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INTRODUCTION

The Demonstration Problem Manual 1s one of four manuals that constitute the documentation for
NASTRAN. The other three are the Theoretical Manual, the User's Manual and the Programmer's Manual.

The Theoretical Manual contains discussions of the underlying theory relative to the eingineer-
ing equations utilized and mathematical operations. There 1s some discussion relative to data
processing techniques and software organization.

The User's Manual 1s an 1nstructional and encyclopedic reference that describes finite element
modeling techniques and shows the requirements far data preparation to obtain solutions i1n several
engineering disciplines.

The Programmer's Manual contains descriptions of the Functional Modules, subroutines and oper-
ating systems from a software point of view. It also contains detailed derivations of the mathe-
matical equations employed by the program.

The Demonstration Problem Manual illustrates the types of problems that can be solved with
NASTRAN and shows that the results obtained are valid. Generally, this manual discusses the nature
of the problem, the underlying theory, the specific geometric and physical input quantities, and
the comparison of theoretical and NASTRAN results. At least one problem for each of the rigid
formats and nearly all of the elements 1s provided. The features of NASTRAN demonstrated by speci-
fic problems are listed 1n tables which follow.

The data decks necessary to execute these problems are contained on a tape compatible with
each of the NASTRAN computers (See the Programmer's Manual, Section 5.4 for system descriptions.)
The driver decks include the Executive, Case and Substructure Control decks plus changes to the
Bulk Data (where restarts are involved). The Bulk Data decks are contained on a NASTRAN generated
UMF (User Master File). To obtain the decks, 1t is necessary to print the contents of the tape
By using the provided driver decks, NASTRAN may be executed as a UMF job to obtain the results
for a particular demonstration problem {or the user's desired variation thereof).

Each demonstration problem 1s assigned a problem number to key it to the Rigid Format. 1In
turn, the UMF problem 1dentification (pid) is an adaptation of the problem number The UMF tape
1dentification (ti1d) is the year 1n which the set of demonstration problems was generated so this
would tend to change from level to level of NASTRAN caused by the inclusion of new capabilities.
Furthermore, it may not always be possible to execute the new UMF on a previous level due to

changes 1n data handling techniques.
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A UMF problem identification number 1s made up of four elements: The Rigid Format number,
@ problem number, the version number, and a trailing dummy zero. Thus the general UMF number

> Xxyyz0. The Rigid Format number 1s one or two digits; the problem number is always two digits;
.he version number 1s always one digit; and the 0 always trails to allow the insertion of additional
wroblems. A UMF pid of 10210 means the problem runs on Rigid Format 1, it is the second demonstra-
tion problem on that Rigid Format, and it is version 1 of that problem. Another example, 110110,
1s a problem for Rigid Format 11, problem 1, version 1, and the trailing zero is a dummy.

A table of pid numbers for each demonstration problem is included in this manual. Restart

problem driver decks do not contain a UMF card because the data 1s already stored on a checkpoint

tape which must have been created by the user.
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UMF pid (tid 1976) NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

10110 Delta Wing with Biconvex Cross Section, Load on Trailing Edge

RESTART Delta Wing with Biconvex Cross Section, Load on Leading Edge

RESTART Delta Wing with Biconvex Cross Section, Switch to Rigid Format 3

10120 Delta Wing with Biconvex Cross Section Using QDMEM1 and QDMEM2 Elements

10130 Delta Wing with Biconvex Cross Section Using QDMEM1 Elements

10140 Delta Wing with Biconvex Cross Section Using QDMEM2 Elements

10210 Spherical Shell with Pressure Loading, No Moments on Boundary

RESTART Spherical Shell with Pressure Loading, Clamped Boundary

10310 Free Rectangular QDMEM Plate with Thermal Loading

10320 Free Rectangular QDMEM] Plate with Thermal Loading

10330 Free Rectangular QDMEMZ2 Plate with Thermal Loading

10410 Long, Narrow, 5x50 Orthotropic Plate

RESTART Long, Narrow, 5x50 Orthotropic Plate, Modified Output

10420 Long, Narrow, 5x60 Orthotropic Plate

10430 Long, Narrow, 5x50 Orthotropic Plate (via INPUT Module)

10440 Long, Narrow, 5x60 Orthotropic Plate (via INPUT Module)

10510 Nonsymmetric Bending of a Cylinder of Revolution

10610 Solid Disc with Radially Varying Thermal Load

10710 Shallow Spherical Shell Subjected to External Pressure Loading

10810 Bending of a Beam Fabricated with HEXA1 Solid Elements

10910 Thermal and Applied Loads on HEXA2 Solid Elements

11010 Thermal Bending of a Bar

111710 Simply-Supported Rectangular Plate with a Thermal Gradient

11120 Simply-Supported Rectangular Plate with a Thermal Gradient (via INPUT Module)
11210 Linear Steady State Heat Conduction Through a Washer Using Solid Elements
11220 Linear Steady State Heat Conduction Through a Washer Using Ring Elements
11310 Thermal and Pressure Loads on a Long Pipe Using Linear Isoparametric Elements
11320 Thermal and Pressure Loads on a Long Pipe Using Quadratic Isoparametric Elements
11330 Thermal and Pressure Loads on a Long Pipe Using Cubic Isoparametric Elements
11410 Static Analysis of a Beam Using General Elements
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UMF pid (tid 1976)

11510
11610
20110

20210
20220
20230
20240
20250
20260
20270
30110
30120
30130
30140
30210
30310
30410
30510
30610
40110
50110
60110
70110
70120
70210
70220
80110
80120
80130
80140
90110

NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

Asymmetric Pressure Loading of an Axisymmetric Cylindrical Shell
Fully Stressed Design of a Plate with a Reinforced Hole

Inertia Relief Analysis of a Circular Ring Under Concentrated and Centrifugal
Loads

Windmill Panel Sections for Multi-stage Substructuring (Run 1, Phase 1

Windmill Panel Sections for Multi-stage Substructuring (Run 2, Phase 1
Windmill Panel Sections for Multi-stage Substructuring (Run 3, Phase 1)

Windmill Panel Sections for Multi-stage Substructuring (Run 4, Phase 2)

Windmill Panel Sections for Multi-stage Substructuring (Run 5, Phase 3)

Windmill Panel Sections for Multi-stage Substructuring (Run 6, Phase 3)

Windmill Panel Sections for Multi-stage Substructuring (Run 7, Phase 2)
Vibration of a 10x20 Plate

Vibration of a 20x40 Plate

Vibration of a 10x20 Plate (via INPUT Module)

Vibration of a 20x40 Plate (via INPUT Module)

Vibration of a Compressible Gas in a Rigid Spherical Tank

Vibration of a Liquid 1n a Half Fi1lled Rigid Sphere

Acoustic Cavity Analysis

Nonlinear Heat Transfer in an Infinite Slab

Nonlinear Radiation and Conduction of a Cylinder

Differential Stiffness Analysis of a Hanging Cable

Symmetric Buckling of a Cylinder

Piecewise Linear Analysis of a Cracked Plate

Complex Eigenvalue Analysis of a 500-Cell String

Complex Eigenvalue Analysis of a 500-Cell String (via INPUT Module)

Third Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder
Fi1fth Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder
Frequency Response of a 10x10 Plate

Frequency Response of a 20x20 Plate

Frequency Response of a 10x10 Plate {via INPUT Module)

Frequency Response of a 20x20 Plate (via INPUT Module)

Transient Analysis with Direct Matrix Input
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UMF pid (tid 1976) NASTRAN DEMONSTRATION PROBLEMS ON UMF TAPE

90210 Transient Analysis of a 1000-Cell String, Traveling Wave Problem

90220 Transient Analysis of a 1000-Cell String, Traveling Wave Problem (via INPUT Module)

90310 Transient Analysis of a Fluid-Filled Elastic Cylinder

90410 Linear Transient Heat Transfer 1n a Plate

100110 Complex Eigenvalue Analysis of a Rocket Control System

100210 Aeroelastic Flutter Analysis of a 15° Swept Wing

110110 Frequency Response and Random Analysis of a Ten Cell Beam

RESTART Frequency Response and Random Analysis of a Ten Cell Beam, Enforced Deformation
and Gravity Load

110210 Frequency Response of a 500-Cell String

110220 Frequency Response of a 500-Cell String (via INPUT Module)

120110 Transient Analysis of a Free One Hundred Cell Beam

130110 Normal Modes Analysis of a One Hundred Cell Beam with Differential Stiffness

140110 Static Analysis of a Circular Plate Using Dihedral Cyclic Symmetry

150110 Normal Modes Analysis of a Circular Plate Using Rotational Cyclic Symmetry
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DEMONSTRATED FEATURES OF NASTRAN

PHYSICAL PROBLEMS

Structures

1. Line

2. Plate or Shell
3. Solids

4. Rotational Symmetry

Fluid Dynamics
5. Flexible Boundary

6. Rigid Boundary
7. Sloshing
8. Acoustic

9. Aeroelastic

Heat Transfer
10. Conduction
11. Convection

12. Radiation

SOLUTION METHODS

Steady State

1. Linear Statics

2. Inertia Relief

3. Nonlinear Geometry

4, Material Plasticity
5. Fully Stressed Design
6. Linear Heat Transfer

7. Nonlinear Heat Transfer
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DEMONSTRATED FEATURES OF NASTRAN

Eigenvalue Analysis

8.
9.

10

11.
12.
13.

Real Modes
Complex Modes
Inverse Power
Determinant
Givens

Upper Hessenberg

Dynamic Response

14.
15.
16.
17.
18.
19.

Direct Formulation
Modal Formulation
Transient Response
Frequency Response
Random Analysis

Flutter Analysis

ELEMENT TYPES

10.
11.
12.
13.
14.
15.

Bar, Rod, Tube or Conrod
Shear or Twist Panel
Plate or Membrane

Scalar Springs, Mass and Dampers
Concentrated Mass
Viscous Dampers

Plot (PLPTEL)

General (GENEL)

Conical Shell

Toroidal Shell
Axisymmetric Solids
Linear Solids
Isoparametric Solids
Sol1d Heat Conductors

Heat Transfer Boundary Elements
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DEMONSTRATED FEATURES OF NASTRAN

16. Fluid Elements
17. Acoustic Elements

18. Aerodynamic

D.  CONSTRAINTS
1. Single-Point Constraints
Multipoint Constraints

Omitted Coordinates

HwWw N

Free-Body Supports
5. Fluid Free Surface
6. Symmetry Used on Boundary

7. "Grounded" Stiffness Terms

E.  GEOMETRY AND PROPERTY DEFINITIONS
1. Property ID Default

Local Coordinate System

Resequenced Grid Points
Thermal Dependent Materials

Nonlinear Materials

(=2 BN S L B L 7 B ]

Anisotropic Materials

7. O0Offset BAR Connections

8. Structural Mass

9. Nonstructural Mass

10. Structural Element Damping
11. Compressibility of Fluid
12. Fluid Gravity Effects

13. Multiple Fluid Harmonics
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DEMONSTRATED FEATURES OF NASTRAN

. F.  SPECIAL MATRIX OPTIONS

1. General Element (GENEL)

2 Direct Input Matrices

3. Transfer Functions

4. Extra Points

5. Direct Damping Matrix Input
6. Modal Damping

7. Substructuring

8 Cyclic Symmetry

9. Uniform Structure Damping

G.  LOADING OPTIONS

Static
1. Concentrated Loads
2. Pressure Loads
. 3. Gravity Loads
4. Thermal Loads
5. Harmonic Loads
6. Centrifugal Field Loads

7. Enforced Element Deformation

8. Enforced Displacement

Dynamic Excitation

9. Tabular Loads vs. Frequency or Time
10. Direct Time Function Loads

11. Loading Phase Angles

12. Loading Time Lags

13. Load Combinations (DLPAD)

14. Transient Initial Conditions

15. Random Analysis Power Spectral Density Functions
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DEMONSTRATED FEATURES OF NASTRAN

Heat Transfer

16. Volume Heating
17. Area Heating

18. Radiation Heating

19. Enforced Boundary Temperature

EXECUTION OPTIONS

Multiple Solution Techniques

1. Loads

2. Boundary Constraints
3. Cyclic Cymmetry

4. Direct Input Matrices

5. Aerodynamic Coefficients

Operational Techniques

6. Checkpoint

7 Restart with Modified Case Control

8. Restart with Rigid Format Change

9. Restart with Modified Bulk Data
10. Altered Rigid Format Using DMAP Statements

11. Multi-stage Substructuring

OUTPUT OPTIONS

Print and/or Punched

1. Point Output Selections

2. Element OQutput Selections

3. Subcase Level Request Changes

4. Sorted by Freguency or Time (SPRT2)

5. Magnitude and Phase of Complex Numbers

6. Mode Accelerition Data Recovery
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DEMONSTRATED FEATURES OF NASTRAN

Solution Set Output Requests
Frequency Set Selections
Punched Output Selections
Werght and Balance

Grid Point Force Balance

Element Strain Energy

Structures Plot of Undeformed Structure
Structures Plot of Deformed Structure
Curve Plotting vs. Frequency

Curve Plotting vs. Time

Curve Plotting vs. Subcase
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RIGID FORMAT No. 1, Static Analys1is

Delta Wing with Biconvex Cross Section (1-1-1)
Delta Wing with Biconvex Cross Section Using QDMEM] and QDMEM2 Elements (1-1-2)
Delta Wing with Biconvex Cross Section Using QDMEMI Elements (1-1-3)
Delta Wing with Biconvex Cross Section Using QDMEM2 Elements (1-1-4)

This problem 11lustrates the use of various MHASTRAN elements in the solution of an actual
structural problem. Figure 1 shows the delta wing to be modeled and Fiaures 2 and 3 shows the
finite element model. The delta wing model 1s composed of membrane, shear panel and rod elements.
Due to the existence of symmetry or antisymmetry 1n the structure and loadina conditions, only
one-quarter of the wing needs to be modeled. The midplane of the wing (the plane dividing the wing
into upper and lower halves) 1s a plane of symmet:, as 1s the center plane (the nlane that divides
the wing into left and right halves). The loading conditions are antisymmetrical with respect to

the midplane of the wing and symmetric with respect to the center plane.

The surface skin of the wing 1s modeled with membrane elements while the ribs and spars are
modeled with a combination of shear panels and rods. The shear load carrying capability of ribs
and spars 1s represented by shear panels. The bending stiffness of the ribs and spars 1s modeled

with rod elements placed 1n the plane of the skin surface.

Since a quarter model 1s used, the Toading conditions require that an antisymmetric boundary
be provided on the midplane and a symmetric boundary must be provided on the center plane. These
boundary conditions are provided by constraining all grid points on the midplane 1n the x and y
directions and all grid points on the center plane 1n the x direction. Supports for the structure
are provided by constraining grid points 13, 33, 53, 73 and 93 in the z direction. Since no rota-
tional rigidity 1s provided by the elements used in the model, all rotational degrees of freedom

have been removed by the use of the GRDSET card.

Figure 4 shows the two loading conditions analyzed. The modified restart capability 1s used
to perform the analysis associated with the second loading condition. The ability of NASTRAN to
change rigid formats on a restart is demonstrated by the third case. The natural modes of the
structure are extracted using the inverse power method. Since the symmetric boundary conditions
are used, only the modes with symmetric motion about the center Tine will be extracted. If the
unsymmetric modes were required, a separate run with the appropriate boundary conditions could be

submitted.
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A comparison of the displacements due to the loads calculated by NASTRAN and the experimentally
measured displacements from Reference 2 1s shown 1n Tables 1 and 2. Also included 1n these tables
are the displacements calculated on a passive analog computer (Reference 1). A comparison of the

natural frequencies and modal displacements 1s shown 1n Tables 3 and 4.

Another variation of this problem can be obtained by replacing the quadrilateral membrane
elements {CQDMEM) with the newer CQDMEM1 and CQDMEM2 elements. This modification demonstrates the
ability to reproduce previously derived theoretical results. Table 5 shows the difference in dis-

placements obtained when elements 1 through 9 are CQDMEM] elements_and the other quadrilaterals

are CQDMEMZ elements.
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Table 1 Comparison of NASTRAN and Experimental Deflections - Concentrated Load on Qutboard
Trailing Edge

7 DISPLACEMENT

GRID NASTRAN EXPERIMENTAL ANALOG

NUMBER
12 082 ~.08 .080
15 - 221 -.22 -.210
16 -.428 -.39 - .400
34 T '-.063 -.07 -.061
35 -.162 -.16 - 157
36 -.293 -.28 -.286
54 -.043 -.05 -.044
55 -.104 212 -.144
74 -.025 -.03 -.030

Table 2 Comparison of NASTRAN and Experimental Deflections - Concentrated Load on Outboard
' Leading Edge

Z DISPLACEMENT
GRID
NUMBER NASTRAN EXPERIMENTAL ANALOG
14 -.063 - 06 - 060
15 -.163 -.15 - 157
16 - 293 -.28 - 286
34 - 057 -.06 - 057
35 -.148 -.15 -.150
36 -.280 - 30 -.290
54 -.046 -.05 - 048
55 - 118 - 13 27
’ 74 - 030 -.04 - 035
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TABLE 3 Comparison of NASTRAN and analog computer analysis eigenvalues.

Mode No.

NASTRAN (cps.)

ANALOG (cps.)

1

40.9
115.3
156.2

41.3
131.0
167.0

TABLE 4 Comparison of mode displacements for first mode.

GRID | Z DISPLACEMENT
NUMBER| NASTRAN | ANALOG
14 .250 .273
15 .601 .630
16 1.000 1.000
34 .210 .239
35 .504 .558
36 .854 .902
54 .162 192
55 .391 .462
74 .12 .148
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TABLE 5. Comparison of Z Displacements

Trai1ling Edge Load Leading Edge Load
CQDMEM1 and CQDMEMI and

Grid CQDMEM Elements CQDMEMZ CQDMEM Elements CQDMEMZ2

Point Elements Elements
14 -.082 - 082 - 063 -.064
15 -.221 - 224 -.163 -.167
16 -.424 -.433 - 293 -.300
34 -.063 -.064 - 057 -.059
35 -.162 - 166 - 148 -.154
36 -.293 - 300 -.280 -.294
54 -.043 - 044 - 046 - 047
55 -.104 -.108 -.118 - 123
74 -.025 -.026 - 030 -.031
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Figure 1. Delta wing with biconvex section.
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RIGID FORMAT No. 1, Static Analysis

Spherical Shell with Pressure Loading (1-2-1)

This problem demonstrates the finite element approach to the modeling of a uniform spherical
shell. A spherical coordinate system 1s chosen to describe the location and disnlacement degrees
of freedom at the grid points. Triangular plate elements are chosen to provide a nearly uniform
pattern. Two symmetric boundaries are used to analyze the structure with a symmetric pressure

load. Figure 1 describes the model.

Two boundary conditions are used on the outside edge to demonstrate the ability of NASTRAN
to restart with different constraint sets by simply changing the case control request. The
effective boundary constraints are shown in Figure 2. The membrane support, under a uniform
pressure load, should result 1n uniform 1n-plane compression 1n two directions. The clamped

support produces bending moments 1n addition to i1n-plane stresses.

The grid point numbering sequence used minimizes the computer time required to perform the
triangular decomposition of the constrained stiffness matrix. This numbering senuence results 1n
a partially banded matrix with all terms outside the band located in a single column. The grid

points are arranaed to form five rings; the center point 1s sequenced last.

Analytic solutions for the continuum shell were obtained from Reference 4 using the first 20
terms of the series shown 1n Equation (3) of Section 94. Comparisons of the answers obtained
using NASTRAN and the analytical solution for the membrane boundary condition are shown In Figures
3 and 4. Also included on these figures are the NASTPAN answers obtained usina a 10-ring model
Figures 5 thru 7 show a comparison of the NASTRAN answers and the analytical solution for the

shell with a clamped boundary.

The slight differences between theoretical and computed answers are due to: 1) The finite
element model assumes a constant in-plane stress and a linearly varyino bending moment for each
element. In the clamped edge case these quantities have large chances, and 2) the 1rreqularities
of the finite element model cause some extra coupling between the bendina and membrane action.
Since the elements are planar the curvature 1s modeled, 1n effect, by the dihedral angles between
elements. Since the elements are different sizes and shapes these dihedral anales vary, which

results 1n slight differences 1n curvature that cause small errors.
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Figure 4. Comparison of NASTRAN and analytical stresses for
spherical shell - membrane boundary
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Figure 6. Comparison of NASTRAN and analytical meridian stress for

5 ring spherical shell - clamped boundary.
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Figure 7. Comparison of NASTRAN and analytical bending moment for
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Free Rectanguiar (QDMEM) Plate with Thermal Loading (1-3-1)
Free Rectangular (QDMEM1) Plate with Thermal Loading (1-3-2)
Free Rectangular (QDMEM2) Plate with Thermal Loading (1-3-3)

RIGID FORMAT No. 1, Static Analysis l
i

This problem demonstrates the use of thermal loading conditions and temperature dependent
materials. The model, a rectangular plate shown in Figure 1, 1s given a temperature gradient
which causes internal loads and elastic deflections. Since there are two planes of symmetry,

only one-quarter of the structure needs to be modeled (fhe shaded portion shown 1n Figure 1).

The finite element model for the quarter section 1s shown in Figure 2. Fiaure 3 shows the
thermal loading condition. The temperature load is constant in the y direction and symmetric
about the y-axis. Since membrane elements are used to model the structure, it 1s necessary to
remove all rotational degrees of freedom and translational degrees of freedom normal to the plate.
The symmetric boundary conditions were modeled by constraining the displacements normal to the
planes of symmetry. The material used has temperature dependent elasticity (as defined in Reference
5) therefore the INPUT module cannot be used for this application. The CNGRNT bulk data card can

te used if the congruency is defined in one direction.

Figures 4 and 5 show a comparison of NASTRAN stresses and the experimentally measured stresses

reported in Reference 5.
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Figure 2. Free rectangular plate model.
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Figure 5. Comparison of NASTRAN and experimental stresses for free rectangular
plate with thermal loading - temperature dependent properties
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RIGID FORMAT No. 1, Static Analysis

Long, Narrow, 5 x 50 Orthotropic Plate {1-4-1)
Long, Narrow, 5 x 60 Orthotropic Plate (1-4-2;
Long, Narrow, 5 x 50 Orthotropic Plate (INPUT, 1-4-3)
Long, Narrow, 5 x 60 Orthotropic Plate (INPUT, 1-4-4)

This problem demonstrates triangular decomposition sp111 logic, orthotropic materials, and
the use of a modified restart to obtain additional output. A sketch of the rectangular plate and

the applied loading is shown in Figure 1.

The 5 x 50 finite element quarter-section model shown in Figure 2 is constructed with quadri-
lateral bending élements. In order to demonstrate the triangular decomposition spi111 logic (i.e.
the necessary computation space is larger than available core storage), the model is internally
resequenced for a wide bandjas shown in Figure 3. Although the 5 x 50 model is sufficient to
create spill on the IBM 7094 DCS, the number of elements in the longitudinal direction must be

increased to create spill on machines having larger random-access memories.

The analytical solution for the infinitely long continuum plate 1s given in Section 37 of

Reference 4. A comparison with the NASTRAN solutions are given in Tables 1 and 2.

A modified restart was used to obtain additional output.
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Table 1. Comparison of NASTRAN and Analytical Displacements for Long, Narrow, Grthotropic Plate.

Table 2. Comparison of NASTRAN and Analytical Displacements for Long, Narrow, Orthotropic Plate.

7 DISPLACEMENT x 10*
GRID
THEORY NASTRAN

) 3.048 3.037
2 2.899 2.889
3 2.466 2.457
4 1.792 1.785
5 0.942 0.939
7 2.949 2.940
13 2.723 2.714
19 2.446 2.435
25 2.157 2.145
31 1.880 1.866
37 1.625 1.611
43 1.397 1.383

SHEAR STRESS

EL.
1D.

RAN | THEORY ] NASTRAN

a o wNy

13
19
25
3
37

STRESS X
THEORY | NASTRAN
19.05 18.
17.19 17.
13.64 13.

8.76 8.
3.02 2.
15.86 15.
13.27 13.
11.174 11.
9.37 9.
7.90 7.
6.67 6.

90
05
53
69

STRESS ¥
THEORY | NAST
20.35 20
18.36 18.
14.57 14.

9.35 9
3.22 3
12.91 12
8.28 8.
5.38 5
3.55 3
2.38 2
1.64 1

.40 }-0.39 -0.39

40 | -1.12°) -1.33
60 [-1.74 -1.76

.38 | -2.18 -2.22
.23 1 -2.43 -2.46
.90 |} -0.84 -0.88

23 |-1.03 -1.06

.33 | -1.07 -1.09
.51 | -1.02 -1.04
.36 1-0.94 -0.95
.63 | -0.84 -0.85
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Figure 1. Simply-supported long narrow orthotropic plate
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Pilane of Symmetry

5 x 50 Long, narrow, orthotropic plate model.
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51 102 153 204 255 306
50 101 152 203 254 305
49 100 151 202 253 304
48 99 150 201 252 303
47 98 149 200 251 302

6 57 108 159 210 261
5 56 107 158 209 260
4 55 106 157 208 259
3 54 105 156 207 258
2 53 104 155 206 257
1 52 103 154 205 256

Figure 3. Long, narrow, orthotropic plate model resequenced for wide band.
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RIGID FORMAT No. 1, Static Analysis

Nonsymmetric Bending of a Cylinder of Revolution (1-5-1)

A. Description

This probiem 11lustrates the application of the conical shell element and 1ts related special
data. This element uses the Fourier comporents of displacement around an axisymmetric structure
as the solution coordinates. The geometry of the structure 1s defined by rings instead of grid
points. Its constraints must be defined by the particular Fourier harmonics, ard the loads must
be defined etther with special data or 1n a harmonic form. This element may not be used in conjunc-

tion with any of the other structural elements.

The structure to be solved 1s described in Reference 6 and 11lustrated in Figure 1. It con-
s1sts of a short, wide cylinder with a moderate thickness ratio. The applied loads and the out-
put stresses are pure uncoupled harmonics. The basic purpose of this problem 1s to check the
harmonic deflections, element stresses, and forces. Figures 2 and 3 compare the NASTRAN results

with the results given in Reference 6.

B. Input

The Fourier coefficients of the applied moment per length are:

m, = cos(ne)

The applied input loads are defined as:

27
Mn = é m cos{n6) R de

The values of applied moment on the MPMAX cards are:

Mn¢ = 7R s n>0

M0¢ = 2mR s n=20

The applied moments for each harmonic are shown in Figure 1. The bendina moments in the

elements are defined as:
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Moment about u
v 0

=
"

=
1]

Moment about u,

Positive bending moments indicate compression on the outer side.

1. Parameters:
R = 50 Radius
s = 50 Height
t = 1.0 Thickness

E = 91.0 Modulus of Elasticity

v = 0.3 Poisson's Ratio
2. Loads:
Mn(lOO) 157.0796 Force-Length

-157.0796 Force-Length

Mn(50)

3. Single Point Constraints:

Ring ID Harmonic Coordinates
50 all ur,u¢,uz Radial, tangential and axial translations
100 all UpsUgol, Radial, tangential and axial translations
all all 8, Rotation normal to surface

The AXISYM = C@SINE statement in case control defines the motions to be symmetric with

respect to the x-z plane,

C. Answers

Theoretical and NASTRAN results for element bending moments and radial deflections for 4 of
the 20 harmonics used are given 1n Figure 2 and 3. Notice that for higher harmonics the effect of
the load is Timited to the edges. A smaller element size at the edges and a relatively large

s1ze in the center would have given the same accuracy with fewer degrees of freedom.
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Figure 2. Element bending moments and radial deflections
along length of cylinder.
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Figure 3. Element bending moments and radial deflections
along length of cylinder.

1.5-5 (6/1/72)



RIGID FORMAT No. 1, Static Analysis
Sol1d Disk with Radially Varying Thermal Load (1-6-1)

A solid free circular disk in a plane is subjected to a radially varying thermal load of the

form
- r?
T = 100(1 - BEJ
where
r = the radius at any point in the disk
b = the outside radius = 0 10 1inches

The structure 1s shown 1n Figure 1 along with 1ts associated material properties and pertin-
ent dimensions The finite element 1dealization employed for this structure 1s shown in Figure 2.
The thermal Toading on the solid disk 1s established via an 1nternally generated thermal load

vector derived from data specified grid point temperature values.

Figure 3 displays the radial displacement utili1zing the idealization shown 1n Figure 2.
Figure 4 presents radi1al and circumferential stress values which result from the thermal loading.
Reference 14 provides an analytical solution to this problem which 1s based on the theory of
elasticity. HNote that the solid lines represent the analytical solution while the circles and

squares represent the solution obtained utilizing the finite element solution
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Figure 2. Finite element idealization and
temperature distribution.
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‘ Figure 3. Radial displacement, solid disk with radially varying thermal load.
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Figure 4. Radial and circumferential stress 1n solid disk at the centroid

of the elements with radially varying thermal Toad.
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RIGID FORMAT No. 1, Static Analysis

Shallow Spherical Shell Subjected to External Pressure Loading (1-7-1)

A shallow spherical shell with a built-1n edge is subjected to an external pressure loading of
1 psi. The shell 1s shown 1n Figure 1 along with its pertinent dimensions and associated material

properties. The fimite element idealization for the shell is displayed in Figure 2.

Due to symmetry only one half of the shell was analyzed. The primary purpose of this analysis
was to demonstrate the applicability of the shell cap generalization of the toroidal ring to this

class of problem.

The meridional bending moment is taken to characterize the behavior predicted for this struc-
ture. The exact solution from Reference 4 1s compared to the 13 element finite element solution
in Figure 3. The reference solution 1s designated by the solid Tine while the finite element sol-
ution 1s designated by the circles. Figure 4 displays the radial displacement obtained utilizing

this idealization and compares it to that obtained 1n the Reference Solution.
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‘ RIGID FORMAT No. 1, Static Analysis
Bending of a Beam Fabricated from HEXA1 Solid Elements (1-8-1)

A. Description

The properties of solid bodies may be modeled with the NASTRAN tetrahedra, wedge, or hexa-
hedron finite elements. This problem demonstrates the analysis of a solid fabricated from the
six-sided HEXAl solid elements. The problem consists of a rectangular parallelepiped subdivided

into forty cubic subelements as shown 1n Figure 1.

The loads were chosen to approximate the stress distribution due to a moment on one end of
a beam; the other end is constrained to resist the moment. Two planes of symmetry were used to

simulate an actual problem having twice the width and twice the height.

B. Input

1. Parameters:

=
it

20.0 (Tength)
4.0 (width of full section)

=
1]

16.0 (height of full section)

=
n

m
1l

3.0 x 10° (modulus of elasticity)

v = 0.2 (Poisson's ratio)

2. Boundary Constraints:

ony = 0 plane, u, = u, = 0 (antisymmetry)
on z = 0 plane, u, = 0 (symmetry)
on x = 0 plane, u, = 0 (symmetry)

3. Loads:

Total Moment: M= 2.048 x 103

This moment w11l produce bending about the z axis. It is modeled by a set of axial

loads at x = & which, in turn, represent an axial stress distribution:

Ouy = 1.5y

C. Analysis and Results

A prismatic beam with an axial stress which varies linearly over the cross section has an

‘ exact solution. In the demonstration problem, the theoretical stress distribution 1s:
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=M
O%x T TY
Oz "%z " Txy T Txz T Tyz T 0,
_ 1 3
where I = T§'Wh .
The displacements are:
oM
Ug =~ ET W
- M vl ol
u, = 2EI‘(X vy -vz©)
N
Uy = VET Y%

Tables 1 and 2 are comparisons of displacements and stresses for the theoretical case and

the NASTRAN model.
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DISPLACEMENT x 107
POINT/DIRECTION THEORY NASTRAN
217y 0400 .07
a1y 1600 .1607
617y .360 366
81/y .640 651
1017y 1.000 1.016
109/x 0.800 0.844
110/2 016 0.007

Table 1. Comparisons of Displacement

THEORY NASTRAN
ELEMENT )
Oxx cyy Txy » ‘ Oxx 0yy - ij
1 -1.5 0 0 -1.56 .02 _-.01
2 -4.5 0 0 -4.53  .036 -.05
3 7.5 0 0 -7.39 .06 -.06
4 -10.5 0 0 T .9.95 11 T 2

NOTE: NASTRAN stresses are average; theoretical stresses
are calculated at the center of the element.

Table 2. Comparisons of Stress
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Figure 1, Model of solid using hexahedrons.
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. RIGID FORMAT No. 1, Static Analysis

Thermal and Applied Loads on HEXA2 Solid Elements (1-9-1)

A. Description

This problem demonstrates the use of the HEXA2 solid hexahedron elements. Forty rectangular
elements are used to model a 2x2x10 beam. The dimensions and boundary conditions are shown in
_Figure 1. Two loading conditions are applied: axial stress and thermal expansion. Symmetry

boundary conditions are used.

B. Input

1. Parameters:

20 (length)

=
"

W o= 4.0 (width)
h = 4.0 (height)

. E = 3.0 x 10° (modulus of elasticity)

v = 0.2 (Poisson's ratio)
a = .001 (thermal expansion coefficient)
T0 = 10° (reference temperature)

2. Boundary Constraints:

u, = Qat x =0
= 0Qaty=0
uy at y
u, = DQatz =0
3. Loads:
Subcase 1,
Fx = 24 x 103 (total axial force)
Subcase 2,
T = 60° (uniform temperature fie]d)}

‘ T, = 10° (reference temperature)
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C.

Analysis and Results

1. Subcase 1

The distributed axial load is equivalent to a stress field of:

= 3
Oy = 1.5 x 107 ,
Oyy = %z T Ty T Txz T Tyz T 0
The displacement field 1s:
o
. XX - -3
u, = X 0.5 x 10 “x
vo
_ XX - -3
uy = E Y 0.1 x 10 "y
-vo
= XX - . -3
u, = F oz = 0.1 x10 "z

2. Subcase 2

The uniform expansion due to temperature will not cause any stress.

are uniform and equal. The displacements are, therefore:

u, = a(T-TO)x = ,05x
uy = a(T—To)y = .05y
u, = a(T—TO)z = .05z

where T 1s the uniform temperature and TO is the reference temperature.

3. Results

The strains, however,

The results of both subcases are exact to the single precision limits of the particular

computer used.
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RIGID FORMAT No. 1, Static Analysis

Thermal Bending of a Beam (1-10-1)

A.  Description
This problem demonstrates the solution of a beam subjected to a thermal gradient over the

cross-section. Two end conditions are solved, clamped-free and clamped-pinned end conditions.

An equivalent linear gradient in the normal direction was used for the input data. However,
the actual temperatures at points on the cross-section were input on the TEMPRB card in order to

produce correct stresses. The beam was subdivided into 14 variable lengths for maximum efficiency.

B. Input

Figure 1 describes the beam and the thermal field to be analyzed and Figure 2 shows the finite

element model.

C. Theory

For subcase 1, the effective temperature gradient, T', (see NASTRAN Theoretical Manual) is:

T s 1| [Toway e )
zy
where
2
1 = y< dy dz . (2)
f

Using the given temperature distribution the effective gradient is:

v 3
T = Tc X , (3)

where Tc is calculated to be 0.170054°/in4 by substituting the temperature distribution into

Equation 1 and evaluating the expression:

_ 1 4
TC = T-I J Cy dy dz (4)
zy
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Since the bar is not redundantly constrained the curvature at the center line is:

22_\2,_ = -al' = -aT, 3 (5)
dx
The slope is:
dv 1 dzv o 4
a:igx—zdx=-ITcx (6)
The deflection is: <
vix) = f %% dx = - é%—Tc x5 (7)
0

The moment, M, shear, V, and axial stress, g,» are:
H

-
]
]

o

-

(8)

o (x,y) = E(e, - al) = EloyT' - o) = Ea(Ty- &) x

where C = 1 has dimensions of degrees/]engths.

For subcase 2, with a simple support at x = 10.0, we calculate the deflection due to subcase 1

and apply a constraint load PL to remove the deflection at the end.

al 2

< . 3EI - _c
P = 3 v(L) 3T 5 L ) (9) |

Note: Transverse shear deflection jis neglected.

The deflections and slopes are the sum of the results for the two independent loads as follows

p ol aT
deflection: vix) = E%T'(3LX2 - x3) - 3R§-x5 = ~ﬁ%-(3L3 - L2x - 2x3) x2 . (10)
al
~lope: o,(x) = N - ¢ (6L3 - 31%x -~ 10x3)x . (1) ‘
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The net stress is the sum of the stress due to each load:

My
3 3 _L = 3 3 i. 2 -
Ox(x,y) = Ea(TCy - Cy )x” - T = Fa [(Tcy - Cy )x - 50 TcL (L - x) Y] (12)

where ML is the moment due to the constraint load.

D. Results

Tables 1 and 2 compare the analytical maximum value of displacement, constraint force, ele-
ment force, and stress to the maximum deviation of NASTRAN in each category. Al11 results are

within 2.66%.
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A
v(x)
.~ L = 10.0 1n.__!L____.. 1.24n g5 4y,
1
> X 0.2 in. ;EE] EE;Z::::][@.G in.
j

E = 10.0 x 10% 1b/in® (Young's modulus) 0.2 in.

v = 0.3 (Foisson's ratio)
o = 13.0 x 10_6 in/in/°F (Thermal exoansion coeificient)
Ty = 0.0°F (Reference terperature)

The beam is loaded by the temperature distribution:

TCF) = oy’

where C = 1.0 °F/in6

Figure 1. Thermal loading of a beam.

8 9 11 13 15

9

2
*

FLEMENT [P

Figure 2. Finite element model.
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Table 1. Comparison of NASTRAN and analytical results, clamped-free ends (subcase 1).

CATEGORY MAXIMUM MAXIMUM PER CENT
ANALYTICAL NASTRAN ERROR
VALUE DIFFERENCE
Displacement -1.1054 x 1072 | 2.9424 x 107 2.66
Constraint Force 0 * *
Element Force 0 * *
Element Stress 5.1965 x 10+3 0.671 0.01

*These results vary with the computer. The very small numbers are essentially zero when

compared to subcase 2 results.

Table 2. Comparison of NASTRAN and analytical results, clamped-pinned ends (subcase 2).

CATEGORY MAXIMUM MAXIMUM PER CENT
ANALYTICAL NASTRAN ERROR
VALUE DIFFERENCE
Displacement 4.3936 x 1073 | 8.024 x 10°%| 0.18
Constraint Force | -2.2859 x 10°° | 6.0841 2.66
Element Force 2.2859 x 10+2 6.0846 2.66
Element Stress 5.1965 x 10%3 | 4.4136 x 10 | 0.85
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RIGID FORMAT No. 1, Static Analysis

Simply-Supported Rectangular Plate with a Thermal Gradient (1-11-1)
Simply-Supported Rectangular Plate with a Thermal Gradient (INPUT, 1-11-2)

A. Description

This problem illustrates the solution of a general thermal load on a plate with the use of an
equivalent linear thermal gradient. The thermal field i1s a function of three dimensions, demonstra-
ted by the TEMPP1 card. The plate 1s modeled with the general quadrilateral, QUAD1, elements as
shown in Figure 1. Two planes of symmetry are used. This problem 1s repeated via the INPUT module

to generate the QUAD] elements.

B Input
E = 3.0x 105 pounds/inch2 {Youngs modulus)
v = 0.3 (Poisson's ratio)
p = 1.0 pound-sec.2/1nch4 (Mass density)
a = 0.01 inch/°F/inch (Thermal expansion coefficient)
TR = 0.0 °F (Reference temperature)
T0 = 2.5°F (Temperature difference)
a = 10.0 inch (Width)
b = 20.0 inch (Length)
t = 0.5 inch (Thickness)
The thermal field 1s: -
3 -
= e myy (22 -
T T,(cos a) (cos ) ( : ) 2
v LT
- X Ty 3 ep 0
160.0(cos 10) (cos 20) z° °F :‘i
C. Theory

The plate was solved using a minimum energy solution. The net moments, {MN}, in the plate

are equal to the sum of the elastic moments, {M.}, and the thermal moments, {Mt}°

.\

{MN} = {Mt} + {Me} s (1)

where the thermal moment is
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.
1 X
M} = T, D(]w){(])} cos = cos % , (2)

and D =

and Ty = 6T0/5t is the effective thermal gradient.

The elastic moment is defined by the curvatures, x, with the eauation:

Xx 4+ Xy
1-v)
2 Xxy

Assuming a normal displacement function, W, of
| ,

i 1' nmx mm
Wo="']JwW. cos = cos Y . (4)
nm
{
then '
- azw - ‘2 n g nTX mmy
XX_T'"ZE“wnm(E) cos 5~ C0s 7 ’
9X nm
| X, = a—zﬂ = -37 2w (L"—>2 cos ITX cos MY | (5)
Y ayz o nm\ a a b
f
2y é
= 22 = nmx mmy
Xay = Zaxay = 27 % nm( )sm 7 SIn
The work done by the thermal load is:
v - l{X}T{Mt} o+ [ oTmgpa (6)
A

where A is the surface area. Performing the substitution and integrating results in the energy

expression: - ‘
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aT! D(1r)n? (a4b%) 0 5 T dan(e . i 2,
U= - Tab Mtz s a2t 7)) e (7)
The static solution exi1sts at a minimum energy:
aU
=0 (8)
E .

This results in all but w]1 equal to zero. The displacement function is therefore:

aT} (1+v)a2b?

2

W(x,y) 55—
nz(a2 +b

cos %? cos %¥- . (9)

Solving for moments by differentiating W and using equation (3) results in the equations for

element moments:

2, 27
_— _ bi+va X os MY
M, aTy 0(1+v) [1 Tl cos = cos 3, (10)
M = o' D(1+v){1 - a2+”b2- cos X cos MY
y 0 a2+bi ] a b ()
of! D(1-v%)ab oy
Mxy = ————— sin = sin ¥ . (12)

a +b

D. Results

Figure 2 compares the element forces given by the above equation and the NASTRAN results.
Figure 3 compares the normal displacements. The maximum errors for displacements, constraint

forces, element forces and element stresses are listed in Table 1.
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Figure 1. Simply-supported rectangular plate with a thermal gradient.
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Table 1.

Comparison of analytical and NASTRAN results.

MAX IMUM MAXIMUM PER CENT

CATEGORY ANALYTICAL DIFFERENCE | ERROR
Displacement 6.2898 x 107 | -1.5464 x 1073 | -0.25
Constraint Force 150.0 -.9594 -0.65
Element Mom., M [ 7.4770 x 102 -1.1767 -0.80
Element Stress 7.764618 x 103 -90.33275 -1.16
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RIGID FORMAT No. 1 (APP HEAT), Heat Conduction Analysis

Linear Steady State Heat Conduction Through a Washer
Using Sol1d Elements (1-12-1)

Linear Steady State Heat Conduction Through a Washer
Using Ring Elements (1-12-2)

A. Description

This problem 11lustrates the capability of NASTRAN to solve heat conduction problems. The
washer, shown 1n Figure 1, has a radial heat conduction with the temperature specified at the out-
side and a film heat transfer condition at the 1nner edge. Due to symmetry about the axis and the

assumption of negligible axial gradients, the temperature depends only upon the radius.

B. Input
The first NASTRAN model 1s shown in Figure 2. The solid elements (HEXA1, HEXA2, WEDGE and

TETRA) and boundary condition element (HBDY, type AREA4) are used. The conductivity of the material
1s specified on a MAT4 card. Temperatures are specified at the outer boundary with SPC cards.
Punched temperature output 1s placed on TEMP bulk data cards suitable for static analysis.

Another variation of the problem is shown i1n Figure 3. Solid of revolution elements (TRIARG
and TRAPRG) and boundary condition element (HBDY, type REV) are used. The conductivity of the
material and the convective film coefficient are specified on a MAT4 card The CHBDY card references
a scalar point at which the ambient temperature is specified using an SPC card. An SPC1 card 15

used to constrain the temperature to zero degrees at gridpoints on the outer surface.

C. Theory

The mathematical theory for the continuum 1s simple, and can be solved 1n closed form. The

differential equation is

1 2 Uy _
¥ 3 (rks;) =0 (1)
The boundary conditions are
aU
“kE= = H(U, - U) at r =1y, (2)
and or a 1
u=20 atr =r, (3)
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The solution is
HUa
ulr) = K77y + H in(rp/r)) r(ry/r)

288.516 &n(2/r)

D. Results

A comparison with the NASTRAN results is shown in Table 1.

Table 1. Comparison of Theoretical and NASTRAN Temperatures for Heat Conduction in a Washer.

Theoretical NASTRAN Temperatures NASTRAN Temperatures
r(radius) | Temperatures (Solids)* (Rings)*
1.0 199.984 202.396 199.932
1.1 172.486 173.904 172.448
1.2 147.381 148.833 147.355
1.3 124.288 124.783 124.269
1.4 102. 906 102.852 102.894
1.5 83.001 82.913 82.992
1.6 64.380 64.306 64.375
1.7 46.889 46.832 46.886
1.8 30.398 30.356 30.397
1.9 14.799 14.773 14.798
2.0 0.000 ‘ 0.000 0.000

*These are the average temperatures at a radijus.
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Figure 1. Washer Analyzed 1n Heat Conduction Demonstration Problem
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Notation

H1 is a hexahedron, 1ID
T4 is a tetrahedron, ID
W9 is a wedge, ID

6 is a grid point, ID

Elements and Grid Points
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Figure 3. Section of a pipe, modeled with ring elements
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RIGID FORMAT No. 1, Static Analysis

Thermal and Pressure Loads on a Long Pipe Using Linear [sovarametric El-uents (1-13-1)
Thermal and Pressure Loads on a Long Pipe Using Quadratic Isoparametric Elements (1-13-2)
Thermal and Pressure Loads on a Long Pipe Using Cubic Isoparametric Elements (1-13-3)

A. Description

These problems demonstrate the use of the linear, quadratic and cubic isoparamecric solid
elements, IHEX1, IHEX2 and THEX3, respectively. A long pipe, assumed to be 1n a state of plane
strain, 1s subjected to an internal pressure and a thermal gradient in the radial direction The
structure modeled 1s shown 1n Figure 1. The finite element NASTRAN models for each of the elements

are shown 1n Figures 2, 3 and 4.

8. Input
1. Parameters:

“inner = a = 4 in. (radius to the inner surface)
Touter = b = 5 in. (radius to the outer surface)
£ = 30.x10° psi (Young's Modulus)
v = 0.3 (Poisson's Ratio)
a = 1.428 x 107° {thermal expansion coefficient)
p=7.535 x 107" 19§§%5i (mass density)
p = 10 psi " (inner surface pressure)
T1 = 100.0°F (inner surface temperature)
TO = 0.0°F (outer surface temperature)

2. Boundary Conditions:

ug = 0 at all points on the right side

ug = 0 at all points on the left side

u, = 0 at all points on the bottom surface
u, = 0 at all points on the top surface
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3. Loads:
Subcase 1,

p =10 ps1 (internal pressure)

Subcase 2,
(T:-T )
= 1.0 by . 100 5
Ty = o (7)) = o787 In(3) » where r 1s any radius.
a
C. Theory

1. Subcase 1

The normal stresses due to the pressure load (Reference 24) are obtained by

_.a’* p , _pa?

0:
r (b2-a?) r? (bz_az)
o = a®* p . pa’ ,
S (b2-a?) r? (b2-a2)
2
and o, = 2y —22
(b*-a?%)

where r 1s the radius and all shearing stresses are zero.

The displacement 1n the radial direction is

u = (1-2v) (1+v) , _pa? s U+v) 1 pa?b?
E

r (b2-a2) E r (b2-a2)

and all other displacements are zero.

2. Subcase 2

The stresses in the radial and tangential directions due to the thermal load
(Reference 24) are given by

ET. - 2 2
o =t m® - —2— -2y 1n(§)] ,
r 2(1-9)n(3) L (b%-a?) r
ET. [ 2 2
- and oy st 1o - —2— 1+ Dy n (—tal)]
2(1-v)1n(3) L (b2-a?) r?
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The stress in the axial direction is obtained via the procedure contained 1n the
reference as

oET.

1 2a%y b b
R Y - ELL X n(2) - 2 In(=
°z 2(1-v)]n(%) [v (b2-a?) “(a) "(r)]

Al11 shearing stresses are zero.

The displacement in the radial direction 1s

T: 2.2
1+ v i 1 a‘b b
u = o -1 >~ ]n(_)
r T+ v 1"(2? { r [Z(bz-az) a ]

b 2a2 b
+ 7 [ 2 1n(3) + 1+ (1-2v) < 1 (—tﬁ; 1n(-a—)>]}

Results

Representative displacements and stresses for the finite element results com-
pared to theoretical predictions are plotted in Figures 5 and 6. Note that five
IHEX1 elements were used along the radial thickness whereas one element was used for
each of the IHEX2 and IHEX3 cases. Two values for the stress occur at the boundary

of two adjacent IHEX1 elements resulting 1n a sawtooth pattern.
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Figure 1. Long pipe with pressure and thermal loads.
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Figure 2. Model of section using forty IHEX1 elements.
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Figure 3. Model of section using two IHEX2 elements.
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(b) Radial deflections, thermal load.

Figure 5. Deflection comparisons.
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Stress, psi

Stress, psi
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Figure 6. Stress comparisons.
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RIGID FORMAT No. 1, Static Analysis

Static Analysis of a Beam Using General Elements (1-14-1)

A. Description

This problem demonstrates the use of general GENEL elements having various types of 1input
format in the static analysis of a cantilever beam subjected to tension and bending. The beam
consists of five GENEL elements and one BAR element as shown 1n Figure 1

The GENEL elements are constructed as follows:

GENEL Element Approach Matrix Size {u g} [s]
] Flexibility 3 No No
2 Stiffness 6 No No
3 Stiffness 3 Yes Yes
4 Stiffness 3 Yes No
5 Flexibility 3 Yes No
B. Input

. 1. Parameters

2 = 6.0 m (length)

E = 6.0 N/m? (modulus of elasticity)
V = 0.3 (Poisson's ratio)
A = 1.0 m® (cross-sectional area)
I = .083 m* (bending moment of inertia)
Fo= 1.0N (axial load)
Py = 1.0 ¥ (transverse load)
C. Theory

The stiffness matrix for the BAR element in 1ts general form 1s given in section 8 of the
NASTRAN Programmer's Manual.
Define [Z] as the matrix of deflection influence coefficients (flexibility matrix) whose terms
are {”i} when {ud} 1s rigidly constrained,
[K] as the stiffness matrix,
{S] as a rigid body matrix whose terms are {"1} due to unit motions of {ud} , when all {f1} =0,

. {f;} as the vector of forces applied to the element at {”1‘} ,
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and {fd} as the vector of forces applied to the element at {ud}. They are assumed to be statically
related to the {fi} forces, i.e., they constitute a nonredundant set of reactions for the element.

If transverse shear is neglected and the beam is confined to motion in the X-Y plane, then

where

and

where Au = uy - Ujs 1.€., the difference between the dependent displacement degree of freedom

[K] = 0

(sl =

{f]} = [K] {ui} ,
L] |
{f.} =35V, {u,} =
1 Ml 1
0 0 ] [ 6
12€] 6l | = | o
23 22
6L 4EL 0
9z T - L
_
1
I 0 0
Fl = o & 4
Lo 4 2
0 ru | B 0
1 AuX = 0 1
0 1 K 0

{ud} and the indepandent displacement degree of freedom {u1}.

D.

(for the 1nput values) are

and

Results

The theoretical maximum deflection of the cantilever beam subjected to tension and bending

Sx

2]
AE

= 1.0 m (tension)
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3
sy = %%T = 144.0 » (bending)

These results are obtained by NASTRAN.

%} “
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Figure 1. NASTRAN General Element model.
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RIGID FORMAT Mo. 1, Static Analysis

Axisymmetric Cylinderical Thick Shell Subjected to Asyrmetric Pressure Loading
(1-15-1)

A. Description

This problem demonstrates the use-of elements TRAPAX and TRIAAX in the analysis of asymmetri-
cally loaded solids of revolution The structure, jllustrated 1n Fiqure 1, consists of a circular

cylindrical shell loaded with a uniform external pressure over a small square area.

The cylindrical shell wall is assumed to be simply sunported, 1.e., the radial! and circumferen-

tial deflections and the hendina moments are zero at the ends.

The upper half of the structure is modeled as shown in Figure 2. Trapezoidal elements having
small and large dimensions, are used in the vicinity of the lToad and away from the load, respectively.
A transition area, between the two trapezoidal configqurations, is modeled with triangular elements

to illustrate their use.

The loads and deflections, not reauired to be axisymmetric, are exnanded 1n Fourier series
Qith respect to the azimuthal coordinate. Nue to the one nlane of symmetry of this nroblem with
resoect to the ¢ = 0 pnlane., the deflections are represented by a cosine series selected bv the
AXISYM Case Control card. The hiahest harmonic used, 1N, 1s defined on the AYIC Rulk Nata card.

The oressure load 1s defined usina PRESAX bulk Nata cards.

R. Input

1. Parameters:

ry = 15 1n. (Averaqge radius)
t = 1 in. {Thickness)
£ = 45 in. (Lenath)
2c = 3.75 in. (Load Lenath)
B = N.125 radians (Load Arc (B = c/ra))
E = 66666.7 ps1  (Modulus of Elasticity)
v = 0.3 (Poi1sson's Ration)
n = 10 (Harmonics)
2 Loads

p = 7.111711 psy (Pressure)
2

=
"

14.063 in (Area of Load (A = 4c?))
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3. Supports:

Simply supported at the ends- u. = 0, u¢ = 0
Symmetry at the midplane: u, = 0
C. Theory

Theoretical results for this problem are taken from Reference 20, n. 568. The following

theoretical values occur at the center of the load (z = %, ¢ = 0):

u, = 272 égL = 0.0272 1n. (Rad1al Deflection {1nward))

a

M¢ = 0.1324 pA = 13.24 in-1b/an (Circumferential Bending Moment)

M7 = 0.1057 pA = 10.57 1n-1b/in {Longitudinal Bending Moment)

Fqb = -2.6125 gﬂ = =17.42 1b/in {(Circunferential Membrane Force)

a
F. = -2.320 PA 15.27 1h/1 (Lonaitudinal Memhrane Force)
. -2. r, = -15. n nattudinal Membrane Forc
Theoretical stresses on the 1nside and outside walls at this point (z = %3 é = 0) are

computed as follows:

FZ 6MZ 47.95 ps1  (Inside Wall Longitudinal Stress)
g = — 4+  —F = -
z t t2 -78.89 ps1  (Outside Wall Longitudinal Stress)
F M 62.02 ps1  (Inside Hall Circumferential Stress)
o = Tt C
¢ t -96.86 ps1  (Outside Wall Circumferential Stress)
D. Results

Figure 3 shows thz NASTRAN radial deflection at the center of the load as a function of the
number of harmonics selected for the solution. As can be seen, the solution 1s near convergence
with ten harmonics.

Figure 4 shows stresses, o, and o, , through the shell wall, at the center of the load. Ten

¢
harmonics shows very good convergence to nearly the theoretical values computed above. However,
seven harmonics would result 1n relatively poor convergence even through Figure 3 indicates the
displacement was close to convergence. Thus, displacement convergence alone may be an 1nvalid

1ndicator of an adequate solution.
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Figure 1.

Cylindrical shell loaded by a uniformly distributed load
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Figure 3. Radial deflection at center of Toad.

1.15-5 (3/1/76)



Stress, psi
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Figure 4. Stresses at center of load.
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RIGID FORMAT No. 1, Static Analysis
Fully Stressed Design of a Plate with a Reinforced Hole (1-16-1)

A d

A. Description

A flat plate with a reinforced hole in the center is optimized for stresses due to a uniform
end load. Restrictions on the minimum thickness are maintained. The plate 1s shown 1n Figure 1
and the finite element 1dealization 1s 11lustrated in Figure 2. This problem has been investigated
by G. G. Pope (Reference 21).

Due to symmetry, only one quadrant 1s modeled. Due to the membrane load all rotations and
normal displacements are constrained. The QDMEM and TRMEM elements are used for the plate and R@D
elements for the reinforcement around the hole.

The problem demonstrates several features unique to fully stressed design capability in NASTRAN.
These features are:

1. Elements with no Timmits on the range of the property change, 1.e., the R@D has no
PLIMIT data.

2. Elements with a lower limit on the property optimization card. A1l membrane elements are
required to have a resultant thickness which must not be less than a minimum thickness.
This minimum is determined from the thickness obtained when the plate without a hole is
subjected to an end load at a prescribed stress limit.

3. Elements whose stress is not inspected but being in an area of nearly uniform stress have

their properties changed due to another element's stress. Element 7 has no stress request
but does have the same property 1dentification number as element 17. This type of optimiza-

tion can save computer time at the expense of a design that may not be truely optimized.

4. A property whose value depends on the maximum stress of two elements. Elements 5 and
15 have the same property card. This option may be necessary if insufficient core 1s

allocated.
5. Temperature dependent stress limits for material 3

6. Using one stress 11mit only. The membrane elements use the maximum principle shear
only. This is 1/2 the major principle stress allowed. This stress limit was chosen
to better model the octahedral Timit 1n Reference 21.

The rod elements use only the tension and compression stress appropriate to the given

property, namely area.

7. An additional load case that was not included i1n the fully stressed design because a
stress request was not made. The second subcase may be considered a displacement
veri1fication of this load case.
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B. Input

1. Parameters

= 0.3 (Poisson's ratio)

% = 30.0 in (total length)

w = 20.0 in (total width)

d = 10.0 in (hole drameter)

ty = 3.348 1in {(i1nitial plate thickness)

A0 = 1.674 1n2 (1nit1al rod cross sectional area)
E = 30.x10° psi (modulus of elasticity)

v

te

= 1.0 1n (lower limit for plate thickness corresponding to a 25.0x10° maximum
principle stress)

2. Boundary conditions:

ony = 0 plane, uy = 0 (symmetry)
on x = 0 plane, u, = 0 (symmetry)
all points u, = ex = ey = ez = 0 (permanent constraints)
3. Loads-
First subcase: uniform load, Fio = 25.0x10°% 1b/1n
Second subcase: at grid points 69 and 79, F]2 = -1000.0 1b
at grid point 78, F,, = -2000.0 1b

12

(contact load on rim of hole - displacement check only)

C. Theory

The theoretical approach developed for the property optimization technique in NASTRAN is
contained in the NASTRAN Theoretical Manual, Section 4.4. This technique 1s a fully stressed
design approach. A mathematical programming technique 1S used 1n referenceIZ] from which the
example problem was taken. |

The two techniques might be expected to give similar results when the same model 1s used.
However, reference 21 employs elements which allow varying properties and stresses while NASTRAN
elements allow only constant properties and constant stresses. Somewhat different geometry is
used in the NASTRAN model, 1.e., the use of quadrilateral elements for illustration. Additional

features of the NASTRAN model are discussed in items 3, 4 and 5 of Part A.
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D. Results

The optimization process in this problem is terminated at 5 iterations. The initial weight to

final weight ratio is 2.70 compared to Pope's results of 2.63.

nondimensional properties of the elements around the arch.

Tables 1 and 2 show the optimized

Note that the results from reference

21 are averaged to provide an equivalent constant property element for comparison.

Table 1. Optimized Nondimensional Thickness Comparisons.
Reference 21
Element Original Average NASTRAN
t/te t/te t/te
37 3.348 1.24 1.00
38 3.348 1.00 1.04
39 3.348 1.00 1.00
46 3.348 2.10 1.14
47 3.348 1.34 2.00
57 3.348 3.32 ,1.34
59 3.348 3.19 4.40
67 3.348 4.58 5.47
68 3.348 3.26 1.00
69 3.348 4.52 5.49
Table 2. Optimized Nondimensional Area Comparisons.
Reference 21
Element Original Average NASTRAN
A/dte A/dte A/dte
101 .1674 .0249 .00716
102 .1674 .0238 0.0 effective
103 .1674 .0636 .05019
104 .1674 .1880 .1839
105 .1674 .3540 . 3287

1.16-3 (3/1/76)




Pt g

Plane of Symmetry

~— Portion of structure
modeled

IR
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RIGID FORMAT No. 2, Inertia Relief Analysis

Inertia Relief Analysis of a Circular Ring Under Concentrated and Centrifugal Loads (2-1-1)

A. Description

This problem 11lustrates the use of inertia relief analysis to solve a free-body problem. In
inertia relief the structure 1s under constant acceleration due to the applied loads; the reac-
tions to the applied load are due to the masses of the structure. Ficticious, nonredundant, sup-
port points must be provided to define a reference system attached to the body. The displacements

of the body are measured relative to the supported coordinates.

The basic problem is illustrated in Figure 1. The structure consists of a spinning ring with
a constant radial load applied to one point. The rotational velocity creates centrifugal loads
and the point load causes inertia reactions. The actual dynamic motion of the whole structure
ijs a cyclic motion of the center point coinciding with the rotation of the ring. The displace-
ments measured by the inertia relief analysis, however, will be the static motion relative to the

support point displacements.

The displacements are defined in a cylindrical coordinate system (u] = U, Uy = u¢, uy = uz).
The elements used are BAR elements with a Targe cross-sectional area to minimize axial deforma-
tions. The BARs were offset a uniform radial distance from the grid points to demonstrate the

offset option of the BAR element.

B. Input
1. Parameters:
R = 10.0 {radius at end of BAR elements)

I = 10.0

(

R] 11.0 {Radius at grid points)
(Bending dinertia)
(

p = 0.5 (Mass density)

E = 1000. (Modulus of elasticity)

A = 1000. (Cross-sectional area)

f = 1.59 cps (Rotational velocity, w = 1.0 radians per second)
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3.  Supports-
a) The U q direction 1s supported to restrict vertical translation.
b} The u¢ 1 and u¢ 13 directions are supported to restrict rotation and horizontal
b s

translation.

[

4. Grid Point Weight Generator Input:

Weight and moment of 1nertia are defined relative to point 19.
C.  Answers

1. The Element Forces and Moments may be solved by the following analysis, as explained in

Reference 7, Chapter 12.

a) Using symmetry the structure may be defined by the free-body diagram in figure 2.

The static equilibrium equations at any angle are:

A = Ao cés¢ + ud sing (Ax1a1 Force)
v = Ao sing + ud cosod (Shear)
M = M+ vr[u(l - cos¢ - ¢ sinp) + AO(1 - cos¢)] (Bending Moment)

0

b) Using energy and Castigliano's Theorem:

R T2
U—§E—IfMd¢
0

U
————:O
o
U
@ =0

(¢} |

These are the deflections at the bottom which are fixed. The resulting two equa-

tions are used 1n step c.

c¢) Solving the equations 1n (b) gives the redundant forces:-
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d) Adding a dummy load and solving the problem with the above boundary conditions gives

the displacement due to the point load:
3 2
_ FRY /=
£ = mrE -1

e) The axial stress and radial displacement due to the centrifugal Toad is:

o = R W% = 5.0 x 102
w
32
= 2pRw”
S, E 1.0
f) The total result of summing the two loads 1s:
THEORY NASTRAN
§ = Displacement ur,13 1.75 1.734
Mo = Moment BAR #1, end A -79.5 -80.48
‘ M, = Moment BAR #12, end B -238.5 -236.0

g) The structural mass characteristics as calculated by the grid point weight

generator are:

Theoretical NASTRAN
XCG = 11.0 from point 19 ' 11.0
Mass = w x 107 = 3.14159 x 10° 3.1326 x 10%
- - T 6 _ 6 6
Ly “ly = 5 x10 1.5708 x 10 1.5663 x 10
I, =mx 108 = 3.14159 x 10° 3.1326 x 10°

{Inértias are about center of gravity)

NASTRAN gives slightly different answers due to the polygonal shape of the finite element model.
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szi& Element 1D
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Note: Grid points are offset from center line of ring.

Figure 1. Ring under concentrated and centrifugal loads.
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Figure 2.

F = 50 — Applied Load

A(9)

M) MV(9)

u — Inertia Loads per Length

Free body diagram of loads in bending ring.
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RIGID FORMAT NO. 2, Inertia Relief Analysis

,» (2-2-1)
,» (2-2-2)
Windm 11 Panel Sections for Automated Multi-stage Substructuring, Run 3, (2-2-3)

Windm111 Panel Sections for Automated Multi-stage Substructuring, Run 1
2
3
Windmiil Panel Sections for Automated Multi-stage Substructuring, Run 4, (2-2-4)
5
6
7

Windm 11 Panel Sections for Automated Multi-stage Substructuring, Run

, (2-2-5)
, (2-2-6)
s (2'2-7)

Windmill Panel Sections for Automated Multi-stage Substructuring, Run
Windmill Panel Sections for Automated Multi-stage Substructuring, Run
Windmill Panel Sections for Automated Multi-stage Substructuring, Run

A. Description

This problem illustrates the fully automated multi-stage substructuring capability of NASTRAN.
The single structure model for the Windmill panel problem is shown in Figure 1. Indicated 1n this
figure are the three basic substructures used for the analysis. As can be seen, the entire structure
can be composed of only these three components, thus taking advantage of symmetry. The detailed
1dealizations for the three basic substructures are shown 1n Figures 2 and 3. These figures show
the three separate basic coordinate systems and the local coordinate systems for each of the three

basic substructures created.

0f the total of seven runs involved, three Phase 1 runs are made, one for each basic substruc-
ture, using Rigid Format 2 in order to generate mass matrices. The combination and reduction to
the final model is accomplished 1n seven distinct Phase 2 steps, plus eight equivalence operations.
The sequence of combination steps taken 1s illustrated in Fiaures 4a and 4b. Fiqure 5 details the
points retained in the "analysis set" following the Phase 2 Guyan reduction. A static solution,
Rigrd Format 1, 1s obtained for each of the three load cases specified. Run 4 produces actual

plot output. Runs 5 and 6 demonstrate the Phase 3 data recovery for two of the basic substructures.

A seventh run 1s made to extract normal modes using Rigid Format 3 for the same reduced struc-

ture shown 1n Figure 5.

B. Input

1. Parameters.

r = 50.0 1n (outer radius)

0
ry = 10.0 1n (1nner radius)

t = 0.11n {plate thickness)

E = 10 x 106 psi (modulus of elasticity)
v = 0.25 (Poisson's ratio)
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2. Boundary Conditions:

A1l points u_ = ex =9, =6_ =0 (permanent constraint)

z y z
u, = 0 at HUB grid points 13, 19, 37, 43
uy = 0 at HUB grid points 1, 7, 25, 31
3. Loads:

First Subcase: centrifugal force due to unit angular velocity
Second Subcase: unsymmetric load - right panel in tension, bottom panel in
compression, F = 100 uniformly distributed over each loaded edge

Third Subcase: F = 1.0 applied at HUB grid point 4 1nward radially

4. Substructuring Parameters:

SPF(1) = SPF0,950 $ CDC
SPF(1) = FT18,950 $ IBM
SPF(1) = INPT,950 $ UNIVAC

PASSWQRD = DEMP
PPTIONS = K, M, P

C. Theory

This problem is designed to 11lustrate the use of automated multi-stage substructuring. No

closed form solution 1s available. Results are compared with non-substructured NASTRAN solutions.

D. Results

The solutions of the final reduced structure using both Rigid Format 1 and Rigid Format 3 are
in excellent agreement with the non-substructured solutions. Displacements at selected points and
eigenvalues are compared in Table 1. The values presented were obtained from executions on IBM
equipment. Values obtained from CDC and UNIVAC are of the same order of magnitude with slight

differences attributable to round-off of very small numbers.
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Fighre 1. Windmill model, basic substructures.
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Figure 2. Hub substructure.
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Figure 3. Windm11 section substructures.
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Step I - Generates VANETQP
Root 2 Root 1
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Step Il - Generates RPQTTPP
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Step III - Generates RING and VANERGT

Figure 4. Sequence of combination steps.
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Step V - Generates WINDMILL

Figure 4. Sequence of combination steps {continued).
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Figure 5. Solution grid points for windmill model.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Vibration of a 10x20 Plate (3-1-1)
Vibration of a 20x40 Plate (3-1-2)
Vibration of a 10x20 Plate (INPUT, 3-1-3)
Vibration of a 20x40 Plate (INPUT, 3-1-4)

A. Description

This problem demonstrates the solution for natural frequencies of a large-order problem. The
structural problem consists of a square plate with hinged supports on all boundaries. The 10x20
model, as shown in Figure 1, uses one half of the structure and symmetric boundary constraints on
the mid-Tine in order to reduce the order of the problem and the bandwidth by one-half. The 20x40
model is the same dimensions with a finer mesh., Both configurations are duplicated via the INPUT

module to generate the QUAD1 elements.

Because only the bending modes are desired, the in-plane deflections and rotations normal to
the plane are constrained. The inverse power method of eigenvalue extraction is selected and both

structural mass density and non-structural mass-per-area are used to define the mass matrix.

Table 1 lists the NASTRAN and theoretical natural frequencies as defined in Reference 8.
Figures 2 and 3 are comparisons of the first two mode shapes. The modal masses for these modes

are equal to one-fourth the total mass or m; = 10302.2 .

An undeformed structure plot is executed without plot elements. This is expensive on most
plotters since all four sides of each quadrilateral are drawn. Plot elements are used to draw
an edge only once and to draw selected coordinate lines (every second or fourth line depending on

the model used) for the deformed plots of each eigenvector.

B. Input

1. Parameters:

2 = w = 20.0 (Length and width)

I = %— (Moment of inertia)

t = 1.0 (Thickness)

E = 3x 107 (Modulus of elasticity)
v = 0.30 (Poisson's ratio)

p = 206.0439 (Mass density)
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Boundary constraints:

along x

along y

along x

along y

E1genvalue

0, ey = 0
0, u, = ey
10, u, = 6,
20, u, = ey

extraction data:

Method: Inverse power

Region of interest: .89 <

Number of desired roots:

Number of estimated roots:

f<1.0

3

1

Symmetric Boundary

Hinged Supports

Table 1. Natural Frequency Comparisons, cps.
Mode | Theoretical | NASTRAN | NASTRAN
No. 10x20 20x40
1 .9069 .9056 | -9066
2 2.2672 2.2634
3 4.5345 4.5329
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©

Figure 1. 10 x 20 Half plate model.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Vibration of a Compressible Gas in a Rigid Spherical Tank (3-2-1)

A.  Description

This problem demonstrates a compressible gas in a rigid spherical container. In NASTRAN a
rigid boundary is the default for the fluid and, as such, no elements or boundary lists are

necessary to model the container.

Aside from the NASTRAN bulk data cards currently implemented, this problem demonstrates the

use of the hydroelastic data cards: AXIF, CFLUID2, CFLUID3, and RINGFL.

¢
The lowest mode frequencies and their mode shapes for n = 0, 1 and 2 are analyzed where n 1s

the Fourier harmonic number. Only the cosine series 1s analyzed.

B. Model

1. Parameters

R=10.0m (Radius of sphere)
0=1.0 x 1073 Kg/m®  (Mass density of fluid)
B =1.0 x 10° Newton/m® (Bulk modulus of fluid)

2. Figure 1 and 2 show the finite element model. The last 3 digits of the RINGFL identifica-
tion number correspond approximately to the angle, 6, from the polar axis along a

meridian.
C. Theory
From Reference 18, the pressure in the cylinder is proportional to a series of functions:

Iy (0

n nsm
% m P, (cos 8) cos n¢ , m= 01,2 (1)
where: Qn m Pressure coefficient for each mode
Ok
X Nondimensional radius = = T

Wk Natural frequency for the kth mode number and mth radial number in radians
per second

J Bessel function of the first kind
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r radius

a =,/%— speed of sound in the gas

P; associated Legendre functions
] meridinal angle

0 circumferential angle

n harmonic number

m number of radial node lines

The solution for X and hence Ok is found by the use of the boundary condition that the flow

through the container is zero.

where R is 'the outer radius.

i
Th1is results in zero frequency for the first root. Multiple roots for other modes can be
'seen in Table 1. The finite element model assumes different pressure distributions 1n the two

angular directions which causes the difference in frequencies.

D. Resuits

Table 1 and Figure 3 summarize the NASTRAN and analytic results for the lowest nonzero root
in each harmonic. Table 1 1ists the theoretical natural frequencies, the NASTRAN frequencies, the
percent error in frequency, and the maximum percent error in pressure at the wall as compared to
the maximum value. Figure 3 shows the distribution of the harmonic pressure at the wall versus
the meridinal angle. The theoretical pressure distributions correspond to the Legendre functions
Pg {cos 6), Pl (cos 8), and Pg (cos 6) which are proportional to cos 6, sin ¢, and sinze respec-

tively.
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Table 1. Comparison of NASTRAN and analytical results.

Natural Frequency (Hertz) Pressure
Harmonic
i Max. % Error
Analytical | NASTRAN % Error at Wall
0 33.1279 33,2383 0.33 1.19
1 33.1279 33.2060 0.24 0.47
2 53.1915 53.3352 0.27 0.91
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Figure 2. Gas filled rigid spherical tank model.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis
Vibration of a Liquid in a Half-Filled Rigid Sphere (3-3-1)

A. Description

The model is similar to Demonstration Problem No. 3-2 except that a hemispherical fluid model
with a free surface 1s analyzed. Additional cards demonstrated are the free surface list (FSLIST)
and free surface points (FREEPT). The effective gravity for the fluid is found or the AXIF card.

The fluid is considered incompressible.
The lowest three eigenvalues and eigenvectors for the cosine and sine series of n = 1 are

analyzed, where n is the harmonic order.

B. Input

1. Parameters

g = 10.0 ft/sec? (Gravity)

R = 10.0 ft (Rad1us of hemisphere)

o = 1.255014 1b—sec2/ft4 (Flurd mass density)

B = (Bulk modulus of fluid, incompressible)

2. Figure 1 shows the finite element model.

C. Results

Reference 17 gives the derivations and analytical results. In particular, the parameters

used 1n the reference are:

e = 0 (half-filled sphere) ,

sz

—6—-(dimension1ess eigenvalue)

Table 2 of Reference 17 lists the eigenvalues, A1, Az, and A3 for the first three modes.
Figure 13 of Reference 17 shows the mode shapes.

The analytic and NASTRAN results are compared in Table 1. The frequencies are listed and
the resulting percentage errors are given. The maximum percent error of the surface displacement,

relative to the largest displacement, is tabulated for each mode.
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The free surface displacements may be obtained by the equation:
u = 1 , (2)

where p is the pressure at the free surface recorded in the NASTRAN output. Note that, since an
Eulerian reference frame is used, the pressure at the original (undisturbed) surface is equal to
the gravity head produced by motions of the surface. Special FREEPT data cards could also have
been used for output. Since the results are scaled for normalization anyway, the harmonic pres-

sures may be used directly as displacements.

Figure 2 1s a graph of the shape of the free surface for each distinct root. Both analytic
and NASTRAN results are scaled to unit maximum displacements. Because the cosine series and the
sine series produce 1dentical eigenvalues, the resulting eigenvectors may be linear combinations
of both series. In other words the points of maximum displacement will not necessarily occur at
¢ = 0° or ¢ = 90°. Since the results are scaled, however, and the results at ¢ = 0 are propor-

tional to the results at any other angle, the results at ¢ = 0 were used.

Table 1. Comparison of natural frequencies and free surface mode shapes from the reference and

NASTRAN.
Mode Natural Frequency (Hertz) Mode Shape
Number i
NASTRAN| Maximum
Reference | NASTRAN % Error| % Error,e
1 0.1991 0.1988 -0.1 e<1 %
2 0.3678 0.3691 0.3 e < 2.6%
3 0.4684 0.4766 1.8 e<4d %
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Figure 2. Free surface mode shapes.
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RIGID FORMAT No. 3, Real Eigenvalue Analysis

Acoustic Cavity Analysis (3-4-1)

A. Description

This problem 11Tustrates the use of NASTRAN to determine the acoustic modes 1n a cavity
containing both axisymmetric regions and evenly spaced radial slots. The solution is based
on an analogy between pressure and displacement, and between fluid particle acceleration and

internal structural force described i1n the Theoretical Manual.

B. Input

The finite element model for the motor cavity of the Minuteman III, Stage III, is shown 1in
Figure 1  As may be seen, 1t consists of s1x slots and a long, slender central cavity of
irregular shape. The model consists of AXIF2, AXIF3, and AXIF4 finite elements in the central

cavity, and SLPT3 and SLOT4 finite elements i1n the slotted region

C. Results

The vibration mode frequencies for harmonic n = 0 as determined with NASTRAN are shown in
Table 1. Also shown are the vibration mode frequencies as determined with an acoustic model

and reported 1n Reference 19.
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Table 1. Natural frequencies for the third stage, Minuteman III, motor cavity.

Frequency, Hz
fode NASTRAN | FExpert-
mental
1 0.0 | 0.0
2 90.1 93.0
3 199.5 200.0
4 310.4 312.0
5 388.0 388.0
6 449.1 466.0
7 512.8 518.0 ’ '
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RIGID FORMAT No. 3 (APP HEAT), Nonlinear Heat Conduction
Nonlinear Heat Transfer in an Infinite Slab (3-5-1)

A. Description

This problem demonstrates NASTRAN's capability to solve nonlinear steady state heat conduction
problems. The infinite slab is subjected to uniform heat addition per unit volume. There 1s no
heat flux on one face and the other face 1s kept at zero degrees. The conductivity 1s temperature
dependent. This is a one dimensional problem, since there 1s no temperature gradient parallel to

the surfaces of the slab

8. Input
The NASTRAN model 1s shown 1n Figure 1 Linear elements BAR, CPNR@D, R@D and TUBE with areas

of 7 square units and boundary condition element HBDY (P@INT) are used. The heat addition 1s spec-
ified on a QVPL card and 1s referenced 1n Case Control by a LPAD card. The area factor for the
HBDY 1s given on the PHBDY card and heat flux 1s zero. The imitial temperatures are given on a
TEMPD card and referenced in Case Control by a TEMP (MATERIAL) card. The conductivity 1s specified
on a MAT4 card and is made temperature dependent by the MATT4 card referencing table TABLEM3. The
convergence parameter, the maximum number of iterations and an option to have the residual vector
output are specified on PARAM cards. The temperature at the outer surface is specified by an SPC

card. Temperature output 1s punched on TEMP bulk data cards for future, use 1n static analysis

C. Theory .
The conductivity, k, 1s defined by

k(T) =1+ T/100 ,
where T 1s the temperature.

The heat flow per area, q, 1S

q(x) = -k &= -1+ 1/100) I (1)
The heat input per volume, 9, affects the heat flow by the equation '
da(x) _ .
dx 9y (2)

A convenient substitution of variables in Equations (1) and (2) 15
u=-fa(x)dx = (T + T/200) . (3)
Differentiation and substitution for q in Equation (2) results in the second-order equation

in u:
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2%
dx
From the following boundary conditions
u=0 at x=2
and %¥-= 0 at x=0 ,
the solution to Equation (4) is
AEUNTLANS

Therefore the solution for the temperature is
1
L T=100 [-1 % (14 (87 - XB)/100)2]

Since heat is flowing into the system, the positive temperature solution will occur.

D. Results

A comparison with NASTRAN results is shown in Table 1.

Table 1. Comparison of theoretical and NASTRAN temperatures for nonlinear heat conduction in

an infinite slab.

Grid Theoretical NASTRAN
Point Temperature Solution
1 73.20 73.13
2 69.56 69.53
3 58.11 58.11
4 36.93 36.93
5 0.00 0.00
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Figure 1. Slab modeled with linear elements
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RIGID FORMAT No. 3, Approach Heat,
Nonlinear Radiation and Conduction of a Cylinder (3-6-1)

A. Description

This problem illustrates the solution of a combined conduction and radiation heat transfer
analysis. The model 1s a two-dimensional representation of a long cylinder subject to radiant
heat from a distant source. The shell has internal radiation exchange, external radiation loss,

and conduction around the circumference.

B. Input

The NASTRAN Model, shown 1n Figure 1, uses RPD elements to represent the circumferential heat
flow and HBDY elements to represent the inside and outside surfaces. The radiation exchange
factors for the inside of the cylinder are defined on the RADMTX data cards. The incoming vector

flux 1s defined on the QVECT data card. The model parameters are:

R = 2.0 ft (Radius of shell)

t = .001 ft (Thickness)

9 = 20.306 ft (Ax1al length)

g=0 = 0.1 (Emissivity and absorptivity)

q, = 425 BTU/(ft-hr) (Source flux density)

k = 94.5 BTU/(hr-ft-°F) (Conductivity of shell)

g = 174 x 1078 BTU/(ftz-hr-°R4) (Stefan-Boltzmann radiation constant)
C. Theory

A closed-form solution to this problem i1s not available. However, the solution may be
validated by checking the global net heat flow, the local net heat exchange, and the estimated

average temperature.

An estimate of the average temperature may be obtained from the equations:

/2
Q;, = ©q,R J cos 8 do = 2afRq, , (1)

in
-n/2

and Oyt = eaT? (21R2) , (2)
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where Q1n is the total input from the source, Qout is the net flux radiated outward and T is

the average absolute temperature.

Since the net heat flow must be zero in a steady-state analysis, Equations (1) and (2) are

equated to obtain:

o

D. Results

The resulting temperature distribution around the circumference of the shell 1s shown in
Figure 2. The average value of temperature from the NASTRAN results shows 57.87° F. The est1-
mated average temperature from Equation (3) above is 68°. The difference 15 due to the non-uniform

radiation effects.

A second check is provided by computing the global net heat flow error in the system. Summing
the net flow into each element gives a net heat flow error several orders of magnitude less than
the total heat from the source. As a further check, the local net heat flow error at grid point 2
was calculated by summing the contributions from the connected elements. The heat flow terms

shown in Figure 3, as calculated by NASTRAN, were:

59.420 (Flow through R@D #2 (flux - area))

L
N
i

03 = 97.862 (Flow through RPD #3 (flux - area))

Qqp = -133.564 {Inside radiation flow into HBDY #42)
Qg3 = -85.352 (Inside radiation flow into HBDY #43)
Qupp = -305.418 (Outside radiation 1nto HBDY #22)
Qr23 = -257.930 (Outside radiation into HBDY #23)
Qv22 = 481.157 (Vector flux input to HBDY #22)

Q3 = 381.848 (Vector flux input to HBDY #23)

The net flow error into grid point 2 is-

-
Q = 7 (Qupp * Qo3 + Quap + Qg3 * Qupp + Qyp3) + 0y - Q3

This error isless than 1% of the total heat flow input at the point.
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o grid points
—— rod elements
--- heat elements

. Figure 3. Illustration for heat exchange computation at a grid point.
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RIGID FORMAT No. 4, Differential Stiffness Analysis
Differential Stiffness Analysis for a Hanging Cable (4-1-1)

A. Descrintion

Advanced versions of MASTRAN provide an iteration procedure for nonlinear differential stiff-
ness (or geometric stiffness) solutions. As described 1n Section 7 of the NASTRAN Theoretical
Manual, the internal loads are recalculated for each iteration. The changes in direction of these
1nternal loads are used to correct the nrevious solution. External loads retain their oriainal

-~

orientation, however, they do travel with the qrid noint.

A classical nonlinear geometric problem is that of a hanaina cable which assumes the shape of
a catenary when a unmiform gravity load is aoplied. As shown 1n Figure 1, the model 1s given a
circular shape 1nitially. The resulting displacements of the arid points, when added to their

oriainal locations provide a close approximation to the catenary.

B. Input
The NASTRAN model consists of nine BAR elements connected to ten grid points evenly spaced
on a quarter circle. The bending stiffness of the elements is a nominally small value necessary

to provide a non-singular 1inear solution.

The axial stiffness of the elements is a sufficiently large value to limit extensional dis-

placements. The basic parameters are

R = 10.0 ft. (1nit1al radius),
w = 1.288 1b/ft (Weight per length),
and L = 6bm

C. Theory
With reference to the coordinate system 11lustrated on the next page, the basic differential

equation, obtained from Reference 25 is

dy' wW2\1/2
T L RS0 L M
where
w is the weight per unit length,
H 1s the tension at x = 0,
and y' = dy/dx 1is the slope of the resulting curve.
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(symmetric)

Dividing both sides of Equation (1) by the radical term and integrating, results in the equation,

(2)

sinh'1y' = %% + G

Since y' =0 at x = 0, C] =0 and
Vo e WX .
y' = sinh (TT) (3)

Integrating again and applying the known boundary condition y = 0 at x = O, the equation for the

shape is
_H WXy _ (A)
Y =y cosh (TT) 1 -

Since the length of the cable is known but the horizontal force, H, 1s unknown, the two may

be related by 1ntegrating for the length, L, which is
sinh —2 (5)

where Xy 18 one-half the distance between supports. If w, Xgs and L are qiven, Equation (5) is
solved for H (for Xy = 10.0, w/H = .1719266) and Equation (4) is evaluated to obtain the actua’
shape. However, for purposes of comparison to the NASTRAN solution the location of several points
fixed on the string are determined. For a given position, s, aiong the cable, the coordinates x

and y would be

x = % sinh ”! (%?) , (6)

and y = %[(1 ¥ (%2)1/2 - 1] . (7)
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D. Results

The following table compares theoretical results to those of NASTRAN.

measured from the 1nitial shape at selected locations.

Deflections are

Table 1. Comparison of NASTRAN Results to Theoretical Predictions.
Grid S u, - Horizontal uy - Vertical
Point
Theory NASTRAN Theory NASTRAN
1 13.962 -.4856 -.4739 -.1119 -.0408
13 10.472 -.8043 -.7666 -.2286 -.1269
15 6.981 -.5175 -.4612 .0030 .1470
17 3.491 -.1110 -.0877 .5698 .7973
19 .0 .0 .0 .9338 1.2167
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(a) Initial quarter circle modeled.

____ Theoretical
--- NASTRAN

(b) Final catenary shape obtained.

Figure 1. Hanging cable.
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RIGID FORMAT No. 5, Buckling Analysis
Symmetric .Buckling of a Cylinder (5-1-1)

A. Description

This problem demonstrates the use of buckling analysis to extract the.critical loads and the
resulting displacements of a cylinder under axial loads. The Buckling Analysis rigid format solves
the statics problem to obtain the internal loads 1n the elements. The internal Toads define the
differential stiffness matrix [Kd] which is proportional to the applied load. The load factors,

Ay which causes buckling are defined by the equation:
DIk + K10y = 0

where [K] is the linear stiffness matrix. This equation is solved by the Real Eigenvalue Analysis
methods for positive values of Ai. The vectors {u1} are treated in the same manner as in real

eigenvalue analysis.

The problem is 11lustrated in Figure 1, 1t consists of a short, large radius cylinder under a
purely axial compression load. A section of arc of 6 degrees 1s used to model the axisymmetric

motions of the whole cylinder as shown 1n Figure 2.

A1l three types of structure plots are requested: undeformed, static and modal deformed. The
undeformed perspective plot 1s fully labeled for checkout of the problem. The modal orthographic
plots specify a range of vectors {ui} which includes all roots. A longitudinal edge view of the

model is also plotted for easy identification of mode shapes.

B. Input
1. Parameters *
R = 80 (Radius )
h = 50 (Height)

E = 1.0 x 104 (Modulus of elasticity)
v = 0.0 (Poissons rat o)
t = 2.5 (Thickness)

I, = 1.30208 (Bending 1nertia)
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2. Loads:
p = 1.89745 x 10/3° ARC

3. Constraints:
a) The center point (17) 1s constrained 1n u,.

c) All points are constrained 1n u,, 8, and 0.

6’
d) The top and bottom edges are constrained 1n Uy

4. Eigenvalue Extraction Data:
a) Method: Unsymmetrical Determinant
b) Region of Interest: .10 <X < 2.5
¢) Number of estimated roots = 4
d) Number of desired roots = 4

e) Normalization: Maximum deflection
C. Answer

The solution to this problem is derived in Reference 9, p. 439. For axisymmetric buckling, ‘

the number of half-waves which occur when the shell buckles at minimum load are:

y 2
o = hyf12(1-v?)
™ R2t2

where m 1s the closest integer to the right-hand values.

The corresponding critical stress 1s: ,

5 Et’m?n®_ | Eh?
cr 12h2(1-v2) R2m272

Using the values given, the lowest bulkling mode consists of a full sine wave. The NASTRAN results

and the theoretical solutions for the critical load for each buckling mode are listed below:

punber of | nastran | ANALYTICAL
m
1 2.2889 | 2.2978
2 99424 | 1.0
3 1.2784 | 1.26402
4 2.007c | 186420
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Figure 1. Cylinder under axial load.
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RIGID FORMAT No. 6, Piecewise Linear Analysis

Piecewise Linear Analysis of a Cracked Plate (6-1-1)

A.  Description
This problem 11lustrates elastic-plastic deformation of a thin plate uniaxially loaded across
a crack at the center of the plate shown in Figure 1. The same problem was solved by J. L. Swedlow

(Reference 10).

Precewise Linear Analysis involves loading the plate in increments and recalculating the

material properties for each element as a function of the eTement stresses for the last load

increment.
B. Input
1. Parameters:

L 9.0 inch (Total length of plate)

W = 6.0 inch (Total width of plate)

W = 2.0 inch (Total width of crack)

t = 1.0 inch (Thickness)

Eo = 10.8 x 106 1b/1n2 {Modulus of elasticity at zero strain)
.3333 (Poi1sson's Ratio at zero strain)

\Y
0

2. Lloads: o is the applied load (Figure 1)

Load Factor o 1b/in? Load Factor o 1b/in2
1 2,300 14 7,000
2 2,500 15 7,500\
3 2,800 16 8,000
4 3,100 17 8,500 ‘
5 3,400 18 9,000 ’
6 3,700 19 9,500
7 4,000 20 10,000
8 4,400 21 10,500
9 4,800 22 11,000
10 5,200 23 11,500
1 5,600 24 12,000
12 6,000 25 12,500
13 6,500 26 13,000
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3. Constraints:

a) A1l grid points are constrained i

n u,, GX, y

8., and ez.

b) Grid points along the Y-axis are constrained in the Uy direction.

c) Grid points along the X-axis from the crack tip (x = 1.0) to the edge (x = 3.0) are

constrained in the uy direction.

C. Modeling Techniques

The finite element model, shown 1n Figures 2 and 3, utilizes two planes of symmetry so only

one guarter of the structure (the first quadrant) is modeled.

dependent materials, duplicating the model 1n Reference 10.

A1l membrane elements use stress-

The octahedral stress used in the determination of the material properties was defined in

Reference 10 as:

<
To = Mlimt

_/2_2 2 2
o _§'¢6x - 00y oyt 30,y
The octahedral strain was defined by.
o (14, )/E,
EO-

where

] 3 1/0.
e = 9.716 x 10 (Tolrlimit - 1)

Timit = (2/3) opynig

32
%1imt 11,500 1b/in

TO(H\)O)/E0 *tep

3964

>
o T11qptl

NASTRAN uses an equivalent uniaxial stress-strain curve defined by

3//2 T,

o/E + /2 £p
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This curve is shown 1n Figure 4. A complete discussion of the equations may be found 1n

Reference 10.

D. Answers

Comparisons of analytical and calculated stresses 1n the elements along the axis of the crack
are given in Figures 5 and 6. The analytical results, based on linear analysis, are compared with

the calculated results at the end of the first load increment.

Figures 7 through 9 show the displacement at the center of the crack and stresses for elements
near the tip of the crack for all load factors. In the NASTRAN analysis, the octahedral stress 1s
calculated for each Toad factor as a function of the current values of the stresses. In
Reference 10 the current value of the octahedral stress 1s obtained by accumulating incremental
values of the octahedral stress. This procedure results in a generally more flexible model as can
be seen from the displacements 1n Figure 7. The resulting differences 1n calulated stresses are

particularly noticeable at the higher load levels.
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Figure 1. Cracked plate with uniaxial Toad.
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Triangular membrane element identification numbers.
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Figure 4. Uniaxial stress-strain curve.
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Figure 7. Crack opening vs. 1load at center of crack (x = 0.0).
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3.

E Element identification
—— Reference 10
©®  NASTRAN

g -1b/in.” x 10°

Fqure 8. cx/E vs. o, four elements at tip of crack.
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E Element 1dentification
R Reference 10
© NASTRAN

Figure 9. cry/'o' vs. g, four elements at tip of crack.
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‘ RIGID FORMAT No. 7, Complex Eigenvalue Analysis - Direct Formulation

Comptex Eigenvalue Analysis of a 500-Cell String (7-1-1)
Complex Eigenvalue Analysis of a 500-Cell String (INPUT,7-1-2)

A. Description

This problem demonstrates both the use of direct complex eigenvalue analysis and the various
methods of supplying damping to the structure. The simulated model is a string under tension having
uniform viscous and structural damping as shown in Figure 1. The stiffness due to tension 1s modeled
with scalar springs, the mass is represented by scalar masses, and the viscous damping is provided by
scalar dampers connected on one end to the points and fixed on the other end. The structural damp-
1ng is provided by the scalar springs and an overall damping factor, 93- The INPUT module is used

to generate the scalar springs, dampers and masses.

Complex Eigenvalue Analysis is used to solve the following general matrix equation:
([MIp® + [BIp + [K]){u} = O

where
‘ p 1s the complex root
[M] 1s the complex mass matrix
[B] is the complex damping matrix for viscous damping

[K] is the complex stiffness matrix which contains imaginary components representing
the structural damping

According to Reference 11, Chapter 6, the differential equation for this model 1s:

where
T 1s the string tenston (In this problem T is complex)
u 1s the mass per unit length

R 1is the damping per unit‘]ength

The finite difference representation for this equation is

d?u; du,
it B B 1% D

. "
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The finite element model which corresponds to this equation 1s shown in Figure 2. Its

equation is:
miug + bou, + (1+ig)ki(ui_] - 2ui + ui+]) = P

where

is the structural damping.

B. Input

1. Parameters

ki = ]07 - scalar springs

moo= 10.0 - scalar masses

bi = 6.28318 - scalar dampers

9, = 0.05 - structural element damping
g3 = 0.05 - overall damping parameter
N = 500 - number of scalar springs

2. Constraints

The end scalar springs are fixed on the outer ends so constraints are unnecessary.

3. Etgenvalue Extraction Data
Method: Determinant
Region of Interest: 5 <w <16, -5.9 <0< 4.5 where p =0+ 1w |

Normalization: Maximum defliection

C. Answers:

The natural frequency for an undamped string, according to Reference 11, 1s:
. omyT Eﬂ\/jl
“n '3 N m,

u

Its deflection shape 1s:

_ nmx
u(x) =  sin —
2
or
_ nm
$,p = SN R
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The modal masses are:

Substituting the real eigenvectors and eigenvalues into the complex equation for complex

roots we obtain for each mode, n:

b
2 )
M P + (—ml)an + (1+iglyy M = 0

The solution is:

AL oad
P = -35 ¢ /) (1+ig)w,

A comparison of the complex roots 1s given in Table 1. The eigenvectors, which are the same

as the real eigenvectors, are nearly exact for the finite element model.

Table 1. Comparison of NASTRAN and Analytic Complex Roots

Real Natural Theoretical Roots NASTRAN Roots
n Frequency | (radians per second) | (radians per second)
1 1.0 -.6285 * 6.2753i -.6283 + 6.28321
2 2.0 -.9425 + 12.5621 -.9419 + 12.57&
3 3.0 -1.2566 = 18.8501

- - PO
g



3 Viscous Medium

u = Mass/Length

Figure 1. String with damping.

I

.

i+l

\

Figure 2. Finite element model of string.
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RIGID FORMAT No. 7, Complex Eigenvalue Apnalysis - Direct Formulation

Third Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder (7-2-1)
Fifth Harmonic Complex Eigenvalue Analysis of a Gas-Filled Thin Elastic Cylinder (7-2-2)

A. Description

This problem demonstrates the use of symmetry to analyze specific harmonics of a fluid-filled
structure. The problem to be solved consists of a cylindrical section filled with a compressible
fluid. The end conditions for the cylinder and the fluid are two planes of antisymmetry, perpen-
dicular to the axis. These end conditions correspond to the conditions that exist at periodic
intervals along a long, fluid-filled pipe vibrating in one of its vibration modes. The antisym-
metric boundary for the structure is defined by cunstraining the motions which lie in the plane.
An antisymmetric boundary for the fluid corresponds to zero pressure. This may be modeled, in

NASTRAN, by defining the plane of antisymmetry as a free surface with zero gravity.

The lowest natural frequencies and mode shapes for the third and fifth harmonics are analyzed
separately. For the third harmonic, the structure is defined by a section of a cylinder having an
arc of 30 degrees or 1/12 of a circle. The fifth harmonic analysis uses a section having an arc
of 18 degrees or 1/20 of a circle. The longitudinal edges, which were cut, are planes of symmetry

and antisymmetry in order to model a quarter cosine wave length.

The bulk data cards used are; AXIF, BDYLIST, CFLUIDZ2, CFLUID4, CPRD2C, CQUAD1, EIGC, FLSYM,
FSLIST, GRIDB, MAT1, PQUAD1, RINGFL, and SPCI.

B. Input

The finite element model for the third harmonic 1s shown in Figures 1 and 2. Parameters used

are:
B = 2.88 x 105 1b/n? (Bulk modulus of fluid)
- -2 2,. 4 . .
Pe = 1.8 x 107 1b-sec”/in (Fluid mass density)
pg = 6.0x 1072 'Ib-sec2/1'n4 (Structure mass density)
E = 1.6 x 105 1b/1'n2 (Young's modulus for structure)
G = 6.0 x 104 1b/1'n2 (Shear modulus for structure)
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a = 10.0 inch (Radius of cylinder)
& = 10.0 inch (Length of cylinder)
h = 0.01 inch (Thickness of cylinder)

The model for the fifth harmonic is similar to the third harmonic model except that the angle
covered by the structure is 18° instead of 30°. This 1s accomplished by simply removing the struc-
tural elements and boundary GRIDB points corresponding to the two right-hand layers of structure

{between 18° and 30°). The FLSYM, FSLIST and SPC1 cards are changed to reflect the 1/20 symmetry.

C. Theory
The derivations and results for this problem are described in Reference 16. The results for

various dimensionless parameters are listed. The particular parameters for the problem at hand

are:
n = ff;' = 300.0 , ~
Ps
cC = g;f- = 2.5 s

where n is the ratio of fluid mass to structure mass. C is the ratio of the wave velocity in the
structure material to the wave velocity in the fluid. @ 1s the factor describing static pressuri-

zation, Po.

The basic assumptions for this analysis are:

1. Thin shell theory is used for the structure. The bending moment terms 1n the force

equilibrium equations are ignored in the results.
2. The fluid is nonviscous, irrotational, and small motions are only considered.

This particular problem becomes relatively easy to solve since the mode shapes for the fluid
1n a rigid container and the modes of the structure with no enclosed fluid have the same spatial
function at the interface. Each mode of the fluid 1s excited by only one mode of the structure

and each mode of the structure is excited by one mode of the fluid. The pressure in the fluid is ‘
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assumed to be a series of functions:

_ fwt . T2
P = P e cos‘n¢ sin Qp (rsw) s (1)

where Qn is a Bessel Function or a modified Bessel Function of the first kind.

The characteristic shapes of the structure are a series of the form:

I

u = Ae'® cos ne sin %%— . (2)

¢

1

where u is the displacement normal to the surface. The fundamental momentum equation for the

fluid flow at the boundary is:
p - [w
WP(r)e, = -pgii 7, (3)
|

>
where e, is a unit vector 1n the radial direction.

The forces on the structure at the boundary are:

1 .
Pa) = 3 822‘ - g hi , (4)

wnere the function F] is defined by the differential equation on the surface:

2
4
v R =E_ah_a_g . (5)
9z
The solution for F.I 1s obtained by assuming that
F, = B e19t cos neé sin%% . (6)

Combining Equations 1 through 6 results in the re]ét1onships:

3Q. (r,w)
2 _ n‘'?
pw A = n T | (7)
r=a
2.4 )
Q,(a,w) P = ___gg_Eh_Z + o ho? | A (8)
4f{w a 2
)
2
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Equation (7) is a statement of the continuity of displacement. Equation (8) states the
Jance of the pressures. The above equations may be solved by 1terating on w. Reference 16

rovides solutions for w over a wide range of parameters.

J. Results

The analytic and NASTRAN eigenvalues are Tisted in Table 1. The corresponding errors in the
eigenvalues are tabulated and the maximum errors in displacement at the container wall are given

as the percentage of the maximum value. The container displacements in the radial direction at

¢ = 0.0 are compared in Figure 3.

Table 1, Comparison of analytical and NASTRAN results.

Natural Frequency (Hertz) Mode Shape

Harmonic
; Max. % Error
Analytical | NASTRAN | % Error in Radial Displ.

3 1.579 1.595 1.0 ~ 0.0

5 1.011 1.049 3.4 0.5 :
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RIGID FORMAT No. 8, Frequency Response Analysis - Direct Formulation

Frequency Response of a 10x10 Plate (8-1-1)
Frequency Response of a 20x20 Plate (8-1-2)
Frequency Response of a 10x10 Plate (INPUT, 8-1-3)
Frequency Response of a 20x20 Plate {INPUT, 8-1-4)

A. Description

This problem illustrates the use of the direct method of determining structural response to
steady-state sinusoidal loads. The applied load is given in terms of complex numbers which refiect
the amplitudes and phases at each selected frequency. The steady-state response of the structure at
each frequency 1s calculated 1n terms of complex numbers which reflect the magnitudes and phases of

the results. Both configurations are duplicated via the INPUT module to generate the QUAD] elements.

The particular model for this analysis is a square plate composed of quadrilateral plate
elements as shown 1n'Figure 1. The exterior edges are supported on hinged supports and symmetric
boundaries are used along x = 0 and y = 0. The applied load 1s sinusoidally distributed over the
‘panel and increases with respect to frequency. Although the applied load excites only the first
mode, the direct formulation algorithm does not use this shortcut and solves the problem as though

the load were completely general.

B. Input
1. Parameters:
a=b=10 - length and width of quarter model
t=2.0 - thickness

E=3.0x10" - Young's Modulus

v =0.3 - Poisson's Ratio
u = 13.55715 - nonstructural mass per area
2. Loads:

The frequency dependent pressure function is:

- UES ny
P(x,y,f) = F(f) cos 5 cos 5f
where F(f) = 10. + 0.3f

«©
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3. Constraints:

Only vertical motions and bending rotations are

allowed. The exterior edges are hinged

supports. The interior edges are planes of symmetry. This implies:
=0, =0
along x ey
along y = 0, ex =0
along x = a, u, =96, = 0
along y = b, u, = ey =0
all points, u, = uy =6,= 0

D. Answers

The excitation of the plate is orthogonal to the theoretical first mode.

the equations are given in Reference 8. The equations of response are:

uz(f) = F(f)
(2m)2u(f2 - £2)

where f] 1s the first natural frequency (10 cps).

The following table gives the theoretical and NASTRAN results:

Frequency uz’] X 104
cps Theory | 10x10 NASTRAN |20x20 NASTRAN
0 1.868 1.874
8 6.435 6.49
9 12.489 12.69 12.538
10 o 824.92
1 -11.833 -11.67
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RIGID FORMAT No. 9, Transient Analysis - Direct Formulation

Transient Analysis with Direct Matrix Input (9-1-1)

A. Description

This problem demonstrates the capability of NASTRAN to perform transient analysis on a system
having nonsymmetric stiffness, damping and mass matrices. The problem also 11lustrates the use of
time step changes, selection of printout intervals, application of loads, initial conditions, and

a simple curve plot package.

The matrices and loads used are actually the product of a transformation matrix and diagonal
matrices. The resulting answers are easily calculated while the input matrices are of general

form. The matrix equation solved is:
(MI{u} + [BIL{4} + [KI{u} = ({P(t)}

The problem is actually four disjoint single degree of freedom problems which have been

transformed to a general matrix problem. Figure 1 illustrates the problems schematically.

The resulting diagonal matrices are premultiplied by the matrix:

x] =

The answers for the disjoint problem above will be the same as for the general matrix problem

since the general case:
[xI(Mm 100y + (B Ja) + [K 1)} = [X1(P}
has the same results as the disjoint case:

[M 100} + [B 20} + [K Ju} = (P}

9.1-1 (3/1/76)



Input

1. The actual matrix input 1s:

_—
20 -1 0 0
-10 3.0 -4 0
Ml =
0 -1.5 8 0
0 0.0 -4 0
— )
0o -15 0 0
0 30 -24 0
[B] =
0 -15 28 -2
0 0 -2 4__J
2000 0 0 0
-1000 0 -100 @
kKl =
0 0 200 -20
| 0 0 -100 40 |

2. The imitial conditions are:

Uy = 0 Uip = 10.0
Uy S 0 Uy T 0.5
Upp = 0 Ujp = 0
U3 = -10.0 Uj3 0
3. At t =1.0 a step Toad is applied to each point. The load on the uncoupled problems is:
0
1.5
Po = 4.0
20




PR S T

The transformed load is:

-1.5

-1.0
{P} = [X]{Po} =
-13.5

36.0

C. Answers

The results are responses of single degree of freedom systems. Equations are given in

Reference 12, Chapter 9.

0<t<1.0, 4t = ,005
Uy = sin 10t Uy = 10 cos 10t
up = 0.05(1 - e”1%%) . 0,510t
2 = 0 Uy, =0
ug = -l0e7 i, = 100e710t

t>1.0 , At = ,015

Uig = sin 10t

upp © 0.05(1 - e']Ot) + 0.1{t - 1.1 + .1e']0(t'1))
Y12 © &M{l-fukwﬂbn+%smuunﬂ

Uy = S0e710t 4 L mT0(t1)

Figures 2 through 5 are tracings of the NASTRAN plots of the functions. The deviations of
the NASTRAN results and the theoretical response are due to the selection of time steps. For
instance point 11 has a time constant equal to two time steps. The initial error in velocity due
to the first step causes the displacement error to accumulate. Using a smaller time step has

resulted in much better results.
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Figure 2. Point 10, displacement.
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RIGID FORMAT No. 9, Transient Analysis - Direct Formulation

Transient Analyisis of a 1000 Cell String, Traveling Wave Problem (9-2-1)
Transient Analysis of a 1000 Cell String, Traveling Wave Probiem (INPUT, 9-2-2)

A. Description

This problem illustrates the ability of NASTRAN to perform time integration studies using
the structural matrices directly. At each time step the applied loads, the structural matrices,
and the previous displacements are used to calculate a new set of displacements, velocities, and
accelerations. Initial displacements and velocities are also allowed for all unconstrained coor-

<
dinates. The INPUT module 1s used to generate the scalar springs and nasses.

The structural model consists of a 1000 celi -tring under constant tension modeled by scalar
elements. The string 1s given an 1mt1al condition at one end consisting of a triangular shaped
set of initial displacements. The wave will then travel along the string, retaining 1ts initial

shape. The ends of the string are fixed causing the wave to reflect with a sign reversal.

Figure 1 illustrates the problem and the scalar element model for each finite increment of

length.
B. Input
1. Parameters:
kK, = & = 107 - scalar spring rates
1 AX
m, = pAx = 10 - scalar masses
N = 1000 - number of cells
where

T is the tension
Ax 1s the incremental length

u 1s the mass per unit length

9.2-1 (3/1/76)



2. Loads:

The initial displacements are;

uy = .2 Ujp = 1.8
us = .4 Uy = 1.6
Uy = .6
u; = 0, 17> 21
Uy = 2.0 Upyy = 0.0

C. Answers

As shown in Reference 11. Chapter 6, the wave velocity ¢ is,

k.
c = t\Jﬁ; = sax\/ ﬁl = %1000 points/umt time
j

The in1t1al displacement may be divided into two waves, traveling in opposite directions.

The first wave travels outward; the second wave travels toward the fixed support and reflects with
a sign change. The theoretical and NASTRAN results are compared in Figure 2, when both waves have

traveled their complete width.

9.2-2



u3 Ug Uggy

2

Y1000

x}._\
U = Mass/Length

1000 Cell String

Yi-1 Uy i+

— _ — ————
é—0—n—0- o 7>/

m§-1 ky m, ki+1 Mi+]

Finite Element Model

Figure 1. Representations of dynamic string.

9.2-3

B 4‘%2

3



Deflection

2.0
~— Theoretical
©  NASTRAN
1.0
0 >\‘ —g5 X
-1.0
t = 0.021
_2.0 | I | I { | I I |
4 8 12 16 20 24 28 32 36 40

Point Number

Figure 2. Traveling Wave on string.

9.2-4 (12-1-69)



RIGID FORMAT No. 9, Transient Analysis - Direct Formulation
Transient Analysis of a Fluid-Filled Elastic Cylinder (9-3-1)

A. Description

The fluid-filled shell, used for analysis of the third harmonic, in Demonstration Problem

No. 7-2 1s subjected to a step change in external pressure at t = 0 of the form

P = P, sin %5- cos no

The fluid is assumed 1ncompressible in order to obtain an analytical solution with reasonable
effort. The harmonic used is n = 3.

In addition to the cards of Demonstration Problem No. 7-2, DAREA, PRESPT, TLPAD2, and TSTEP

cards are also used. Selected displacements and pressures are plotted against time.

B. Input

The finite element model is shown in Figures 1 and 2. Parameters used are:

B = o (Bulk modulus of fluid - incompressible)
. 22,4 .
g = 1.8 x 10°° 1b=sec”/in (Flurd mass density)
-2 2,. 4
P = 6.0 x 10°° 1b-sec™/in (Structure mass density)
E = 1.6 x 105 1b/in2 (Young's modulus for structure)
G = 6.0 x 104 1b/1'n2 (Shear modulus for structure)
a = 10.0 inch (Radius of cylinder)
2 = 10.0 inch (Length of cylinder) '
h = 0.01 inch (Thickness of cylinder wall)
Py = 2.0 (Pressure load coefficient)
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C. Theory

The theory was derived with the aid of Reference 16 as in Demonstration Problem No. 7-2.

Since the fluid is incompressible, it acts on the structure like a pure mass.

bending stiffness, the equation of force on the structure is:
_ . 1
pg = mem)w + =55,

where:

p. is the loading pressure on the structure (positive outward).

S

m = psh is the mass per area of the structure.
me 1s the apparent mass of the fluid.

w 1s the normal displacement (positive outward)

The function F is defined by the equation,

e - En 2%
2 3

Neglecting the

(2)

The spatial functions of pressure, displacement, and function F may be written in the form

- in T2
ps = po sin N cos no .
. TZ
wo= w, sin== cos no .
. TZ
F o= F051n . COs no

where Pys Yo and Fo are variables with respect to time only.

Substituting Equations 3 into Equation 2 we obtain:

¢ Mo
niN2 |2

[T + (;; ]

Substituting Equations 3 and 4 into Equation 1 we obtain:

9.3-2 (9/1/70)
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E

P = (mme) iy + ———y (52
azb +(ﬂ&)]
ma
The incompressible fluid is described by the differential equation:
72 p = 0 . (6)

Applying the appropriate boundary conditions to Equation 6 results in the pressure distribu-

tion:

= in 12 m
p = p,.sin T cos{ng) In( . ) R (7)
where In is the modified Bessel function of the first kind and p, is an undetermined variable. The

balance of pressure and flow at the boundary of the fluid, with no structural effects, is described

by the equations:

R=
(=]
|
1
o
-
—
3
~~
=[3
N—r
-
—
o0
~

=
I
'
1
C

. _ -1 f E
oe Wy = -1 (F)P, . (10)
Eliminating Pr with Equations 8 and 10 gives the expression for apparent mass, mc:
o .
_ i fTo -
p, = I (TT) —ro mew, - (11)
11'(1@)
£ "n\ 2
Substituting the expression for Me from Equation 11 into Equation 5 results in a simple single

degree of freedom system. When the applied loading pressure is a step function at t = 0,

9.3-3 (9/1/70)



P .
W = 1% (1 - cos wt) sin 1%3 cos no s (12)
where
w =\ K .
|'nT
ana
- Eh ,
2 n\212
a[1+ Fa-)z]
and
Ta
2 In(if)
L AT
I _E_)

D. Results

A transient analysis was performed for the case n = 3 on the model and various displacements
and pressures were output versus time up Lo one second. The theoretical frequency 1s calculated to
be 1.580 Hertz and the period is 0.633 seconds. The displacements at two points on the structure
(Point 91 is located at ¢ = 0, z = 5.0; Point 94 1s located at ¢ = 18°, z = 5.0) are plotted

versus time in Figure 3.

The maxamum error for the first full cycle occurs at the end of the cycle. The ratio of the
error to maximum displacement is 4.75%. Changes 1n the time step used in the transient integration
Ia]gorithm did not affect the accuracy to any great extent. The most probable causes for error were
the mesh si1ze of the model and the method used to apply the distributed 1oad. The applied load was
calculated by multiplying the pressure value at the point by an associated area. The "consistent
method" of assuming a cubic polynomial displacement and integrating would eliminate the extraneous
response of higher modes. The method chosen in this probiem, however, is typical of actual

applications.
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RIGID FORMAT ﬁo. 9 (APP HEAT), Linear Transient Heat Transfer Analysis
Plate with Suddenly Applied Flux and Edge Temperature (9-4-1)

A. Description

The time history of the temperature in a long thin plate initially at zero degrees is analyzed
using NASTRAN's transient heat analysis capability. At time t=0 a heat flux is applied on one sur-
face of the plate and simultaneously the temperature along the edges 1s 1ncreased. These tempera-
tures are maintained at a value by using a large heat flux through a good conductor to ground. The
problem 1s one dimensional since 1t is assumed that no temperature variation exists along the length
or through the thickness. Since the plate is symmetric about the center plane, only one half of the

plate is modeled.

B. Input

The plate is shown in Figure 1 and the idealized NASTRAN model, shown in Figure 2, 1s repre-
sented by five R@D elements going from the centerplane to the edge. The conductor-ground arrange-
ment is modeled by an ELAS2 element and an SPC card referenced 1n Case Control. The 1njected heat
flux at the edge 1s specified using DAREA and TLPADZ cards which are referenced 1n Case Control
through a DLPAD card. The surface heat flux 1s specified on a QBDY1 card and references the TLPAD2
card. The time step intervals at which the solution is generated are given on the TSTEP card. The
in1tial temperature conditions are specified on the TEMPD card and referenced in Case Control by an

IC card. The heat capacity and conductivity are given on the MAT4 card.

C. Theory

The analytic solution 1s

® n
0.5 [1 - % > (-1) e '(Z"H)Ztcos(Znﬂ)nx/z] +

n=0 2n+]
T(Xat) =
© _ n - 2
50 [(1-x2) - é; 355 %“%%TTE e ~(2n+1) tc05(2n+1)nx/2]
‘n’ =
D. Results

A comparison of theoretical and NASTRAN results 1s given 1n Table 1.
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Table 1. Theoretical and NASTRAN temperatures.
GRID(X)
10(0.) 12(.2) 14(.4) 16(.6) 18(.8) 20(1.)

Theory* 0. 0. 0. 0. 0. 0.
0

NASTRAN 0. 0. 0. 0. 0. 0.

Theory* 31.282 30.222 26.952 21.204 12.562 .500
1

NASTRAN 30.6M41 29.612 26.433 20.826 12.362 .500

Theory* 43.430 41.776 36.780 28.344 16.316 .500
2

NASTRAN 43.117 41.478 36.527 28.160 16.218 .500

Theory* 47.916 46.026 40.396 30.971 17.696 .500
3

NASTRAN 47.755 45.890 40.280 30.887 17.652 .500
© Theory 50.500 48.500 42.500 32.500 18.500 .500
0 term only.
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Figure 1. Long thin plate.
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RIGID FORMAT No. 10, Complex Eigenvalue Analysis - Modal Formulation
Rocket Guidance and Control Problem (10-1-1)

A. Description

This problem, although a simplified model, contains all of the elements used in a linear
control system analysis. The flexible structure, shown in Figure 1, consists of three sections:
two sections are constructed of structural fimte elements; the third section 1s formulated in
terms of its modal coordinates. A sensor is located at an arbitrary point on the structure and
connected to a structural point with multipoint constraints. The measured attitude and position
of the sensor point 1s used to generate a control voltage for the gimbal angle of the thrust
nozzle. The nozzle control 1s in itself a servomechanism consisting of an amplifier, a motor,
and a position and velocity feedback control. The nozzle produces a force on the structure due
to its mass and the angle of thrust. The motion of any point on the structure 1s dependent on

the elastic motions, free-body motions, and large angle effects due to free-body rotation.

The guidance and control system is shown in block diagram form i1n Figure 2. The definitions
for the variables and coefficients along with values for the coefficients are given 1n Table 1.
The use of the Transfer Function data card (TF) allows the direct definition of the various rela-

tions as shown in Figure 2.

B. Modeling Techniques

1. A section of the structure 1s defined by its modal coordinates by using a modification

of the method given in the NASTRAN Theoretical Manual. The algorithm is given as

follows: SN
\i
Define £;» i=1,n - modal deflections scalar points
u. - grid point components used as nonredundant supports for modal
test. These may or may not be connected to the rest of the
structure.
U - grid point components to be connected to the remaining

structure (not U points)
i=1,n - rigid body component degrees of freedom for the nonzero modes
The relations between these variables are defined by using.multipoint constraints with

the following relationships:
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a) {u} = [¢c1]{£]}+ [Dcr‘]{ur}

¢ . is the angular deflection of point u. for mode 1i. Dcr 1s the deflection of

ci
point ue when the structure is rigid and point u. 1s given a umt deflection.

b) ) = KT ) = (6

[Ki] is a diagonal matrix. Each term K1, the modal stiffness, is defined as:
~ 2
K = muw (w1 #0)

where m, s the modal mass and w, is the natural frequency 1in radians per second. [H]

is determined by the forces on the support points due to each nonzero eigenvector

e = D H (w, # 0)

¢) Scalar masses and springs are connected to each modal coordinate as shown by

Figure 3a.

d) The structure to be added 1n this problem consists of a simply supported uniform
beam as shown 1n Figure 3b. The support points, Upns are yqe and Y19 The additional
degree of freedom to be connected 1s u. = 816' Four modes are used in the test
problem. The following data 1s used to define and connect the modal coordinates of this
substructure.

The mode shapes are:

The modal frequencies, masses, and stiffness in terms of normal beam terminology are:

2.2
= nm EI_ =
w, = 22 oR n=1,2, 3,4
- pAL
My 2
K = n4n4EI
n 223

The forces of support for each mode are:
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_ Eln 3
P, 16) = 1. B
y 3

L

The motion 816 is defined by multipoint constraints:

] nm
16 = 7 W9 - Yie) * L&y

S0

The free-body components of the modes are defined, using multipoint constraints, as:

X (3 1
X, 11
_ ( 223> <E1'n3> 2 2 Y16
X I | 3 ] ]
Q - 3
3 mEI] 3 3 ¥1g )
% 1o
4 4
- e

2. The mass of the nozzle would normally be 1ncluded with the structural modeling. How-
ever, to demonstrate the flexibility of the Transfer Function data, i1t 1s modeled as part of

the guidance system as shown in Figure 4a.

Defining the angle of thrust, y, to be measured relative to the deformed structure, the

forces which result are:

_ 2 o, s .
T o= (It xgm)y +8) -m x ¥

no

Fy = MYy - Xy m (Y +8)) - Fy

Using the thrust force, Fn’ as a constant, the transfer functions are:

2 2 2 -
I sy - T + 1 s Oy - Xy My STy < 0

2 -
+ Fn)Y - Xy mosT 8y = 0

500

—
n

+
x
=
"

where:



3. The large angle motion must be included in the analysis since 1t contributes to the
Tinear terms. The equations of motion of the structure are formed relative to a coordinate
system parallel to the body. As shown in Figure 4b, the accelerations are coupled when the

body rotates.

Since the axial acceleration, X, 1s constant throughout the body, the vertical acceler-

ation at any point, to the first order, 1s:

Yabs T Yrel X0 T Yper * Yo

An extra degree of freedom Yo is added to the problem and coupled by the equations:

n
-n
<

W n 1
Yabs = Yrel * Yo

4. The center of gravity (point 101) and the sensor location (point 100) are rigidly con-
nected to the nearest structural point with multipoint constraints. For instance the

sensor point 1s located a distance of 4.91 from point 8 as shown 1n Figure 4c.

It is desired to leave point 101 as an independent variable point. Therefore point 8

is defined 1n terms of point 101 by the equations:

Yg = Y1 * 49180y

% = %1
C. Answers

A comparison of the NASTRAN compiex roots and those derived by a conventional analysis
described below are given in Table 2. The resulting eigenvectors were substituted into the
equations of motion to check their validity. The equations of motion for a polynomial solution
may be written 1n terms of the rigid body motions of the center of gravity plus the modal dis-

placements. The equations of motion using Laplace transforms are:

ms2 ycg = Fn(e1 +v)

2
Is ecg

f
|
LN
>
-
<



The inertia forces of the nozzle on the structure may be ignored.

The motion of the nozzle, as explained in section B-2, 1s:

52 ~ 52 ?
<B_ +TS+]>Y = (a+bs)ys + (C+d$)95 - 6—9] + —BI—‘y]

(y is defined as the relative angle between the nozzle and the structure.)

The flexible motions at the sensor point, Y and 8> may be defined in terms of the modal

coefficients and the rigid motions of the center of gravity.

s ycg * X2 ecg * g ¢100,1 &

6 = © +
S cq

g ¢100,1 g1

The motions of the nozzle point, in terms of the modal and center of gravity motions are:

Y1 7 Yeg T X ecg

The modal displacements are due primarily to the vertical component of the nozzle force. Their

equation of motion 1s:

where
% i is the deflection of point j for mode 1
% 3 is the rotation of point j for mode 1

m_ 1s the modal mass of mode i
W, is the natural frequency of mode i

& 1s the modal displacement of mode i

Using two flexible modes the characteristic matrix of the problem 1s given 1n Figure 5. The

. determinant of the matrix forms a polynomial of order 10. The roots of this polynomial were

10.1-5



.ed by a standard computer library routine and are presented in Table 2 as the analytical

its. The rigid body solution is also presented.

The differences between the two sets of answers 1s due to the differences 1n models. The
TRAN model produces errors due to the finite difference approximation and the number of modes
;5en to model the third stage. The polynomial solution produces errors due to the approxima-

.18 used 1n the equations of motion as applied to control system problems.

As a further check the first eigenvalue (X = -1.41) was substituted i1ntoj the matrix given 1n
Figure 5 and the matrix was normalized by dividing each row by 1ts diagonal value. The NASTRAN
eigenvector was multiplied by the matrix, resulting i1n an error vector which theoretically should
be zero. Dividing each term in the error vector by 1ts corresponding term in the eigenvector

resulted 1n very small error ratios.

10.1-6




Extra Point
Number

1010
- 1011
1020
1021
1030
1040
1050
1060
1070
1080

Parameters

Ks

Table 1.

8

Value
1.0
500
1414
3.0
500.0
4.25x10°
50
100.0
1.0
16
.28
15.0
7.0
8.5x10

Variables and Parameters

Description

Voltage describing y -

Voltage describing 6

Control voltage for y (Input)

Control voltage for ¢ {Input)

Attitude error function

Nozzle position error

Voltage for Nozzle servo

Torque for Nozzle servo

Nozzle Thrust angle relative to structure

Position increment due to attitude

Description

Servo amplifier gain

Servo gain

Nozzle angular velocity feedback
Distance from nozzle C.G. to Gimbal axis
Inertia of Nozzle about gimbal axis
Thrust of Nozzle

Nozzle mass

Overall voltage-to-angle ratio
Overall voltage to postton ratio
Position feedback coefficient
Velocity feedback coefficient

Angle feedback coefficient

Angular velocity feedback coefficient

Mass of structure T
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Table 2. Comparison of Complex Roots for NASTRAN Modeling vs. Simplified Polynomial Expansion

Rigid Body Model 2 Flexible Modes Model
NASTRAN* POLYNOMIAL NASTRAN POLYNOMIAL
- 540 £ .82 -.522 + .8021 -.507 £ ,819 -.494 + ,8011
-1.68 + 0i -1.74 + 0i -1.41 £ O -1.46 + 01
+.751 £ 5.96 +.774 = 5.981 +.520 + 3.82i +.522 + 3.8

*Not published.
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Figure 1.  Rocket structural model.
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Figure 4. Modeling diagrams.
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RIGID FORMAT No. 10 (APP AERQ), Aeroelastic Analysis
Aeroelastic Flutter Analysis of a 15° Swept Wing (10-2-1)

A. Description

This problem illustrates the use of the aeroelastic analysis to determine flutter frequencies

and mode shapes for an untapered wing having 15° sweep and an aspect ratio of 5.34 as shown in

Figure 1.
B. Input

Bulk data cards used include CAER@1, PAER@1, SPLINE2, SET1, AER@, MKAER@1, FLUTTER, and FLFACT

as illustrated in User's Manual Section 1.11.

C. Theory

Reference 22 specifies the reduced frequency k = .1314 (p.17), frequency ratio w/wa = 0.51]
(p.35) and torsion frequency w, = 1488 (p.17).

The flutter velocity is found from

REFC x w_ X w
REFL o XY

2 )
v =bw, —————— = 5980 n/sec,

where REFC 1s the reference length input on the AERP bulk data card.

The flutter frequency is found from

D. Results

The results obtained are compared with both theoretical results using the modified strip
analysis method and with experimental results. The flutter velocity is in good agreement. (See
Figure 2.) ‘

Frequencies are automatically output while mode shapes used in the modal formulation are
obtained using an ALTER to the Rigid Format following the Real Eigenvalue Analysis Module.

Mode shapes for all points in the model may be obtained by checkpointing the problem using the

Normal Mode Analysis (Rigid Format 3) and subsequently restarting using the Aeroelastic Analysis.
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Figure 2. V-g results for fifteen degree sweep model.
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RIGID FORMAT No. 11, Frequency Response - Modal Analysis

Frequency Response and Random Analysis of a Ten-Cell Beam (11-1-1)

A. Description

This problem demonstrates the frequency response solution of a structure using uncoupled
modal foyrmulation. With modal formulation, the structural degrees of freedom used in the solu-
tion are the uncoupled modal displacements. The solution equations are simple and efficient.

The saving in time, however, is offset by the operations necessary to extract the modes, transform

the loads to modal coordinates, and transform the modal displacements to structural displacements.

This problem also illustrates the various methods of applying frequency response loads.
Loads may be input as complex numbers, with phase Tag angles and/or time lag factors. The loads

may be added together for each subcase.

The structure to be solved consists of a beam with simple supports on the end as described
i Figure 1. The parameters selected produce natural frequencies of 50, 200, 450 and 800 cps.
The applied loads for the three subcases are applied to the center with variations in phase angles,
time lags and input formats. The first two subcases use three loaded points which, in essence,

simulate a load on the center.

Included in the structural representation 1s a "general element" representing the first two
cells of the ten-cell beam. The flexibility matrix, [Z], of the element represents the displace-
ments of grid points 2 and 3 when point 1 is fixed. The ri1gid body matrix, [S], represents the

rigid body motions of points 2 and 3 when point 1 is displaced in the x, z, or ey directions.

The random analysis data consists of a flat power spectral density function ("white noise")
for the three loading subcases. The first subcase spectral density 1S connected to the third
subcase spectral density, simulating two interdependent probability functions. The XY-plotter 1s
used to plot the displacement and acceleration power spectral density function of grid 6 (center
of the beam). The displacement autocorrelation function is also plotted for the same point. All
values are tabulated in the printout. The NASTRAN power spectural density results are compared

against a simplified analytic calculation in Figure 2.

A static analysis restart of the frequency response problem is demonstrated. Gravity and

element enforced deformation loads are used with a change in the single-point constraints.
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Input

1. Parameters:
L= 20 - length
I] = .083 - bending inertia
A = 21.18922 - cross sectional area
E = 10.4 x 106 - modulus of elasticity
p = .2523 x 1073 - mass dens1ty
M = pAL - total mass
2. Constraints:
uy = 6 = eZ =0 - all points
Ugp = Uy = Uy S 0 - frequency response
Ugpg = Uy = Uyqq = Uy S 0 - static analysis

3. Modal Data:

Interval: 40 < f < 1000 cps

Normalization: Modal Mass = 1.0

Number of modes used in formulation: 4

Modal Damping ratio: g = 4 x 1074 f

4. loads, Frequency

Response:

The loading functions for subcase 1 are:

p

z,5

My,S

P2,6 =

p
z,7

My,7 =

50

-100

50 + 100{cos60° + 1 s1n60°)
\—/S-E?%—v

50

100
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The loading for subcase 2 is:

P,5 = 50
M, g = -100
SET 7, T = .005555
P,.7 = 80
M, = 100

The load for subcase 3 is:

PZ 6 = 2[75 + 50i{cos30° - 1 sin30°)] = 200 + 86.61

Note: At f = 30cps the three subcases are nearly 1identical.

5. Random Analysis Data

The nonzero factors for the three subcases are:

S, = 50

Siq = Sa = 50

133 0 < f <100
S,, = 100

S35 = 50

S, = 0, f>100

The time lags selected for the autocorrelation function calculations are:

T = 0.0, 0.001, 0.002, ..... , 0.1

6. Static Loads for Restart

The problem is run first as a frequency response analysis. It is restarted as a static
analysis with the following loads:

Gravity vector: 9, = 32.2

Element Deformation: 8§19 = 0.089045 (expansion)
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C.

Analys1s

1.

The theoretical eigenvalue data, according to Reference 8 is:

n2m? El .
fn = Py =y = 50, 200, 450, 800 ... {natural frequencies)
2m)8
m, = 1.0 {modal mass)
: 1 2
- ig2 NTX Z gin(Mmx) A2 gip(nmX
¢, (x) [g pA sin? = dx] s1n< 2 ) i s1n< 7 ) (mode shape)

The theoretical frequency response at the center point is essentially the response of

the first mode which is:

Us(w) = I (3 = degree of freedom number)

m](w% - w? + ’Igum.l)

At the first natural frequency of 50 cps, the response will be nearly equal to the
response of the first mode. The response at the center point for the three subcases

are:

Subcase 1 and 3

94.764 + 41.033i
(50-f2) + if

The results are:

f Ug (one mode) Ug (NASTRAN)

0 .0413 @ 23.42° .0429 @ 22.9°
30 .0646 @ 22.34° .0668 @ 21.8°
50 2.066 @ 293.42° 2.074 @ 281.5°
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Subcase 2

2 . 23.691(3 + 2c0s2f - 2i sin2f)
6 (50 - £2) + if

Theoretical and NASTRAN results are:

f ug (one mode) ug (NASTRAN)
0 .047 @ 0° .049 @ 0°
30 .0646 @ -22.34° .0668 @ -23.97°
50 1.565 @ 233.4° 1.577 @ 223.0°

3. The random analysis is explained 1n Reference 15. The power spectral response coeffic-

1ents for the three subcases are given by the matrix:

‘ [521= 100 © 1.0 0
6.5 0 0.5

If {HJ} is the vector of the responses of a point, j, to the three loading cases, the

power spectral response, S], 18

S, = {Hj}T[S ]{HJ} (Hj 1s the complex conjugate)
or
5, = ]00[0.5|H1j|2 + o.s(H]j Hys * H3J H]j) + |H2j|2 + O.5|H3J|2]
Since H]j = H3j’ then:
Sj = 200|H]J.|2 + 100|H2j|2

The mean square response 1n obtained by integrating the power spectral density over the
frequency. In this particular case the frequency increments are uniform and the mean

square response is simply

E, = ; w[SJ(fi+1) - SJ(f1)]Af
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The analytic solution for the displacement spectra]\densitylresponse of the center point

due to the first mode is:

s.(f) - 20001.066x10%) + 100(.5613x10°)(13 + 12cos2f) _ 2.862x10° + .6735x10%cos2f
(F* - 4999F2 + 50")

! [(50% - £2)% + £2]

The results of the above equation are compared with the NASTRAN results in Figure 2.

The mean deviation, oJ, 1s:

n-

[ E.
- 1
% T VaF - T)

where fn and fo are the upper and lower frequency limits. 95 was checked by summing the . .

NASTRAN results.

The results of the static analysis restart are:

a) The gravity load produces normal displacements (in the z direction) and element

moments as follows:

u (x) = .&Agi (23 - 22x2 + X3)

z 24E1

M](x) = 959-(x2 - 2x)

2

b) The element deformation produces the following axial forces and displacements:

(x < 18)

In numerical terms the displacements of the center point (x = %) are:

Theoretical

-2
Uye 4.452 x 10

-4
Uyg 4.155 x 10

11.1-6

NASTRAN

4.435 x 1072

4.121 x 1074




The element forces at the center of the beam are:

Theoretical NASTRAN
F.. = -.9811 x 10° -.9848 x 10°
x5
Mg = -8.607 -8.607
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RIGID FORMAT No. 11, Frequency Response Analysis - Modal Formulation

Frequency Response of a 500-Cell String (11-2-1)
Frequency Response of a 500-Cell String (INPUT, 11-2-2)

A. Description

This problem illustrates the solution of a large frequency response problem using modal coordi-
nates. When large numbers of frequency steps are used, or the problem is very large, the relative
efficiency of the modal formulation 1s more attractive than the direct formulation. The structural
model consists of scalar points, springs, and masses which simulate the transverse motions of a
string under tension, T, with a mass per length of u. The model and its finite e <ment representa-
tion is shown in Figure 1. A duplicate model is obtained via the INPUT module to generate the scalar

springs and masses.

Selected scalar point displacements and scalar element forces are plotted versus frequency.
The magnitude and phase of the displacements are plotted separately, each on one-haif of the
plotter frame. The magnitude plots for the selected points are all drawn on a whole plotter frame

for comparisons. The center spring element has the magnitude of 1ts i1nternal force plotted versus

frequency.
B. Input
1. Parameters:
m, = 10 - mass
Ki = 107 - spring rate
N = 500 - number of cells
where
K1 - Z% ’ m = uax
2. Loads
The load on each point is:
3

Pi(m) = oxp, = 10n
where AR the load per length of string.

11.2-1 (3/1/76)



The steady state frequency response is desired from .1 to 10 cycles per second 1n 15

logrithmic, increments.

3. Real Eigenvalue Data

Method: Inverse Power
Region of interest: 0 < f < 21

Normalization: Mass

Number of modes used 1n formulation: 20

C. Answers

The analysis of the string is given 1n Reference 11, Chapter 6. The response, En’ of mode

number n is given by the equation:
% nmx
[ P(x) s1n(75— dx
_ 0
n [gl us1n2(n%5> dx] [wﬁ - w?]

- /K
where w_, the natural frequencies, are D%- ﬁl' for the theoretical continuous string.
1

For a uniform Load:

£ 2p % 2P.N 4 2
. (hnx _ X _ i _ 10w
g Px) s1n(7[— d = nm - nm - n
L Nm.
fusinf(MYyax = B = L - 25x10°
)
The displacement of the center point 3s:
Ly < in AT . - -
u(?’) = z gn sin 2 E'I €3 + Es E7 + ...
For instance at f = 0.1 the response due to 20 modes is:

u(%) = .97895 (Theory)

Uyey = 97888 (NASTRAN)
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RIGID FORMAT No. 12, Transient Analysis - Modal Formulation

Transient Analysis of a Free One Hundred Cell Beam (12-1-1)

A.  Description

The problem demonstrates the transient analysis of a free-body using the integration algorithm
for uncoupled modal formulations. The model is a hundred-cell beam with a very large mass attached
to one end as shown in Figure 1. Modal damping is included as a function of natural frequency. It
does not affect the free-body (zero frequency) modes. The omitted coordinate feature was used to

reduce the analysis set of displacements to correspond to eleven grid points.

Both structure plots and curve plots are requested. The types are as follows:
1. Stereoscopic structure plots of the deformed structure are drawn for a specified time

step.

2. Orthographic projections of the deformed structure are plotted. However, two variations
are plotted on each frame. The bottom region of the frame shows the deformed shépé and
the top region shows vectors at every tenth grid point which are proportional to the z-

diép]acement at each specified time step.

3. Curve plots and printout of displacement versus time and of acceleration versus time

are requested.

When a structure is used without additional transfer functions or direct matrix inputs,’ the
transient analysis solves exact equations for the uncoupled modes. . The only errors will:be 1n
the discarded modes and the straight line approximation of the loads between time :‘steps: The
speed of this solution is offset by the fact that the eigenvalue calculation is relatively co§t1y

4

and the transformation of the vectors to and from modal coordinates could be time consuming.

The mass and inertia on point (1) weré selected to be much larger than values of the béam.

The answers will therefore approximate a beam with a fixed end.

i
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B. Input

1. Parameters

Beam:
g = 20 (Length)
I = .083 {Bending inertia)
A = 1.0 (Cross sectional area)
E = 10.4 x 106 (Modulus of elasticity)
p = .2523 x 1073 (Mass density)

Lumped Mass:

10.0, 122,] = 1666.66

3
—
1

2. Damping:

The damping coefficient for each mode is a function of the natural frequency. The

function is:

3. Load:

Pz,]O] 100 sin{(2n-60t)

4. Real tigenvalue Data
Method: Inverse Power
Region of Interest:' 0 < f < 1000

Normalization: Mass
D. Answers

The NASTRAN results are compared in Figure 2 to the analytic results which use one mode. The
modal mass may be calculated using the formula for the mode shape given in Reference 8. The modal

displacement is a single degree of freedom response with a closed form solution.
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RIGID FORMAT No. 13, Normal Modes with Differential Stiffness
Normal Modes of a 100-Cell Beam with Differential Stiffness (13-1-1)

A. Description

This problem illustrates the effects of differential stiffness on the solution for the normal
modes of a beam under axial compression.

The natural frequencies of the beam are affected by this load as shown i1n Reference 23. The
loading specified here 1s one half of the Euler value for compression buckling which decreases the

unloaded natural frequency, w, proportional to

/2
1r2EI-F] .
22

The structural model illustrated in Figure 1 1s a uniform 100 cell beam hinged at both ends.

where F 1s the applied load.

B. Input
1. Parameters: '
A=2.0 (cross sectional area)
I = 0.667 {bending 1nertia)
E = 10 4x10°% {modulus of elasticity)
£ = 100.0 (Tength)
p = 2.0x10"" (mass density)

2. Constraints:

u, =6_=0 =0 (all points)

z X y
uy =0 (point 101)
uy = Uy = 0 (point 1)
3. Loads.
F]O],x = 3,423.17
B = 1.0 (default load factor)
C. Results

The theoretical natural frequency for the first mode 1s given by

1
f = ] (ﬂzEI ‘F) /2
Ioh 22 ‘g2 Hertz
For this loading of one half the Euler buckling value, the theoretical value 1s 14.6269 Hertz
for the bending mode. The NASTRAN result 1s 14.62325 Hertz.
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RIGID FORMAT No. 14, Static Analysis with Cyclic Symmetry
Circular Plate Using Cyclic Symmetry (14-1-1)

A. Description

A constant thickness circular plate with six radial stiffeners and a central hole, shown in
Figure 1, 1s analyzed using dihedral symmetry. The plate 1s subjected to a uniform pressure load
appiied over a 60° segment of the plate.

The finite element model 1s shown 1n Figure 2. The stringers are 60° apart but only 30° of the
structure needs to be modeled when using the dihedral symmetry option. There are 12 subcases since
these are 2 half segments in a 60° segment and only one loading condition. The CYJPIN bulk data
card defines those points 1n the middle of the segment (SIDE 2) and those points on the boundary

between segments (SIDE 1).

B. Input
1. Parameters.
Ro = 1.0 (outside radius)
R1 = .14 (inside radius)
t = .01 (plate thickness)
a = .06 (height and width of stiffeners)
E = 10.6x10° (modulus of elasticity)
v = .325 (Poisson's ratio)

2. Boundary Conditions:

U, = Ue 6,=10 (a1l points)

U, =6.=0 (along r = 1.0)

3. Applied Toads:
Pressure = 200.0 between 8 = 60° and 120°

4. Cyclic symmetry parameters:

CTYPE = DRL
KMAX =2
NSEGS =6
NLPAD =1
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C. Results
The structure can be analyzed using rotational symmetry or dihedral symmetry described here
and the results will be 1dentical.

The results for the normal displacements are given in Table 1 for r = 0.46.
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‘ Table 1. Displacements of circular plate under pressure load at r = 0.46

DIHEDRAL
METHOD
) Value
Subcase Grid
0 i 30 1.365
15 1 31 1.379
30 1 32
2 32
45 2 3 1.412
60 2 30
3 30 1.430
75 3 31 1.464
90 3 32
4 32 1.488
105 4 31
120 4 30
5 30 1.430
135 5 31 1.412
150 5 32
_ 6 32 1.39
‘ 165 6 31 1.379°
180 6 30
7 30 . 1.365
195 7 31 1.359
210 7 32
8 32 1.354
225 8 31 1.349
240 8 30 ;
9 30 1.385 | )
255 S 31 1.384 | .
270 9 32 )
10 32 1.345
285 10 31 1.344
300 10 30
11 30 1.345
315 11 3 1.349
330 1 32
12 32 1.354
345 12 31 1.359
360 12 30 1.365
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Figure 1. Circular plate with stiffeners.
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Figure 2. Finite element model.
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RIGID FORMAT No. 15, Normal Modes Analysis Using Cyclic Symmetry
Modal Analysis of a Circular Plate Using Cyclic Symmetry (15-1-1)

A. Description

The natural frequencies of a constant thickness circular plate with six radial stiffeners and
a central hole are obtained using the rotational symmetry option. The structure, shown in Figure
1, is simply supported at the outer circumference.

The finite element model 1s shown in Figure 2 representing only sixty degrees of the plate.
Note that since the stiffeners are on the symmetry boundary, only 1/2 of the actual properties

are used. The bulk data cards demonstrated are the CYJPIN and PARAM.

B. Input
1. Parameters:
Ry, = 1.0 (outstide radius)
Ri = .14 (inside radius)
t = .01 (plate thickness)
a = .06 (height and width of stiffeners)
E = 10.6x10° (modulus of elasticity)
v = .325 (Poisson's ratio)
p = 2.59x10-* (mass density of plate and stiffeners)

2. Boundary conditions:

=uy =8, = 0 (all points)

=g =20 (atong r = 1.0)

uY‘
uZ r

3. Eirgenvalue extraction data.

Method: Inverse power

Region of interest: 0.0 < f < 8000
Number of desired roots: 3
Normalization: maximum

4. Cyclic symmetry parameters:

CTYPE R@T
KINDEX 2
NSEGS 6
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C.

Results

: ]

Solutions can be obtained using the dihedral symmetry or rotational symmetry described here.

Results are accurate to approximately six significant figures. _

Table 1. Natural Frequencies

Mode Frequency
4288.2

2 6844.3
11524.3
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Figure 1. Circular plate with stiffeners.
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Figure 2. Finite element model.
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