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ABSTRACT

This report deals with progress made on the Grant NSG-3048 during the
calendar year beginning March 1, 1978 and ending February 28, 1979. The
NASA Technical Officer for this period was Dr. Kurt Seldner of Lewis Re-
search Center. The directors of the research at the Universitf of Notre
Dame were Dr. Michael K. Sain, for the duration of the year and Dr. R.

Jeffrey Leake, for the initial six month period.

General goals of the research have been classified in two categories.
The first category involves the use of modern multivariable frequency do~
main methods for control of engine models in the neighborhood of a set-
point. The second category involves the use of nonlineaxr modelling and
optimization techniques for control of engine models over a more extensive

part of the flight envelope.

-—

Progress in the first category has included the extension of CARDIAD
(spmplex Acceptability Region for DIAgonal Dominance) methods developed
with the help of the grant to the case of engine models with four inputs
and four outputs. A suitable bounding procedure for the dominance function
has been determined. The bound is quadratic in the compensatof elements,
and can be helpful in the general case of multiple inputs and outputs even
when the Hessian matrix is indefinite. In addition, improvements have
been made on the 370 CARDIAD software; and a beginning in the process of
developing interactive CARDIAD software on a recently acquired PDP-11/60
has been made. These steps are expected to enhance grant impact in the

—

area of noninteractive engine control design.
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‘a: | Progress in the second category has had its principal focus on auto-
métic nonlinear model generation. The approach consists of using the gen-

3; eral form '

1‘ - % = ACx,u) (x - g(u)

) iﬁ which steady state measurements of X, A, and B in a linearized model
3: afe used to determine values of A(x,u), g(u), and 23g(u)/du at setpoints.
T A Hermite polynomial interpolation scheme has been employed to determine
B: global extensions of A(x,u) and g(u). Simulations of these models have
g& produced satisfactory results where compared with the NASA DYNGEN digital

z engine deck. Studies have been begun to apply time-optimal control compu-
tational techniques to the new models and to compare these results with

L those of prior studies under this support.
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I. GENERAL BACKGROUND

The following sections describe researches under Grant NSG-3048 during

the calendar year March 1, 1978 - February 28, 1979. 1In this section, we

make a number of preliminary and general remarks and lay some of the ground-

work for those sections.

Initiation of Grant NSG-3048 in March 1975 was timed with develop-
ments in the engine industry, which was beginning to experience some lim-
itations in the application of classical hydromechanical control technique
as the primary base technology for modern engines with ever increasing
sophistication. At the same time, milestone developments in digital
hardware began to open realistic pogsibilities for onboard computation
to an extent not heretofore possible. This confluence of events led di-
rectly to the concept of increasing the role of electronics in engine
control. In turn, the availability of digital electronics itself created
a wide variety of opportunity for application of new control design phil-
osophy and technique. Among the earliest of such studies is the F100
Multivariable Control Synthesis Program [1] sponsored by the National
Aeronautics and Space Administration, Lewis Research Center and the Air
Force Aero-Propulsion Laboratory, Wright-Patterson Air Force 3ase. This

program has recently completed the test phase.

The advent of digital technology on the engine scene offers not
only the opportunity to control more engine variables but also the pos-
sibility of integrating engine and airframe control. Studies of this

~—.

type have also begun.
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Primary tools in the F100 Multivariable.Control Synthesis Program
were linear quadratic regulator (LQR) theory in the linear case. For the

global control, nonlinear optimal methods were not directly applied.

The purpose of Grant NSG-3048 has been to evaluate alternatives to
LQR in the linear case and to examine nonlinear modelling and optimization

approaches for global control.

Context for the studies is set by the DYNGEN digital simulator [2].
Ba#ed upon earlier computer codes GENENG [3] and GENENG II [4], DYNGEN
has the combined capabilities of [3] and [4], for calculating steady-
stéte performance, together with the further capability for calculating
transient performance. DYNGEN uses a modified Euler method to solve the
differential equations which model the dynamics of the engine. This mod-

ified Euler method permits the user to specify large time steps, for ex-

' ample a tenth of a second; and this can result in conézaerable savings of

execution time. On the other hand, convergence problems are sometimes

encountered with DYNGEN when small time steps are used.

The DYNGEN digital simulation is particularized to a given situation
by a process of loading data for the various maps associated with a given
engine. The maps for the Grant NSG-3048 have been provided by engineering
personnel at Lewis Research Center. These maps correspond to a paper
epgine, which is not closely identified with any current engine. But
the data do correspond in a broad, general sense to realistic two spooll
turbofan engines. The simulation providgs for two essential controls,

main burner fuel flow and jet exhaust area. Portions of the envelope

which can be used for linear or nonlinear experimentation are limited by




the convergence capabilities of the available engine data on DYNGEN.

I‘ . As mentioned in the Final Report for NASA Grant NSG-3048, Supplement
fl No. 1, a promising new technique for designing dynamical compensation be-

gan to develop in the Fall of 1976. This methodology, built upon what are

currently being called CARDIAD plots, was only being tentatively consid-

ered in October, 1976 when the continuation proposal for NASA Grant NSG-

3048, Supplement No. 2, was being written. Based upon favorable prelim-

inary reaction by personnel from NASA Lewis Research Center, a decision

was made to investigate further the use of CARDIAD plots as a design aid

for turbofan engine control in the frequency domain. In essence, this

study proved to be successful enough that it really dominated the re-

g maining time period of Supplement No. 1 and has continued through seccessive

study periods.

1 " A great deal of the power of the CARDIAD plot arises from its sim-
g . plicity. For each frequency, a circle is constructed on a planar plot.
ﬁata for the center and radius of this circle is obtained from the com-

plex transfer function matrix of the plant. The circle may be solid or

dashed. If solid, the inside of the circle defines the acceptaSIe com-
ii plex region for the value of a frequency dependent compensator element
in order to achieve dominance. If dashed, the outside of the circle de-
fines the acceptable region. As the frequency follows a standard Nyquist
pattern, these circles result in a CARDIAD plot. (Complex Acceptability
Region for DIAgonal Dominance). This plot has been shown to speak con-

structively to the issue of compensator choice to reduce interaction. -

Examples of the use of CARDIAD plots utilizing a two-input, five-
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étate, two-output engine model in which the inputs are fuel flow and noz-
zle area, the states are compressor speed, fan speed, burner exit pres-

sure, after-burner exit pressure, and high turbine inlet energy, and the f
outputs are thrust and high tutbine inlet temperature, may be found in

the Final Report for Grant NSG-3048, Supplement No. 2.

Though linear multivariable frequency domain techniques are very prac-
tical as a part of an overall engine design, there is always the task of
integrating them into an overall controller which is nonlinear and which
operates over a substantial flight envelope. One approach to this need
hﬁs been to design a type of model following control system in which a
nonlinear model generates trajectories which can then be tracked by the
aétual engine. Linear multivariable controllers are often helpfui for

lécal adjustments to this tracking process. It follows that the model

. which generates the trajectories to be tracked is of major importance in

any design.

Some desirable features of such models are accurate steady-state be-
havior and acceptable dynamical behavior. After consideration of several
modelling ideas over the history of this study, Dr. R.J. Leake ;nd J.G.
Comiskey have suggested a form

% = A(x,u) (x - g(u))
whére g(u) can be developed to yield steady-state accuracy and A(x,u)
caﬁ be determined for dynamical purposes. Moreover, the process of
gafhering data to identify these functions is well suited to digital eng-

ine simulations. . -
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II. SUMMARY OF RESEARCH RESULTS

This section provides a brief technical summary of the research re-

sults associated with the calendar year ending February 28, 1979. Further

information on the ideas discussed here may be found in Sections III and

IV, and in their referenced appendices.

1.

2.

3.

The CARDIAD design method was applied to a turbofan engine model having
foﬁr inputs, four outputs, and six states. This was a major test for

a éraphical, interactive method, inasmuch as the engine model has only
two major inputs, with the other»inpufs intended for a less major role.

The application was successful.

A suitable quadratic bound for the diagonal dominance function has been
selected. This should make it possible to study the CARDIAD method in

a general n-input, n-output case.

-—

It has been found that the bound above can be governed in engine mod-

els by a Hessian matrix which is:indefinite. A method to design in

that case has been proposed.

Software for CARDIAD design on the 370 computer has been iméroved and
modularized. The CARDIAD method is being prepared for use e¢n a PDP-11/60
co@puter with graphics interface. This is expected to reduce design
time by orders of magnitude. Previous CARDIAD plots came by Calcomp

on the 370 machine.

The nonlinear modélling class
x = A(x,u) (x - g(u))

described in the previous Annual Technical Report has been applied to

s, 5 o e
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6.

7.

8.

the DYNGEN digital simulator. Responses of the models agree well with

those of the digital deck.

A Hermite interpolation scheme has been proposed to extend this class
of models to a region of finite extent on the available DYNGEN envelope.
Application of the method indicates acceptable results, butlonly with-

in the region of the original data.

A program of testing these models under time-optimal feedback control

and comparing their performance with that of the DYNGEN deck has been

begun.

Numerous technical improvements have been made in the mathematical pro-
gramming for the time-optimal problem. These will be repcrted in the

final version of an M.S. Thesis by J.G. Comiskey.

-
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ITI. LOCAL MULTIVARIABLE FREQUENCY DOMAIN METHODS

In accordance with discussions carried out with engineering personnel
at Lewis Research Center, a decision was made in the latter part of summer,
1978, to begin a gradual phasing out of grant researches having to do with
multivariable frequency domain methods. The motivation for thig decision
grew out of the feeling that grant activities had provided already a sub-
#tantial stimulus to work in this area. See, for example, Grant NSG-3048
Annual Techniéal Reports for the last three years. Correspondingly, an in-
crease of emphasis upon nonlinear modelling and control was stated as a

grant goal.

Because of the promise afforded by the CARDIAD method to achieve dia-
gonal dominance in turbofan engine models, it was also decided to place

the remaining frequency domain emphasis in the grant upon this method.

-—

Primary efforts have been those of R.M. Schafer, under the direction
of Dr. M.K. Sain. The report on this work is divided into two six-month

pértions.

1. First Six Months

During the six-month period beginning on March 1, 1978, the CAKDIAD
method for design to achieve diagonal dominance has been advanced to the
case in which plants have four inputs and four outputs. The following

paragraphs review this progress and illustrate it with design examples.

The figures for this discussion are many in numbers, and ‘have been

included as Appendix B. -

Recall that in the CARDIAD plot approach, column dominance may be
aéhieved by using only precompensation. The general form of this precom-

pensator, K(s) 1s given by
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1 kjp(e)  kya(s)  ky(s)
| k21(s) 1 k23(s) kZG(S)
K(s) = .
k4, (8) k32(s) 1 k34(s)
—-k41(s) k42(s) k43(s) 1 N

An exception to this general form is the use of a K matrix to interchange
columns of the system to facilitate achieving dominance. This procedure

1s'explicated in the first design example.

Let G(s) be the transfer function matrix of the ﬁncompensated sys-—
tem. With the above form of K(s), dominance in each column of the com—
éensated system, Q(s) = G(s) K(s), is a function of the off-diagonal en-
tries in the corresponding column of K(s). ﬁence, the goal is to design
the off-diagonal entries of a column of K(s) in such a way that Q(s) is

—

" dominant in that column.

To choose the off-diagonal entries, the system is evaluated over a
range of frequencies. At each frequency, the off-diagonal entries in each

column of the compensator K(s) are complex numbers; and a sufficient

s=jw
condition for dominance can be expressed as an inequality. If x is de-
fined as a vector of the real and imaginary parts of the off-diagonal

entries in a column, then that column of the system will be dominant at

the frequency of evaluation if
f(%) >0,

where f(&) is a function of the system evaluated at a frequency.

-

Two approaches are used to maximize f(ﬁ) and achieve dominance. The

first approach is to draw the CARDIAD plots for each off-diagonal entry
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in a column under tha assumption that the other off-diagona; entries in
that column of K(s) are zero. This is called the standard or Type 1
analysis and 1s a partial gradient analysis of f(ﬁ). Implicit in this
type analysis is the fact that it is being attempted to achieve dom-
inance using only one off-diagonal entry in each column. When dominance
caﬁnot be achieved using Type 1 analysis, a full gradient or Type 2
anglysis is performed on f(ﬁ). In Type 2 aﬁalysis, all off-diagonal

entries are used to achieve dominance in the columm.
'

In each type of analysis, the CARDIAD plots describe the choice of
off-diagonal entries that will achieve dominance. Before proceeding with
the design examples, a review of the features of CARDIAD plots is in

order.

Consider first the Type 1 analysis. The extrema found in the CARDIAD

—

. plot analysis are plotted in the complex plane using one of three different

symbols, two of which have circles associated with them. These are a
'+' with a solid circle around it and an 'x' with a dashed circle around
it. The former case occurs when a maximum is found and is such that
f(ﬁ)'§=¥max > 0. The solid circle then encloses the region where the
choice of any complex value inside the circle will achieve dominance at
the frequency associated with that circle. Similarly, the 'x' and the
dashed circle are drawn when the acceptable region lies outside the circle.
j(S)

which, at each frequency, is inside the circle if it 1is solid, or outside

Hence, in the Type 1 analysis, choosing an off-diagonal entry ki

the circle if it is dashed, will achieve dominance. In the simplest case,

. there is a point on the real line which satisfies the above condition,

and dominance can be achieved in the column with constant compensation.




‘-‘ g 5 »-w” N'l‘

e B B T B T

hi-hié

o —

B e s dnes e A e e e e I e o

12

It is not always possible to achieve dominance using only one off-
diagonal entry in a column. At frequencies at which this occurs, a 'A'
is plotted. The 'A' indicates the best choice of a compensator at a
given frequency, but the one entry alone will not be sufficient to make

f(*) > 0.

The occurrence of this 'A' symbol in Type 1 analysis plots will have
one of 2 effects. If, for instance, some of the plots for a column of
the system coétain triangles, and others do not, dominance can be achieved
by choosing an entry to fit one of the plots without triangles and let-
ting the other entries remain zero. If, however, all the plots for a
given column contain some triangles, no one entry will be sufficient to

achieve dominance; and Type 2 analysis must be used.

In the Type 2 analysis, the type of the center and circle drawn is

" decided in the same way as in Type 1 analysis, that is, under the assump-

tion that the other off-diagonal entries are zero. The reason the grad-
ient values are not used in this determination is to avoid misleading the
deéigner. If the gradient values were used, the region indicated by a
solid circle in one plot would only be valid of the centers of the other
plots for that column were fit exactly. Hence, when using Type 2 aualysis,
the strategy is to fit the compensators to all the plots and then use

Type 1 analysis to check for dominance.

Notice carefully that, although the type (+,x,A) of the center and
the type (solid, dashed) of the circle are determined by Type 1 analysis,

the location of the center is determined by full gradient (Type 2) anélysis.

We now turn to the discussion of some design examples.

B

it

RTINS
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The model used for the design examples was taken from a paper by
. Peczkowski and Sain[6] . A state feedback model is used with inputé

WFMB, A,, CIVV, RCVV; states Nl’ N The states fed

h|

back are Nl’ N,, P7: Tk.Shi and T'4.510'

using CARDIAD plot analysis with two different approaches.

2* P70 T4 5n1° T4.510°

This model was made dominant

In the first approach, the first step in the design procedure was

to switch the first and third columns by choosing as a first compensator

— -
0 0 1 0
0 1 0 0
K= : .
1 0 0 0
0 0 0 1

While this choice happens to make the first column dominant, it was chosen
to facilitate achieving dominance in the third and fourth columns. Re-
gardless of what column switch is used, dominance is easily achieved in

fhe first two columns of most jet engine models since fuel flow and ex-
haust area have a dominant effect on all states and outputs of a jet engine.

The improvement gained by the column switch, as will be seen later, is the

simple shapes of the Type 2 analysis of the third cc¢lumn.

The Type 1 analysis plots for the system with the column switch are

given in Figures 1 -~ 24. Analysis of these plots proceeds as follows.

The first column of the system, Figures 1 -~ 6, is dominant without
further compensation. Tais can be seen from the fact that in each plot,
the origin is included by all solid circles and excluded by all dashed
circles. Thus, the plots indicate that an acceptable choice for any one

off-diagonal entry (assuming the other off-diagonal entries are zero since
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this is Type 1 analysis) is zero. Hence, all further compensation of the

first column will be the first column of the identity matrix.

The second column, Figures 7 - 12, is not dominant; and the (1,2)
aﬁd (3,2) plots each have triangles at high frequencies, indicating that
déminance cannot be achieved by using either one of these entriés by
themselves. However, the (4,2) entry, Figures 11 & 12, contains no tri-
aﬁgles; and therefore dominance can be achieved by judigious selection of

th%s entry.

In the third column, Figures 13 - 18, all the plots contain triangles.
This says that no one entry in the column will achieve dominance, and

Type 2 analysis will be necessary.

The fourth column plots, Figures 19 - 24, also all contain triangles;
but the (2,4) entry has solid or dashed circles at frequencies of w > 40.
Hence, dominance can be achieved at these higher frequencies by designing

for this entry.

The Type 2 analysis plots of column 3 are given in Figures 25 - 30.
Rgcall that when using Type 2 analysis, all three off-diagonal entries
will be designed. The semi-circular shapes of the Type 2 analysis plots
iﬁdicate that designing to fit the shapes will not be difficult. These
easily designed shapes are the reason that the column switch was chosen

as it was.

From this analysis, the following entries in the compensator were de-

signed. -

The (4,2) entry of K(s) was chosen to be
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.97s - 89.1
kyo(s) =~ “G35s+1 -

Referring to Figures 11 and 12, this entry, as a function of frequency,
starts on the real line to the left of the low frequency dashed circles,
and moves clockwise through the complex plane such that at each. frequency,
the value is outside the circle at that frequency if iﬁ is dashed, or in-
side if it is solid. Note that there is no point on the real axis which
is inside all solid circles and outside all dashed circles. Hence, there

is no constant entry which will suffice.

The three off-diagonal entries in the third column were chosen to
be first order and designed to fit the shapes of the triangles of the
Type 2 analysis plots (Figures 25 - 30). The resulting entries are

-.00019s ~ .0084
kia(8) = —_o1137s + 1 °

_ =.00008s - .00049

kyg(s) =~ ii3s + 1 ,
k. () = <00003s + .000137
43 —.0108s & 1 .

Finally, the (2,4) entry was designed to achieve dominance for w > 40.
This entry was designed to start at the w = 0 triangle, center on the
w = 40 solid circle, and remain outside the dashed circles which occur

thereafter. The resulting entry is

-.00806s + .0212
kyy8) =T g7 1 -

The resulting compensator is
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1 -.00019s - .0084

1 0 —.01137s + 1 0

0 1 ~,00008s - .00049 -,00806s + .0212

-,0113s + 1 -,0172s + 1
K1(8) -

.0 0 1 | 0.

0 .97s - 89.1 .00003s + .000137 1

and the overall compensation thus far is K(s) = K Kl(s). This compensator

is lébeled KMP3 on the plots.

The Type 1 analysis plots of the system compensated with K(s) equal
to K Kl(s).are given in Figures 31 - 54. The plots of the first three
columns show that these columns are now dominant at all frequenciés. This

is true since in each CARDIAD plot of the first three columns, the origin

. 1s included by all solid circles and excluded by all dashed circles. The

fourth column is not dominant at all frequencies, but is dominant at fre-
quencies of w > 40 as expected. Thus, further compensation is necessary

only in the fourth column.

Since the Type 1 analysis plots of the fourth column, Figures 49 - 54,
aIl.contain triangles at lower frequencies, Type 2 analysis will be used
to further compensate the column. The Type 2 analysis plots are given in

Figures 55 - 60.

Coﬁsidering the (3,4) entry (Figures 592,60) first, we see that all of
the centers are located at approximately 57.3 on the real axis. Hence,
this value was chosen for the (3,4) entry. 1In a similar spirit, the (1,4)
entry was chosen to be the value at w = 0, namely .9. The next compensator

chosen was
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The overall compensation is now K(s) = K Kl(s) K2. The only column
that is affected by K2 is the fourth column. By considering the relative

magnitudes of the fourth column entries of Kl(s) K,, it was decided that

- O O

0

17

.9
0
'57.3) ' !
1| *

dd 2 catemttn T T

R

;n.approximation could be made. The effect of this approximation is that

the zeros in the (1,4) and (3.4) entries of Kl(s) could be replaced by .9

And 57.3 respectively with the result being approximately the same as the

full product result. Thus, the fourth column of Ki(s) became

3 .9

.00806s + .0212

-.0172s + 1
57.3

1

|

-

The fourth column was replotted with Kl(s) changed as above. The

plots are labeled KMP4 and are shown in Figures 61 - 66.

Analyzing these plots, we see that the (1,4) entry now contains no

achieved by fitting a frequency dependent entry to the solid circles of

the (1,4) entry plot. The entry which fits these circles is

.232s + .4104

- triangles. Though the column is not yet dominant, dominance can now be

-

k() = “qi37s ¥ 1
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and the next compensator was

P

© © o ~

e

——
.2328 + ,4104

0 11275 + 1.
1 0 o
0o 1 0

0 1

Again, this only changes the fourth column which becomes

S

2325 + .4104
d129s +1 + 9
-.00806s + .0212
 57.3
1
y

The overall compensation is K(s) = K K(s) where

and

ﬁ(s) =

-

0

18

0 0 1 0
0 1 0 0
K =
1l 0 0 ]
0 0 0 1
0 -,00019s - .0084 .334s + 1.3104
-.01137s + 1 1127s + 1
1 -.00008s -~ .00049 -.00806s + .0212
-,0113s + 1 .0172s + 1
0 1 57.3
.97s ~ 89.1 .00003s + .000137 1
.033s + 1 -.0108s + 1

Figures 67 -~ 72 are the Type 1 analysis plots of the fourth column

with the above compensaticen and are labeled KMPS.

achfeved.

Dominance has been
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Using the same model, a second approach was used to achieve dominance.
The second approach proved considerably more direct than the first approach.
fhe starting point of the approach is to choose G-l(O) as a first compensa-
tbr instead of the column switch that was used in the first approach. In

this case, dominance was easily achieved by using this approach.

With regards to the labeling of the plots, the following should be
noted. Analysis Type 11 is analysis Type 1 with G-l(O) as a first compen-

sator. Type 12 is Type 2 with G-l(O) as a first compensator.

Figures 73 - 96 are the CARDIAD plot Type 1 analyses compensated by

¢ (0. |
r .
| 1

¢l = K, = | | .

Analysis of the columns is as follows.

. The first column (Figures 73 - 78) is not dominant, but there exists
a boint on the real line in the plot of the (4,1) entry, Figures 77 - 78,
which 1is included by all the solid circles. Hence, dominance can be

achieved in this column by choosing k41 = ,076.

The second column (Figures 79 - 84) is not dominant, but the plot of
the (1,2) entry contains no triangles. A simple first order compensator

was chosen to fit the solid circles of the plot. The entry chosen was

.18
kjp(8) = T35+ 1 -
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The third column plots, Figures %5 = 90, show that the column is not

CEE  I
PR P TR

dominant and that Type 2 analysis will be necessary sihce all plots con-

e B

tain triangles.

The fourth column plots, Figures 91 - 96, show that the fourth column

- ]

is dominant without further compensation.

=

Figures 97 ~ 102 are the Type 2 analysis plots of the third column

=

of the system already compensated by G.I(O). The plots.are all very reg-

ular in shape, and first order compensators were fit to each plot. The

gy

three entries chosen were

k13 .0639s +1 °

(S) = "3.8063
k23 .0639s +1 °

-1.182s —
ky3(8) = 5gs0s + 1 °

The overall compensator is

- __.1s -6.627s o1
1788 +1 | .0639s +1
. _=3.806s :
‘ 0 N 0639s +1 ©
1 R(s) = | Lo .
) o 0 1 0
-1.182s
.076 0 e 1
0645 + 1
e -

The plots for the system with compensation Kl K(s) are given in Fig-

ures 103 - 126. As can be seen from the plots, the system is dominant.

It should be mentioned that the second of these two design examplés

was Completed in about thirty minutes terminal time, though final plots

!i
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had to be awaited in a longer time frame. Moreover, the four input,

four output case is definitely nontrivial for current models of jet engines.

Accordingly, the results support additional efforts to complete the

development and refinement of CARDIAD methods.

2. Second Six Months

During the six-month period beginning oh September 1, 1978, work on
the CARDIAD method was primarily divided into two areas. The first area
involved a théoretical study of the dominance equation used in the analy-
sﬁs and a general proof of the bound that is employed. The second area in-
volved software generalization and initial development work on the inter-

active graphics software package.

Before proceeding with the discussion of the theoretical aspects,

sbme preliminary development is in order. Recall that the basis of the

' CARDIAD method is the definition of diagonal dominance which states that

the jth column of an n x n matrix Z(s) will be dominant at a point

s € C 1if and only if

n
) . . (1)
i=1
i#3

zjj(s) zij(S)

Let G(s) be the transfer function matrix of the uncompensated
plant. Let K(s) be a precompensator of a form having 1's on the main
dfagonal and general frequency-dependent entries off the main diagonal.

If Q(s) = G(s) K(s), then the condition for the jth column of the com-

pensated plant to be dominant as s is
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n i
Iqjj(s) >1§1 qij(s) . ‘ (2)
1£]

Recall that the initial step in the development of the dominance
equation by the CARDIAD method was to square (2). This gives the following

condition for dominance,

n ' ‘
2513 . (3)
i=1
1#4

'qjj(s) qij(s)
The next step in the procedure was to replace the condition in (3)
with a simpler formulation involving a bound that results in a sufficient

condition for dominance. Using the bound, the jth column of Q(s) will

be dominant at s if

2 LD ] fag e

- (n-1 q,.(s

=1 | 1
i¥j

lqjj(s) 2.0. (4)

To prove the validity of this bound in the general case, it is nec-~

essary to show that

u % 2 4 2
e 2>1] e
1=1 i=1 | |

for all real ay and for M = 2,3,4... To do this, we shall first show

that
M M-1 M ' M
) aiz + ) ) (aiz + ajz) >[} ai]Z. (6)
1=1 1=1 j=1i+l 1=1

This is a consequence of the following calculations.

(o - c:tj)2 >0 . -

+ a 2 + a 2 _ 2a, a, > 0

i J 173
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2 2
> i + a 4 > 2a 1 o 5
Thus, with the aid of this observation, it follows that
M-1 M 2 2 M-1 M ;
[a," + 0,1 > ) I 20, o €))
i=1 j=i+1 i=1 j=i+l

Adding the same term to each side of (7) preserves the inequality; and we

get the relationship

M M-l M ' M
aiz + z X [oti2 + ajzl > Z ai?
- iml 1=1 j=i+l i=1
’
M-1 M
+ 1) e e (8)
i=1 j=i+1
However, the right-hand member summation expression is
M 2 M-1 M - M 2
)) a” + ) ) 20, a, = [} a 1™ . 9)
i=1 1=1 j=i+l 3 =1

- With the completion of this preliminary step, it remains to show that

Moo, M o, M1 N y )
M ) o = ) a” + ) Y la. + 0] (10)
1=1 1=1 1=1 j=i+1 1 3

for all M > 2. The proof is by induction. Consider the M = 2 case.

For M= 2, (10) becomes

F 3] § e
2 a, = a,” + [0, + a,“] (11)
=1 1 =11 gm1 =0

which becomes

2 2 2 2 2 2
2a1 +2a2 = 0oy
2 2
=2a1+2a2,

[

and thus the relationship has been shown for M = 2. Next we will show

that, if (10) is assumed true for M > 2, it is also true for M + 1;
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and the proof will be complete. Assume

M M M-1 M
ML oo~ T o+ ] ] (u12+aj2).
1=1 =1 i=1 j=i+1
Adding identical terms to each member yields
M M M-1 M
2 2 2 2 2
M ] a+Ma = ) o+ ) ] (@, +4a,9)
=1 Wl a1 1 i geinn 1
2
+Ma M+l °
Again, adding another term results in
M+l M+1 M M-1 M '
M) aiz + ¥ “12 = ] “12 + ) I (ai2 + ajz)
i=1 =1 1=1 i=1 j=i+1 .
M+l
2 2
+Ma + z a, .
M+l 4=1 1

Now, manipulating the equation, we get

M+l 2 M 2 M-1 M 2
1) § @, = ) @, + ) ) (a;” + o )
1=1 1=1 1=1 j=1+1

M

+ ] «a
w1t L%

2 2

+M<12 + a

MHL
M-1 M
2
1 t ) (“12
=1 =1 j=1+1
M+l

M+l M
=] a ) (aiz+a2

+ a.z) +
3 1=1

w1’
vow o,

2
o, + ) 1 (e, +a).
=1 1 4e14=ipn 13

Finally, letting L =M+ 1, we see that

LZa2=Za12+Z ? (a12+aj2);
1=1 =1 1=1 j=i+1

thus, if (10) is true for M > 2, it is true also for M + 1. Hence,

by induction, the bound is valid.
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Thus, we have as a sufficient condition for the jth column of Q(s)

to be dominant at a frequency ®g that

Iqjj(jmo)lz - (n-1) E 14 (jw04 2 > 0.
‘ i=1
' 7 i#§
After considerable algebraic manipulation, a more useful gxpression

of the dominance equation can be shown to be of the form

fj(§) = EtAﬁ + ﬁtb +c¢c >0.
]

In this equation, A, B, and ¢ are respectively a 2n-2 by 2n-2 matrix, a 2n-2 vector,

and a scalar; and each are functions of the plant transfer function matrix

evaluated at a specific frequency. All entries are real, and the matrix A

is Hermitian. The subscript j indicates that dominance in the jth
column is being considered. This subscript will henceforth be dropped,

. with the understanding that the equation refers to dominance in only one
column. The vector x 1is a 2n-2 vector composed of the real and imaginary
parts of the off-diagonal entries of the compensator in the column being
considered. Consider, for example, the first coluﬁn. The assdiiated col-
umn of the compensator matrix K(s) is:

R () = [1, Ky (s), k31(s),...]t.

If we let’ kij(s) = aij + jBij » then the vector x is
s=jw
1.

£ = [agys Byys 395 Bggsees

By choosing z such that f(ﬁp is positive, one 1is selecting the values
of the off-diagonal entries of the compensator that achieve dominance at

the frequency being considered.
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Within the framework of the quadratic form, it is easy to demonstrate
how the various types of analysis are performed; In the case of Type 1 or
partial gradient analysis, all of the entries in X are set to zero ex-
cept for one (a,B) pair; then the gradient of f(x) is set to zero, and
a solution for the non-zero entries (a,8) is found. In the case of Type

2 analysis, the standard gradient is taken. This results in the expression‘
(R
%

=(A+At)§+b=0.
i

Sihce A 1is symmetric, the solution for X is:

x=-1/2 875,

One significant change was made in Type 2 analysis, and that was in
thé manner in which the circle types and radii are chosen. In the past,

the centers of the circles were the gradient value but the type and size

- of the circle was decided in the same manner as in Type 1 analysis. Thus,

the type and size of the circle were decided under the assumption that the
6ther off-diagonal entries were zero. In Type 2 analysis this is not the

case, and thus the designer was adv;sed to ignore the circles'when using

Type 2 analysis and just try to fit a freéuency dependent entry'to the

centers.

In the present software, the circle types and radii are decided in
the following manner. For a given center in one plot. a deviation of a
sbecified percentage is made in a worst case direction from the gradient
values (i.e. circle centers) in all the other plots for the column.
Then, the center type and radius are decided for the remaining entry.

Consider a deviation of 10Z. If a given plot has a very large circle at




27

.

a frequency, this implies that if the other entries are designed to be with-

in 10% of the centers at this frequency, there is a lot of freedom in the

remaining entry; and the designer does not have to fit this entry very pre-

cisely. If a very small circle results, the designer has to be very pre-

cise. In the case where a triangle results, it means that no value will
achieve dominance in this entry at the frequency being considered if the

other entries are 10% or more away from their gradient values. With this

new way of deciding the circle types and radii, the designer is afforded

; more information as to how closely each of the entries need to be fit.

e

— A third means of making f(g) positive was studied during this period.
:i ’ In Type 2 analysis, if the Hessian, which in this case is the matrix 2A, is
;T ﬁegative definite, then the solution found by the gradient analygis is a

- global maximum. If the Hessian is positive definite, the solution is a

:ﬁ global minimum. However, in the case where A is indefinite, the solution

'; found is a saddle point; and Type 2 analysis cannot be used to achieve dom-
o inance.

If A is indefinite, a solution for x that will make f(ﬁ) posi-

[

tive is a scalar times the eigenvector of A associated with one of the
positive eigenvalues of A. Let k be a positive scalar. Then

£(ke) = k* gfae + k &b + c.

Because [ is an eigenvector associated with a positive eigenvalue of A,

the quadratic term will be positive; and the function can be made arbi-

trarily positive. Thus, in the case of an indefinite Hessian, the eigen-
vectors serve as a guide to a solution that achieves dominance. Thiskmethod

of achieving dominance is still under study and is in the process of being

implemented.
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A considerable amount of time during this six-month period was spent
on software. The first area of work involved the generalization of the
370 version of the CARDIAD software. The principal changes involved
generalizing the subroutine which solves for the values in A, b, and c
of the quadratic form. Previous to this time, a different subroutine was
called depending on the number of inputs and outputs of the problem; and
the expressions for the entries were quite éomplex. At present, one sub-
routine is able to solve for these values for any size ﬁlant, with the
oniy limiting factor being the size of dimensioned arrays. Other changes
on this software included ;nodularizing certain activities, polishing some
code that was quickly written in the original software, and adding soft-

ware to perform the new Type 2 analysis of circle type and radii.

A large amount of time was involved with the development and initial

. implementation of an interactive graphics version of the CARDIAD software

on a PDP-11/60 recently acquired by the Department of Electrical Engineer-
ing. Much of the work was preliminary in nature because there was lead
time involved with getting acquainted with the features of a né@ machine.
Current plans include a package whereby the designer can draw the CARDIAD
plot on the graphics terminal and fit a design to the plot, by selecting
the order and type of complex entry that he desires and picking design
values from the displayed plot. The designer will then be able to draw
the locus of the entry over the CARDIAD plot to determine if it is a good
céndidate for achieving dominance. Having chosen an entry, the designer
cén then redraw the CARDIAD plot with the compensator and determine if

dominance has been achieved. The CARDIAD method is by nature an inter-
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active tool, and the necessity of having to wait for Calcomp plots has
been a great hindrance in the past. It is hoped the interactive software

will greatly reduce the time necessary to achieve dominance.
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IV. GLOBAL NONLINEAR OPTIMAL METHODS

As discussed in the preceding section, the future investigations on
this grant will begin to decrease the emphasis on multivariable frequency
domain methods and start a gradual increase of the effort placed on non-

linear work.

The present studies underway on the DYNGEN digital engine simulator

are to be completed.

1. First Six Months

During this period, the primary efforts were those of J.G. Comiskey,

under the direction of Dr. R.J. Leake.

With respect to nonlinear modelling and optimization, the emphasis

has been twofold: to develop good analytical nonlinear models of the jet

_-engine and to use these models in conjunction with techniques of mathe-

matical programming in order to develop advances to global control over

significant reaches of the flight envelope.

In general, there are several aspects to this part of the investi-
gation. First, it is possible to conceive the basic differentiél equa-
fions from fundamental principles. In this case, there are usually about
sixteen nonlinear differential equations, as well as a large number of
nonlinear static functions which serve as part of the coupling between
the equations. These functions often have more than one argument. If
the equations arise in this fashion, then there is a significant need
to identify the parameters. This must normally be done from the DYNGEN
digital simulation. Second, it is possible to assume a general form for

the nonlinear differential equations in such a way that fundamental prin-

30
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éiples are not ignored but that added emphasis is placed upon general
ﬁathematical form. If this general form is chosen according to a scheme
d?signed to make maximum use of the type of data which is directly avail~
ai:le from the digital simulation, then a type of "automatic" nonlizear
mbdel generation becomes possible. Third, whether the first or second
modelling procedure is employed, there is almost always a need to con-
sider the problem of reducing the order of fhe models. Though order
reduction can often be highly mathematical in nature, it is almost al-
wa;s the case that the reduced order model depends upon the scaling of
the equations. As a result, the final reduced models often depend in a

nontrivial way upon physical insight, as well as mathematical method.

Work on this grant has focused especialiy upon the first and second
aspects of the modelling problem, with a gradual specialization toward

automatic model generation. -

Insofar as optimization is concerned, the stress has been placed
upon time optimal control, and considerable effort has been invested in
specialized programming methodology designed to take maximum advantage

of the particular features of jet engine models.

The main effort during this six-month period has been in the area
of model development. Fundamentals of the approach have been described
in the Final Report for Supplement No. 2. For completeness, however,

they are briefly sketched here.
' These models are based upon the general form
x = £(x,u)

where
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f(x,u) = A(x,u) (x-g(u)).
the equation
x = g(u)
governs the important steady state analysis. Moreover, if a program such
as DYGABCD [5] is available, it is shown in the Final Report for Supplement
No. 2 that information concerning
A(x,u), g(u), dg(u)/du

can then be numerically generated from DYNGEN.
'

It should be noted that interpolation on g(u) from its points and
derivatives involves a sort of Hermite problem, which is discussed in the

following section.

A feature of the approach is its authenticity with regard to equili-

brium values, state matrix A, and DC gain values.

—

At this point an M.S. Thesis was outlined for the purposes of com-

paring this class of models with earlier modelling ideas studied on the

grant and of using it for time optimal control calculations and simula-

tions.

The Table of Contents as originally planned is attached to this re-

port as Appendix C.

2. Second Six Months

During this period, the primary efforts were again those of J.G.

Comiskey, but this time under the direction of Dr. M.K. Sain.

Production of the M.S. Thesis planned according to Appendix C was

begun. Appendix D contains Chapters I through V of this document. The

contents closely follow the plan of Appendix C.

i a
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A discovery of this part of the work is that the accuracy of the num-
erical models can degrade rapidly outside the range of their data points.
This means that the designer must be sure to include steady state and dy-
namic data from the entire area of state and control space that‘he or she

wishes to gxplore.

These results are not unusual in the theory of polynomic approxima-
tion in general. However, in view of the conceptual challenges encountered
in the interpolation steps, it may be that the indications are toward the

study of different types of nonlinear modelling methods.

The beginning of such a new type of modelling idea is scheduled for
the continuation of this grant. In addition, the completion of the Comiskey
work will appear as part of the semi-annual report associated with that con-

tinuation.
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V. SPECIAL INITIATIVES RELATED TO GRANT WORK

One of the biggest related efforts to work on Grant NSG-3048 was the

International Forum on Alternatives for Linear Multivariable Control,

sponsored by the National Engineering Consortium in Chicago during October
1977. Dr. M.K. Sain served as Program Chairman and devised with the help
of an advisory committee a Theme Problem based upon turbofan engine control

for use by participants in the Forum.

Dr. T.F. Edgar, Program Chairman for the 1979 Joint Automatic Control
Conference, expressed interest in a continuation of the Forum idea at the
JACC. Dr. Sain contacted all the Forum attendees and asked them to indi-
éate their interest in the project. As a result, three sessions entitled
"Further Alternatives for Linear Multivariable Control" are planned for

the 1979 JACC.

-—

Preliminary information on these sessions is included here.

34




1979 JACC
FURTHER ALTERNATIVES FOR LINEAR MULTIVARIABLE CONTROL
Chairman and Organizer: Michael K. Sain

University of Notre Dame

Session 1

1. Regulator Design for the F100 Turbofan Engine

S. Engell and N. Munro
University of Manchester

2. Frequency Dependent Precompensation for Dominance in a Four Input/
Qutput Theme Problem Model

R.M. Schafer and M.K. Sain
University of Notre Dame

3. On Hidden Stability Margins in Multivariable Control

Z.V. Rekasius
Northwestern University

Stability and Homotopy II -

R. Saeks and J. Murray
Texas Tech University

>

Session II

5. besign of a Turbofan Engine Controller Via Eigenvalue/Eigeﬂvector
Assignment: A New Sensitivity Formulation

S.R. Liberty, R.A. Maynard, and R.R. Mielke
01d Dominion University

6. Quasi-Upper Triangular Decomposition Applied to the Linearized Control
of a Turbofan Engine--Further Results

W.E. Holley and W. Chung
Oregon State University
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Design of Flight Control Systems Via Robust Decoupled Servomechanism
Theory

S.-H. Wang, University of Maryland and
E.J. Davison, University of Toronto

Computer Aided Design of Control Systems Via Optimization

D.Q. Mayne
Imperial College

Session III

Inverse Systems in Multivariable Control
J.L. Peczkowski, Bendix Corporation,
M.K. Sain, University of Notre Dame, and
R.J. Leake, Fresno State University

Failure Accommodation in Gas Turbine Engines

R.K. Sahgal and R.J. Miller
Pratt & Whitney Aircraft
Model Algorithmic Control: Extensions and Further Applications

R.K. Mehra, A. Rault, and R. Rouhani
Scientific Systems, Inc.

An Application of Model Following Control

J.D. Aplevich
University of Waterloo
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Figure 55

-0.60  -0.30 .00
RERL PRRT

CARDIARD PLOT: 1,4 ENTRY: KMP3, 6/20/78.

INPUTS = 4, SYSTEM ORDER = .6, ANALYSIS TYPE = 2 -




L B

v

-

WAL S
oy Ly |

A

o

-

o R S S T

97

Figure 56

0.90 1,20

0.80

-0.90

-1,20

1.50

'-1.50

-1.20 -0.90 -0.60 -0. 6.30 0.60 8.90 1.20 1.50

30 0.0C
REAL PART

LOCUS OF CENTERS PLOT: 1,4 ENTRY: KMP3, 6/20/78.

(NPUTS =Y, SYSTEM ORDER = 6, ANRLYSIS TYPE = 2




B e

L

98

Figure 57

0.37

N

. /
o

® o
Q

|

o~
(3]

o 3
(=]
L]
n
Ll

. b

-

1

00

-y,

+

IMAGINRRY PART
-0.07

A5

J

4
.22  -0.14  -0.07  0.C0 0.08 0.15 g.22 0.30 0.37
REAL PART w10

CAROIARD PLOT: 2,4 ENTRY. KMP3, G/20/78.

INPUTS = Y4, SYSTEM ORBER = 6, ANALYSIS TYPE = 2

] v ————g T -1

r



99

Figure 58

2.37

x10”"
0.07

_=0.00

-2.07

A

IMAGINARRY PRRT

-0.15

-0.22

-0.23

-0.37

-0.22 -0.14

.22 0.30 0.37

-0.07 .00 0.08 0. 9.
x10"

{
REAL PART

S

LOCUS OF CENTERS PLOT: 2,4 ENTRY: KMP3, 6/20/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 2




P
R4

’aﬁwg

m. i a. I !x[

Wae

100

Figure 59

157.45

125.72

94.29

A
e
-~

52.65

xi0
31.43

-0.00

IMARGINARY PART
-31.43

-62.86

-94.29

4
.
e

-125.72

A
e

-157.15

M

-151.42 -119.93 -98.56  -§7.13  -25.70  6.13 3716 63.59 100.82  131.45  152.53
REAL PRART 10

.

CARDIAD PLOT: 3,4 ENTRY: KMP3, G/20/78.

INPUTS = U4, SYSTEM ORDER = G, ANALYSIS TYPE = 2

LT i R B

P ——




101
I Figure 60
o ["2]
4 w e — e
l
&N
P~
a: »
. 2.. b
! o
~
- gq 9
I 5
b g4 4
"’i“,‘
wf¥ - ;
ol
™ x
by —.
@xo
e EC'; -+ + + + JH=0 N + +~ -+
_§ > -
fory o od
z<
i g et
{ g‘?;
wmr :
‘—u:-
- pd
~N
s 1
A ;
— o
] E
g o B E
‘
g ~N
r~
i :
B (V]
_ T 1
n
o
1% ]
151.42 -119.93 -88.56  -57.13  -25.70 s'iza 37.16 59.59 100.02  131.45
x10

RERAL PARAR

LOCUS COF CENTERS PLOT: 3,4 ENTARY: KMP3, 6/20/78.

INFUTS = Y, SYSTEM ORDER = 6, ANALYSIS TYPE = 2

cd
g PN L T L



.50

Figure 61

102

* 0.30 1.20
A re

0.50

8.30

GINARY PART
0.00

‘'
—
w
in /

-1.20 -0.90 -0.60 -0.30 0.00 .30 .60 0.90
REARL PRRT
CAROIARD PLOT: 1.4 ENTRY: KMP 4, G/22/78.

{NPUTS = 4, SYSTEM ORDER = .6, ANALYSIS TYPE

1

.80

T Ew,



: Figure 62

ki

(=]
" =)
| |
i -
e o
3 i . 4
¥ o
& <
o 9
Y
- 8 o
k. ™
)-—Q‘-‘
-n «
il g
él
’_Q
o — +
i ac©
di )
ao
="
T e
[~
" ['<]
: s !
]
3 S
; s ) }
S
{ ~
; (=]
i v
) IS WY -1.20 ~0.90 ~0.50 -0.30 0.00 0.30 0.60 0.90 1.20 1.50
{ REAL PARRT
LOCUS OF CENTERS PLOT: I,4 ENTRY: KMP 4, 6/22/78.
=i INPUTS = U4, SYSTEM ORDER = 6, ANALYSIS TYPE = 1}
et
|
ki

3
vl . — e o e Py " e - :




¥

4" - -

"

i

R

et

)

s s Bans:

0.08

0.06

0.05

03

(18

0.02

IMAGINARY PART

Figure 63

104

0.00

-0.02

.02 0.00 §.02
REAL PART

CARCIAD PLOT: 2,4 ENTRY: KMP 4, G/22/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE




3 e

105

Figure 64

0.06 0.08

0,05

0.03

A

a

-0.08% -0.06

-0.05 -0.03 -0.02 0.00 0.02 0.03 0.0S 0.06 0.08
RERL PHART

LOCUS OF CENTERS PLOT: 2,4 ENTRY: KMP 4, G6/22/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 1




106

[ Foeer

Figure 65

B

['ad
~

.
~
(=]

/ 1
-13.55  0.00 ‘13.55 27.10 40.65 54.20 67.75
REAL PART ~10

- -67.75  -54.20  -40.65  -27.10

CAROIAD PLOT: 3.4 ENTRY: KMP U4, G/22/78.

e

[NPUTS = 4, SYSTEM ORDER =.5, ANALYSIS TYPE = 1




67.75

107

Figure 66

54.20

40.55

o

67.7S

-§4.20  -40.65 -27.10 -13.55 0.00 13.55 27.10 40.%65 54.20

REAL PART =10°

LOCUS OF CENTERS PLOT: 3,4 ENTAY: KMP 4, 6/22/78.

[NPUTS = Y4, STSTEM ORDER = 6, ANALYSIS TYPE = 1

67.

75



3.5¢

Figure 67

108

.40 2.10 2.40

Heotitpiut X

0.70

K. b T Ak
P i

0.00

v

—t

FREATTS NG

MAGINARY PART

]
-0.10
L

| RSN CR §

-1.40

.10

.80

\

-2

-3.50

{3

s AN

-1.46 -0.70 .00 0.70 1.40 2.10 2.
REAL PART 5
CRROIARDC PLOT: L,4 ENTRY: KMP 5, 6/24/78.

4, SYSTEM QRDER = 6, ANALYSIS TYPE

1




“atnpe

.

Figure 68

109

40

1.

A

0.70

0. ooon,

INARY PRART
0.00

G

MA
10

]
-0.

t

~3.80

-2.80

-2.10 -1.40 -0.70

REAL PARRT

LOCUS OF CENTEAS PLOT:

1.4 ENTRY:

Al
G.00 C.

70 l

KMP 5,

.40 2.10

6/24/78.

INPUTS = 4, SYSTEM ORQER =.6, ANALYSIS TYPE = 1

-
2.90 3.50



WL

0.12

Figure 69

110

0.09

0.05 0.07

i

0,02

MAGINARY. PART
0.00

]
-0.02

-0.05
A

-0.07

-0.09

\

-0.12

-0.12 -0.03

e mik L bR R SRPAT Sas T KT

CARDIRD PLOT: 2,4 ENTRY:

INPUTS

Y,

SYSTEM ORDER = 6,

KMP &, 6/24/78.

ANARLYSIS TYPE

N\ \

-0.0% -0.02 .00
REAL PART

1

.12



i | 111
* .
Ik
i
!
b} Figure 70
]
J - -+~ - ~— + — -+
T <
(=]
B 'Q'- b +
; ~
o e + b
= Q
L 0
Q’q + + ;
o
e
B ’_Q- 1F +
=
¢,
n’:
=8
- mc; -+ — +
Tt
O
£8
—
]
W
L =]
=
(]
i -
<
s { )
. 2]
: L=~
v ] [ $
" [}
‘r;’rc
; L
: b’ LA T L) L ¥ LI
—F ‘~0.12 -0.03 -0.07 ~0.0% -0.02 0.00 0.02 0.05 0.07 0.09 0.12
. REAL PRRT .
Tl
¥
A

LOCUS OF CENTERS PLOT: 2,4 ENTRY: KMP S, G6/2U4/78.

[NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = |




o |

p

f FT

Forborwos o v
¥

112

Figure 71

AL

-49.75

-9.35 0.00 .95 18.90 23.3§ 33. 30 43.75

-18.30 ‘
REAL PRRT w10

-39.3¢  -29.35

CRROIAD PLOT: 3,4 ENTRY: KMP 5, 6/24/78.

INPUTS = 4, SYSTEM OGRDER =.6, ANALYSIS TYPE = 1




43.175

113

Figure 72

33.30

49.7S

-39.3C -29.85  -19.30  -9.95 0.00 .95 13.90 23.35
RERL PART 10

LOCUS OF CENTERS PLOT: 3,4 ENTRY: KMP 5, G/24/73.

INPUTS = 4, SYSTEM ORDER = 6, RANALYSIS TYPE = 1

4

8.75



114

Figure 73

)

0.20

-0.00

MAGINRRY PART

]
-0.20
A

-0.83 -0.53 -0.43 -0.23 -0.03 g.17 0.37 0.57 .77 0.37
REAL PART

CARDIAD PLOT: 2,1 ENTARY: 1/G(0), G/24/78.

INPUTS = 4, SYSTEM OROER = 6, ANALYSIS TYPE = 11




.
termmaianiea!

% Figure 74

t.00

. 115

0.20

2000001

MAGINARRY PART
-0.00

)|
-0.20

-0.40

~ -0.60

-0.80

-1.00

L 0.3  -0.63 -0.43  -0.23  -0.03 __ 0.17 _  0.37
5 REARL PART

0.77

LOCUS CF CENTERS PLOT: 2,1 ENTRY: L/G(0), 6/24/78.

cir INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11}

T T T

0.97

g A P SR O



FrampET

3

0.3C 1.00

0.50

ae

IMAG INBRY PRART

~-0.40

~-0.60

-0.80

-0.

-0.20

Figure 75

116

o

<

“1.00 -0.80 -0.60 -0.40 -0.20 0.c0 0.20 c.40 0.50 .30
RERL PART

CARDIAD PLOT: 3.1 ENTRY: 1/G(0). G/24/78.

INPUTS

4,

SYSTEM CRDER

= B, ANALYSIS TYPE = 11

.00



Eea SR RN |

§

T - \
% » 3

117

Figure 76

1.00

0.30

-0.90

~-1.00

9

118=0.3

+4 3

_“:0.“

1.00

-0.80

¥ R L=0LS
-0.50  -0.40  -0.20

0.0C .20 0.40 6.50 0. 30 i
REARL PART

LOCUS OF CENTERS PLOT: 3,1 ENTRY: 1/G(0), G/24/78.

INPUTS = 4, STYSTEM ORBER = 6, ANALYSIS TYPE = 11

.00



Mo Sogousi K
w »

trratin R

[ RERS

[

Figure 77

0.3y

118

0.20 0.27

14

0,

1

0.07

<

-0.00

MAGINARY PART

1
-0.07
A

-0.30 -0.23 -0.17 -0.10 -0.03 G.04 C.11 0.17 0.24

REAL PART

CARDIAD PLOT: 4,1 ENTRY: t/G(0), 6/24/73.

[NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




119
l! .
J Figure 78
4
- a + —t: —tm —- —— ——
~
e o~
o 1 f
N
&
. o'q -
z
o] 1
g._ s
- .
& %0
n‘g =100
;b' ~+ + +- =000 + —t— -+
" a!
i ] -
. Q
o
— L
'
Z
S
4 Q'_' b
EN '
~
% w *
A &
! Q. T T T Y T T -y~ u =T
. '.0.30 -0.23 -0.17 -0.10 -0.03 - 0.04 0.t1 0.i7 0.24 0.3 0.3%
1 , | REAL PART ' |
4 LOCUS OF CENTERS PLOT: 4,1 ENTRY: 1/G(0), 6/24/78.
I [NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




| 30 A

Lerases

3

2] ' s

. v

Figure 79

1.00

120

A

0.20

-~0.00

'

MAGINARY. PART

)|
-0.20

-0.uo0

-0.80

-1.00

0.0t 8.3
REAL PART

CARCIAD PLOT: 1,2 ENTAY:

INPUTS = 4, SYSTEM CGRDER = G,

0.51 0.71 0.91

1/G (0}, 6/24/78.

ANALYSIS TYPE =

L1



¢
{ *
* .
i i Figure 80
. %
SR o
< . . .
- — - + * - +
Qo i«
(-~ g
o + Q'
@
(=3
(7o4
Y 1
| (-}
1 -
a“ +

et M et e - g et AR

©
N
"y
[+ ]
i =
j Q.
i o
i N>
[~ b, " ™ "
& — "
=z -—
(%] I
ao
="
'—!?_ b &%

-0.40

<
<
T 1
@ ®
S
o
a.- 3
[}
i o
? g
'70.68  -0.49 -0.29 _ -0.03 0.1 0.51 0. 71 %Y 1.

1 0.31
REAL PART

; €
LOCUS OF CENTEAS PLOT: 1,2 ENTRY: 1/G(0), 6/24/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11

o

-4

e

g L
, f
.

3
. . 3 e i




L T B

]

0.23

Figure 81

122

-0.13

-0.0S 0.00
REAL PART

-0.14  -0.08

CRARDIAD PLOT: 3,2 ENTRY:

INPUTS = 4, STSTEM GRDER = 6,

0.05S 6.09 .14 0.i9 0.23

1/G(Q), 6/24/78.

ANALYSIS TYPE = 11

i

AT - i g s W S Rl L ol e ekt




123

Figure 82

0.23

S
. . . =d_ncoqi,

o} 02
gm =0.3

1

2.4

2 0.3
o
)

0.0S 0.00 0.05S 0.09 c.14 0.19 0.23
REAL PART

-

LOCUS OF CENTERS PLOT: 3,2 ENTARY: 1/G(0), 6G/24/78.

INPUTS = 4, SYSTEM OROER = 6, ANRLYSIS [TYPE = 1!




A T

Peaw oo Geie] @l NN

0.32

Figure 83

124

0.06 0.13 0.19 . 0.25

~0.00

40

o 6o

MAGINARY PART

1
-0.06

-0.19 0.13

-0.25

-0.32

LY

o

CARDIAD PLOT:

INPUTS

4,

.13 -0.06 -

REAL PRART

SYSTEM ORDER

4,2 ENTRY:

.6,

1/G (0},

0.06

ANALYSIS TYPE

6/24/78.

=
=

11




S
S §

Figure 84

125

0.25 c.32

0.19

-

0.06 0

1

-0.00

MAGINARY PART

]
-0.06
1

~0.19 -0.13 -0.06 -g.0eC .06 0.

REAL PART

LOCUS OF CENTERS PLOT: 4,2 ENTAY: 1/G (0]

(NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS

L
i3 0.18 Q.

2
(]

» 6/724/78.

TYPE = 11

0.32



| . | 126

[. Figure 85
s .
H L‘:
' pot S et — -+ t— e -
[~
57 N
ft bl + b
v &
7 1
-
] R B
- i
<
o
’__G:- < 3
o
[=w
Q.
8
[ =9 — — +- + > —- i Ay A
(= R o H A
=z a—
o 815 @
£ i :
N ° 1 (
- Y
@ A
{7}
T s I
o a
higt
z‘ﬂ @ a < 1
I
o a
~ &
Pes A O
‘71 - <
o
2
) ; NS LS R) LS i . LS L
. ‘-4y1.50 -33.20 -24.30 -16.50  -3.30 0.00 9.30 5.60 24.90 33.20 4t.50
REAL PART
;.‘ CARDIAD PLOT: 1,3 ENTRY: 1/G(0), 6/24/78.
1 [NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




o )

W R

R R S WO

Figure 86

127

.50

. . =0.N00c:, + |
: I
W=0). o w oM .
u, o @
- =Y o

V=g, 5 “g

(-]

o0

poe=H
0Dh=

-41

41.5C

~-33.20

T A T
-24.30 -16.50 -3.

30 0.00
REAL PART

LOCUS OF CENTERS PLOT: 1,3 ENTHY:

8.30

1/G(al,

6/24/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




128

Figure 87

$5.50

40

4y,
A

33.3¢0

22.20

A
4
+

1,10
N

INRRY PART
0,00

IMRG
11.10
>

>

>

>

>

>

¥,

-22.20

1
+

-33.30

o .
e

-44.40

,~55.50

76.08  -64.95  -53.85  -42.75  -3i.65 -20.55  -9.45 1.65 12.75 23.95 34.95
REAL PART

CARDIARD PLOT: 2,3 ENTRY: 1/GI0), G/24/78.

o INPUTS = 4, SYSTEM ORDER = G, ANALYSIS TYPE = 11




B By

gy

|

s
i

Gagamaty

A

Figure 88

129

22.20
A

11.10

A

4

GINARY PART
0.00

IMR
11.10

A

=22.20 ...

N

-44.40

3
3%,

‘90
~30

:70

N H=0.[oa0t
+ -5
“ <
.;'z
P

=50
=50

w
< 3 4

>

=20

1o

o

~55.50

-76.0§

-64.35  -53.55

LOCUS OF CENTERS PLOT:

INPUTS

-42.75

Y,

-31.55

—
=20.58

-9.4s 1.65

REAL PRAT

SYSTEM OROER

2.3 _ENTRY:

L/G (a1,

= 6, ANALYSIS TYPE =

12.75

6/24/78.

11

L]
w

v

(7]

.35



- -

oo g

e §

3 Ai *ll'_" "

13.00

Fipure 89

130

40

10.

.50

~]

(2]

2.50

-g.00

— -
p— -+

JMAGINARY PART

-2.60

A

-5.20
i

-1.80

-10.,40

-13.00

18.73

-10.93  -8.33 -5.73

REAL PART

CARDIAD PLOT: 4,3 ENTRY: |/C(0), 5/24/78.

SYSTEM ORDER = G,

ANARLYSIS TYPE

e e e L N




{ Figure 90
I
14
‘ e
i b N - ‘ -+ — —
4
o
-3 -
’ S. ‘L; . +
~ }
[}
&
] $.
(-]
<« .
- 1 [
[« o
(==
0.
(=]
=<
[t +— -+
fu ol }
i z
: o
£
§ Zl |
‘ |
- &
: ]
i
¥ &
: i : t
C e
; (-]
[ ©
| i ¥
i ‘ o
LT Iy 1 1
T o
: : o
T o
s '-13.73  -16.i3  -13.83  -10.93 -8.33 _ -5.73  -3.13  -0.53  2.07 4. 7.27
L AREARL PART
: : i LOCUS OF CENTERS PLOT: 4,3 ENTRY: 1/G(0), 6/24/78.
; g- [INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 1}
. L3
I o W e et Mt s i i s e TN o LR S e e =

131




132

Figure 91

€
w
c Y
b=
-
'Yy f
©
1 w
o
L S
..:- 4
5 ©
v
-
kb « 1
ik @
i o
=8 -
e o
i L
€3
=5 |
; %
7s
® - n
« ““ T T Y T T T T T T .
Lo -2.72 -2.22 -1.72 -1.22 -g.72 -0.22 0.238 0.78 1.29 1.78 2.2%
i‘ REAL PART

CARDIARD PLOT: 1,4 ENTRY: [/G10), 6/24/73.

gﬁ _ INPUTS = 4, SYSTEM ORDER = G, ANALYSIS TYPE = 11




E'\‘- LVLENE

133

Figure 92

0.5¢C

0.0¢0

MAGINARY PART

]
-1.50  -1.00  -0.50

2,00

-2.50

-2.72

-2.22 -1.12 -1.22 -0.72 -0.22 .25 c.78 1.29 1.19
RERL PAAT

LOCUS OF CENTERS PLOT: 1,4 ENTRY: 1/G (0}, G/24/78.

[NPUTS = 4, SYSTEM OROER = 6, BNALYSIS TYPE = 11



. 1,“.l

3.00

134

Figure 93

2.40

- 0.60

MAGINARY PART
0.00

1
-0.60

-1.20 -0.60 .00 0.50 1.20 1.80 2.40 3.6C

REAL PART

. CAROIAD PLOT: 2.4 ENTRY: 1/G(0), 6/24/78.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




B ' ' 135
B

E; Figure 94

3.00

l"“x

.

-?;

-3.00

-3.00 -2.40 <1.8¢  -1.20 ~0.60 0.50 1.20 1.80 2.40 3.60

c.0e
- 'REAL PART

LOCUS OF CENTERS PLOT: 2,4 ENTRY: 1/G(0), 6/24/78.

INPUTS = 4, SYSTEM ORDER = 6., ANALYSIS TYPE = 11




0.3y

136
0.20 0.27
11

0.14
6/724/78.

.

.07
ANARLYSIS TYPE

1L/G (0,

=l5'

~0.00

RERL PART

3.4 ENTAY:

T

-0.07

Figure 95
SYSTEM COROER

-0.14

CAROIAD PLOT:
4,

p=~) V5] ,h
[V - W
. = _,
o k
7 o
P4
L
”~
[aV)
=
¥
> |
=4 :
&
R ]
hE*9- H
:
. . ¢
E

B s TUUN - TR S-S WS KOS SNSRI T e R o T

R ST T R TR e SRR : s - s L W o . . . : o - /Mw



it s

Ei i :g o % ‘i ‘ : é"ﬂ%? W’ ‘.t

s T

Figure 96

137

0.34

0.27

-

0.14 0.20

0.07
A

MAGINARY PART
-0.00

]
-0.07

4

0
i

-0.1

-0.20

-0.27

0.3

-0.20 -0. 14 -0.07 -0.0 0.07 0.1k 0.20

¢
REAL PRAT

LOCUS OF CENTERS PLOT: 3,4 ENTRY: 1/G(0), 6/24/78.‘

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 1!

0.34



B3}

v

,
< gt

114.50

Figure 97

138

0

(Lo

91.

68.70
1

45.80 <

.

22.9¢0
N}

INRRY PART
-g.0¢0

MAG
2.30

1
-22.

-91.60  -68.170

A

-45.30

Y d ot g

-11y.,50

166.34

-143.y4

INPUTS =

A
-120.54

CARDIAD PLOT: 1,3 ENTRY: 1/G(0), 6/24/78.

-97.54

-74.74 -51.34
RERL PART

-25.94

-
-5.04

4, SYSTEM ORDER = G, ANRLYSIS TYPE

12

.65



i 139

Figure 98

114,50

22,90

]

-g.00

. . N . N A —=0_00301

H=Q, 3

INRRY PART

MAG
2.30

]
-22.

5.80

-4
4

[}
n
Q

-68.70

)i

S

F R
1

-91.60

e
.50

o

-1y

. -166.34  -143.44  -120.5% -97.64  -74.74_ -51.84  -29.94  -6.04 16.36  139.76
j | REAL PART

i LOCUS OF CENTERS PLCT: 1,3 ENTRY: 1/G(0), G/24/78.

']f INPUTS = 4, SYSTEM ORDER = 6, ANARLYSIS TYPE = 12

<
@



ph—

REAL PART

.

CARDIAD PLOT: 2.3 ENTAY: 1/G(0). 6/24/78.

INPUTS = 4, SYSTEM ORDER = G, ANALYSIS TYPE = 12

140
Figure 99

i

o |

o

« - +- 4 - +* -+ —t-

(74

(]

[ ]

4 1 1
(=)

@

o + b
[}

(-]

=

giq +*
&

~

é’. {s L
—-
m,
-3
a.
»8
@ - _— — - +~ —
e 4%
—z— a —
O al
<% ¢
-—g- AA A“ !
[ & A

a a

o & o

- a

« a a

‘:‘- AA + 3

a

(=)

w

*

""- < b
[4]

(5]

o 1
[}

[=]

[ 3

s

'-95.81 -82.61 -69.41 -56.21  -43.0%f -29.31 -16.G61  -3.41 9.79 22.939 35.



i‘ 14

B

Figure 100
‘;‘"’
-
[ =]
(-]
- - . . - . - . — N
& [V <}
.
-’
<
es (2]
}. ]
3 v
o’
3
L (~] i
3 <
f o
® (2]
]
- o
. >
» é- .
-
(=]
o~
o 1
a@
0..:
3
o - + + -+
- czo
b =
Oo
e o]
e Zo
1 '
o
k- 4
- ©
{ N
1 .
‘ o
- 8 (-]
.%: o
k‘.ﬁ Fl’_
E“ Q
= [--)
4
¢ hr;
e B
]
E‘ ©
oD
@
' ‘f k3 1) 15 T LK L ) T T
" -95.81 -82.61 -63.41 -56.21 -43.01 -239.31  -15.61  ~3.41 9.79 22.99
E‘ REAL PART

W—

LOCUS OF CENTERS PL@T: 2,3 ENTAY: 1/G(0), G/2u/78.

[NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 12

;?

R o i e e T




am‘!‘«g

g

¥ A

PR ETEY S
PR 1

FREroE
WY

PR

Fate b
et

| AV WY

S

| S

o

Rivenesd

I

. 142
Figure 101
[+
"
- R N . o .
2 + - - e
o
>
wd { !
[~
~™
f-\‘; L 3 dr
¢
o
~
a- L P
-~
= |
o«
cc
o
-]
ED‘ ~ At + + Jf’;L“h + —~+
ace 4
= a
L)
as a o
b = A &
=T “a a
a &
a Ca
I a
~. a a
71 a® * ‘
, a
|
[~]
-
~
o ‘
o
-
©
T 1
o
w»
o
b A) B L) 1) L k) . - ¥ AJ k]
‘l29. 14 -25.64 -21.54 -17.44 -13.34 -4.24 =5.i4 -1.04 3.06 7.18 11.25

REAL PART

CRROIADC PLAT: 4,3 ENTRY: 1/GI(0), 6/24/78.

INPUTS = 4, SYSTEM ORDER =.6, ANALYSIS TYPE = 12




I o | | 143
[

Figure 102
¥
" -
%3
S — —~
- N o " - a a
i o
- 4
- G.é. -
" =
:.;" 1 L
- | ‘ L
it ; | |
e
1 1
[« nd
[w o}
a.
bt =t
=3 : -
<
(€]
>
=7
—— L
)
>
o
. .;-‘ &
A )
=1
.%' o
: r
- o
' -
| ©
o T H
3
'S29.74 -25.64  -21.54  -17.44  -13.34  -9.24 -5. 14 -1.04 3.06 7.15 11.28
E* REAL PART
:g.;
ié LACUS OF CENTERS PLOT: 4,3 ENTRY: I/G(OJ. 6/24/73.
. [INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 12




g

L TR R B s B ]

144

Figure 103

1,00

0.23 ¥ . 0.53

7 0.03
REAL PART

CARDIAD PLOT: 2,1 ENTRY: KMP 1, 1/G(0), 6/25/73.

INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11

1.03



B, 3

1.00

145

Figure 104

0.20

t

MAGINRRY PART
-0.00

)
-0.2¢

-0.40

A

-0.6¢

1

-0.90

-1.00

g.

97

-0.77 -0.57 -0.37 -0.17 8.03 0.23 0.43 0.53 0.93
REAL PARKT

LOCUS OF CENTERS PLQT: 2,1 ENTRY: KMP 1, 1/C10), 5/25/78.

INPUTS = Y4, SYSTEM ORDER = 6, RANALYSIS TYPE = 11




2N

.

st s 4 T
i ce

P
[

g

Figure 105

146

023 031 0,39

0.16

0.0%

A

MAGINARY PART
-0.00

1
-0.08

-6.23  -0.16

-0. 3

,-0.39

-0.23 0. 15

CARDIARD PLOT:

INPUTS = 4, SYSTEM ORDER = 6,

1 L] L) )
-0.03 0.0¢C 0.03 c.

RERL PART

3,1 ENTARY: KMP 1,

1/G 10},

6/25/78.

ANRLYSIS TYPE = 11

L3 0.33




PrRS .

[ "

.U%wyi .

o i

147

Figure 106

0.32

] 0,31

< 0,23

0.16

0.08

MAGINARY PART
=g.o0

)
-0.08

~-0.23 -0.16

-0.31

— . . =0 _00O0T —

,-0.39

Q.

39

)

-0.31 -0.23 -0.15 -0.09 ©.00 0.09 C. 16 c.24 g.32 0
RERL PRRT

LOCUS OF CENTERS PLOT: 3,1 ENTRY: KMP 1, 1/G(0), 6/25/78.

INPUTS = 4, SYSTEM ORDER =.6, ANALYSIS TYPE = 11

.33



£

L

#*

{6

B R e e el e

?
5

0.3y

Figure

107

148

0.27

A

A

0020

0,14

8.07

L

-0.00

MQG]NHHY PART

]
-0.0

7

INPUTS

.07 -0.00
REAL PART

- 4, SYSTEM ORDER = 6,

0.07 0.14

0.20 0.27

CAROIAD PLOT: 4,1 ENTRY: KMP 1, 1/G(0), 6/25/78.

ANALYSIS TYPE = 11

0.3y



*

[Fo—_

&

MAGINARY PART

1
-0.07
A

149

Figure 108

0.27 0.3y

= 0.20

A

0.07 0.4

-0.00

s
|
|
]
1

T

-0.21

0.3

0.

3

-0.27 -0.20 -0.14 -0.07 -0, )
RERL PARAT

LOCUS OF CENTERS PLOT: 4,1 ENTRY: KMP 1, 1/G(0), 6/25/78.

INPUTS = Y, SYSTEM ORDER =6, ANALYSIS TYPE = 11

0.00  0.07 0,14 0.20 0.

.3



150

Figure 109

[t
>
o
1
3' ~
' ~N
o
o.-l
| -
: s
-y
! &
L =3
>
rod
el el
i =
i 3
<3
—
!
bt
o.
1 ]
& .
~~
N
o
I o
2 (5]
% o
)
3
4 g2
n' L) LS A 1 L L T L L
'-0. 41 -0.32 -0.23 -0.i4 ~0.08 0.04 0.13 0.22 0.31 0.40 0.49

REAL PART

CRADIAD PLOT: 1,2 ENTRY: KMP 1, 1/G(0), 6/25/78.

INPUTS = Y, SYSTEM BROER = 6, ANALYSIS TYPE = 11

WO e eeed ey
S
g
3




r_"

151

Figure 110

0.45

0.09

y

-0.00"

IMAGINARY PRRT

-0.09

A

-0.18

PR
n

-0.27

-0.35

PR s S

~~0.4S

0.41 -0.32 -0.23 -0.14 -0. 0.13 0.22 .31 - 0.40 0.49

05 0.04
REAL PART

ddrorw § S e

LOCUS OF CENTERS PLOT: 1,2 ENTRY: KMP 1, 1/G(0), 6/25/73.

‘S? INPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11}




e s

3

IMRGINARRY PRAT

0,34

Figure 111

152

. 0.1d

0,07

A

-0.00

0.0

‘0027

:\ ) T *T\l T
-0.3y -0.27 -0.21 -0.14 -0.07 6.0C - 0.07 . 4 g.21 0.29
‘ REAL PART
CAROIAD PLOT: 3,2 ENTRY: KMP 1, 1/G(0), 6/25/78.
INPUTS = 4, SVSTEM ORDER =.6, ANALYSIS TYPE = 11

0.3




!; 153
m Figure 112
i
.
~m
;g ™ — -+~ + — +
» :
~ i
~ i
S |
4
; Iy 1
.
4k o J
i
| .
R 1 Q.
-y
—_— g L
iz n'a L
[ =y .
_ To N . . . S2\W=0_ 00001, - — —
7 a!
i -4 -—
Y (K]
| =
i —
i "] 1
li
| =
"; ?' < 4
 w
‘iv ;"
"‘ * l‘
[ :
o <
[ .
-
B & T T, R T =Y T T T
; ~0.34 -0.27 -0.21 -0.14 ~-0.07? 0.0e 0.07 0.14 0.21 0.2% 0.3

REAL PART

!! - iq*

LOCUS OF CENTERS PLOT: 3,2 ENTRY: KMP 1, 1/G(0), €./25/78.

INPUTS = 4, SYSTEM ORDER = 6, ANARLYSIS TYPE = 11

I
'




T— TS

“od

-t g ..hA
o awicif

-

Fraaman

@liij‘ ﬁiii§ q,m*%

W

0.06

A

MAGINARY PART
0.00

1
-0.0s

-

-0.13

4

-0.19

A

-0.25

Figure 113

154

4_—,,¢—””

~0.31

-0. 0.05 0.13 .19

(=]

.0.06 0.00
REAL PARRT

CARDIAD PLOT: 4,2 ENTRY: KMP I, 1/G(0)., 6/25/78.

SYSTEM ORDER = 6, ANRLYSIS TYPE = 11}

]

g.¢




R

uk b

0.31

155

Figure 114

0.3!

-0.25 -0.19 -0.13 -0.05 0.06 0.13 0.19 0.25

0.00
REAL PART

LOCUS OF CENTERS PLOT: 4,2 ENTRY: KMP 1, 1/C10), 6/25/78.

INPUTS = 4, SYSTEM OROER = 6, ANALYSIS TYPE = 11

C.31




¥ oriaaas

Wbiensi 14
"

=

b

T

i
SN

Figure 115

156

CRROIAD PLOT:

INPUTS = Y4, SYSTEM ORDER

1,3 ENTRY:

.30 0.00
REAL PART

KMP 1,

0.30

1/6(0),

5/25/78.

= 6, ANALYSIS TYPE = 11




P ]

1

€
(%2}

157

Figure 116

.90 1.20

0.60

. - . - gi=0.conel, . - N

L 1] L] L ! 3 T
-1.20 -0.90 -0.60 ~-0.30 0.30 0.50 0.90 1.20 1.50

.00
RERL PRART

LOCUS OF CENTERS PLOT: 1,3 ENTRY: KMP 1, 1/G{0), 6/25/78.

INPUTS = 4, SYSTEM ORDER = 6, GNALYSIS TYPE = 11




f
|
?

o Gecwsq v = &9 N

gy

i

L B e B

g

158

Figure 117

0.40

4

0.00

IMQGINARY -PART
-0.40

A

-0.80
.

A

-1.20

-0. 40 0.00
REAL PART

CRARDIRD PLOT: 2,3 ENTRY: KMP 1, 1/G(0), 6/25/78.

INPUTS = 4, SYSTEM URDER = 6, BNALYSIS TYPE = 11




&

13

[ P

MAGINARY PART

|
-0.40

2.00

159

Figure 118

0.40 0,80 1.20 1.50

g.00

-1.60 -1.20 -0.30

-2.00

2.00

—Jd
(%]

-1.60 -1.20 -0. 30 -0.40 0.00 0.40 0.80 1.20
RERL PART

LOCUS OF CENTERS PLOT: 2,3 ENTRY: KMP 1, 1/G(0), 6/25/78.

[NPUTS = 4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11

2.00

T T T, WU



ol

160

Figure 119

Eams B A |

(-]
- -4
il o
;
£ ©

[
D—Du
i o
it -3
Q;v Q-
N ©
; 9
. e
I !
i =
Er o

£

i e
o ot
d
! =
1 N
: o

A

s

)
b
. 1.0.40 -0.32 -0.24 -0.16 -0.08 -0.0C 0.08 0.16 0.2y 0.32 0.40
| . REAL PART _
i CéRDIHD PLOT: 4,3 ENTRY: KMP 1, 1/GiD), 6/25/78.
ﬁ’ INPUTS = Y4, STSTEM ORDER = 5, ANALYSIS TYPE = 11
it ) .




4 ALl .

2
13
H Figure 120
i
o
- = . .
i < - * + * + + +
i
I3 #
; o1 1
B!
-
I %
. n
HE o ) ]
“ o
o ¢ 1
[
(=)
"_D-. 4 4
<
3 o
@ 1y
e . -~ =0 _00cal N -
! o - o L S M - M
= Yo - =
)
3
e —c ] ‘
N = ]
!
| A
.
)
=
i N
?1 4 1
~
™
&4 :
{1
=,
: Q, T T T =T T T N T T
i -0.40 -0.32 -0.24 -0.16 -0.08 -0.:00 0.08 0.16 0.24 0.32 0.40
; ) REAL PART

LOCUS OF CENTERS PLOT: 4,3 ENTRY: KMP 1, 1/CI(0), 6/25/78.

INPUTS = U, SYSTEM ORDER = 6, ANRLYSIS TYPE = 11




I 162
¥ ' i
Figure 121
g} :
(]
. (]
; - - +
3
l’F g
; o !
«
gid -] i
(-] “*
l\ﬁ +
Py o+ b
<
[{<]
’_O'-
i -
P a
-8
a: .
§ ae
! =
! w
]
0 —e
b
éx‘.
) ©
‘i: =
“ !
< ]
o
‘; >
[P t\;.,
1
‘| S
: - ’ — . e
e '.2.15 K .25 Q.85 1.45 2.05 2.65 3.25 3.
¥ REAL PARRT
u . CRROIARD PLOT: 1,4 ENTRY: KMP 1, 1/G(0), 6/25/78.
- INPUTS = 4, SYSTEM OROER = 6, ANARLYSIS TYPE = 11 °




iR\

[ ]

aaae i e

@

163
' L4
Figs»re 122
@
i;
<
<
0,; —— - -+ e
<O
_:’
o qm 1
, -~
& ‘ £
= 1 T e
A !
& 1 g2 &
—:'] 1» 30'
=20
G
o J Y
EO- [ “gBOG
E W=l0 cSCU
Il
. © e
’{:'2.' . - - =0\ aopoy , =200(§ ) .
z - ,,
o #
£
e 1 1
(-]
l‘\..l o
rh [
&
—"- -
= o
(-]
=
¥ 1 1
&
o . V‘:
C: @
brd LS 1 | L @; L . -
1.2.15 -1.55 -0.95 -0.3% -0.25 0.35 ) s 2.0S 2.65 3.25 3.55
REAL PHAAT . :
LOCUS OF .’CENTEFSS PLOT: 1,4 ENTRY: KMP 1, 1/G0), 6/25&;?78
INPUTS = 4, SYSTEM ORDER = 6, BNSLYSIS TYPE = l\l—';
® 3

-



QFCT AR ey

N whgs §

poags

Sl

Figure 123

164

0.90

MAGINBRRY PART
0.0C

]
-0.30

-1.90

A

]
-~
.

«l
[+

-3.50 -2.70 -1.80 -0.9 .00 - 0.90 1.80 2.70

0 (¢}
REAL PART.

CARDIAD PLOT: 2,4 ENTRY: KMP 1, 1/G(D), 6/25/78.

INPUTS = U, SYSTEM ORDER = .6, ANALYSIS TYPE = 11

s e e e o coig o

i.50




¥ 3
%

e

b

g vy n=E T

165

Figure 124
. ]
,
- 1
)
vl
) : ﬁ?ﬁ% . }
.U‘ -—
1] 1
1
4.50 ~3.60 ~2.70 -1.80 -0.90 0.00 0.90 1.80 2.70 3.60
RERAL PARRT

LOCUS OF CENTERS PLOT: 2,4 ENTRY: KMP 1, 1/G(D), 6/25/78.

INPUTS = Y, SYSTEM ORDER = 6, ANALYSIS TYPE = 11

.S0



xangy.

-

e

s

[t sl
Ve

166

Figure 125

0.20 c.uo 0.5¢C c.8C {.00

-0.0C

MRGINARY PART

1
-0.20
'Y

,-l.00

-0.73

-0.19 0.0! 0.21
REAL PRAT

-0.59 -0.39

CARDIAD PLOT: 3,4 ENTRY:. KMP 1, 1/G(0), 6/25/78.

INPUTS = U4, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




b btk ¥
P 1

ety rele ¥

167

Figure 126

Q

< . "
8

o |

(=]

o

e 4

°

=

o

&
r—-CH t
o
@
.

[+
<
= ; n - - e B0 - .
=z .
o
N
e 1

o

=

e 1T

<

‘.’:

R 1

&

d |

(=]

S

~0.99 -0.79 -0.59 -0.39 -0.19 0.01 0.21 0. 41 0.61 0.5

‘ REAL PART )
LOCUS OF CENTERS PLUT:k 3.4 ENTRY: KMP 1, 1/G(0), 6/25/78.
INPUTS = 4§, SYSTEM ORDER = 6, ANALYSIS TYPE = 11




£

Srdrhin " oy
L S N

i

r

H, == H s

APPENDIX C

PLANNED CONTENTS FOR M.S. THESIS

BY J.G. COMISKEY




| TR
B »

R St |
e

Frasia LA 1 RoiTied
A N )

EoeRie 4

e

Eri-ornieit [ O |

Time Optimal Jet Engine Control

Using a Hermite Interpolation Model

TABLE OF CONTENTS

ABSTRACT

CHAPTER I:  INTRODUCTION

CHAPTER II: TWO-SPOOL TURBOFAN JET ENGINE MODELS
1 Introduction

2 Hierarchy of Models

3 Linear Affine Power Law Model

4 Hermite Interpolation Model

5

Summary

CHAPTER III: LINEAR AFFINE POWER LAW MODEL 3

3.1 Basic Approximation Approach

3.2 Formation of A(x,u)

3.3 Approximation of g(u)

3.4 Computational Algorithm —
3.5 Straight Linear Affine Model

3.6 Discussion and Numerical Results

CHAPTER IV: QUASI-HERMITE INTERPOLATION MODEL 4

4.1 Introduction

4.2 Hermite Interpolation for a Single Variable

4.3 Problems of Hermite Interpolation in m~Dimensions
4.4 Quasi-Hermite Approach for Two Controls

4.5 Formation of A(x,u)

CHAPTER V: MODEL RESPONSE COMPARISONS

5.1 Introduction

5.2 Program Layout

5.3 Steady State Comparison Models 1 and 4
5.4 Fuel Step Response for Models 1, 3A, 3B, 4

CHAPTER VI: SUCCESSIVE APPROXIMATION DYNAMIC PROGRAMMING

Introduction

Time Optimal Control Problem

Refinements of the Dynamic Programming Method
General Program Structure

[« a0« W< W N
S WN

168




169

i 6.5 Verification of Longenbaker Model 1 L 2 Unconstrained
6.6 Verification of Longenbaker Model 1 L 2 Constrained
¥ CHAPTER VII: OPTIMAL FEEDBACK CONTROL LAWS
7.1 Introduction
7.2 Model 3A Constrained
7.3 Model 3B Constrained
7.4 Model 4 Constrained
| CHAPTER VIIXI: CONTROLLER SIMULATIONS
8.1 Introduction
8.2 Model 3A with 3A - Controlier
8.3 Model 3B with 3B - Controller
8.4 Model 4 with 4 - Controller
P 8.5 Model 1 with 3A - Controller
; 8.6 Model 1 with 3B - Controller
8.7 Model 1 with 4 ~ Controller
¥ CHAPTER IX: SUMMARY AND CONCLUSIONS
APPENDIX A: LINFAR AFFINE POWER LAW PROGRAM
APPENDIX B: MODEL 3 Ax GENERATOR PROGRAM
APPENDIX C: MODEL 4 Ax GENERATOR PROGRAM -

APPENDIX D: GENERAL ,SYSTFM SIMULATOR
APPENDIX E: TRANSIENT RESPONSE PLOT PROGRAM
APPENDIX F: DYNAMIC SUCCESSIVE APPROXIMATION PROGRAM

APPENDIX G: INPUTS FOR DYNGEN SIMULATOR




4
3

APPENDIX D
‘J.G. COMISKEY M.S. THESIS
CHAPTERS I-V

e

SO R e ) TR
mgkwg?‘rw e Stk Bt oo e b W S e e e

n
ISRE:




o [ Wi 5

[ o

Lnagnee

Eoigancss sty

. bt

e |

CHAPTER I

INTRODUCTION

The scope of this work will be to make preliminary efforts to generate
@on—linear numerical models of a two-spooled turbofan jet engine, and sub-
ject these models to a known method of generating global, non-linear, time
optimal control‘laws. The models will be derived numerically, directly from
émpirical data, as a first step in developing an automatic modelling proce-

dure.

A hierarchy of models, including analytical and numerical models, will
be established. The numerical models will be described in detail, and their
step responses compared to those of the hypothetical jet engine from which
they were derived. A method of generating time optimal control laws will be
explained, programmed, and applied to the numerical models. Finally, these

control laws will be tested, both on the models from which they were gener-

ated, and on the hypothetical jet engine.

This is the third in a series of similar works, whose ultimate goal
is the development of an automated modelling method. Even though DYNGEN,
an elaborate mathematical model, already exists, new models were developed
for two reasons. First, DYNGEN uses too much cpu time to be called re-
peatedly by an iterative method such as dynamic programming; a smaller,
faster model is required. Second, DYNGEN assumes the role of a physical

plant in this work, since access to a real jet engine is impossible.

In his paper, Basso [9] uses two methods of generating optimal control

sequences. The first is the dynamic programming successive approximations

170
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technique. This actually generates a control law, from which a control se-
quenée can be derived. The second is a modified Fletcher-Reeves conjugate
gradient method. This method generates a control sequence that drives the
system to the target in minimum time. The modification consists of the in~

troduction of constraints into the original method.

His findings were that both methods yielded similar results, and that
tﬁe number of computations necessary to solve a problem increases geometric-
ally with syséem order for dynamic programming, but only arithmetically for

the conjugate gradient method.
Longenbaker [1] applies the dynamic programming method to several models
of the F-100 engine. His models include several linear systems, and one

non-linear, analytical system of differential equations derived from phy-

sical and mathematical relationships among the state and control variables.

 Longenbaker éoncludes that the agreement between this~;nalytical model and

the DYNGEN simulator is not strong enough to justify great faith in the

control law generated.

In this paper, the same dynamic programming method is applied with a
modification introduced to reduce cpu time, to several numerical, non-
linear models of the F~100 jet engine. The conclusions are that better
numerical agreement with DYNGEN is achieved by this numerical models than
Qy Longenbaker's analytical model, with a much smaller expenditure of
éan hours. However, complex interpolation techniques cause these models
go use extravagant amounts of cpu time. Either larger data bases and less
interpolation, or a more economical technique like Basso's conjugate éra—

dient method should be explored in future work.
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CHAPTER 1II

WO SPOOL TURBOFAN JET ENGINE MODELS

2.1 Introduction

A form was chosen for the system model, which isolates static and dy-
namic portions of the system behavior, so that each of these can be modelled
independently. Several methods of modelling these two portions were tried,
resulting in a hierarchy of models. Fach model was subjected to the same

analysis for purposes of comparison.

In this chapter, the system model form is derived, and the modelling

methods outlined. These methods will be treated in detail in later chapters.

2.2 Basic Approximation Approach [2]

Now consider a method for obtaining nonlinear models. Let

-~

x = f(x,u) o (2.2-1)

with x an n vector and u an m vector denoting a dynamical system such
as a jet engine, in which the state variables and parameters u remain pos-
itive throughout the system operation and there is a function g(u) such

that for each equilibrium point
f(x,u) = 0 = x = g(u) (2.2-2)
The steady state system analysis iInvolves the study of tﬁé function g(u).
We propose to appro#imate the system (2.2-1) by
k=AGx0)lx - g(w)] | (2.2-3)

.

where A(x) 1s a square matrix which varies as a function of x. Notice

that if X, is an equilibrium point of (2.2-1), Xy = g(uD), then a lin-
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earization about this equilibrium point results in the linear system
§x = ADGX + BD6u (2.2-4) '
and a linearization of the approximating system (2) at X = g(uD) results in

6% = A(x ) 8x + [-A(x)) g-g (up) I8 (2.2-5)

Hence, the linearization of (2) will match the linearization of (1) if and

only if

* = - -G-g- = . -
‘ A(XD) AD ’ AD Su (uD) BD (2.2-6)
Also, 1if AD is invertible, as is often the case for jet engine models,
equation yields

) -1
—6—3 (uD) = -AD BD (2-2-7)

These static and dynamic data are available from known algorithms [7],
leaving only the choice of interpolation methods for generating non-linear

models.

2.3 Hierarchy of Models
This work has resulted in the formation of a hierarchy of models, each

a step in the development of an automated modelling method. Théy are clas-

sified as follows:
Model 0: The actual F-100 type engine (hypothetical)

Model 1: The DYNGEN [6] simulation program, coded with data presumed to
have been taken from experimental measurements on Model 0. This
ﬁodel solves 16 nonlinear differential equations and uses data
maps and thermodynamic tables which cannot be expressed anaiy-

tically.
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Model 2:

Model 3A:

Model 3B:

Model 4:
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The Longenbaker [1] model, a 5th order, nonlinear, analytical mod-
el. It includes the 5 state differential equations which govern
the dynamical behavior of the system, along with 20 algebraic
equations which express the relationship between various engine

variables. This model is discussed in detail in [1].

The linear affine power law model, which is a fit of steady state

data to a selected form with linear, nonlinear and constant terms.

v

The straight linear affine model, generated in the same manner

as 3A, without the non-linear terms, to serve as a comparison.

The Quasi-Hermite interpolation model. Also a fit to steady
state data, this model employs value and derivative matching

over a two dimensional subset of the state space.

Models 3 and 4 will be outlined briefly here, and"detailed in later

chapters.

2.4 Linear Affine Power Law Model [2]

This model approximates the system by interpolating values of A(x,u)

from values of the matrix at two data points, and by generating values, for

g(u) by a fit of the form:

€34 41

gi(u) =¢34y + iUy + C5qUy T U, + Coq ° 1=1,...,5 (2.4-1)

to the same two data points.

2.5 Quasi-Hermite Interpolation Model

This mecdel approximates the system by interpolating values of Akx,u)

from values of the matrix at five data points, and by interpolating values
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of g(u) from 15 data points using a two dimensional adaptation of Hermite

interpolation. This model represents new work for this thesis.

2.6 Summary

_ Having chosen to express the model in the form:
% = A(x,u) [x - g(u)] (2.2-3)

it remains to derive the function g(u) and the matrix A(x,u) to corres-
pond to empirical data. The function g(u) represents a mapping from the
control space U into the state space X which yields steady state values
for given controls. Empirical data available (i.e. DYGABCD output) includes
both steady state values, and derivatives at those points with respect to
the various inputs. It is desirable to choose functions which match as

many of the available data as possible.
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LINEAR AFFINE POWER LAW MODEL 3

3.1 Formation of A(x,u) ) [2]

Values of A(x,u) are interpolated from the values of AD = A(xD,uD)

{f and A, = A(xw;uw) in the following manner:
. . | | xD oy . - xw
S A(x,u) = A diag( ) + A diag(l—1 (3.1-1)
L _ f *p3 T *wj % "0, ~ W3

where diag(*) is a dlagonal matrix which causes the jth column of A(x) to
be interpolated linearly between the jth columns of Aw and AD with xj

as the interpolation variable.

3.2 Approximation of g(u) [2]

The parameter vector u is presumed to be made up of physical control

variables, and parameters such as fuel flow and nozzle area. The equilibrium.
functioh is to be approximated in a manner such that both the equilibrium

values and the linearizations of the approximating system (3) match those

of system (1) at both X and Xy This requires then that
glup) = x,  glu) = x, . (3.2-1)

A and aliso , .

Sg _ 21 Sg ! _
su (Up) = ~Ap By b gy () = -ALBy . (3.2-2)
' The method we propose here is to approximate each scalar component gi(u)

1 ‘

by of g(u) by a lipsar affine power law form

‘ol Cmt2 “mrim

g(u) = ¢ uy S e v +c

1 M(3.2-3)

2m+1u1 u2 vee “m + c2m+2

for which the jth partial derivative is

I
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Now, if the variables are normalized and scaled such that
u, = (1,1,...,1) = 1 u, = (a,a,...,a) = a

then, the conditions of (11) and (12) can be put in the form

Sg. . . .
kj = 3;; @ = ¢ + c2nﬁi¢nﬂj
g ' Yo, -1
' I § _ k]
Kot u, @) = e5 * eppy ey

Tomp = 8@ = Yoy ey + ey

Je
k ,“Hj + c

oty = 8@ =ale, +ey a 2mt2

and summing the first two of these over j yields

ij = ch + Comtl chﬂj
kaf = ley + ey

Komts = €5 * Comi

Kopep = aley + cppyga

which is of the form
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(3.2-4)

(3.2-5)

(3.2-6)

(3.2-7)

(3.2-8)
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which, incidentally is the m=1 condition also. This set of transcendental
equations is solved numerically for Tys Tys Tgs T, and (3.2-6) is then
used to solve for each cj. In the event that (3.2-8) has no solution, a
best fit is made on the second equation by varying T, while the other con-

ditions are satisfied exactly.

3.3 Computational Algorithm ‘ [2])

In this section, we present an algorithm which serves to automate the

process of finding a nonlinear model for a system
x = f(x,u) . (3.3-1)

to be approximated from xD’uD’xW’“W’AD’BD’AW’BW’ by ainormalized system.
The algorithm will automatically perform the normalization and, hence, ac-

tually approximate the system

% = £(2,0) ~ (3.3-2)
where ﬁi = xi/xD ’ ﬁj = uj/uD . The approximating system is of the form
i 3
= AR [2-6()] (3.3-3)
where g
‘o - A *Di . %y "A‘wi '
A(R) = Aw diag —— + AD diag 7—F— (3.3-4)
R Ry R R,
and ci
_pd i mH i
gi Ecjug tey i T u§ + Corpo (3.3-5)
where ug - ajﬁj + Bj' (3.3-6)

Algorithm I.

1. Input: xD’uD’AD’BD’m’n’a’E’XW’HW’AW’BW

where m = number of controls

n = number of states
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2,

3.

5.

7.

Calculate:

A

Aﬁ = diag(l/xDi) ADdiag(xD )
i

L3

A= diag(l/xni) éwdiag(xbi)

BD = diag(l/xDi) BDdiag(uDi)

B, = diag(l/xni) deiag(uni)

Calculate:
a, = (l-a)uD /(uD " )
i I 3 1
B, = (au_ ~u )/ (u, -u_. )
D, W D, %W
1 5 '3 Py Wy
Calculate:
i o R i
ky = Ay B, Komtr =1 = 2Di 3
k= (-a~1p ) Wl - / = i
wh T AT By Komep T Xy /X)) = Ry
i i -1
Calculate:
m m
i i i
s 2 8, = Z k
17 G 27 44y Py
i
i i i i
$2 = Konn S4 = Komeo
Go to Algorithm II.
: i 1 1 i
Send: sl, Sys s3, s4, a, € .
Receive: ri, r;, ré, ri, Y
Calculate:
1 _ 4 1 _ 1 :
omtl = T3 Comt2 = T -
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= l’cto’m

= 1,...,n

= ],...4n

= 1 eee,m
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(a -1)

8. Output:
i 1
€10+ Com2
“i’ Bj
iﬁ”i' gwi
Ay Ay

Algorithm II.

1. Input: 51,52,33,34,s,a

2. Calculate:
cs - 5375
Py " %1715

]

375
 1-a

3. Minimize by line search:

a-1

ax-l

a-1l.

X -

for -10 < x < 10, x#0, x¥1

4. Calculate:
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1 - 1,...,!\

31=1,...,m

{f=1,...,n

L e

1 r, -1
Y= ;(sl-s2 + r2r3(a -1))
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Ty
S, = asy - r3(a -a)

1l-a

I

5. Return to Algorithm I.6

3.4 Straight Linear Affine Model

As a check that the Power law term has significant effect.on the function
g(u), a straight linear affine approximation to g(u) was generated. This
model is then subjected to the same analysis as models 3A and 4.

'
3.5 Numerical Results [2]

The algorithm of the previous section was applied to data obtained

using DYNGEN with Xp and u_, specified as in Section 2. An off-design

D
point was obtained using U, = (.72727, .72727), with the resulting norm-

alized state iw = (.v000, .7897, .7381, .9401, .9454). The normalized A

and B matrices are —
pr -7 - —
-3.8 -1.277 2.067 -=1.152 1.448 -.00259 .3553
~ 2.748 -5.39 1.585 -1.991 1.071 - .2116 -.31618
AD = 377.9 49,51 -264.9 86.807 78.91 Bw = 12.54. -13.774
- 31.26 139.39 -6.269 -88.69 27.83 -.6201 -99.3
-176.5 23.91 -10.27 <=37.4 ~246.7 157.78 6.84
(3.5-1)
~4.744 -1.3888 3.2468 ~1.4591 1.1969 -.04546 .0013'..
" .82.86 -26.726 2.5585 -1.8609 .45548 R .0086 -.0121
Aw = 475.73 137.55 -328.91 27.791 91.495 Bw.= 2.434 -.613
-50.103 110.91 63.188 ~116.69 8.2883 | .67865 -97.467
-186.77 -67.682 -41.681 24.586 '243'23_4 203.44 '6475§J

(3.5-2)

Using the parameter value a = .7, the ci coefficients which specify the

|
equilibrium functions g(ﬁ)i as in Section 3 are given by the matrix
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24267 -.00218 1.90082 8.09916 .02864 .73088
1.01593  .85407 .89872 .66919 -.81879 -,05121
C = | .73445 .10133  6.90586 3.09409  .011495 .15272 (3.5-3)
«77234  -,35905 2.45867 2.87415 -075198 .66191
+39503  -.27262 -3.44682 13.4468 .01838 .85921

This matrix together with the values a=1.1 and B8=0.1 and the matrices

)

AD and Aw completely specify Model 3A.

Another model which we will call Model 3B is easily obtained by using

ailinear affine approximation to £(4) such that g(ﬁD) = iD’ g(aw) = ﬁw.
Model 3B is specified by a =e™), &= 2.31778, B = -1.31778 and the co-

efficient matrix

.0028 1.0 1.0 0. .8418

.1707 1.0 1.0 0. ..6674 :
-.1208 1.0 1.0 0. .5857 (3.5-4)
-.49313 1.0 1.0 0. .9053
-.2099 1.0 1.0 0. .9137
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CHAPTER IV

QUASI-HERMITE INTERPOLATION MdDEL 4

4.1 Introduction

A known method for matching a polynomial to the values and derivatives
of a function at several points is Hermite interpolation. However, tﬁis
ﬁgthod is formulated in general only for the one dimensional case.[3] Some
works exist which apply this method to an n dimen§ional case, but only
uﬁder certain narrow restrictions. [5] The single variable case, .its restricted
aﬁplication in n dimensions, and a modified application in two dimensions,

are discussed in this chapter.

4.2 Hermite Interpclation for a Single Variable

This presentation of the Hermite interpolation method is drawn from
Hildebrand. [3] His notation is preserved, as closely.as possible, here

and in the resultant computer program.

If the values of g(u) are known at m points, u = ul, uz,...,um,'
define: '
7(u) = (o - o) - u)...(u - u ' (4.2.1)
and:
) = i”(“) - (4.2.2)
(u-u™) ©°(u")
with the properties:
rwd) =0 3=1,...,m (6.2.3)
and: | -
2wy = 659 L=l..cm  J=1,...m (4.2.4)
183
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where Gij is the Kronecker delta (611 =1, Gij =0 for all 1 # j§).

With these defined, the polynomial of degree m-1 which takes on the

values g(ul), g(uz),...,g(um) can be expressed as:

Bk k
y(u) = kxl £ (w)gu) (4.2.5)

Suppose both g(u) and g~“(u) are known for u = ul, uz,...,um, it

is possible to determine a polynomial of degree 2m-1 with these values
and derivativés. We shall assume this polynomial is expressible in the
form:

' m m
y =} Bw g + T 55w g ) (4.2.6)
k=1 k=1

where hi(u) and Ei(u), i=1,...,m are polynomials of maximum degree

2m-1. The requirement y(uj) = g(uj) will be satisfied if:

nied) = 855 and il =0 = (4.2.7)
and the requirement y’(uj) = g‘(uj) will be satisfied if:
nled) =0 ana Fid) - 6ij (4.2.8)

Since Kl(u) is a polynomial of degree m-1 which satisfied (4.2.4),
then [Zi(u)]2 is a polynomial of degree 2m-2 which satisfies (4.2.4)
and whose derivative is zero at uij when 1 # j. So if hi(u) and ﬁi(u)

are polynomials of degree 2m-1, then:
niw = rfw et wi1? and wlw = stwretwi? (4.2.9)

where ri(u) and si(u) acre linear functions of u, so that (4.2.7) and
(4.2.8) will be satisfied when 1 # j. These four conditions, when 1 = 3

then yield:
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el =1 rleh) 12 20wh =0 (4.2.10)
stwh) =0 st =1 (4.2.11)

from which follows:
r'w = 1-2 2! @ - o' and stw = (- ub) (4.2.12)

So, by combining (4.2.6), (4.2.9), and (4.2.12) we obtain the desired poly-

nomial in the form:

. m m
y = J h5@) g + T 5w g @) (4.2.13)
k=1 k=1
where:
bl = el i? and Al = ston et 1? (4.2.14)
and:
) =12 2 ) @ - vl) and st = u - o) (4.2.15)

~~—

This result is knqwn as Hermite's interpolation formula, or the formula for

osculating interpolation.

4.3 Problems of Hermite Interpolation in n Dimensions

If Hermite Interpolation were to be applied in n dimensions, the
task would be to determine m sets of n+l polynomials with pfoperties sim-~
ilar to h and h. Specifically, if we assume that the desired polynomial

can be expressed in the form:

m n m .
y = J w5 g + § ) i;J“<u)-‘-‘-83<u“) (4.3.1)
k=1 j=1 k=1 du

then these polynomials must have the properties:

and Eik(uj) =0 _(4.3.2)

ij

hlid) = s

and:
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i —jk
$h %y =0 anda & " =5 . (4.3.3)
Su Su -3
3 k|
corresponding to the conditions (4.2.7) and (4.2.8). However, the further
condition:
=1L
$h ¥y =0 forall 1+#k ' (4.3.4)
Guj )

musf also be satisfied. This final conditién cannot be satisfied by the
ﬁolynomials described in the previous section. 1In [5],ANiijima treats a
sp;cial case, in which the existence of certain orthogonal polynomials al-
lows the application of Hermite interpolation to carefully chosen data in

two dimensions. However, this method is not universally applicable to ar-

bitrary data.

4.4 Quasi-Hermite Approach for Two Controls

-—

Given that no general method of Hermite interpolation in two variables
wés found, the following adaptation of the one dimensional case was applied.
The value of control u, (nozzle area) was held constant at the design
point value, and Hermite interpolation was applied to a set of points gen-

erated by varying u., (fuel flow). Both values, and derivatives with re-

1

spect to u, were matched at these data points. Then, for each value of

1
ui, a value A was chosen, and control u, was varied by this amount,
both plus and minus. A function was then chosen to match values at these
ne& points, without altering the function at the original points. The re-~
sulting polynomial is of the form:

m m
y() = J hk(ul) g(ui,u;) Gk(uz) + 3 ﬁk(ul) g‘(u?,u;) (4.4.1)
k=1 k=1
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where:

k
K g(u?, u; + Ak) - g(ul, u; - Ak)
0 (u,) =1+ u
2 2 Ak g(uk ul) 2
1’72
g(uk,ul + Ak) + g(uk,u1 - Ak) - Zg(uk,ul)
1’72 1’ 2 1’2 2
+ 1 %2 L& L = (uy)
2(07) g(ui;ué)
This function has the property that:
k _ = W1
) (uz) = 1 when u, = u,
and:
k 1 k 1
Gk(uz) = g(ul,u2 + Ak)/g(u ) when u, = u, + Ak
k k 1 k k 1 k
8 (uz) = g(ul,u2 -~ A7) /g(u) when u, = u; - A

and since hi(uj) =3§

1 k
“z.i A,

13’

rivatives with respect to u

4.5 Formation of A(x,u)

Having chosen an approximation to g(u),

187

(4.4.2)

(4.4.3)

(4.4.4)

the resultant polynomial will match values and de-

1

along the u, = u,

for interpolating values for A(x,u)

1

—

to complete the model.

line, and values at u2 =

it remains to choose a method

Lagrangian

interpolation was used to match values only at three points along the u, =

1
)

line, and

bodied in the

Al
A3

A5

_ .1
at u = (ul, u,

1

+ Al). The results of this approach are em~

following equations.

=

A(x,u)
A(x,u)
A(x,u)
A(x,u)

A(x ,4\5)

at

at

at

at

at

u

[

]

it

First define:

(“i’“é)’ X = g(ul)
(ui,ui), X = g(u3)
(Ui,ug), x = g(us)

11 1 _ P
(ul,u2 + A7) ,x = g(u)

= Al)sx = g(uM>

(u1 ul
1’72

- (4.5.1)
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PR =[xy - XD 0y = A6 - Gl - D)
RO = [Gx - XDy = DG - xhed - DT
FRS = [(x, - ¥ (x, - XD/ - DS - 1))
FRP = [(u, - up)(u, = (u - A)1/[26D)7]

FR = [(, - (u} +20) (@, - () - AD1/1-(ahH?)
PR = [(uy - (] + ) (o, - WD 112D

Aij(x,u) = [FR1(Al,,) + FR3(A3ij) + FRS(ASij)]

ij

X [FRP(APij/Alij) + FR + FRM(AMij/Alij

)]
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. (4.5.2)

(4.5.3)
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CHAPTER V

MODEL RESPONSE COMPARISONé

5.1 Introduction

Before subjecting the models to the Dynamic Programming Algorithm,
some effort was made to examine their closeness of fit to DYNGEN dat;.
Steady state values of models 1 and 4 are compared, and fuel flow step re-
sponses of models 3A, 3B, and 4 are plotted in comparison to DYNGEN responses.

A description of the step response program is also included.

5.2 Steady State Comparison of Models 1 and 4

The function g(u) represents a mapping from the contrul space into
the state space, relating fixed controls to steady states. It is not only

useful in the model form:
¥ = A(x,u)[x - g(u)] = (5.2-1)
but should also approximate the oparating line of the plant.

Such a comparison is made here between g(u) for model 4 -and the
D?NGEN simulator. Nozzle area was held constant; as fuel flow was varied
f#om 9.0 to 1.1 by 0.02. All values are normalized. 'Percentage error is
also computed, and shows the model's excellent agreement in its range of

accuracy, and rapid deterioration outside that range.

189
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l Table 5.2-1
i X(1) = NC
| g fuel flow DYNGEN : Model 4 2 error
i 0.90 .97275 .97288 0.01
z 0.92 .97761 .97790 0.03
i ¢ 0.94 .98326 .98326 0.00
| 0.96 .98887 .98892 0.01
r 0.98 .99445 .99461 0.02
{ i 1.00 1.0000 1.0000 0.00
| 1.04 1.0102 1.0113 0.11
ﬁ- 1.06 1.0152 1.0230 0.77
2. 1.08 1.0201 1.0513 3.06
i 1.10 1.0244 1.1195 9.28

3
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Table 5.2-2
X(2) = NF
fuel flow DYNGEN Model 4 % error
0.90 «97132 .97099 -0.03
0.92 +97883 .97817 -0.07
0.94 g98427 .98425 0.00
1.00 1.0000 1.0000 0.00
1.02 1.0046 1.0011 -0.35
1.04 1.0091 98046 -2.84
1.06 1.0136 .89094 -12.10
1.08 1.0180 .62787 -38.32
1.10 1.0221 -,013230 -101.29
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Table 5.2-3

X(3) = P4
fuel flow DYNGEN Model 4 % error
0.90 .92038 92042 0.00
0.92 .93623 .93633 0.01
0.94 .95225 +95225 0.00
0.96 '.96821 ‘ + 96824 0.00
0.98 .98413 +98434 ; 0.02
1.00 1.0000 1.0000 ; 0.00
1.02 1.0148 1.0125 : -0.23
1.04 1.0295 1.0136 =1.54
1.06 1.0441 .98374 . =5,78
1.08 1.0587 : .88135 -16.75
1.10 1.0727 .62822 -41.44
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T Table 5.2-4

.. X(4) = P?7

i

1

ol

i _

' fuel flow DYNGEN . Model 4 : _ % error

v 0.9C .94118 .94109 -0.01
Q.92 .95358 .95340 -0.02
0.94 .96532 .96531 ; 0.00
0.96 97697 . .97693 : 0.00
0.98 .98853 .98856 0.00
1.00 1.0000 1.0000 0.00
1.02 1.0107 1.0081 -0.26
1.04 1.0213 1.0013 -1.96
1.06 1.0319 ©.94911 -8.02
1.08 1.0425 .78384 -24 .81
1.10 1.0527 .37203 -64 .66

i

.
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&‘é : Table 5.2-5

X(5) = U4
i fuel flow DYNGEN Model 4 % error
J, 0.90 . 96625 96624 0.00
0.92 .97304 .97308 0.00
T 0.94 «97992 .97992 0.00
i 0.96 .98670 .98665 -0.01
. 0.98 .99339 299320 -0.02
7 1.00 1.0000 1.0000 0.00
§ 1.02 1.0074 1.0089 0.15
1.04 1.0147 1.0248 1.00
” 1.06 1.0219 1.0573 3.46
§ 1.08 1.0290 1.1231 9.14
1.10 1.0365 1.2494 20.54
{
TN
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/ model 4 is a better fit than either 3A or 3B.
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5.3 Program Layout

The method chosen for generating time response data was a Euler in-
egfation with a user varied time step. After specifying initial controls,
the user provides a control sequence of time step, duration (in iteratioms),
an& controls. This structure allows the user to provide smaller time in-
créments for the steeper portions of the response, and to alter the con-
trols during the response. The step response program creates a file of
time~state n-tuples, which are plotted against similar DYNGEN data by an-

cther program.

5.4 Fuel Step Response for Models 3A, 3B, and 4

Each of the three models was subjected to a fuel flow step from 0.8

to 1.0, and the response plotted against the same response by DYNGEN.

These graphs show that all three models match DYNGEN closely, but that

-—
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