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A REGRESSION TECHNIQUE FOR EVALUATION AND QUANTIFICATION

FOR WATER QUALITY PARAMETERS FROM REMOTE SENSING DATA

by

Dr. Charles H. Whitlock
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Hampton, Virginia 23665

and

Dr. Chain Y. Kuo
Department of Civil Engineering
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ABSTRACT

Inconsistent results have been obtained from
previous experiments which have applied linear multiple-
regression techniques to remote sensing data for
quantification of water quality parameters. The objective
of this paper is to define optical physics and/or
environmental conditions under which the linear
multiple-regression should be applicable. To achleve
this objective, an investigation of the signal-
response equations 1s conducted and the concept
is tested by application to actual remote sensing
data from a laboratory experiment performed under
controlled conditions.

Investigation of the signal-response equatlons
shows that the exact solutlon for a number of
optical physics conditions 1s of the same form as
a linearized multiple-regression equation, even 1if
nonlinear contributions from surface reflections,
atmospheric constituents, or other water pollutants
are included. Limitations on achieving this type
of solution are defined. Since the exact solution
is in the form of a linear multiple-regression
equation, applicabllity of multiple-regression
techniques to remote sensing and ground-truth data
is viewed as a calibration of the exact solutlon
to account for dailly varlatlons in background
constituents.

Application to laboratory data 1s used to
demonstrate that the technique is applicable for
water mixtures which contain constituents with both
linear and nonlinear radiance gradients.

From investigation of field multispectral
scanner data from past experiments, it 1is concluded
that instrument nolse, ground-truth placement, and
time lapse between remote sensor overpass and water
sample operations are serious barriers to successful
use of the technique. Recommendations are made
whilch should aid in obtaining consistent results
from future remote sensing experiments.
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1. INTRODUCTION

Large amounts of sediments and other pollutants gre carried annually in the
rivers, lakes, estuaries, and coastal waters of the United States. These
sediments and pollutants are major determinates of water quality. Many agencies
are investigating the potential of using remote sensing techniques to monitor
various water quality parameters because of the ability of remote sensing to
provide synoptic views over large areas.

Specific data needs usually vary among different user organizations (ref.
1). Generally, the desired use of remote sensing data is either identification
or quantification of surface sediments and pollutants. This study 1is concerned
with data analysis procedures for quantificatlion of water quality parameters
that have already been identified and are known to exist within the water body.
Stecifically, the study deals with the linear multiple-regression technique as
a crocedure for defining and calibrating data analysis algorithms for such
instruments as spectrometers and multispectral scanners. The technique has been
1sed by a number of authors (refs. 2-8) with apparent success. Unfortunately,
results have not been completely satisfactory in that (1) analyses of subsets
of data from the same experiment sometime give different correlations and
algorithms (compare refs. 2, 3, and 4); (2) repeat experiments over the same
water body do not always allow quantification of the same water quality
parameters (compare refs. 7 and 8); (3) optimum results are not always obtained
by a multiple-regression equation with radiance as the independent variable
(refs. 8 and 9); and (4) final mapped results do not always agree with results
of other types of analysis (compare refs. 4 and 10). From these facts, it is
clear that a more complete understanding of the limitations, requirements, and
precision of the linear multiple-regression technique is required before it can
be applied by user agencies in an operational manner.

In an effort to provide improved scientific understanding, an analytical
and laboratory analysis of the linear multiple-regression technique has been
conducted (ref. 11). That analysis demonstrated that the technique is funda-
rentally sound, and, in principle, should apply to many environmental situa-
tions in which both the water and atmosphere contaln linear and nonlinear
optical effects. A number of limitations (optical, mathematical, and
operational) were defined, however. One problem with the reference 1l analysis
is; that fleld results were not considered in that study. This investigation
extends the reference 11 results to include actual field data. An analytical
.vvestigation of the signal response equations is conducted, and results from
"aixed-brew" laboratory experiments are presented. A study of measurement
errors and ground-truth operations from several past field experiments is
presented, and recommendations are made concerning future investigations from
both aircraft and satellite instruments.

2. SIGNAL-RESPONSE EQUATIONS

From reference 12, reflectance at sea level and upwelled radiance at
altitude are related as follows:

LZ(X) = Ta(k) [ou(k) (LSO(A)) + er(l) + Lrs(l)] + La(l) (1)
where:
Lz(x) = apparent upwelled radiance at altitude z at wavelength .
Ta(x) = atmospheric transmission at waveleggth A.
pu(A) = inherent upwelled reflectance slightly above water surface at

wavelength A.



LSO(A) = upwelled radiance slightly above water surface from 100 percent
diffuse reflector at wavelength A.

er(k) = upwelled radiance from specular reflection of diffuse skylight at
wavelength A.

LPS(A) = upwelled radiance from specular reflection of sunlight (sun-
glitter) at wavelength A.

La(k) = upwelled radiance from light scattered by the atmosphere (path

radiance) at wavelength .

For a remote sensing scene with a specific solar elevation angle, the
inherent component of Lz(A) being contributed by the water column is
Ta(k)[Lu(A)] as follows:

L (V) = p (M) (L (1)) (2)

T,O0 (L, )] = T, Lo, (M) (L (M) (3)

where -

Lu(k) = iInherent upwelled radiance slightly above water surface at
wavelength A.

A signal response model of the water may be assumed in which the remote
sensing signal is expressed as the signal from the background water plus the
signal change caused by some pollutant. The change caused by the pollutant
. may be expressed as a gradient constant times the pollutant concentration. The
inherent signal component for a simplified three-constituent water mixture may
be assumed as follows:

Ta[Lu(A)] = A + BP, + EP

Q
A g+ SP, (4)

where:

A = inherent upwelled radiance component from background water including
loss due to atmospheric transmission.

BPA = inherent upwelled radiance component' caused by pollutant A.
EPB = inherent upwelled radliance component caused by pollutant B.
SPc = inherent upwelled radilance component caused by pollutant C (assumed to

vary nonlinearly as power Q).

B,E,S = gradient constants including losses due to atmospheric transmission.
PA,PB,Pc=concentrations of pollutants A, B, and C, respectively.

Upwelled radiance components from surface reflectlon and atmospherlc path
radiance effects can be expressed as a value for the baseline atmosphere of

a particular day plus a change caused by a variation in atmospheric pollutants
over the scene as follows:

. N
Ty ILpg (M) + L ()] + L(A) = T+ LK (5)

where:



I = surface reflection and path radiance components for the baseline
atmosphere over the scene.

-
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change in surface reflectlon and path radiance components caused by
atmospheric pollution (assumed to vary nonlinearly as power N).

L = gradient constant.

>
I}

concentration of atmospherlc pollutant XA.

In most remote sensing experiments, upwelled radiance is not measured at a
specific wavelength, but instead an integrated average of radiance 1is measured
over a range of wavelengths. To differentlate between wavelength specific and
integrated-average values, the term Rad willl be used to denote integrated-
average values for apparent upwelled radiance at altitude Z over a range or
band of wavelengths. Equation (1) may be rewritten as-

_ Q N
Rad = A + BP, + EPg + SP + I + LX, (6)

Eguation (6) is identical to equation (4-18) in reference 11. If measurements
are made with a remote sensing instrument with bands W,X,Y, and Z, then
the equations for the measured values are:

Rad, = A, + B,P, + EgPn + S,PY + I, + L xN‘7
w = By * ByPy * EyPg + SyPe + Iy + LX)
Rady = Ay + ByP, + EyPp + S,P3 + I + LX) s -
Rady = Ay + ByP, + EyPp + SP3 + I, + L X}
Rad, = A, + B,P, + E,Pp + S,P3 + I, + szﬁ
7

where subscripts W,X,Y and Z denote values over the same wavelength
ranges as bands W,X,Y, and Z.

Esuation (7) 1s a.series of four simultaneous equations which are linear in four
Jdrihnowns (PA,PB,PC, and XE). If the mathematical operations described in

Appendix C of reference 11 are followed, equation (7) can be solved to produce
the followlng solutions for the values of concentration for pollutants A and B.

av]
|

=J + Ky (Radw) + KX(RadX) + KY (RadY) + KZ (Radz) (8)

P

B J' + K& (Radw) + Kk (Radx) + K§ (RadY) + Ké (Radz) (9)

The J, J' constants are a function of the A, B, E, S, I, and L. constants of
the varlous bands, and the K, K' constants are a function of the B, E, S,
and L constants. A key element in arriving at the above solution is that the
degree of nonlinearity in the PC and XA contributlions must be essentially

constant over the wavelength range of bands W, X, Y, and Z or the changes must
be small so that linear approximations are appropriate.

Equations (8) and (9) represent an exact solution for two constituents
which have linear radiance gradilents in a remote sensing scene which



(1) contains a water mixture with three constituents (one of which has a
nonlinear radiance gradient), and (2) has nonlinear variations in surface
reflectlion and path radiance contributions due to variation in some atmospheric
constituent over the scene. Whille this model is somewhat simple, additional
complications can be selectively added. Additional water pollutants (beyond
pollutant C) and surface-atmospheric contribution terms can be added to
equation (6) to complicate the model. As long as the degree of nonlinearity is
constant over the wavelength range of interest, a series of linear algebraic
equations will result and the exact solution for PA and PB will be of the

same form as equations (8) and (9) except that additional bands of radiance
values will be required. A key element of equations (8) and (9) 1s that
values of PA and PB can be calculated without knowledge of each other or the

A" Knowledge of the A, B, E, S, I, and L constants of

equation (7) is required, however, to compute values for the J, J', K, and K!'
constants before Rad values can be used to compute PA and PB.

values of PC cr X

In actual fileld experiments, values for the constants A, B, E, S, I, and L
are seldom knowrn. In fact, the number of water and atmospheric parameters which
have a significant influence on the total upwelled radiance slignal 1s usually
unknown. As a result of this situation, empirical methods must be used to
determine values for the J, J', K, and K' constants in equations (8) and (9).
Fortunately, equations (8) and (9) are of the same form as the statistician's
traditional multiple-regression equation:

p -1
P=J+z K, Rad; + ¢ (10)
1 =1

where.
P = dependent variable.

Radl = independent variable.

oy
>
]

coefficlents obtained by least squares fitting techniques.

“
™
[}

error.
p = total number of J, K coefflcients.

In order to evaluate J, K coefficients by empirical methods, certain
environmental restrictions must apply. All data used in the fittlng process
must be from a situation with identical J, K coefficients. This means that
values for the A, B, E, S, I, and L. constants must be equal for each data
point. This condition 1s often satisfied i1f one has a single remote sensing
scene with multiple ground-truth points, and atmospherlc transmission values do
not vary by a large amount over the scene. (Surface reflections and path
radiance are allowed to vary.) Values for the J, K coefficients generally
will not be equal for each data point if one has the situation of multiple
remote sensing scenes with a data point in each. In that case, each scene has
a different solar elevation angle and atmospheric condition which causes
different values for Ta(k), LSO(A), er(k), Lrs(l), and La(A) in equation (1).

This means that the A, B, E, S, I, and L. constants in equations (6) and (7)
will be different for each data point. Since A, B, E, S, I, and L. determine
values for the J, K coefficients, the J, K coefflclents will be different
for each data point. 1In such a case, it 1s impdssible to obtain an accurate
estimate of the J, K coefficients if radiance and ground-truth concentration
values used in the least-squares multiple-regression process are from different



remote sensing scenes. This partly explains why linearized multiple regression
with radiance as the independent variable failed to give a good data-reduction
algorithm in reference 9. In that experiment, the operational technique was
multiple overpasses with a single ground-truth point in each scene.

3. LEAST-SQUARES AND STATISTICAL METHODS
Estimation of J, K Coefficients

The regression task 1s to estimate the J, K coefficlents in which Rad
is assumed as the 1lndependent variable. In many observations, the independeﬁt
variables are correlated with each other as well as with the dependent variable
wnich makes results difficult to interpret (ref. 13, p. 398). For the remote
sensing situation, high correlations between the independent variables (Rad,)
~hould be expected if the pollutant of interest has a broad spectral signal over
the wavelength range.

As noted previously, least-squares procedures are used to estimate the J,
K coefficients using a number of ground-truth points where radiance-constituent
concentration data pairs are available. Details of the least-squares procedure
are summarized in reference 11. In performing the process on remote sensing
aata, three major assumptions are involved (ref. 14). They are:

1. The correct form of the equation has been chosen (Radi is linear
with concentration for all bands involved).

2. The data are representative of the whole range of environmental
combinations in the remote sensing scene.

3. The observations of the dependent variables (ground-truth concentration
values) are uncorrelated and statistically independent.

Three minor assumptlons are

1. All observations of the dependent variable (concentration) have the
same (but unknown) variance, ¢

2 The distribution of uncontrolled error is normal.
3. All independent variables (Radi values) are known without error.

One problem is that measurements of the independent variable (Radi) do contailn
errors. Reference 14 indicates that errors in the independent variable cause
estimates of the J, K coefficients to be biased. As a rule-of-thumb, it is
recommended that remote sensing experiments be designed such that the variance
of radiance about mean values for the ground truth locations (c%ad ) be at least

10 times the varilance of data noise (oﬁ ). This rule-of-thumb mayibe referred
to as Daniel's Criteria (see ref. 11). 1In terms of standard deviation values:
2 2
g > 10.0 ¢ (11)
Radi Ni
or
o] > 3.16 ¢ (12)
Radi Ni

Equation (12) states that ground-truth locations should be selected within the
remote sensing scene in such a mariner that the standard deviation of the change



in upwelled radiance for the ground-truth points should be at least 3.16 times
the standard deviation of data noilse for the particular remote sensing instru-
ment being used if least-squares procedures are to be used in the analysis of
data.

Measures of Precision

Before an experiment, 1t 1s not known how many bands (or in what combina-
tion) will be required to separate the desired water-quality parameter from the
total mix of factors which contribute to apparent upwelled radiance. The usual
process 1s one of first calculating a regression equation for the best single
band of radiance data and then successively defining multiple-regression equa-
tions for the best two bands, three bands, etc. As additional bands are
uti1lized, a number of statistical parameters may be used as indicators of the
precision of each new multiple-regression equation. A number of factors must
be considered when viewing these parameters to select an optimum multiple-
regression equation

One popular statistical parameter used as a measure of precision 1s the
correlation coefficient, r. The proportion of total variation that i1s not
explained by the regression equation is 1 - re. (An r value equal 0.9 means
that 19 percent of the signal variation is not explained by the multiple-
regression equation.) Reference 15 states that r 1s not a good measure of
precision as the number of estimated coefficients approach the number of
experimental observations. This implies that either the number of ground-truth
observations should exceed the number of instrument bands by a wide margin or
the number of bands included in the multiple-regression equation should be
limited.

The standard deviation, ¢, 1s a second measure of preclision of the least-
squares process for estimating J, K coefficients. The standard deviation is
assumed to represent a value within which 68 percent of all errors are expected
to fall if (1) there 1s an infinite number of observations, and (2) there is
minimal error in the independent variables (Radi). Unfortunately, most remote
sensing experiments have only a limited number of ground-truth observations and
Rady measurements do contain errors.

The F-test is a third method of evaluating the adequacy of the least-
squares process. The calculated value of F (see eq. (5-14) in ref. 11) must
be greater than a critical value (Fcr) taken from F-distribution tables in
order to be judged significant. If "the multiple-regression equation is to
be used for predictive purposes, calculated F should be at least U times the
tabular critical F value (ref. 15). One problem with this parameter 1s that
a level of confidence must be arbitrarily selected before F/Fcr can be
calculated.

Reference 14 recommends the statistie, Cp, as a measure of the sum of the
squared blases plus the sum of the squared random errors (see eq. (5-17) in
ref. 11). Given a multiple-regression equation with p estimated J, K
coefficients, a low value of C in combination wlth a Cy,/p ratio < 1.0 is
considered to indicate a good fgt with negligible bias. Tge regression
equation should then be useful for predictive purposes. The Cp/p ratlo 1s the
only one of the above parameters which is indicatlve of bias in the fitted
equation (ref. 1)

For future remote sensing experiments, it 1s recommended that multiple-
regression equations be computed for all comblnations of bands for which
upwelled radiance values are available. Values for r, o, F/Fcr, Cp, and Cp/p

should be computed for each equation. The prime basls for selecting an
"optimum" regression equation should be Cp/p < 1.0 for minimum bias and F/Fcr

> 4,0 for predictive utilization., Values for r should approach 1 and o



sbould approach zero. Daniel's Criteria (eq. 12)) should also be satisfled for
2ll bands in the regression equation. When all five conditions are met, the
multiple regression equation with the minimum number of bands should be
selected for calculation of pollutant concentration.

4, LABORATORY VALIDATION EXPERIMENTS

It is desirable to validate data analysls techniques with actual remote
sensing data under controlled conditions. To achieve this result, tests were
conducted with filtered-deionized tapwater in the Marine Upwelled Spectral
Signature Laboratory at the NASA Langley Research Center. A sketch of the
laboratory setup 1s shown in figure 1. (More complete descriptions of the
system and test procedures can be found in references 11 and 16.) Only partial
results from one series of tests will be presented 1n this paper for reasons
of brevity Additional laboratory test cases are presented in reference 11.

It was desirable to test the multiple-regression technique with data from
water mixtures which contained constituents with both linear and nonlinear
radiance gradients. Single-constituent tests were conducted on a number of
materials. From these data, 1t was concluded that both Ball Clay and Feldspar
su1ls have near linear radiance gradients for concentrations between 4 and 173
com. Rhodamine WT dye has a nonlinear gradient for concentrations between 17
ard 1052 ppb. With this knowledge, a series of three-constituent tests were
conducted with 25 different water mixtures. Table I shows the concentrations
of Ball Clay, Feldspar, and Rhodamine WT that were present in the flltered-
delonized tapwater for each test. Also shown are radiance values for the
fcllowlng 5 wavelength bands:

Band Number Wavelength Range Center Wavelength
(nm) (nm)
1 340-500 420
2 Lep-620 540
3 540-700 620
Y 620-780 700
5 700-860 780

Tre radiance values shown are in terms of relative units obtained by dividing
tower/bandwidth measurements over the water by gray-card diffuse reflectance
reasurements of the input light source.

A multiple-regression analysis was performed for Ball Clay using 12 of the
5 tests 1n table I to simulate "ground-truth" values. The 12 "ground-truth"
values were tests 1, 3, 5, 6, 8, 10, 13, 15, 18, 20, 21, and 23. The standard
ieviation of the change in upwelled radiance was next calculated for each band
tor this "ground-truth" data set. Values are compared with data nolse from the
laboratory measurements as follows:

Band Number ORad (Regg 1) oRad/oN
1 0.1372 0.0343 b, o0
2 0.1125 0.0343 3.23
3 0.1414 0.0343 4,12
4 0.1431 0.0343 .17
5 0.0992 0.0343 2.89

These figures indicate that Daniel's Criteria (eq. (12)) 1s satisfied for all
bands except number 5. Since the signal-to-noise standard deviation ratio

’



for band 5 1s only slightly below the value of 3.16, it was declded not to
exclude that band from the regression analysis 1n this particular case.
Regression equations for all combinations of bands were next calculated for Ball
Clay concentration. Estimated values of the J, K coefficients and various
statistlical measures of precision are shown in table II. Review of table II
indicates that the lowest value of total squared error (C,) is obtalned for band
combinations 2, 3, and 4. The regression equation for thgs combination 1is:

P, = =b0.,1 + 234.4 (Radz) - 613.7 (Rad3) + 918.0 (Radu) (13)

Statistical estimates of precision for this equation are:

r = 0.99
o = 6.8 ppm
(F/Fcr)_95 = 105.7
Cp = 3.0
Cp/p = 0.8 1

Since values for r, o, F/Fcr’ and Cp/p are acceptable, it 1s assumed that

equation (13) has good predictive capability. To test this assumption, the
radiance values for bands 2, 3, and 4 from table I were applied to equation
(13). Values for Ball Clay concentration (P,) were calculated and are compared
with actual values in figure 2. Shaded symbols denote the 12 "ground-truth"
points used in the least-squares fit, and the open symbols represent calcula-
tions for the remaining 13 independent test points. (Some open symbols are
hidden under the shaded points.) Since all points fall within + 3.90 of the
true value, it is concluded that equation (13) has good predictive capability
and that linear multiple-regression analysis procedures have the potential for
quantification of constituents with linear radiance gradients in water mixtures
which also contain nonlinear constituents. A satisfactory linear regression
equation was also found for the concentration of Feldspar soil in these same
mixtures (ref. 11).

5. REVIEW OF FIELD DATA

Analytical analysis and laboratory test cases have been used to perform
a limited validation of linearized multiple-regression analysls for quantifica-
tion of marine constituents. No matter how many controlled tests are conducted,
final validation of the technique must come through use of fleld experiments.
As noted previously, results from past experiments have not been completely
satisfactory. This section examines the data and operational conditions of past
tests in an attempt to define problem areas which require increased attention
for future experiments.

Instrument Noise

Unfortunately, remote sensing data always contain error and random noise.
Most operational instruments contaln onboard calibration lamps and black bodles
to minimize radiance error. Nolse has been somewhat more difficult to
eliminate because 1t 1is caused by many components in the Iinstrument system.
After an experiment, instrument nolse can usually be evaluated by calculating
the standard deviation of calibration lamp and/or black body count values and
applying the appropriate calibration constants to convert to radiance. If on-
board calibration sources are not availlable, flat or near-constant radiance
portions of the remote sensing scene may be examined. Both of these procedures
have been used to examine noise in’'the data for the fleld experiments described



in references 4, 5, 6, and 9. Figure 3 presents estimates of noise standard
deviation values for each band for which data were obtalned. These data
indicate that a wilde range of noise values have been observed in previous
experiments.

The problem of data noilse has been widely recognized, and pixel averaging
is often employed as a method of reducing the error. To illustrate the effects
of this process, calibration lamp values from the reference 4 data were
averaged 1n a manner to simulate pixel averaging. New values for noise
standard deviation were calculated and are compared with single-pixel values 1in
figure 4. Large reductions in instrument noise may be achieved by averaging
even small size (U4 by 4 or less) pixel arrays. Use of array sizes larger than
7 oy 7 produced only small reductions in noise for the reference 4 data set.

Pixel averaging effectively increases the size of the ground resolution
erement that 15 observed by the remote sensing instrument. If the array size
oecores too large, average radiance values of the enlarged pixels may not be rep-
resentative of ground-truth values because of spacial variability in pollutant
ccnecentration. As pixels are averaged, nolse error willl be reduced but new
error 1s introduced because of scene dynamics or hydraulic changes. Carried to
ertreme, hydraulic features that depict smaller-scale pollutant transport may
be erased by the averaging process. If averaging 1is necessary, then the follow-
17w criterza ohould be used to establish credibility of the enlarged pixel

radiance values,
[oﬁadpt] nxn = [ON] nxn (14)

[%Rad ‘] = standard deviation of enlarged pixel about average radiance
Pt ] nxn

where

value (calculated from individual pixel radiances within n
by n array surrounding each ground truth point).

When 9Rad is much larger than EON:)nxn’ one has an indication that

szene dynamlgg n8%8 introduced large errors into the process that offset the
noise reduction benefits gained by pixel averaging.

Ground Truth Placement

Previous discussion has 1ndicated that ground-truth points should be lo-
cated within the remote sensing scene in such a manner that Daniel's Criteria
(eq. 12) are satisfied for all bands in the regression equation. To review this
aspect of previous experiments, values of ogz;q have been calculated using
radiance values over each set of ground-truth points for the fleld experiments
of references 4, 5, 6, and 9. Pixel averaging had been employed to eliminate
signal changes caused by the ground-truth boat, time differences and location
uncertainty as well as to reduce noise in each data set. New estimates of o
have been made from calibration lamp or background water data to simulate the
pixel averaging process for each experiment. Values of 0Ryg/0 have been
computed and are compared with Daniel's Criteria in figure 5. yt appears that
ground-truth placement was adequate such that Daniel's Criteria were satisfied
after pixel averaging for most experiments. Approximate calculations indicate
that not a single one of these experiments would satisfy Daniel's Criteria on a
1 by 1 pixel array basis, however. Ground-truth locations for future remote
sensing experiments should be selected in such a manner that oryq has the
largest possible value to minimize the requiremknt for pixel averaging. Use of
past remote sensing Images of the area to estimate relative radiance differences
between proposed locations 1s probably the best method of selecting a distribu-
tion with maximum standard deviation.

10



Physical Consistency

An unwritten assumption in the multiple-regression process is that all data
used in the correlation are "good" without physical deficiencies. When remotely
monitoring water-quality parameters, thls generally means that a number of cra-
teria should be satisfied concerning both environmental conditions and physical
operations of the experiment. Only limited discussion justifying physical con-
sistency of the data i1s avallable in references U4 through 9. For that reason,
the remainder of this review will discuss best engineering practice with the
experience from past experiments described for only those items discussed in
the literature.

Relative to environmental criteria, two desirable conditlons are:
1. Water depth greater than the Secchi depth.

2. Constant vertical concentration gradient within the remote sensing
penetration depth (the depth above which 90 percent of the upwelled
radiance originates, ref. 17).

It 1s sometimes assumed .that the maximum remote sensing penetration depth is the
same as the Secchi depth. Calculations in reference 18 as well as unpublished
data from the James River in Virginia indicate that maximum remote sensing
penetration depth may be on the order of 20 to 50 percent of Secchi depth, ,
depending on absorption and scattering characteristics of the mixture. Know-
ledge of the maximum remote sensing penetration depth is required so that water
samples are not obtained beiow the zone that 1is causing the remotely-sensed
signal. One method to estimate the maximum remote sensing penetration depth is
that of lowering a flat black plate with less than 1 percent diffuse reflectance
into the water and noting its depth of disappearance (see figs. 6 and 7 in

ref. 18).

In terms of operational criteria, a major problem is the time lapse between
overpass of the remote sensor and collection of individual water samples. Time
lapse can cause the ground-truth data to be hydraulically inappropriate 1if
there are significant wind or tidal influences on the water body being observed.
It may be possible to correct ground-truth data to account for small time
lapses (ref. 19), but such procedures have not yet been widely demonstrated in
field experiments. In principal, all data should be synchronous with the remote
sensor overpass, but that has not been achieved in past experiments, as shown
below

Reference Geographical Number of Ground Maximum Time Lapse
Area Truth Points in Between Water
Regression Analysis Sampling and Remote
Sensor Overpass

Yy James Raiver in Virginia 21 2.0 hrs
5 New Jersey Coast 22 3.0 hrs
6 New York Bight 10 0.3 nr
7 Saginaw Bay in Michigan 27 8.0 nrs
8 Saginaw Bay in Michilgan 16 8.0 hrs
9 Delaware Shelf 7 0.5 hr

Some experiments have a small time lapse, but in other cases it has been

assumed that constituents in a water pixel remain constant for 2 to 8 hours.
Considering that algae tend to migrate depthwlse with changing light intensity
(solar elevation angle), large time lapses should be justified with quantitative
water sample data even when wind and tidal effects are such that flow conditions
are stable,
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In the operational area, another major problem 1s often encountered.
Large-scale experiments with multiple vessels often require either some water
sample analysis cnboard ship or laboratory analysis of the same parameter
by different organizations. Consistency of laboratory results between
different laboratories i1s a longstanding problem, and variations for certain
parameters may be larger than that of the remote sensing scene. It is recommen-
ded that future experiments maintain consistent handling and laboratory analysis
procedures.,

6. SUMMARY OF RECOMMENDED CONDITIONS
FOR TECHNIQUE APPLICATION

An investligation of the linear multiple-regression technique with remotely
sensed radiance as the independent variable has been conducted. Signal response
equations have been analyzed, and results from "mixed brew" laboratory tests
are presented. Results from these studies indicate that the technique is funda-
mentally sound and should apply in many environmental situations in which both
the water and atmosphere contain linear and nonlinear optical effects. Condi-
tions which 1limit application cf the technique have also been discussed. A
review of previous field experiments has served to emphasize additional limita-
tions which must be considered in future experiments. A summary of recommended
conditions for use of the technique 1s given in figure 6. From this listing,
it is clear that the linearized multiple-regression analysis should never be
applied blindly to a set of data without background knowledge concerning the
constituent of interest, hydraulics of the water body, typical Secchi and
maximum remote sensing penetration depth values, and measurement uncertainties
from various sources. The technique has strong theoretical foundation and
careful application should yield useful results. It is particularly appropriate
for use in small regions to validate either mathematical or hydraulic models
of pollutant transport and diffusion Fresent economics for obtaining multiple
ground-truth points within a single remote sensing scene limit its usefulness
for many routine monitoring missions, however.

7. CONCLUDING REMARKS

The study described herein is part of a continuing effort to define data-
reduction techniques and their appropriate application so that increased bene-
fits can be derived from both alrcraft and satelllte remote sensing data. The
goal of the present study was a more complete understanding of limitations,
requirements, and precision of the linear multiple-regression technique with
radiance as the independent variable. Environmental and optical physics con-
ditions have been defined for which an exact solution to the signal response
equations 1s of the same mathematical form as the statistician's traditional
multiple-regression equation. In such a case, use of linearized multiple
regression is merely an empirical correlation to obtain ccoefficients for the
exact solution to the signal-response equations. Additional analytical investi-
gations are desirable to more completely define atmospheric limitations and to
consider the problem of bottom reflection 1in optically shallow waters.

One problem with use of the regression technique is that the independent
variables (upwelled radiances) contain errors and are often correlated with
each other. This requires consideration of a number of statistical parameters
when performing the regression analysis.

Review of past field experiments indicates that data noise was of such
magnltude that data smoothing was required before Daniel's Criteria could be
satisfied for the least-squares multiple-regression process. Improved selection
of ground-truth locations to maximize variance 1is recommended to minimlze data
smoothing requirements and the physical errors assoclated with that process.

Time lapse between remote sensor overpass and water sample collection
appears to have been a problem in past experiments. Economic consideration will
always result in only a limited number of water,samples obtained synchronously
with the remote sensor overpass. Additional studies to develop and demonstrate
techniques for correcting nonsynchronous data for remote sensing use are
desirable. '
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Table II.‘- Estimates of J, K coefficients and measures of precision
for Ball Clay sefliment in three-constituent mixtures,
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