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Figure 1. Model of a Strike—Slip Fault in a Layer Lying Over a Half—Space.

Figure 2a. Rlicological Element for Standard Viscoclastic Solid.
2b. Rheological Element for Maxwell Substance.

Figure 3. Displacements Parallel to the Fault, u(t), for Model DILE; ue = 1 m; Tick Mark Spacing = 2L'

Figure 4. Displacements Perpendicular to the Fault, v(t), for Model DILE; u e = 1 m.

Figure 5. Shear Strain, e 12 (t) for Model DILE; u e 1 nl.

Figure 6. Normal Strain, e ll (t), for Model DILE; no = I m.

Figure 7. Normal Strain, c22 (t), for Model DILE; no = i m.

Figure 8. Rotation co(t) for Models DILE and DILV; no = I m.

Figure 9, Displacements Parallel to the Fault, u(t), for Model DILV; ue = 1 m.

Figure 10. Displacements Perpendicular to the Fault, v(t), for Model DILV; u e = 1 In.

Figure 11. Shear Strain, c 12 (t), for Model DILV; ue = 1 m.

Figure 12. Normal Strain, e, t (t), for Model DILV; ua = 1 in.

Figure 13, Normal Strain, c 22 (t), for Model DILV; ua = 1 m.

Figure 14a. Parallel Displacement, u(t), Versus Distance from the Fault for Model DILE; no = 1 m,
L 50 km for the Scales oil 	 and Right Side of Figure.

14b. Parallel Displacement u(t), Versus Distance from the Fault for Infinite Fault; 110 = 1 m,
H = 50 kill for the Scales oil 	 and Right Side of Figure.

Figure 15ai. Slicar Strain, e 12 (t), Versus Distance from the Fault for Model DILE; uo = 1 In, L=
50 kill for the Scales oil 	 and Right Side of Figure,

15b. Shear Strain, c 12 (t), Versus Distance from the Fault for Infinite Fault; u a = I m, L =
50 km for the Scales oil 	 and Right Side of Figure.
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POSTSEISMIC VISCOELASTIC SURFACE DEFORMATION AND STRESS
Part 1: Theoretical Considerations, Displacement and Strain Calculations

Steven C. Cohen
Geodynamics Branch

Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

This paper, the first of two related articles, presents a model of

viscoelastic deformations associated with earthquakes. A strike-slip fault

is represented by a rectangular dislocation in a viscoelastic layer(litho-

spliere) lying over a viscoelastic half-space (asthenospliere). Deformations

occur on three time scales. The initial response is governed by the instan-

taneous elastic properties of the earth. A slower response is associated

with viscoelastic relaxation of tine lithosphere and a yet slower response is

due to viscoelastic relaxation of the asthenospliere. The major conceptual

contribution of this paper is the inclusion of Iithospheric viscoelastic pro-

perties into a dislocation model of earthquake related deformations and

stresses. Numerical calculations using typical fault parameters reveal that

the postseismic displacements and strains are small compared to the co-

seismic ones near the fault, but become significant further away. More-

over, the directional sense of the deformations attributable to the elastic

response, the Iithospheric viscoelastic softening, and the asthenospheric

viscoelastic flow may differ and depend on location and model details.

The results and theoretical arguments suggest that the stress changes

accompanying lithosplicric relaxation may also be in a different sense

than and be larger than the strain changes.

{
A

F

l	 .,



a

1

POSTSEISMIC VISCOELASTIC SURFACE DEFORMATION AND STRESS
Part 1: Theoretical Considerations, Displacement and Strain Calculations

INTRODUCTION

The subject of this study is the spatial and temporal dependence of postseismic displacements,

strains, and stresses. In this paper we develop a theoretical model of the postseismic deformations

and report on calculations of surface displacements and strains. In a companion paper (Cohen and

Cook, to be published), herein referred to as Part 2, we report the corresponding stresses and exa-

mine the effects of variation in fault parameters on the computed deformations.

Our analysis is based on a viscoelastic model of the earth's rheology and employs features from

dislocation theory (Steketee, 1958x, 1958b; Chinnery, 1961, 1963; Press, 1965; Rybicki, 1971)

and the correspondence principle (Flugge, 1967). The assumed model for a strike-slip fault is shown

in Figure 1. The lithosphere is modeled as a layer of thickness H lying over an asthenospheric half-

space. The strike-slip faulting occurs uniformly over a rectangular surface from -L to L and from

some upper level which is not necessarily the surface to a depth D within the lithosphere. As will be

seen below, the deformations depend on both the deviatoric and dilatational rheology of the litho-
.	

w
sphere and the deviatoric rheology of the asthenosphere. We assume that both the lithosphere and

asthenosphere exhibit viscoelastic deviatoric responses although the details of the response and the

associated time scales are different. The dilatational response of the lithosphere is taken to be elastic

in one version of our model and viscoelastic in another. Specifically we model the lithospheric devi-

atoric behavior with the standard linear solid shown in Figure 2a. The dilatational response is repre-

sented by an elastic element in model DILE and a standard linear solid in model DILV. In the latter

case the deviatoric and dilatational time constants are assumed equal. The deviatoric response of the

i	 asthenosphere is modeled by a Maxwell element shown in Figure 2b.
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The time constants associated with the lithospheric and asthenospheric viscoelasticity are ex-

pected to be markedly different. Although there is some debate about the physical mechanism for

the lithospheric viscoelasticity we take an empirical approach based oil and field investi-

gations which yield time constants ranging from several minutes to a few months (e.g. Robertson,

1964). Oil 	 other hand asthenospheric viscoelasticity has a longer time constant expected to

range from years to decades (e.g. Nur and Mavko, 1974), or longer.

Two more preliminary comments need to be made about this model. First the consideration

of the lithosphere's dilatational response is important only for finite length faults. For infinitely

long faults only the deviatoric behavior has to be considered and the model is two-dimensional. We

have already reported some results from this model (Cohen, 1979) and will discuss others below.

The present results comprise the more detailed study to which we alluded in the earlier paper. Sec-

ond, as the thickness of the lithosphere increases (with fault depth held constant), the influence of

the asthenospliere decreases. In the limit that the lithosphere becomes infinitely thick, model DILV

gives no post-seismic deformations but model DILE does. This general result, based on the corres-

pondence principle, is discussed in many references. Viscoelastic calculations based oil 	 infinite

half-space model of the earth have been reported by Singh and Posenniam (1974), and Roscnman

and Singh (1973x, 1973b). Models involving dislocation theory and a layer over a lialf space have

been studied by Rundle and Jackson (1977), Savage and Prescott (1978), and Randle (1978). A

viscoclastic model of the Palmdale bulge has recently been reported by Rundle and Thatcher (1979).

THEORETICAL CONSIDERATIONS

The starting point for our analysis is the set of equations describing the static displacements

associated with a dislocation in an elastic layer lying overall elastic half-space. A set of approxi-

mate equations have been derived using all 	 technique by Rundle and Jackson (1977) who find
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where the symbols used in these equations are defined on Table I and where (Chinnery, 1961,

1963)

f (77, O I I = f (L, D) — f (L, d) — f (-L, D) + f(-L, d)
	

(3)

In order to find the corresponding time dependent viscoelastic displacements we can follow

the procedure dictated by the correspondence principle. We write the stress-strain equations for

the viscoelastic material as

Pa = QC
	

(4)

where P and Q are linear operators. For the' case of pure elasticity, P = 1 and Q = 3k or Q = 2p

depending on whether dilatational or deviatorie behavior is under study. In the more general case

when P and Q are linear operators we take the Laplace transform of equation 4 to find

P(s) a = Q(s) c
	

(5)

where P and Q are polynomials in the Laplace transform variable s. Equation S sliows that the

Laplace transformed viscoelastic solution can be obtained from the elastic solution by malting

the substitutions

P(s)
3k ->	 dilatational case

Q(s)

and

(6a)

(6b)2µ 3 P(s) ; deviatoric'case
Q(S) 
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It is also necessary to include the transformation

u
uo = o	 since uo = a constant for t > 0	 (7)

s

The resulting equations for u and v can then be subject to an inverse transformation to deter-

mine the viscoelastic displacements. This procedure is very cumbersome. A more expeditious

procedure results from two simplifications. First we impose the physically reasonable condition

that the lithosphere relaxes rapidly compared to the asthenosphere. Next we restrict the discus-

sion to the three times of greatest interest, namely, t = to = 0 — the time immediately after the

earthquake, t = tR — a time long compared to that required for lithospheric relaxation, and t =

to - a time long compared to that required for asthenospheric relaxation. In these three time

limits the displacement equations become elastic with effective reduced moduli µt , µZ , and k as

shown on Table II. The parameter substitutions shown on Table II are obtained directly from con-

sideration of the viscoelastic stress-strain equations. Consider, for example, the deviatoric equation

for a three element standard linear solid

a + - 77
	

6 = 
µa Pb e + 77 Pa	

e
µa + ub	 µa + Pb	 lea + µb

For a rapid change in stress and strain (e.g. during an earthquake) the terms in 6 and a dominate

so

Ga = µa /fie

while for v and a small

Laa	 1 
a

+0 E, Q	
Pb

For a Maxwell substance

a+^ 6 = ne
µ

Thus for rapid changes

AU = PAC
	

(12)
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while for b and a small

a=0	 (13)

The two viscoelastic models that we have considered have in common the standard linear solid re-

presentation of the deviatoric behavior of the lithosphere and the Maxwell deviatoric behavior

of the asttlenosphere, They differ in that model DILE takes the lithosphere to be elastic in

dilatation and model DILV takes to be a standard solid with µ n /µb = ka rkb and 711µb = n`Jkt,.

The displacements at the earth's surface (z = 0) are in these models;
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Y2 q+	 4 y' tHmy2 (2S2 + p+)	
(15)

+ b14 S2 (S2 +P+)2 + b ls	 S23 (S2 +P+)2 	
(15)

where the coefficients a t and bi depend on time and the model; they are shown on Table III. The

time dependent quantity P has been evaluated in an earlier paper (Cohen, 1979) and is given by

P ( to) = y+ 1	
(16a)

	

P(tR) = y+1+Q	
(16b)

	

r(t) = 1	 06c)

where y = p^ /y and as before 9 = P.Mb

The strains are obtained from appropriate differentiations on the displacements:
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From these we obtain the shear strain

and rotation

	

e12 = '/z (ay	
+ ax)	

(21)

	^2u 	 8v}
w	 /z 
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	 (22)

The elastic displacements and strains depend on the location (x, y), the source parameters

(AU, D, L, H) and the ratio of elastic constants k (or ka ) to Pa and µa to p. It is convenient to

choose as a unit of spatial measurement the half-fault length, L, and to normalize the results to a

unit dislocation, AU. Furthermore as is common in theoretical geophysics we tale the instanta-

t
neous) Poisson's ratio to be '/4 corresponding to k 1(e) = 

5
5 and set p, (to) = 11; (to). This

pi (to)	 3
leaves as parameters the quantities D/L and H/L and the coordinates x/L and y/L. The choice

of equal instantaneous shear moduli for the lithosphere and asthenosphere sets r(to) = 0 and all

terms under the summation signs in equations 14, 15, and 17-20 vanish in the calculation of the

initial elastic deformations. ' The deformations associated with the lithosplleric relaxations depend

on the parameter p of the relaxed standard solid and the parameter r (t Q) which compares the

9
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effective moduli of the lithosphere and asthenosphere. The deformations occuring as the astheno-

sphere relaxes are independent of the asthenosplieric modulus as this lialf—space has no long—term

rigidity.

We will defer until part 2 a detailed discussion of the stresses that accompany these defor-

mations. However it is worth noting that the surface stresses may have significantly different

time histories from the strains. For example, the shear stress, a 12 , is given by

017 (ta) = µa ell (to)	 (22a)

012 (tR) =F^a C12 (tR)	 (22b)
1+a

012 (ta)	 1'h(i e12 (ta)	 (22c)

As time progresses from to to tR not only does the strain change, but so does the effective shear

modulus coupling the stress to the strain. Since the fractional change in C12 is small in many

cases and since P may have a value of order unity, the modulus change can dominate the early

postseismic stress history. In fact the reduction in the effective shear modulus causes a decrease

in the initial shear stress drop associated with the earthquake. As a consequence there is a

partial stress recovery at sonic points even though the strain undergoes a postseismic decrease.

A similar effect has been seen sliding block models of earthquakes that use standard linear solid

viscoclastic elements (Dicteri;h, 1972; Cohen, 1978).

RESULTS

In this section we will discuss sonic figures which illustrate the deformations predicted by

the equations presented above. For this discussion we have chosen the numerical parameters

such that L = li = 4D - I and we have set d = 0. in part 2 we consider in more detail the dependence

of the deformation properties oil 	 fault parameters. In order to appreciate the magnitude of

10
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deformations it will occassionally be convenient to set 2L = 100 kill and co set u o = l in

scaling to other values of L and no is straight forward. We will also have occasion to compare the

present results with those obtained for au infinitely long screw dislocation (Cohen, 1979), Here we

again take H = 4D = 50 km but now, of course, L = oc, The illustrative discussion is ror model DILE.

For the sake of brevity we will not explicitly discuss the results for model DILV although the rele-

vant contours of displacements and strains will be presented. We warn the reader that the results for

our twomodelsare often very different as the postscismic relaxation proceeds. We have chosen to

concentrate on model DILE since at least some materials appear to remain dilatationally elastic even

when deviatorically viscoclastic.

Contours of equal displacements for DILE are shown in Figures 3 and 4. Strain contours

are presented oil 	 5 through 7 and the rotations oil 	 S. The corresponding results

for DILV are shown oil 	 9 through 13. (The rotations are the same in the two models.)

A useful way to begin the interpretation of these results is to consider the variation of

displacement, u, and shear strain, e i2, with distance from the fiudt along the y axis. Along this

axis the effects of the fault edge are least noticeable and in fact v, ep I , and C22 which depend

oil 	 fault sizes for their existence vanish when x = 0. Even oil 	 y axis, however, some

effects of finite fault sizes will be seen at distant points from the fault. Figure 14 shown the

expected monotonic decrease in displacement with distance from the fault. The lithospheric

relaxation reduces the displacements with the maximum change occurring between y = 25 kilt

and y = 50 km. The astllcnospheric relaxation produces an opposite postscismic motion which

increases the displacement. The net effect of both relaxations is to produce a maximum forward

postscismic displacement of about 3 mm near y = 25 kill and a maximum reverse displacement

of about 1 nun over a wide zone near, say, y = 175 kilt. A comparison of these results with



those for the infinite fault call 	 carried out with the aid of Figure 14b, As expected for fixed

H and D the displacements at distant points from the fault are larger when L is infinite. Further-

more, the displacements induced by asthenospheric relaxation become significant relative to the

coseismic ones at points closer to the fault when the finite fault size is considered.

The postseismic displacements off the y axis are complex, particularly near the fault edges

where there is a convergence of contour lines. One curious feature associated with the litho-

spheric relaxation is a small region of increased displacements beyond the fault edge.

Returning again to the y axis and examining Figure 15 we fill([ that the shear strain drop is

about 10- 5 at tlae fault, falls to zero near 40 kilometers, and then becomes positive taking oil

value of it 	 parts in 108 year near y=70 km, before decreasing. This reversal in the sign of the

shear strain is a clear demonstration of the importance of fault finite size, For an infinite t1hult

only the term 
all 

contributes to the shear strain. Since it decreases monotonically with distance
y	

i3v
from the fault the shear strain is always negative, In the finite fault model the term ax must

also be considered. It can become the dominate term at certain points not too close to the fault

and produce a positive shear strain. As for the postseismic strain, the lithospheric relaxation

reduces the strain near the fault. At more distant points the postseismic strain is positive and at

still more distant points it becomes negative again. These strain changes are fractionally small

near the fault but significant in regions where the coscismic strain vanishes. The asthcnospheric

relaxation produces a broad region of strain increase.

Leaving the y axis the behavior of the postseismic strain is complex with regions of both

positive and negative strain changes apparent. Lithospheric relaxation produces a small shear

strain increase along tiro x axis near the fault and beyond jxj = L. Conversely, there is a strain

decrease in a region between the x and y axes. The astlacnosplaeric relaxation decreases the
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shear strain near the fault and along both coordinate axes but Increases it at some distant points

between axes.

The perpendicular displacements, v, and the normal strains c lt and 022 share the common

Feature of being focussed oil 	 edges of the slipped region. The v displacements tend to de-

crease as the lithosphere relaxes although rigure 4 does reveal it region of increased displacement.

The asthenospheric adjustment increases the displacements. Tile net postscismic motion is a de-

creased displacement near the fault and all increased displacement at distant points.

The normal strains call 	 shortening or extension depending oil 	 The previously

observed general tendency for lithospheric relaxation to bring contours closer together and for

asthenospheric relaxation to separate them call 	 observed for these strains. When the postscismic

behavior is examined in more detail close to the fault we find that the initial change fit I is it

shortening (!it 	 first quadrant). As the tastlicnosphcre relaxes there is an extension but the net

motion remains a shortening. The postscismic behavior of e22 near the fault is all 	 both	 as

the lithosphcre and asthenosphere relax. We should re-emphasize that W results presented bore

are for the case L = li = 4D. An analysis of the dependence of the time dependent deformations on

the choice of fault parameters will be included !it 	 2.

SUMMARY

This paper has considered lithospheric and asthenospheric viscociasticity as causes of postscismic

surface deformations. Displacement and strain equations have been derived for it 	 fault

and illustrated for a particular case involving a moderately shallow fault that cuts the surface, a some

what deeper asthenosphere-lithosphcre interface, and a finite fault length. The calculations suggest

that near the fault the postscismic deformations are significant for moderate and large earthquakes

although the deformations are only it 	 fraction of the coscismic ones. At various points away



from the fault, the deformations produced by lithospheric relaxation exceed the coseismic deforma-

tions; furthermore, over broad distant regions the slower deformations produced by astitenospheric

relaxation also exceed the coseismic ones. The sense of direction of these postscismic motions not

only differs from the sense of the coseismic motions but also varies with location and time.

Accompanying the postscismic changes in strain are changes in stress. However, as the litho-

sphere relaxes or softens the reduction in its effective moduli causes stress changes that may be very

much different from that expected from strain changes alone. The time-dependent changes in stress

will be studied in detail in Part 2.

We wish to empilasize that we do not regard viscoelastio motions as the only possible source of

postscismic deformations. Other factors, SUCK as postscismic fault creep and time-dependent rock

failure, may be important sources of deformation.
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Table I
Symbol Definition for Displacement and Strain Equations

x, Y, z coordinates of observation point
1 , 0, $ coordinates of a point on the fault
L half-fault length = 2L 	 -L < t 6 L
D depth of lower boundary of fault	

d <	 D
d depth of upper boundary of fault
H depth to lithosphere-asthenosphere boundary
p	 - + z}	

for z=0 :p=Q
q	 - - z
P+ +z+2mH

forz=O,p+=P-
p_	 _ - z + 2mH
q+ 	_ -z-2mli

forz=O,q+=q_
q_	 _ + z +2mH
t	 = t-x

S22	 =
2

t2+ Y2. +,p2.^	 fort = 0, St.=$t =S

St+2 = t2 +Y2 +.q+2

S' 2 = t2 
+ Y2 

+q-2	 for z = 0, Sl+ = Si_ = St
1

S2 + 2 = t2 + Y2 + p+2)
S2_2 = t2 + Y 2  + P-2 )	 for z = 0, S2+ = S2_ = Sl

U displacement parallel to fault
ua dislocation across fault
v displacement perpendicular to fault

k l	 = bulk modulus of iithosphere

µl	 = shear modulus of lithosphere
µ2	 = shear modulus of asthenosphere
a	 = (3kt +µi)/(3k, +41it)

b	 = (3kt - µt )/(3k1 + µt )
c	 = 31A l (3k t -2µ1)/(3k1 +µt)

i;

^; y
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'rahlc II

1-11'ective Moduli of Lithoshherc and Asthenoshhere

Model DILF, !Model DILV

time
0 tk, t, 0 tQ	 t„

ntu^lulu,

µa {,^^	 I µ^	 I Nr µ'	 l	 µa	 l

2 2 2	 1 +0 2 2	 1 +0	 _'	 I +^3

k^ ka ka kd ki	 I	 k,	 Ik 

t 3 3 t 3 3	 1 +Q	 3	 1 +^^

u u 0 p N	 0
2 2 2
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Tabic III

Coefficirnl in Displacement and Strain Equations; Equations 14, 15, 17-20: K = k^

3K+ 1

3

3K + I

3K +I

3K ;-4

()K2 + 1.5K - 5

OK + I)(3K + 4)

3K+7
3K + 4

t,

3K +4

1

i

IRK` - 6K --12b 
e (3K + I )( 3 K +4)

b99 3K+4

bio
6K+2

3K +4

fiK+2
hl

3K + 4

1 80 + 3 0K -10
ht 2 — (3K + 1)(3K +T)

12

h13 3K +4

ht4

t,K + 2

3K +4

6K + 2
^ S

3K +4

i
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