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Dr. Chln Y. Kuo 
Department of Civil Engineering 

Old Domlnion University 
.Norfolk, Vlrginia 23508 

ABSTRACT 

Inconsistent results have been obtained from 
previous experlments which have applled linear multiple­
regression techniques to remote sensipg data for 
quantification of water quality parameters. The objective 
of this paper is to define optical physics and/or 
environmental conditions under which the linear 
multiple-regression should be applicable. To achieve 
this objective, an investigation of the signal-
response equations 1S conducted and the concept 
is tested by appllcation to actual remote sensing 
data from a laboratory experiment performed under 
controlled conditions. 

Investigation of the signal-response equations 
shows that the exact solution for a number of 
optical physics conditions is of the same form as 
a linearized multiple-regression equation, even if 
nonlinear contributions from surface reflections, 
atmospheric constituents, or other water pollutants 
are included. Limitations on achieving this type 
of solution are defined. Since the exact solution 
is in the form of a linear multiple-regression 
equation, applicability of multiple-regression 
techniques to remote senslng and ground-truth data 
is viewed as a calibration of the exact solution 
to account for daily variations in background 
constituents. 

Application to laboratory data is used to 
demonstrate that the technique is applicable for 
water mixtures which contain constituents with both 
linear and nonlinear radiance gradients. 

From investigation of field multispectral 
scanner data from past experiments, it is concluded 
that instrument noise, ground-truth placement, and 
time lapse between remote sensor overpass and water 
sample operations are serious barriers to successful 
use of the technique. Recommendatfons are made 
which should aid in obtaining consistent results 
from future remote sersing experiments. 
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1. INTRODUCTION 

Large amounts of sediments and other pollutants ~re carried annually in the 
rivers, lakes, estuaries, and coastal waters of the United States. These 
sediments and pollutants are major determinates of water quality. Many agencies 
are investigating the potential of using remote sensing techniques to monitor 
various water quality parameters because of the ability of remote sensing to 
provide synoptic views over large areas. 

Specific data needs usually vary among different user organizations (ref. 
1). Generally, the desired use of remote sensing data is elther Identlfication 
or quantification of surface sediments and pollutants. This study is concerned 
with data analysis procedures for quantification of water quality parameters 
that have already been identified and are known to exist within the water body. 
Stecifically, the study deals with the linear multiple-regression technique as 
a orocedure for defining and calibrating data analysis algorithms for such 
instruments as spectrometers and multispectral scanners. The technlque has been 
'1 sed by a number of authors (refs. 2-8) with apparent success. Unfortunately, 
results have not been completely satisfactory In that (1) analyses of subsets 
o~ data from the same experiment sometime glve different correlatlons and 
algorithms (compare refs. 2, 3, and 4); (2) repeat experiments over the same 
water body do not always allow quantification of the same water quality 
parameters (compare refs. 7 and 8); (3) optimum results are not always obtained 
by a multiple-regres$ion equation with radiance as the independent variable 
(refs. 8 and 9); and (4) final mapped results do not always acree with results 
of other types of analysis (compare refs. 4 and 10). Prom these facts, it Is 
clear that a more complete understanding of the limitations, reqUirements, and 
precision of the linear multiple-regression technique is requlred before it can 
be applied by user agencies in an operational manner. 

In an effort to provide improved scientific underltandins. an analytical 
and laboratory analysis of the linear multiple-regrellion technique has been 
conducted (ref. 11). That analysis demonstrated that the technique is funda­
~entally sound, and, in principle, should apply to many environmental situa­
tions in which both the water and atmosphere conta1n linear and nonlinear 
optical effects. A number of limitations (optical, mathematical, and 
operational) were defined, however. One problem with the reference 11 analysis 
1~ that field results were not considered 1n that study. This investIgation 
pxtends the reference 11 results to include actual field data. An analytical 
.' Jestlgation of the Signal response equations is conducted, and results from 
"~lixed-brew" laboratory experiments are presented. A study of measurement 
,,'!'!'o!'s and ground-truth operations from several past field experiments is 
pl'e::.ented, and recommendations are made concerning future investigations from 
both aircraft and satellite instruments. 

2. SIGNAL-RESPONSE EQUATIONS 

From reference 12, reflectance at sea level and upwelled radIance at 
altitude are related as follows: 

where: 

L (A) • apparent upwelled radiance at altitude z at wavelensth A. z 
atmospheriC transmission at wavelength A • 

• 
inherent upwelled reflectance slightly above water surface at 
wavelength A. 

(1) 
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L (>.. ) so upwelled radiance slightly above water surface from 100 percent 
diffuse reflector at wavelength X. 

upwelled radiance from specular reflection of diffuse skylight at 
wavelength A. 

L (>..) 
a 

upwelled radiance from specular reflection of sunlight (sun­
glitter) at wavelength X. 

= upwelled radiance from light scattered by the atmosphere (path 
radiance) at wavelength X. 

For a remote sensing scene with a specific solar elevation angle, the 
lnherent component of Lz(X) being contributed by the water column is 
Ta(A)[Lu(X)] as follows: 

(2 ) 

I'lhere' 

L (X) = inherent upwelled radiance slightly above water surface at 
u wavelength A. 

A signal response model of the water may be assumed in which the remote 
sensing signal is expressed as the signal from the background water plus the 
signal change caused by some pollutant. The change caused by the pollutant 
may be expressed as a gradient constant times the pollutant concentration. The 
lnherent slgnal component for a simplified three-constituent water mixture may 
be assumed as follows: 

(4 ) 

where: 

A inherent upwelled radiance component from background water including 
loss due to atmospheric transmission. 

BPA inherent upwelled radiance componen~ caused by pollutant A. 

EP B inherent upwelled radiance component caused by pollutant B. 

SP c inherent upwelled radiance component caused by pollutant C (assumed 
vary nonlinearly as power Q). 

B,E,S = gradient constants including losses due to atmospheric transmission. 

PA,PB,pc=concentrations of pollutants A, B, and C, respectively. 

Upwelled radiance components from surface reflection and atmospheric path 
radiance effects can be expressed as a value for the baseline atmosphere of 

to 

a particular day plus a change caused by a variatioQ in atmospheric pollutants 
over the scene as follows: 

(5) 

where: 
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I surf~ce reflection and path radiance components for the baseline 
atmosphere over the scene. 

LX~ change in surface reflection and path radiance components caused by 
atmospheric pollution (assumed to vary nonlinearly as power N). 

L gradient constant. 

XA concentration of atmospheric pollutant XA. 

In most remote sensing experiments, upwelled radiance is not measured at a 
specific wavelength, but instead an integrated average of radiance is measured 
over a range of wavelengths. To differentiate between wavelength specific and 
integrated-average values, the term Rad will be used to denote integrated­
average values for apparent upwelled radiance at altitude Z over a range or 
band of wavelengths. Equation (1) may be rewritten as' 

Rad = A + BPA + EPB + SP~ + I + LX~ (6 ) 

Eq~ation (6) is identical to equation (4-18) in reference 11. If measurements 
are made with a remote sensing instrument with bands W,X,Y, and Z, then 
the equatlons for the measured values are: 

RadX AX + BxPA + EXPB 
Q 

+ SXPC + Ix + N 
LXXA 

Rad y Ay + ByPA + EyPB + Q SyPC + Iy 
N 

+ LyXA 

Rad Z AZ + BZPA + EZPB + Q 
SZPC + I Z + N 

LZXA 

where subscripts 
ranges as bands 

W,X,y and Z 
W,X,y, and Z. 

denote values over the same wavelength 

(7) 

:->;uation (7) is a series of four simultaneous equations which are linear in four 
Jf.knowns (PA,PB'P~, and X~). If the mathematical operations described in 
Appendix C of reference 11 are followed, equation (7) can be solved to produce 
the following solutions for the values of concentration for pollutants A and B. 

(8) 

The J, J' constants are a function of the A, B, E, S, I, and L constants of 
the various bands, and the K, K' constants are a fUnction of the B, E, S, 
and L constants. A key element in arriving at the above solution is that the 
degree of nonlinearity in the Pc and XA contributions must be essentially 

constant over the wavelength range of bands W, X, y, and Z or the changes must 
be small so that linear approximations are appropriate. 

Equations (8) and (9) represent an exact solution for two constituents 
which have linear radiance gradien~s in a remote sensing scene which 
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(1) contalns a water mlxture wlth three constituents (one of which has a 
~onlinear radiance gradlent), and (2) has nonlinear variations in surface 
reflection and path radiance contrlbutions due to variation in some atmospheric 
constituent over the scene. While this model is somewhat simple, additional 
complications can be selectively added. Additional water pollutants (beyond 
pollutant C) and surface-atmospheric contribution terms can be added to 
equatlon (6) to compllcate the model. As long as the degree of nonlinearity lS 
constant over the wavelength range of interest, a series of linear algebraic 
equations will result and the exact solution for PA and P

E 
will be of the 

same form as equations (8) and (9) except that additional bands of radiance 
values will be required. A key element of equations (8) and (9) lS that 
values of PA and PB can be calculated without knowledge of each other or the 

values of Pc cr XA. Knowledge of the A, B, E, S, I, and L constants of 

equation (7) is requlred, however, to compute values for the J, J', K, and K' 
constants before Rad values can be used to compute PA and PB. 

In actual field experlments, values for the constants A, B, E, S, I, and L 
are seldom knowr.. In fact, the number of water and atmospherlc parameters WhlCh 
have a slgniflcant lnfluence on the total upwelled radlance signal lS usually 
unknown. As a result of thlS situation, empirical methods must be used to 
determine values for the J, J', K, and K' constants in equations (8) and (9). 
Fortunately, eq~ations (8) and (9) are of the same form as the statistician's 
traditional multlple-regresslon equation: 

where. 

P dependent variable. 

independent variable. 

P 
p - I 

J + ~ Ki Rad i + £ 

i = 1 

coefficients obtained by least squares fitting techniques. 

~ £ = error. 

p total number of J, K coefficients. 

(10) 

In order to evaluate J, K coefficients by empirical methods, certain 
environmental restrictions must apply. All data used in the fitting process 
must be from a situation with identical J, K coefficients. This means that 
values for the A, B, E, S, I, and L constants must be equal for each data 
pOlnt. This condition is often satisfied if one has a single remote sensing 
scene with multiple ground-truth points, and atmospheric transmission values do 
not vary by a large amount over the scene. (Surface reflections and path 
radiance are allowed to vary.) Values for the J, K coefficients generally 
will not be equal for each data point if one has the situation of multiple 
remote-8ensing scenes with a data point in each. In that case, each scene has 
a different solar elevation angle and atmospheric condition which causes 
different values for T (A), L (A), L deAl, L (A), and L (A) in equation (1). a so r rs a 
This means that the A, E, E, S, I, and L constants in equations (6) and (7) 
will be different for each data point. Since A, E, E, S, I, and L determine 
values for the J, K coefficients, the J, K coefficients will be different 
for each data point. In such a case, it is impdssible to obtain an accurate 
estimate of the J, K coefficients if radiance and ground-truth concentration 
values used in the least-squares m~ltiple-regression process are from different 
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~e~ote sensing scenes. This partly explains why linearized multiple regression 
with radiance as the independent variable failed to give a good data-reduction 
~lgorithm in reference 9. In that experiment, the operatlonal technique was 
~ultiple overpasses with a single ground-truth point in each scene. 

3. LEAST-SQUARES AND STATISTICAL METHODS 

Estimation of J, K Coefficients 

The regression task is to estimate the J, K coefficients in which Rad 
is assumed as the independent variable. In many observations, the independe~t 
variables are correlated with each other as well as with the dependent variable 
wnich makes results difficult to interpret (ref. 13, p. 398). For the remote 
sc-nsing situation, high correlations between the independent variables (Rad i ) 
~r0uld be expected if the pollutant of interest has a broad spectral signal over 
t~e wavelength range. 

As noted previously, least-squares procedures are used to estimate the J, 
K coefficients using a number of ground-truth pOints where radiance-constituent 
concentration data pairs are available. Details of the least-squares procedure 
a~e summarized in reference 11. In performing the process on remote sensing 
a~ta, three major assumptions are involved (ref. 14). They are: 

1. The correct form of the equation has been chosen (Radi is linear 
with concentration for all bands involved). 

2. The data are representative of the whole range of environmental 
combinations in the remote sensing scene. 

3. The observations of the dependent variables (ground-truth concentration 
values) are uncorrelated and statistically independent. 

Three minor assumptions are 

1. All observations of the dependent variable (concentration) have the 
same (but unknown) variance, 0 2 . 

2 The distribution of uncontrolled error is normal. 

3. All independent variables (Rad i values) are known without error. 

)ne problem is that measurements of the independent variable (Rad i ) do contain 
prrors. Reference 14 indicates that errors in the independent variable cause 
estimates of the J, K coefficients to be biased. As a rule-of-thumb, it is 
recommended that remote sensing experiments be designed such that the variance 
of radiance about mean values for the ground truth locations (o~ d ) be at least 

2 a i 
10 times the variance of data noise (ON). This rule-of-thumb may be referred 

to as Daniel's Criteria (see ref. 11). iIn terms of standard deviation values: 

or 

> 3.16 oN 
i • 

(11) 

(12) 

Equation (12) states that ground-truth locations should be selected within the 
remote sensing scene in such a manner that the standard deviation of the change 
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in upwelled radiance for the ground-truth pOints should be at least 3.16 times 
the standard deviation of data noise for the particular remote sensing instru­
ment being used if least-squares procedures are to be used in the analysis of 
data. 

Measures of Precision 

Before an experiment, it is not known how many bands (or in what combina­
tion) wlll be required to separate the desired water-quality parameter from the 
total mix of factors which contribute to apparent upwelled radiance. The usual 
process is one of first calculating a regression equation for the best single 
band of radiance data and then successively defining multiple-regression equa­
tlons for the best two bands, three bands, etc. As additional bands are 
utllized, a number of statlstlcal parameters may be used as indicators of the 
precision of each new multlple-regression equation. A number of factors must 
be considered when vlewing these parameters to select an optimum multiple­
regression equation 

One popular statistical parameter used as a measure of precision is the 
correlation coefflclent, r. The proportion of total varlation that lS not 
explained by the regression equatlon is 1 - r2. (An r value equal 0.9 means 
that 19 percent of the slgnal variation is not explained by the multiple­
regress~on equation.) Reference 15 states that r 1s not a good measure of 
precision as the number of estimated coefficients approach the number of 
experimental observations. This implies that either the number of ground-truth 
observations should exceed the number of instrument bands by a wide margin or 
the number of bands included in the multiple-regression equation should be 
llmited. 

The standard deviation, 0, lS a second measure of precision of the least­
squares process for estimating J, K coefficients. The standard deviation is 
assumed to represent a value within which 68 percent of all errors are expected 
to fall if (1) there lS an inflnite number of observations, and (2) there is 
mlnimal error in the independent variables (Rad i ). Unfortunately, most remote 
sensing experiments have only a limited number of ground-truth observations and 
Rad i measurements do contain errors. 

The F-test is a thlrd method of evaluating the adequacy of the least­
squares process. The calculated value of F (see eq. (5-14) in ref. 11) must 
be greater than a critical value (Fer) taken from F-distribution tables in 
order to be Judged signiflcant. If the multiple-regression equation is to 
be used for predictlve purposes, calculated F should be at least 4 times the 
tabular critical F value (ref. 15). One problem with this parameter is that 
a level of confidence must be arbitrarlly selected before FIFcr can be 
calculated. 

Reference 14 recommends the statistic, Cp ' as a measure of the sum of the 
squared biases plus the sum of the squared random errors (see eq. (5-17) in 
ref. 11). Given a multiple-regression equation with p estimated J, K 
coefficients, a low value of C in combination with a C Ip ratio < 1.0 is 
considered to indicate a good f~t with negligible bias. T~e regression 
equation should then be useful for predictive purposes. The Cp/p ratio is the 
only one of the above parameters which is indicative of bias in the fitted 
equation (ref. 14) 

For future remote sensing experiments, it is recommended that multiple­
regression equations be computed for all combinations of bands for which 
upwelled radiance values are available. Values for r, 0, FIFcr ' Cp ' and Cp/p 

should be computed for each equation. The prime basis for selecting an 
"optimum" regression equation should be Cp/p < 1.0 for minimum bias and FIFcr 
> 4.0 for predictive utilization., Values for r should approach 1 and 0 
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srould approach zero. Danlel's Criteria (eq. 12)) should also be satisfied for 
all bands in the regression equatlon. When all five condltions are met, the 
multiple regression equation wlth the minimum number of bands should be 
selected for calculation of pollutant concentration. 

4. LABORATORY VALIDATION EXPERIMENTS 

It is desirable to validate data analysis techniques with actual remote 
sensing data under controlled conditions. To achieve thlS result, tests were 
conducted with filtered-deionized tapwater in the Marine Upwelled Spectral 
Signature Laboratory at the NASA Langley Research Center. A sketch of the 
laboratory setup is shown in flgure 1. (More complete descriptions of the 
system and test procedures can be found ln references 11 and 16.) Only partial 
results from one series of tests will be presented in this paper for reasons 
of brevlty Additlonal laboratory test cases are presented in reference 11. 

It was desirable to test the multiple-regression technique with data from 
water mixtures which contalned constltuents with both Ilnear and nonllnear 
radiance gradients. Single-constituent tests were conducted on a number of 
~aterials. From these data, It was concluded that both Ball Clay and Feldspar 
s~lls have near linear radlance gradients for concentrations between 4 and 173 
Dp~. Rhodamine WT dye has a nonlinear gradient for concentrations between 17 
ayd 1052 ppb. With this knowledge, a series of three-constituent tests were 
co~ducted with 25 different water mixtures. Table I shows the concentrations 
of Ball Clay, Feldspar, and Rhodamine WT that were present ln the filtered­
deio~ized tapwater for each test. ~lso shown are radiance values for the 
following 5 wavelength bands: 

Band Number 

1 

2 

3 
4 

5 

Wavelength Range 
(nm) 

340-500 
460-620 

540-700 

620-780 

700-860 

Center Wavelength 
(nm) 

420 

540 

620 

700 

780 

The radiance values shown are in terms of relative units obtained by dividing 
ruwdr/bandwidth measurements over the water by gray-card diffuse reflectance 
reasurements of the input light source. 

A multiple-regression analysis was performed for Ball Clay using 12 of the 
~~ tests ln table I to simulate "ground-truth" values. The 12 "ground-truth" 
values were tests 1, 3, 5, 6, 8, 10, 13, 15, 18, 20, 21, and 23. The standard 
jc-vlation of the change in upwelled radiance was next calculated for each band 
!or this "ground-truth" data set. Values are compared with data noise from the 
laboratory measurements as follows: 

Band Number 

1 

2 

3 
4 

5 

ORad 

0.1372 

0.1125 

0.1414 

0.1431 

0.0992 

oN 
(Ref. 11) 

oRad/ON 

0.0343 4.00 

0.0343 3.23 

0.0343 4.12 

0.0343 4.17 

0.0343 2.89 

These figures indicate that Daniel's Criteria (~q. (12)) is satisfied for all 
bands except number 5. Since the signal-to-noise standard deviation ratio 
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for band 5 is only slightly below the value of 3.16, it was decided not to 
exclude that band from the regression analysis in this particular case. 
Regression equations for all combinations of bands we~e next calculated for Ball 
Clay concentration. Estimated values of the J, K coefficients and various 
statistical measures of precision are shown in table II. Review of table II 
lndicates that the lowest value of total squared error (Co) is obtained for band 
combinations 2, 3, and 4. The regression equation for th~s combination is: 

(13) 

Statistical estimates of precision for this equation are: 

r = 0.99 

a = 6.8 ~pm 

(F/Fcr ).95 = 105.7 

C 3.0 p 

Cp/p 0.8 
. 

Since values for r, 0, F/Fcr ' and Cp/p are acceptable, it is assumed that 

equation (13) has good predictive capability. To test this assumption, the 
radiance values for bands 2, 3, and 4 from table I were applied to equation 
(13). Values for Ball Clay concentration (PA) were calculated and are compared 
with actual values in figure 2. Shaded symbols denote the 12 "ground-truth" 
points used in the least-squares fit, and the open symbols represent calcula­
tions for the remaining 13 independent test points. (Some open sy~bols are 
hidden under the shaded points.) Since all points fall within + 3.90 of the 
true value, it is concluded that equation (13) has good predictIve capability 
and that linear multiple-regression analysis procedures have the potential for 
quantification of constituents with linear radiance gradients in water mixtures 
which also contain nonlinear constituents. A satisfactory linear regression 
equation was also found for the concentration of Feldspar soil in these same 
mixtures (ref. 11). 

5. REVIEW OF FIELD DATA 

Analytical analysis and laboratory test cases have been used to perform 
a limited validation of linearized multiple-regression analysis for quantifica­
tion of marine constituents. No matter how many controlled tests are conducted, 
final validation of the technique must come through use of field experiments. 
As noted previously, results from past experiments have not been completely 
satisfactory. This section examines the data and operational conditions of past 
tests in an attempt to define problem areas which require increased attention 
for future experiments. 

Instrument Noise 

Unfortunately, remote sensing data always contain error and random noise. 
Most operational instruments contain onboard calibrat~on lamps and black bodies 
to minimize radiance error. Noise has been somewhat more difficult to 
eliminate because it is caused by many components in the instrument system. 
After an experiment, instrument noise can usually be evaluated by calculating 
the standard deviation of calibration lamp and/or black body count values and 
applying the appropriate calibration constants to convert to radiance. If on­
board calibration sources are not available, flat or near-constant radiance 
portions of the remote sensing scene may be examined. Both of these procedures 
have been used to examine noise in'the data for the field experiments described 
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In references 4, 5, 6, and 9. F1gure 3 presents estimates of noise standard 
dev1atlon values for each band for which data were obtained. These data 
1nctlcate that a wide range of noise values have been observed in previous 
exper1ments. 

The problem of data noise has been widely recognized, and pixel averaging 
is often employed as a method of reducing the error. To illustrate the effects 
of thlS process, cal1brat1on lamp values from the reference 4 data were 
~veraged 1n a manner to simulate p1xel averaging. New values for noise 
standard dev1ation were calculated and are compared with slngle-pixel values in 
fi~ure 4. Large reductions in instrument noise may be achieved by averaging 
even small size (4 by 4 or less) pixel arrays. Use of array sizes larger than 
7 oy 7 prodllced only small reductions in n01se for the reference 4 data set. 

P:xel a'leraging effectively 1ncreases the size of the ground resolution 
eLe~e~t that JJ observed by the remote sens1ng 1nstrument. If the array Slze 
oeco~es too large, average radiance values of the enlarged p1xels may not be rep­
resentative of ground-truth values because of spacial variability in pollutant 
ccnce~trat1on. As p1xels are averaged, noise error will be reduced but new 
error is :ntroduced because of scene dynam1cs or hydraul1c changes. Carr1ed to 
ey~reme, ~ljdraulic features that depict smaller-scale pollutant transport may 
be erased by the averag1ng process. If averaging is necessary, then the follow­
l~~ crlter:a 0houJd be used to establ1sh cred1bility of the enlarged pixel 
rddldnce valJes. 

where 

When 

S2ene 
nojse 

(14) 
nxn 

= 
nxn 

standard deviation of enlarged pixel about average radiance 
value (calculated from individual pixel radiances within n 
by n array surrounding each ground truth point). 

[ORad tJ nxn is much larger than [ON Jnxn' 
dynamlbs have introduced large errors into the 
reduction benefits gained by pixel averaging. 

Ground Truth Placement 

one has an indication that 

process that offset the 

Previous discussion has indicated that ground-truth points should be lo­
cated within the remote sensing bcene in such a manner that Daniel's Criteria 
Ceq. 12) are satisfied for all bands in the regression equation. To review this 
aspect of previous exper1ments, values of oRad have been calculated using 
r~diance values over each set of ground-truth points for the field experiments 
of references 4, 5, 6, and 9. Pixel averaging had been employed to eliminate 
signal changes caused by the ground-truth boat, time differences and location 
uncertainty as well as to reduce noise in each data set. New estimates of ON 
have been made from calibration lamp or background water data to simUlate the 
pixel averaging process for each experiment. Values of ORad/ON have been 
co~puted and are compared with Daniel's Criteria in figure 5. It appears that 
ground-truth placement was adequate such that Daniel's Criteria were satisfied 
after pixel averaging for most experiments. ApprOXimate calculations indicate 
that not a single one of these experiments would satisfy Daniel's Criteria on a 
1 by 1 pixel array basis, however. Ground-truth locations for future remote 
sensing experiments should be selected in such a manner that ORad has the 
largest possible value to minimize the requirem~nt for pixel averaging. Use of 
past remote sensing images of the area to estimate relative radiance differences 
between proposed locations is pro9ably the best method of selectiDg a distribu­
tion with maX1mum standard deviation. 
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Physical Consistency 

An unwritten assumption in the multiple-regression process is that all data 
used in the correlation are "good" without physical deficiencies. When remotely 
mon1toring water-quality parameters, this generally means that a number of cr1-
ter1a should be sat1sfied concern1ng both environmental conditions and physical 
operations of the experiment. Only limited d1Scussion justifying physical con­
slstency of the data 15 available in references 4 through 9. For that reason, 
the re~ainder of this review w1ll discuss best engineering practice with the 
exper1ence from past exper1ments described for only those items d1scussed in 
the llterature. 

Relative to environmental criteria, two desirable conditions are: 

1. Water depth greater than the Secchi depth. 

2. Constant vertical concentration gradient within the remote sensing 
penetration depth (the depth above which 90 percent of the upwelled 
radiance orig1nates, ref. 17). 

It is somet1mes assumed .that the maximum remote sensing penetration depth is the 
same as the Secch1 depth. Calculations in reference 18 as well as unpublished 
data from the James R1ver 1n Virg1nia indicate that maximum remote sensing 
penetrat10n depth may be on the order of 20 to 50 percent of Secchi depth, , 
dependlng on absorption and scattering characteristics of the mixture. Know­
ledge of the maximum remote sensing penetration depth is required so that water 
samples are not obtained be~ow the zone that is causing the remotely-sensed 
slgnal. One method to estimate the maximum remote sensing penetration depth is 
that of lowering a flat black plate with less than 1 percent diffuse reflectance 
1nto the water and not1ng 1tS depth of disappearance (see figs. 6 and 7 in 
ref. 18). 

In terms of operational criteria, a major problem is the time lapse between 
overpass of the remote sensor and collection of individual water samples. Tlme 
lapse can cause the ground-truth data to be hydraulically inappropriate if 
there are significant wind or t1dal influences on the water body being observed. 
It may be possible to correct ground-truth data to account for small time 
lapses (ref. 19), but such procedures have not yet been widely demonstrated 1n 
field experiments. In pr1ncipal, all data should be synchronous with the remote 
sensor overpass, but that has not been achieved in past experiments, as shown 
below 

Reference 

4 

5 

6 
7 
8 

9 

Geographical 
Area 

James R1ver in Virginia 

New Jersey Coast 

New York Bight 

Saginaw Bay in Michigan 

Saginaw Bay in M1chigan 
Delaware Shelf 

Number of Ground Maximum Time Lapse 
Truth Points in Between Water 
Regression Analysis Sampling and Remote 

Sensor Overpass 

21 2.0 hrs 

22 3.0 hrs 

10 0.3 hr 

27 8.0 hrs 

16 8.0 hrs 

7 0.5 hr 

Some experiments have a small time lapse, but in other cases it has been 
assumed that constituents in a water pixel remain constant for 2 to 8 hours. 
Consider1ng that algae tend to migrate depthwise with changing light intensity 
(solar elevation angle), large time lapses should be justified with quantitative 
water sample data even when wind and tidal effects are such that flow conditions 
are stable. 
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In the operational area, another major problem is often encountered. 
Large-scale experlments wlth multlple vessels often require elther some water 
sample analysis cnboard ship or laboratory analysis of the same parameter 
by different organizations. Conslstency of laboratory results between 
dlfferent laboratories lS a longstanding problem, and varlations for certain 
parameters may be larger than that of the remote sensing scene. It is recommen­
ded that future experiments maintain consistent handling and laboratory analysis 
procedures. 

6. SUMMARY OF RECOMMENDED CONDITIONS 
FOR TECHNIQUE APPLICATION 

An investigation of the linear multiple-regression technique with remotely 
sensed radiance as the independent variable has been conducted. Signal response 
equations have been analyzed, and results from "mixed brew" laboratory tests 
are presented. Results from these studles indicate that the technique is funda­
mentally sound and should apply in many environmental situations In WhlCh both 
the water and atmosphere conta1n llnear and nonlinear optical effects. Condi­
tions WhlCh limlt applicat10n of the technique have also been dlscussed. A 
review of prevlous field experiments has served to emphasize addltional llmita­
tions which must be considered 1n future experiments. A summary of recommended 
cond1tions for use of the technique 1S given in figure 6. From thlS llsting, 
it is clear that the linearlzed multlple-regression analysis should never be 
applied blindly to a set of data wlthout background knowledge concernlng the 
constltuent of interest, hydraulics of the water body, typlcal Secchl and 
maXlmum remote senslng penetration depth values, and measurement uncertainties 
from various sources. The technique has strong theoretical foundatlon and 
careful appllcation should yield useful results. It is particularly appropriate 
for use in small regions to validate elther mathematical or hydraulic models 
of pollutant transport and diffusion fresent economics for obtaining multiple 
ground-truth pOlnts wlthin a single remote senslng scene llmit its usefulness 
for many routlne monitoring mlssions, however. 

7. CONCLUDING REMARKS 

The study described hereln is part of a continuing effort to define data­
reduction technlques and thelr appropriate application so that increased bene­
fits can be derived from both aircraft and satellite remote sensing data. The 
goal of the present study was a more complete understanding of limltations, 
requirements, and precision of the linear multlple-regression technique with 
rad1ance as the independent variable. Environmental and optical physics con­
dltions have been deflned for which an exact solution to the slgnal response 
equat10ns 1S of the same mathematical form as the statistician's tradltional 
multiple-regress1on equation. In such a case, use of linear1zed multiple 
regression is merely an empirical correlation to obtain coefficients for the 
exact solution to the signal-response equations. Add1tlonal analytlcal invest1-
gations are desirable to more completely deflne atmospheric limitations and to 
consider the problem of bottom reflection in optically shallow waters. 

One problem with use of the regression technique is that the independent 
variables (upwelled radiances) conta1n errors and are often correlated with 
each other. This requires consideration of a number of statistical parameters 
when performing the regression analysis. 

Review of past field experiments indicates that data noise was of such 
magnitude that data smoothing was required before Daniel's Criteria could be 
satisfied for the least-squares multiple-regression process. Improved selection 
of ground-truth locations to maximize varlance is recommended to minimize data 
smoothing requirements and the physical errors associated with that process. 

Time lapse between remote sensor overpass and water sample collection 
appears to have been a problem in past experiments. Economic consideration will 
always result in only a limited number of water,samples obtained synchronously 
w1th the remote sensor overpass. Additional studies to develop and demonstrate 
techniques for correcting nonsynchronous data for remote sensing use are 
desirable. 
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Figure 1. - Laboratory setup. 
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Figure 2. - Comparison of calculated 
and actual Ball Clay concentrations 
for three-constituent mixture tests. 
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