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FIGURE CAPTIONS |
Figure 1, Model of a Strike-8lip Fault in a Layer Lying Over a Half-Space.

Figure 22, Rheological Element for Standard Viscoelastic Solid.
2b, Rheological Element for Maxwell Substance,

Figuré 3. Displacements Parallel to the Fault, u(t), for Model DILE; u, = 1 m; Tick Mark Spacing = 2L~

Figure 4. Displacements Perpendicular to the Fault, v(t), for Model DILE; uy =1m,

Figure 5, Shear Strain, €1, (t) for Model DILE; I..lo =1m,

Figure 6, Normal Strai’n,‘ €, (t), foriModel DILE;u; =1 m,

Figure 7, No:rx_nal Strain, ¢,, (t), for Model DILE; u, = im,

Figure 8, Rotation co(t) {or Models DILE and DILV; uy =1 m,

F’fgurc 9. Displacements Parallel to the Fault, u(t), for Model DILV; “ﬁ =1m,

Figure 10. Displacements Perpendicular to the Fault, v(t), for Model DILV; uy = 1 m.

Figure 11. Shear Strain, eu.(t), for Model DILV; u, = 1m.

Figure 12. Normal Strain, €y (1), for Model DILV; uy, =1 m.

Figure 13. Normal Strain, ¢,, (t), for Mode! DILV;u, = 1m,

Figuré 14a. Parallel Displacement, u(t), Versus Distance from the Fault for Modet DILE; u, =1 m,
L= 50 km for the Scales on Top and Right Side of Figure,

14b. Parallel Displacement u(t), Versus Distance from the Fault for Infinite Fault; Y =1Im
H = 50 km for the Scales on Top and Right Side of Figure.

]

Figure | 5a. Shear Strain, €,4(t), Versus Distance from the Fault for Mode! DILE; Uy =1m,L=
50 km for the Scales on Top and Right Side of Figure,
156, Shear Strain, €,,(t), Versus Distance from the Fault for Infinite Fault; 1w, =1 m,L=
50 km for thc Scales on Top and Right Side of Figure,
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POSTSEISMIC VISCOELASTIC SURFACE DEFCGRMATION AND STRESS
Part 1: Theoretical Considerations, Displacement and Strain Calculations

Steven C. Cohen

~ Geodynamics Branch

Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT
This paper, the first of two related articles, presenls a model of

viscoelastic deformations associated with earthquakes. A strike-slip fault
is represented by a rectangular dislocation in a viscoelastic layer (litho-
sphere} lying over a viscoelastic half-space (asthenosphere). Deformations
occur on three time scales. The initial response is governed by the instan-
taneous elastic properties of the earth. A slower response is associated
with viscoelastic relaxation of the lithosphere and a yet slower response is
due to viscoelastic relaxation of the asthenosphere, The major conceptual
contribution of this paper is the inclusion of lithospheric viscoelastic pro~
perties into a dislocation model of earthquake related deformations and
stresses, Numerical calculations using typical fault }Szlratneters reveal that
the postseismic displacements and strains are small conipared to the co- |
seismic ones near the fault, but become signil‘icmﬁ further away. More-
over, the dircctional sense of the deformations attributable to the ei:istic
response, the lithospheric viscoelastic softening, and the usthenosbheric
viscoelastic flow may differ and depend on locﬁtion and model detai.ls.
- The results and theoretical argtuments suggest that the stress changes
accompanying lithospheric relaxation may also be in a dif fercnt sense

than and be larger than the strain changes.




POSTSEISMIC VISCOELASTIC SURFACE DEFORMATION AND STRESS
_ Part 1: Theoretical Considerations, Displacement and Strain Calculations

INTRODUCTION

The subject of this study is the spatial and temporal dependence of postseismic displacéments,
strains, and stresses. In this paper we develop a theoretical model of the postseismic deformations
and report on calculations of surface displacements and strains. In a companion paper (Cohen and
Cook, to be published), herein referred to as Part 2, we report the.corresponding stresses and exa-

mine the effects of variation in fault parameters on the computed deformations.

Our analysis is based on a viscoelastic model of the earth’s rheology and employs features frdm
_dislocation theory (Steketee, 1958a, 1958b; Chinnery, 1961, 1963 ; Press, 1965; Rybicki, 1971}
and the correspondence principle (Flugge, 1967). The éssumed model for a strike-slip fauit is shown
in Figur'e 1. The lithosphere is modeled as a layer of thickness H lying over Qn asthenosphe.ric half-
space, The strike-slip faulting occurs uniforﬁﬂy over a rectangular surface from ~L to L and from
‘some upper level .which is not necessarily the surface to a depth D within the Iithosphere. As will be
seen below, the deformations depend on both the deviatoric and dilatational rheology of the litho-
_spherg and the deviatoric rheology of the asthenosphere. We assume that both the lithosphere and
asthenosphere exhibit viscoelastic deviatoric responses although the details of the response and the
~ associated time scales are different. The dilatational response of the lithosphere is ltakén to be elastic
in one version of our model and viscoelastic in another, Specifically we model the lithospheric devi~
atoric behavior with the standard linear solid shown in F igure 24, Tllle.dilatation.al response is repre-
sented by an elastic element in model. DILE and a standﬁrd linear solid in model DILV. In the_latter
case the devi;iforic and dilatational time constants are assumed equal. The deviatoric response of tile o

asthenosphere is modeled by a Maxweil element shown in Figure 2b,
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The time constants associated witl the lithospheric and asthenospheric viscoelasticity are ex-
pected to be markedly different. Although there is some debate about the physical mechanism for
the lithospheric viscoelasticity we take ah empirical approach base-d on laboratory and field inve.sti—
gations which yield time constants ranging from several minutes fo a few months (e.g. Robertson,
1964), On the. other hand ;1sthex__1_ospheric viscoelasticity has a longer time constant éxpected to

range from years to decades (e.g. Nur and Mavko, 1974), or longer.

Two more preliminary comments need to be made about this model. First the considerati.on
of the lithosphere’s dilatational response is important only for fiﬁite length faults, For infinitely
long faults only the deviatoric behavior has to be considered and the model is two-dimensional. We
have already reported some results from this model (Cohen, 1979) and will discuss others below.
The present results comprise the more detailed study to which we alluded in the earlier paper. Sec-
ond, as the thickness of the lithosphére increases (with fault depth held constant), the influence of
the asthenosphere decreases. In the limit that the lithosphere becomes infinitely thick, model DILV
gives no post-seismic deformations but model DILE does. This general result, based on the corres-
pondence principie, is discussed in many references. Viscoelastic calculations based on an infinite
- half-space model of the eartl have been reported by Singh and Rosenman (1974), and Rosenman
and Singh (19734, 1973b). Moc.lels involying dislocation theory and a layer over a half space have

been studied by Rundle and Jackson (1977}, Savage and _Pre.sco_tt (19_78), and Rundle (1978). A

viscoelastic model of the Palmdale bulge has recently been reported by Rundle and Thatcher (1979).

THEQRETICAL CONSIDERATIONS

The starting point for our analysis is the set of equations describing the static displacements
associated with a dislocation in an elastic layer lying over an elastic half-space. A set of approxi-

mate equations have been derived using an image technique by Rundle and Jackson (1977) who find

o
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where the symbols used in these equations arc defined on Table I and where (Chinnery, 1961,

1963)

Edn, ) H = (L, D) - f(L,d) — {(-L, D) + {(-L, d) (3)

-In order to find the corresponding time dependent viscoelastic displacements we can follow

the procedure dictated by the correspondence prisiciple. We write the stress-strain equations for

-the viscoelasti¢c material as

Po = Qe 4)
where P and Q are linear operators, For the' case of pure clasticity, P=1 and Q =3k or Q = 2u
depending on whether dilatational or deviatoric behavior §s under study, In the more general case

when P and Q are linear operators we take the Lapiace transform of equation 4 to find
PET = Q)T _ (5
where £ and @ are polynomiais in the Laplace transform variabie s. Equation 5 shows that the |

Laplace transformed viscoelastic solution can be obtained from the elastic solution by making

the substitutions

P(s) - '
3k - —— ; dilatational case 64
o (6
and
2u -~ E(-S) ;  devintoriccuse ' ' K (Gb)
o) : '
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It is also necessary to include the transformation

u
i, = 2 since uy = a constant for t > 0 (N
s

The reshlting equations for u and v can then be subject to an inverse transformation to deter-
mine the viscoelastic displacements. This procedure is very cumbersome. A ‘more expeditious
procedure results from two simplifications. First we impose the physically reasonable condition
that the lithosphere relaxes rapidly compared to the asthenosphere. Next we restrict the discus-
sion to the three times of greatest interest, namely, t = t; = 0 — the time immediately after the
earthquake, t = t, — a time long compared to that required for lithospheric relaxation, and t =
t, ~ a time long compared to that required for asthenospheric relaxation. In these three time
limits the displacement equa_tions become elastic with effective reduced moduli g, , u,, and k as
shown on Tablé II. The parameter substitutions shown on Table II are obtained directly from con-
sideration. of the viscoelastic stress-strain equations. Consider, for examplé, the deviatoric equation

for a three element standard linear solid

o + 7 6 = talb e + 7 H, & (8
Ha + iy Ha t fi Hy + iy

For a rapid change in stress and strain (e.g. during an earthquake) the terms in ¢ and é dominate -

50
Ao = p, Ae O
while for ¢ and € small
_ M Hy )
g = —— €, ﬁ = e : (IO)
. 1+ Hy
For a Maxwell substance
' n . .
g+~—~G = né ' (11
H _ _ . '
Thus for rapid changes
As = pAe ' (12)




while for & and € small

o=90 _ (13)
The two viscoelastic models that we have considered have in common the standard linear solid re-
presentation of the deviatoric behavior of the lithosphere and the Maxwell deviatoric behavior
of the asthenosphere, They differ in that model DILE takes the Iithbsphere to be elastic in
dilatation and model DILV takes to be a standard solid with py /s, = k. /k, and n/u, =n'/ky.

The displacements at the earth’s surface (z = 0) are in these models:
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where the coefficients a; and b; depend on time and the model; they are shown on Table III. The

time dependent quantity I' has been evaluated in an earlier paper (Cohen, 1979) and is given by

- -l
Pt = =5 (162)
_y=1-
[(ty) = YT 1+g (16b}
re) = |1 (16¢)

where y =y, /u and as before § = u, /uy,.

The strains are obtained from appropriate diff erentiations on the displacements:
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from these we obtain the she_ar strain

a b}
612 = %‘. (5’3 + 'éi) . (21)
and rotation
ou av
= .1 — . 22
@ =k (ay- ax) - (22)

. The elastic displacemenis and strains depend on the location (x, y), the source parameters
(Au,D, L, H) and the ratio of elastic constants k {or k,) to u, and u, to p. It is convenient to
choose as a unit of spatial measurement the half-fault length, L, and fo normalize the results {o a

unit dislocation, AU. Furthermore as is common in theoretical geophysics we take the instanta-
ky(tg) _ _5_
. _ pr(to) 3
leaves as parameters the quantities D/L and H/L and the coordinates x/L and y/L. The choice

neous) Poiséon’s ratio to be % corresponding to and set uy(ty) = p.(tg). This

of equal instantaneous shear moduli for the lithosphere and asthenosphere sets I'{tp) =0 and all
terms under the summation signs in equations 14, 15, and 17-20 vanish in the calculation of the
initial elastic deformations. The deformations associated with the lithospheric relaxations depend

on the parameter § of the relaxed standard solid and the parameter ' (tp) which compares the

S




effective moduli of the lithosphere and asthenosphere. The deformations occuring as the astheno-
sphere relaxes are independent of the asthenospheric modulus as this half-space has no long-term

rigidity.

We will defer until part 2 a detailed discussion of the stresses that accompany these defor-
mations. However it is worth noting that the surface stresses may have significantly different

time histories from the strains, For example, the shear stress, o, , is given by

J12 (tﬂ) = M €, (tg) (22a)

o3 (tgy = Mo oep (tp) (22b)
1+8

013 () = 1?}3 €1 (ty) (22¢)

As time progresses [rom t; to ty not only does the strain change, but so does the effective shear
modulus coupling the stress to the strain, Since the fractional change in €;, is small in many
cases and since § may have a value of order unity, the modulus change can dominate the early
postseismic stress history, In fact the reduction in the effective shear modulus causes a decrease
in the initial shear stress drop associated with the earthquake. As a consequence there is a
partial stress recovery at some points even though the strain undergoes a postseismic decrease.
A similar effect Yas been séen sliding block mddcl_s of earthquakes that use standard linear solid

viscoclastic clements (Dieterich, 1972; Cohen, 1978).

RESULTS

In this scction we will discuss some figures which illustrate the deformations predicted by
the equations presontéd above. For this discussion we hz.lvc. chosen the numerical parafneters
such that L= H=4D =] and we have set d =0, In part 2 we consider in more detail the dependence

of the deformation properties on the fault paramcters. In order to appreciate the magnitude of

10
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deformations it will occassionally be convenient to set 2L = 100 km and to set up = | malthough
scaling to other values of L and u, is straight forward. We will also have occasion to compare the
prescnt.rcsults with those obtained for an infinitely long screw dislocation (Colien, 1979). Here we
again take H= 4D = 50 kin but now, of course, L = o, The illustrative discussion is for model DILE.
For the sake of brevity we will not explicitly discuss the results for model DILV although the rele-
.vant contours of displacements and strains will be presented, We warn the reader that the results for
our twomodels are often very different as the postseismic relaxation proceeds. We have chosen ta
concentrate on model DILE since at least some materials appear to remain dilatationally elastic even

when deviatorically viscoelastic,

Contours of equal displacements for DILE are shown i Figurcs 3 and 4. Strain contours
are preseated on Figures S thrmigh T and the rotations on Fig-.urc B, The corresponding results

for DILV are shown on Figures 9 through 13. (The rotations Jrc the same in the two models.)

A useful way to begin the interpretation of these results is to consider the variation of
displacement, u, and shear strain, e,,, with distance from the fault along the y axis. Along this
axis the effects of the fault edge are least noticeable and in fact v, &1, and €;5 which depend
~on finite fault sizes for their existence vanish when x = 0. Even on the y axis, however, some
effects of finite fault sizes will be scen at distant points from fhc 1;:1111t. Fipure 14 shows the
expected monotonic decrease in displacement with distance from the fault, The lithospheric
relaxation reduﬁcs the displhcmucnts with the _maximum ﬁhnnge occurring between y = 25 km
and y = 50 km. The asthcnospheric rcl;i cation produces an opposite postseismic motion which
increases the displacement. The net cffect of both relaxations is to produce o maximum forward
postseismic displacement of about 3 mm near y = 25 km and a maximum reverse displ:lcémcnt

of about 1 mim over a wide zone near, say, y = {75 knl. A comparison of these results with

i
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those for the infinite fault can be carried out with the aid of Figure 14b, As cxpected for fixed
H and D the displacements at distant points from the fanlt are Jarger when L is infinite. Further-
more, the displacements induced by asthenospherie relaxation become significant relative to the

coseismic ones at points closer to the fault when the finite fault size is considered,

The postseismic displacements off the y axis are complex, particularly near the fault edges
where there is a convergence ol contour lines, One curious feature associnted with the litho-

spheric relaxation is a small region of increased displacements beyond the fautt edge,

Returning again to the y axis and examining Figure 15 we find that the shear strain drop is
about 1075 at the fault, Talls to zero near 40 kilometers, and then becomes positive taking on a
value of a few parts in 108 year near y=70 km, before decreasing. This reversal in the sign of the
shear strain is a clear denionstration of the importance of fault finite size. For an infinite fault

au . . , . . \ .
only the termt — contributes to the shear strain, Since u decreases monotonically with distance
0 g
- \ - v
from the fauit the shear strain is always nepgative, In the finite fault model the term 5—- anust
X
also be considered. It can become the dominate ferm at certain points not too close fo the fault
and produce a positive shear strain, As for the postseismic strain, the lithospheric relaxation
reduces the strain near the fault, At more distant points the postseismic strain is positive and at
still more distant points it becomes negative again, These strain changes are {ractionaily small
near the fault but significant in regions where the coseismic strain vanishes. The asthenospheric.

relaxation produces a broad region of strain increase,

Leaving the y axis the behavior of the postseismic strain is complex with regions of both
positive and negative strain changes apparent. Lithospheric relaxation preduces a small shear
* strain increase along the x axis near the fault and beyond Ixj = L. Conversely, there is a strain

decrease in a region between the x and v axes. The asthenospheric relaxation decreases the

12




shear strain near the fault and along both coordinate axes but increases it at some distant points

between axes.

The perpendicular displacements, v, and the normal strains €y and ¢,, share the common
feature of being focussed on the edges of the slipped region, The v displacements tend to de-
crease as the lithosphere relaxes although Figure 4 does reveal a region of incrensed displacement,
The asthenospheric adjustment increases the displacements. The net postscismic motion is a de-

creased displacement near the fuult and an increased displacement at distant points.

The normal strains can involve shortening or extension depending on location, The previously
observed general tendency for lithospheric relaxation to bring contours closer together and for
n‘sthcnospheric relaxation to separate them can be observed for these strains, When the postseismic
behavior is examined in more detail close to the fault we find that the initial change in e, isa |
shortening (in the first quadrant), As the asthenosphere relaxes there is an extension but the net

~motion remains a shortening. The postseismic behavior of €54 near the fault is an extcnsion both as
the lithosphere and astheniosphere relax, We should re-emphasize that tl: results prcscutcd here
are for the case L=H = 4D, ll\n analysis of the dependence of the time dependent def ormations on

the choice of fault parameters will be included in Part 2.

SUMMARY

This paper has considered lithospheric and :18thcx10.§plwric viscoelasticity as causes off postsciémic
surface deformations, Displacement and strain equations have been derived or a strike-slip fault
and illustrated for a particular case involving a moderately shallow fault th_at cuts tilc strface, a some-
~ what deeper asthenosphere-lithosphere interface, and a finite fault lcngth. The calculations suggest
that near the fault the postseismic dcl'ornmlions_m signi.f icant for modcrate and large earthquakes

although the deformations are only a small fraction of the coscismic ones. At various points away

13
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from the fault, the deformations produced by lithospheric relaxation exceed the coseismic deforma-
tions; furthermore, over broad distant regions the slower deformations produced by asthenospheric
relaxation also exceed the coseismic ones, The sense of direction of these postscismic motions not

only differs from the sense of the coseismic inotions but also varies with tocation and time.

Accompanying the postseismic changes in strain are changes in stress. However, as the litho-

sphere relaxes or softens the reduction in its effective moduli causes stress changes that may be very

much different from that expected from strain changes alone, The time=icpendent changes in stress

will be studicd in detail in Part 2.

We wish to emphasize that we do not regard viscoclustic motions as the only possible source of

- postseismic deformations. Other factors, such as postseismic fault creep and time-dependent rock -

failure, may be important sources of deformation.
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Table [
Symbo! Definition for Displacement and Strain Equations

coordinates of observation point

coordinates of a point on the fault

half-favit length=2L -L < ¢{ <L

depth oi: lower boundary of fault d<t<D
depth of upper boundary of fault

depth to lithosphere~asthenosphere boundary

ij:i forz=0,p=q
gf::;ﬂﬂ forz=0,p, =p_
e E
E-x

222

:2:;:22% forz=0,8, =8, =8
:Z :Zz ::}2 forz=0,8), =§)_=§,
:z :zz:gt;% forz=0,8;, =S;_=§,

displacement paralle! {o fauit
dislocation across fault
displacement perpendiculzir to fault
bulk modulus of iithosphere '
shear modulus of lithosphere

shear modulus of asthenosphere
(3k1 iy )/(3k1 + 44“1)

(3k1 =My )/(3k1 1y )

3#1 (3k1 - 2#1 )/(3](1 + *”1)
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Table 11

Effective Moduli of Lithosphere and Asthenosphere

Model DILE Model DILV
time:
0 t 1 0 t t
modulus ¢ . 2 .
" M Wl s 1 H N L N1
! ] 7 1+8 70+ 2 3 T+ 2 1+8
k L} K k L K 1 k1
! 3 3 3 3 3 1+ 3 1+8
u u u H
Hz 7 bl 0 7 3 0
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Table 111 K
Coefficient in Displacement and Strain Equations; Equations 14, 15, 17-20; x = -

Hy
7 Ik +1 o 3
0 . I H1Sk-S b 3
27 Bkt 13k +4) L 3k +1
‘ 3k +7 k3 3k +1
8 Ik +4 )y u3x+4
92 + 15k -5
1, > by L S5k
3k + 1)(3k +4)
2 6k +2 b 3k +7
’ 3k+4 S0 3k+4
.. 18k +30k-10 "o 6
6 7 Bk+1)3k+4) 6 Ik+4
, 12 - 18
! 3k +4 T (GBk+1)3k+4)
’ 6K + 2 b, . 18k?-6k-22
' k+4 b B+ 1)3k+4)
6K + 2 6K + 2
ag - b9 :
3k +4 3k+4
6k + 2
o ! ’ RIS P
6K + 2
it . Nyl 3k +4
b . _ 18k +30k-10
127 GBk+ D3k +4)
12
HERR e
b bk +2
4" T 3c+4
6K + 2
Oy Ik+4
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Figure 2. (A) Rheological Element for Standard Viscoelastic Solid. (B) Rheological
Element for Maxwell Substance.
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Figure 3. Displacements Parallel to the Fault, u(t), for
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Figure 5. Shear Strain, €,,(t), for Model DILE; u,



Model DILE; uy = 1 m.
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Figure 6. Normal Strain, €,, (1), for
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Figure 9. Displacements Parallel to the Fault, u(t), for Model DILV; u, = 1 m.



Figure 10. Displacements Perpendicular to the Fault, v(t), for Model DILV u, =1 m.
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