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FOREWORD 

This repGrt was prepared by Life Systems, Inc. fGr the National AerGnautics and 
Space Administration (NASA) Ames Research Center in accordance with the require­
ments Gf CGntract NAS2-9795, "BevelGpment Gf a Static Fee<l Wa,ter ElectrGlysis 
Oxygen Generation Subsystem BreadbGard." The period Gf perfGrmance for the 
prGgram was December 1, 1977 tG May 30, 1979. The Gbjective Gf the program was 
tG advance the Oxygen Genera,tion Subsystem technGlogy, based Gn static feed 
water electrGlysis, and tG demGnstrate the maturity Gf the hardware development 
f"r future multicrew space missiGns. 

Mr. Franz H. Schubert was Program Manager. Dr. Myon K. Lee was Project Manager. 
The personnel contributing tG the program and their areas of re,sponsibili ty are 
indicated below. 
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Myon K. Lee, Ph.B. Process calcula,tiGns and a,oalyses. COGrdi­
na'tiGn Gf testing activities and aata 
reduction. 

J. Elavid PGwell Control/Monito'r InstrumentatiG'1 design 

Franz H. Cichubert Mechanical aesign, p,rGauct assurance, 
system analyses ana p,rGgram management 

Baniel C. Walte'r Meehanieal subsystem ana compGnent aesigns 

Rick A. Wynveen, Ph.B. Systems I!lesign 

The CGntraet' s TeChnical MGnitGr was P. I!l. QuattrGne I Chief I Advanced Life Suppo,rt 
Office I NASA Ames Research Center I MGffett Field, CA. 
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SUMMARY 

Regenerative processes for the revitaliza,tion of spacecraft atmospheres are 
essential for making long-term manned space missions possible. One of the 
mast important steps in this revitaliza,tion pracess is the reclamation af 
breathable oxygen fram metabolically-praduced carbon dioxide. Oxygen can be 
recovered in the farm of water thraugh the chemical reduction af carban dioxide. 
The water is then electralyzed ta produce oxygen. Under this program an 
Oxygen GeneraticlO Subsystem based on water electralysis was develaped and 
tested ta further advance the concept and technolagy of the spacecraft Air 
Revitalizatian System. Emphasis was placed on demanstra,ting the subsystem 
integration concept and hardware maturity at a subsystem level. 

The Air Revitaliza,tian System cansists af six subsystems and the centralized 
Cantrol/Monitor Instrumentation. These subsystems are (1) an Oxygen Genera­
tian Subsystem, (Z) a Carbon Dioxide Cancentrator, (3) a Carbon Bioxide Reduc­
tian Subsystem, (4) a Water Handling Subsystem, (5) a Cabin Humidity Cantral 
Subsystem and (6) a Nitrogen Supply Subsystem. The Oxygen Generatian Subsystem, 
part of the Water Handling Subsystem and centraliZed Contral/Manitar Instrumen­
tat ian were designed, fabricated and tested as part of the Air Revitalization 
System under this p'ragram. Developments of other subsystems af the Air Revita~ 
lizatian System were funded under separate NASA Ames Research Centa pragrams 
and under the Cantracta,r's internal research and develapment pragrams. This 
repart autlines the develapment activities a.ssaciated with the Oxygen Genera­
tion Subsystem, the Water Handling Subsystem and the centralized Cantral/Manitar 
Instrumentation. Emphasis is placed on the develapments af the Oxygen Genera­
tian Subsystem and its technalagy. 

The primary abjective af the Oxygen Generatian Subsystem is ta p,raduce axygen 
for metabalic cansumption. The byproduct hydragen is used in pracesses for 
concentrating and reducing carban diaxide. The Oxygen Generation Subsystem 
develaped under the present program employs the Sta,tic Feed Water Electralysis 
cancept. The static feed-based Oxygen Gene'ration Subsystem cansists basically 
af three main parts: an elettrachemical module, a pressure con,traller and a 
water feed tank. The generatian afaxygen and hydragen accu'rs in a series af 
electralysis cells fo,rming an electrachemiical madule. The cells use an aqueous 
salutian of potassium hyd·roxide retained in a porous asbestos ma,trix. Water 
feed into the individual cells is a.chieved statically, minimizing maving parts 
for increased subsystem reliability. 

The Oxygen Generation Subsystem develaped as part af this p,ragrdm was designed 
ta deliver oxygen at a rate of 1.46 kg/d (3.ZZ lb/d) which included 0.83 kg/d 
0.84 lb/d) far metabalic consumptian of ane person aOGl 0.63 kg/d (1.3'8 lb/d) 
far other requirements such as cabin leaikagema,keup. ZThe 1Z-cell electrochemi­
cal madule apera,ted at a current density of 197 mAl cm (183 ASF), temperature 
af 339 K (150 F) and p,ressnre of

Z
1,068 kP2 055 psia). The active elect.rade 

area of a single cell is 9Z.9 cm (0.1 ft). The electralysis cells were 
inte,tcannected i!l se,ries electrically. All fluid cannectians were made in 
parallel. The pressure cantraller combined, in a single assembly, the sensars 
and actua·tors necessary to cantral and monitor fluid p'res.sure levels and 
differentials during all aperating mades and transitians, including steady­
state aperatian, startup and shutdown. 
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electralysis cells fo,rming an electrachemiical madule. The cells use an aqueous 
salutian of potassium hyd'roldde retained in a porous asbestos ma,trix. Water 
feed into the individual cells is achieved statically, minimizing maving parts 
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cal madule apera,ted at a current density of 197 mAl cm (183 ASF), temperature 
af 339 K (150 F) and p,ressnre of

Z
1,068 kP2 055 psia). The active elect.rade 

area of a single cell is 9Z.9 cm (0.1 ft). The electralysis cells were 
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the primary function of the Water Handling Subsystem is to ensure that a 
supply of water exists for the Oxygen Generation Subsystem. The principal 
components in the Water Handling Subsystem are a water storage tank and a 
deionizer. The deionizer contains both a charcoal and an ion-exchange resin 
bed for removing iodine ions and dissolved carbon dioxide from the feed water 
of the Oxygen Generation Subsystem. Water comes either from the Carbon Dioxide 
Reduction and Cabin Humidity Control Subsystems or from an external source. 

The centralized Control/Monitor Instrumentation employs an advan.ced instrumenta­
tion concept which is highlighted by minicomputer-based control and monitoring. 
The function of the Control/Monitor Instrumenta,tion is to provide automatic 
mode and mode transition "ontrol, automatic shutdown provisions fo,r self-pro­
teetion, provisions for monitoring system parameters and provisions for inter-
facing with ground test instrumentation. . 

An extensive test program including components, subsystem and integrated 
system testing was completed. The overall objectives of the test program were 
to (1) prove the integration concept of the Air Revitalization System, (2) 
further advance the Oxygen Generation Subsystem technology, and (3) demons tra,te 
the hardware maturity of the Oxygen Generation Subsystem components such as 
electrolysis cells, modules and the Three-Fluid PresSure Controller. Inte­
grated t.esting of the experimental Air Revitalization System was conducted for 
a period of 120 days and included testing at the component, subSystem and 
total system le~'els. 

A total of 480 hours of suceessful integrated operation was aehieved with the 
Air Revitalization System. Of the total normal operation, two seven-day 
periods of uninterrupted operation were achieved. A single cell with one of 
the super electrodes (WAB-6) was subjected to endurance testing. A total of 
8,650 hours continuous operation has been accumulated at the "one Ius ion of the 
current program. Cell voltages du'ring the period of endurance testing remained 
stable in the range of 1. 462 to 1. 50 V. Opera't~ng eondi tions were set nominally 
at 352 K (175 F), 161 rnA/em' (I50 ASF) and amhent pressure. A 12-cell module 
/Ising the super electrodzs (WAB-6) was tested a,t 355 K (180 F), 993 kPa 
(144 psia) and 161 rnA/em (I50 ASF). Individual eell voltages varied in the 
range of 1. 47 to 1.50 V, indica'ting the perfo,rmanee of the super electrodes is 
reprodUcible. In addition, the pressu're controller and another 12-cell module 
using the advan~ed electrodes (WAB-5) were extensively tested to determine the 
hardwa re ma'tllri ty . 

It is concluded from the results reported herein that the integration concept 
of the Air Revitalization System is feasible. Hardware and technology of the 
Oxygen Generation Subsystem has been demonstrated to be close to the preproto­
type level. Continueg development of the oxygen generation teehnology is 
recommended to further reduce the total weight penalties of the Oxygen Genera­
tion Subsystem through optimiZation. Successfui completion of this development 
will p,roduce timely technology necessary to plan future advanced emrironmental 
control and life suppo,rt system programs and experiments. 

2 

Ci/t SII.S/(HlS, !HC. 

the primary function of the Water Handling Subsystem is to ensure that a 
supply of water exists for the Oxygen Generation Subsystem. The principal 
components in the Water Handling Subsystem are a water storage tank and a 
deionizer. The deionizer contains both a charcoal and an ion-exchange resin 
bed for removing iodine ions and dissolved carbon dioxide from the feed water 
of the Oxygen Generation Subsystem. Water comes either from the Carbon Dioxide 
Reduction and Cabin Humidity Control Subsystems or from an external source. 

The centralized Control/Monitor Instrumentation employs an advan.ced instrumenta­
tion concept which is highlighted by minicomputer-based control and monitoring. 
The function of the Control/Monitor Instrumenta,tion is to provide automatic 
mode and mode transition "ontrol, automatic shutdown provisions fo,r self-pro­
teetion, provisions for monitoring system parameters and provisions for inter-
facing with ground test instrumentation. . 

An extensive test program including components, subsystem and integrated 
system testing was completed. The overall objectives of the test program were 
to (1) prove the integration concept of the Air Revitalization System, (2) 
further advance the Oxygen Generation Subsystem technology, and (3) demons tra,te 
the hardware maturity of the Oxygen Generation Subsystem components such as 
electrolysis cells, modules and the Three-Fluid PresSure Controller. Inte­
grated t.esting of the experimental Air Revitalization System was conducted for 
a period of 120 days and included testing at the component, subSystem and 
total system le~'els. 

A total of 480 hours of suceessful integrated operation was aehieved with the 
Air Revitalization System. Of the total normal operation, two seven-day 
periods of uninterrupted operation were achieved. A single cell with one of 
the super electrodes (WAB-6) was subjected to endurance testing. A total of 
8,650 hours continuous operation has been accumulated at the "one Ius ion of the 
current program. Cell voltages du'ring the period of endurance testing remained 
stable in the range of 1. 462 to 1. 50 V. Opera't~ng eondi tions were set nominally 
at 352 K (175 F), 161 rnA/em' (I50 ASF) and amhent pressure. A 12-cell module 
/Ising the super electrodzs (WAB-6) was tested a,t 355 K (180 F), 993 kPa 
(144 psia) and 161 rnA/em (I50 ASF). Individual eell voltages varied in the 
range of 1. 47 to 1.50 V, indica'ting the perfo,rmanee of the super electrodes is 
reprodUcible. In addition, the pressu're controller and another 12-cell module 
using the advan~ed electrodes (WAB-5) were extensively tested to determine the 
hardwa re ma'tllri ty . 

It is concluded from the results reported herein that the integration concept 
of the Air Revitalization System is feasible. Hardware and technology of the 
Oxygen Generation Subsystem has been demonstrated to be close to the preproto­
type level. Continueg development of the oxygen generation teehnology is 
recommended to further reduce the total weight penalties of the Oxygen Genera­
tion Subsystem through optimiZation. Successfui completion of this development 
will p,roduce timely technology necessary to plan future advanced emrironmental 
control and life suppo,rt system programs and experiments. 

2 



.... ~. • •• ~ ....... ~ •••• ,... T •• •• • •• ~-:m 

Ci/e Sils/ems. !HC. 

PROGRAM ACCOMPLISHMENTS 

Under Contract NAS2-9795 the following major accomplishments were' made in 
~ technology and hardware development of the Oxygen Generation Subsystem (OGS): 

• Designed and fabricated a one-person capacity engineering breadboard 
OGS. 

• Integrated and tested the OGS with an experimental Air Revitalization 
System (ARX-I). Proved the integration concept of the Air Revitaliza­
tion System (ARS) is feasible. 

• Demonstrated the superior perforlilam:e of advanced water ilectrolysis 
cells (e.g. cell voltages of 1.45 to 1.50 V at 161 rnA/cm (150 ASF) 
and 340 K (153 F)) is stable and reliable over a long period of t,ime 
(greater than 8,650 h). 

• Demonstrated that the super electrode (WAB-6) performance was retained 
through scale-up from single cells to a 12-cell module. 

• Demonstrated the hardware maturity of the OGS components such as 
electrodes, cells, modules and a Three-Fluid Pressure Controller 
(3-FPC) . 

• Developed a Water Handling Subsystem (WHS). Integrated and tested 
the WHS with the ARX-I. 

• Developed automatic, centralized Control/Monitor Instrumentation 
(C/M 1) for the ARX-1. The central CIM I provided single-button 
startup, automatic process control and monitoring and automatic 
fail-safe shutdown. 

INTRODUCTION 

Regenerative processes for the revitalization of spaeecraft atmospheres are 
essential for making long-term manned space Iilissions possible. An important 
step in this overall process is the reclamation of oxygen (0 ) for metabolic 
consumption through the electrolysis of water. The byproduct hyd·rogen (H2) is 
used to produce water from metabolically-generated carbon dioxide (C02), The 
water is then eleetrolyzed to produce O

2 
and H

2
• 

An Oxygen Generation Subsystem (OGS) based on the static feed water eleetrolysis 
(SFWE) concept has been recognized as a design capable of efficient, reliable 
O2 generation with few SUbsystem components. The static feed concept has 
evolved over the past 12 years under the National Aeronautics and Space Adminis­
tration (NASA) and Life Systems, Inc. (LSI) sponsorship. Recent developments 
at LSI allow substantial reductions in the operating voltage levels of water 
electrolysis cells. This state-of-the-art advancement is significant since 
the OGS is the largest power eonsUJner of a regenerative Environmental Control/ 
Life Support System (EC/LSS). The electrolysis power is directly related to 
the cell volta.ge. 
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Background 

Prior development efforts of water electrolysis cells, moduli::4,nd subsystem:, 
have included those that use the static water feed concept. l Subsystems 
using this concept(~ag5 demonstrated an inherent simplicity and long opecating 
life capabilities.' The OGS, using SFWE, has the potential for the lowen 6) 
power .. consuming electrolysis subsystem due to the alkaline electrolyte used. ' 
Various approaches to the static feed design and the resut~' of extensive test 
programs identified necessary key subsystem improvements. These improvements 
were made and incorporated into the dtai~~ of the hardware being developed by 
LSI. Specific improvements included: ' 

• Reduction in electrolysis cell voltage 

• Elimination of water feed compartment degassing 

• Elimination of condenser/separa%ors which are characteristic of 
other applicable water electrolysis subsystems 

• Elimination of aerosols in the product gas streams 

In 1977 a significant reduction in state-of-the-art cell voltage levels was 
achieved with a Contractor-developed catalyst for the 02-evolving electrode 
(Figure 1). Under a previous program (Contract NAS2-8682) sponsored by NASA, 
a total of 136 days of Single cell operation were acc~ulated with rep,resenta­
ti ve cell voltage levels avt1;jging 1. 45 V a,t 161 mAl cm (150 ASF) and 355 K 
(I80 F) being demonstra,ted. 

Program Objectives 

The objective of the present program 
with major emphasis on demonstrating 
ware maturity at a subsystem level. 

was to further advance the OGS technology 
the subsystem integration concept and hard­
Specific objectives were to: 

1. Besign and fabricate an engineering breadboard OGS based on SFWE. 

2. Integrate and test the OGS with an ARX-l to prove the feasibility of 
the subsystem integration concept. 

3. Bemonstrate the superior performance of previously-developed, advanced 
water p-lectrolysis cells at both the single cell and staled-up 
module levels. 

4. Bemonstra,te the hardware maturity of the OGS at a subsystem level by 
endurance testing the ARX-I. 

The obj "cti ves of the p'rogram were met. 

Program Organization 

To meet the above objectives, the program was diVided into five tas,ks plus the 
documentation a,nd program mana,gement functions. These five tasks were: 

en References at end of this report. 
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Task 

1.0 

2.0 

3.0 

4.0 

5.0 

Descriptio~ 

Design, falJrie:ate and assemble the OGS, the WHS and the CIM I. 
Integrate the subsystems into the ARK-I. 

Develop and calibrate Test Support Accessories (TSA) to enable 
operation of the OGS within the ARX-I. 

Establish, implement and maintain a mini-Product Assurance p,rogram. 

Perform a variety of module, sUbsystem and integrated ARX-I testing. 

Complete supporting research and development effort to further 
expand the OGS technology. 

AIR REVITALIZATION SYSTEM DEVELOPMENT 

A prior program demonstrated that the OGS could be successfully integrated 
:,jth other air revitalization subsystems into i)4laboratory breadboard Oxygen 
Recovery System (ORS) at the one-person level. t ) A 30-day endurance test of 
the OGS, integrated with an Electrochemical Depolarized CO

2 
Concentrato,r (EDC) 

and a Sabatier-based CO2 Reduction Subsystem (S-CRS), showed that the three 
subsystems would remove and reduce the metabolieally-generated CO

2 
and p,roduce 

the required 02 level for one person in a spacecraft application. 

The next step in the development of the OGS for the spaeecraft ARS was eompleted 
as part of the program activities. This activity was the design, fabrica'tion 
and test of the ARX-I which incorpo,rated the OGS. The philosophy for this 
"next-step" app,roach was different than in previously integrated laboratory 
breadboard systems where each of the SUbsystems: (1) were self-contained, (2) 
had their own CIM I, (3) were started and shut down independently, (4) were 
tied together by appropriate interfaces and (5) contained redundant components. 

The self-contained system (versus subsystem) approach selected for the ARX-I 
was based on reducing SUbsystem interfaees, elimina'ting redundant components 
and utilizing the products (Le. heat, electrical power, fluids) of one sub­
system in another. As an example, the lI2 generated by the OGS is used by thc 
EDC and S-CRS. Also,the CIM I was deSigned as a single unit that would 
opera;te all components as a single system by providing for one-button startupl 
shutdown of all ARS functions, automatic sequencing and control and monitoring 
for self-protection and safe operation. The objective of this portion of the 
program activities was to demonstrate, t.hrough actual testing, the valid,ity of 
the integration appnach as well as verify the advantages, identify new ones 
and isola'te shortcomings for futu,re correction. 

Concept Deserip,tion 

Figure 2 is a block diagram of the self-contained ARS concept. The three 
prinCipal subsystems (OGS, EDC and S-CRS) needed to provide 02 to and remove 
CO2 from the creW space are shown. 
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Additional subsystems and components are needed to provide other air ~evitali­
zation functions. A Nitrogen (N

2
) Supply Subsystem (N8S) using decomposition 

of hydrazine (N2"4) provides for N2 lost through cabin leakage. Also, the NSS 
supplies extra H2 required by the S-CRS. A Cabin Humidity Control Subsystem 
(CHCS) is used to supply conditioned air to the EDC at a humidity level which 
results in optimum efficiency and to remove the metabolically- and EDC-produced 
moisture from the cabin air. A WIIS collects, stores and distributes process 
wa ter to the OGS. Finally, th" centralize.d C/~I I provides for automatic, 
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TABLE lONE-PERSON AIR REVITALIZATION SYSTEM 
DESIGN REQIDIREMENTS 

Crew Size 

CO2 Removal Ra,te, kg/d (lb/d) 

02 Generation Rate, kg/d (Ibid) 

Water Vapor Removal Rate, kg/d (lb/d) 

Liquid Wa,ter Production Ra,te, kg/d (Ibid) 

CH4 Praduction Rate, kg/d (Ibid) 

N2 Production Rate, kg/d (Ibid) 

1 

1.00 

1.03 

1.80 

1.49 

0.36 

0.60 

i 
ei/e SlIsleHis. Inc. 1 

(2.20) 

(2.27)(a) 

(3.96) 

(3.27) 

(0.79) 

(1. 32) 

(a) Cansists of 0.84 kg/d (1.84 Ibid) 02 metabolic and 0.19 kg/d 
(0.43 Ibid) for leakage requirements. 
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Static Feed Water Electrolysis 

Detailed descriptions of the SFWE process have been discussed pr~viously.(2) 
The following summarizes its concept and the electrochemical processes. 

Static Feed Water Electrolysis Concept. A conceptual schematic of an OGS 
based on the SFWE concept is shown in Figure 6. The subsystem consists of 
three main parts: an electrochemical module, a water feed tank and a pressure 
controller. 

The module generates 02 and H2 from wa,ter supplied by the water feed tank. 
The water feed tank is cyclically filled as required from the collection 
points within the EC/LSS (e.g., CO2 Reduction Subsystem). The pressure con­
troller (a) maintains the absolute pressu,re of the subsystem, (b) maintains 
the pressure differentials required to establish and maintain fluid (H20 and 
electrolyte) locations within the individual cells of the module and (c) 
controls pressurization and depressuriza,tion of the subsystem during mode 
transitions (i.e., start-ups and shutdowns). 

Figure 7 is a functional schematic of one of the electrochemical cells which 
are installed electrically in series in the electrolysis module. Basically, 
a single cell consists of an electrode assembly, product gas cavities for H2 
and °2 , a feed water compartment and a coolant compartment for tempera,ture 
control. The electrode assembly consists of a cathode, asbestos ma'trix and an 
anode. The N2 purge line is activated during sta,rtup and pressurization, 
shutdown or in case of emergency. All fluid interfaces are manifolded w;,th 
the respective ones of other cells in the module. 

The overall static water feed concept operates as follows. Initially, the 
feed water compartment and the electrode assembly contain an aqueous solution 
of KOH electrolyte at an equal concentration. Both the H2 and 02 cavities are 
void of liquid. An equilibrium condition exists prior to start of electrolysis. 
When power is applied to the electrodes, water from the cell electrolyte is 
decomposed. As a result, the concentration of the cell electrolyte increases 
and its water vapor pressure decreases to a level below that of the feed 
compartment electrolyte. This water vapor pressu,re differential is a driving 
force causing water vapor to diffuse from the liquid gas interface within the 
water feed matrix, through the H2 cavity and cathode electrode, into the cell 
electrolyte. This process establishes new steady-state conditions based on 
the water requirements for electrolysis. 

As water evapo'ra,tes from the feed water compartment it is statically replen­
ished from the water feed tank to maintain a constant pressure within the feed 
compartment. Bpon interruption of electrical power, water vapor will continue 
to diffuse across the H2 compartment until the electrolyte concentra,tion in 
the cell matrix is equal to that of the water feed compartment. At this point 
the original equilibrium condition is reestablished with the electrolyte 
having the initial charge concentration. 
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Electrochemical Process. The electrochemical process of water electrolysis 
occurs within the cell's electrode assembly. The reactions occurring at the 
anode and cathode of the electrolysis cell with an alkaline electroly~e are: 

Cathode 

- -2e + 2H
2

O = H2 + 20H 

i\nod~ 

-20H = H2
0 + 1/2 02 + 2e 

resulting in the overall rea.ction of 

electrical energy + H20 = H2 + 1/2 02 + heat 

The flow rates of product gases are given by 

where G = 
I = 
N = 

11 = c n = 
F = 

G '" IN '1 /(nF) c 

product gas flow rates, g~males/sec, 
current, A 
number af cells in series 
current efficiency 
number of electrons involved in reaction (1) or (2) to praduce 
a molecule of a product gas 
Faraday's canstant, 96479 coulamb/equivalent 

The current efficiency, I'J , may be defined as c 

(1) 

(2) 

(3) 

(4) 

I'J = W /W (5) cat 

where W = weight of desired product actually obtained and W = weight of 
desiredap'raduct if current had been used solely to produce tlie desired product. 
Current efficiency is influenced by current density. 

In analyzing 
calcula,ted. 

electrachemical pracesses, energy efficiencies are 
Energy efficiency, '1 may be defined as follaws: 

e 

'1 = Et/E ea 

alsa frequently 

(6) 

where E = energy theoretically required, based an the decompasition voltage 
and on the amaunt of desired p,raduct actually obtained and E "actual energy 
input. The energy efficiency calculation may be based on th~ anode p,roduct o,r 
an the cathade product. If the current efficiencies for the anade and cathade 
are the same, energy efficiency may be calculated as: 

where V = decomposition valtage and V = actual cell valtage. The decomposi~ 
tion vo~tage is a function of operatin~ temperatu,re and pressure. The decom­
position voltage af wa,ter at 298 K (77 F) and atmospheric pressure is 1.229 V. 
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Oxygen Generation liubsystem Descriptions 

Design Specifications. The OGS was designed to deliver 02 at a rate of 1.46 kg/d 
(3.22 lb/d) which included 0.83 kg/d (1.84 Ibid) 02 for metabolic consumption 
and 0.63 kg/d (1.38 Ibid) for other requirements such as EDC consumption and 
cabin leakage makeup. Details of the OGS design speCifications are presented 
in Table 2. 

Schematic and Operation. The OGS schematic is shown in Figure 8. Basically, 
the OGS operates as described in the previous section. The water feed tank is 
periodically filled with water which is being treated by a deionizer. During 
normal operation the valve (13A), located downstream of the deionizer, is 
closed. Feed water is statically replenished to the electrolysis module as 
the water in the aqueous electrolyte solution is being electrolyzed. 

A list of the OGS mechanical components is presented in Table 3. The 3-FPC is 
the key component which maintains the system pressure (water-feed tank pressure) 
and pressures of the product gases and their respect:ive compartments in the 
module. 

Temperature of the electrolysis module is kept uniform and constant by cir­
culating water through the coolant cavities of the electrolysis cells. The 
module temperature can be varied for parametric testing by the use of electrical 
heaters, installed in the module endplates, and a liquid-to~air heat exchanger. 
A diverter valve in the coolant loop adjusts the water, flow rate through the 
heat exchanger to maintain a constant module temperature. 

Both the 02 and H? compartments of each cell can be purged with N
2

. The flow 
of the N2 purge s~ream is regulated by orifices upstream of the module. The 
N2 purging is not only a safety feature but also prevents module pressure from 
going subatmospheric due to the reaction of H2 and 02 after shutdown or isolation. 

The nominal operating conditions of the OGS are presented in T!!ble 4. The 
electrolysis module operated at a current density of 197 rnA/em (183 ASF) to 
ensure that the OGS delivers 02 at a rate equal to or greater than the speci­
fied production rate of 1.46 kg/d (3.22 Ibid). The module temperature and 
p'ressure were set at 339 K (150 F) and 1,068 kPa (155 psia), respectively. 
The initial module charge concentration of KOH was 25% by weight. 

Hardware ])escriptions. Unique components of the OGS design are the electro­
chemical module and the 3-FPC. The remaining ancillary components were either 
commercially available or other 1,SI state-of-the-art hardware. 

The design of the SFWE Module (SFWEM) was based on the single-cell components 
shown in Figure 9. Twelve electrolysis cells were assembled using an endplate­
to-endplate concept to minimize interconnecting plumb~ng, as s20wn in Figure 10. 
The active electrode area of a single cell is 92.9 em (0.1 ft). The elec­
trolysis cells were interconnected in series electrically. All fluid connec­
tions were. made in ~arallel. , D?'z1iled descriptions of the design have beer. 
presented l.n a p,revl.ous report.' 
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TABLE 2 OGS DESIGN SPECIFICATIONS 

Crew Size 

02 Generation Rate(a), kg/d (lb/d) 

H2 Generation Rate, kg/d (Ib/d) 

Water Supply 
Pressure, kPa (psia) 
Temperature, K (F) 

Cooling Air 
Total' Pressure, kPa (psia) 
Tempenture, K (F) 

Pllrge Gas Supply 
Type 
Pressure, kPa (psia) 

Electrical Power, V 
DC 
AC 

Gravity, g 

Duty Cycle 

1 

1. 46 (3.22) 

0.18 (0.41) 

207 (30) 
277 to 300 
(40 to 80) 

101 (14.7) 
294 (70) 

N 
9~5 (140) 

24 
115/200 (60 Hz, 

1 and 3 Phase) 

o to 1 

Continuous 

(a) Includes 0.83 kg/d (1.84 lb/d) 02 for metabolic consumption and 
0.63 kg/d (1.38 lb/d) for other requiremen,ts such as eabin leak­
age ma,keup and EDC consumption. 
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TABL~ 3 OGS MECHANICAL COMPONENT LIST 

Part Number Identifit~~ion 
No. Component Required C()de 

1 Electrochemical Module 1 WEl/DMI 

2 Three-Fluid Pressure Controller 1 PCl 

3 Water Storage Tank 1 WSTI 

4 Coolant Pump 1 M3 

5 Coolant Accumulato,r 1 WA2 

6 Liquid/Air Heat Exchanger 1 HX3 

7 Coolant Flow Diverter Valve I V22 

8 Feed Water Deionizer 1 WDI 

9 Product Gas Filter 2 AF3, 4 

10 Orifice 4 R4, 5, 7, 8 

11 Check Valve 2 eVl, 2 

12 Hand Valve 1 MVlO 

13 Solenoid Valve 7 V9, 10, 11, 12 
16, 17, 18 

14 Power Controller 1 

(a) As used in ARX~l System Schematic, LSI-J-1407, (Appendix 1). 
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TABLE 4 OGS NOMINAL OPERATING CONDITIONS 

Current, A 

Current Density, mA/cm2 (ASF) 

Average Cell Voltage, V 

Module Temperature, K (F) 

Pressures 

• 
• • 
• 

H20 Feed, kPa (psia) 
H2-to-H20 Differential, kPa (psid) 
02-to-H20 Differential, kPa (psid) 
N2 Purge, kPa (psia) 

Flow Rates, kg/d (Ibid) 

• 
• 
• 

H
2
0 Feed 

02 Product 
H2 Product 

Electrolyte Charge Concentration, wt % 

Cife Sf/stems. Inc. 

18.3 

197 (183) 

1. 5 (a) 

339 (150) 

1069 (155) 
17.2 (2.5) 
27.6 (4.0) 
965 (140) 

1.75 (3.86) 
1.55 (3.43) 
0.20 (0.43) 

25% KOH 

(a) Wl.th super electr<>des; 1.7 V with advanced electrodes. 
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The 3-FPC .. as developed to meet the unique fluidic and pressure control require­
ments of the OGS. It combined, in a single assembly, the sensors and actuators 
necessary to control and monitor fluid pressure levels and differentials 
during all operating modes including steady-state, startup and shutdo"ll. The 
major parts of the 3-FPC are three motor-driven regulators, one total pressure 
level sensor, t .. o differential pressure sensors and three feedback position 
indicators. A photograph of the pressure controller is shown in F~gure 11. 3 
The controller .. eighs 3.65 kg (8.0 Ib) and has a volume of 1.58 cm (96.3 in ). 
The controller has five fluid interfaces: H2 and 02 inlets, H2 and 02 outlets 
and a pressure reference to the water feed tank. lUI other fluid incerconnec­
tions a!:e manifolded internally and sealed .. ith O-rings. The electr.ical 
interface is made l<ith a standard connector. Sensor signals are sent to, and 
actuator signals are received from, the subsystem instrumentation. With these 
features, the pressure controller is ideally suited for closed-loop control 
using microprocess0r~ 0[' minicomputer-based instrumentation. 

The ancillary components of the OGS consisted of solenoid valves, a heat 
exchanger, a coolant pump and bladder- type tanks and accumulators. No unique 
design was needed. 

Water Handling Subsystem 

Within air revitalization subsystems liquid water: is generated and consumed at 
various locations. The OGS is the prinCipal consumer of water. It requires 
certain components to provide an automatic supply of water for ~lectrolysis. 
For the ARX-1, these components have been grouped and treated as the WHS. 

Schematic and Operation 

The function of the WHS is to enSUre that a supply of .. ater exist.s for the OGS 
.. a·te.r feed tank. A schematic of the WHS is shown in Figure 12. The principal 
component in the WHS is a pressure referenced .. a'ter storage tank .. hich at pre­
scribed intervals fills the OGS I'ater feed tank. The water comes from one of 
two sources: one internal, the other external to the ARX-1. The internal 
water source combines the water collected from the S-CRS condenser/separator 
and that from the CHCS. These two sources normally supply all the water 
Fequired by the OGS. If, however, the internal .. ater collection is diminished 
below OGS requirements, additional or makeup water can be supplied from an 
external sOUrce. Conversely, if the internal supplies exceed OGS demand, the 
excess water can be dumped to external storage through a backpressure regulator. 

The internal .. ater supplies normally exceed the OGS .. ater demand as is shown 
in Table 5 .. hich summarizes the WHS d'dracteristics. Whether the supply .. ater 
comes from internal Or extern"l supplies, it first passes through a filter, 
then a deiodinator/deionizer before entering the supply tank. Filling is 
automatic whenever the pump is on until the water pressure exceeds the dump 
backpressure (303 kPa (44 psia)). Then the .. ater is automatically dumped. 
The N2 pressure reference (~00 ~Pa (~9 ~sia)) ass~sts i~ transferring. water to 
the OGS water feed tank dur~ng ~ts fJ.ll~ng operatJ.on whJ.ch occurs dunng 
startup and every 12 hours thereafter. 
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TABLE 5 WATER HANDLING SUBSYSTEM CHARACTERISTICS 

Nominal Water Flow Rates, kg/d (Ibid) 

Fr0m S-CRS 
From CHCS 
To OGS 
To External Storage 

Water Supply Tank 

Capacity, I (in3) 
Reference Pressu,re, kPa (psia) 
Emptying Cycle, h 
Filling Cycle 

From internal 
From external 

External Supply Pressure, kPa (psia) 

Dump Pressure to External Storage, kPa (psia) 

27 

0.41 (0.91) 
1.80 (3.96) 
1. 75 (3.86) 
0.46 (1.01) 

2.46 (150) 
200 (29) 
12 

When Pump is On 
On Demand 

240 (35) 

303 (44) 
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Hardware Descriptign 

The hardware components of the WHS consist of valves, a pump, a deiodinator/ 
deionizer and a water supply tank. The valves and pump are standard off-the­
shelf components. The deiodinator/deionizer, shown in Figure 13, was developed 
under this program. The 2.4 kg (5.3 lb) unit contains both a charcoal and an 
ion-exchange resin bed for removing iodine ions and dissolved CO2 from the 
feed water of the OGS. The charcoal bed also serves as the filter designated 
in Figure 12. 

The water supply tank is shown in Figure 14. The tank, consisting of two 
stainless steel halves separated by a fljxible diaphragm, has a dry weight of 
3.7 kg (8.2 Ib) and holds 2.46 1 (150 in ) of water. 

Control and Monitor Instrumentatian 

The CIM I provides for automatic control and monitoring of the ARX-1 operation. 
Through a combination of minicomputer, analog circuitry hardware and assembly 
language software, all functions of mode and mode transition control, automatic 
shutdown, monitoring of system parameters and TSA interfacing were provided. 
The following describes details of the C/M I design and operatian with emphasis 
on the portions which relate to the OGS. 

Power Sharing C~>ncept 

The electrical power which the EDC module (EDCM) generates has historically 
been converted to heat and removed from the SUbsystem as a waste product. 
Life Systems, Inc. developed a concept for using the EflCM power directly by 
supplying this power to the OGhyhi2) the two are opera,ted as part of an inte-
grated system as in the ARX-1. ,. Using this technique, the EDCM power 
can be directly subtracted from the power required to operate the SFWEM in the 
OGS. The remaining power required to operate the SFWEM is then obtained from 
the input power as shown in Figure 1li. The power controller contains the 
circuits needed ta automa'tically allow the utilizatian of EflCM power and ta 
convert the input power to the vol ta.ge and cu·rrent levels required by the 
SFWEM. All of the EDCM-genera,ted peower is utilized. It is not necessary to 
send it through a power canversion circuit before it is supplied to the SFWE~L 
Fo,r the ARX-1, appraximately 10% of the SFWEM power was supplied by the EDCM. 

Operating Modes and Mode Tl'ansitions 

The elM I pravides fa·r five operating modes: (1) Shutdawn, (2) Normal, (3) 
Purge, (4) Standby and (5) l!lnpawered. These aperating modes and the allawable 
mode transitions are shown in Figure 16. In the Norrnal Mode the system gen­
erates O2 , removes and reduces CO 2 , controls cabin humidity and distributes ar 
stores water, as required. In the Shutdown Made these functions are inopera­
tive but the system is puwered and all sensors are working. fluring Purge, all 
H -carrying lines throughout the system are being purged with N. In the 
Standby Mode the system is pawered and maintained at operating temperatures 
and pressures; however, actual canversion processes are not taking place. 
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Finally, in the Unpowered Mode, no electrical power is applied to the system 
and there are no fluid flows. Further details of the mode definitions are 
presented in Appendix 2. 

System Control an<! Monit()ring 

There are 16 controls needed to operate the ARX-l. These include controls for 
EDCM temperature and current, S-CRS temperature, CHCS temperature, water 
accumulator fill and/or empty, OGS temperature, pressure and current, and N2 
Generation Module (NGM) pressure and temperature. The controls for the OGE 
and WHS are highlighted in Table 6. 

Sensors are required to interface with the C/M I to provide for control and 
monitoring of subsystem parameters and performance. Over 100 sensors are 
implemented in the ARX-l. These monitor flows, pressures, temperatures, 
currents, voltages, liquid levels, combustible gas presence and valve positions. 
Fifty-five monitors, identified in Table 7, are specifically associated with 
the OGS and WHS. In addition, Table 8 identifies subsystem parameter condi­
tions which will call for an automa,tic, controlled shutdown of the ARX-l. The 
shutdown conditions can be easily modified by the operator through an operator/ 
system interface. 

Operator/System Interface 

Figure 17 shows the opera,tor/system interface panel of the C/M I through which 
the operator can communicate with the system. The panel is subdivided into 
three major areas: System Status, Operator Commands and System Control. 

The overall system status is provided in the upper left-hand portion of the 
panel. The sta,tus summary is given as Normal, Caution, Warning or Alarm and 
is determined by the worst case condition fo,r any critical parameter. A reset 
button is provided to clear the status summary and reset the subsystem monitor­
ing functions. Messages and info"ma,tion concerning the system are displayed 
on a Cathode-Ray Tube (CRT) located below the status summary indicators. In 
addition, the CRT displays fault diagnostiC messages, present status and 
values of selected sensors, input/ol:tput data, elapsed times and communications 
between the system and an operator. 

The operator commands section in the lower left-hand corner p"ovides the 
capability of the operator to communicate with the system. Capability exists 
for entering data, examining current. values, upda,ting scale factors, modifying 
setpoints or allowable ranges and control of the CRT display. 

Manual initiation of the four operating modes (No'rmal, Shutdown, Purge and 
Standby) is provided in the upper right-hand corner of the panel. The controls 

'" automatica.lly prevent the operator from initiating an illegal mode transition 
(e. g., No,rmal to Purge). The subsystem will not respond to an illegal mode 
transition command. Accidental mode initiation is prevented by providing a 
mode change permit button which must be simultaneously depEessed with the 
de~i,red mode button. 
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Cite Sus/ellis. INf. 

Parameter 
Controlled 

SFWEM Temperature 

SFWEM Pressure 

SFWEM Current 

Dehumd.difier 
Module (DM) 
Current 

DM Voltage 

Water Feed Tank 
Fill 

Water Storage Tank 
Fill 

TABLE 6 OGS AND WHS CONTROLS DEFIlHTION 

Control Description 

Regulates liquid coolant flow 
through bypass heat exchanger to 
maintain desired coolant 
temperature 

Controls OGS system pressure to 
setpoint, H pressure a,t desired 
/J;P above setpoint and 02 pressu,re 
at desired /J;P above H2 pressure 

Controls current flow to SFWEM 
cells to regulate production of 
O2 and H2 

Maintains DM current at desired 
setpoint level 

Sets a specified voltage for 
software control. Interfaces 
with IilM Current Control 

Fills SFWEM Feed Tank eve'ry 12 
hours or when Feed Tank /J;P is 
grea,ter than fixed level 

Maintains Storage Tank filled. 
Fills tank when tank /J;P is 
greater than fixed level 

34 

Controlled 
Actuator 

Coolant Diverter 
Valve 

Three-Fluid 
Pressure Controller 

Power Supply/ 
Power Sharing 
Circuitry 

Power Supply/ 
Conditioning 

Power Supply/ 
Conditioning 

Miscellaneous 
Valves/Sequences 

External Water 
Source Isolation 
Valve 
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Sensor Location 

Oxygen Generation 
Subsystem 

Water Handling 
Subsystem 

TABLE 7 SENSOR LIST 

Parameter M0nitored 

SFWEM Temperature 
BM Temperature 
Feed Wa,ter Inlet Pressu·re 
SFWEM Cnrrent 
SFWEM Cell Voltage 
IlM Current 
DM Cell Voltage 
H2 , 02 Outlet Pressure 
System Regulato.r Pressure 
H2 , 02 M' 
N2 Purge Supply Pressure 
Combustible Gas Contamination in 02 
Valve Position Indicators 

Accumulato.r Pressure 
Pump Outlet Pressu·re 
I!leionizer f.P 
SFWEM Feed Water Tank t.P 
Water Supply Tank f.P 
Feed Water Conductivity 
Aceumulator Level 
Valve Position Indicato·r 

3S 

ei/e Sf/sIems, lH(. 

No. 
Sensors 

2 
2 
1 
1 
12 
1 
3 
2 
1 
2 
1 
3 
11 

1 
1 
1 
1 
1 
1 
2 
5 
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TABLE 8 PARAMETERS MONITORED FOR AUTOMATIC SHUTDOWN 

Parameter 

Low Cell Voltage, V 
High Cell Voltage, V 
Low Current, A 
High Current, A 
High Temperature, K (F) 
Low Feed Water Filter AP, kPa (psid) 
High Feed Water Filter AP, kPa (psid) 
Low Feed Water Tank AP, kPa (psid) 
High Feed Water Tank AP, kPa (psid) 
Low System Pressure, kPa (psia) 
High System Pressure, kPa (psia) 
Low N2 Supply Pressure, kPa (psia) 
High NZ Supply Pressure, kPa (psia) 
Low H -to-Water AP, kPa (psid) 
High ft2-to-water AP, kPa (psid) 
Low Oz-to-Water AP, kPa (psid) 
High 0 -to-Water AP, kPa (psid) 
Low Water Supply Tank AP, kPa (psid) 
High Water Supply Tank AP, kPa (psid) 
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Shutdown Condition 

1.45 
1.90 
15.0 
30.0 
356 (180) 
-21 (-3.0) 
21 (3.0) 
-14 (-2.1) 
14 (2.1) 
760 (HO) 
1170 (170) 
790 (115) 
1070 (!.\is) 
-21 (-3) 
69 (0) 
-6.9 (-1) 
69 (10) 
41 (-6) 
14 (2) 
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The control status is located directly below the operating mode/commands 
section. Two lights are p.rovided to indicate whether one of the automatic 
protection overrides or an actuator override has been activated. A light is 
also prOVided to indicate when the panel switches have been disabled, a condi­
th,n used to prevent unauthorized personnel to activate any button. 

Hanual controls, designed primarily for use during system debug or off-design 
operation, are provided behind an access panel located immediately below the 
operato,r commands and system control sections. Overrides are provided fer all 
actuato.rs in the form of toggle switches. The actuator overrides must be 
placed in an automatic position for the system to opera.te normally. Also, 
manual adjustments are provided for adjusting certain setpoints such as SFWEM 
current. The access panel is normally closed to prevent accidental actua,tions. 

Software 

The ARX-l software is erganized into 70 different software packages or modules. 
They are divided into system definition and data base, frent panel service, 
real-time executive, input/output, centrol/menitor, operating mode control and 
intermode transition functions. Of the total, the OG8 and WHS require 15 of 
the modules exclusively and share the majority of the remainder. 

TEST SUPPORT ACCESSORIES 

Test Support Accessories were develo.ped to suppo'rt the test program of the 
ARX-l. The laboratory breadboard module test stand developed under a previous 
pregram (Contract NAS2-7470) was used for the SFWEM endu·rance testing. 

One-Person Air Revitalization System 

A block diagram of the ARS TSA is shown in Figure 18. Some of the TSA hardware 
Was developed or refurbished as part of this program; some was prOVided from 
prior programs and modified. This hardware included part or all of the Fluid 
Supply Unit, the Air Supply Unit and its control, the Coolant Supply Unit, a 
N2H4 Refill ~acility,. the Vent/Vacuum Source, the m~ta Acquisition Unit and . 
tile Parametn.c Data lhsplay. Test Support Accessor~es that were needed spec~­
fically for the OGS testing included theN purge supply and a water SOurce 
with liqUid level monitoring. Also, raw De power was supplied to the CIM I 
which further conditioned the power to operate the OGS and, in conjunction 
with the power-sharing concept, the EDC. 

A major portion of the TSA activities was involved with the development of the 
parametric data display unit. The unit, packaged in a separate cabinet, is 
shown in Figure 19. It services all of the functions of the ARX-l. Specifi­
cally, it contains displays for temperatures, cell voltages and currents, 
flows and pressures. Also shown in the lower portien of the cabine't are power 
supplies reqUired for operation of the parametric data display unit and the 
ARX-l. 
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Laboratory Breadboard Module Test Stand 

Two 12-cell electrolysis modules were tested in the laboratory breadboard test 
stand shown in Ft~U45 20. Detailed descriptions of the test stand can be 
found elsewhere. -, 

The primary purpose of the test stand was to allow for bench-top testing of 
the SFWEM in order to advance the SFWE and module technologies. The basic 
configuration of the test stand schematic is similar to tha,t of the previously­
described OGS. Major differences in the test stand are: 

1. Three manual pressure regulators were used instead of the 3-FPC. 

2. Automatic operation was limited with only water fill and shu,tdown 
sequences being automated. 

3. Electrolyte can be circulated through feed water compartments to 
purge liberated gas. 

4. Either a DM or condenser/separators can be used for dehumidification 
of product gases. 

The laboratory breadboard test stand was equipped with all needed TSA such as 
electrical power, process water source, cooling water and N2 purge supply. 

PRODUCT ASSURANCE PROGRAM 

A mini-Product Assurance Program was established, implemented and maintained 
throughout all phases of contractual performance including design, purchasing, 
fabrication and testing. 

Quality Assurance 

Quality Assurance activities were included during the design studies, interface 
requirement definitions and during inspection of fabricated and pu,rchased 
parts. The objective was to search out quality weaknesses and provide appro­
priate corrective action. Also, a quality assurance effort was involved in 
the preparation of the final report with the objective of identifying and 
resolving deficiencies that could affect the quality of future equipment. 

Reliability 

Reliability personnel participated in the program to insure (1) p,roper cali­
bration of test equipmen,t and TSA instrumentation, (2) adherence to test pro­
cedures and (3) proper recording and reporting of test data and observations. 
A survey of the subsystem and TSA design was performed to determine the cali­
bration requirements for testing. Appropriate components were calibrated 
du,ring assembly and after installation. 
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Reliability personnel participated in the program to insure (1) p,roper cali­
bration of test equipmen,t and TSA instrumentation, (2) adherence to test pro­
cedures and (3) proper recording and reporting of test data and observations. 
A survey of the subsystem and TSA design was performed to determine the cali­
bration requirements for testing. Appropriate components were calibrated 
du,ring assembly and after installation. 
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Cife Sl/llell/l, lHt. 

A test procedure was followed to insu're tha,t all critical parameters were 
properly monitored and that the testing conformed to the program's quality 
assurance and safety procedures. All major testing required that a test plan 
be completed and reviewed. 

Safety 

A safety program was initiated to assure adherence to safety standards and 
procedures essential to protect personnel and equipment. The program consisted 
of identifying possible adverse subsystem characteristics, reviewing designs 
and de.s ign changes for potential safety hazards, reviewing NASA Alerts for 
safety informa'tion and incorpora,ting the equipment's prote.cti ve features. 

Materials Control 

A mini-materials control program Was initiated to provide assurance tha,t the 
OGS design did not preclude the efficient application of a more detailed 
subsystem materials control program during subsequent developments. As a 
goal, materials of construction were selected to comply with projected space­
craft material specifications. 

Configu'ration Control 

A mini-configu,ra,tion management program Was established, implemented and main­
tained. This program p'rovided for documentation concerning interfa,ce require~ 
ments for the OGS as applicable for the ARX-1 testing. The p,ro.gram was imple­
mented with a primary goal to provide assurance that the efficient applica,tion 
of a more detailed Gonfiguration management p'rogram could be applied during 
subsequent developmen.ts of OGS hardware. 

PROGRAM TESTING 

The overall objectives of the test program were to (1) prove the integration 
concept of the OGS with the ARS, (2) further advance the OGS technology and 
(3) demonstra,te the hardware maturity of the OGS components such as electroly­
sis cells, modules and the 3-FPC. Testing activities associa,ted with the 
integrated ARX-1 and the SFWEM are p,resented in this section. Results af 
other OGS component tests will be presented in the Supporting Technolagy 
Studies section. 

Integrated ARX-l Tes·ting 

The ARX-1 testing was conducted for a period of 120 days and included testing 
at the companent, subsystem, CIM I (hardware and saftware) and total system 
levels. Specific testing activities which occurred during the checkout, 
Shakedown and endurance phases are shown in Figu,re 21. 

;resting Summary 

A total of 480 h (20 d) of successful, integrated AAX-1 opera,tion in the 
No,rmal Mode was achieved. Normal Mode excludes the time required for the 
transitions Shutdown to Normal and of No,rmal to Shutdown. These transitions 
typically requi.re 0.5 h each and primarily involve the presslJ.riza,tion or 
dep'ressudzation of the OGS. 
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Cilt S,Isleml. IHt. 

Of the total normal operation, two seven-day periods of continuous uninter­
rupted operation were achieved. 

The overall system performance is shown in Figure 22. The ARX-l generated O
2 above the design level eql'ivalent to one person's metabolic consumption plus 

an allowance for overboard leakage. Also, the ARX-l removed CO
2 

at greater 
than the one-person level. The curve for net water recovered is the algebraic 
total of the water (1) supplied to the OGS, (2) removed by the CHCS from the 
simulated cabin atmospheN and (3) removed by the S-CRS condenser/separator 
from the S-CRS exhaust stream. 

In summary, the ARX-( testing demonstrated the following: (1) duplicate sub­
system interface components can be eliminated by treating the hardware from a 
single system viewpoint, (2) TSA and expendable usage can be reduced (e.g., 
OGS H2 used by EDC) , (3) a single integrated CIM I can simplify the collection 
and dl.splay of engineering data, (4) single-button startup of several integrated 
subsystems can be achieved, (5) the syst'!m provides real-life test conditions 
by determining the effects of changes in the cabin simulator on the system as 
a whole and (6) development and testing costs we.re minimized. To illustrate 
the last point, Figu,re 23 shows the total test time accumulated on the major 
subsystems and components of the ARX-l. Over 10,000 hours of testing have 
been achieved for some components using the ARX-l as a test bed. Development 
of the ARX-l as a system permitted parallel testing of key hardware elements. 

OGS Performance 

While Figure 22 showed the performance of the overall ARX-l system, theOGS 
performance is given in greater detail in Figure 24. The nominal operating 
conditions for the OGS over the 480 h test period are given in Table 9. As 
shown, most parameters remained constant over the ope.rating period. The 
electrolysis module in the ARX-l OGS was assembled using advanced electrodes 
(WAB-5). The WAB-5 performance is slightly lower (higher cell Voltage) than 
that of the super electrodes (WAB-6). 

The integra,ted testing experienced several automatic s'hutdowns as listed in 
Table 10. Most were due to senso,r or e/M I malfunctions. Two (numbers 3 and 
7) were directly attributed to the OGS. One was due to the loss of coolant 
water and the other was a cell ma,trix failu're which occurred during a wa,ter. 
fill sequence. The cell matrix failure w~s due to out-of-tolerance pressure 
spikes occurring during startup and shutdown. That coupled witb some p'ressure 
pertubations which occu,rred du,ring the water fill damaged a tell matrix. 

SFWEM Endu·rance Tests 

The SFWEM endurance tests inclUded tes,ting with super electrodes (WAB-6) and 
with advanced electrodes (WAB-5). Both types of electrodes were assembled 
into two separate 12-cell modul~s and the modules were tested on the labo.ra­
tory breadboard test stand (Figure 20) to evaluate their performances and 
hardware ma,turity. 
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TABLE 9 OGS BASELINE (JPERATING CONDITIONS 

Number of Cells 

Current Density, mA/cm2 
(ASE) 

Coolant Temperature Control 
Range, K (E) 

Pressure Control Ranges 
System Pressure, kPa (psia) 

H2-to-Eeed Water AP, lcl'a (psid) 

02-to-Feed Water AP, kPa (psid) 

Startup/Shutdown Pressu·rization and 
Depressurization Rate, kPa/min (psi/min) 

49 

Cije Slls/eHls, Inc. 

12 

196 (182) 

336 to 341 
(145 to 155) 

965 to 1035 
(140 to 15(J) 

15 to 19 
(2.2 to 2.8) 

26 to 30 
(3.7 to 4.3) 

37 (5.4) 
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No. 

1 

2 

3 

4 

5 

6 

7 

TABLE 10 ARX-l SHUTDOWN SUMMARY 

Time. h(a) 

28 

32 

37.5 

103.4 

270.9 

436.4 

448.4 

Cause 

EDCM process air exhaust tempera'ture sensor 
failu're 

Air Supply Bnit electrical noise shutdown 

Loss of fluid from SFWEM coolant loop 

Supplementary shutdown controller malfunction 
during SFWEM feed tank fill 

Computer halt during Normal to Standby Mode 
transition 

Cemputer halt in Saba tier temperature 
centre I routine 

Low SFWEM celJ vol tage shutdown during feed 
tank fill 

(a) From beginning of integrated system testing 
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Shper Electrode Testing 

A 12-cell SFWEH employing super anode electrodes (l'An-6) was assembled and 
charged with 25% KOII (by weight) solution. FollOl~ing leak checks and instal­
lation in the laboratory breadboard test stand, the feed water compartment was 
fiUeQ with 25% KOII solution and the module was pressurized to operating 
pressure by using the N purge supply. The module temperature was raised by 
qperating a startup heater and the temperature control loop. The module was 
then started by pressing the ON button on the control panel (Figure 20). At 
the start of operation the feed water tank was automatically filled with 
deionized water. During the normal operation it was periodically filled every 
six hours. 

The SFWEN performance is shaWl: in Figure 25 as a function of current density. 
The average cell voltage of the 12-cell module varied2fro!l1 1.48 to 1.66 V as 
the current density was spanned from 108 to 538 mA/cm (HlO to 500 ASF). Both 
the module tempera,ture and pressure were maintained constant at 355 K (180 F) 
and 993 kPa (144 psia), respectively. Exceptionally good performance (low 
cell Voltages) was achieved. 

Figure 26 shows the SFWEN performance as a function of operating time. Naster 
test conditions are listed in the figure. The average cell voltage remained 
low and stable in the range of 1.47 to 1.50 V. Increase of the average cell 
voltage level over the 250-h testing period was negligible (only 0.02 V) 
considering the cell voltage variation due to temperature fluctuations. 

During testing it was found that a weak spot exists in the baseline module 
construction in the area of the O

2 
exhaust port. The weakness at this loca­

tion is created by a lack of polysulfone support for the electrode assembly 
limiting the modUle's pressure differential capability. A fix has been iden­
tified and has been recommended for implementation in a follow-on program. 

Readouts of individual cell voltages showed that the twelve cells performed 
within an exceptionally tight performance band (1.425 ± 0.015 V). The actual 
cell voltage distribution is shown below for two typical test times: 

Number of Cells 
Cell Voltage, V At 22 h At 114 h 

1.47 7 8 
1.48 2 3 
1.49 2 1 
1.50 1 0 

The opera·ting cGnditions were the same as those listed in Figure 26 and read­
ings were taken both at 22. hand 114 h of operation. 

The exceptionally low cell voltages and their distribution indica,te that the 
performance Gf super electrodes was successfully retained through scale-up 
from the single cell to the 12-cell module level. Refer to single cell per­
formances under Supporting Technology Studies section of this report, but 
noting the difference in operating pressures. Increases in pressure will in 
general increase cell voltages slightly. 
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Advanced Electrode Testing 

A separate, 12-cell SFWEM was assembled and tested using advanced anodes 
(WAB-5). The test procedures were the same as for the super electrode testing. 
The performance of the advanced electrodes is presented in Figure 27 along 
with operating conditions. Though the average cell voltage was slightly 
higher than that of the super electrodes it remained stable at around 1.58 V 
throughout the testing period. Several shutdowns were experienced during the 
120-day testing period. Most of these shutdowns were, however, related to 
malfunctions of instrumentation and test stand components, other than the 
module itself, such as feed pump, coolant pump and solenoid valves. The test 
stand was built six years ago. It is conceivable that a number of aged com­
ponents need repair or refurbishment. 

SUPPORTING TECHNOLOGY S1UDIES 

A variety of supporting studies were performed to ensure that the OGS was 
successfully developed and integrated into the ARX-I. Some activities, such 
as those related to developments of electronics, instrumentation and super 
electrodes, were covered in the previous sections. This section presents 
results of four major supporting studies: (1) Single-cell endurance tests, (2) 
3-FPC tests, (3) p'roduct gas dehumidification analysis and (4) elimina,tion of 
stray electrolysis in the coolant loop. 

Single Cell Endurance Tests 

As part of the testing activities to demonstra'te the hardware maturity of the 
OGS, a single cell was assembled with one of the super anode electrodes (WAB-6) 
and endurance tested in a single-cell test stand. A flow(~}hematic of the 
single-cell test stand was presented in a p'revious report and the cell 
components are identical to those presented in Figure 9. 

A t<>tal of 8,650 h of the single cell operation had been accumulated at the 
conclusion of the current program. Performance during the period of endu,rance 
testing is presented in ~igure 28. Operating conditions were set nominally at 
352 K (175 F), 161 mA/em (150 ASF) and ambient pressure. Only during the 
period bet.ween 720 to 1 ,~40 h (specified as "A" in Figure 28) was the current 
density set at 323 mA/cm (300 ASF). Sligh,t fluctuations on the cell voltage 
level were mostl}:6due to minor temperature variations. A net voltage change 
of only 4.6 x Hl V/h was observed over the last 6,500 h. It is noted that 
the cell voltage levels remained constant during the last 3,000-h period. 
Throughout the testing there were only two interruptions excluding tlie build­
ing power failures. One was due to a pump failure and the other was an inten­
tional shu,tdown during the transition period from the previous program and to 
the current one. The initial(4)440-h testing was conducted under the previous 
program (Contract NAS2-8682). 

The effect of the current <density <>n cell voltage is presented in Figure 29 at 
different load times for the same electrode used for the above endurance 
testing. The test conditions also were maintained the same. The performance 
range of the super electrode is at least 10% better than the state-of-the-art 
performances (also, see comparisons in Figure 1). 
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Three-Fluid Pressure Controller Tests 

The 3-FPC of the OGS was extensively tested (approximately 9000 h) as part of 
the ARX-l test program. The ARX-l provided a "real-life" test facility since .. 
it combined all three major elements of the controller (mecnanical, electrical 
and software) in one loca tion. The mechanical po.rtion consisted of the motor-
driven regulators and sources of O2 and H2 from the OGS at the design flow 
rates. In addition, the time variations of the flow rates as they occur 
during a water feed tank fill (i.e., flows cease) were implemented. The elec-
trical elements were the pressure t.ransducers, their signal conditioning and 
motor drive circuitry. The software contained the control routines for actu-
ating the regulators in response to pressure level inputs. 

Early in the testing phase it was found that the originally selected miniature, 
solid-state, differential pressure transducers exhibited certain undesirable 
characteristics. While the sensed pressure differentia::'- were reproducible, 
the response level was found to be a function of absolute pressure. Figure 30 
illustrates the typical behavi0r. A mechanical transducer (ordinate) reading 
is compared to the solid state transducer (abscissa) reading at vari0us system 
pressures. Ideally, all Curves would be c<mgruent, have positive s10pes and 
pass thr0ugh the origin. Only the curve for zer0 system pressure (atmospheric 
pressure) had a positive slope. The intercept can be adjusted with signal 
conditioning. At other pressures, h0wever, the data sh0wed large scatter and 
slope changes as a functi0n of pressure. The severity 0f the changes as well 
as the data scatter precluded use of the miniature pressure transducers of the 
type eriginally selected. The central ef the SFWEN internal cavity pressures 
and pressure differen·tials are sufficiently critical that reliable transducers 
are needed. It was fer this reason that the controller was medified to accept 
mechanical transducers with electrical outputs te cemplete the testing. There 
were ne further preblems with pressure sensing. 

Anether asp.ect of the centreller testing was selection ef the proper parameters 
in the software control routines to obtain the desired dynamic response in the 
regulaters. Complex interactions ameng regulater seat travel, rotatien rate, 
gas flow rate, pressure and contr01 parameters (such as signal sample time, 
resp0nse time, response rate and waiting perioo-s be'tween successive regulator 
stepping) were analyzed and evaluated. Adjustments were made so that the OGS 
would experience only pressure changes Idtllin the tolerance band during startup 
pressurization, normal operation and shutdown depressurization. Table 11 
summarizes the operating conditions of the controller that were used during 
most of the testing. 

Several areas were identified for additional improvements and m0dification of 
the controller. Vendor discussions indicated that solid-state pressure trans­
ducers can be found which will give the required performance. Additional 
analysis is required to relate control routine parameters with mechanical 
aspects such as orifice sizes, valve thread size and pitch, flow rates and 
l',ressure l"vels, so that optimum conditions can be established for any ca'l'a-
city OGS. Also, the weight of the eoh,troller can be rpdueed and the package 
streamlined. These modifications have been recommended f0r follow-on activities. 
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Cite SVSICHlS, lH~. 

TABLE 11 THREE-FLUID PRESSURE CONTROLLER NOMINAL OPERATING CONDITIONS 

Characteristic 

A. ~Iechanical 

Gas Type 

Upstream Pressure, kPa (psia) 

Downstt'eam Pressure, kPa (psia) 

Upstream-to-Water Feed &P, 
kPa (psid) 

Mass Flow Rate, g/min (Ibid) 

Volumetric Flow, slpm (scfm) 

B. Control 

Actuation Time(a) s , 

Minimum Waiting Period(b), s 

System 

O2 

1035 (150) 

103 (15) 

0 

1.07 (3.4) 

0.8 (0.028) 

0.1 (Max) 

10 

Regulator 
__ =il,2 __ _ 

O2 H2 

1060 (154) 1050 (152) 

1035 (150) 114 (16.5) 

28 (4.0) 17 (2,5) 

1.07 (3.4) 0.134 (0.42) 

0.8 (0.028) 1.6 (0.056) 

13.6 7.6 

40 23 

(a) Time for regulator to respond to 6.9 kPa (1 psid) sensed differential 
pressure. Response only occurs if level is not within control range. 

(b) Between successive regulator advances. 
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Product Gas Dehumidification Analysis 

Past development efforts of water electrolysis-based OGS's identified dew 
point control of product gases as one of the obstacles to be overcome. Dehu­
midification of product gases from water electrolysis subsystems is necessary 
when the product gases have a dew point greater than thf> maximum allowable dew 
point level within the cabin or greater than their dry bu:? temperatures. 
GenerallY the spacecraft atmosphere requires that the dew-pot2~ of the OGS 
product gases (H2 and 02) should be lower than 287 K (57 F). 

Direct application of conventional condenser/separators to the water vapor 
removal from the OGS product gases was not deemed desirable because of the 
zero gravity environment. Three techniques among various approaches to solve 
the problem have been considered to be the most practical. These are: 

1. Low temperature operation 
2. Electrolytic dehumidification 
3. Line heating with the gas expansion 

The previous programs (Contracts NAS2-7470 and NAS2-8682) have(2o~~sed on fur­
ther development of the electrolytic dehumidification concept. ' 

ConcePt: Descriptions 

The dew point of the product gases is a function of the operating conditions 
of the water electrolySis module such as temperature, pressure and KOH concen­
tration. Their effects on the product gas dew point are presented in Figure 
31. The dew point can be reduced either by increasing operating pressure and 
the KOll concentration or by decreasing operating temperature. 

Low Temperature Operation. The dew point of 287 K (57 F) corresponds to a 
water vapor pressure of 1.60 kPa (12 mm Hg). This vapor pressure level can be 
obtained directly within the module itself by d"creasing temperature. For 
example, the water vapor partial pressure of a gas saturated with a 33.3% KOIl 
(by weight) solution at 297.6 K (75.7 F) and 101 kPa (14.7 psia) is 1.60 kPa 
(12 min Hg) which corresponds to a dew paint of 287 K (57 F) at 101 kPa 
(14.7 psia). 

Though this method is the simplest and most reliable among the three methods 
considered, it has been eliminated due to high power needs (increased cell 
vol tage) at low temperatures. The driving force (water vapor p,ressure gradient) 
for the water vapor transport is also low at lower temperatures, resulting in 
current density limita,tions. 

Electrolytic Dehumidificoation (ED). The ED concept uses water vapor electroly­
sis to remove the water vapor carried with the product gases. The 02 and H2 
from the main electrolysis module are passed respectively through the anode 
and ca'thode cavities of the water vapor electrolysis cells of the ED module. 
Wa,ter vapor is then absorbed in electrolyte and electrolyzed to form additional 
02 and H2 .Detailed descriptt2n~)of the ED concept and its development activi­
t1es are presented elsewhere. ' 
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The water vapor electrolysis of ambient air is a proven technology. Technical 
feasibility of it~2a~ylication for dehumidification of the OGS product gases 
was demonstrated. ' 

One advantage of the ED concept is the almost total utilization of water 
processed by the main electrolysis system, including the water vapor normally 
carried away with the product gas streams. By operating the electrolytic 
dehumidifier upstream of any system pressure regulators, t.race heating of 
lines and·regulators can be eliminated. Another advantage is the ED in combi­
nation with gas expansion will produce much drier gases than other techniques. 

Disadvantages of the ED concept are requirements of water vapor electrolysis 
cells, additional power supply and control/monitor instrumentation, and possible 
increases in maintenance requ:Lrements. 

Line Heating with GilS E)g!ansign. The partial pressure of water vapor in a 
given gas mixture is directly proportional to the total gas pressure. Accord­
ingly, one simple way of reduCing the partial pressure of water vapor is to 
reduce the total gas pressure through gas expansion. For example, the dew 
point of ~87 K (57 F) can be achieved by operating the electrolysis module at 
1.24 x 10 kPa (180 pSia), 353 K (175 F) and 40% KOH concentration (see Figure 
31). In order to prevent water vapor from condensing in the product gas line, 
pressure regulators and the lines between the module and regulators may have 
to be heated depending on the operating temperature and ambient conditions. 

Advantages of this technique aFe the simplicity of the concept and its opera­
tion, less hardware camplexity and weight, and virtually no maintenance re­
quirements. 

Disadvantages are those associated with higher pressure operatiml and require­
ments for component hea'ting and additional insula,tion. These disadvantages 
can be lessened by mounting the pressure regulators clase to the module to 
limit line lengths and heating requirements. 

Selected Approach 

Among the three p,ractical approaches described, the first method is definitely 
the simplest one. However, it was eliminated from further consideration 
because of the greater power penalty and operatianal current density limitations. 
The other two methods are equally attractive and are comparable in many "ays. 
Qualita'tive comparisons are summarized in Table 12 with the "X" marked technique 
being considered to be slightly more favorable. In overall, the line heating 
approach is favored. 

Quantitative comparisons of the twa methods were made by the use of overall 
energy balances far a three-persan capacitY(~G~) Design details of the three­
person capacity OGS can be found elsewhere.' Operating conditions, used as 
a basis in the energy balance calculations, are presentee! in Table 13. Results 
of the energy balance calculations are presented in Table 14. LiqUid phase 
water at 298 K (77 F) was taken as a reference state. Heat losses were esti­
mated by assuming that heated eompanetJ.!ts were covered with 5.1 em (2 in) -thick 
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Ci/e Svs/ellls. JHe. 

TABLE 12 COMPARISON OF ED AND LINE HEATING 
AFPROACH FOR DEHUMIDIFICATION 

Category 

Overall System lIardware 
Iveight 
Simplicity (No. of parts) 

Power Requirement 

lIeat Rejection 

~Ia intenance 

Reliability 

Flexibilities in Operational 
Temperatures 

Dew Point of Product Gases 

ED 

X 

X 

(a) ~Iore favorable approach iR marked by "X" 

64 

Line 
Heating Remarks 

X(a) 

X 

X Very close 

X Very close 

X 

X 

LH has a limit 
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Cife Sus/ellis. Inc. 

TABLE 13 OPERATING CONDITIONS AND CHARACTERISTICS 
OF A THREE-PERSON CAPACITY OGS 

Descriptions 

No. of Cells 

Current Density, mA/cm2 (ASF) 
SFIVEN 
Eml 

Temperature, K (F) 

Pressure, kPa (psia) 

O2 Production, kg/d (Ibid) 

H2 Production, kg/d (Ibid) 

Average Cell Voltage, V 
SFWE~I 

EmJ 

Product Gas Temp., K (F) 

Feed IVa ter Temp., l( (F) 

65 

ED 

92.9 (0.1) 

33 

206 (191) 
47 (44) 

356 (180) 

965 (140) 

4.19 (9.24) 

0.53 0.16) 

1.5 
1.65 

317 (no) 

294 (70) 

Line Heating 

92.9 (0.1) 

30 

210 (195) 
Not Applicable 

356 (180) 

2141 (I80) 

4.19 (9.24) 

0.53 (1.16) 

1.5 
Not Applicable 

317 (110) 

294 (70) 
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TABLE 14 SUMMARY OF ENERGY BALANCES 

(Basis: 1 day of operation; Reference temperature, 298 K (77 F)) 

Electrolytic Dehumidification (ED) 

• 
• • 
• 
• • 

Description 

Enthalphy of H20 
Enthalpy of Products 
Electricity (881 Iy) 
Standard Heat of Reaction 
Heating (20 W) 
Heat Losses (Penalty 28 W) 

Total 

Line Hea ting 

__________ ~D~e~s~cription 

• • 
• 
• • 
• 

Enthalpy of H
2

0 
Enthalpy of Products 
Electricity (878 W) 
Standard Heat of Reaction 
Heating (20 W) 
Heat Losses (24 W) 

Total 

Comparison of Weight Penalties 

• 
• 
• 

Description 

Fixed Hardware(a), kg (lb) 

Power Penalty(b) (DC), kg (lb) 

Heat Rejection Penalty, kg (lb) 
Total 

Input 
kr.:al (Btu) 

-19 (-74) 

18,203 (72,178) 

412 (1,632) 

18,596 (73,736) 

Input 
kcal (Btu) 

-19 (-74) 

18,123 (71,861) 

416 (1,650) 

18,520 (73,437) 

ED 

9 (20) 

242 (534) 

6 (B) 
257 (567) 

Output 
kca1 (Btu) 

117 (465) 

17 , 899 (70,972) 

580 (2,300) 
18,596 (73,737) 

Output 
kcal (Btu) 

117 (465) 

17 , 899 (70,972) 

504 (2,000) 
18,520 (73,437) 

Line Heating 

1 (2) 

241 (531) 

5 (11) 
247 (544) 

(a) Dehumidifying section only. Fixed hardware weight of the rest of the 
subsys telll should be the same for both cases. 

(b) Based on 0.268 kg/W (0.590 lb/W) for DC power and 0.198 kg/W (0.436 lb/W) 
for heat rej.prtion. AC power penalty for instrumeIlt~tiGn was not 
considered. Would be approximately the same for either approach. 
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Min-K insulation and highly polished aluminum shield. Results of the weight 
penalties comparison indicate that the total weight penalty for line heating 
would be approximately 10 kg (22 lb) less than that of electrolytic dehumidifi-

.s cation. 

In conclusion, both ED and line heating approaches are technically feasible 
and equally attractive in some ways. However, close comparison reveals that 
the line heating technique is slightly more favored with less total weight 
penalty, less system complexity and less maintenance requirements. Accordingly 
it was recommended that the line heating should be baselined for the OGS and 
that the ED be kept as a backup. 

Elimination of Stray Electrolysis in the Coolant Loop 

fluring the endurance testing of a 12-cell SFWEM it was observed that corrosion 
was occurring in the last coolant compartment bipolar plate. This corrosion 
was identified as a result of unwanted stray electrolysis in the coolant loop 
due to a high potential difference between the last current collector (approxi­
ma'tely at 20 V) and the end plate (at zero electrical potential). Such a high 
potential difference across a common liquid coolant medium (water) caused the 
wa,ter to be electrolyzed. 

The stray electrolysis in th" coolant loop had not been observed previously 
while testing prior electrolysis modules consisting of six cells or less. For 
six-cell modules the voltage between the last cellon the high voltage end and 
the endplate was less than 10 V. With the 12-cell modules the voltage differ­
ential is closer to 20 V. 

The insulation utilized between the last current collector and the endplate 
was adequate to withstand 10 V but is not able to withstand the near 20 V. As 
a- result, a corrosion current flow OCCllrs invelving metal ion dissolution, 
meaning metal is oxidized and water redueed. 

Sinee future subsystems will have more than 12 cells per module this problem 
must be eliminated. Ia order to correct this problem a special fluid line 
connect<H, similar to that used for the water feed compartment interface, was 
fabricated and installed to provide for at least a 5 cm (2 in) insulation 
between the metallic components. Subsequent tests indieated that the modifiea­
tion effectively eliminated the stray electrolysis problem. 

CONCLlifSTONS 

The following eonclusions are direct results of the p'rogram activities: 

1. Int.egrated testing of the OGS a,nd the WHS with the ARX-i has demon~ 
strated tha't the integration concept of the ARS is feasible. 

2. An OGS using the SFWE concept has a poten,tial of being one of the 
Simplest and most reliable OGS's with low weight and power penalties. 

3. The Contractor-developed super anode electrodes (WAB-6) have made it 
possible to reduce the power eonsumption of state-of-the-art water 
electrolysis by approximately 10%. 
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4. The WAB-6 super electrodes have been endurance-tested for more than 
8,650 hours. Thoughout the endurance testing, the performance of 
the electrodes has been steady and no indication of degradation has 
been observed. 

5. The performance of WAB-6 electrodes has been demonstrated to be 
reproducible. Twelve super electrodes have been fabricated and 
tested under this program. Performances of these electrodes varied 
ill the range 2f 1.47 to 1.50 V at 355 K (180 F), 993 kPa (144 psia) 
and 161 mAl em (150 ASF); 

6. Automatic operation of the 3-FPC, including system pressurization 
and depressurization, has been demonstra,ted. 

7. Hardware and the subsystem teChnology have been demonstrated to be 
ready for demonstration at the preprototype level. 

RECOMMENDATIONS 

Based on the work completed, the follOWing recommendations are made: 

1. Incorporate all the technology advances in static feed water elec­
trolysis including cells, modules and SUbsystems into one, self­
contained engineering prototype OGS. 

2. Further advance the SFWE-based OGS teChnology by demonstrating 
methods fo·r KOH elimination from feed water compartments and for 
elimination of stray electrolysis in the coolant loop. Nodify the 
current cell design to strengthen the O2 exhaust port and to increase 
pressure differential capability. 

3. Endurance test the engineering prototype OGS to further demonstrate 
the system te.chnology and the hardware maturity. Demunstrate cyclic 
operation under typical da'Tlnight time frames expected of a Habit­
ability Nodule. 

4. Further characterize performance of the super electrodes under 
various test conditions such as current density, temperature and 
pressure and over extended periods of time. 

5. C0nduct parametric testing of the OGS to generate data needed to 
<>ptimize the OGS. This is particularly important because the OGS 
requires the greatest expenditu,re of power among the five subsystems 
of an ARS. 

6. Characterize the 3-FPC, expand its operation over the range of 
ambient to 1,380 kPa (200 psia) and endurance test to ensure its 
availability fer future NASA needs. 
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APPENDIX 2 ARX-I OPERATING MODES DEFINITIONS 

Shutdown Mode (B) 

The ARX-I is not generating 02 or N2 and not removing CO2 or moisture 
from the air. The process air blower is off as is the water separator 
blower. The currents in the three modules are off, the system is com­
pletely depressurized to atmospheric pressure and the Saba tier reactor 
and N2 generation modules are cold. The system is powered and all sen­
sors are operating. The CHCS, EDCM and OGS temperature control loops are 
operating .. The shutdown mode is called for by any of 92 monitored para­
meters exceeding tolerance, manual actuation or unsuccessful mode 
transi tion. 

Normal Mode (A) 

The ARX-I is generating 02 and N2 and removing CO2 and water vapor from 
the air. The CO2 removed from tfie air is reduced by the Sabatier reactor 
to water and metfiane. The excess water collected is delivered to an 
external water tank. The Normal Mode is called fo,r by !Danual actuation. 

Standby Mode (E) 

The ARX-I is operating essentially as it is in the Normal Mode with the 
exception that the EDCM and SFWE currents are zero, the process air 
blower and water separator blowers are off and the SFWEM pressure is 
maintained by N2 through the purge valves. The S'tandby Mode is called 
for by manual actuation. 

Purge Mode (C) 

The ARX-I is ~e~ng purged wi7h ex7ernal N2 through all H2 ~carrying lines, 
H2 module cav1t1es, 02-carrY1ug l1nes and 02 module cav1E1es. All module 
currents and blowers are off as are the Saba tier and N2 generator m0dule 
heaters. The system has N2 pressure in it. This is a continuous purge 
and will remain until a new mode is called f0,r. The Purge Mode is called 
for by manual actuati0n. 

Unpowered Mode (D) 

No electrical p0wer is supplied to the ARK-I CjM I. Thus, no electrical 
p0wer is applied to the ARX-I mechanicaljelectr0chemical hardware. The 
system is not operating however, there could be N2 , H2 0r 02 pressure in 
the system and there could be N2 flows through the system depending on 
h0w the unp0wered c0ndition was arrived at. The Unpowered Hode is called 
f0r by manual actuation (circuit breaker in TSA) or an electrical power 
failure. 
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