTRAN power spectural density results are compared

against a simplified analytic calculation in Figure 2.

A static analysis restart of the frequency response problem is demonstrated. Gravity and

element enforced deformation loads are used with a change in the single-point constraints.
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B. Input

1. Parameters:

a = 20 - length

I = .083 - bending inertia

A = 21.18922 - cross sectional area

E = 10.4 x 106 - modulus of elasticity

P = .2523 x 10 - mass density

M = pAX, - total mass

2. Constraints:

uy = ex = ez - o

uxl = uzl = uzll

xl = uzl = uxll = uzll

- all points

- frequency response

0 - static analysis

3. Modal Data:

Interval: 40 < f < 1000 cps

Normalization: Modal Mass = 1.0

Number of modes used in formulation: 4

Modal Damping ratio: g = 4 x 10" f

4. Loads, Frequency Response:

The loading functions for subcase 1 are:

Pz,5 = 50

My,5 = "10°

P , = 50 + 100(cos60° + i sin60°)
Z ,D

— -v-—

SET 6

7

= 50

= 100

11.1-2 (6/1/72)



The loading for subcase 2 is:

Pz,5 = 50

My,5 = -100

PZ 6 = 50 + 100(cos2f° - i sin2f°)

SET 7, T = .005555

Pz,7 = 50

H , = 100y,7

The load for subcase 3 is:

P , = 2[75 + 50i(cos30° - i sin30°)] = 200 + 86.61z ,o

Note: At f = 30cps the three subcases are nearly identical.

5. Random Analysis Data

The nonzero factors for the three subcases are:

S^ = 50

S.,, = Son = 50
0 < f < 100

s22 = 100
S33 = 50

S = 0 , f > 100
' J

The time lags selected for the autocorrelation function calculations are: .

T = 0.0, 0.001, 0.002, , 0.1

6. Static Loads for Restart

The problem is run first as a frequency response analysis. It is restarted as a static

analysis with the following loads:

Gravity vector: g = 32.2

Element Deformation: 6,_ = 0.089045 (expansion)
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C. Analysis

1. The theoretical eigenvalue data, according to Reference 8 is:

f = " i r A/n = 50' 200> 450> 80° ••• (natural frequencies)
n

m = 1.0 (modal mass)

x. -
*n(x) = [/ pA sin

2 ̂  dx] 2 sin = sin (mode shape)

2. The theoretical frequency response at the center point is essentially the response of

the first mode which is:

5*1.6PJ(u)*l.J
Ug(u) = —* (j = degree of freedom number)

m, (w2 - u2 + iguxo,)

At the first natural frequency of 50 cps, the response will be nearly equal to the

response of the first mode. The response at the center point for the three subcases

are:

Subcase 1 and 3

1 3 94.764 + 41.0331u _ u _
6 6 (50-f2) + if

The results are:

f Ug (one mode) Ug (NASTRAN)

0 .0413 @ 23.42° .0429 <a 22.9°

30 .0646 @ 22.34° .0668 @ 21.8°

50 2.066 @ 293.42° 2.074 @ 281.5°
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Subcase 2

23.691(3 + 2cos2f - 2i sin2f)
(50 - f2) + if

Theoretical and NASTRAN results are:

f

0

30

50

Ug (one mode)

.047 § 0°

.0646 @ -22.34°

1.565 @ 233.4°

U6 (NASTRAN]

.049 @ 0°'

.0668 @ -2-

1.577 (8 22;

3. The random analysis is explained in Reference 15. The power spectral response coeffic-

ients for the three subcases are given by the matrix:

[sA] = 100
0.5 0 0.5

0 1.0 0

0.5 0 0.5

If (H > is the vector of the responses of a point, j, to the three loading cases, the
J

power spectral response, S , is:

(H. is the complex conjugate)
J

or

Since H, . = H,., then:

H3j

S. = 200^^. |2 + 100|H2j.|
2

|H2j|
2 + 0.5|H3 j |

2 ]

The mean square response in obtained by integrating the power spectral density over the

frequency. In this particular case the frequency increments are uniform and the mean

square response is simply
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The analytic solution for the displacement spectral 1 density response of the center point

due to the first mode is:

s ,fx = 200(1.066xlQ4) + 100(.5613xlQ3)(13 + 12cos2f) _ 2.862xlQ6 + .6735xlQ6cos2f
J [(502 - f2 )2 + f2] " (f - 4999f2 + 50")

The results of the above equation are compared with the NASTRAN results in Figure 2.

The mean deviation, a , is:
J

n^V

where f and f are the upper and lower frequency limits, a. was checked by summing the

NASTRAN results.

4. The results of the static analysis restart are:

a) The gravity load produces normal displacements (in the z direction) and element

moments as follows:

u z (x) = fJfyU3 - 2JU2 + x3)

b) The element deformation produces the following axial forces and displacements:

a

ux

In numerical terms the displacements of the center point (x = pO are:

Theoretical NASTRAN

ux6 = 4.452 x 1(T2 4.435 x 10"2

u = 4.155 x 10"4 4.121 x 10'4
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The element forces at the center of the beam are:

Theoretical NASTRAN

Fx5 = -.9811 x 106 -.9848 x 106

M5 = -8.607 -8.607
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RIGID FORMAT No. 11, Frequency Response Analysis - Modal Formulation

Frequency Response of a 500-Cell String (11-2-1)
Frequency Response of a 500-Cell String (INPUT, 11-2-2)

A. Description

This problem illustrates the solution of a large frequency response problem using modal coordi-

nates. When large numbers of frequency steps are used, or the problem is very large, the relative

efficiency of the modal formulation is more attractive than the direct formulation. The structural

model consists of scalar points, springs, and masses which simulate the transverse motions of a

string under tension, T, with a mass per length of u. The model and its finite e'ement representa-

tion is shown in Figure 1. A duplicate model is obtained via the INPUT module to generate the scalar

springs and masses.

Selected scalar point displacements and scalar element forces are plotted versus frequency.

The magnitude and phase of the displacements are plotted separately, each on one-half of the

plotter frame. The magnitude plots for the selected points are all drawn on a whole plotter frame

for comparisons. The center spring element has the magnitude of its internal force plotted versuc

frequency.

B. Input

1 . Parameters • . • • - .

m. = 10 - mass

K. = 10 - spring rate

N = 500 - number of cells

where

2. Loads

The load on each point is:

P.(u) = Axpv = lOit3
1 "

where p is the load per length of string.
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The steady state frequency response is desired from .1 to 10 cycles per second in 15

lognthmic, increments.

3. Real Eigenvalue Data

Method: Inverse Power

Region of interest: 0 < f < 21

Normalization: Mass

Number of modes used in formulation: 20

C. Answers

The analysis of the string is given in Reference 11, Chapter 6. The response, £ , of mode

number n is given by the equation:

/ P ( x ) s i n ( d x

.. /RT
where u , the natural frequencies, are -n- V— for the theoretical continuous string.

For a uniform Load:

nir nir

/us in2(n|x)dx = Hj = !^1 = 2>5 x 103
o

The displacement of the center point is:

sin jj!

For instance at f = 0.1 the response due to 20 modes is:

u(|) = .97895 (Theory)

U251 = .97888 (NASTRAN)
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Figure 1. Representations of 500 cell string.
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RIGID FORMAT No. 12, Transient Analysis - Modal Formulation

Transient Analysis of a Free One Hundred Cell Beam (12-1-1)

A. Description

The problem demonstrates the transient analysis of a free-body using the integration algorithm

for uncoupled modal formulations. The model is a hundred-cell beam with a very large mass attached

to one end as shown in Figure 1. Modal damping is included as a function of natural frequency. It

does not affect the free-body (zero frequency) modes. The omitted coordinate feature was used to

reduce the analysis set of displacements to correspond to eleven grid points.

Both structure plots and curve plots are requested. The types are as follows:

1. Stereoscopic structure plots of the deformed structure are drawn for a specified time

step.

2. Orthographic projections of the deformed structure are plotted. However, two variations

are plotted on each frame. The bottom region of the frame shows the deformed shape and

the top region shows vectors at every tenth grid point which are proportional to the z-

displacement at each specified time step.

3. Curve plots and printout of displacement versus time and of acceleration versus time

are requested.

When a structure is used without additional transfer functions or direct matrix inputs,'the

transient analysis solves exact equations for the uncoupled modes. , The only errors will 'be in

the discarded modes and the straight line approximation of the loads between time'Steps: The

speed of this solution is offset by the fact that the eigenvalue calculation is relatively costly
i ' )

and the transformation of the vectors to and from modal coordinates could be time consuming.

The mass and inertia on point (1) were" selected to be much larger than values of the beam.

The answers will therefore approximate a beam with a fixed end.
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B. Input

Parameters

Beam:

X, = 20

I = .083

A = 1.0

E = 10.4 x 106

p = .2523 x 10'

Lumped Mass:

(Length)

(Bending inertia)

(Cross sectional area)

(Modulus of elasticity)

(Mass density)

= 10.0, = 1666.66

2. Dampi ng:

The damping coefficient for each mode is a function of the natural frequency. The

function is:

g = 10"3f

3. Load:

z.101

Real Eigenvalue Data

Method: Inverse Power

Region of Interest:' 0 < f < 1000

Normalization: Mass

= 100 sin(2ir-60t)

D. Answers

The NASTRAN results are compared in Figure 2 to the analytic results which use one mode. The

modal mass may be calculated using the formula for the mode shape given in Reference 8. The modal

displacement is a single degree of freedom response with a closed form solution.
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Figure 1. 100 cell free beam.
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Figure 2. Comparison of NASTRAN and analytic displacements versus time.
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RIGID FORMAT No. 13, Normal Modes with Differential Stiffness

Normal Modes of a 100-Cell Beam with Differential Stiffness (13-1-1)

A. Description

This problem illustrates the effects of differential stiffness on the solution for the normal

modes of a beam under axial compression.

The natural frequencies of the beam are affected by this load as shown in Reference 23. The

loading specified here is one half of the Euler value for compression buckling which decreases the

unloaded natural frequency, w, proportional to

'/2

where F is the applied load.

The structural model illustrated in Figure 1 is a uniform 100 cell beam hinged at both ends.

B. Input

1. Parameters: ,

A = 2.0 (cross sectional area)

I = 0.667 (bending inertia)
E = 10 4xl06 (modulus of elasticity)
H = 100.0 (length)
p = 2.0X10-" (mass density)

2. Constraints:

uz = 6x = 0 = 0 (all points)
u = 0 (point 101)

u = u = 0 (point 1)
* y

3. Loads.

F1Q1)X= 3,423.17

B = 1 . 0 (default load factor)

C. Results

The theoretical natural frequency for the first mode is given by

f = 1-5—n no 1''." -HI Hertz= r i (!!EI _F)i
i

For this loading of one half the Euler buckling value, the theoretical value is 14.6269 Hertz

for the bending mode. The NASTRAN result is 14.62325 Hertz.
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RIGID FORMAT No. 14, Static Analysis with Cyclic Symmetry

Circular Plate Using Cyclic Symmetry (14-1-1)

A. Description

A constant thickness circular plate with six radial stiffeners and a central hole, shown in

Figure 1, is analyzed using dihedral symmetry. The plate is subjected to a uniform pressure load

applied over a 60° segment of the plate.

The finite element model is shown in Figure 2. The stringers are 60° apart but only 30° of the

structure needs to be modeled when using the dihedral symmetry option. There are 12 subcases since

these are 2 half segments in a 60° segment and only one loading condition. The CYJ0IN bulk data

card defines those points in the middle of the segment (SIDE 2) and those points on the boundary

between segments (SIDE 1).

B. Input

1. Parameters.

R = 1.0 (outside radius)

R = .14 (inside radius)

.01 (plate thickness)

.06 (height and width of stiffeners)

E = 10.6xlo'6 (modulus of elasticity)

v = .325 (Poisson's ratio)

2. Boundary Conditions:

Ur = Ue = 6z = 0 (all points)

Uz = 6r = 0 (along r = 1.0)

3. Applied loads:

Pressure = 200.0 between 9 = 60° and 120°

4. Cyclic symmetry parameters:

CTYPE = DRL

KMAX = 2

NSEGS = 6

NL0AD = 1
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C. Results

The structure can be analyzed using rotational symmetry or dihedral symmetry described here

and the results will be identical.

The results for the normal displacements are given in Table 1 for r = 0.46.
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Table 1. Displacements of circular plate under pressure load at r = 0.46

6

0

15

30

45

60

75

90

105

120

135

150

165

180

195

210

225

240

255

270

285

300

315

330

345

360

DIHEDRAL
METHOD

Subcase Grid

1

1

1
2

2

2
3

3

3
4

4

4
5

5

5
6

6

6
7

7

7
8

8

8
9

9

9
10

10

10
11

11

11
12

12

12

30

31

32
32

31

30
30

31

32
32

31

30
30

31

32
32

31

30
30

31

32
32

31

30
30

31

32
32

31

30
30

31

32
32

31

30

Value

1.365

1.379

1.412

1.430

1.464

1.484

1.430

1.412

1.396

1.379'

1.365

1.359

1.354

1.349

1.345

1.344 '

1.345

1.344

1.345

1.349

1.354

1.359

1.365
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Figure 1. Circular plate with stiffeners.
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Figure 2. Finite element model,
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RIGID FORMAT No. 15, Normal Modes Analysis Using Cyclic Symmetry

Modal Analysis of a Circular Plate Using Cyclic Symmetry (15-1-1)

A. Description

The natural frequencies of a constant thickness circular plate with six radial stiffeners and

a central hole are obtained using the rotational symmetry option. The structure, shown in Figure

1, is simply supported at the outer circumference.

The finite element model is shown in Figure 2 representing only sixty degrees of the plate.

Note that since the stiffeners are on the symmetry boundary, only 1/2 of the actual properties

are used. The bulk data cards demonstrated are the CYJ0IN and PARAM.

B. Input

1. Parameters:

RQ = 1.0 (outside radius)

Ri = .14 (inside radius)

t = .01 (plate thickness)

a = .06 (height and width of stiffeners)

E = 10.6xl06 (modulus of elasticity)

v = .325 (Poisson's ratio)

p = 2.59X10-1* (mass density of plate and stiffeners)

2. Boundary conditions:

u = UQ = 9 =0 (all points)r o z
uz = 9 =0 (along r = 1.0)

3. Eigenvalue extraction data.

Method: Inverse power

Region of interest: 0.0 £ f £ 8000

Number of desired roots: 3

Normalization: maximum

4. Cyclic symmetry parameters:

CTYPE R0T

KINDEX 2

NSEGS 6
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C. Results

Solutions can be obtained using the dihedral symmetry or rotational symmetry described here.

Results are accurate to approximately six significant figures.

Table 1. Natural Frequencies

Mode

1
2

3

Frequency

4288.2

6844.3

11524.3
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