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~ Abstract.

In this'report, We'presént cbmﬁafiSOhs‘bf fesulfs of direct numerical
simulations of turbulence with both laboratory data and self-similarity
theory for the case of the turbulent wakes of towed, axisymmetric bodies.
In genefal, the agréemeut of the simulation results with both the labora-
tory data and the self-similarity tﬁeor& is good, although the compari-
‘sons are hampered By:inadequate-pfoéedﬁrés for initiaiiziﬁg the ﬁumeriéai

simulations.
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1. Introduction

This paper reports the use of direct numerical simulations_to study
the wakes of towed, axisymmetric bodies. 'Mbét.past numerical work on
turbulence has employed the Reynolds-averaged equations of motion, which
are necessarily supplemented by a series of gg_hgg_335umptions.'-However;
direct numerical simulations of tirbulence involve the numerical solu-
tion of the Ffundamental equations of motion to obtain the detailed
structure of the turbulenmt field. What is obtained from the calcula-
tions, then, is the time histeory of the very complex turbulent velocity
field. This method is analogous to performing experiments in the
iaboratory, and statistical results can be obtained by temporal, spatial,
and/or ensemble averaging over the computed flow field.

Some of the earliest work using direct numerical simulations of
turbulence was applied to low enough Reynolds numbers (RA f 50, see,
e.g., Orszag and Patterson, 1972) so that all the dynamically significant
scales of motion were adequately resolved by the numerical algorithm.

For higher Reynolds number flows, however, there is noc hope to resclve
all the relevant scales of motion using computers available either now
or in the near future. Thus, for high Reynolds number flows, the meteor-
logists' approach to numerical weather prediction is followed. In this
approach, the smaller, subgrid-scale motions, which cannot be resolved
on the computational mesh, are filtered out of the fundamental equations.
Only the grid-scale motioms are computed. directly. (For this reason,
when direct numericai simulations are applied to higher Reynolds number
flows, the technique is sometimes referred to as large eddy simulations.)
This filtering process introduces subgrid—scaie effects in the form of
stresses which are analogous t0 Reynolds stress terms appearing in the
Reynolds-averaged equations of motion. _

The sﬁBgrid—scale stresses are normally modeled in a wanner anal-
agous to the modeling of the Reynolds stresses. There is reason to

- believe, however, that the subgrid-scale modeling will have a better
chanece of success than conventional turbulence modeling. First, the

smaller scale turbulent motions behave in a more universal manner than
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the larger scale motions. Henee, it is more likely that a single model_
for the subgrid-scale stresses may be applicable to a broad class of
fldws; Sécond, thé subgrid-scale motions usually contain only a small
portion of the turbulence energy, so that the modeled terms have less .
infiuence on the overall dynamlcs than the Reynolds stresses. Thus,
.thls approaeh may overcome some of the drawbacks to the conventional
approach to computinnr turbulent flows using the Reynolds-averaged
“equatlons. Thls technlque,_however, will always possess the disad-
_vantage that a more dlfflcult numerical problem mist be treated, which
_is necessarily three-dimensional aﬁd'ﬁime-depeﬂdeﬁt, and for which
greater spatial and temporal resolution is necessary.

As mentloned thlS procedure is analogous to performlng experiments
in the 1ab0ratory. However, it has the advantages that (i) much more
statistical information of interest can be obtained (since the entire
flow field is known at every time step), (ii) parameters can be varied
.éasily, and (iii) experimental conditions are more controllable. The
technique also offers the advantage of circumventing the closure prob-
‘lems that have”ﬁlaghed:turbulenhe theory. Beééuse of these advantages,
direet numerical simulations of turbulence can serve a variety of pur-
poses. ;For_exampie, they can be usefully employed to test theories from -
_the more exotic (e.g., the direct interaction approximation) to Reynolds
stress closﬁre models. They can also be very useful in obtaining a bgtter
understanding of the'under1Ying:PﬁYsicai processes. And these simula—
tions may be ultimately used as a predictive technique for applied
_ problems. However, before thlS approach can be used with confidence,
es1nec1ally when applied to high Reynolds number flows, its validity and
accuracy undexr various conditions need to be determined through careful
comparison of the results. of the'simulaﬁions with éxperimeuthl data.

Some work has been carried out with the purpose of establishing the’
valldlty and aceuracy of numerlcal SLmulatlons of Lurbulence. For
<example,‘lesearch at Stanford and NASA Ames (Mansoul et al., 1977;
Ferziger et al., 1977) has led to the suecessful prediction of the
large-scale features of homogeneous turbulence decay. There has also
_beeh some success in the comparison of simulation results with channel

' fiaw data (Deardorff, 1970; Grotzbaqh and Schumann, 1977). However, in
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_these studles the flow in the region near the Wall, where many of the
phy51cal processes of current interest occur, was modeled. Recent work
by Moin et al, (1978) has examined removing this latter limitation by
computing the flow in the entire boundary layer. While significant
contributions haﬁe been made in establishing the wvalidity and accuracy
of numerical Simulations, it 1S apparent -that much more Work needs to. bs
done to establish the capabillties of the method.

The study of free shear flows may offer an excellent vehicle for
determining the capabilities of direct numerical simnlations to treat
turbulent shear flows. While possessing many of the dynawic processes
of all turbulent flows, free shear flows are generally easier to treat
numerically than bounded flows. This is because, first of all the
boundary conditions are usually easier to implement numetrically, and
secondly, the resnlution requirements are much less stringent. In
particular, the ;ewerful pseudospeciral numerical methods can be easily
applied to some rree shear flows.

We have chosen to study the wakes of axisymmetric, slender, towed
bodies. - This choice was made for several reasoms. First, there is
extensive data available for this case (e.g., Ghevray, 1968; Pao and
Lln, 1973; Bukreev et al.; 1972) Secondly, as long as (i) the mean
velocity deficit is small with respect to the body speed, and (ii) the
lateral scale of nonhomogeneity is small with.réspect'to the axial
length scale, them it can be shown (see Section 2.3) that this flow can
be treated as a time~dependent problem (with time interpreted as axial
variation in the data) which is statistically homqgeneous in the axial
direction. This leads to significant simplifiCations in the numerical
procedures, and also gives us the opportunity to study a statistically
time—dependent flow. The two conditions described above are satisfled
in the late Wake in the experiments. Another advantage of late wakes of
axisymmetric bodies is that they appear to be approximately self-preserv-
ing, so that the flow develops in.a”faitly simple manner. For éxample,

Figure 1 is a plot from Pao and Lin (1973) showing the collapse of
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several sets of data in the late wake, and also the'agreement of the
data with the self-preservlng decay rate .

The main objectxve of the work presented is the determlnatlon of
how well direct numerical simulations can model a simple tubbulent shear
flow. Our method of approach is .to initjalize our calculations with
avallable wake data at a speclflc location downstream of the body, and
-then compute the subsequent davelopment of the wake. The results of the
: -numerlcal 51mulat10ns are then compared with data downstream of the :
original plane to determlne how well the wake has been 51mulated. The'
effects of a subgrld—scale model (pr lack of one), of. the.lnltlallzatlon]j
.procedure, of the numerlcal algorlthms and other features of the simula-
tions are examined, o

In the next section we discuss the techniques that we used"(é;g.,
numerical methods and initialization proeedures) to simulate axisym—
metric Wakes. In Sectlon 3 we prasent the results Df our 51mulat10ns :
”and comparlsons w1th laboratory data. Section 4 contalns a dlscu¢51on
of alternative initialization procedures. Finally, in Section 5 we

_-present our conclusions and. recommendations.:

*In this plot, _Um 15 the max1mum ax;al mean veloc1ty,

'-on “the Bd&y'spéed; x is axial dlstance measured from the

body stern, D is maximum.body diameter, CD is the drag
. UD o . L
1coeff1c1ent ‘and Rﬁ -94-, Where v is the klnematlc vlsc051ty
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2. Methed of Approach

Before examining the results of our simulations, it is important to
first undgrstand the methods used to perform the simulations. These
| methodé‘iﬁ#élve éﬁecifically the.numerical techniques, the subgrid-scale
model, the x -+ & transformation used to relate the 51mu1at10ns to
laboratory data, and the initialization procedures. These toplcs w111

be addressed in this section.

2 1 Numerlcal Methods

The numerical methods used to solve the Nav19r—Stokes equations are
the same as employed by Orszag and Pao (1974) . The Navier-Stokes equa-

tions are written in rotational form:-

_ o .
Loy - L . |
e Uxe _;____{;V_Fpryv% W

i/ ff_ =0 . SR - S R cé)

where w = qu is the vorticity vector, and | (3)

@ﬂf*é’f/ﬁﬁ - 7 ‘(4>

' is the dynamic pressure. This form of the equation ensures energy
congervation in our numerical scheme.

The initial conditions will be discussed in detail in Section'é;&..
The wake ig chosen to be situated so that the axial direction, the
direction of non-zero mean flow, is taken to be the x

1

dirvection (Fig-
- ure 2).- ‘As discussed below, the flow will be assumed to be statisti-

cally homogeneous in this direction. Periodic boundary conditions have
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been successfully employed in the past along directions of statistical

homogeneltv (see, e.g., Orszag and Patterson, 1972), so we choose »

" -periodic boundary conditions in thls ‘direction. In the radial (x2 and

33) direction, there is no mean flow (see Section 2.3) so that inflow-

- outflow conditions are not necessary there. Thus, for convenience, and

.also to employ pseudospeetral nurerical methods most easily, periodic

boundary conditions are also used in the lateral direction (xz) and

. periodic no-stress (free-slip) conditions in the vertical (x ) . The

latter condltlons are used because the computer program also was written

to treat demsity stratification effeqts_in the vertical direction.
PseudoSpectrel.methods are used to eolﬁe the gbverning equaﬁions*.,'

- The equations are solved on a 32 x 32 x 33’grid in physical space. The

- pseudo-spectral method involves the evaluation of the derivatives using

the Fourier expansions, i.e., if
theﬁ %%[ is'evaiuated as

S A .'kja :
Mo Y kde | ©
NP o

The method is similar to fthe spectral method except that a11a51ng effects»
:whlch arise in. the computation of the nonlinear terms are not excluded
(e.g., Fox and Orszag, 1973). The method appears to be as accurate as
the spectral method however, and is rnughey a factor of 2 more
‘efficient computatlonally. . _ ,
The computations presented herein were performed on the NASA Ames
.GDC 7600. The calculations require about 3 sec/time step for the 32x

32 x 33 computational mesh. The numerical algorithm uses fast Fourier

#Pseudospectral methods are approximately twice as accurate in each
~_space dimension as comparable finite different schemes with the same

- resolution, and are competitive in computational efficiency for problems
with simple geometry. Thus, they. offer significant advantages when
applied to problems of the type described here (Orszag and Israeli,
1974).
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transform.methods to evaluate transforms and inverse transforms, and
uses leapfrog time diffarencing on the nonlinear terms, and Crank-
Nicolson (Gmplicit) time differencing on the viscous terms,

The numerical simulation data presented is mostly in the form of
spatial averages. To perform these averages, we.take advantage of the
axial homogenéity'and axisymmetry and divide the flow field into concen—
tric annuli with axes along the % axis (Figure 3)f The gap width of
gach annulus:is_takgn to be the mesh spacing- (Axi) . 'The average value
of a quantity q in the REQ annulus is obtained by summing the values
of g for each grid point in the annulus, and then dividing by the

total number of points in the annulus, e.g.,

N |
| Avemgg(ﬁ;)": "::,:\ 'ZI % (7)

where--Nn iz the number of grid points in theAnEE-annulus. In Table 1,
1
/N

n

ﬁo'the statistical error expected in computing an average. Note that

we show Nn for each n , and also s which is roughly proportional

‘the error is expécted to decrease substantially with increasing distance
from the %y axis, until the annuli intersect the boundaries of the

computational domain.

2.2 Subgrid—Scale Modeling

The basic idea of direct numerical simulatioms of turbulence is to
numerically compﬁte the'detailed eVblﬁﬁion of the complex turbulent
velocity field. Because the simulations are inherently three-dimensional,
the best possible numerical resolution using'preSenthay éomputers would
spaﬁ about.one to fwo decades in wave number space. However, the laboratory
data that we choose to model (Pao and Lin;_1973)Ahas significant inter-
actions oéburring'6VEr many deCadeé; Tt iszbbvious that the simulations
cannot treat all the details of this flow. _

In Qrder to handle the smalLer scale motions which cannot be resolved
in the éomputefﬁsimulations, subgrid-scale modeling is usually intro-

duced. This method was first suggested by Smagorinsky et al. (1965)
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for general circulation models of the atmosphere, while Lilly (1967)
first studied its use in tufbulence simulation. To employ subgrid-scale
mbdeling, the Navier Stokes equations, (1) and (2), are first filtered
to eliminate the smaller scale motions. Generally a spatial average is

used, of the form

) = Ge-x) ¢ (¥,t) dy’ ®
R

where € ds a filter function and R encompasses the entire flow
domain (see, e.g., Leonard, 1974). Here we have used the symbol <u>
td denote the filtered value of the vector u . The flow wvariables can
thus be expressed as a filtered part, or large scale part, <E> , and a

-subgrid—-scale component, say u' . Thus

4= Cyuye i ?

When (9) is substituted into equations (1) and (2), and the filtering

, operation is performed on the equations, there results

By + LUK = - 5 HLP + IV
- ﬁ;[wiug) + Uy QU sy ]

(10)

Ax. A4y =0 (11)
L .

Note that, in gemeral, <<u>> # <u> .

EQuations (10) and (11) are the dynamic equations for the resolv-
able (large eddy) motions. The last term in equation (10) represents
" the effect of the filtered (subgrid-scale) motions omn the large scale
motions. Clearly a closure problem, analogous to that resulting from
Reynolds averaglng of the orlglnal equations, has resulted from the

fllterlng ptocess,
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In order to proceed further, thg effect of the subgrid-scale motion
on the resolvable scales needs fo be modeled. 'Smagorinsky et al. (1965),
realizing the analogy with the Reynolds averaging, modeled the subgrid-
scale stresses using the eddy-viScosity'canept.vVDeardofff'(1974a,
1974b) generalized this.by introducing equations for higher order subgrid-
scale quantities, e.g., for the subgrid-scale kinetic energy and subgrid-
SCéle'stréssés.' Leonard (1974) put this work on a firm theorstical
foundation by carefully defining the averaging procedures and separating
out the different effects. In more recent years, there has been consider~
ablg activity in this problem area., from finding theoretical justification
for the models (e.g., Love and Leslie, 19771 to careful comparisons with
data (e.g., McMillan and Ferziger,.1978).

Orszag (1974) has suggested an alternative to the subgrid-scale
procedurs which might be applicable to free shear flows. It is based on
the comcept of Reynolds number similarity, which is that if the Reynolds
number of a free shear flow is high enough, then the statistical proper-
ties which depend om the large-scale features of that flow (e.g., turbu-
-lent energy, Reynolds stress) will be independent of Reynolds number.

As the Reynolds number of a free shear flow is increased, the wave
numbér range over which viscous dissipation occurs becomes widely sepa-
rated from the wave numbers containing the bulk of the turbulent energy.

(Figure 4.) For example, the ratio of the dissipation scale,

'3
Ry = (;—97);‘ ,

v

to the energy containing scale, Ke = 2"1 s 1is

K '“ ' L£3 vV ‘;' EE!L.%Q‘;— E%L
ﬁﬁ(ﬁ) y\ = ())) :::.R}q .V .(12)

(Here u' dis a characteristic turbulence velocity and £ is a charac-
teristic‘length scgle of the gnergetic turbulence.). Generally, RE is
several orders o£ magnitude or more so that the emergy and dissipation
scales are widélyﬂséparate. It is argued that the nonlinear inter-

actions are somewhat local in wave nuimber space, so that the large
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eddies are not directly affected by the dissipation scale motions. Thus
the larger scale motions are essentially inviscid, and transfer their
energy to smaller scales, to he ultimately dissipated by the much smaller
. scale motion, = Thus the large scale behavior of these flows should be
inviscid, independent of the Reynolds numbey. Hence, the term Reynolds
number similarity. . ‘

Reynolds number 31m11ar1ty has been ayperlmentally establlshad for
the decay of grid turbulence (see, e.g., Townseud, 1976). Also, recent
experiments on turbulent shear layers has lant'éugpuft for Ehis prinCipie
{see Roshko; 1976, for.a review of this work). Vizualiszarion studies
'havé shown the qualitative similarity of the large-scale stryctuye of
‘these flows for a broad rauge of Reyuol&s numbers. Quantitati@e data
from these experiments also supports the princiule. Furthermore, the
application selfesimilarity theory to turbulent wakes,*ﬂhicﬁ implicitly
$ncludes uhe'Reynoldé—nuﬁbér—iudependence hypothesis, gives results
wvhich agree well with laboratory data. This last point will be discussed
in more detail in section 2.3, - ' -

Past numerical simulations of turbulence which have not uéed
subgrid-scale modeling, but which have resolved all the dynamically:
‘significant:scales; haue beén successful fur values of RK up to about
50, where: Rﬁ is the Reynolds number based upun the Iaylor microscale
A . (This is still a fairly low-to-moderate value for laboratory studies.
Fur.example, Chevray's (1968) Beynolds number was about 700, Pao and
Lin's (1973) was about 90, and Champagne, et al. (1979) reported a value
of 130 in their homogeneous shear flow'experiments.)‘ It is_éossible
that this Reynolds number is high emough for the flow to be approxi-
mately Reynolds number independent. We concluded that this was én
importaut.possibility to address. Thus, in the work presented in this
report, no subgrid-scale model was used._ The RA' vas initialized to be
~roughly 50, ‘and we hoped to conclude whéether this was large enough for
Reynolds number similavity to hold, We plam in the future to recompute
these cases u51ng a subgrldescale model,; in order to determine the -
difference in thP two approaches. Flnally, one might consider our
approach, i.e., assuming Reynolds number 51m11ar1ty and computlug a flow
with much lower Reynolds uumber5 but with all the scales resolvable, as

a very simple subgrid-scale model.
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2.3 Self-Similarity

- In ovder to examine axisymmetric wakes further, it is useful to use
- -cylindrical polar coaordinates. We use the (r,0,x) cooxdiaate system
shown in Figure 2, where 1 is the radial coordinate, G_ is the circum-
ferential coordinate, and x the akial'épofdinate'(méésuréd from the '
Bady stern), taken ta be positive in the direction opposite that of the
body motiocm. ‘Let (ur > Ug s ux)_ depote'the_cbrrespondipg vglocitiegf

 Then EqﬁatEOns'fl) and (2} aré

(14) L

| U 2y N
5?. u\.gr by s Bjéur L_L+ uxaxd""‘rg‘rd? (13)
'Wi_ar r ar(‘ﬂu!‘)} R g g-"- é Ug ‘i‘gxz.ur‘]
) '§‘£“e’wra~ Ug + ;5‘ ”-e—f'u*‘ua u '§i”9" 'F‘ﬁg‘gu
"Ml [gf‘t gf‘(rue))'*""?.‘ga?-ué + e 33 Y"*’&x;»ue]
19
g-t”h * urﬁpux ¥ A“e“x * ”x &ukz ) 37215’- WD
+ V[ ¥ I (\" é?’uk‘) ¥ \“? é@" 2 e + éxv."‘x]
é L3y e
“:Fé*v(““v'*\"a&“'ax“%’“a - e

In order to obtaln the Reynolds-averaged equatlon of motion, we
"decompose the veloc1ty vector and pressure 1nto (ensemble) mean and

fluctuatlng parts, i.e.,

(um%«, ‘L) (\WM V+v U“L) | | .(17_)... :

- M
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Substltutlng (7 and (18) into (13) to (16), ensemble averaglng, and
assuming ‘statistical statlonarlty -and axlsymmetry, and no swirl (V—O)

%
g :LV\.._S

AW+ U """"f’" LP ;v[f-g(-%%ff“\@)ﬂLf,-gw]' " s

W3 VR S 3Pk S 1l
@) @
.a(r\rJ\+§-U=0', - (21)

Equations Ffor the higher order quantities (e.g., u2 s W, W2) can be
‘obtained by subtracting equations~(19) and (20) from (13) and (lS)_to

obtain equatlons for the fluctuatlng components multiplying by _W,_v;_o:.u )
“and ensemble averaglng (see, e.g., Tennekes and Lumley, 1972) Statiétical
statlonarlty'lmplles that we have flxed our coordlnate system to be

moving with the body, at a speed relative to the fluid which we call

We are interested mainly in the far wake of an axisymmetric body
where the flow is approximately self-similar. In this region the
‘following conditions are approximately satisfied (see Tennekes and -

Lumley; 1972, for a more detailed discussion cf:self—similarity):

i. © The axial variation of amy statistical quantity (q) is much
smaller than its radial variation, i.e.,

a C| << ércl },,o}r'}

%An overbar ) will be used throughout this text to denotelan.EnsEmbié
average.



Flow Research Report No. 135

Ma .
13 axch, 1979

SRS P
where Ex and £r are characteristic length scales of axial and radial

. variations in mean quantities;

ii. The maxxmum value over which the mean veloclty varles, say .

":'Um', is much smalle® than the body speed

iy

iii. The Reynnlds number of Lhe flow, ———35_ , is large enough s0

1
v
that the wviscous dlffuslon terms in equatlons (19) and (20}

can be neglected with respect to turbulence diffusion terms.
With these coﬁditions;.eqﬁation (20) rédudes to approximately®
"'anxu“' ‘é‘r( f-) - e

Followmng the self—51mllar1ty theory, we assume the axlal mean velocmty
" and the Reynolds ‘stress to be of the form**

lj(rx) Ij (g)zk(n) ..“ , : o e

W) .&-Ui(ﬂ"sﬁl') G i

.&._,__,

*Scaling équation (21) results in -% ~ E§K , so that ¥ iS-small.With,
respect to U in the laté wake. X | '

**In everythlng that [ollows, we Lake U to be the axlal mean veloclty
defiecit, d.e., the difference between the axial mean velocity, measured
in a coordlnate system moving with the body, and the free stream veloeity

S | JA A e e e s T
R ¢ |
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where ﬁ = E?ETA is the similarity variable. The veloeity scale U
and the length scale [ ave to be determined. When (23} and (24) are

used in (22), and the further condition derived from (22),

53& S rU dp = constamt 0 @sy

:-is-iﬁposeds there'rééults'

(26). -

CUa ) = A .%_-

2 () ;_;_-.BJZVS . B | | | en

“where A ‘and B axe constants to be determined empirically. There-
fore, for the flow in the wake to remain self-similar, the velocity

2/3

scale (e.g., peak velocity) should decay as. x - ; and the:iength
scale should. increase as. /3 . | _
To go any further, a closure assumption is needed Following
mixing-lengtl theory we let ' . ' .
(28)

\
o
> = —V.ra'r_U 5 where
11 (29)
U= C % Un,
“and -G is a constant to be determined empirically. Then equation (22)
can be solved to give '

) = ;,;,;( _ -4'5& | 712-)' N
5(22) ZA R exp (- | ) ) G

#Note that this clostre assumption does not include dependence .of o
on viscosity, i.e., Reynolds number similarity has been implicitly assumed.
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- Bquations (46), 27y, (30) and,(Sl) are the main- reSults from the self-.
similarity theory

Deflnlng the total crossplane mean kmnetlc eneryy E by

and the total crossplane turbulent energy e by o S

'fde- a:lr 'E (“z 1'*“’“2) R ”-c33>'v._-“"

, o o
then self-51m11ar1ty theory can a]so be used to determlne the axial

‘behavior of E and e . Substituting (26) and (27) into (23), and

4

(23) into (32), and integrating gives

N -2 o : S : _..:._ R
f(X)_: D)i_ /3 T - | (-3!*),

where D is an empirical-conetaﬁt. Following a similar procedure for
.-%6

e(z) F}t

SO

where F is another empirieal constant.

The approximate validity of the self-similarity theory can be
establishedvby comparing eenclusions from the theory with experimental '
data. Figure 5 is a plot from Pao and Lin (1973} showing the growth of -
'3thefmeeﬁnVEIdeity:weke'tedius“ (iig' ibr'eeverelzdifferent sets of data
for the wakes of axisymmetric bodies. : There is fairly good agreement
with the the01y for each set. of data Plgure 1 is a plot of the decay
. of the maximum mean veloclty (U ) for the same data sets (again. extracted
.from Pao 'and Lln) Again the agreement with the theory is good _ Flgure 6
'gives the radlal behavior of the ax1al mean veloc1ty in Pao - and Iin's

data. The solld line is the self—51m11ar1ty prediction, equatlon (30),

_u51ng an eddy v1scosmty assumptlou The agreement of theory end expermment T

#The mean wake radius 'f: is’ deflned here as the dlstance fromAthe mean
. velocity peak (at r = O) to the polnt at whlch the mean velocity attains .
half its peak value. I
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here is also good. Similar resulis have also been demonstrated (e.g.,

Pao and Lin) for the behavior of the axial component of the turbulence

—— —

' 1nten51ty ug ) the radial component W2 , and the Reynolds stress
ww . It is apparent that self-similarity theory 15 appr031mately valld
in the far wakes in:these experlments

The existence of a self-similar far wake region, and the implied
_oondltions necessary, prov1de the basis for the present calculatlons
. In the far’ wake, assuming conditions (i) and (ii) are satlsfled the
statistical equations can be obtained from the orlglnal equatlons by
neglecting all derivatives with resPect e X R except when multlplled

by UU .  Thus the axiel-mean,momentum equation (20) reduces to
UWU V25 050) - F §lrT@). (36)

- The Reynolds averaged equation for the. axial component of the turbulence .

intensity is T

4 (F) -5 ‘5§%E+-v[%§(f§etas 5 ()]
Y& | | o
e R -0 @

With the far-field scallng, this reduces to

&) TV HM,(' ) o - o5
SEAEE) T A0 B

Similar equations can be obtained for the other turbulence quantities.

If %?— ig interpreted as time, it is easy to see that (36) and
. [a] )
(38) are identical to~the corresponding equations for a .time dependent

N axesymmetrlo flow w1thout mean swirl, which is statlstlcally homogeneOus
in the axial (x) direction. Thig can be showu to be true for all
'other-statlsLlcel equetlons, and i& a result of the fact’ that, in the
far-field approximation, =x derivatives are only retained when multi-
__”plied_by_ Ué
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Tt is much easier to numerically treat a problem which is statis~
tically homogeneous in the axial direction and time-dependent, than to
compute a Fflow which is statiStically sfeady, but nonhomogeneous in the

axlal dlrection. In the latter case we have to deal with complex up—
stream inflow and downstream outflow boundary conditions. Alsc in the
far fleld " the mean radial veloclty is negllglble with respect to the
 mean axial veloclty, so that we need not be concerned w1th radlal inflow
‘boundary conditions. Thus, 1n-the present simulations, we choose fa -
compute the statistically axielly homogeneous, time—dependent problem.
Time, in our calculations, is interpretable as %f ~in the.laboratory
data. . S e - 15 .
Note that if the fdr-field assumptions break down; i.e., if Um is
not small with respect to U _ , or if the radial scale (ﬂr) is not
small with respect to the longltudlnal scale (2 ) , then it is:not
proper to replace the steady—state wake Wlth a.horlzontally homngeneous

time—~dependent wake. This is partlcularly true in the near field Where
MN qu“&

/Q""'-’qr.

Another Way to see the Justlflcatlon for con51der1ng the tlme—
dependent problem is the following. Fix the coordinate system with

‘ fluld; Shortly after the body goes by,.thE'mean convectidﬁ terms (e.g.,

( ), Sx ( )) are 1mportant. Later on, however, as the mean
valoc1ty decays, they become negligible. It is then.possmble to compute

the time history'of a slab of fluid, and, when comparing with data,

2
treat time as %%—. Because ﬁzy is small in thexlate wake, axial

derlvatlves of mean quantltles can be neglected

2. 4 Inltlallzatlon Procedure

" To initialize the veloc1ty fleld, we use the date of Pao and Lin
(1973) at x/D = 36 . This downstream location is in the early stages

-of the approximately;self—preserv1ng”reglon. We first separate the
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veloecity field u into a mean component and a turbulence component as

given by equatlon (17, i.e. .

(“rﬁueq 'x) (\’\("‘m’,V’*U ‘U.‘Ht) (.1?)‘

In the self—preserv1ng regxme, the only nonzero component’ of the
mean veloclty is the axial component, U . An excellent approx;mat10n~AA‘
to the axial mean = al-icity proflle in the data is given by the self-

similar formula (:{gure 6),

2

U(T‘,ﬂ&} Uw(}") EXF\ 60‘3 a(m = (39)
wheree-Ume is the maximum value of 'U-; and'.rm' ie &efineﬁ Ey' |

'-U.(Y}.'\.(X):K) =' -Bﬁ U\m(x’\) S R

We use

(MV,,U\:(O 0 ”Zfexr( 613 gza )) W
R’l"?f‘f&-“‘ U = Zf;;p}:g/p =30y o0 e
&3, v o _ o (43)
ﬁ_ {x/a "-".36 e e

as initial conditions for our mean velocity Field.

H

To initialize the turbulent velocity field, we use the method
suggested by Orszag and Pao (1974). It is an adaptatlon to nonhomogeneous_
turbulent flows of the method of Orszag and Patterson (1972), which is |
appllcable to homogeneous turbulent flows. We will briefly explain the
latter first;’and then show how_the former method is a modification of
e U Lo TR S | .

In order to ensure 1ncompre551b111ty, Orszag and Pdtterson erte i

. the veloelty fleld as the curl of ‘a stream functlon_vector i ,-
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(Note that this greatly restricts the class of veloecity fields considered,
since in general an arbitrary veloecity field can be expressed as the sum
of an irrotational part (V¢) and a rotational part (Vx{) ; see, e.g., -

Batchelor, 1967.) The velocity field is expanded in a discrete Fourier

series,
wlp)y =% dlkle ™" 45
and (44) becomes o
A ) . o ) .
_f_(.(g) :-."'a"f.x"ié . S - (46)

~

where ? is the discrete Fourier transform of @ . The energy spectrum.
fbr3'§ is detefminéd uniquely by the:enérgy spectrum for u . The
Fourier amplitudes @ for each E ‘are chosen to be Gaussianly distributed
with zero mean, and the standard deviation chosen to produce the proper
spectrum'for ? , and hence for u . To ensure homogeneity, the Fourier
amplitudeé for differing wave numbers are chosen to be statistically
independent. For statistically isotrdpic flbws, the components of a
particular Fourier mode are taken to be statistically independent but
identically distributed. Note that, because the initial veloeity field
is comprised of a'iarge.éum of statistically'indebendent terms, from the
Central Limit Theorem (e.g., Feller, 1957) we know that it has a joint
normal probability distribution. ' -

The velcclty fleld for a particular reallzatlon is set up by first
numerlcally selectlng each Fourier amplitude w from~1ts proper ensemble

u51ng a pseudo-random number generator. Then 1kxw is formed to give

u , and finally the inverse discrete transform is performed to give

u . o _ oo . _ ‘

' The modification of Orszag and Pao (1974) also starts by first
generatlng the Fourier amplltude w However @ is then transfp;med,

to phy51cal space to produce w ) multlplled by a form fumction, J(x)
for the case of an axlsymmetrlc wake, and the product is transformed

back to Eourier space.. The cross product with ik is then taken to
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_ensure incompressibility. The veiocity field obtained from this series

of operations is then

£~£=\7:\(Ti) W

We choose the stream function field { to be statistically isotropic.

Then its energy spectrum can be expressed as
| E: {&) = é; (}{ o e o (48)

where E (k) is the energy spectrum for a statlstlcally'homogeneous, _
..1sotrop1c field obtained by the method of Orszag dnd Patterson  The
resuiting velocity field defined by equation {(47) has the following

moments:

U

T o= v .-.ze‘;‘ o - - - (49)

, qﬁ 9) e | |
';F;f:':rf:= i, (' -+ ziir (EEZ) Lo -o“(so)-

o= U T | - B S
.f.dV' - U = Vw = 0 "*}tfaf"e- : (52)

Ea = ,(L’ (i, 34 = _(E Gde.  ow

. Furthermore, although it is difficult tc obtain a géneral expression for-
N thé:one—dimensionél axial energy speoﬁrum, this spectrum at x» = 0
can be shown to be identical to-the one~d1men51onal spectrum obtalned
from E (k) . for the homogeneous, 1sotrop1c case.
In order to initialize the turbulent velocity, we need to seleotr
the proper energy spectrum E . and form function- J(r) .. We choose the .

'energy speotrum. B (k) to be glven by

Fo - Rah

R R
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Along r=20 ,'this pfoduces a one-~dimensional axial spectrum for the

axial velocity u |
[ 2344
wAT

and an ax1a1 spat1a1 correlatlon

(M A

3 : (55)

amules) = U ex/z{)/A) . o (56)

which are good approxlmatlous to the one—dlmen51onal spectrum and spatlal N
correlation in most shear flows. Here A is the 1ong1tud1nal 1ntegral
scale, i.e.,

o0

I~

A=

[

i

o

alx)Ue+s) ds 6D
_ _ DY - . :
and u is defined by equation (53) above.

From equation (50) and our choice for J (equation (60)), u

_ o o Y A -
corresponds to the maximum value for u' (é 2 {) “. 'In the laboratory

data this is, approximately,

thyy '
= rd
T =35

where um'E.max(u‘) . We choose A to match the corresponding integral

(58)

scale in the data. This is, approximately,

A\

fin

There is considerrible error imvolved in' the estimation of A from the
laboratory data (as much as 0.3 rm). Since the proper turbulent length
ecale is of cqnsiderable importenee in the_dynamice of the_flpw,,this
error could have a significant impact on our results. With the choice

of u and A , our spectrum is completely defined.
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To choose J(r) we match our initial radial profile for the axial
turbulent intensity with the data. A functional form for J which

gives a fairly close match is
J{r) = 6x/:(-- AI R | (60)

with ;£:= 2,012. Figure 7 gives the values for the axial turbulent
CooTme o B - S o ' .

Vintensity u'  versus radial distance for two different realizaiions of
the ensemble defined above. The solid aurve_isutaken_from_Pao-and Lin
'.(1973) Table 1 glves values for 2 number of relevant statistical
quantities for one realization of the initial flow field. _ _

. 'Although the resultlng turbulent veloclty fleld has’ many of the
proper statistical characterlstlcs, it is still lacking in many respects.
Flrst of all because the Fourier modes were chosen to be statistically -
1ndependent there is 1n1t1ally not any energy transfer in wave number
space. - This is exemplified by the low values for the velocity derlvatlve
skewness in Table 1, which are a direct measure of this tramnsfer. It
has been.found however, that these corralations build up rather rapidly

{(the veloclty der1vat1Ve skewuess attains its proper value by roughly
A

o = 0. 5; see e. g., Orszag and Patterson, 1972), and it is not thought
that this initial lack of correlation is too severe a_limitation. Also,
methods have been deveiopéd.to.dvercome this (Mehta,.1978). A more
critical flaw in the initial field is the approximately zero Reynolds
stress . {E; +. This: stress eontrols both the transfer of turbulent energy
“from thé mean flow, and the diffusion rate of the axial mean velocity.
Clearly it is a critical quantity. Similarly, third order moments,
ﬁé;g;,' ﬁzw'.,.are.ale.iﬁifiéllyIappfoximételj zero. . These control the
. self-diffusion of the turbulence. Another more subtle inadequacy in the
initialization is the uniformity of the skewnesses aﬁd kurtoses. In a
wake flow, tﬁe values for these quantities are usually larger near the

wake edge dus to the intermittangy_df“;he flow there. However, the.
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uniform application of the form funetion J does not permit this
intermittahcy, A number of other inadequaciés can also be'poiﬁted out.
We have vnderstood the nature of the limitations in the initial

conditions. We concluded, however, that it would be useful to-perform
simulations with this scheme because (i) it would determine how signifi-~
cant these limitations were; (ii) it might show us how to better initial-
ize the Flow: and (1ii) it allowed us to study a £low which ultimately
developed in approximately the proper manner. The results to be pre-—
sented below were obtained using this scheme from Orszag and Pao. We:
aléo éxperimeﬁtéd with severalzalternative'initialization procedures.
These alternative methods will be discussed in Section 4.

- In order to implement this scheme on the Eomputer'we had to finally
choose a mesh size, a time step and a viscosity. We chose to treat a
~ cubic box of side length L &uch that

| L ~s0. . (61)

R

This allowed for considerable spread of the wake before boundary effects
became important. In wave number space, this resulted in a peak in the

three~dimensional spectrum at

and a cutoff wave nimber of

Kk I = 12,64, | ~ | (83

which was sufflclently large so that numerical truncation effects were

not significant. . The time step size At was chosen to be
/

At U

. PR

X 028, . (64
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and the viscosity V was selected so that the initial turbulent
Reynolds number was 50, i.e,, '
‘ ‘ . . R . |
c(/\ | |

3Th13 is about the largast value that can accuraLely be treated on a
32 x 32 b'd 33 mesh
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3; Numerical Results

In thlS section we give the results of our dlrect nnmerlcal 51mu1a—
tions of the axlsymmetrlc, turbulent wake of a towed hody. As mentloned
‘in the previous section, we use the data of Pao and Lin (1973) at ' '
x/D = 36 , Whlch is in the self-similar decay region, to initialize our
'calculatlons. We present the results of the simulations of two independ—
ent realizations, generated using different random number seeds in the
initialization process. The combined results show both the capabilities
of the numerical'simulations to treat turbulent wakes, as well as provide
an estlmate of the St&tlstlcal scatter. 1n the results. We show fixst

© some constant contour plots of the 1nstantaneous velocity and vorticity
fields to help give a gqualitative picture of,the'wake evolution. We
gthen present plots of the decay of characteristic'velocitj”eﬁd length.
scales; as well as total energies, with time. VFinallyg we present 7
radial plots of varlous sLatlstlcel quentltles, and establlsh the degree .

to Wthh the self-similar decay is modeled.

3, 1 Gontour Plots

Alrhough stetlstlcal results axe necessary to determlne the capabll—'
ities of the simulations, it is useful to examine contour plots to see
qﬁelitatively the development of various features in the flow field. _
Figures'S and 9 are contour plots ofbthe longitudinal velocity fluctua-—
tion (u) and the magnitude of the fluctuating vorticity (w =v@;ﬂr)
-respectlvely, in a typical plane perpendlcular to the mean motion -

(x or xl) » at time zero. The vorticity plot especlelly shows the
localization of the turbulence in the cyllndrlcal ragion in the center. .

‘ Note the axlsymmetry of the vorticity fleld as well as- the MANNET in

which it goes rather smoothly to zero with radlal distance. These are

. both a result of the use of the smooth form function in the initializa-

" tion. 'Tiécres 10 and 11 are contour plots of u and w in a plane
parallel to and pa531ng through the xl axms, at tlme zero, Again note
the. lack of bulges and other nonunlformltles at the wake edge, especlally

..1n the vort;cmty field. Also, there appears to be no directional prefer-
‘ence 1n the contours.' Thls reflects the fect that the Reynolds stresses

"are 111t1ally approxrmately zero.
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Plgures 12 and 13 are similar coutour plots of u and ®  dn

the péeue perpendicular to the x5 axis at nondimensional time = .
T C;—ég of 7.73 , which is one-third of the way through the calculatlon_.
The wake has grown somewhat and the boundery has become much more
oonvoluted, Also, some of the smaller scale features have heen lost to
moleouler"v1scosity Flgures 14 and 15 are contour plots of  u’ and

m“ in the 'xlx, plane through the xi' axis at T = 7.73 . Agaln note
" the convoluted nature of the wake bouudary, and the growth of the wake.
It is elso apparent that the veloelty Field has developed a directional
,orlentatlou. In the upper—half~p1ane, the constant contours teud to be
orlented w1th their major axes 1n the second and fourth quadrants,
'whereas in’ the lower half~plane the contours are oriented with their
major axes in the first and third quadrants. This can be showu to _
... correspond to a positive. Reynolds strees in the upper—half—plane and a
| negative stress- in the lower—half—plane. Note that the. mean velocmty is
p051t1ve in the dlreetlon of 1ncrea51ug xl . The mean veloc1ty
gradleut has klnematloally dlstorted the’ 1n1t1ally 1sotrop1c-l1ke fleld
into one Whlchuhas directional preferences.

Flgures 16 and' 17 are contour plots of wu and @ - in the x2x3
plene at time T = 15.46 » bwo—thirds of the way through our calculation.
The continual growth of the wake, dlstortlon of the wake houndary, and
' loss of smell scale can. agaln be’ observed Flgures 18 and 19 give
similar plots in the x X% plane for this time. Agaln note the increas-
1ngly convoluted surface, and the dlrectloual preference in the contour .
lines. The extent of convolutlon of the boundary reglons of the wake
:W1ll show up as 1ncreased values of the velocmty (and veloc1ty derlve?

© tive) skewness and kurt051s in those regions.

3. 2 Pemporal Behavmor

We next turu our etteutlon to the temporal behav1ox of characteris—

' e,:tlc velocity and length scales, and of the total energy S In Seotmon‘Z 3

- we' found that in the self-preserving reglon, eheracterlstlo velocltles

' We define the. (conetant) veloolty U o be U at time zero, and
- we deflne R to be r et tlme zero. SR
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_ -2/3 ' o . 1/3
should decay as t s characteristic lengths should grow as t
and both the total mean and turbulent kinetic enelgles decay as L—2/3 .
In particular this 1mp11es that
U, ~%, |
L TR CLE P B S (66
5= Cylt Lo) | (66

: ) : :

cm( f.') '_ (e8)

(69)

= C?‘ ("-’-'--a)
lg ('é~" o) | - - 0.

C ('! )*3/?, IR TET R (71)

Here, Uﬁ is the maxlmum'value of the mean veloclty deficit, u is

H

_%hbﬁ%&%@ﬁ

-the maximum Value of. the longltudlnal rms velaclty, Zrm is the half-
radius of the mean velocity, o is the half-radius of the longitudinal
component of the turbulent intensity, E dis the total (integrated) mean
flow kinetic energy, E0  is E at time zerb, e is the total.turbulent
kinetic energy, £y is a virtual origin in time, and CU s Cu ) Cm )
_ QT', .GE y and Ce are constants. We will look for correspondlng
behavior in our simulations.
_ Tlgure 20 is a plot of the Lemporal behavior of U and . fqr_
'the two dlfferent reallzatlons . Cnn51dnr U flrst. Inltlally, the
decay rate of Umrris less. than predicted by theory, ot observed in the

‘data. - The dynamic gquationffor' U__is_equétion 32)

;;%.Uf%é;‘(*‘uﬂ =yt 5l awU) e

*In presenting the simulation results, we show the horizontal axis dim -
* terms of both x/D (as in Pao and Lin), and also the nondimensional

5?1 . T =0 corresponds to %/D = 36, and T = TO = -3.76

. .corvesponds to x/D=0.

“time - T =
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The second term on the LHS.represents the radial diffusion of mean
momentum due to the Reynolds stress uw . The texm on the RHS is the
molecular diffusidn term, and is small in this case, Inltlally, the
mean velocity peak does not decay since uw =0 . The Reynolds stress
builds up rapidly, however, and by x/D = 90, U’ is approximately

-2/3

follow1ng the t behavior for both reallzatlons. Note that there

is some difference in the results for the two realizations.

The behavior of W is similer.r The equation satisfied by %— is
equation (34): .

e 1
a%-;'%; T T Ui ('“ ) =7 &KF

. 'la (
v-,{-ﬁ(f"g}(“?{” "”[JF e 33) ag)] EE 34)

The djnamics of u' are'gbﬁerned by a complex balance between snergy

feed from the mean flow Cﬁgxggd , the diffusion of wu' by turbulence

.[i gr (r'—E-wél the redistribution of u' between w' and V' (- %-u gi s
- and the viscous dissipation of ul " Initially the generation terms and .
dlffu51on terms are both zero, due to the initialization scheme. Also,

the dissipation is weak due to the initial lack of wave number amplltude
correlations. (Hence, the wave numbel energy transfer is small, which

is reflected, for example, in low values of the velocity derivative
skewness } HOWEVEl, by x/D of gbout 110, these. effects all appear to
 have bullt up, and w decays at roughly the proper rate for the two

realizations. Some idea of the relative error camn again be seen by

- comparing the results for the two reslizatioms..

Figure 21 is a plot of the temporal behavior of rﬁ and of fT .
Con51der1ng flrst r » we see that it dlsplays the same effect as does.
."Uﬁ_ﬂ Inltlally 1t does not grow, but epparently after the Reynolds
stress has built up, it increases at approximately the proper rate. The
. gameshglds;f0r~erf;;_;Initially'there;is'no'grthh,-but”by;'x/D Cequal
to about 110 it is growing at approximately the right rate in correspond-

- ence with the decay of o
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| Figure 23'¢ontains,plots of E and e as functions of time. Multiply-—
ing equation (32) by pU and integrating over the crossplane gives the

. -equation for E » i.e.,

j; ' ’ = Z’?fffr‘ uw cf.sf‘ -2;7'/01) *‘(&) Ar. . (72)

The first term on the RHS represents the loss of mean klnetlc energy to
turbulence, while the secpnd term is the molecular dissipation term, which
is smali.' Mean fiow energy is lost to the turbulence through the 7
action of the Reynolds stress uw on the mean velocity gradient. The

" decay of - E has'éstabliéhed close to its:propéf behavibr”by‘ébOut T

%/D = 100 . The equation for e is obtained by integrating the sum of

. . L 2 L e
. equatlpn,(Ba).and'Lts counterparts-for. W and v2'5 and is

C—-(C_-/-_ _ ‘;._-217/: fr 4 3z dr - £ N (A R
where € is the viscous d1551pat10n. Thus the time rate of change of

@ is a balance betwaen energy feed from mean flow and viseous d1551pa—
.tlon. Again, the proper decay rate 13 approxmmately obtalned by x/D

‘about 110. The slightly slower decay rate could be due to Wall effects,_
statlstlcal scatter, the lack of sub~gr1d scale- nodel,’ or an erroneous

value for the initial 1ntegral scale A .

_ _Although the approxlmate proper decay rate has been attained hy -

° these quantlties, thelr ratmos have changed from,the initial condltlnns._ -

. From Pao and Lin (1973) at x/D‘— 36 )

"’['m‘ = ,32. y It 2 zo0 ) (74)

and these Tatios ars malntalned throuchout the self-similar reglon. In
- our similations, however, although ve started the values of: the -above
ratios properly (to Wlthln statlstlcal scatter), - the values,;n the self-

similar range became

Um - 7 \ ._i;;_‘r_‘ = I‘(eco' ) o | (75)

'Um_-
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These values are somewhat different from the data, and are.anofher
reflection of our inadequate method of initialization. These 1atlos do
vary, however, for different shaped obstacles. Our wake may be more
.représentative of the wake of a sphere than a slender body.

To summarize, initially the tlme development of the flow does not .
. correspond to the self—51m11ar1ty theory and the data due to 1nadequate
initialization, especially of the Reymoids stress. After the flow has
adjusted, however, and the Reynqlds stresses-have built up, these '
quantiﬁies develop in time aﬁ approximately the proper self-similar

rate, over a distance of about 100 to 270 diameters (or a time of

: . _ . w R
' 23'"11 In the meantime the ratios Em~ and ;E- change from their
m m

initial values, so that our calculations may be more representative of

the wake of a different body than that used by Pac and Lin.

3.3 Spatial Behavior

- In this sectlon we present the radial distributién of various
statlstlcal quantltles for different decay times.  Self-similarity
theory predicts that if the velocitles are normalized by Um (or um) )
and the lengths are scaled by r (ox r )} , then the radial distribu-

tion of a particular statlstlcal quantlty,say %*-U(——Q » should collapse
m n
- for different times.  The ability of this scaling to collapse the data,

and the degree to which the resulting profiles agree with corresponding
profiles from iaboratory data is a good check of the capability of the
numerical simulatioms to correctly model the physical processes occurring
in the wake.
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To. obtain'the appropriate veloecity and length scales, we assume
that the flow is self-similar, and subgectlvely estimate best fltS to

the data glven in Figures 20 and 21. ~ The results are
/58('“)‘ e

?5-(“) i | c | s LT

1l

N1

S EA NiE R -'*’c:

y | o
.z'.é:(%)-ﬁ B

?%:: ..4(-—-) e e

~ (The notation ( )* indicates a bést estimate of the self-similar decay

A=

law for the numericel.deta.) These expressions are'given,by,the solid
curves in Figures 20 and 21. The_following_data are scaled using these
-'.expressions'to.combute the apprcpriate eceiing quantity at'tﬂe particular
=/D . : :

Flgure 23 g1ves data from. the first realization (R1). for - U*'
versus %;- for the locations x/D = 150, 205, and 260 ; Um decreases

m
by about 30 percent and - I ‘increases by 20 percent over this range.

We see, fllst of - all, that the scallng collapses the data very well,

except near the orlgln, where the statlstlcal scatter is expected to be
~ the greatest. The laboratory resuits tend to fDllDW‘the self—s1mllar o
‘result rather well (Figure 6), although the scatter is fairly large for
-%7'> 1.5 , so that it is difficult to_conclede}that'thegagreeﬁent'ie

% _ LT S .

good in this region. Previous measurements of the wakes of two-dimensional
bodies (see, e. g Townsend, .1976). have consistently showe’that:the AR

'.theory predlcts somewhat larger values than are obselved for E—-> 1.5 .
o .

This 15 usually attributed to decreased turbulent dlffu51on near- the
"weke edge, due to the ‘intermittent nature of the flow there. We see

that the simulation results tend to be sllghtly low for small _%; . This
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is due to the fact that both realizations were taken into account im the
normalization. - Data from the second realization lie slightly above the
theoretidal curve in this same region (Figure 24).  The simulation

resﬁlts also lie below the theoretical curve for > 1.5 . The fact

r“
_that U 1n1t1ally started as an exact fit to the 2im11ar1ty result
may 1nd1cate that the numerlcal simulations have added a realistic
feature.

_ - Figure 24 is a plot of the same quantity at:the game locations for
the second realization (R2). Again, the collapse is fairly good. The

high values for small Ea indicates the data scatter to be expected

i
. _ o - ™ r
from one realization to another. The results for porcy > 0.7 are in good

m
agreement with those from Rl . WE conclude from these results: that the

mean Veloclty behaves in a manner very close to the laboratory data, but
* that there is some scatier in the data near the origin.

T

. . o u - X . : -
Figure 25 is a plot of o varsus ol for the downstream locations

, m m
%D = 150, 205, and 260 for Rl . The dashed line is a rough fit of

the laboratory data of Pao and Lin (1973). The laboratory data curve
has been compressed so that ;E- for the data takes on the same value
' m
- given by equation (75) instead of (74} i.e., 1.66. By plotting all the

data versus -%; » We can compare the simulation resulits with laboratory
il
data, and simultaneously compare u' with U and other variables. The

collapse of tha simulation daté is again fairly good. The scatier in
the data for u' is expected to be significantly larger than that for
U because the sampling error increases monotonically with the ordsr of
the statistical quantity (see, e.g., Kenney, 1954). TFor the choice of
u* and r* glven by equations (77) and  (78) the agreement with the
: laBOLatory ‘data is only falr.: If this data were matched 1ndependent of
R2 , a hetter fit could be obtained.

_ Flgure 26 1s a 51m11ar ‘plot for R2 . Againithexcollapse of the
data is fallly good except near the origin. This reallzatlon agrees

much Better with the 1aboratory data than the flrst reallzat;on. Thls



Flow Research Report No. 135
Melch, 1979

-33-

4

is partiy due to the choice:of u§ and r* - When the data for ﬁ;

m
are superlmposed fot the two realizations, dlstlnct differvences in the
two sets can he noted This gives some idea of the magnltude in the

seatter in the data to be expected in the simulation.

2

Figure 27 is a plot of the normalized Reynolds stress " versus

-E; for ¥/D = 150, 205, and 260 in Rl . The solid curve I;ives the
'predlctlon ‘of the simllarlty theory, equatlon (31), and the hatched
lines gives the date of Pao and Lin (1973). The collapse is fairly good
. congidering the error expected. in computlno the Reynolds stress. ‘Further—
more, the agreement with the laboratory data is reasonable. In Figure 28
we present similar data from R2 . In this reallzetlon, the collapse 15 o
- not ‘quite as good. Also, a p0551b1e trend appears to be in the date,
_With'the peak value increeelng with X/D . Superimposing the two sets’k
of data for the two realmzatlone shows reaeonable agreement between the °

two. ;

Figure 29 is a plot of % versus —p for x/D = 150, 205, and
m .

260 for Rl . The radial flux of is represented by u2W and is an

NJ c“tt

essential part of the dynamics of u (sée equation (38)). The eollapse
Cis reesuneﬁle, exCept near the origin where the scatter in the data is
expected to be greatest. Although we presently do not know of data with

 ‘which to compare ‘the result, we see'*hat 1t has at least the proper

—_—

qualitative behavior; u2 is being dlffused by the turbulence away from

Cits peek (Wthh ‘occurs at about %;w”.l', Figure 25), towards the or;gln

E

fox EEP{ 0.9 , and awey,from.the origin for ;;-5 0.9 . Figure 30

. gives the same data for "R2 . -Hefe'the.celiepse is.not:ﬁeeriy estgoo&;e
.Appatently thie qcentity uas not fully adjusted in this range. Some of
the scatter in the 1esults could also be due to poor. stetlstlcs.
The 1nterm1ttancy of the weke tulbulence is reflected in the fldt—
ness factor of the velocity field. Townsend (1949) has shoWn for wakes,
and Wygnanski and Fiedler (1970) for mixing layers, that the velocity
kurteeie ie.ap?toximetely eQual to the inverse of the intermittancj

‘factor. Figure 31 is a plot of the radial distribution of the velocity -
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kurtosis for RI and the same. three dovmstream locations. At the start
of the calculatlon, the proflle is flat (Table 1), due to the method of
initialization, 1nd1cat1ng there is no 1nterm1ttancy in the f£low. As
the Wake'develops, liowever, the Outeritegions of the wake become highly
contorted (e.g., Figures 8 to 19), and the velocity becomes highly
1nterm1ttant, Whlch is reflected in the sharp 1ncrease in the kuortosis -~
at the wake edge. “The dashed line 1s a rough flt of the data of Pao and
Iin: (1973); and the agreement between the simulations and laboratory
data is reasonable. '

Figure 32 is the sametplot for_ R2 . While the collapse of the
data 15 good the agreement with the laboratory data and with RI is
poor, especially in the locations of the peak value. Apparently in R2
. the Wake edge is neither as contorted nor as:far out as in Rl . Thie:
' agaln 1s an 1nd1catlon of the dev1atlons to expect from one realization
to another. To compute the kurt051s accurately, we may need to compute
several realizations and use ensemble averaging.

The velocity skewness is also an indicator of the_intermittancy of
. the flow field. Figure 33 is a plot for the velocity skewness for RI
lfor the same three downstream locations. Again the collapse is fairly
good, and the wake edge is clearly dlstlngulshable through the large
skewness values. The agreement with the laboratory data is reasonably
good' .Figure 34 gives the same plot for RZ . The results are not in
good agreement Wlth either the laboratory data or with the skewness data o
from Rl . This 1s another indication that the wake edges for the two
realizations are in different radlal locatlons. _ o

S To! eummarlze the radial plots, in general the collapse of the data
" using the self—sxmllarlty scaling is very good. Also the agreement with

1aboratory data 1s generally good, except for two cases. The first is

.
the turbulence 1nten51ty Cub) proflle, where the ratio ;2- has changed
™
_from its 1n1t1al value, equatlons (74) and (75). However, whem u' is
‘ F,
plotted against %;—5 0¥, equlvalently, when the ratio of ;E~ given by
T m

(75) is used to plot the laboratory'data, the - agreement is then falrly
good. Secondly, some significant differences were observed in the

‘skewness and kurtosis for the second realizatiom.
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4. = Other Methods of Initialization

It is obvious from the simulation resulis presenited that our method
of 1n1t1allzat10n, although properly treetlng many 1mportant turbulence
‘properties, Was 1nedequete to ploperly initialize all of the sigai flcant
_turbulence quantities in the wake. This inadequacy was particulariy
»exhibited-in the‘initial Rejnolds stresses, higher order flux terms, and
skewnesses and kurtoses. ‘

‘We have begun a prellmnnary exploratlon of Wways to improve our
1n1t1almzatlon.procedure. Although we have not yet had time to reach
definite conclusions on better ways tO'iuitieiize5tﬁe'turbulence"n the
-wake, we thought it would still be useful to discuss the results of
these efforts. For the successful utilization of direct numeriesl
simulations of turbulence, the difficulties 1nhereut in ptoperly_;nif
"-tielizing.tutbuleut;sheat Flows ﬁey*be=as'important to-tesolve’as'the' '
questions erisingifrom.subgrid—scale modeling.

We' thlnk.that the key 1mprovements to be made are in the ‘proper
1n1t1a11zat10n of the Reynolds stresses and hlgher order flux terms,
such as the turbulent flux of turbulent energy. As mentioned in the
:-last-section,3thesewtexms-teﬁreseut-the.diffusionfof'the"ueau’velooity
'by'the turbulence, the generation of turbulent eueroy, and the self- |

dlfqulOn of the turbulence. Improper 1n1t1allzatlon,ellmlnetes the

' p0551b111ty of an exact’ 1n1t1allzatlon of the wake. A_secondary 1mprove—'

ment of 1mportance is the correct gpecification of the structure of the

”flow at the'wake edge, Whlch is reflected in the skewnesses and kurtoses. -

A p0551b1e method to treat these problems is the extension of a
teohnlque used by Rogello (1977) and Mehta (1978) in computlug homoge~
Hneous turbulence decay. “As our calculatlons proceed in tlme, the Rey~
_nolds'stresses and higher moments do build up to approximately their
proper values._ Durlng thlS bulldup perlod however, the mean velocity

has diffused outward and the turbulence has decayed somewhat s0 that

o all of ‘the proper condltlons are not attalned ‘The 1dea 1s to relnl—

tialize the velocity field. by retalnlng the phase’ relatlonshlp in each

-‘_Fourler mode that has been attained when the stresses have built up, but'

 re1mpos1ng the,lnltlal Fourier amplltude. Slnce the 1nformation abOut

'J'the Reynolds stresses and hlgher movements is malnly eontalned in the
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phase relationships of the modes, it was hoped that the initial Reynolds
stress behavior would be.desired. ‘Because the energy levels were read-
justed to their initial values, it was also hoped that the initial
profiles of turbulence intensity would again take on their proper values.
| We imﬁlémented this techniqﬁe on the computer. Two free parameters
at our dlsposal were the number of tlme steps between reimposing the
_;nltlal Fqurler-amplltudes (N 3 5, and ‘the number of tlmes we re1mpose
the initial amplitudes (W) . It takes aboutr 100 time steps for the
Reynolds stress to attaln its proper value. We experimented with the
" following values of NT and W : (N, i) ) (1, 120), (i, 80), (2, 40},
(5, 20), (10, 10). In general, we found that the best overall results
were obtained for cases with smaller N . We will pfesent the results
foi. N, N ) = (2, 40) which is representative of the better results,
but which also p01nts out some of the dlfflcultles with the method.

Flaure 35 contalue ‘a plot of fhe 1n1t1&1 profile of the longi-
tudinal turbulent intensity u' before the field was reinitialized.
Figure 36 contains a plot of the corresponding Réynolds stress uwr .
The turbﬁlent fiéld for this realization was reinitialized using values
of N=2 and NT = 40. The reiniti;lized quantities are also shown in
Figures 35 and 36. The new Reynolds stress has developed to the proper
form, although its peak value is somewhat larger tham the corresponding
valie in the laboratory data. The difference is typical of the statisti-
cal fluctuations that.we have seen in uw in our simulations (Figures 27
and 28). The new turbulence intensity profile has changed substantially
from the initial profile. Some of the energy ﬁear the axis has moved to
outside the wake. Apparently, although the proper phase information for
the Reynolds'stress has been retained, the phase information necessary
to maintain the pfopér profilE-for ‘ui has been degraded. Because of
this behavior, we find this method as presently used unacceptable, and
are working on its improvement. o
' We have-éiso experimented with several other methods. The first
is a shooting method, which takes into account the fact that, although

+the conditions nltimately attained are not exactly as desired (e.g.,
O ]

U‘ = 0.47 instead of O. 32), they are close. Thus it ‘may be possible to
i

-adjust the 1n1t1al fleld to shoot to Lhe proper values for-these quantities.
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- We have implemented this shooting mefhodian&.arevpreSEﬁtly téSting iﬁ.
Another method, suggested by Moin (1978), involves the use of the eigen-
"fﬁnctions of the mbSt.unstable_modes for the wake stability problem. The
idea is that'the-fldw-structure ﬁhich suppofté the Reynaids stresses ﬁay
be similar to these unstable modes. Their Reynolds stress can be easiiy
_computed, and the eigenfunctions_added_intq burﬁinitial field to pro&uce

ﬁhé propef étrésééé{_ We.havé yet to implement this methqd, _
B Sévéral'other.ideas are under éonéideﬁaﬁion. WE are stiil in the
process of studying the applicability of’thése'#ariOus methods, with the

ultimate goal of the proper initialization of the turbulence field.
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5.  Conclusions

From the numerlcal sxmulatlon data presented in. the preceeding

"~ section, we can draw a number of conclusions about the capabllltles o£

‘the direct numerlcal simulations of turbulence. In general the agree- .

ment of the numerical simulation results with the laboratory data and
the self—similarity theory was good. In terms of the temporal behavior

of the simulated flow over a span.of_tima_pf about _15%%,

(i) the maximum mean and turbulent velocmtles decayed at

approximately the proper rate ((x/D 2/3

{(ii) both the mean and turbulent wake radli increased at
o . approximately Lhe proper rate ((x/D) 1/3),
(iid : the total integrated mean and turbulent enexgies decayed

at approximately the proper rate - ((x/D 2/3)

Furthermore, over this game interval of time, using self-similarity
scaling, we were able to obtain reasonably good collapse, and also

reasonable agreement with laboratory data, for

(i) the mean velocity prpfile

(ii) the turbulgnt'intensity profile

(iid) the Reynolds gtress.profile

(iv) | the‘profila for :E;- (no laboratory data was available),

and

v) the profiles for skewness and kurtosis.
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In addition, several 1eallstlc features, which were not in our initial-
condltlons, subsequently appeared later 1n time in the numerical simula-

tions. These include
(d) the development and maintenance of the Reynolds stress,

(ii) ' the development and maintenance of higher oider correla-

i

. : 2 .
tions, e.g., v W ;

C(iid) the development of intermittency near the wake e&ge,
which qualitatively shows up as bulges in thé walke, and
is reflected by the development of the skewness and

kurtosis to reasonable values.

It also appeared that a subgrid-scale model is not a primary necessity
for computing thlS free shear flow, although a subgrld-scale model may -
prove to he necessary in the future when more careful comparisons W1Lh
data, especially for the decay of turbulent energy, are made.

- “The comparisons were hampered By two iha&éqﬁauieé'ih'the present
calculations. The first was the initialization process. The turbulent
field, especially in terms of the Reynolds stresses, was not adequately
initiaiiZed,'whiﬁh'limited the conclusions that we could draw concerning
numerical simulations. Secondly, there was a significant amount of
scatter_in_our.data;_bqth.in.an.individual'realization,'and-frém one
réalizétion to another,

leen these llmlLaLlons, the present work greatly increases our -
confldence in the capabilities of direct numerical simulations to
accurately treat the physics of turbulent shear flows. The turbulence
in the ax1symmetr1c wake is govemned by a complex: balance among the '
E followlng mechanlsms. generation of energy from the mean flow, diffu~
sion of turbulence radlally by the. turbulence, 1ntercomponent tlansfer
_of energy, and d1531pat10n. All of these plocesses ‘have to he Lepre— '
sented faithfully for the vesulting statistics to possess the proper

behavior. (T should be noted that there aye no adjustable constants din P
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our simulations.) Thus we feel that the outlock is good for using direct

numErical'simulations to'prédict statistical results which depend on the

large-scale featuues of free turbulent shear flows.

From our work, the emphasis for future research work in thls fleld

has become more clear. The following are topics Whlgh,we think should

" be addressed in the near future:

CoEd).

(i)

The method of initialization should be improved to

- inelude the pxoper?iuitiaiizatiouﬁof.théfREyuold stress

and higher order moments. Until this is- done close

comparlsons with data will be dlfflcult.v (The initializa—u

" tiom of the turbulent veloclty field for a statlstlcally

time dependent problem.ls analogous to the speclflcatlon

7._of turbulent 1nflow'boundary conditions for spatlally

nonhomogeneous problems.)

‘The present simulations should be examined in more depth

‘to look, for»éxamplégfatfthE»Behavior of speutra‘aud"

correlatlons.b At the same time, the effects of a. subgrid- -

'scale model should be examlned.

'fBéoausu*of the limitations in statistics obtaiued from’

..these 32 x 32 x 33 grid calculations, it is probably

necessary to use a 64 x 64 X 65 grld and/or compute- a ““f

numbex of reallzatmons 1n order to obtamn statlstlcs

-”Whlch‘Wlll adequately test the method

It'is'imPOrtant'tO'developbtechniques forAspecifying"

proper 1nflow and outflow boundary chdlLanS to enable

'the treatment of more general ploblems.



Flow Research Report No. 135
 Mazxch, 1979 '

41~

References

" Batchelor, G;:{'K; :(19"67)_ Fluid Dynamicé-, Cambridge U. Press = . .

Bukreev, V. L., 0. F. Vasiiev, and Yu. M. Lytkin (1972) Proc. Acad.
Scm. USSR, Vo.. 207, No. 4, pp 805 807.

-Carmody, T. (1964) ASME J Basmc Engln., Vol. 86, 71 - 869 882.

‘ Chevray,-R. (1968) ASME J. Basic Engin., Vol. 90, PP- 275—284.

Cooper, R. D. and M, Latzky (1955) The Davld Taylor Model Basin ReporL
No. 963, October.

Deardorﬁf J._W; (1970) J Fluid Mech. Vol 41 Pt. 2, PP 453 480,

Deardorff J. W. (1974) Bound Layexr Met s Vol 7, pp 81-106.

Feller, W (1957) Probablllty Theory, Vul I Wiley.

' Ferzlgex J. H., V B. Melita, and W. C Reyuolds (1977) In 8 zgg
“Takh. Shear Flows, Peon, St. U., pp. 1l4. 31—14 40,

Fox, D. G., and S. A. Orszag-(lQJS) J. Comp.‘Phys., Vol.—ll, pp. 612—
S 619.

Grutzbach, G;; and.V. Schumann.(lﬁ??l In Symp.'oﬁ Turb. Shear Fiows,
Penn. St. U., pp. 14.11-14.20.

'.Kenney, J. F. (1954) Mathematics of Statistics, Pt. IT, Van Nostrom.

Leonard, A. (L974) Adv. in Geophys., Vol. 18A, p. 237.

- Lilly, D. K. (1967) In Proe: IBM Sci: Coup. Symp. on Envigon. Sci., TBM
: I‘orm No.. 320-1951, p.. 195. : . . .

~.ane, M. D., and D. C. Leslle (1977) In Svmp. on_ Turb Shear rlows,'v
Penn 8t. UL, pp. 14, 1—14 10, SR

Mansour, N. N., P. Mbln, W. GC. Reynolds, and J. H. rer21ger (1977) In
o Symp. on Turh Shear Flows, Penn st. U., pp. 14. 21 14 30. :

MtMlllan 0. J., and J. H. Terz1ge1 (1978) Dlrect Testlng of Subgr1d~
Scale Models, NEAR TR 1974 November.

' Mahta, V. B. (19?8) Pllvate Communlcatlon
M01n, Ef (1978) Prlvate Communlcatlon
Mbln, P., W. C Reynolds, and J H. Terzlger (1978) “Large Eddy Slmulatlon-

‘of Incompressible Turbulent Channel Flow," Stanford Thermosclences
_Div. Report No. TF-12, May.



Tlow Research Report No. 135
March, 1979 :

T
“.Orszag, S. A. (1974) "Numeriecal Simuiatibﬁs of Turbulent Flows," Flow
Research Report No. 52, November.'

Orszag, 8. A, and G. S. Patterson, Jr. {1972) Iﬁ'Statistiéal.MdeIS.and
Turbulence (ed. M. Rosenblatt and C. Var Atta), p. 127, Springer.

Orszag, S. 'a., and Y ~H. Pao (1974) Adv. in”Geophys . Vol. 184, pp. 225-236. .

'OrSasg, S. A., and M. Israell (1974) Apn. Rev. Fluid Mech., Yol. 6,
pp. 281-318.

Pao, Y. H., and J.eT Lin (1974) ‘Bull. Am. Phgs. Soc., 19, PD- 1164—1165

'Rngallo, R. '8, (1978) Private Communlcatlon.

" Roshko,. A. (1975) AAIA AATA J., v01. 14, No. 10, pp. 1349—1357

, Smagorinsky, S, Manabe and J. L. Holloway (1975) Mon, Weath Rev.,
Vol. 93, p. ?27 : L S :

“Tennekes, H., and J. L. Lumley (19?2) A Tirst Course in Turbulence, MIT.

-_Townsend A, A. (1949) Proc. Roy..Soc 5 Vbl.v197 Sex. A;, P -124.

Townsend A A (19?6) The :Structure of Turbulent Shear Plow, Camblldge
U. Press. _ . :

'-“Uheroi;‘mils;;‘ana‘r' Fféymuth'(1970)'phyé. Fl;,'Vol. 13, pp. 2205-2210,

- Wygnanski, L., and H. E rladlem (1970) J. rlu1d Mech., Vol. 41, Pt, 2,
pp. 327“361 L ;



) _43"‘

_able 1. Initial Data — Realization 1.

e e

Flow Research Rep‘drt No, 135
March, 1979 ‘

N

- n o o z/r _ :
- "Cylindrical - Humber of - = (rmr= u' w! v' uw W vw
Annulus- Points NEN 0.82815) 1 (axdal) (radial) | (angular) 10D | e (x1072)
1 32 0.1768 . 0.1185 1.0000 0.3588 .| 0. . 0. 0. ~ 0. 0.
2. . 256 0.0625 0.3556 0.9363 0.3401. - 0.3714 0.4055 0.8207 0.6609 0.6170
3 512 0.0442 0.5927 D.7866 ). 0.3370 0.3688 '0.4054 - 0.7777 -0.%200 0.1491
4 . 640 0.0395 0.8208 0,6178 '0.3254 0.3624 0.3619 -0.1412 | -0.4814 0.5297
5 . 768 0.0361 1.0669 "0.4537 | 0.3037 |  0.3525 0:3308 - 0.0781 . | - -0.0756 0.4250
6 1280 0.0280 1.3040 0.2884 . 0.2842 0.3113 0.2956 0.1706 0.0645 -0.0712
7 1152 0.0295. | = 1.5411 0.1717. | 0.2748 0.2636 0.257¢ 0.0835 0.1191 -0.0121
8 1536 0.0255 11  1.7782 0.0947 70,2046 - | 0.2146 0.2086 0.0322 - 0.0426 0.0301
g 1792 0.0236 | - 2.0153 0.0462 - 0.1683 0.1656 0.1719 L 0.0124 . |  -0.0227 0.0004
10 1792 0.0236 . 2.2524 0.0212 (- 0.1402 0.1279 . 0;1386 | ~0.0135 . -0.0226 -0.0145
i 2176 0.0214 . 2.4895 0.0090 | .0.1035 0.0963 0.1030. | -0.0020 ~0.0104 0.0119
12 . 2048 0.0221 - 2.7266 0.0036 10,0761 0.0728 0.0783 - -0.0025 | ' o0.0042 0.0036
13 - 2560 0.0198 - 2.9637 0.0013 - 0.0528 0.0529 0.0612 =0.0014 0.0028 ~-0.0006
14 2944 0.0184 |  3.2008 0.0004 0.0369 0.0368 0.0450 ©.-0.0004 - |  ©0.0003 -0.0005
15 - 2816 0.D188 - 3.4379 0.0001 | 0.0285 0.0260 0.0352 - =0.0001 -{ ©0.0000 10,0000
0.0000° | ~0.0218 0.0000 - 0.0000

=
o

_3072

- 0.0180

3.6750

0.0175

.0,D252

0.0000
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Table I, (Cont.) .

i — V3 (QE 3 (E!)é

RS ) o _B_g) ex/ 0x

iy e i7R =z o - 75/2 72

(X107%) s 7 T Y (au) (au)

. u u — —

: ’ . % ox
0. ~0,4093 2.403 0.8768 . 0.3832 -0.6699 3.671
0.3364 -0.3380 2.889 1.3641 7 0.2012 -0.1833 3.065
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Figure 22. Decay of Integrated Mean and Turbulent Energies.
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Normalized Profile of Axial Mean Velocity for Realization 1.
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Figure 25.

Normalized Profile of Axial Turbulent Intensity for Realization 1.

.._69—

6L6T ‘yoaey

*ON 3x0day UYDie2sS3ay MOTH

SET



%k
u/um

— — — Rough Curve Fit of Data

of Pao and Lin (1973)

:[ Estimate of Scatter in
- . }b\ﬂcig L Laboratory Data
0
Lo oA o x/D T U I
A = A A 150 11.6 0.270
08k A O 205 17.4 0.218
O 260 23.2 0.185
o}
Ziﬂ \
0.6 & &
\
04} él\
A
2\
A\
0.2 AN
g P
YA A
I l L | 1 J
%0 1 2 3
rirfe
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Figure 29. Normalized Profile of Radial Flux of Axial Turbulent Energy for Realization 1.
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Figure 30. Normalized Profile of Radial Flux of Axial Turbulent Energy for Realization 2.
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Figure 31. Profile of Velocity Kurtosis for Realization 1.
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Figure 32. Profile of Velocity Kurtosis for Realization 2.
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Figure 23. Profile of Velocity Skewness for Realization 1.
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Figure 34. Profile of Velocity Skewness for Realization 2.
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