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OBJEC',IVES AND RECOMMENDATIONS

Present day space operations support the service segments

of the national and world economies. Astounding advances have

been made over the past twenty years in the development of space

tools for observation, communication and exploration Major

advances are forthcoming which will be characterized in part by
a widening and increasing occurrence of direct connections between.
terrestrial individuals and space hardware. However, an economy

" capable of directed original growth in potency must be self-&
t

sufficient• It must be supported by the more fundamental

materials economy. The creation of materials economies i_ the

industrial revolution which has a 400 year history. Keys to the

development of a materials economy are the availebility of matter

to be worked, energy to do the work and ski_l to use energy to

mold matter to new uses and combinations. Developlaent of a

s.pace materials economy or true space industrialization is strongly

inhibited by the extremely high costs of obtaining matter from

earth with which to work in space. Solar energy is clearly avail-

able to do work in space. The moon, and possibly certain asteroids,
,w

are primary sources of raw materials for large scale use in space.

• Space systems have been proposed in detail which can provide

large quantites of lunar and eventually asteroidal materials at

low unit costs ($/kg) for industrial use in cis-lunar space•

In this study we examine the application of available

terrestrial skills to the gathering of lunar materials and the

processing of raw lunar materials into industrial feed stock. We

, find that much terrestrial technology can be transferred to

'i
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the gathering of lunar materials and the processing of raw

: lunar materials Into industrial feed stock. We find that much

terrestrial technology ca. be transferred to industrial operations

i in space. Immediate development of plans and operations to make

use of lunar materials in the IgSO's in space Is appropriate

and feasible from the standpoint of gathering lunar surface

Materials and processing them in space. Planning for and the

creating of a materials industrial econom_ in space can be

initiated now. Major immediate objectives, which appear

achievable, are to decrease the complexity of the physical systems

and the capital expenditures needed to establish the first space

industries. Space industrialization is technically feasible.

Jur challenge is to craftily employ the skills available

to us in our university, industrlal/commercial and government

organizations to create the initial materials econom_ in cis-lunar

space for a minimum investment and in a minimum time. Now is )
i

the time to exploit the accomplishments resulting from this )
(nation's lO0 billion dollar investment in space, one fourth of

t
, that in lunar operations to produce a viable materials economyf

in the cis-lunar space.

Q
't
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II
_' I. EXECUTTVE OVERVIEW

_ A. INTRODUCTION
7"

_: _ncorporation of extraterrestrial n,aterials into large

space structures and products for the materials and service1'2

industries requires the introduction of two new planning elements

into the development of the overall space system which are

different from the complete supply of all materials from earth.

These new elements are: (1) acquisition of the raw materials

from the moon, earth approaching asteroids or other materials

sources and (2) the physical and/or chemical processing of the

materials into forms suitable for the utilization by downstream

industries. Table I presents seven qualitative arguments for the

use of extraterrestrial materials.

In this investigation we have focused on the utilization

of ma'_erial from the moon because the characteristics

of soils, rocks and data returned during the Apollo program

have been examined in great detail (>15,000 man years of

research). An extensive, well indexed and reviewed literature

exists from which specifi_ engineering approaches and problems

can be accurately defined for the acquisition and processing

of the soils. 3 In addition, over 1,500,000 man-years of uell

documented technical effort was accumulated during the Apolio,

Skylab, Apollo-Soyuz, and Space Shuttle programs with resFect

to creating and operating extensive manned activities in earth

orbit, cis-lunar space and on the lunar surface.

a

I
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_, Earth approachiwlg asteroids will at some point in the

future be an important source of industrial material for use in

space• One can expect to obtain a greater range of materials : _

from a number of asteroids than can be obtained from the low

latitude lunar soils 3,4,5 However, we do not know in detail

the bulk mineralogy or chemical composition by indirect obser- _

vations of any of the asteroids. Detailed systems planning

and analysis for asteroid use is more challenging pending

direct analysis• It is not unreasonable that early return

%

i to the vicinity of the earth of large quantities of asteroidal

J
materials may constitute a portion of the early exploratory

phase. Immediate utilization of asteroidal mass for radiation

' protection, reaction mass or other direct functions can occur

on return. Thereafter chemical processing schemes c_n be

brought into operation.

The "Extraterrestrial Materials Processing and Cosntruction"

program has focused on the following major tasks:

(1) Review the available literature on lunar soils and

rocks and identify one or mo_e chemical processes

by which the major oxides and chemical elements can

be extracted. A critical review was also conducted

on previously proposed p.)cessing schemes and their

limitations and advantages were identified.

i
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(2) Applicability of terrestrial knowledge of glass and

ceramic production technology to the production of

lunar glasses and ceramics was investigated.

{
_. (3) Gathering of the soil on the lunar surface by means

i of excavation equipment was studied in terms of

_ terrestrial experience with strip mining operations
| •

on earth.

(4) The application of electrostatic benefication tech-

niques was examined for use on the moon to minimize

the quantity of materials requiring surface transport

and to optimize the stream of raw materials to be

transported off the moon for subsequent industrial

use,

(5) The Standard Industrial Categories (SIC's) of the

United States' ecnnomy were examined for 1967 and 1972

to determine which SIC's contained items producable

in large part or partially from lunar materials. The

_, average intrinsic cost ($/kg) of all the products in

each SIC was calculated. The total energy of production

of each SIC (billions kilowatt hours),was determined.

The study provides the first qualitative feel for

which terrestrial industries initially might be

adaptable to operate in space due to considerations

of available raw materials, intrinsic product value

($/kg) and sector energy consumption.

1979021033-019
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t

Major results of the studies are summarized in Table II ' _

and are described in the following pages. The study did not

consider the various means which have been proposed to eject

.) material from the lunar surface into space or the fabrication

of _oods from the chemically processed industrial feedstock

except for suggestions of a few interesting potential products.
J

Attention was given to the possible alloys that could be produced

from lunar materials and from lunar materials combined with minor

, or trace alloy elements from earth. Finally, specific recommen-

dations are made for experiments and theoretical investigations

I which would provide key information for the planning of base-

line or reference systems for the chemical processing of lunar

I soil. Development plans to achieve those systems early in the
{

shuttle era are presented. The results of these studies are

in preparation for publication in the scientific, engineering and

i business literature. 6'7'8'g
i

We will examine in the remainder of this executive summaryr

why the moon constitutes not only a suitable reservoir of raw
materials for the construction of space power systems (SPS) but

i why it is also well suited to meet many of the major materials

needs of a general industrial economy. Specific chemical

processing systems selected for further study as appropriate to

the space environment will be discussed and it will be pointed

out that the development time of one or more of these as a

t t

,j
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space system scaled to the prototype industrial level can be

, _ readily accomplished in the early Ig80's. Such prototype systems?

: can satisfy the materials needs of initial large space projects

in the late 1980's and early 1990's by processing of lunar

• materials. Results of the studies on glass production, lunar

strip mining and electrostatic benefication and technology transfers

to space will be reviewed. We will examine the various Standard

Industrial Categories to determine which contain input materials

and operations appropriate to space. Finally, the recommendations

for near and midterm studies to identify and develop specific

physical, *_,ermal and chemical processing systems will be

presented. It is very likely that the time and expense needed

for the development of the initial materials processing systems

will be very reasonable by the standards of aerospace hardware

development. This is due in part to the small scale of the mater-

ials handling requirements of the early large space systems which

are comparable to the prototype level in terrestrial industry

and in part to the considerable industrial experience available

for the production of similar processing operations.

B. THE MOON AS A SOURCE OF INDUSTRIAL MATERIALS

Dry and dusty, the moon appears to be an unlikely place

from which to extract the basic elements necessary to build

either specialized structures in space or a generalized space

economy. However, surface appearances are deceiving and the

basic elemental requirements of present terrestrial industry

are not generally appreciated. Terrestrial industry consumes

J,
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a wide range of clements in producing the outputs which make

I industrial societies possible. Demandite is a conceptual or
r synthetic molecule which is composed of the weight fractions
)

of the major elements consumed by industry (Figure I-l). Table
r

I-3 gives one estimate of the weight fraction of materials

used in the United States' economy in 1968. lO Notice that
|-

by weight 40% of the molecule is fuel for the industrial and " Ii

transportation industries. Space demandite must differ radically

i from this distribution because solar electricity must replace

hydrocarbons as the source of energy. This is similar to

what must happen eventually on the earth either for reasons

of depletion of the hydrocarbon reserves or possibly due to

II .:
carbon dioxide contamination of the atmosphere. Approx- i

imately 45-52% is useJ as building materials for roads, dar_s,

building and so on. Table II-4 (column 3) gives the weight

fraction distribution of elements in the demandite molecule
}

if the fraction of the hydrogen and carbon used as petroleum is

subtracted but the fraction (2%) used for plastics is retained.

Notice that oxygen, silicon and calcium mostly i,ithe form of

calcium carbonate (CaC03) _nd silica (SiO2) are the most common

elements. Metals constitute 5.7% of the molecule, agriculturally

related elements I%, and chemical processing elements 3%. In

column 4 we see the weight distribution of elements in the Apollo

15 soils. What is immediately apparent is that most of these

economically significant elements (0, Si, Ca, Fe, Al, Mg and Ti)

• can b,:extracted from the lunar so_l with no more than a factor

I
of two enhancement in concentration. The metals are especially
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? abundant. Elements requiring especially large enhancements

i
_ constitute approximately 03% of the demandite weight fraction

(C, Mn, N, Cl, and H) whereas elements requiring a factor of !

2.1 to I0 enhancement (K, P, Na, and Ca) constitute 8% of the +
• i

demandite weight fraction. Such enhancements are possible so i

i virtually all the non-fuel demandite can be acquired from lunar +i

" ' soils sampled to date It must be emphasized that these are ;+, •

the elements used in the production of new goods and process

elements and not the elements which are continuously recycled

in industry and agriculture such as those in water and air

(hydrogen, nitrogen and carbon).

Industry in space (Figure I-2) will certainly require a

different mix of chemical inputs. It is likely that fiberglass

and glass will replace concrete and stone as dominant components

in building materials for large structures. Lunar soil is an

ideal source of raw materials for such structures. The avail-

ability of solar thermal and electric energy will minimize

the processing costs in space of glass and fiberglass composites.

Extractive industry in space must continually design for

increasing closure against loss of the various process Fluids.

The economic pressures will be far stronger for process closure

due to costs of replacing lost fluids than in terrestrial industry

due to environmental and economic pressures. Research and

development of space industries wil.l have ma,_y direct applications

to terrestrial industrial practices and could assist in drastically

reducing the production of waste products in terrestrial industries

; by i,,troducing new practices. In addition, the elements which

t

T,i
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are most abundant on the earth such as iron,aluminum, silicon,

magnesium and titanium will be developed to perform an increasi:g

number of industrial roles due to higher costs of less available

elements. Thus, space industries can be expected to introduce

new products and procedures to terrestrial industry of the

exact character that will be needed in the future to circumvent

the effects of depletion of key minor element resources. It is

also foreseeable that the glasses, ceramics, and metals produced

in space may find markets on the earth not simply due to possible

lower costs but due to the elimination of the need to provide
i

process energy on the earth to extract and refine th_ materials.

In this manner a fraction of processing energy can be made

available for other purposes of higher social desirability.

Approximately 20% of the gross enc content of fuels ";sconsumed

in bringing the energy to the market place. This fraction is

rising steadily as less accessible or more polluting energy

sources are exploited. In the United States more than 20% of

the energy is expended in processing metals (8%), chemicals and

, allied products (8%), petroleum refining (4%) and production of

non-metallics (2%).12 These fractions could eventually

double as more materiels are extracted from minimal grade stocks

lO
on earth. Thus, power may be effectivel_ transported to the

earth at some future time, in large quantities, in the form of

the processing energy of refined industrial feed stocks from

extraterrestrial materials.

b

1979021033-024



_, I - 9
)_-
b,

C. SCHEMATIC OVERVIEW OF SPACE INDUSTRIALIZATION .-
i, GROWTH AND PRODUCTION

_ Figure I-2 is directly relevant to understanding the goals

• of the "Extraterrestrial Materials Processing and Construction"

program. In this diagram are identified the major functional

activities and where they occur, major mass accumulations and

flow rates, capital and through-put expenditures and critical i

recycle loops for the grow and steady state phases of a space li

Industry. Definitions of the various letters are stated in the
J

caption to figure I-2. 1

Major efforts have been directed in this study toward

understanding the chemical processing techniques that are

applicable to space operations which would occupy box (6) in

figure I-2. We have examined previous schemes proposed for

bulk chemical processing techniques, identified new processes ,"

and adaptations, estimated plant masses and efficiencies for one

particular design and explicitly considered the quantities of

materials which must be supplied for plant construction and

operation in the first and subsequent bootstrapped plants.
'4

q One consulting effort was directed toward the suitability

of lunar soils to the production of glass and ceramics (Box 6).

A second, the physical benefication of lunar soils into ore

concentrates by electrostatic separation devices (Box 4) was

considered because it may allow a low cost and low power means
t

to tailor the input of raw material into the transportation

system to the needs of the final industrial processes which are

dominant at a given time. Physical processing might occur on
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the moon prior to material ejection into space or/and in space

at the industrial center.

A third consulting effort focused on the scale of strip

mining activity on the moon which is required to support a mass

flow off the moon of 30,00_ MT /yr to 1,000,000 MT/yr in terms

of type of equipment needed, mining conditions, buildup of

equipment with time, power needs versus time and the type and 1
number of personnel needed. The mining study relates to the

activities in box (4) and on the moon (3).

The fourth r_port was a survey of industrial output on !

J

,(

earth in terms of the intrinsic value of goods produced ($/kg) !

and the total energy consumption of these goods (Billions Kw-Hr). i

The study was organized by Standard Industrial Categories as a

general guide to the types of industries which could be expected i

to evolve in space, the intrinsic value-added by such industries w

($/kg) and in the longer view to provide a guide as to what

large space industries might penetrate the terrestrial market

place.

. Several general observations concerning figure 2 are worth

making. The coefficients de (demandite make-up from earth),

Cp (processing fluids make-up) and C r (make-up loss of life-

support materials) should be minimized both in the start up and

steady operating phases of space industry. The loss of material

(l & I) should be minimized. The mix of material M' should be

adjusted to minimize tralsport requirements and processing

requirements. The demandite formulation can be expected to

change with time as different space product_ die emphasized and |

MT = metric tons
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as experience allows the development of more material

substitutions. It is not unreasonable to expect de < 0.05 to

O.01 to be achievable. As tee population in space increases

there will evolve habitable structures in which mater,al used

for radiation protection will also be used for structural

support of the internal atmosphere and other loads. Very

likely a fiberglass-metal composite will be evolved to provide

this combined function and will provide multi-story internal

walls (floors) for large habitats. Attention should be given

at an early stage to the construction of such units and the

recovery of the minor and trace e!eme.lt inventory From the

raw lunar materials which would be used for the wall or hull

construction. Fi,aliy, the volume and number of distinct regions

of space over which industrial _perations are performed should

be minimized in the early phases.

It has been estimated that lunar soil [M' ($/kg)] can be

obtained in the early phases of space industrialization for as

low as 15 to 30 $/kg. i3'14 With time, this cost should drop

to a small multiple of the cost of the electric power used to

eject material from the moon. As an example: If power could
I

be acquired in s_ace at 25 mills/kw-hr the minimum ejection cost

would be approximately 0.02 $/kg which is considerably less than

the cost of most terrestrial refined materials and finished gooas

and considerably less than the expected turn of the century earth

launch costs of 15-30 $/kg. However, in the earliest stages

of industrialization the space products can have intrinsic

values between 20 and 200 $/kg to cover the cost of lunar

F
i

. wf
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material acquisition and processing and capital investments

and still be less than the cost of launching the materials

from earth.

It appears on the basis of our chemical processing studies

that process fluids make-ups Cp S 0.005 can be achieved for

anorthosite processing. This study and previous studies 15'16

indicate that Ce(kg) # 3,103 tons must be placed in low earth

orbit to implace a supply base on the lunar surface which

can eject _k : 3"104 tons/year of lunar soil into space

initially and grow to an annual ejection rate of _k = 106

tons/year in five years,

D. SPACE POWER STATIONS AND MAIERIALS PROCESSING SCALES

Space solar power stations appear to be ideal candidates

for initial products because of their expected high intrinsic

value (200 to 400 $/kg, Ee in figure I-2) and the vast potential

terrestrial marke _ the order of one trillion dollars over the

next thirty years. It is now clear that space power stations

can be constructed of approximately 90% lunar derived materials

17
- even without redesign of the terrestrially based models.

With redesign this fraction might be increased somewhat and mo_e

importantly the fabrication processes might be substantially

simplified. An area of considerable possible advancement is the

rmolacement of the basis photovoltaic cell with photoelectric

emission devices which appear to be extremely easy to produce

in space from lunar materials and ideally suited to space

18,19,20
operation in a radiation environment.

I
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Using the terrestrially baselined SPS models, the

i. principal materials input requirments from the moon appear

r to be easily met and are given in table V for a 87,800 MT SPS

17
! with a projected 10 gigawatt ground output. Assuming
i

production of one SPS per year for the first few units the

output processing rates of lunar materials are 56,000 MT/yr

' for silica glass, 15,000 MT/yr for pure silicon, 12,000 MT/yr

: for aluminum, and 5,000 MT/yr for iron. Earth import of 440 MT

would be required. The qualitatively significant point is that

these processing quantities are more comparable to the production

capacities of terrestrial prototype plants rather than to the

capacities of large scale industrial plants. Other reductions

in the mass of highly refined components can be anticipated

as systems designed to make best use of lunar materials and

the space environment are considered.

It is important to pursue the subject of the SPS as a

candldate for construction in space because it provides a

dramatic model by which to appreciate the power of lunar

. utilization for establishing space industry of a qualitatively

significant nature in a reasonable period of time with near

term technology. Figure I-3 is a scaled sketch of the Grand

Coulee Dam in Washington state. Grand Coulee Dam is of interest

because it is the largest single producer of electrical power

in the United States. Its maximum electrical output will be

9,200,000 kilowatts (9.2 GW) or approximately I0% le_s than

the projected ground output of an SPS. Grand Coulee was, and

i
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still is, a very large structure with a length of 1.3 km, a

height of O.l km and a mass of approximately 40,000,000 metric

tons. It was planned during the 1920's and constructed in the

1930's. It was clearly a sophisticated engineering challenge.

Incidently, Grand Coulee is powered by solar energy with rain

water being the transducer of solar energy to mechanical energy.

The energy collector area of Grand Coulee is the drainage basin

for the eastern portion of the Coldmbia River and is approx-

imately _00,000 Km2.

Compared to Grand Coulee little mass is required in space

for solar collectors and transmitting antennas to construct

an SPS. The concrete mass equivalent (5 T/m 3) of an SPS would

be contained in the small, elongated box of concrete along

the top left hand portion of the dam. The lO by lO by 200

meter section of concrete has a mass of lO0,O00 MT or the

same as one SPS. We see that the SPS is an extremely efficient

mechanism for the collection of and conversion of solar energy.

The ground receiving array can be divided into two parts

the sophisticated and expensive electronics For power reception

and the support structures of the electronic elements. The

sophisticated components have a total mass of approximately

4,500 MT and occupy a volume of equivalent mass of concrete

of lO by lO by 9 meters. The mass of ground antenna supports is

large and corresponds to 20% of the mass of Grand Coulee.

However, there is a very significant difference in that the

support structure for the receiving antennas is constructable

)
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" as many small individual units of concrete and/or meta_

stands rather than a monolithic structure such as the containment

vessel of a nuclear power plant.

Viewed in comparison to Grand Coulee Dam one begins to be

impressed not with the large physical area or size oi:an SPS

(5 by 20 by O.l kilometers) but rather with the fantastically

' efficient use of matter thac an SPS affords in gathering

energy and converting it for use on earth or in space. Far less

matter must be manipulated, restructured and empl_ced in space

to produce useful power Jn the ground than any other power scheme

proposed to date. This includes projected terrestrial solar

power arrays which must be 6 to 15 times as large in area due

to night and cloud coyer to collect the same average energy

flux and which must be more massive per unit of area to withstand

the gravity and environmental conditions of earth. Finally,

it is not unreasonable to expect further advances in the trans-

mission of power to the ground to substanti_lly reduce the size

and costs of the )eceiving systems. 21'22 Viewed in another way

one realizes that Grand Coulee contains sufficient mass-equivalentw

to construct 400 to JO0 SPS units. This quantity of electric

energy could satisfy all United States Fower demands well into

the next century, lO

Space power systems appear very attractive on a mass stand-

point in comparison to nuclear and coal fired plants of similar

electrical output. A lO GW nuclear plant will have a overall

mass of the order of 8,000,000 MT including foundations,

radiation shield, reactors, generators, and ancillary equipment. !
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A coal fired plant composed of 20 units of 0.I GW output would

have a mass the order of 2,000,000 MT or approximately the mass

of the support structure of the receiving antenna for a space

power system. However, the coal fired plant must burn

approximately 35,000,000 MT of coal each year. Thus, one lO GW

coal station must tralsport the mass equivalent of Grand Coulee

Dam each year.

Attention must also be given to overall system scales which

must be created a_id operated if SPS is to be deployed from the
!
!

earth versus constructed from lunar materials. A feeling for I

the relative sizes is also contained in figure 1-3. Proposals i

exist for fully reusable two stage boosters to be used to ship i

semi-finished or feedstock materials from earth to low earth

crbit to manufacture an SPS unit. 22 If these boosters utilize

hydrogen and oxygen for propellants then theoretically the

exhaust product could be pure water. The quantity of water

exhausted from the very heavy lift launch vehicles (HHVLLC)

to transport lO0,O00 MT to low earth orbit is indicated in

figure I-3 as effluent from Grand Coulee Dam. The effluent

could form of a slug of water I0 meters deep by 300 meters

wide by 660 meters long. Theoretical designs are available

of boosters which are scaled to accomodate this quantity of

liquid propellant usage over the course of 250 flights. Other

booster designs utilize hydrocarbons and liquid oxygen and

have an effluent mass approximately four times as great.

Bulk liquid handling technology is available to handle this

magnitude of propellant. It is used commonly on earth with I

w
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petroleum at many ports. However, the terrestrial systems are

large by traditional aerospace standards and these new launch

I vehicles must operate in the severe environment of the launch
: from earth to low earth orbit and return safely many times

i with minimum refurbishment required between launches. Inert

mass of the two stage fully reusable booster would be the order

' of l,lO0 MT or 790 MT in the first stage and 360 MT in thet.

second stage with a payload to orbit of 390 MT. Half of the

_ fuel in _ach flight would be to boost the inert mass of the

i second stage into orbit.

If hydrogen and oxygen were burned stoichiometrically

the moon and used to eject with 60% efficiency lO0,O00 MT

into space by means _f an electromagnetic mass driver then only

27,800 MT of water would be produced which corresponds to 1.4%

of the terrestrial water e_fluent or a stream flow in figure

I-3 of I0 meters deep by 300 meters wide by only 9.3 meters

rather than 660 meters in the terrestrial example. It is not

being suggested here that hydrogen and oxygen be used with

fuel cells on the moon to produce power to launch payloads in

space. Our o_jective is to iTlustrate the great difference in

the Fractical scales of propellant and materi_ls handling,

at least a factor of 7h, whi:h can be expected between utilizing

_unar versus only terrestrial materials to construct an SPS or

other large space structures. In point of fact, it is anticipated

that solar _nergy will be ut;liz_d to power the lunar mass driver

and that considerable use will be made of the earliest solar cell

production of a space manufacturing facility to increase the ejection H

capacity of a lunar supply base.

v
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_" The magnitude of equipment which must be employed on the moon

,: and in space in the gathering and processing of lunar material are

explored in figures I-4 and I-5. As was suggested in the discussion

of figure I-2 it is highly desirable to minimize the

mass of equipment necessary to start operations in space and to

make maximum use of space materials to build up further capabilities.

Figures 1-4 and I-5 are based on systems designs which embrace "

that approach. The first (I-4) depicts the assembly of an initial
b

lunar supply base. The rationale and design of th_ base was

developed during the 1977 summer study on space industrialization

24
conducted at the NASA Ames Research Center. Initial mass on

the moon of the base would be approximately 800 metric tons.

Approximately 4000 metric tons of landers, fuels and payload would

have to be ejected from low earth orbit to the moon to land the

base. It would begin ejecting 30,000 metric tons/year of bulk

lunar soil and grow in launch capacity to 600,000 metric tons/year

over a 5 year period. Growth would be provided oy the addition

of solar cells, habitats and mining equipment. The initial mining

* operations would be very mall by terrestrial standards. Shown in_.

figure I-4 is an excavation of a few meters depth and less than

50 meters in width. It is being worked by a single backhoe which

is a small and versatile piece of excavation equipment which can

be operated in a semiautomatic mode and monitored from earth. In

the first two years a backhoe of the type shown here wi a mass

of less than 25 tons could accommodate the excavation rates of

30,000 to 60,000 metric tons per year with only 3 to 6 sorties each

terrestrial day. It would be available for other operations the

r"
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remainder of the day. The four partially covered tanks are the

iiquid hydrogen sections of shuttle belly tanks converted to

use as habitats, maintenance facility, mass driver loading facility

and soil packaging facility. Each tank is approximately 24 meters

long. An extensive analysis of the bui3d-up of the mining machines

is presented in chapter Ill. Under nominal conditions with !'

, electrostatic beneficiation less than 300 tons of mining equipment

would be required on the moon over 30 years to deliver 16 million

tons of ore to the launcher.

Figure I-5 is an artist's conception of a prototype plant

to process anorthosite. It incorporated the design requirements

appropriate to space operation and at the same time utilizes much

available processing technology. Anorthosite is a very common min_:ral

in the lunar highlands and an excellent source of aluminum, silicon,

silica, oxygen, and ether minor elements. The chemical plant

shown in this drawing in low earth orbit, passing over Galveston Bay

at sunrise was scaled to process 30,000 metric tons of anorthosite

(90% pure) each year. A 30 megawatt solar power array dominates
,+

" the picture. It is octahedral, approximately 500 meters on a _ide

and masses 120 metric tons.

The oxide separation stage shown in the foreground and +

the electrolytic separation facility in the background have a

combined dry mass of I05 metric tons. Approximately 63 metric
C

tons of hydrogen, fluorine and a small amount of sodium must be

brought from earth to provide a portion of the working fluids for

the liquid phase hydrolysis scheme used in the plant, Oxygen

and sodium are extracted from the initial runs of lunJr soil

to provide the full 336 metric tons of water, hydrofen, fluoride,.+

F
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, and sodium hydroxide necessary for full scale plant operation.

•_ Thus, we see that use of lunar materials immediately minimizes

the amount of material which must be shipped from earth to

start production. Space radiators to eject process heat from

the plant are the large flat objects above the oxide separator

and electrolysis units. Make up of fluorine (3 to 30 metric tons

each year) will probably constitute the major terrestrial input

for 30,000 tons of processed material.

A dual habitat for the construction and operating crews

is shown on the bottom of the solar array. Approximately 20

people can operate the plant assuming round the clock operation.

Only low temperatures and pressures are utilized in the processing

so all tanks and lines can be thin wall, low mass units. Steel

derived from lunar iron should be usable in fabricating future

units. The processing units and habitats are spun to provide

artificial gravity. A zero ure_vity fabrication shop constructed

out of one of the shuttle propellant tanks is shown attached to

one side of the solar array. _ 2,000 ton bag of lunar soil is

tethered to the input column of the processing plant. In one

scenario of industrial development this soil could be a large

portion of the initial soil ejected from the moon and returned

to the earth by the ma_s driver reaction engine originally used

to transport the l,Jnar base to low lunar orbit.

A rather surprising result of this study which evolved this

particular processing design is the low mass of the space unit.

Only ten to f_fteen shuttle flights would be required to transport

the 290 metric tons of solar array, processing units, and initial !
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working fluids into low earth orbit. Another ten to fifteen

flights would be adequate to deploy the 260 metric tons of the

habitat and the fabrication unit. This particular plant scales

upward in mass in direct proportion to throughput. However, ]

with increasing operating experience less manned operating involvement ,.

will be required. In addition, the trace amounts of free iron in
w

the lunar soil should be usable to fabricate additional tank_

and plants. If so, the amount of material necessary to be trans-

ported from earth to build secessive plants of equal capacity might

drop from 290 metric tons to lO0 metric toas or less. Three to

four processing units of this design could provide most of the

refined feedstock for the manufacturing of one IOGw SPS per year.

Naturally, there would be many other possible applications for the

refined feedstocks. Smaller units can be deployed by one shuttle.
!

E. CHEMICAL PROCESSING

Chapter II deals primarily with the scientific and engineering

considerations involved in processing of extraterrestrial raw

materials into refined materials suitable for industrial feedstocks.

The focus is on processing of lunar materials. The economics of
w

such activities are briefly considered.

The implementation of an industrial capability in space will

be limited by three types of constraints: I) Raw materials avail-
L,

abilities, 2) Process selection, design and operational limitations,

and 3) Development of technologies necessary to establish the

processing _nC manufacturing facilities and support continued

operations. The first two groups are discussed in Part One of

this chapter while the last is treated in Part Three. Part Two _
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gives an extended discussion of specific processes for materialsf

i conversion and refinement.

In P_rt One (1), the compositions of the major mineral

fractions of lunar soil which may be considered potential feedstocks

for chemical processing plants are described. Seven major elements

are identified m aluminum, calcium, iron, magnesium, oxygen,

silicon ard titanium -- which are widely distributed and available

in concentrations above I% by weight. Six additional (minor)

elements w chromium, manganese, phosphorus, potassium, sodium

and sulfur m generally occur in the O.l to I% range.

The absence of easily recoverable light elements such as

hydrogen, carbon, nitrogen, chlorine and such metals as coppe_',

zinc, lead, etc. imposes restrictions on the diversity of output

products of processing and manufacturing plants and, additionally,

on the manner of use of many chemical reagents used expendably

on earth. Nevertheless, a surprising diversity of useful product

can be made solely or predominatly from lunar materials (Table VI)

and a broad range of chemical reagents may be employed by careful

recycling of all substances containing significant (over I%)
z.

amounts of lunar deficient elements. Such recycling operations

appear to be readily accomplished for the processes studied to

date.

Process selection will be governed primarily by the mass of

equipment, reagents, power aridheat rejection facilities required

to obtain a given output rate and the design and operational

constraints set by the space environment _ vacuum, low gravity,

• - radiation, radiant heat rejection, etc. The reagent mass
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requirements are, in turn, dependent on either lunar availability

or successful recycling eFficiencies. The major changes from

earth plant practice would be the management of air, water,

fuel and waste heat. Most plant operations could be conducted

in pressurized containers with artificial atmospheres appropriate

to the processing conditions and simulated (centriFugal) or lunar

gravity. Water is also expected to be used in a number of plant

operations.

A general method is presented of classifying potential

processing methods based on the nature of process steps to release

or mobilize desired elements or constituents of raw materials

and to separate phases or fractions of given process streams.

While some exotic processes based on physical or semiphysical

rather than chemical methods are possible and, as such, may not

require reagents in the usual sense, it appears that practical

engineering considerations and difficulties with purifying

product streams would make such schemes less attractive and of

higher technological risk than more conventional chemical routes.

General principles of chemical plant design are discussed

in section b. It is shown that the normal operations of materials

handling, phase separations and heating and cooling of process

streams can be expected to operate in substantially the same

manner as for earth plants provided a centrifugal gravity is

supplied for orbital operations. Ultimate heat rejection by space

radiators will geherally be required, and for low temperature waste

heat it may be desirable to heat pump such loads to 250 m 300Oc

to minimize radiator masses. Sizes and masses of chemical reactors

t
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require kinetic (rate) data which may be unavailable for some

, proposed process steps, but correlations between volume and

throughput for analogous industrial reactors allows one to '

r estimate reactor sizes.

Part Two (II) discusses specific processes and treats in _

varying level of detail five prior and presently proposed processes I_

for conversion of lunar ores into industrial feedstocks. A " :

sixth process, carbo-silico thermic reduction, is also included •

in a section which compares the respective processes in regard

to a number of features including maximum processing temperatures,

power, product purity, process complexity, technological risk

and key problems.

Of the candidate processes studied, the HF acid leach process

appears to have the best potential for minimal operating mass,

ease of element separations in high purity, and favorable energy

and heat rejection requirements. It would be premature to rule

out any of the other processes without formulating a valid

rating method for comparing current or new candidate processes.

, However, the HF process is certainly useful for the immediate

development of baseline engineering models. The HF process

uses several steps which have been successfully employed on a

commercial scale o,iearth, but which are no longer used due t_,

competitive cost factors of alternate routes. Such (obsolete)

processes may be the most desirable methods of performing a number

of essential steps in an overall processing system. A pictorial

flow chart for the HF acid leach process is shown in Fig. i - 6

which is the basis for the space processing plant shown in figure

I-5.

• i
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Technology development is discussed in Part Three (III).

_ It is evident that materials processing is but one link in a

space indJ_strialization activity which will also requi)'e

transportation systems, mining and beneficiation, manufacturing

and fabrication facilities and _ssembly, maintenance and life

support systems. It appears that the development costs OT +:e

transportation technology will dominate the technology development

programs, but advances in this area may be separately funded

from other m_ssion requirements and, in the long run, appear

inevitable.

The development of chemical processing technology can be

conducted for the most part on earth by using synthetic

lunar samples made from earth rocks and chemicals. In particular,

no additional lunar sample retrieval missions seem necessary to

develop the process steps appropriate to low-latitude lunar soils.

In addition there does not appear to be ary critical size of

processing or pilot plant necessary to demonstrate ,eliable operatipn

i.o orbit. For example, a single space shuttle payload could

, contain all of the operati;Ig elements of _ typical processing

system which could be tested in sequence. A similar small

system could be oeprated on the moon in the first stages of

buildup of a lunar materials supply base and either reduce

costs or increase the capabilities of such a base in comparison

to providing all building materials f:,om earth.

#, series of detailed recommendations is presented for process

chemistry development (of the HF acid leach process) and supportive

technologies which will be required for alm st any chemical

process adopted. A limited discussion of the interactive

i 97902 i 033-04 i
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studies between processing technology development and development

_ activities in transportation, mining and manufacturing phases of

space industrialization is also given.
c

F. LUNAR STRIP MINING

Chapter III contains a detailed parametric analysis of the

types, number, total mass, and power of excavation equipment

necessary to initiate surface strip mining of 30,0,3U tons per

year of undifferentiated lunar soil and expand the mining rate to

3,000,000 tons per year by the fifth year of operation. A

_ result of great importance is that the mining operation, even at

- maturity, is rather small by terrestrial standards.
| .

The introduction of electrostatic or other non-fluid

techniques for beneficiation of the raw ore at the excavation
i

site is a qualitatively significant option. If only the most

useful fraction of soil need be transported to the launching

area then only a very small fleet of vehicles is necessary for

an operation specifically configured for the mining of anorthite.

A single front-end loader (mass of approximately 25 tons) can

accommodate the excavation and hauling needs for the first two

years with or without at-mine beneficiation. However, by year

five a nominal fleet of twenty-four ten-ton haulers would be

required to excavate 3,000,000 tons per year of ore and waste

2 km from mine to launcher and return the 80% waste to the mine.

With beneficiation only five ten-ton haulers would be required.

Cumulative mass of excavation equipment to the moon by the

end of year five would be approximateiy 80 tons with or 150
't

tons without beneficiation _t the mine site. The nominal
.

- annual energy requirements would be 67 MW-Hr or 390 MW-Hr

* MW-Hr = megawatt-hours.

1979021033-042



! I - 27

• respectively by the end of year five. The mining of

_' anorthite can be taken as the large scale limit of lunar

miaing operations to provide 1 megaton/year of a selected ore.
I,

To previde 1 megaton a year of bulk soil requires less

equipment.

Surprisingly, one can anticipate a very high level of

automatic and remote control of the excavation and haulage

operations with essentially no manned involvement on the moon

but with remote control by terrestrial operators. It is reasonable

to assume that maintenance of the excavation fleet can be provided

by one person. By six to eight years into the mining operation

the total mass of spare parts delivered to the moon would exceed

the mass of complete haulers imported. Several specific studies

- should be conducted to provide tighter definition of the

constraints and burdens the mining operation will place on the

overall payload which must be delivered to the moon.

G. BENEFICIATION OF LUNAR SOILS

Chapter IV details the application nf electrostatic

techniques to the beneficiation of lunar soils. This technique

appears to offer an ideal means of concentrating particular size

ranges and mineral types from bulk lunar soil. Surfaces of

lunar grains are pristine, uncontaminated by the effects of

humidity, and therefore should preserve their characteristic

surface electrical conductivity and electronic work function

which are the key materials factors that permit differential

separation of grains by electrical forces. Grain temperature

is the main external variable which controls conductivity and

.o
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work function in the lunar environment. Temperatures of

interest are readily attainable in the lunar environment by

use of light sources, heated or cooled base plates, time of

excavation and excavation depth. In addition, the low lunar

gravity will a11ow greater displacement of charged grains due

to an external electric field, which in turn can be ten times

more intense in lunar vacuum than on earth. Finally, evidence • ;

does exist that electrostatically drfven motion of lunar dust
v

operates naturally on the lunar surface. If applicable, the !
i

electrostatic operations should permit low power and low

mass machines to beneficiate ore. A conceptual design

consistent with terrestrial designs, is presented for a lunar

unit to process 30,000 tons per year of material which would

require 7 KW power, mass approximately 20 tons and be 12 m long,

6 m high and 3 m wide including excavation equipment and tracks.

Pertinent patent literature on terrestrial electrostatic devices

is included.

Experimental evidence as to the minimal efficiency of

electrostatic beneficiation can be obtained by non-distructive

experiments with available lunar soil samples. Very h_gh priority

should be given to such experiments, not simply for industrial

data but also for the use of the separation technique to make

possible unique experiments in lunar sample research.

One uniquely interesting technology identified in this

study was the use ¢f traveling-electric-fie,ds (TEF) to charge

and move dust grains. In one embodiment of this device parallel

wirec are imbedded across the short dimension of a long plastic I_
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sheet. A two or three phase voltage pattern is rippled along
9

the imbedded wires, thereby producing a traveling electric field

over the plastic sheet. Charged dust laying on the sheet will

be physically moved with the field down the sheet. Triboelec-

trification occurs on grain impacts so _ll dust is quickly charged

and transported. This low power device could be built into the

• surface of space suits and be used to clean them of lunar dust

° prior to entering an air lock.

H. LUNAR GLASSES AND CERAMIC PRODUCTS

Chapter V confirms the commonly held assumption that

glass and ceramic articles could be made from lunar soils.

This has now been shown to be fact as a result of ]imited

confirmatory experiments in the Materials Sciences Department

at UCLA. Glass and ceramic has been made from oxide mixtures

identical to those characteristic of the Apollo II (mare,

high titanium), Apollo 12 (mare, low titanium) and Apollo 16

(highland) soils. A photograph of glass and fiberglass

produced from the Apollo 12 mixture is presented in figure

V-I. The Apollo II and 12 synthetic samples melted at 1350°C

and were very easily made into glass. The Apollo 16 mixture

melted at 1500°C and also readily formed glass on cooling,

Specific components of lunar soil, such as anorthosite,

will also be valuable for forming specialty products such as

clear g_ass. Thus, glass and ceramic production can benefit

from mineral separation devices as well as the availability

of refined silic_ and silicon fractions of the lurar soil.

3,° _ !
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Glass and ceramic production involves many empirical

; control factors which must be resolved experimentally. This is

especially true when ambient conditions are changed from

atmospheric pressure to vacuLm and in some cases from terrestrial

to one-sixth or zero gravity. Availability of the extensive

data on lunar soils make it entirely reasonable to begin a

series of laboratory experiments to establish general procedures

for the production of a wide range of glass and ceramic products.

These early terrestrial experiments can establish the needed

key experiments to be performed early in zero-gravity to allow

final design of lunar and space production equipment.

This report surveys general conditions and procedures

for the production of clear window glass, refractory and

chemically inert containers, fiberglass wool, and light pipe

fibers. Light pipe fibers for use in communications systems

on the earth and in space are especially interesting because

they presently cost on the order of lO0,O00 $/kg for the glass .,

element. Special notice is taken of the use of solar energy and

, the possibility of glass production by sintering of amorphous

powders

I. MATERIAL GOODSAND THEIR INTRINSIC VALUE ($/kg),

MASS AND ENERGY OF PRODUCTION

Chapter Vl explores in a unique manner a the.,lewhich has
T

been repeated many times in the preceding material. That is

that the cost of raw materials plays a basic role in the type

I
of economic activities and products which can be pursued ir

1space. We have chosen to explore this theme by examining the

- i

" i
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economy of the United States in 1967 and 1972, years for which

appropriate data exists. We determined total value, to+al

mass and total energy consumed in the production of goods which

|" could be made from lunar materials with very little additional

terrestrial materials and whose production could

use solar energy to advantage (more likelx goods). The study

" was extended to also examine goods which might be made in

space from lunar materials and with solar energy but which

could require significant importation from earth of make-up

mass, might be bulky products which would pose some problems

in downshipping to the earth or that might require major changesi

in processing procedures from present terrestrial practices.

These were termed less likely goods. Excluded from the analysis

were goods and processes which require petroleum, non-lunar

chemicals or agricultural products. It was found that 64

Standard Industrial Categories in the United States economy

could be considered to be compatab!e with space manufacturing

usinq lunar materials (more likely) and that 166 categories

could be adaptable to the less likely category. There werer

239 SIC groups excluded from the study,

A second interpretation can also be made of the results of

this analysis. It provides a listing of the productive cate-

gories of the United States economy which can provide major

immediate technological assistance and guidance to a space

program based on a source of inexpensive lunar materials. In

effect this listing guides one in seeking out industrial competence

ql
"" to assist in transfering capabilities from the earth to space.

i

.
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The full listings are presented and explained in chapter VI.

The more like1_ class contains electronic devices, electrochemistry and

related processes, ceramic and glass products, many types of

machines, non-ferrous metals and other items. Many items in the

less likely category have been found on reinspection following

more work in the processing areas to be more adaptable to space

production than first thought. Figure I-7 provides one manner of

examining these results. This is a histogram of the more likel_

(cross hatched bars) and less likely (clear bars) on the basis

of a $/kg index. We have taken the average price of all goods

in each of the 230 SIC's examined and divided by the mateirals

inputs to those goods thaL are actually embodied in the final

goods. The histogram is the total sales value of goods in a

given price inter-al which is l$/kg wide versus the average price

per kilogram in each such SIC. The goods in all SIC's shown here

had a total shipped or sales value of more than 410 billion }

dollars (I04 billion $ for the more likely and 310 billion $ for

the less likely). Total mass and energy consumption of the more

and less likely goods were 65 and 1,577 billio_ kilograms and 384

and 1,400 billion kilowatt-hours respectively. It should be noted

that 384 billion kilowatt-hours corresponds to the total annual

output of 4.4 power stations rated at lOGw each. Thus, energy

embodied in space products dnd delivered to the earth in effect

can liberate some fraction of terrestrially produced power for

other uses. These figures apply to 1972.

We see in the histogram that most goods sell for less than

lO$/kg. The figure is deficient in one critical aspect in that

i 97902 i 033-048
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there are significant quantities o_ specialized goods in sone

_' of the SIC's which sell for significantly more than the SIC !_
I

average used here but they are not specifically accounted 6or

or displayed here. If space power stations are eventuallj

included in this graph, they will initially be located between

200 and 400 $/kg (far off the right edge) and have an annual value

, . to 50 to lO0 billion dollars a year. A new SIC for lunar mining
2

X

: would also be introduced at the right edge of the graph, approxi-
L

mately 20$/kg, and have an annual output value of two to four

billion dollars [note point (1) in Figure I-7].
'i

The intrinsic cost ($/kg) of lunar materials should drop
C

radically as other markets are developed which require large masses

of materials. As this happens _he cost in space of lunar materials

should eventually approach the cost of ejecting it from the moon.

We noted at the first of this chapter that the lunar ejection

cost could be the order of a few cents per kilogram (z .02 $/kg).

This corresponds to point (2) in Figure I-7 and implies that

approximately I0-15% of the present SIC's might eventually contain

lunar components for use either terrestrially or in space. As av

broader range of feedstock elements become available either through

asteroid resources, additional lunar resources or substitution of

materials then most of the SIC's shown in Figure I-7 could be

penetrated by extraterrestrial materials. However, this historical
:,

approach to possible market potential should not distract us from

the example provided by the space power systems that new and exotic

products and new Standard Industrial Categories for space enterprises

will develop, that terrestrial-type products can be produced for _ t

f
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i
use in space more cheaply than sending them from earth, and

_ that the products can be relatively inexpensive as we learn to

obtain extraterrestrial raw materials at low unit costs approaching

: the average cost (zO.Ol$/kg) of non-fuel Demandite (Table Ill).

A drop of l,O00 in cost of lunar materials, from 20$/kg to

.02$/kg, may seem rather dramatic unless one realizes that the

380 kg of lunar samples returned by the 25 billion dollar Apollo

m

program could be said to cost approximately 66 million dollars per

kilogram. There is every reason to think that the basic feedbacks

between mass markets and mass production can operate in space as

it has on earth for 400 years. Learning curve experience will

permit industry to continually drop unit prices.

J. DIRECTIONS FOR RESEARCH AND DEVELOPMENT

It is completely clear that space industrialization can evolve

a materials economy based on lunar and eventually asteroidal i

materials sources. The pertinent question at this time is - How I

-- i
small in costs and size can the intital systems be made and still

!
grow at a sufficiently rapid rate to produce meanin_fu! production I

, in space in reasonable periods of time? This question has not

previously been asked. The answer should not depend or the
w

existence of one particular product, for example space power

stations, but should encompass the summed values of a wide range

of products, services, systems and as importantly new possibilities

and capabilities which would be impossible in the context of

terrestrially originated programs. We recommend a three
F

level program of identification/synthesis, analysis, and carefully

directed experimentation which will insure the rapid development
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of our k_owledge of the investments required and the potential

payoffs for a _aterials space economy based on lunar materials.

The IDENT_FICATION/SYNTHESlS program would identify

#ossibilities for major reductions in scale of proposed approaches

toward space industrialization based on lunar materials. Approaches

for the acquisition and utilization of lunar materials would be

• proposed and synthesized into a general program leading to the I

Idevelopment of an extraterrestrial materials economy in space.

The program would generate an overall scenario for the program !

complete with estimated costs, growth profiles and possible

products.

The ANALYSIS program would consist of a series of separate

efforts at unlverisit_ private and government facilities requested

or selected by the IDENTIFICATION/SYNTHESlS group. These efforts

would consist of detailed studies of specific problems or models

for equipment, systems and/or possibly economic growth models.

The A_ALYSlS program would be very suitable for small contracts

to university researchers.

Tlle EXPERIMENTAL program wculd a_so consist of numerous small

research efforts at university, private and government facilities•

Speci'ic devices, process experiments and simulations which would

provide definite confirmation of the initial (or minimum scale)

capabilities for early use of lunar materials or special devices

for reduc,ng the costs of initial space exploitation would be

developed. These efforts would bring to light both unexpected

difficulties or opportunities for the generation of industry

and goods in space. Again, the program and experiments envisioned
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would make exce]lent use of the diverse abilities and interests of

the university research community.

The total program would profit _y being a highly visible

activity. The status of achievement toward reducing the cost

of initi_l space industrialization could be continually updated

as additional concepts and information are obtained. This status

should be continually communicated to all workers and interested

parties.

An exceeding wide range of talents, the majority outside

of the present aerospace community, would have to be organized.

The group should be interfaced in an almost real-time manner so

that the synergistic effects resulting from bringing together very

diverse capabillties and possible soluticns to problems would be

quickly recognized. It is very important in reading the recommen-

dations of specific workshops, studies and experiments in the

following sections to consider them as examples of activities

which should be pursued primarily because they previde one real

pathwcy fc,r the reduction of the initial costs of space industrial-

ization. However, these possibilities must represent only the

first steps in what should be done. The real key is to bring

together many talents and stimulate the presentations of new

concepts, analyses, models, experimental dafa and projections in

a continual atmosphere of checking against physical reality and

improvements of the overall initial industrial system.

It is suggested, as one possible approach, that the IDENTIFICA-

TION /SYNTHESES program consist of a staff of lO scientists,

engineers and economists who would be responsible for the

_._
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administration and documentation of the overall program. The

" administrative group would support the operation of a multi-unit
|

panel which would meet four to six times a year for several days.

There would be approximately 30 members on the panel. Appointments

would be on a rotating basis with staggered terms. The adminis-

trative group and the panel would establish one or mere reference
:

" plans for the initial approaches to space/lunar exploitation and

would request NASA to accept proposals on specific technical

problems (analyses and experiments) the panel identified.

The reference plans would be circulated to all proposers and

to the widest possible general audience prior to selection of

proposals. The reference plan itself would be open to continuous

critical review from all quarters and would be constantly updated

at the frequent meetings of the panel. Proposals would De

selected on four month cycles and wou_d _enerally be tailored

in funding level and duration for the accomplish_mnt of the

specific task rather than for a specific period of time such as

one year'.

. The administrative group would constantly document the

activities of the panel, provide listings of ongoing experiments,

print the abstracts of all meritorious proposals submitted to the

panel for consideration, whether or not funded, and maintain at

least one systems model of the space industrialization scheme

considered most feasible by the panel at that time. These activities

would be documented by monthly newsletters to all participants

and at costs to anyone requesting the information. The system

would be completely open with no proprietary information.

F
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_ll participants would be invited to attend at least one

major annual meeting for direct interactions. It is to be

expected that special work-shops would also be held as necessary

either at the main location of the panel or at locations necessary

to minimize costs. All results of funded efforts would be

required to be published in the open literature ahd an extremely

comprehensive index;ng service would be maintained of the

literature generated and referenced. This would

the objective of drawing in the expertise of the widest possible

range of human capabilities for consideration and to establish

a wide spread literature which could be readily accessed throughout

the world both in a planned fashion and so an arbitrary reader

could be expected to encounter reference to the space industrial-

ization program in his general rea_ing. In the following subsections

we wil3 consider specific topics for these three categories as we

presently perceive the research needs with _egard to gathering

materials en the lunar surface and the processing in space or on

the moon of the various soil fractions.

" IDENTIFICATION/SYNTHESIS

I. Organization of an administrative panel to construct a

reference model for a low cost program of space

industrialization. The group would request and recommend

for _unding original research proposals for requested

and newly identified research problems of both an

• analytic and experimental nature. The group would

constantly update the reference model, would make available

, as expeditiously as possible the new and revised models

%,
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and study results, would organize and conduct

workshops on key topics, and communicate the program

achievements to a wide audience.

2. Development of a flexible model for the economic growth

of systems in space in terms of quantities which could

be provided by most experienced wo^kers in a given field

• of production or development.

3. Identification of non-aerospace technologies which should

be examined in greater depth for application to cis-lunar

industrialization.

4. Indentification of specific t_chnica_ advances which could

greatly reduce the cost or exp_,_d the development of

cis-luna_ _n,i,stria!ization.

5. Indentification of products which could be made in space

from lunar materials with or without the addition of

terrestrial materials and would have use in space o_ on

the earth and estimate the possible net value of these

products as a function of raw and processed materials

costs.

In the following recommendations of specific analytical and

experimental studies we have concentrated on the areas of materials

gathering on the moon and physical, thermal and chemical processing

on the moon or in space which are consistent with the general

thrust of investigation in this report. We have indicated the

number of L._an years believed to be required for various studies

and the priority we attach to the importance of the various tasks

as either enabling a major qualitative advance in the development
t

r

i
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of sp_ce industrialization o;" in more fully defining particular

processes suggested in this study. !

ANALYSES/MODELS [priority (l highest, 4 lowest), man-years]

I. (1,2) Development of computer models for the generation

of electricity and power on the lunar surface utilizing

to the maximum extent in-situ resources with minimum

complexity ot required machinery on the moon should be

pursued. One possible approach is the use of photoemis_ion

for power generation by creating simple diode circuits in

trenches in the lunar surface. It is possible that

unlimited power might be provided during daylight hours

by this approach at a verj early point in the start of

operations. Much data is available from solar power station

research which is applicable to lunar and space processing.

2. (2,2) There is a clear need for solar furnaces operating

on the moon or in space to provide process heat. Most

solar furnaces designs to date have been for applications

where modest or zero mass flows through the focal planP

, have been required. Configurations to permit optical

coupling and accommodate materials flows, insulation,

regenerative heating, and a rotating focus for heating

materials in a centrifugal ,:orce field should be studied.

Of particular concern are vignetting problems in reflector

designs. This may favor transmission optics in some cases

such as at high volume production.

3. (3,1/2) Conceptual analysis must be done on space radiator

systems scaled to reject process heat. General features

of space heat radiators have been extensively studied
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in connection with previous proposed heat engine power

systems. Process heat rejection may more commonly be

necessary in to 200 - 300°C range. Characteristics of

practical radiator systems for this temperature range

shot;Id be studied including use of steam and acid solutions

as working fluids. Particular points to consider would

• be identification of various working fluids of different

tempe,ratures and materials compatibility requirements,

study of operations under low or zero gravity or

centrifugal force fields. Potential freeze up conditions

for various systems should be examined.

4. (4,1/2) Conceptual designs for heat pumps should be

explored for the pumping up of heat loads to the 300°C

range for rejection to space. The selection of working

fluids, thermodynamic cycles and construction materials

necessary for input temperatures down to cryogenic for

the liquefication of oxygen and/or hydrogen should be

investigated.

5. (2,1) Orbital processing plants will be required to conduct

a number of unit operations normally conducted in a

gravitationally driven flow or separation process. These

unit operations must be redesigned to operate in a

rotating environment where significant changes of the

local acceleration vector may occur in time and over the

flow path. Analyses of these cen*rifugal counter current

processes sh3uld include the short term variations in

magnitude and direction of Lhe local acceleration.
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c The conceptull design studies are necessary to identify

potential problem areas.

6. (4,1/2) Bitch processing, quasi-continuous processing or

interruptions of fully continuous process lines will I

[generate linear and angular momentum surges on equipment,
i.

solar optics alignment and possibly affect machine and I

human performance. An analysis should be conducted .

predicting the magnitude, effects and design considerations

of such surges for several process plant designs. Systems !

to buffer these process surges should be indentified.

There will be similar need to buffer changes in the

volume of process gases and liquids in the event of

process interruptions.

7. (3,1) Adoption of modular designs for creation of matching

capacity of various segments of p_rticular processing systems

can improve reliability of overall operations through

redundant or parallel modules providing they can be

Tavalved off in case of malfunction. .h_re should be a

systematic analysis of unit processes to determine

adaptability to modular design including effects of

operating temperature, insulation requirements, heat

transfer requirements, materials compatibility and

formability of construction materials. Paralleling can

increase mass and maintenance for a plant and should

not be used indiscriminately. In particular_ units

operating at very high temperatures oN requiring excessive
I

amounts of insulation or brittle materials of construction
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may be poorly suited to modular design. _dentification

of tubular or other units which can be len,gthened and

for which flow rates can be varied withoutcompromising

performance should be begun. Processes which can only

effectively be increased in capacity by increases in

cross sectional area of units should be identified.

8. (3,1/2) Information should be gathered from industry

sources to estimate the production scrap rates versus

potential unit costs to determine the present and probable

attainable rejection fractions for various operations in

manufacturing, fabrication, and assembly. Studies of

the advantages or disadvantages of recycling such scraps

versus simple disposal and replacement with additional

raw materials supplied from feedstock should be attempted.

9. (3,1/2) Identification of expendable materials and in

particular high volume requirements such as washing,

, rinsing, etching or other systems commonly associated

with various manufacturing operations snould be started

to determine regeneration or replacement needs for such

steps. Estimates should be made of the composition

and quantity of reagents, lubricants, detergents and

normally expendable supplies required by manufacturing

options.

I0. (4,1/2) Estimates of the type and quantity of abrasives,

hard tool materials and other refractories used in

manufacturing operations should be developed. Potential

methods of separation of abrasive grains from metallic
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chips should be undertaken to facilitate recycling

( if indicated. Refractory recycling should also be

considered.

: II. (l,l) An extensive survey should be conducted of all

the possible electric, magnetic and physical systems

which could be used in the non-fluid separation of

lunar minerals. Analyses should be conducted where

appropriate to consider the effect of operating the

processes in space over a range of gravitational

accelerations and on the moon. The ability to efficiently

separate scarce lunar minerals such as spinels, ilmenite

or troilite by virtue of non-fluid means may make

recovery of certain minor or trace elements practical
(

which would not otherwise be possible. I

12. (3,1) A detailed survey should be coL1ducted of

information available from NASA, DOE and DOT on

possible power storage systems for excavators and other

mobile equipment at the lunar base and for reserve

, power during lunar night or emergency periods.

13. (1,2) Continuing studies should be supported of i_itial

and long term lunar mining with a focus on equipment,

either traditonal or non-traditional, which would serve

to minimize requirements in the lunar enviro,ment for
J

power, mass and complexity and maximize reliability,

remote or automatic operation and productivity. Special

attention may be required for dust contamination.

t
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Experiments are necessary to establish the exact I_
l-

parameters of several stages of the process schemes proposed in

this study and to confirm the overall feasibility of the

electrostatic processing technique to lurar soils. These

experiments are of a very small scale and are suitable to

university or other laboratories on the basis of limited,

• directed contracts• Broader ranging studies are necessary to

begin to appreciate in detail the possibilities for in-situ

power supplies for solar electricity and what can be done

directly with lunar glasses and ceramics. Many other experiments

of this general directed nature will be identified as the program

progresses. However, no element of the program need be seen

as open ended because of the end goal which is to find a low

cost means to establish material industrial operation in space

in a reasonable time frame. There will be a clear point of

diminishing returns for the initial efforts. Specific

experiments identified in this study follow• Most of the

expenses of these studies will be associated with direct labor

. rather than apparatus.

EXPERIMENTS

• I. (l,l) Solubility data i_ needed to fill information gaps ;

and verify previous results on solution chemis, "y of

elements in the HF-H2SiF 6 system. This information is ._

necessary to improve efficiency of separation of various

elements, removal and recovery of minor elements and

permit more detailed sizing calculations for systems.

[ Solubility (saturation) data review and determination

i
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should be conducted for fluorides and fluosilicates of

z_ Al+++, Ca++ Fe++ Mg++, , and also the minor elements Na+,

' Mn++, and C_+++,as a function of F:Si ratio, pH and

• temperature including indentification of equilibrium

crystalline phases.

2. (4,1/2) Solubility (saturation) data should be reviewed

and determined for the fluorides and fluotitanates of

Al+++ Ca++ e++ ++, , F , Mg and also minor elements Na+,

Mn++ and Cr+++ as a function of F:Ti ratio, pH and

temperature including compostion of equilibrium

crystalline phases. Data for these systems are required

for titanium recovery and desirable for materials

processing for oxygen production in excess of other

solid materials req' "_ements.

3. (2,2) A comparative study of the reduction of simple and

: complex fluorides of Si, Al, and Ti should be conducted.

Si, Al and Ti can be produced by sodium reduction of their

simple fluorides or by reduction of their Na or K

' fluosilicates, fluoaluminates (cryolites) or fluotitanates.

These alternative routes can offer greatly changed

volatilities, melting points, etc. which may make the

reductions more convenient and influence corrosion or

containment problems and materials separations.

4. (3,1) Comparative studies of the hydrolysis of simple and

complex fluorides (fluoaluminates and fluotitanates)

should be conducted. Analytical studies of steam hydrolysis

have shown marked dependence of rates on melting points _I}

- I

L

p
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; and chemical nature of hydrolytic products. For

example hydrolysis of NaF is rendered much simpler

if combined in the form of Na3AIF 6 in the presence of

excess alumina. Also hydrolysis of CaF2 and MgF 2 is

facilitated in combination with lower melting fluoride

solutions or complex compounds.

5. (3,1) There should be a review of pyrolysis data and

experimental determinations where indicated for Na,

K and NH4 fluosilicates and fluotitanates. Dissociation

vapor pressures of Na and K fluosilicates and fluotitanates
l-

are important for process engineering if reductions of I!

these materials are used. Dissociation of NH4 fluoro-

compounds, especially if it proceeds via NH3 and acid

salts, offers useful routes to regeneration of acids and

bases from salts and also a valuable method of purifying

silicon and titanium compounds.

6. (l,l) Ion exchange data should be reviewed and determin-

ations performed for fluorides and fluosilicates of

, H+ Al+ •++ Fe++ Mg++, , , , and the minor elements Na+,
r

Mn++ Cr+++ +
, and and for NH4 for cation and anion exchange

resins and anion and cation permeable membranes. Ion

exchange behavior of fluoro ion species of solutions

of major and minor lunar elements is needed to optimize

separation processes to recover simple fluorides for

reduction or to recover hydroxides for conversion to

oxides. This latter separation cannot normally, be done

directly from fluosilicate solution because of hydrolysis i

of the fluosilicate solution. If this can be .'o_.

-;
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efficiently with ion exchange techniques this will
L

_. permit easier recovery of oxides than by separation
!
i

of corresponding fluorides followed by steam hydrolysis. I
I

7. (4,1) Amalgam chemistry and electrochemistry inves_iga- !

tions of Na, Ca and Mg systems offer a potential route

to reactive metals that is possibly much easier than

high temperature reductions. The possible processes should

be identified and analyzed in terms of space systems.

(See Section II, appendix B.)

8. (2,1/2) Anhydrous leaching of silicates with NH4FHF

offers the possibility of a process option which would

greatly reduce the amount of water transported in

distillation operations to separate SiF 4 and HF from

leach and hydrolysis solutions.

9. (1,2) Development of photoelectric power supplies should

be pursued in parallel with theoretical investigations

of design and emplacement of such systems on the lunar

surface.

lO. (2,2) A comprehensive set of experiments on the non-fluid

separation of lunar and synthetic mineral grains should

be conducted to provide input data to mining and

processing studies.

II. (1,4) A wide range of experiments should be conducted

on tFe production of glasses and ceramics for tests of

fundamental characteristics and into sample products.

Some of the tests should be conducted in vacuum and

in zero gravity as soon as the space shuttle is available
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for experiments. Portions of the tests should be

_ directed to obtaining information necessary for the

design of production processes in space and on theJ

moon.

12. (1,2) The de,,elopment of a wide range of soil simulants

should be started immediately to supply well characterized

. materials for processing studies.
I

Work underway and to be done in the October, 1978, through

September, 1979, time frame is directed toward the publication of

the results to date in the open literature, continuation ef develop-

ment of one reference design of a space processing system and

organization of two workshops. Articles have been or will be

published shortly in the Journal of Contemporary Business (Commercial

Prospects for Extraterrestrial Materials -- reference 6), Chemical

Engineerin 9 (Manufacturing in Space and the Role of the Chemical

Engineer -- reference 7) and the Proceedings of the 5th Conference

on Static Electrification at St. Catherines College, Oxford (Elec-

. trostatic Beneficiation of Ores on the Moon Surface -- reference 9).

A paper ba _d on the analysis of lunar strip mining is being

prepared and will be submitted for publication early in 1979.

Work at the Institute will concentrate on a continuation of

the definition of a reference model for one chemical processing

approach. We will continue development of prioritized technology

readiness plans extending in scope from terrestrial experiments

to space and lunar experiments, and prototype facilities. We _vill

complete a flow sheet for the acid-leaching (HF) process proposed II_

: to reduce anorthosite to its constituent oxides. This flow sheet

J
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will be useful in engineering studies of prototype plants and as

a comparison for other potential processes. It would be expedient

' for one of the NASA field centers to conduct a summer engineering

design program on the conversion of this fIuw sheet into an

engineering specification for a lunar and/or space processing

plant complete with cost and development estimates for a range

of plant sizes. Possible variations of the basic process flow

will be explored, such as replacing a Na-reduction step with a

electrolysis operation. Finally, an attempt will be made to

identify exotic compounds which are not presently used terrestrially

due to environmental factors or hazards (example -- use of calcium

as electric wire) but mi_Ii_ be of potential use in space.

Two workshops are being organized dealing with the pr)duction

of glass and ceramic products from lunar'materials and the application

of electrochemistry techniques to the electrical separation of lunar

materials into the constituent elements. Professor J. Meckenzie

has agreed to chair and assist in organizing the glass and ceramic

workshop. This meeting will be held in the early part of 1979.

Professor N. Hackerman of Rice University has assisted in promoting

" interest on the part of the Electrochemical Society of America

in organizing a jointly sponsored workshop with the Lunar and

Planetary Institute on the direct electrochemical separatio,1 of

lunar materials. A proceedings of the workshop is anticipated and

the workshop is planned for the spring of 1979. The interest

shown by high level professionals in a wide range of disciplines

toward the develoFment of specific technologies for large

processes is direct and powerful evidence of the reasonableness

of the expectation that many aspects of terrestrial technology can

T

w

T, _i
P

w

1979021033-OGG



I - 51

be transferred to industrial operation in space and on the lunar

surface. Lower costs ui materials and greatly expanded capabilities

in space can directly result from the deliberate planning and

application of the available terrestrial technologies of industrial

materials production Eo the development of lunar materials as the

I
early basis for cis-lunar industries.

Ii

i,
t
t
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Table I

QUALITATIVE MOTIVATIONS FOR THE USE OF

LUNAR AND ASTEROIDAL MATERIALS

I. The unit cost ($/kg) of lunar materials acquired in space

should be significantly less than the shipping rate of

terrestrial materials to low earth orbit or to deep space.

This is because the lunar escape energy is 5% of that of

the earth and the moon has no atmosphere. Therefore it is

possible to directly eject material from the iunar surface

into space by means of electromagnetic launchers. The electro-

magnetic launchers are embodied as systems which are much less

massive and require less energy (propellant) than terrestrial

rockets over the lifetimes of the two systems.

2. It is possible to immediately begin detailed planning and

development of lunar supply operations and research on

processing of lunar materials due to the vast knowledge that

has been acquired on the lunar materials and manned operations

on the moon during the Apollo missions and by post-Apollo

research.

3. If the bulk of the materials for large space structure_ and

their operations are obtainable from the moon terrest,'al

launch operations can be specialized fnr the transport to space

of people, materials not available from extraterrestrial sour_e_,

and high technology production and control machinery rather the:,

bulk cargo. This will permit the use of smaller mature launch

systems, maximi_e the use of the space shuttle systems for the |

_J
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_: Table I - (continued)

71 remainder of the century and minimize concerns of the
i,

environmental impacts of terrestrial launches.J

4. Growth of the large scale industry in space will not be

limited by one major engineering system (large boosters for

earth surface to orbit) but will have at least three

separate and distinct materials supply scurces-- the earth,

the moon and earth approaching asteroids. The rate of

materials extraction from the extraterrestrial sources can

be expanded in large part by devices made in space, thus

progressively decoupling the cost of further growth from the

expense of terrestrial launch operations over time.

5. Considerable expertise exists outside of the aerospace community

which can be applied to industrial scale operations in space

for the supply of services to the earth and the generation

of economic systems for use exclusively in space. The key is

to reduce the cost of material inputs to resemble more closely

materials costs in the terrestrial market place. As this

. occurs the costs of all space operations are not dominated by

the single factor of transportation expense to orbit.

6. Techniques and devices developed in the context of a space

system for the processing of large tonnages of materials and

goods will result in the much wider application of aerospace

developments to terrestrial industrial practices than the

far more specialized developments of earlier manned and unmanned

space programs.

i

.._..,,". kf o
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Table I - (continued)

7. Increasing the range of participants in the planning and

operations of large space programs will inevitably result

in an increasing rate of discovery of new and profitable

applications for growth of industry into space. The possibil-

ities for future exploitation and exploration will be consider-

ably enriched by an expanded base of in-space operations.

This is probably the only way the economic reach of space

industries can be extended past the service segment of the

national and world economies.
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Table II

SIGNIFICANT RESULTS OF THE "EXTRATERRESTRIAL

MATERIALS PROCESSING AND CONSTRUCTION" PROGRAM

I. An initial scale of materials usage in a large space structures

: program such as the proposed space power satellites (4.1O4 to

IO5 tons per year) is consistent with the industrial prototype

scale of chemical processing operations (possibly with parallel

; units). Development of such processing units is normally o

, expected to require three to eight years to complete rather i

than 12 to 18 years as is common in large scale terrestrial

industries which process far larger inputs of materials

(lO5 to lO7 tons per year) in the intensely competitive

terrestrial economy.

2. Mature industrial installations in the terrestrial economy

must be refined in design to allow extremely accurate knowledge

of the final costs of products over a wide range o6 competitive

conditions includi_ig labor, materials, financing and markets.

Often success or failure will depend on small differences

between rather similar technical approaches to the same products.
V

In space the initial competition will be against the cost of

launching bulk or semifinished goods from earth (> 2005/kg).

It seems reasonable to expect the unit costs of various processes
C

to be only a few times higher in space than for simi]ar operations

on the earth even in the initial stages of operations (_ I $/kg).

Learning curve experience acquired in space operations will

steadily enhance the attractiveness of lunar feedstocks in

competition with terrestrial supplies.
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Table II - (continued)

3. Three chemical processes have been identified for the

chemical separation of a]l the principal lunar minerals into

the major oxides and into their major elements. These processes

utilize low temperature and low pressure aqueous leaching in

either hydrogen fluoride, hydrogen chloride or sodium hydroxide.

Electrochemical techniques are used for metals separations.

These processes apnear to be compatible with operations in a

space environment although artifical gravity is required in

several of the process steps.

4. All steps in _he hydrogen fluoride process are either based

directly on systems used commercially for similar process

steps or are based on common laboratory practices. A set of

small-scale experimental and analytical projects are described

which can be done in university or industrial laboratories.

The experiments will provide knowledge necessary to immediately

proceed to the design of a prototype processing unit based on

the hydrogen fluoride option. The unit could be used for

production tests on the earth and for very early in-space

processing tests in the space shuttle.

5. There is minimum or no need for additional exploration at low

lunar latitudes to confirm the existence of usable sources of

the most common lunar minerals as dependable sources of the

major elements (oxygen, silicon, aluminum, iron, ca]cium,

magnesium, and titanium). It will be extremely profitable

to survey the remaining lunar surface from orbit to locate

concentration_ of minor elements and volatiles in order to
i
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Table II - (continued)

enrich the inventory of lunar elements available for

exploitation. It will be useful to have high resolution

topographic maps of possible mining sites.

6. Glasses, fiberglasses and ceramics have been produced from

oxide mixtures identical to major mare (iron rich) and

highland (aluminum rich) soils sampled at the various Apollo

landing sites. Mixtures of major lunar soils, soil separates

and elemental separates can provide ingredients for an extensive

suite of glasses and ceramics for a wide range of structural,

processing, optical and other uses. Glass and ceramic

production can be fully explored with terrestrial simulants

of lunar materials. Vacuum production of the test articles

should receive special attention. Unique glass products

produced from lunar soils may be one of the first commercially

attractive products for terrestrial use.

7. Lunar mining operations have been studied by means of parametric

models based on terrestrial experience with strip mine operations.

The initial operations are extremely small by terrestrial

standards. Even the materials handling required to construct

5 to lO space power stations each year (90,000 tons per tation)

is small by terrestrial standards if electrostatic or magnetic

separation techniques can be used at the mining site to

,,,inimize haulage. Current terrestrial practices are consistent

with a highly automated mining system where most of the human

involvement is in machine maintenence and remote monitoring

rather than direct operations.

P
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Table II - (continued)

8. Electrostatic separation techniques appear to be directly

applicable to the tailoring of raw lunar soil with sma11,

low power devices to select only the mineral fractions which

are most appropriate in elemental content to the immediate

needs of the space industrial complex. Device developments

can be done with very small quantities of lunar soil.

However, it is likely that a prototype device for lunar

processing should be tested and operated on an unmanned rover

early in final site verification operations.

9. A survey of the Standard Industrial Categories (SIC's) of the

United States reveals that the major materials inputs te 64

of these categories is consistent with a lunar supply source

and/or can take advantage of solar thermal/electrical power

in processing and fabrication. Goods in the.e 1972 categories

had an output value of 58 billion dollars. These SIC's

included electrometallurgy, glass, ceramics, light and

specialty metal workings and fabrication and _iectronics.

, These SIC's represented not simply possible product ranges

for space manufacturing but more importantly in the early

stages of space industrialization a vast source of technical

expertise which can be focused on creating space industries.

In addition, the process energy of these products was over

380 Billion kilowatt - hours in 1972. Import from space of

such products also imports to the biosphere this space processing

energy which could be a significant fraction of the total

energy of the nation. _.

.I

B
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Table Ill

Non-renewable resources must be extracted from the earth,

sea, and air and processed into a 6or_ which can be used by

, industry. "Demandite" is an imaginary molecule which contains

the weight fractions of all the various materials used in the

United States in 1968. The properties of Demandite are summarized

below. Notice that fuels constitute the largest fractio.l of the

Demandite molecule.

Weight
Use Fraction Components

Fuel 0.46 Hydrocarbon (CH2 to C6HI4)

Building 0.45 Calcium carbonate (CaCO3)

Materials Silica (SiO2)

Metals 0.06 Iron, aluminum, magnesium,
manganese, titanium, copper,
lead, zinc, other metals

Agriculture O.Ol Nitrogen, potassium, phosphorus

Others 0.02 Oxygen, sodium, chlorine, carbon

Average Unit Cost - 1.4¢/Kg

, Metals Unit Cost - 21.O¢/Kg
s

Total Quantity - 3 Billion Metric Tons

Total Costs - 42 Billion Dollars

Average Unit Recovery Energy - 1.14 KwtHr/Kg

Reference (I0)

: m
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Table IV

; The major problem facing the modern industrial world is to find some
- source of energy to replace petroleum. Electricity produced by solar

energy would do this. A new molecule of non-fuel and non-renewable
elements (non-fuel Demandite) can now be defined by subtracting out the
fuel in Table Ill and introducing the fractions of the elements which
compose the remaining substances in Table III (see columns l, 2 and 3
below). Surprisingly, II of these 16 elements can be obtained from
the lunar soil with no more than a factor of ten enhancement over their
natural lunar concentrations. The other five elements comprise less
than I0% by weight of the non-fuel Demandite (columns 4 and 5).

(1) (2) (3) (4) (5)

, Element Major Use Weight Fractions Apollo 15 Enhancement
Non-fuelDemandite(3) Mare Required(c)

Oxygen (0) .4547 .4130 l.lO

Silicon(Si) Building .2444 .2158 1.13
Materials

Calcium(Ca) .1417 .0696 2.0

Carbon(C) .0574 .000095 604.0

Iron Metals .0479 .1535 0.31

Aluminum .0023 .0546 0.042

Magnesium .0017 .0681 0.025

(a) .0020 .000022 90.0

(b) .0030 .0189 0.16

Potassium(K) Agriculture .0021 .0008 2.6

Phosphorus(P) .0019 .0005 3.8

Nitrogen(N) .0083 .00008 I03.0

Sodium(Na) Chemical .0095 .0023 4.1
Processing
Elements

Sulfur(S) .0058 ,0006 9.7

Chlorine(Cl) .0147 .0000076 1934.0

Hydrogen(H) Plastics .0025 .00007 350.0

Totals .9999 ...... 9980

(a) Copper,zinc and lead.

(b) Manganese, titanium,chromium,barium,fluorine,nickel,argon, tin,bromine
zirconium,and boron (mostlytitaniumand maganesein Column4).

(c) The enhancements,especiallyfor the minor elements,may vary considerably
from one lunar landingsite to another. H ,naybe at lunar poles.

Reference(lO)
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• FIGURES (CHAPTER I)
(

_[ l-l. Schematic of the flow of matter from the sources on and

in the earth to the final products and losses. Wealth,

personal freedom, and the overall adaptability/complexity

of the industrial societies appears to be detr_mined by

how efficient these industrial activities arc and on how

much technology and science can reduce the degree of human

; involvement necessary for direct operation of industry.

All this activity takes place in the biosphere (natural

recycling system driven by solar energy) and on the bedrock

provided by the surface of the planet. Demandite represents

the average distribution of elements used to form the pro-

lO
ducts of civilization.

I-2. Demandite will be used in a similar manner in space as

on the earth following the replacement on earth of hydrocarbon

fuels. However, space industries will have a far greater

incent ve to conserve working fluids or recycle mass than

on earth in the various industrial processes due to the

- launch expense rf obtaining and red,lacing initial stores from

earth. In this figure the lower case letters correspond to

the total extraterrestrial and terrestrial mass in kilograms

extracted (m', m, de), processed (ds, d),lost (1), or

exported (ep, eo, ee) from a space industry from the start

of the use of extraterrestrial materials. The mass flow of

personnel to and from space is given by p and p' respectively.

The dots over the small letters indicate the flow rates

of these masses. Initially capital investment in the creation i

w
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FIGURES (C:_APTER I) continued

of space irdustry will Le approximately proportional to the

mass of machines, materials, and people which must be
m

transported into space [Ce!Kg), p(Kg), p'(Kg)] due to the

high cost of earth to orbit transportation compared to

earth surface or in-space transportation. Thus there is

m tremendous incentive to reduce the initial integral launch

mass. As space industry matures its overall efficiency and

economic return will be deter'mined in #,art by the efficiency

with which recycling can be accomplished. The coefficients

c(Kg/kg! and c (kg/kg) are respectively for life support and i

recycled process fluids in industrial operations. These

- coefficients specify the kilograms of materials which must be :
T

brought from earth to process one kilogram of extraterrestrial

material at a given stage of process on make-up of loss from

one kilogram of life support material. These coefficients

must be much less than unity. In the production phase it is

important to minimize the need for demandite make-up mass from

earth [de(kg/kg) ] and capital equipment sent from earth

[Ce(kg/sec)] from earth. The coefficients (kg/kg) specify

how many kilograms of new terrestrial material must be

introduced per kilogram of processed or constructed terres-

trial facilities or goods output. This ratio changes with

time. The large letters refer to the value added (M', M,

P, Ee, E ), by processing or combining terrestrial and extra-

terrestrial materials (D = Ds + De) or to the value of input

capital flow (Ce) _n a dollars/kilogram ($/kg) basis.

,win
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,_ FIGURES (CHAPTER I) continued.

_;.

•, I-3. Artist sketch, to scale, of the Grand Coulee Dam in the

state of Washington. The smali volume of mass on the

upper left hand portion is the volume of an SPS compressed

to the iensity of concrete (5 T/m3). The small volume on

the lower right hand side is the volume of the active

electronics necessary in the ground rectenna to receive ]0

.(
, gigawatts of power from the SPS and convert it to a form

suitable for transmission to terres+: _al users. Grand Coulee

will produce 9.2 gigawatts of electrical power on completion

of installation of full generator capacity.

I-4. This is an artist's concept of one particular design of a

lunar base specialized for the long-term supply of minimally

processed lunar soil to a collection point in space. The view

is from a few hundred meters above the landing pad to the

southwest of the male complex. The base is composed of

four converted shuttle tanks in the middle foreground of the

picture, a small mining area in the lower rlght, a photovoltaic
,.,

power supply in the middle left and electromagnetic launching

device for soil units stretching from the center to the upper

right. This ew is of the second lunar day of base
24

emplacement.

I-5. This is one possible concept of a chemical plant in low earth

orbit which is configured to process approximately 30,000

tons/year of lunar soil. Ten ..o15 space shuttle missions

would be required to deploy the plant in low earth orbit.

It is described in the text. The gold octagonal so,ar array
I
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"I FIGURES (CHAPTER I) continued
I

dominates the picture. It supplies power to operate an

electrolytic separation unit in the background. In the

foreground, behind the solar mirror is the oxide separation

unit in which all the common lunar minerals can be separated

by wet chemistry processes for further chemlcal and electrolytic

processing. Plant mass is less than 300 tons including pro-

cessing fluids which must be brought from earth. Notice theI

small bag of lunar soil entering the loading chute. The bag

of soil is to scale for J 2,000 ton unit of lunar soil

sufficient to operate tne plant for 25 to 30 days. _n the

foreground is a shuttle hydrogen tank reconfigured t_

proviJe a zero gravity workshop. In the background i_ a

rotating habitat for the 20 man crew necessary during the

proof testing phase of the prototype plant. The oxide

separation and electrolysis units are also rotated to pro,ide
I

contFolled gravity for the chemical processing. The _ong

black objects extending frum the vrocessing units are

_'_ radiators for the rejection of waste heat. The plant is

shu:vn coming into sunlight just over Galveston Bay. Four

of these units could supply the industrial feedstock to build

one SPS/year.

i-6. Pictorial flow diagram for HF _cid leach process. The separation

s_ction (left) shows the steps where the raw or beneficiated

lunar ore is dissolved in hydrofluoric acid and the silica

and metal,ic cxide fractions into fluorides or fluosilicates and

ar2 separated by distillation, precipitation, ion exchange or _.,

i cther methoc_. Thu portions of the fluoro compounds needed
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FIGURES (CIIAPTER I) continued.

to supply the elemental (reduced) products _re transferred

to the reduction section (right) while the rem_:nder are

hydrolyzed with steam (or acids) to recover H_ and regenerate

silica an_ metal oxides.

The reduction operations for silicon and aluminum use

metallic sodium, produced by electrolysis of fused sodium

hydroxide to reduce the corresponding fluoro compounds to

free elements plus sodium fluoride. The sodium fluoride

is decomposed to HF and NaOH by ion exchange, hydrolysis

or electrolytic means. Magnesium metal (and calcium if

required) are produced by reducing their oxides with

silicon (or aluminum).

I-7. Histogram of the total sales value in billions of dollars

(vertical axis) versus the average value in dollars per

kilogram (horizontal axis) of goods produced in 230

Standard Industrial Categories of the United States

economy in 1972.
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II. PR(_CESSING OF LUNAR AND ASTEROIDAL MATERIALS il

(Separation, Conversion and Refinement)
m

Introdllction

This report will deal with the general and specific require-

ments of materials processing plants desiqned to convert raw or

beneficiated lunar soil or rock (or, alternatively, asteroidal

material) into industrial material feedstocks useful for manu-

facturing operations in orbital or lunar locations. Generation

of major materials requirements for space operations from lunar

or asteroidel sources can greatly reduce transportation costs

associated with launch of equivalent payloads from earth due to

more favorable energy and power considerations from the former

sources.

Background

The concept of industrialization of space including manu-

facturing of raw materials and finished products hes been explored

I-3
by a number of prior investigators . Recent work has included

sessions at the 1976 and 1977 NASA/Ames Summer Study Programs.

These sessions investigated specific chemical processes for

conversion of lunar materials into silica, silicon, aluminum,

iron, magnesium, titanium and oxygen using carbothermic or carbo-

chlorinat,on reactions to separate and/or reduce the constituents

found in iJner silicate or ilmenite minerals.

Tn ,'_.':,entstudy was undertaken to investigate the

carboch,.o,'inationprocess in greater detail and perform a
t

preliminary engineering analysis of the mass, power and operational
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' 11-2

requirements needed to perform such operations in orbital ar

._ lunar locations. At the same time, a reconsideration of some

of the available options in mining, processing and manufacturing

oporations starting with non-terrestrial sources and including

alternative chemical or physical routes to separate and recover

constituents from lunar or asteroidal materials wa_ begun which

led to the detailed study and analysis of a hydro_heDnical process

for treating silicate or ilmenite cres.

Much of the prior study effort was geared to a scenario in

which the lunar base {.'_tivitywas restricted primarily to mining,

beneficiation, packaging and launch support for further processing

in orbit. Refinement and manufacturing would be conducted in

orbit in which critical materials or components not readily

producible from lunar feedstocks or manufacturable in orbit would

be lifted from earth along with operati;,g manpower. The primary

mission orientation dictating the desired output materials from

space processing and manufacturing facilities was the Space

Sa_ellite Power System (SSPS) concept which has been the subject

of in-depth engineering investigations. While the present study
w

is basically compatible or consistent with this scenario, it is

by no means restricted to such considerations, and the revised

process can be examii_ec,in _ more general framework of space

industrialization which would address the following four questions:

I. What can be mined and reccvered on the moon or in

orbit more economically than supplied from the

earth?

2. What useful products can be derived from said materials?

3. What product mix options are available?

m

F
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4. Can a bootstrap operation be established with a

minimum requirement for earth source structures,

equipment or expendable supplies? (Specifically,

could the materials and processing capability be

established to construct additional processing and 1

manufacturing facilities to increase production i

from the output of initial processing and manu-

facturing units supplemented by a minimal earth-

lift involvement?)

PART ONE -- METHODOLOGY

A. GENERAL CONSIDERATIONS

In common with industry on earth, one may anticipate commercial

use of both native mineral products (raw or beneficiated) and

processed or refined materials (metals, oxides, etc.) for various

applications with price/performance criteria determining con-

sumption patterns. The physical processing requirements for the

unconverted mineral products will be treated in other sections

of thi_ report and will not be considered further in this

discussion.

PoteEtial Availability

kestricting ourselves at this point to lunar raw materials,

we shall discuss the potential availability of individual elements

from raw er beneficiated lunar soil and/or rock sources. Results

of remote and direct sampling techniques have shown a remarkable

4
constancy of composition of lunar rock and soil samples, but

with some characteristic differences between highland and mare

areas and individual sampling sites. Extensive analytical work
i

has established thet s;x elements invariably occur at levels
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above 1% by weight: O, St, A1, Ca, Fo and Mg, while a seventh,

Ti, occurs above that level in mare samples, but averages about
5

0.5% in htgh]al, d sources. Th_se seven elements are considered

the relier lunar elements and are p tpntially reccverable from a

variety of input ore sources.

An additional six elements we shall classify as minor

elements which generally occur a'_ levels between 0.1 and 1% by
5

weight. These are: Cr, Mn, N_, K, S and P. These elements

are not present at levels which might justify primary chemical

recovery methods, but tney would be expected to accumulate during

the processing of significant quantities of the primary elements !

and if recovered, could provide alloying elements for metals or

makeup chemicals for processing reagents such as HaOH, KOH, H2SO4,

HIPO4 and SO2, etc.

The remaining elements normally occur at levels below 0.5%

by weight and we classify them as trace elements. They would

not normally be recoverable in sufficient quantities to nerlt

additional processing facilities except in special cases. However,

four of the llght elements, H, He, C and H, are of special interest

because of their potential importance as chemical intermedlates

and because they could be recovered by outgasslng of lunar soil

as well as during chemical solution processes used for major

element recovery. The atomic abundance of H may typically mount

to I% of the sillcon content even though the weight ratio of H to

$i02 is typically I:(4,00 - lO,O00). This may be sufficient to

replace H loss due to residual moisture in plant product after
f

t

drying operations.

In addition to the chemically bound iron in the minerals,

w

p,,
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there is a measurable content of reduced (neutral) iron present

as small particles in the l,Jnar soil While this constituent

would be considered a "trace" material based on _bundance, the

potential ease of recovery by magnetic methods plus eliminat" )n

of subsequent energy intensive sta_es attendant to reduction of

ferrets i_on may make recovery of neutral iron an attractive

alternative to recovery of chemically combined iron for structural

metal req:_i"_ments•

Recov_. _oLential

(Major Elements ._

Separation and recovery of the seven major elements in

elemental form or as their oxides may be achieved by ar_yof the

major prouessing routes: hydrochemica!, pyrochemicaf, elec_ro-

chemical or combined processes, such as are dsed for si_!_,r

ope" tions o" earth-based plants. The principal distinguishing

requirement for a successful non-terrestrial process is t_,atall

reagents, catalysts or other substance_ employed in the process

which might be lost or converted to different compour,ds would have

to be rely_ cled to orig_nal form unless their mass _nversion rate

amounted to a small fraction _f the production rate of the

princ]pal products. A practical limit might be at about the I%

level. These processes m_y be conducted eit_er on the.lunar

surface or in orbit. An orbital location would per,_it some unit

operations to be conducted in a gravity-fmee environment i#

desired, but materials handling problems seem to make such steps

less attractive. An exception might be for processes in which I

corrosion effects have proven severe and in which levitation of

process s_reams would b: nossible.
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_. (Mtnor Elements)

_" Recovery or dtsposal of the minor elements would be necessary

_" since they wtll pass through the process stream in sufficient

_ quantities that their consumption of reagents could not be
1

ignored Of thes_ six ._lements, the alkali metals, Na and K,

•' tend to occur primarily in the feldspar fraction of lunar
?

_ minerals while the manganese is found in nearly constant propor-
C

tion to iron (ca. 1:30) and thus tends to concentrate in pyroxenes

. and llmen_to fractions. The three remaining elements, Cr, S and

P tend to concentrate in the scarce mineral fractions spinel,

", troilite and whitloc'.ite respectively.

The alkali metals will normally remain in solution in most

leaching-solvent systems and can be recovered by crystallization

or ion exchange. The metals, Mn and Cr would be valuable alloying

constituents for ferrous metallurgy and could be recovered by

electrodeposition, ion exchange or chemical precipitation. The

S and P content could be recovered by an ion exchange or chemical

precipitation.

" Any large scale requirement for the minor elements would

necessitate chemical processing on the lunar surface since it

would be impractical to transport large masses of material to

recover a small percentage of the weight of the ore. An exception

to this rule may be possible if very efficient ore beneficlation

of scarce mineral phases cai_be performed by physical methods

such as electrostatic separation in conjunction with mining

operations.

(Trace Elements)

Recovery of trace elements except for the light trace elements,

1979021033-098
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s

: H, He, C and N, would rarely be useful unless they would be

readily separable on equipment designed for major element

separation processes as for example, from an ion exchange column.

The abundances of precious and soft metals are so low as to make

recovery operations uneconomical. The non-metals present storage

, and purification problems whtle transition metals such as Cu,

i_ Nt, Co would require substantial post-recovery processing to

, convert to useful forms.

Some recovery at a later state of trace elements may eventu-

ally prove practical if the slag or refuse output of the major

element processes can be partially segregated or differentiated.

Thus, if a fraction of the slag output can be substantially

enriched in heavy metal content or in individual elements, these

can be later reworked if they are separately stored upun exit

from the plant.

The light trace elements would largely appear as volatiles

released upon dissolving or heating the material processed in

major element recovery. Partial oxidation would generate addi-

" tional carbon oxides. These gases could be sepa).'ed from

condensible vapors and retained for process make up or special

uses.

Extraction of additional amounts of the light trace elements

with possible additional elements which could form volatile

species in the prsence of reducing or oxidizing gases may prove

practical on the lunar surface, especially if a commitment to

handle large quantities of lunar soil is made as would be required

in the extraction of neutral Iron, The heating of large quantities i_

of lunar soil to approximately lO00°C for the extraction of light

1979021033-099
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element volattles would require substantial energy consumptioni

" per untt output, but even without thermal recovery, the energy

requirement would be low tn comparison wtth chemtcal methods

of extraction. For example, using a mean heat capacity of lunar

rock of 0.2, a AT of 1000°C would require about 200 cal/g.
t

Since the equivalent weight of lunar stltcate mtnerals generally
J

falls tn the range of 15 - 20 g, the senstble heat per equivalent

would only amount to 3 - 4 Kcal/gram equtvllent which ts much I
• t

lower than most chemtcal processing energy requirements. If we !

assume a nomtnal recoverable ltght element content of 300 PPM
m

(H - 75, He = 20, C = 100, N = 100, Bal = 5) the thermal energy l

requirement per untt mass of light elements (roLE) becomes: !

m

i

A FI = 200 X - 667 Kcal/g. i
I mLE

) :IIf one Includes S which would be recoverable and would normally !

) ioccur at about 1000 PPM, the thermal requirement &H/mvE - 154

Kcal/g where eVE is the mass of volattle eleme_Ls (ltght elements i

, f plus sulfur). These energy requirements at, very htgh when viewed {

normal thermochemtcal standards, but probably offer the only ]m_ _

by

practical way to recover large quantities of these trace elements )

from lunar sources. However, substantial reduction tn energy

requirements would be possible by regenerative heat exchange

between degassed and input feed streams.

Derivable Products

J' The elements 11sted above can furnish raw materials for a

variety of useful products necessary for various Industrial

_ operations. Table I shows some classes of materials requirements
,3 •

&

i
A_ ....
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/
for processing plant and manufacturing operations which could I

fbe partially or completely met from lunar derived materials.

Not all of these requirements would necessarily prove more S
', economical to satisfy from lunar source materials and space

processing and manufacturing as opposed to supply from earth,

but their availability should promote further study of practical

feasibility of various opttons.

Product Mix Options

The relattve quantities of various output streams from a

lunar materials processing plant can be selected within constraints

established by various raw or beneftctated feedstocks to obtain

plant design optimized for desired end applications. In addition,

for a given processing plant, some fle_!' #tty tn output is

posstble by alteration of input feed, although in such cases,

the output of various sections of the plant may not be well

matched, and some process steps may have to operate at substantially

less than rated capacity.

The principal variables include the relative requirements
W

for stlica and silicon products, structural metals, refractories

and oxygen. In terms of plant processing requirements, the most

important considerations are ratios of reduced to oxidized

products and gas (oxygen) to solids ratios. The principal

consideration in oxygen requirement is whether or not a sizeable

need for propellant oxygen is established. If it ts, the oxygen

requirement could far outstrip the need for reduced products

. {structural metals and slllcon), but it would still be necessary

to produce metals as a surplus by-product. This output imbalance b

could be avoided If reactive metals such as calcium or magnesium
3
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could be uttltzed as fuel tn advanced propulsion systems.

If only ltmtted demand for propellant oxygen materializes,

ttts 11kely that oxygen released by reduction of structural

metal requirements would exceed all other needs for oxygen. In

such a case, it may be necessatj to dtscard some oxygen since

storage is ,,.ore difficult than for the soltd products.

Table II shows some product mtx option considerations

applicable to lunar materials processing. Figure 1 and Table III

show the range of Individual major m_tals content as a function

of silica content for principal mtneral species potenttall_

I available as inputs for processing plants.

' Bootstrap Operational Capabilities

The most important ques[tons regarding the establishment
i
) of Industrial activity in space or on the moon apart from general

utilitarian and economic considerations tnvolve the capability

of intttal processing and manufacturing facilities to support

andsustatn a flexible course of expansion and diversification !L

to fulftll future requirements of various types. It appears clear

_! that some spectal requirements in any case would have to be

supplted from earth, but it also appears ltkely that the major
t

; fractton of materials and fabricated items could be processed

without the use of earth based materials or facilities.

!: To support general expansion and diversification activity, '

_ there are certain common capability requirements which are
-

independent of partlcular mission activity. Thus, the materials

._, processing activity should be able _o p_oduce products which

,_,

could be fabricated into essentlaily slm.llar processing plan_s ::

_" to permit expansion of output, The manufacturing capablll_y -. "u

1979021033-102
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should be able to fabricate these additional processing plants

as well as stmtlar and diversified manufacturing facilities.

In addition, the plants shouJd be able to produce solar power

systems to support their own operations as well as habitation

and btosupport systems including agricultural scttvtttes.

It appears that the materials processing sectton of such

an Industrial complex could produce most of the ferrous and non-

ferrous metals requirements, glass, refractories, Insulation,

electrical and magnetic materials ltkely to be needed in chemical,

manufacturing and power plants for use in space. The economic

feasibility of overall Industrial development may depend more

critically on efficiency and flexibility of space manufacturing

and fabrication than on materials processing. Certainly the

analysts of cost-effectiveness of various potential routes to

space Industrialization wtll require considerable additional

study.

B. MATERIALS PROCESSSELECTION

' Introduction
r,

The se]ectton of chemical or phystcal processes to convert

raw or beneftctated lunar ore to destred elemental and compound

materials suitable fGr further Industrial processing involves

many of the same factors of cost, raw material avallabillty,

transportation, environmental and personnel hazards, etc,, which

influence selection and design of earth-based plants, although

the criteria are weighed differently. In addition, the unique

constraints and opportunities of the space environment must be

considered in selection of suitable processes. One must establish

_

1979021033-103
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crlterta to compute figures of merit for alternative processes

to allow selection of an optimum process route. Once the process

route ts chosen, the process can be analyzed tn terms of the

individual untt operations which can then be sized using conven-

tional engineering procedures. The resulting preliminary design

can then be compared with other process routes (or xtth earth-

based processing and launch-to-orbit alternatives) to establish

systems performance of the various opttons.

Criteria for Process Evaluation

The prtme consideration for evaluation of space processing ,

and manufacturing systems must center on cost effectiveness tn
,t

producing structures, functional hardware and suppltes tn

orbttal locations vs earth-based manufacture and launch into

orbit. In such comparisons, it ts essential that functional

substitutions be considered since some items such as organics,

fiber-reinforced resins, beryllium products, copper, silver,

refractory and precious metals, plus materials wtth appreciable

water content would be difficult to produce from lunar materials.

Fortunately, acceptable substitutes exist for any of those

: substances whtch would be needed in substantial amount°.

The cost tn orbit of earth manufactured products may be :
(,

taken as the earth market price plus the cost of orbital lift.

_; The latter !s anticipated to be in the range of $654/kg uslng

:, space shuttle technology.* Several estimates of the cost of

,: launching lunar materials into orbit have been given. It seems

, safe to conclude that regardless of ultimate technologlcal advances,C
L

_ the cost per unit payload of lunar orbital launch is likely to
,_.

: *NASA Report JSC-12973 Solar Power Satellite Concept Evaluation ,

(July 1977)
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i ]I-13remain at 10% or less of the cost of earth orbital launch given

I a sufficient mass requirement.
Regardless of lunar materials processing and manufacturing

) systems chosen, it ts unrealistic to anticipate that ti_e value

i added per conversion step wi]| be comparable or lower in cost

than similar operations on the earth. On the other hand, it is

- fully reasonable to anticipate that the cost of such operations

should not exceed ten times their equivalent cost on earth. To

meet such a ltmtt, it ts essential that the mass of capital

• equipment, expendables_ reagent inventory, and support facilities
!

which must be launched from earth should be far exceeded by the

annual output mass of such operations. Analysis to date of the

materials processing portion of such operations shows that this

requirement is readtly met.

The total "earth supplt3d equivalent mass" (ESEM) per unit

mass output chargeable to the materials processing portion of an

Industrial factltty must be properly defined to permit inter-

comparison between alternative processing systems. It would

" _ appear loglcal to charge the mass of electrical and solar thermal

power facilities necessary for the operation of the plant plus

the mass of any space radiators necessary for heat rejection

from plant operations or the corresponding fraction of common

power or radlatcr facilities. The mass of capital equipment should

be amortized over its useful lifetime and an "equivalent mass

interest rate" assessed since the mass is originally translated

, into lift cost. Replacement or expendable mass consumption is t
, expected to be a consequence of reagent loss plus lubricants and

items subject to progressive wear or deterioratioN,

1979021033-105
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Mass derived from l_nar sources should be separately

assessed as "lunar supplted equivalent mass" (LSEM) whtch would

tnclude input matertal tn inventory and in the process loop. It

seems preferable to charge the output w4ss tl_ventory to the

manufacturing operation except posstbly for output materials
t

used capttvely for plant operations.
t

Mass for necessary support servtces may originate Jointly

i from earth supp|ted and lunar supplied material. Rather than

attempt to break down such items, tt may be preferable to assign

probable cost figures to such support operations.

'+ Output mass must be clearly defined tn terms of products

and primary needs. A large mass output of slag-like material

which may only be useful for radiation shielding should perhaps

not be listed as a primary output product in computing plant mass

requirements per untt "output" mass.

In addition to mass considerations, other criteria of

Importance tn process evaluation include process reliability,

manpower requirements for operation and maintenance, potential

hazards to on-slte personnel, adaptability to process scrap

materials, and ease of repair in case of malfunction. In the

latter case, corrosion of parts which can only be replaced from

earth supply is far more serious than corrosion of lunar derived

parts.

Original cost of chemical process equipment per unit mass

is expected to be dwarfed by orbital lift costs in all but a

few special cases and thus would be of minor importance. If

replacement items for many of these units could be fabricated

from lunar materials, this would offer the opportunity for cost

1979021033-106
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I Process Constraints
i A successful orbttal or lunar materials processing plant
_ must operate with several constraints which rarely concern
F

industrial plants operating on earth. These tnclude:

1. Lack of vtrtaully Inexhaustible suppltes of air and

" water.

' 2. Lack of unlimited heat sinks offered by (l).

3. Lack of unlimited fuel supplies; coal, oil, electric,

i gas, etc.

4. Lack of inexhaustible oxidizing and reducing agents.

5. Lack of expendable acids and bases (except CaO).

6. Lack of key chemicals: ammonia, salt, chlorine, caustic,

soda ash, carbon dioxide, sulfuric and phosphoric acids,

carbon and graphite and organics.

7. Lack of ordinary solvents.

8. Lack of unlimited inertia in foundations (except on

moon).

9. L_ck of support vendors.

The,,e constraints do not prevent use of these reagents,

supplie_; or services, but make it essential that ordinarily

expendable materials must be recycled tn original form with a

minimal attrition or loss (preferably below I% per cycle).

This requirement has _ corollary in that the output or

material leaving the plant must be a separation and/or recombina-

tlon of the chemical elements present in the feedstock. Since

: the only non-metalllc elements present in significant quantities

from various lunar raw materials are silicon and oxygen, the
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output streams must be necessarily ltmtCed to elements, alloys,

silicldes and oxides.

For the major mlneral constituents of lunar rock and sotl;
|

I pyroxenes, feldspars and olivine, the compositions are silicates

. which may be described as addition compounds of metal oxides and
f

silica. Conceptually the processing of such materials may be

r broken down into separation of the constituent oxides (tncludtP

stltca) followed by reduction of that portion of the metalltc

_. oxides and silica desired to obtain structural metal_ _n' oxygen
-T

(or higher oxides, e.g., Fe203). For ilmenite, FeTiO 3, the same

steps are necessary except that no silic& is involved.

i

C. GENERAL CLASSIFICATION OF MATERIALS PROCESSING SYSTEMS

In an attempt to review and discover practical materials _

processing systems for lunar or other materials, it seemed worth- it

while to attempt a general method of classifying such systems.

Although the number of possible process variables is extremely

large, especially in composition of one or several reagents, there

are certain features in common which distinguish methods of
v

separating constituent components from relatively non-volatile
J

solid compounds and mixtures. These separation methods and

operating temperatures are more important in determining the
l

character and nature of the processing plant than the specific

reagents involved.

To separate one or more constituents from a high melting

point solid with negligible vapor pressure at ordinary tempera-

tures, one must create conditions to allow the desired constituent

to gain a reasonable mobility or diffusibillty (M/D) on a micr6-

or atomic-scale to permit it to react or migrate so that separation

. •
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may be effected. (In thts context, we shall not consider grinding

or dispersion techniques which merely serve to reduce particle

size or permit transport of soltd phases by slurries or flutdt-

zation techniques). Ftgure 2 shows a classification of mobility/

dtffusibtltty routes tn which the output streams are designated

as V (vapor), L (liquid), or F (flutd= V or L). [The intermediate

• ortput of the chemtcal solid-solid reaction is labeled C* which

designates a solid state reaction the solid output of which is

rerouted through the system to some other mobilizing step.]

, Once a mobile (liquid or'vapor) phase is available, a [
I_

separationfrom other mobile constltuents and residues (shlch we ):
)

shall define as residual solid material of negligible vapor pressure) i

may be accomplished by one of the routes shown on Fig. 3. (The

residues if present may be recycled to the mobility/diffusibility

(M/D) system.) The separation steps are designated by P (physical

S (seml-physlcal), C (chemical) or EC (electrochemical).

in many cases, the mobilizing and separating operations may

take place simultaneously or in the same apparatus. Recycling of "

chemlcal reagents may follow the same genera] outline, although
_o

in many cases the volatility or fluidity of the reagents may

already be established.

Flow Chart Analysis

To further expand the analysis, one may separate an entire

chemical or materials processing system into a network (flow

chart) of steps or segments, each one of which may be characterized

by one or more input streams and one or more output s_reams. If

we denote by (I,0) the number of input and output streams, a (l,l)

i segme,t represents either a materials mover such as a pipe, pump,
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-_ conveyor, etc,, or a stream heater, cooler, grinder, crusher,

- or physical treatment unit• A flow chart is the representation of

such a network in which the (I,I) segment representing flow llne._

t are usually drawn as simple l_nes Any segment with two or more

outputs must of necessity incorpor_ts some phase separation

: function except for special cases based on differential concen-

tratlon of a single phase as, for example, with gaseous diffusion "

units. We may also distinguish between physical segments and
¢

_t chemical (reactor) segments according to whether lack of or
?

presrnce of a chemical reaction takes place in such steps.

Finally, we may note that a mobility/diffusibility step is only

: required when solids with little _r negligible vapor pressure

must be treated to permlt extraction or flow of a desired

constituent and when surface reactivity of the grain is expected

to be too slow•

If reasonably pure output products are desired (e.g., 99%

purity), it is clear that the seven major elements will require

at least six separation steps (assuming (n,2) steps) if all these

elements are desired either in reduced or oxide form• Even if

one is only interested in recovering oxygen, silicon, aluminum

and iron in commercially pure form, it would appear that at least i

four ._eparation steps would be required• In addition, extra

separatlo,_ steps may be anticipated for recycling of necessary

reagents.

The enormous number of process variations po:_ible may be

realized when one considers that even if a single separatlun

process for each of the 22 categories shown in Fig. 3 was con-

sidered for each of the six separations above, one would have

• F,

1979021033-110



L_

more than I13 million combinations ()_6) of separation segments

i to consider. The 13 classes of M/D steps would further increase

i the number of possible process v:riations.The complete network or flow diagram must contain steps

necessary to recycle all reagents not derivable from lunar soils.

A detailed mass balance chart should also include mass replace-

" ments for electrode attrition, wear or :orrosion of containers,

i etc. These latter considerations in many cases may require a

greater mass replacement rate than reagent recycle loops with

! readily achievable efficiencies.

In order to narrow the field of promising materials processing

i system and limit the cost and scope of development effort expended
t

in analysis and improvement of parallel processes, it is impera-

tive that a method of rating comparable processes be established

based on realistic evaluation of anticipated performance and

realistic assessment of technological risks involved.

General Survey or Overview of Processin 9 Methods

For the M/D sections, the physical options have an advantage

' over the other routes in not requiring _agents or solvents. On

. the other hand, either very high temperatures and/or low pressures

or high energy excitation is necessary to vaporize or fluidize

silicate rock. Vapor pressures below about O.l Torr so restrict

materials transfer rates that they are seldom of process interest

for high volume production. In systems at very high temperatures,

thermal losses at low pressures are apt to be excessive relative

to mass transfer rates. Appendix A gives an analysis of the ratio

of thermal losses to materials transport in low pressure, high

temperature systems.
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Neutral* solvent systems (L2) would normally be employed

rather than fusion (LI) if a substantial reduction in melting

point or operating temperature is possible. There would be little

• incentive to use a neutral solvent at operating temperatures near

_ the melting point of the feed materlal. Reactive* solvents

(L3-6) can operate from at or below room temperature up to high

) temperatures, but the latter would probably not be useful for

i the same reasons as wlth neutral solvents. All of the chemical
systems listed here are considered to operate below the melting :i

point of the feed material. For higher temperature chemical

: operations, the feedstock is presumed to have melted (Ll) and

the chemical reaction is treated in the separation section.
;"

For the st Jration section, the physical and semi-physical

options involve well recognized phase and homogeneous separations.

The diffusion routes (PI and P7) are often not too_highly selec-

tlve at useful concentrations and are generally empluyed only

when no alternative phase separation is practical or convenient.

The two phase scrubbers and absorbers (Sl, S2, C2, S3) are often

useful at low to intermediate temperatures but are apt to present

severe materials problems at elevated temperatures.

General Ohservations Concernin 9 Chemical Conversions

The previous classification does not separately group steps

to produce free elements or other reduction products. These
|i

*A neutral solvent is defined as one from which the original

material may be recrystallized (in principle) in a substantially

equivalent form to Its original state. Reactive solvents produce

chemical alteration of one or more constituents of the solute.

L
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do not differ materially from other chemical steps and require

the same types of separation procedures. Metals reductions at l
i

temperatures above their melting points are generally self- 1

separating due to the common immiscibility of molten me_als wlth II

non-metals, slags cr fused salts. (This is not true in all cases, i

however.) However, the separation of constituent elements of i

• alloys is generally difficult.

_; Solvent systems may be subdivided Into aqueous (L3, L4) and
4

non-aqueous clas_es. In the former, the water solubility in acid

and rear neutral solutions of metallic compounds is of general

interest. We may note that most metallic nitrates, chlorides,

perchlorates, fluoborates and fluosilicates are water soluble,

while there is some limited solubility of fluorides and sulfates

for some of the metals. Most of the remaining common anions

form insoluble salts with all but the alkali metals. Nitrate,

perchlorate and fluoborate compounds present stability or avail-

i ability problems that render them less attractive than the other

i salts for general separation and reduction operatlons.

21 In basic solution, only the silica, titania, and alumina

fractions are likely to have sufficient solubility to be of
c

interest, and these constituents are often rendered insoluble

_ in the presence of polyvalent metallic ions such as Ca++ Mg++ etc

'*, Recycling of base (NaOH) is somewhat more difficul_ than for acids

" due to lower volatility.

Most metal chlorides are readily vaporized, while fluorides

are much less volatile. Both are easily reduced by active metals

{ or electrochemical action. Sulfides are also potential candidates

for metals reduction, but many have very high melting points.

_,
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' I
Classification of Prevtousl_ Proposed Processes

k

Prior studies had examined processes based on melting silicate
i

rocks or soll followed by chemical reduction TM (carbothermic and

.. silicothermic reduction) or electrochemical reduction (electroly-

sis).6 Another proposed route involved conversion of silicates
r

to chlorides using carbon and Jhlorlne fo,lowed by separation

and/or reduction. 7 Acid and basic leach processes were also

studied in previous reports under this contract. These materials

• processing systems for lunar materials may be classified in

accordance wlth the above method using a shorthand notation of
?

: the M/D section and the separation section as follows:

/ Carbothermic reduction Ll, C4; CO recycle C2 or C3
_ (See Fig. 4)

Carbochlorlnation F2, plus P2, P6 and/or P5;

' Reduction P2, EC2 and C6, etc.

Electrolysls of

Molten Sillca_es LI, ECI or 2 plus additional

separations

HF Acid Leach L3, plus P2, C1, and (P7, $3,

and/or C5, ECl); RFI, R'V4, etc.
I

.- Basic Leach L4, plus C5 and RFI, etc.

The complete process Including all recycle and regeneration

steps can be described by such a notation if all solids separated

are given an R designation and all fluids requiring additional

processing are given an F designation, These notations are included

on several of the flow charts appearing in this report.

, A.ssessment o5 P.riorM_t.hods
Z

The carbochlorlnation process was studied in greater detail ,:

_. In the initial phases of this contract study and these results
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appear In a later section. Analysis of•this route revealed

that the facilities and power requlrcd to recycle the chlorine

and carbon from such reactions overshadowed the plant facility

needed for formation of chlorides and hydrolysis or reduction

of the initial separation products.

i As a result of that study, it became apparent that it wouldbe far preferable to perform the chemical separation of constituent

) oxide components by processes which did not require oxidation or
)

reduction of the input material or reagents. This arises since

the energies of reduction of the principle oxides of lunar silicates
I

• exceed 50 Kcal/gram equivalent compared to 5 - I0 Kcal/equiv.

for most solution processes, and further that the oxidation-

reduction steps must invariably be reversed in an electrolysis

step which tend to be slow and thus impose substantial mass

penalties.

Solution Processes for Chemical Separations

A number of solution processes routes were examined for

possible use in lunar materials separations. These included:

(Low temperature, aqueous) _

I. Acid leach

2. Alkaline leach

(Medium temperature, nonaqueous)

3. Caustic fusion

4. Carbonate fusion

(Medium temperature, high pressure) i,,

C
5. Stear,,leaching

%.
I .
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(High temperature)
r

•,_ 6. Lime slnter

A comparative model for rates of solution of silicate rocks

and glasses in various solvents may be drawn from data on chemical

reactivity of fused silica shown in Table IV. These results

indicate HF is the most rapid solvent for silica of the low

temperature (aqueous) reagents. Process 6 involves the addition

of excess lime to lunar silicates with firing to produce "lunar

cement" phases; i.e., mixtures of 63S, C2S, C3A, etc. These

phases may be hydrated and acid leached or hydrolyzed for separa-

tion. The hydration and hydrolysis reactions also tend to be I

sluggish except under autoclave conditions.

The preceding considerations plus kinetic expectations led
?

the author to select a HF acid leach route for the M/D and subse-

quent separation steps for in-depth evaluation. This process is

an adaption of one previously studied for extraction of industrial i

feedstocks from coal ash. !

Reduction Processes

" Reduction processes may be expected to differ in significant i

aspects depending on the element being recovered. The principal !

routes may be divided into direct (electrochemical reduction) I

4methods and indirect (pyrochemical) _ethods _ however, the latter
i

would generally require electrochemical regeneration of the I_

ireducing agent. For processing on the lunar surface, it may be

practical to use neutral iron as a reductant with ferrous or

ferric oxide as spent product without attempting to recycle the

iron. Such open cycle use of reductants, which is commonplace -
/

on earth, would be prohibitive in orbit due to high launch costs
l

_Ik i
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even from the moon.

Direct electrodeposltlon processes may be conducted in a
r
_ variety of electrolytes, but only a small reaction of lunar

metallic content may be deposited from aqueous solution. Of
I

the major and minor lunar elements, only Fe, Mn, and Cr are

normally platable from aqueous solutions, 8a although Na, K,

_ Ca, and Mg could probably be recovered by using a mercury

i cathode (see Appendix B). Aluminum might be recovered with

ternary liquid metal alloy cathodes, but its solubility In

mercury appears to be too low for practical operation.

All of the metals are recoverable hy electrodeposition from

various non-aqueous electrolytes, principally fused salts, but

these processes pose a number of corrosion and anode durability

problems, depending chiefly on the temperature of operation.

Electrodepositlon from electrolytes containing two or more of

the reduclble elements may also present formidable purification

probl eros.

It would be highly desirable to generate oxygen at the

,) anode instead of chlorine or other product, since reconversion
t
J

of the chlorine to chlorides and evolution of oxygen in some

recycle step would involve another oxldatlon-reduction reaction.

Electrolysis of fused silicates, carbonates, hydroxides, or oxides,
!

or such compounds dissolved in molten fluorides can generate

oxygen, but for such processes conducted above 400 - 500°C, the

resistance of potential anode materials deteriorates rapidly.

For example, in commercial aluminum production, the use of graphite

: anodes results in virtually complete conversion of the oxygen

to carbon monoxide and dioxide at temperatures between 950 and
T
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_ I000oc.8b;, Despite considerable work In this field, no satls-

factory durable anode has been developed for thts application,
_-.

' One may, of course, recycle the oxides of carbon to oxygen

I! and graphite, but this Is not an easy operation, and the fabrlca-

tlon of graphite electrodes ts a very slow and mass intensive

process and should be avoided if at a11 possible.
_: Fortunately, satisfactory electrodes wlth very long service

_ lives have been developed for oxygen evo]ution from aqueous

),.

. solutions and from fused alkali hydroxides operating near 300°C.

:. Electrolysis in this latter system was pioneered by Hamilton Y.

Castner who developed a process for production of sodium that

"made possible the world's furst truly commercial process of

making aluminum TM nearly a century ago. The Castner cell was

: subsequently superceded for sodium production, and aluminum

production from sodium was discontinued, but a modification of

this method appears to offer many advantages for an extra-

terrestrial reduction process.

This process would generate the required number of reduction

F equlvalents of sodium plus oxygen, and the sodium would be used

for indirect (pyrochemical reduction) of silicon and the structural

metals. Reduction of magnesium halides wlth sodium would not

proceed to completion under normal circumstances, but magnesium

oxide may be reduced wlth silicon which can be formed by sodium

reduction, i

The difficulties attendant upon separation and/or direct

reduction of constituents of complex oxides and sllicates prompts _I
r

one to examine various classes of compoLnds which con be generated _

• by treatment of the oxide materlals by various reagents. From the o,

L *
¢,
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previous discussions on aqueous solvent systems, one might wish ,

to consider nitrates, chlorides, perchlorates, fluoborates,

fluosilicates, fluorides and sulfates. Sulfides, carbonates,

phospha_'es and (to a limited extent) carbonyls might also be

usefully employed in certain phases of materials processing loops.

Nitrates and perch]orates present potential difficulties due to
L,

i:
their instabilities toward severe thermal or oxidation-reduction r

conditions and to the difficulties in resynthesizing such reagents, i

Fluoborates seem to offer few advantages in comparison with

fluosilicates and require makeup of another lunar deficient

element. Sulfates, carbonates and phosphates seem to present

limited capabilities in general solubility/separation operations

but might be useful in specific separations.

Ammonia/ammonium salt chemistry has a ulliqueadvantage in

that pyrolysis of ammonium compounds can usefully purify a number

of the major and minor lunar elements as readily convertible

compounds. The stability of ammonium ion or ammonia is not as

great as halides toward severe oxidation or thermal exposure,

. but it is better than nitrates or perchlorates and regeneration
V

Is fairly easy in comparison with these compounds.

Figures S - 8 show the free energies of formation per two

gram-equivalents for oxides, fluorides, chlorides and sulfides

vs. temperature. In general, elements farther down on such charts

form more stable compounds than elements high on the charts and

thus are capable of redu:ing the latter compounds. One notes

that sodium and potassium are more effective reductants in the

halide and sulfide systems than in the oxide system. _ •
J

In the absence of reliable kinetic data, It is difficult
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to estimate the _ize _nd mass of process equipment which wtl1

be required to obtain unit output from any proposed processes.

However, from the experience obtained during the course of this

investigation, It ts possible to list certain features that
i.

, should probably be avoided or minimized if possible. These

,_ Include:

I. Steps that require long completion times.

2. Steps in which the input material is present In low

concentration.

3. Mass transport of volatiles at very low pressures.

4. Phase separations from viscous suspensions.

5. Reactions wlth low percent conversion per pass.

6. Reactions involving handling or storage of large volumes

of gas.
!

7. Reactions involving large transfers of heat to or from

single phase fluids, especially gases, using heat

exchangers•

_ Processes which reject large amounts of process heat

at low temperatures (below 200 - 3DO°C)

9. _rocesses fcr which suitable structural materials do

not offer reasonable service lives.

,i

,: D. CHEMICAL PLANT DESIGN

General Considerations

A chemical plant for extra-terrestrial materials processingi

r may be expected to utilize equipment very similar to that employed

in earth-based plants• Because of the importance of minimal mass,

i_ most apparatus initially brought from earth will be constructed
Y;.
¢,

C,

i
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of materials of _.igh specific strength (strength/weight ratio)

perhaps using thin linings of corrosion resistant materials

(e.g., even gold). Later equipment made from lunar materials

would not require extraordinary strength/weight ratio materials, i

Special consideration may also be required to be compatible with l_

the special space environmental factors encountered during trans-
;.

) port, assembly and operation. These include unlimited vacuum :

sink, adjustable level of artificial gravity (except on lunar

surface) and provision for radiative dissipation of :_

process haat loads.

Space Envlronmental Factors

(Vacuum)

The vacuum sink availability for space processing facilities

may be useful for several types of o .tions either in orbit or

on the lunar surface. The most generally useful would be the

ability to use refractories and structu_l materials which are

normally sensitive to oxidation at higher temperatures than

would otherwise be possible except inside vacuum furnaces. Thus,

ordilaary steels could be used for retorts in metals reductions,

and such materials as titanium and refractory metals, carbon and

carbides, boron nitride and other non-oxide refractories could

be used for structural and insulation purposes without danger of

excessive oxidation. This should permit improved multilayer

radiation shield insulations for extremely high temperature

processes. Subllmational effects may limit the utility of such

systems for certain applications, however.

The use of space vacuum as a separation technique may have

very limited appIicatlon, since the escape of volatiles except

(

)
w_ , , i
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be tolerated.

It would appear desirable to locate most of the processing

facllltles in a large container wlth an atmosphere and temperature

cumpatible with human activity. This would permit easier

inspection, maintenance and operation of the system and thus

greater productivity.

(Gravity)

The reduced gravitational attraction for lunar based plants

or adjustable centrifugal forces for simulated gravity in orbital

plants will allow some mass savings in support structures for

process equipment. It seems likely that most of the chemical
)
) unlt operations would not operate satisfactorily under conditions

of weightlessness, since all mass transfer operations except for
C

introduction of gases into a vessel would be unnecessarily

_ complicated by absence of a gravitational effect. Storage tanks

or reactors of fixed volume for solids, liquids or slurries would
v

be difficult to load or unload and such operations as filtration,
9

_ distillation, countercurrent extraction, etc,, would be rendered

difficult if not impossible,

The most likely uses for weightless procesing would be for

heating corrosive reaction masses by radiation or induction using

, gas jet or electromagnetic repulsion to prevent contact with the

walls of a chamber and, after removing volatile products,

" byproducts or impurities if present, allowing the reaction mass

: to cool in pl_ce or in a "drift tube" zone until it could be

handled.
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(He_t Slnk)

I The ,Inavallablllty of massive external air or water heat

sinks makes management of process waste heat especially important.

All major heat rejection loads will ultimately have to be trans-

ferred to space radiators for final disposition, In add,tion,

the poor heat transfer characteristics of vapor heat exchange

. devices makes such ._lemenJs heavy and undesirable. Thls leads to

the general conclusion that to raise or lower the temperature oft

i: a gas stream it will be preferable to adiabatically compress or

)1_ expand the stream rather than use wall or tube type heat exchangers.

; Similarly, in distillation operations it will be advantageous to

use a suitable temperature by adiabatic compression. The mass
(
_ penalty for additional pumping power will usually be far lower

than other alternatives for disposition or transfer of process

heat.*

Unavoidable low or mediumn temperature heat loads, such as

from electrolytic _ells may require heat pumping to higher tempera-

tures to avoid excessive space radiator masses. Appcndix C gives

a simplified analysis which indicates that below some temperature

determined by mass:power ratios of space power systems and mass:

area ratios of space radiators, it becomes desirable to heat pumps

all heat rejection leads to such base line temperatures. Similarly,

" refrigeration equipment for liquifaction of cryogenics should have

heat rejection temperatures at the same level, f

Reagent and Equipment _'ass

For solution processes, the mass of the solvent system will

generally exceed the mass of lunar input material except where

solutions of over 50% by weight are practical, A more typical

' *See e.q. "Heat Transfer", A. J. Chapman, MacMillan (1960)

1979021033-123



;'Ii II -32

i level may be about 5 - I0% by weight of solute. Furthermore,

not all of the solute may be _ransferred per pass when the

various separation or extraction steps _,'eperformed, so the

ratio of solvent to "active solute" mass is normally much greater

than unity.

Fortunately, for &queous solutions, most of the sol,'_nt i

mass need not be transported from the earth, since the oxygen . i))

content which represents 88.8% of the mass of water, is derivable

from lunar materials. Even the hydrogen content may be extracted

I in sufficient quantities to largely or entirely replace the Ii::__

I_
I

I--

content lost in residual moisture content of pla,t prcducts. IT
(

One may inquire as to the relative magnitude of equipment (

i iand reagent mass for the various units needed for a chemical

processing plant. Specifically, one would _ike to know whether I:the vessels, tanks, pipes and other items of process equipment I

J
_, weight more or less than their contents. Appendix D gives a simple

_ analysls which shows that for most cases of equip_,ent which conains)
10% or more material in condensed phases, the contents may be

expected to far outweigh the container., while for gases the

_; containew_ will invariably outweioh the contents and furthermore,

P In this case, the ratio of container to content mass is practically

_ independent of pressure.

( This finding reiterates the undesirability of processes i
I

which require storage or handling of large volumes of gas. In

) addition, for processes operating primarily in condensed phases, )

; the mass of the processing operation, apart from power and radiator

facilities, will probably be dominated by the masses of reagents ):

_' involved, which in turn wlll depend on reaction and process times
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for the individual steps. In the analyses which follow, we

shal3 estimate both total reagent masses and net (earth based)

reagent ma_ses for some of the process steps of the HF acid

leach process.

It shall be convenient in the subsequent analyses to define

three mass ratio terms',Rm, R'm and rm which are respectively
j'

tLe ratios of the mass of vessel contents, net mass (LDE)* of !

)
vessel contents, and mass of container to the equivalent input !

mass of lunar ore contained in the respective vessel or process i'
I ,

apparatus. Each process step is characterized by a process time,

t = _/v i, and the products tRm, tR'm and trm having the dimensions

of time (hr) represent the time required for the passage ef

sufficient input materi_l to equal the weights of gross or net

contents or container for the step in question. Summation of

the appropriate tR or tr products then yields the total times

required for the passage of sufficient input raw material to

equal the gross or net reagent masses or structural masses for

the processing system. Additional equivalent times may be derived

, to account for masses required for mechanical and thermal power

sources and distribution equipment, motors, pumps, compressors

heat transfer equipment, space radiator facilities and other

necessary support functions.

Unit Operations

The unit operations required to perform the processing steps

required for conversion of raw materials into industrial feedstocks

are those generally familiar to the chemical engineering profession.

*Lunar Deficient Elements _ All elements except the 13 major

and minor lunar elements.
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.:. These may be grouped into the foliowtng classes:
/. !

1. Materials handling; storage, conveying, pumping,

_. compression, mtxtng, stirring, extruding, grinding, ,

:!: metering, etc.
_ 2. Phase separation: dlstlllatlon, flltratlon, extrac-

tlon, drying, defoamlng, precipitation, crystallization, st
_ sedimentation, centrlfugation, etc.

3. Heating and refrigeration; generation and transfer of

): heat Into or out of reactors and other processors.

4. Reactors; solid-solid, solld-liquld, solid-gas, liquid-

liquid, llquid-gas, and trl or polyphase systems.
L

(Materials Handling)

Except for storage, these operations are not expected to

require substantial masses. Most material can pass through a

materials handling step with velocities of .Ol - l meter/sec

or even higher so such units would rarely have to handle more

than a few minutes throughput of the operation. Fine grinding

, using a ball mill or equlvalent may be somewhat slower, but is
f

not expected to be necessary for processing of lunar soils.

Entrainment of liquids or dust in gas flows may become a problem

in lunar gravity or low ]rtificlal gravity, but inertial gas-

or hydro-cyclones or other devices may be used to suppress

carryover.

(Phase Separation)

The actual physical separation of different phases is

usually limiited by pressure or inertia] considerations such as )

i foaming or entrainment In distillation columns or sedimentation !

, velocities ilncentrifugal fllters or sedimentation centrifuges,
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I

i

,i although the material process time may be limited by heat

transfer rates, growth rates of crystallites or precipitates,

etc. Because of the recycle nature of the 'rarious materials

flow loops, it may be more desirable to shorten process times

even at the expense of recycling larger than normal fractions

of intermediate flow streams to reduce masses of intermediate

stages. However, at the exit stages of the plant, it is
;

important to limit loss of reagents, especially those containing

lunar deficient elements (LDE), sn it is necessary to attempt to

carry those steps nearly to completion.

As an illustration of the basic problem which might be

common to any processes using water as an intermediate rinse or

reagent, we may discuss drying of non-metallic output streams.

Most finely divided metallic oxide or silica solids have an

adsorbed or chemisorbed water content which can be removed by

application of heat, time and pressure differential. For many

cases in which industrial drying of solids is practiced, the

observed drying rate or rate of weight loss is initially nearly

. constant, but below a certain moisture content, the rate drops

and often becomes nearly proportional to the "excess residual

water content" or content in excess of the equilibrium level

9
corresponding to the local temperature and pressure. For such

a dependence, drying would continue at a progressively slower

rate for an infinitely long time and never reach constant weight.

For a practical process, the operation must be terminated at some

reasonable time or residual moisture content. In Appendix E we

show that the optimum time or moisture content can be evaluated
b

in terms of the minimized total mass of drying equipment and
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:. replacement mass to supply hydrogen for water lost,

Since the same mathematical dependence often occurs for

chemical reactions approaching equilibrium, the preceding tech-

_ nique may be employed to calculate opttmum process times and
• )

convergence (toward equilibrium) for chemical reactors.

_: (Heating and Refrigeration)

_• Process heat requirements may be satisfied by primary

.: electrical or solar thermal sources, or indirectly using steam

or other working fluid or by exchange wtth other process flow
t

:• streams. For processes In which solar thermal energy Is posslble,

one may anticipate a substantlal mass reduction for equlvalent

power levels. Appendix F gives some approximate values for

masses of solar electric, solar thermal and space radiator power

structures estimated from studies developed for SSPS systems.lO

It is seen that mass reductions by factors of 30 or more may be

possible by substituting solar thermal for solar electrlc

power.

The coupling of thermal energy Into powdered solids Is often

" a troublesome task, and can rarely be done efficiently by radia-

tion. One would normally prefer to heat such material by exchange

with recirculating gases heated in an adjacent unit by contact

with structures heated by a solar furnace, electric arc, resistance

or induction sources. In certain cases, it may be possible to

heat the powdered solids by high frequency dielectric or microwave L
c_

energy.

In heat exchange in which gas flow in one or both streams

plays a part, one would like to operate at very high velocities

or Reynold's numbers since the heat transfer coefficients in

1979021033-128



II -37 "

turbulent flow are roughly proportional to the 0,8 power of

velocity or Reynold's number, 11 Heat transfer involving fluids

I in botltng or condensing flow are much higher than when no phasechange is Involved, so when liquids must be heated it is advan-

tageous to operate under conditions of solution pressure and I
, t

t heater temperature to produce nucleate boiling at the interface I
I
L

r when vapor pressures permit such operating modes. !:

I/ Refrigeration or cooling operations may be required for '_

: process steps or for collecting, separating and storing non- -'

condensible gases. Oxygen storage and hydrogen storage will
E

probably represent the largest power and equipment requirements.

! Liquefaction of these gases would greatly reduce masses of the

_ storage vessels required to handle these materlals. By sub-

cooling down to the triple point or lower, even further weight

reductions are possible.

(Reactors)

The design of reactors is usually dictated by the heat

balance requirements (endothermic or exothermic) and whetheri

, ii internal or external heating or cooling are required. Internally ,

J

Ix heated or cooled systems can usually be designed in large tubular, i

cylindrical or spherical vessels, while external heat transfer

usually requires a large surface area and at least one short

dimension (ca 0.2 to 0.5 m). Electrolytic cells usually require

a low anode-cathode separation (ca O.l m or less) to avoid

excessive power losses, but the cell may contain multiple anodes

'f and cathodes and thus attain considerable minimum d_mensions.

i II
, Heat rejection requirements usually limit the size of electrolytic
,,_

cells, however.
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/

It is somewhat remarkable that the mass output of a diverse

range of chemical reactors per unit volume per unit time in

sizes that span over five orders uf magnitude are nearly constant

kg/m 3" lying close to 1 lb/ft 3 hr in English units or about 16 hr.

Figure g shows a graph of several reactors from blast furnaces and

cement kilns at the large end to electrolytlc cells and magnesium

3*
and zinc retorts with volumes below 05m . Thls chart can be

used to predict or verify the size of reactors for lunar materials

processing steps estimated in the absence of pilot plant qualifying

data.

Corrosion attack on reactor structures or general thermo-

physical deterioration may be expected to some degree in all hlgh

temperature processes, except where cold wall systems are used.

This reality may present the grec_est deterrent to use of very

high temperatures in materials processing steps. The use of

valves, pumps_ filters, materials _ancling and other equipment

and the containment of pressures becomes exceedingly difficult

at temperatures above ISO0°C. Reliability of operations may be

adversely affected, and maintenance requirements excessive if

" many operations are carried out at such temperatures. In contrast,

suitable apparatus and materials have been developed for handling

almost any cubstance present in water solutions or steam-based

systems.

General Sizing Considerations

The size of chemical reactors and other process equipment

is generally controlled by one or more of three factors; reaction

kinetics, heat transfer limitations (surface area) or momentum

*Data compiled from Ref. 24 and other sources.

b
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limitations in which the inertial effects of mass movement may

cause foaming, entrainment or turbid dispersion of multiphase

systems. The reaction rates in heterogeneous systems are often

diffusion ltmtted, but the use of fine particles and high turbu-

lence can tncrease throughputs in gas-liquid and gas-solid
\

systems. For reactions Involvlng crystal or precipitate growth,

_ only the degree of supersaturation or control of nucleation can

markedly affect the process rate. The rates of most chemical

reactions can be increased by raising the temperature, but the

equilibrium constant or conversion fraction may be _dversely

affected for some cases. This may also requlre higher pressure

apparatus which will then require more massive reaction vessels.

The engineering characterization of any proposed process may

be identified by parameters as shown in Appendix G. The sizing

(volume) of equipment for any segment may be expressed as:

(_i_ _- tV --

Pi vi Pi

where _i is the mass flow rate of component i (kg/sec), J_is a

characteristic length (me _r) of flow path in apparatus, Pi is

the partial density of component i (kg/m3), vi is a characteristic

velocity of the ith component (m/sac), and t is the process time

(sec).

It may be extremely useful to calculate typical size data ,.

for all of the general classes of M/D and separation procedures

likely to be encountered in lunar materials processing step_ as

: an aid to selecting promisin_ options for such steps.

For any proposed process step that has not been tried even
t

.z" )¢,
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in an earth based pilot plant, It will probably be necessary to

i conduct pilot plant tests using simulated ore to verify projected
reaction rates, before any real confidence can be obtained in

plant sizing and output calculations. In the absence of such

tests, it is highly probable that the capacities of individual

processing units wlll be mismatched and some of the plant will

be operating well below rated capacity to avoid accumulation at

[ the output limiting steps. Such mismatches would in no way
b

reflect on the ability of the individual units or the entire

/ processing plant to perform thel.r designated functions.

! PART TWO _ SPECIFIC PROCESSES

E. ANHYDROUS PROCESSES

£

Introduction

The analytical phase of the present contract led to a semi-

detailed study of the engineering requirements of the carbo-

chlorination process and an in-depth study of the HF acid leach

process. Limited studies of the alkaline leach and HCl acid

* leach (ion exchange) process were also completed.

El. CARBOCHLORINATION

As previot(sly mentioned, a carbochlorination method of

treating lunar feldspars was proposed in earlier studies for

obtaining silicon, silica and aluminum from lunar sources.7 Full

details of the necessary recycling steps were not developed in

the previous studies. The process was based on the conversion of

" lunar silicates to silicon and metal halides which were separated

on the basis of volatility and melting point differences prior to i

_ secondary processing. The halides were then either reduced
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,_ pyrochemically or electrochemically or hydrolyzed to hydroxides

and/or oxides.

The first requirement in the analysis of a processing system

is the development of provisional process equations for all

reactions Including the recycling of reagents. For this purpose :

we need an empirical equation for the input raw material. Previous

studies of the mining and beneficiatlon of lunar ores12 had estab-

lished the composition of a hypothetical lunar feedstock prepared

I from lunar highland soil berleflciated to consist of go wt. %

I Plagioclase (feldspar) and 10% residue. This is shown in

i Table V with the corresponding molar content per lO0 g concentrate.

Rationalizing this composition to unit molar content of CaO leads i

F

to an approximate empirical formula of CaO • Al203 • 2.25 SiO2 •

.15 MO where M = 2/3 Mg and I/3 Fe with a "molecular weight" of :"

300.5. The remaining minor and trace elements bring the total

molecular weight to 303.1 and result in an equivalent weight of

17.52.

The b_Ic process route chosen involves carbochlorination

of the ore to form chlorides of the elements plus carbon monoxide.

The aluminum chloride is electrolyzed to form aluminum plus

chlorine, a fraction of the silicon chloride is reduced with

hydrogen to elemental silicon plus HCI. The remaining chlorides

are hydrolyzed to form hydroxides plus HCf with the latter being

_. electrolyzed to regenerate hydrogen and chlorine.

! The hydroxides are calcined to recover oxides and water. I

The carbon monoxide is processed by one, or more of several

, routes including hydrogenation (which is in commercial use)k

! followed by cracking or pyrolysis, or absorption (in alkali)h ,

) I
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i_ followed by electrolytic reduction in fused salts. Finally, any

excess water generated in the process will be electrolyzed to !
form hydrogen and oxygen, The hydrolysis of the calcium chloride

can be conveniently combined with the regeneration of chlorine in

an electrohydrolysts step analogous to that used in the

chloralkall industry.

The principal difference between electrolysis of sodium

chloride and calcium chloride using diaphragm cells is the greatly • w

)

reduced solubility of calcium hydroxide which would form a slurry

i which would simplify removal from the catholyte. The returning

! electrolyte would require a slight acidification along with

, replacement of CaCl2 content.
c

' The preceding can be summarized by the equations in Table Vl.

Equations 8 and 12 are subject to revision if electrochemical

reduction of carbon oxldes is employed.

Minor modifications to the preceding equations might include

electrodeposition of Fe and Mn instead of hydrolysis and hydrogen

evolution from transition metal chloride solutions and reduction

of silicon and/or magnesium by sodium or calcium which could be

obtaired by electrolysis of fused chlorides or hydroxides.

A provisional flow chart for the process if given in

Figures 16)and ll:

An engineering analysis of the pri_ipal power and plant

sizing requirements is given in Appendix H. The principal power

requirement involves the regeneration of chlorine (Eqns. 2, 3, 4

and 7). For an annual input capacity corresponding to a proposed

mature space industrial operation of 3gg,o00 metric tons, this
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would require a chlorine manufacturing facility larger than any

, existing plant presently in operation.

E2. ELECIROLYSIS OF MOLTEN SILICATES

: Limited investigations of direct electrolysis of molten

silicates of compositions similar to lunar basalts hav,_ been

performed. 6 The high melting points and viscosities of n_olten

silicates have created problems and prompted studies of various

fluxing additions to the melt. This modification, of _ourse,

negates the "reagentless" advantage of the direct electrolysis

route and requires consideration of extraction and recycling of

fluxing reagents.

The chief objections or problems awaiting solution are the

corrosion or durability of anodes used for oxygen recovery and

the purification and separation of cathodic reduction products

which are likely to consist of iron-aluminum-silicon alloys plus

minor amounts of additional impurities.

F. HYDROCHEMICAL (AQUEOUS) PROCESSES

_ Lunar rocks and soils may be converted to various mixtures
i"

of soluble and insoluble compounds upon treatment with various

mineral acids or bases. Of the possible acidic reagents, only HF,

HCf or mixtures of the two offer reasonable prospects for practical

operation based on component solubilities, volatility (for recycling),

thermal stability, and prospective rates of solution. In this

last aspect, HCl may prove to de seriously deficient unless auto-

clave conditions are e{nployed. HF offers a combined advantage

of aggressive attack upon silicates with the convenient separation

of silica content as a vapor molecule SiF4.

These considerations led to examination of two acid leach

-" F
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_ processes; the first based on HF and the second based on HCl

with the latter relying heavily on ion exchange techniques for

separation of constituent components. A basic leaching process

using NaOH was also studied. The reduction steps for the aqueous

leach processes may be selected for optimum performance for each

element being recovered.

Fl. HF ACID LEACH PROCESS

General Discussion

This section will cover a low temperature solution process

to separate the silica and metal oxide contents of the raw

material for subsequent processing. In contrast to the carbo-

: chlorination process, there is no requirement for oxidation or ,

.C reduction in the separation reactions for for chemical regeneration

of reagents.

The new process is based on the solution chemistry of silicon

fluorides and uses the volatility of SiF4 to separate it from

the other fluorides. We shall review several features of the

solution chemistry of SiF4 to explain the process constraints |
!inherent in the method.

" In addition to the concentration parameters, there are two

factors of importance in specifying the equilibria in fluosillcate-

fluoride solutions _ these are the molar F:Si ratio and the pH.

Pure fluosiliclc acid, H2SiF 6 has a F:Si ratio of 6 and is a strong

acid. Over most concentrations, additional silica will dissolve
C

13
until a ratio F:Si of approximately 5 is reached. If one

neutralizes a high ratio acid with free HF (F:Si = 7-8 or more),

m
• the fluoslllcate ion will not hydrolyze until the pH rises above

8, while for F:SI approximately 5-6, hydrolysis will begin at a

pH of 4 or 5.
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Distillation of fluostlictc acid solutions will yield various

proportions of SiF 4, HF and H20. Condensation of these vaoors

for compositions with F:St ratios below 5 will produce hydrolysi_

and precipitate free hydrated silica, Hydrolysis may also be
14,15

conducted at elevated temperatures in the vapor phase,

The metallic oxide content of the original silicate wiil be

converted to fluorides or fluostltcates depending on F:Si ratios.

The fluostltcates are almost uniformly water soluble and may be

separated or purified by ion exchange or crysttlllzation techniques.

The fluorides of sodium and potassium are water soluble. The

remaining fluorides may be removed from solution and hydrolyzed

with steam or reduced with sodium or other reagents. The fluorides

or fluostltcates of the platable metals may be electrolyzed to

deposit free metal and oxygen and those of the active metals may

be reduced using mercury or other liquid metal cathodes as

mentioned earlier.

A reduction facility to generate oxygen and an indirect

reductant (sodium) to permit production of silicon and structural

metals is proposeb based on a modification of the Castner cell.
W

' In the original Castner cell, electrolysis of fused NaOH generates

sodium and hydrogen at the cathode and oxygen at the anode. The

hydrogen is formed Jue to build-up of water in the system upon

discharge of OH- ions. By using a diaphragm cell and withdrawing

anolyte, the major fraction of the water could be removed and the

cell would yield primarily sodium and oxygen. This would lower

the electrical energy per equivalent of sodium and avoid the

problem of handling large quantities of hydrogen.

The sodium would be used to reduce the SiF4 and metal
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fl_orides to silicon and free metal. Magnesium fluoride is not

_, easily reduced, but magnesium could be obtained by hydrolyzing i

I! MgF2 to MgO and reducing the latter compound with Si.

The process with the various options is adaptable to several

of the potential lunar minerals or concentrates including feldspars, I

1.
pyroxenes, ollvines and even non-silicates su(' as ilmenite and

i.
,t

spinels. Thus, TiF4 (Subl. Pt., 284°C) has sufficient volatility

to be readily separated from other metallic fluorides, and the i_

chemistry of fluotitanates MTiF6 parBllels that of the fluo-

silicates.) To develop the process equations, we shall use a
i

'r

generic silicate empirical formula of the form: xMO • SiO2 where

x = 0 for silica, l for metasilic_tes (pyroxenes) and 2 for

orthosilicates (olivine) or "pseudoorthosilicates" (anorthite).

In this formula, M is considered divalent, so l aluminum atom

would correspond to x = 1.5 and l alkali metal atom would corres-

pond to x = 0.5. For the previous empirical formula for plagio-

close concentrate, there are 8.3 metal equivalents to 9 silica

equivalents so x = 1.84.

The process equations are summarized in Table VII _n_ flow
W

chart is shown in Figs. 12a and 12b. A pictorial flow _iagram is

given in Fig. 13.

Dlscusslon of Process Steps

The solution and liquid-vapor equilibria of the system:

SiF4-HF-H20 are ShOWn in Fig. 14 which is replotted in mole fraction

scale based on data of prior investigators.16'a & b Compositions

below the HSiF5-H20 join are not single phase but will hydrolyze

to precipitate Si(OH) 4. Acids of compositions along this line

will be designated SSA (silica saturated acid). The vapor

p
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composition in equilibrium with such solutions contains almost

• no HF, but almost any ratio of SiF4 to H20 can be vaporized

from SSA;s of 80-I00 mole % H20. (Although no data is curently

available, if phases along the SSA line with low water content

were prepared, one would expect almost no H20 content in the

vapor, but mixtures of HF and SiF4.) Since SiF4 and H20 plus

other fluorides are the reaction products of equation l, the first _:

two may be evaporated from the solution and the last separated

by filtration or crystallization which lends itself to a quasi-

continuous process (Equations l + 2).

Equations 3 and 3A represent hydrolysis of SiF4 in liquid

and vapor pha_e respectively, while equation 4 represents

hydrolysis of the metal fluorides. Equations 5 and 6 represent

reduction reactions to produce silicon or metals. Equation 7 ;:L
1

indicates the conversion of fluorides to fluosilicates whinh may

be optionally selected to increase soJubility for elect,'olysis

(Eqn. 8), or ion exchange separation (Eqn. 8A). The sodium fluoride

generated in the reduction reactions is converted to sodium _

. ! hydroxide by ion exchange (Eqn. 9) or with Ca(OH)2 (Eqn. 9A).

Sodium for the reduction reaction is generated electro-

chemically as shown by equation lO. Finally, equation II repre-

sents the drying of the precipitated silica. Further process i

details and engineering analysis of power and sizing requirements

are g_ven in Appendix I.

F2. HCf ACID LEACH PROCESS

This process is based on the separation of Al, Ca, Fe, and

Mg as soluble chlorides from Si _nd Ti which are insoluble in _t

acid chloride solutions due to complete hydrolysis of their
z
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[ chlorides In the presence of aqueous solutions. The soluble

._ chlorides may be separated Into individual components by a

_ combination of cation exchange and anion exchange steps and/or

" electrochemical or other chemical methods. The separated com-

ponents are then converted to hydroxides or directly to oxides

" by various pyrolysis or hydrolysis steps or alternatively are

reduced to metals and oxygen or chlorine depending on the starting

material for the reduction step. Generalized forms of the process
;

equations are listed in Table VIII. Reduction may be accomplished

by most of the methods previously described. The process can be

used with chlorides derived from plagioclase, pyroxenes or

olivine,

In the first step (Eqn. 1), the rocks are decomposed with

HCf. The rate of attack of silicate rocks, soils or glasses by

HCf solutions is the critical factor governing practicality of
,

HCf leach methods of processing. Silica is precipitated as a

hydrous suspension, and the metals become dissolved as metal

cl}lorides. Iron may be oxidized to Fe3+ for ion exchange separa-

!w"

tion or plated out by ^lectrolysls. Filtration or centrifugation

separate silica from the other species. )
will

A1umi_um and iron can be separated from calcium and magnesium

using ar anion resin such as Dowex 2 loaded with a complexing ion

such as citrate. 17 Eluting with water will remove Ca and MG, and

AI and Fe will be removed with 1 M HCl (Eqn. 2). •

Aluminum can be separated from iron using anion resins (e.g.,

Ocwex l in sulfate form). 18 Al is eluted with O.Ol M H2S04, and [

Fe Is removed with 0.1 M H2SO 4. Upon evaporation A12(S04) 3 and

Fe2(S04_ 3 can be ignited to obtain A1203 and Fe203, respectively,
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with SO3 and S02 Cwhich can be oxidized to S03) as other
C

I products. The SO3 can be used to make more H2SO4. Aluminum can

be produced in a cryolite electrolytic cell; Fe203 can be reduced

_ with hydrogen.

Calcium can be separated from magnesium by using a cation

resin such as Dowex 50 (H)Ig followed by elution of Mg with 1.05

M HCf, while Ca is eluted with 2 M HCf (Eqn. 3). The CaCl2 solu-

tion can be electrolyzed to recover chlorine, hydrogen, and

Ca (OH)2 and after dehydration of the resulting hydroxide, CaO

can be used in glass manufacturing. The MgCl 2 can be dried and

used in a Dow cell to recover magnesium and chlorine.

It may be possible to separate all four ions directly with

further development of improved solution processes (and/or resins).

Ion Exchange EnQineerlng Considerations

For operations in space, a fixed-bed column seems to be the

most practical. Industrial columns range in size from a few cm

in diameter to over 6 meters (20 ftJ with multiple-column-bed

heights of over 30 m (I00 ft.), as used in rare earth separations.

, Figure 15a il_ustrates a diagram of a typical fixed-bed column,

and Figure 15b shows a diagram of a control system. I
I

The ion exchange resins, which provide the mechanism for

replacing one ion by another, generally consist of addition or

condensation polymers to which a wide variety of functional groups

can be added. These organic polymers would probably be made on

Earth and shlppeJ into spat,, since raw materials for making the

polymers are scarce and the synthesis methods are complex. This

disadvantage is not serious, however, since the exchange resin

has a typical lifetime of _ few years and replacement needs would
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be low.

Regenerated solutions would have to be recycled. In order

to avoid large holdlng tanks of dllute regenerant solution,

proportioning valves can be used. In such a system the concen-

trated regenerants are pumped and automatlcally proportioned to

water and directed on the beds at prefixed concentration.

In systems such as this, two tanks of each resin must be

provided. While one column is being used for separation, the

other one would be in the process of being regenerated.

The tanks and the piping (both internal and external) must

be made corrosion resistant. This is usually achieved by making

) the vessels of stainless steel or aluminum and then coating them

with plastic paint, plastics, or rubber. Naturally the conditions
L

under which the network will be subjected will determine which

alloy-coating combination to use.

Ion exchange operations can be performed manually, automat-

i Ically or in various degrees of those two extremes.

_ Process Sizing

, In industrial ion exchange processes, the maximum flow rate

is approximately .0045 volumes solution per volume resin per second.

(2 gal/ft3/min.) For a processing plant with a throughput of

30,000 MT/yr or 239,320 equiv./hr., the first separation described

(AI and Fe from Ca and Mg) would require a minimum of I0 m3

(356 ft3) resin in order that maximum flow rate would not be

exceeded (assuming I M solutions). Eiution would require 28.4 m3

(7500 gal.) of solution. Separation of A1 from Fe would require

at least 10 m3 of resin and 4.8 m3 (1275 gal.) of solution for

washing. Finally, separation of Ca from Mg would nee_ at least 1
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10 m3 of resin and 10.7 m3 (2825 gal.) of solution for elutin_.

: These size estimates are based on treating 60,000 moles/hr of
!.

MCI (60 m3/hr @I M solution) with resin of nominal capacity of2

2,000 equiv./m 3. A resin bed of lO m3 would thus contain 5,000

moles (10,000 equivalents) at 50% of saturation and would require

12 loading and unloading cycles per hour at this fractional

loading.

F3. NaOH BASIC LEACH PROCESS

Basic leaching provides a process in which amphoteric oxides

SiO2, AI203 and TiO2 may be rendered water soluble and separable

from other metallic oxides such as CaO_ MgO and FeO. The presence

of these polyvalent metals, however, introduces complications to

the separations (in comparison with sodium) since they generally

combine with silica to form insoluble silicates. Addition of

stoichiometric or excess amounts of CaD would normally displace

Mg and Fe from the silicate compounds and the calcium silicates

may be decomposed by hydrolysis with acid solutions or steam or

by displacement with sodium carbonate.

, Dissolved sodium silicates or aluminates may be separated by

controlled neutralization with AI(OH) 3 precipitating at higher pH

than Si(OH)4. Alumina may also be separated from alkaline solutions

by controlled crystallization based on temperature dependence of

solubility as in the Bayer process.

Mixtures of Si(OH)4, metal silicates and M(OH) 2 precipitates

may be separated by acidification which redissolves all components

except the silica gel.

The initial leach step may be conducted with various levels

of water content including anhydrous conditions and at temperatures
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from ambient up to 900°C or higher. Water-based systems at

elevated temperatures must be pressurized. The chotce of leaching

conditions wtl] depend primarily on reaching acceptable rates for

the process.

+ Based on published analytical studies by Rakhtmov, Ponomarev: )

and Nt 20, we have selected a first process step involving decompo-

sition of anorthtte with base in an autoclave at 300°C (Eqn. 1 of

Table IX). The ternary s_licate compounds are generally water

insoluble but may be converted to calcium silicates plus water

soluble compounds by further treatment. Thus, Shptgun, Sazhtn,

Fedorenko, and Shor 21 reported that by forming a slurry of

Na20 " A]203 • 2 StOZ • HzO with water in presence of stotchto-t

metric amounts of CaO and NaOH, Na20 • A1203 • 3 H20 and

Na20 • 2 CaO . 2 SiO 2 • H20 would be formed at 200°C (Eqn. 22).
22

Ni, Ponomarev, and co-worKers reported that treating Na20 •

2 CaO • 2 StO 2 • H20 in a water bath at 95°C will decompose it

: to NaOH and CaO • SIO2 • H20 (Eqn. 3). Following these operations

the solution contains Na20 • AI203, CaO • SiO 2, and NaOH, The

CaO • SlO2 will be insoluble, whereas the Na20 • AI203 and NaOH
i"

remain dissolved. If some CaO • AI203 were precipitated, addition

of Na2CO 3 would redissolve the alumina content. Silica can then

: be recovered by hydrolyzlng the CaO • SIO2 with acid or steam
+I,

• (Eqn. 4).
i

+ Angstadt and Bell23 described in a patent the precipitation

_ of AI(OH) 3 by passing CO2 through 3 - 4 molar solutiors of
X

_ Na20 • A1203 (Eqn. 5). After separation, the filtrate contains

i:" only Na2CO 3. Calcining the AI(OH) 3 at llO0 - 1200°C will produce

?_ water and alumina (Eon. 5). The alumina can be stored with no
6

¢

_;_
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tie-up of necessary reagents, and aluminum can be produced from

I it, when it is needed•

i It is thus theoretically possible to recover the reagents

) used in the preceding steps• Na2CO 3 can be reconverted to NaOH

_ by one of several processes: l) treatment with lime (Eqn 7),

2) conversion by anion exchange resin (Eqn. 8), or 3) electrolysis

" using ion permeable membranes (Eqns. ga and b). Regeneration

reactions are given by Equations lO-12. A flow chart is given in Fig. 16.
)

The eventual practicality of the basic leach process will

r probably depend on kinetics of solution, separation and hydrolysis

steps as well as recycle efficiencies of the caustic solutions•

It seems probable that the silica obtained will contain minor

amounts of alumina and titania, but this may not be an important

consideration if post refining steps are used. The process should

operate satisfactorily with anorthite, but would require some

modificatio,ls if used with pyroxenes or olivine since the presence
,l

of Mg and Fe would complicate hydrolysis of silicates•

Any of the reduction processes previously described as

, applicable to the reduction of oxides or halides may be used in

conjunction wlth the basic leach separation steps•

G. SYNOPTIC COMPARISONS OF PROPOSED PROCESSING SYSTEMS

As previously discussed, the establishmen_ of ratings or

comparative figures of merit between various materials processing

systems involves many factors characteristic of the processing

systems themselves as well as their interaction with the other

technologies involved in space industrialization which, in turn,
t

will depend on specific applications characteristic of various
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mission requirements. While there has been little discussion and

no consensus on how to establish a useful scale for rating such

systems, tt would nevertheless appear useful to briefly survey

' the general characteristics, electrical and thermal energy require-T

ments, technological rtsks and key problems facing the process

routes previously studied.

Table X summarizes the principal features of the six generic

processes previously proposed for transforming lunar materials.

It would be premature to select or discard any of the above

processes based on the analyses performed to date, but it seems •

likely that when a satisfactory rating system is adopted, the

carbothermic/stltc_thermtc and carbochlortnation processes wtll

be less favorably rated than some of the remaining contenders.

r

H. SOME PERSPECTIVES IN THE MINING/BENEFICIATION/MATERIALS PROCESSING/

REFINING PHASES OF SPACE INDUSTRIALIZATION

The materials processing systems proposed to date represent

a small sampling of the enormous number of feasible processes for

_ conversion of lunar matsrlals. Whlle there seems little doubt
,- /

that any of these routes is technically feasible and would repre-

sent a practical materials processing system (if no other methods

existed), nonetheless one would prefer some systematic method for

prescreening potential processing systems to ald In selection of

promising new routes as well as In optimizing or modifying

previously studied or new systems.

i-;i One may perform rough sizing estimates for various physlcal

_, and semlphyslcal M/D and separation operations from physical

L
principles and engineering experience on earth-based processing

+J

!
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: plants. For chemical conversions (reactors), experimental kinetic

data is generally required, but correlations between reactor

! throughput and volume previously discussed may furnish rough but

, plausible minimum values.

In comparing various processes, it is worth noting that it
i

is the total mass, power, simplicity, etc., needed for all steps It

necessary to reach a required degree of purity that are the i
J

meaningful quantities needed for objective comparisons.

The refining of the materials output streams of a processing

plant has somewhat arbitrarily been grouped with the chemical

conversion steps in the "materials processing" box of the indus-

trialization sequence (Fig. 17), even tbough the outputs may

require further refinement in manufacturing as, for example, with

semiconductor grade silicon. It might be preferable, in principle,

to consider separately all refining operations, but since these

steps are intimately related to the method of primary processing

and furthermore are subject to changing demands with technological

evolution, it is probably wiser to group with the materials pro-

cessing section all refining steps necessary to reach a level of

purity satisfactory as input for manufacturiL.g operations as

customarily practiced on earth and indeed, to define specifications

appropriate to specific materials products.

To analyze the technological options in the stages prior to

manufacturing, we may utilize the flow chart shown in Fig.18 which

shows a chemically expanded "black box" processing stage. In this

approximation the lunar soil is considered as a mixture of its

seven major elements: O, Si, AI, Fe, Mg, Ti n_ Ca (which account ¢_

for 99+% of its mass). The beneficiating stage which is useful

*_.
C

&.

F*t

w
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but probably not mandatory unless neutral iron recovery is needed

_ or substantial demands occur for Ti or minor elements is conceptu-

• ally shown as yielding _ix output streams --anorthite (feldspar),

pyroxene, olivine, ilmenite, iron and gangue or slag with the

last either rejected or converted to dark glass or ceramic pro-

_, ducts. We shall not discuss the mining operations except to note
+

that the soil mining techniques are not expected to differ in any
);

material way for any of the various options in beneficiation or

': processing except for beneficiating equipment installed on mobile

mining apparatl.

The materials processing options, in effect, constitute

various engineering solutions to the contents of the "black box"

representing the materials processing steps.

One should _ot underestimate the importance of the scrap

recycle loops (or mass flow) nor fail to note that these extend

Inte the manufacturing, fabrication, assembly, and operational

phases, of space activity. Even in an efficient manufacturing

operation, the total _s of scrap generated may constitute and

significant fraction if not actually exceed the mass of the

" acceptable product(s). The ability and efficiency of the materials

processlng _re-,_t!)rtsto handle such scrap may have a vital bearing

on the practic,lity of the whole industrial effort.

Similarly, the manufacturing and assembly operations may

consume substantial quantities of reagents, cleaners, Fluxes and

other supplies normally expendable in earth operations. The

ability and efficiency of the materials processing operations to

regenerat_ such supplies may be of major importance.

Althouah representing an oversimplification, one may basically
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i

I consider the high temperature reduction methods as processes in

! which reduction Is first performed followed by purification (or

separation) of constituents from a mixed alloy, while the hydro-

; chemical processes perform the separation prior to the reduction(s).

_ Experience here on earth suggests that the latter method is

almost always preferred, although it does not necessarily follow

that this will also be true under lunar or orbital conditions.

! Metallurgical practice has shown that while it is often relatively

' simple to remove minor amounts of reactive metallic ingredients

from more noble metals, the inverse is rarely possible except

where large differences in volatility exists. Thus gold, silver,

copper, lead and other soft metals are often purified by oxidation

or conversion of more reactive impurities, but aluminum, titanium

and similar metals are very difficult to purify from alloy form.

The reduction product of high temperature reduction of undifferen-

tiated or physically beneficiated lunar soil will likely be an

iorn-silicon-aluminum alloy with possible additional magnesium,

calcium and titanium. Even if the latter materials were ar_sent,

the separation of iron from silicon and the latter from aluminum

would be technically challenging. If silicon were readily

removable from aluminum, the aluminum industry would probably

be radically changed and clay would form the raw material of

choice. In addition iron forms intermetallic compounds with

both silicon and aluminum which renders separation extremely

difficult.

Many of the difficulties ascribed to the carbothermic reduction

process proposed earlierlaapply also to the direct electrolysis

.-- b
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i process. In the former route, one is additionally faced with

the problem of recycling the carbon monoxide to carbon and

; oxygen, while with the latter, the durability of possible anode

materials remains to be established. The aluminum-iron-silicon

separation problem is treated in the following referenceTM eeo

t'

An extended discussion of materials output capabilities and

their dependence on composition specification is given in

Appendix J.

PART THREE -- TECHNOLOGY DEVELOPMENT

Introduction

The enactment of any directed activity in space, whether

scientific, industrial, service, or military, requires a sequence

of conceptual planning, engineering, design, acquisition of raw or

semi-finished materials and supplies, processing and fabrication,

assembly, testing, transportation (including launch and orbital

injection and transfers), deployment and operation(s) (Fig. 19).

Until the present time, the acquisition of materials and supplies

has been from a variety of commercial sources and venKors with

little or no assembly or deployment in space involved except for

solar panels, antennae, etc.

With _n increasing level of space activity forecast for

a variety of missions, it becomes advantageous to examine potential

alternative sources and sequences of materials acquisition, mining,

processing, fabrication or manufacturing and assembly with necessary

transportation requirements for planning various space programs

which will become active in the IgSO's and IggO's.

_F
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. The development of an "assured" or demonstrated technology

to effectively process lunar or other space derived mat_,-ials to a

variety of useful products will permit rational selection of cost-

effective routes to various mission assignments. It may in some

instances offer the only truly cost or environmentally acceptable

method of deploying large masses of structures in earth orbit.

Figure 20 shows some options available for sources and sequences to

. supply the mass and device requirements of future space missions.
J

The establishment of non-terrestrial materials sources

for major portions of future space activities will require the

establishment or development of several aistinct technologies (Fig.

21) including:

A. Transportation

Lunar launching of large cumulative masses of raw

or beneficiated ores and/or refined or finished

materials.
2

, _. ,_;ng_,d Beneficiation
I

Extraction, sizing and beneficiating lunar or other

soils or rocks.

C. Materials Processing

Conversion of raw or beneficiated ores and recycled

scrap to structural metals and non-metal;, oxygen

and propellants.

D. Manufacturing and Fabrication

, Conversion of refined materials to useful devices.

_.; ................. (I |

'_ P_ r P
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E. Assembly and maintenance

_ Erection of large structures and performance of

_ maintenance, repair and repiacement activities for

_ other operations.

_ The early embodiments of steps A through E into hardware

_ and systems will be governed initially by the traditional goals of
_i predetermined missions (e.g., a particular large structure).

i_ However, with time each step will be enriched into many diverse

.... physical operations to support th_ broader needs of a growing

:. "in-space" economy just as has occurred on earth

_:_ I TIME COST AND SCALE OF TECHNOLOGY DEMONSTRATION PROGRAMS

_ The transportation class represents technology which has

_ no direct analogue in the industrial experience of earth-bound

commerce but the remaining classes will consist of functional steps

which have the majority of features closely related to similar

activities on earth. Many of the mining, processing and manu-

facturing procedures used on earth can be adapted with little or

no ci,ange from earth plant operations. Such procedures can be

" proof-tested on earth _ a short lead time at low cost, especially

for procedures which will be conducted inside pressurized vessels

_:ith a simulated centrifugal gravity. Some of the chemical

process steps will invariably differ from those which have been

previously conducted in pilot plants or on a commercial scale.

For these steps, some sequence of development paralleling those

involved in the introduction of new process technology in the

chemical or metallurgical industries will be required. However,

the customary lead time from lab scale to be,;ch test to sub-pilot,
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. pilot plant and commer:ial production which would customarily

require from five to 15 years may not be required for space

processors. Space processing plants may be more typically in a

throughput range characteristic of terrestrial pilot plants.

A major factor in extending the time period required on

earth to proceed from the pilot plant to full scale facilities is

the necessity of developing cost projections accurate towithin

5 - I0% before commiLting major capita_ outlays to the design of

full scale facilities. Such overriding competitive factors in

the marketplace on earth will not exist in the early stages of

space ventures where the competition will consist of earth manu-

facture vs.one or more space manufacturing options. In view of

such considerations, a characteristic lead time for "space qual,fying"

a new chemical process from laboratory scale to pilot plant may be

expected to range from about three to seven years w_th substantially

shorter times required to qualify processes that have already

been tested on earth on at least a pilot plant scale.

Order of magnitude costs for chemical process R & D

programs can be estimated from capital costs experience for a

variety of inorganic and organic chemical processes. Typical

plant capacities for major chemicals would amount to 105 short

tons per year with capital costs of $25 to $600 per ton per year 25

R & D costs may be expected to be less than 20% of the above

figures for processes requirinq no major advancement of the

_ state-of-the-art. This would indicate an approximate $12 million

I _,m...m_._ _, _ , , , _,.L ' • '
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' R & D limit _er major process segment. Since the space
f

processing facility must of necessity recycle the lunar deficient

elements used as reagents or solvents, it will consist of several

"forward" and "reverse" process segments or steps to effectively

close the various recycle loops.

Annual and cumulative cash flows for space processing

may be expected to show the same general trends as for terrestrial

plants (Fig. 22). Positive cash flows may have to be stated in

equivalent "values" or credits for the products generated.26

It would appear likely that the R & D necessary to

sufficiently develop the necessary materials transport technology

will dominate the overall costs of utilization technology for non-

terrestrial materials.

J. INFORMATION REQUIREMENTS FOR MANAGEMENT DECISIONS IN THE

IMiLEMENTATION OF SPACE PROCESSING TECHNOLOGY.

In the cverall development of an industrial capability

in space using non-terrestrial resources, efficient management will

require long range pl_nnirg combined with adequate periodic or

semi-continuous review and modification based on progress and

* Projects whose estimated development costs would exceed 20-25%
of the capital cost of a commercial scale plant are generally
screened carefully before receiving management approval.
Projects for completely new products without direct competition
may occasionally warrant higher development costs. New processes
for existing products may also justify higher development costs,
but the risk Gue to competitive forces is higher. Finally,
processes invulving minor modifications of existing processes
would not normally require excessive development costs, but

if they were anticipated, such projects would rarely be approved. _m
k

j.

_ _ ,
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I
information developed during the program. The information can be )

classified as external if derived from other technologies (such )
(

as transportation and manufacturing) or internal if required and (

derived {or retrieved) principally for the processing operations.

There will be a considerable interaction between the various
)

_ technologies, since the economic practicality of space industrial

(
operations _ill be critically dependent on transportation costs,

I

and the transportation requirements will depend on the efficiency

of reagent recycling in processing. Similarly the efficiency of

many potential manufacturing operations may be extremely sensitive

to specificatio,s or impurity levels in the refined output of the

processors.

Because of the lead time required to implement pilot

plant testing of various chemical processing stages of an overall

plant design, it is important to develop information at the earliest

time possible concerning various alternativ( routes to process lunar

ores. rhe information required would be that necessary to establish

"figures of merit" for the various options. These would include

mass per unit throughput, power requirements, heat rejection
q

requirements, unit labor requirements, reagent replacement mass

requirements (recycle efficienty), versatility, and some attempt

to quantify corrosion, safety, product purity, and output flexibility

of the alternative routes. The extent of "new technology" required

(defined as steps for which no comparable pilot or sub-pilot scale

experience on earth is available) will influence development time

and costs ana reliability or uncertainty of the corresponding

:_ operations and should be considered in orocess evaluation. In m_
these regards, one of the first objectives of workshops or

",c
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. conferences assembled with representatives from industry and the

space agencies to advance space industrialization should be to

develop interim or permanent guidelines to permit calculation of

figures of merit for such processing systems.

While the studies performed to date have outlined one or more

feasible processing routes for conversion of lunar ores to

industrial feedstocks, it would be prudent to broaden the level

of options by examination of additional proposals from a more

diverse group of chemical and metallurgical process specialists.

These could then be subjected to the criteria established for

rating such options to permit an initial screening to concentrate

additional work to the most promising routes. J

K. PROCESS SELECTION AND QUALIFICATION

The seouence of steps necessary to space qualify all of the

individual operations required for a complete spa,'ematerials

processing plant (which demands a quasi-closed loop materials flow

for all elements not readily derived from lunar sources) are

summarized in Fig. 23.

A candidate process can only be evaluated when a complete mass

flow and heat (energy) flow chart or balance sheet has been prepared.
F

Unfortunately some of the information required such as percent

conversion of reactioi_ steps, reaction rates, and efficiencies

of phase separations may not be available before laboratory testing

programs are implemented. In the absence of such data, preliminary !i
analysis of candidate processes can be made under three types of

estimates: (1) probable values, (2) worst case values, or (3)

parametric values. Under all of the preceding assumptions, a
¥

computer systems analysis could be performed to estimate required b

.i
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sizi_Ig, energy, and heat rejection requirements for a candidate

process and in the parametric cases to determine the sensitivity :

of such features as equipment and reagent masses, to reaction rates i;

and separation efficiencies of individual steps. Such analyses can

serve to identify critical information needed to make a rational
J

selection between various candidate processes.

It may be possible to reject certain candidate nrocesses

if the sizing and energy requirements based on probable reaction

rates is less favorable than the worst case estimate for an alterna-

tive process. Reaction rate estimates can often be made using data

from chemically similar operations, so identification of such data

sources should have an early priority in the systems analysis study.

For steps in which no similarity data is available, an initial

laboratory program should be implemented to obtain the necessary

data. For the HF acid leach process, the greatest deficiencies in

lab data would appear to lie in the solution chemistry of fluorides

and fluosilicates, primarily in solubilities as a function of acidity,

fluoride and fluosilicate ion concentration, and temperature. In

" addition, for precipitations, the rough rates of crystallite growth

or time necessary to achieve filterability or sedimentation and for

ion exchange resins or membranes, the diffusion rates and selectivities

for fluoride and fluosilicate solutes will be needed for probable

value estimates.
t

The accuracy of estimates for candidate processes in

which few if any of the process steps have similar analogues in

commercial or pilot plant experience in the chemical processing

,_ industry will of necessity be low unless some fairly extensive

•_ laboratory testing is conducted to fill in information gaps. In

c

m
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the absence of some overriding incentive to pursue such a process,

c it may not be worth the time and cost to generate the needed

information to permit a more refined sizing and energy estimate

for such totally new processing routes.

Following a parametric analysis of sizing and energy

requirements, sufficient laboratory data must be generated to permit

the application of figure of merit criteria for process selection.

Once a process is selected, the individual process steps will follow

a sequence of lab-scale qualified, sub-pilot or pilot scale qualified,

simulated space environment qualified, and orbital qualified steps

to achieve the desired level of reliability and confidence in the

proper functioning in space. Depending on the amount of equivalent

or similar commercial or pilot plant experience, it may be possible

to omit one or more of the sequence steps. In particular, it may

be possible to omit testing of pilot or sub-pilot scale reactors in

large vacuum chambers or in reduced gravity fields such as in air-

craft tests. Most of the process operations will probably be

performed in equipment surrounded by a cabin atmosphere w'th a

simulated (centrifugal) gravity so the only significant alteration
v

of environment may be coriolis forces.

In addition to the direct process equipment and operation

technology, there are several technical areas of development wh(ch

will be common to nearly all prospective processes. These include:

solar electric power systems, solar thermal power systems (low,

intermediate or high temperature), space radiator heat rejection
)

systems, centrifugal countercurrent distillation and heat transfer

systems, volumetric buffers (barostats), momentum buffers and

vacuum materials handling systems. Since high volumetric and mass
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II - 67 :

efficiency of equipment is of prime importance, studies of modulari-

zation methods of increasing or adjusting output of reactors or

other equipment would be worthwhile.

In establishment of pilot scale or sub-pilot scale units

to qualify the technology of process operations, it is not necessary

to match the output of individual steps. In fact, the primary

reason or the establishment of pilot plant test programs for earth

processing plants is to allow the design of full scale equipment

which will be output matched based on rate data acquired during

pilot plant testing. Under such circumstances, it is doubtful

whether operation of the pilot scale or analogous units in space

simulation or orbital test version could or should be attempted

in continuous or quasi-continuous modes. Furthermore, several

items of equipment in a complete plant such as pumps, valves, motors,

boilers, sedimentation centrifuges, stirrers, tank reactors, etc.,

may be required in substantially equivalent capacity at several

points in the process loops, and a single unit lifted into orbit

could serve to test several of the process steps by sequential

testing rather than launch a complete mini-plant. Under such a

plan, reagent and product storage facilities in excess of that

necessary for an equivalent capacity complete plant would be

required, but the overall equipment and reagent mass requirements

would nevertheless be substantially reduced.

It would appear to be entirely acceptable to perform

almost all chemical processing tests on a simulated lunar ore using

synthetic ore with or without natural earth basalt additions to

approximate intended lunar composition (after beneficiation). The

_ effect of glassy fractions could be studied by variable melting

P
f
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and quenching of the artificial feedstocks. Some limited testing

on a very small scale of dissoluticn rates of actual lunar soils

should be performed, but only this first stage could differ in any
+,

appreciable manner from the results achieved with the artificial

ore. #-

L. DETAILED RECOMMENDATIONS I11

_: It is difficult to make detailed recommendations prior to the

completion of the preliminary selection process, but based on the
£

i work done to date and with the.assumption that no other process

_ will emerge which will have a clear-cut advantage over the HF-acid
c

leach process in the absence of additional lab bench scale testing,

one may delineate recommended lab scale testing programs to furnish

the information required to give a refined estimate of the mass,

energy, heat rejection, and reagent replacement requirements of

this process. One may also make recommendations regarding develop-

ment o_ common supportive technologies as previously mentioned

as well as studies to promote interaction of the developing

techniques.

LI. PROCESS TECHNOLOGY

As previously outlined, the development of process technoloay

should logically proceed through a sequence of selection, sub-pilot

scale or pilot scale testing, qualification under space simulated

environment and finally, orbital qualification. Final selection will
,t

in general require some additional verification or data acquisitian

at the laboratory (bench) scale before reasonable projections of

,: process sizing can be made for various competitive processes. _ _
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One cannot identify the critical data deficiencies for a

given process without an in-depth study of such a process, but

we can indicate a method of informational review to indicate current

state of information and to monitor the progress of the technology

qualification program on a step by step basis using the HF acid

leach process as an example.

For any processing system, the individual steps involving

chemical reaction, phase separation, or simply heating, cooling or

moving of materials should be separately identified and listed.

Those steps involving simple heat exchange or materials handling

where no unusual temperature or corrosion conditions are involved

may be presumed to require no lab scale verification, but such steps

may require missing thermal or physical properties data for accurate

sizing of heat exchangers. The remaining steps should be reviewed

for published data on equivalent or similar operations useful for

preliminary or detailed sizing and general engineering experience

" valuable for plant design. We may aesignate the "Degree of

Equivalency" for published data by inclusion in one of three classes:

E (equivalent in nearly all significant details), C (comparable but

with minor differences in composition, temperature, acidity, etc.),

or R (related where primary product or reactants are the same, but

conditions of formation may differ in significant detail).

Table XI shows a listing of steps from th_ HF acid leach

process with notes illustrating the current informational background

to this basic system In addition to the specific steps listed in ._•

the prior reports, there is a brief listing of possible process

-I

P
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modifications with related published data. The literature references

are not meant to be all-inclusive or exhaustive, but rather to

indicate the reference material uncovered to date in readily accessible

sources which bear on the proposed process.

it may be noted that the process areas most in need of lab

scale data and process deli,leation are in the areas of conversion

of NaP to NaOH and MSiF6 to M(OH) 2 + H2SiF 6. Some additional basic

data of solubilities of fluorides and fluosilicates and diffusion

rates of fluosilicate ions in ion exchange membranes and resins is

t

needed to quantify separation and conversion steps. These defic-

iencies have already been discussed and will have to be overcome

before complete mass flow balances can be specified. The process

can, however, be operated by steam hydrolysis of fluorides which

constitutes a less desirable t_utmore fully defined option and thus

a worst case sizing could be performed.

L2. SUPPORTIVE TECHNOLOGIES

Space Electric Power

For initial small scale requirements, solar photovolta;c panels

will undoubtedly be used. Use of multiple sets of panels on the

unar surface for ext_ .ded periods will be required. Although some

experience has been obtained from equipment deployed in earlier

lunar missions, studies and simulated testing to assure satisfactory

operation may be indicated. It may be advantageous to use solar

panels or mirrors as solar shades to cool the lunar surface over

significant areas to facilitate other operations such as processing.

New or alternative solar electric conversion systems such as

vacuum photoelectric emission should also be explored, especially |

those which could be produced locally with low transported mass.
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Larger scale industrialization will undoubtedly be keyed to the

ability to fabricate solar electric power systems in space.

Space Thermal Power

A considerable reduction in po_er plant m_ss for an equivalent

useful power output is indicated for direct solar thermal furnace

designs. However, use of such energy sources requires some modifi-

cation of chemical processing units, especially if the heat is

required in a rotating zone to achieve an artificial (centrifugal)

gravity. An additional complication arlses in the optical/spatial

requirements for introducing reactants and removing products. The

heat energy may be brought in as radiation using a refractory

window or by absorption e_ a black surface and by conduction

through the wall. Such wall materials must normally be corrosion

resistant to the contents of the reactor unless the energy is

reradiated. Some general studies of methods of solving these design

problems should be undertaken including examination of refracting,

reflecting or combined optical concentrators, low vapor pressure

refractory windows and walls and kinematic designs to permit

centrifugal forces in image zones. For solar furnaces intended

for use on the lunar surface, the rotational requirement may not

be necessary, but a crude tracking system capable of at least daily

adjustment must be provided and the optical elements must be able

to perform under lunar gravitational loading.

Space radiators

Much of the chemical process heat rejection load will probably

involve rejecting heat at 500° to 600°K, either as primary heat,

or from lower temperature exothermic step: which have been heat

_ pumped up to such temperatures. In this range, stecm is probably

v b

1979021033-163



i II - 72

a nearly ideal working fluid, but may pose some problems such as

freeze-up in the event of process interruption. Some studies on

designs and procedures to withstand freeze-up and restart such

heat rejector panels, or alternatively to use antifreeze or other

working fluids should be undertaken.

If steam is used, some engineering _tudies of various proposed

heat pump cycles involving adiabatic and/or isothermal compression

using wet or unsaturated fluid in various segments shouid be
m

examined.

Some need for hi_her temperature heat rejection may also

arise. This may be achieved by direct loss from reactor walls in

shadow zones. If large amounts of power are _nvolved, it would

probably be preferable to recover such heat to s0'pplement lower

temperature requirements elsewhere in the plant. Mercury o_ alkali

metals would be the most likely candidates as working fluids. It

would probably be worthwhile to p_rform a study to select preferred

working fluids as a function of temperature for heat rejectors.

Processes requiring large heat rejection loads below 500°K

would not normally be desirable due to excessive radiator weights.

A study of various alternative radiator designs which do not require

working fluids and by avoiding meteoritic puncture hazarc can be

made extremely thin and lightweight should be made to see if such

a technology can be developed and what effect it would have on the

choice of chemical process selection.

Centrifugal Counter-Current Processes

A number of processes employed in chemical industries use a

' concurrent flow arrangement in which a rising fluid (usually a gas)
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interacts with a descending phase (usually liquid or solid) with

heat and/or mass exchange. A related process is a fluidized bed

where the descending phase may be reversed but still possesses a

differential velocity from the ascending stream. In these counter-

current steps, the driving force for the descending phase is often

gravity. If it is desired to use such a process in orbit, the

gravitational force must be replaced by a kir_ematic (rotational)

force. This will require a substantial redesign of such structures

as fractional distillation columns since the artificial gravity

will be a function of radial distance.

A general survey should be undertaken to assess the implication

of a radially proportional artificial gravity and coriolis forces

on existing chemical process equipment with recommended design

modifications to permit satisfactory operation in orbit.

Volumetric Buffers

In the course of operation of quasi-continuous or batch processes,

the total volume of material present at various pressure levels may

fluctuate from time to time. For those operations carried out on

earth at or near atmospheric pressure, little or no problem exists
-i

unless the material (gas) is exceptionally hazardous. In space,

generation of large quantities of gases at pressures removed from

their condensation points (temperatures) may require a substantial

interim storage capacity or buffer reserve before the gas is

condensed, liquified or consumed in some process step. For lower

pressures, various bellows or bladder structures may be useful,

but for higher pressures, some study of practical high pressure

expandable structures is required. _.

• I 'o
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; In the operation of chemical process equipment, there are

often created substantial levels or surges of linear or angular

momentum flow rates which are of no concern on earth except for

the strength of support and e_uipment elements. In space stations
%
C

i with inertia comparable to the processing pl_nt, the effects of
I

i momentum flow upon local accelerations of spacecraft sections is

no longer negligible. The problem can be compounded if the
%

' orientation of solar concentrators must be maintained accurately

during plant operation. A study should be undertaken to compare

various methods of absorbing process momentum surges to avoid

interfering with proper functioning of equipment ,mrpersonnel.

Vacuum Materials Handlin_ £ys_ems

Although most steps of the chemical processing plant are

expected to operate under an atmosphere of some kind, there are

somestages where materials must be handled in vacuum. These include

transfer from a lunar transporter to storage (if under atmosphere)

or from storage under vacuum to the input flow stream in the plant,

transfer of output solids (metals and oxides) to vacuum storage or

final drying operations in high vacuum followed by transfer to

vacuum (space) storage, and intermediate storage or operations

with hazardou_ materials such as sodium. Materials handling in

such situations may require special design considerations such as

vacuum lock conveyors, lubrication with non-volatiles, outgassing

scavengers, prevention of cold welding or agglomeration effects,

etc., which should be anticipated well in advance of actual
b

needs.
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Modular Equipment Design

In the design of chemical process equipment a change in capacity

requirement of a reactor, distillation column or the like is often

accomplished by addition or substitution of units with a given unit

operated intermittently when excess capacity is available. A

mismatch in capacity of one unit of an overall plant may be cured

by post-construction modification or repiacement. Since either of

these fixes would be much more difficult for a sp_c, ")lant, it

would be useful to examine the measures that might be taken to

p6rmit adjustment of capacity or throughput with the least possible

effort. One method might co_:sist of constructing major pieces of

equipment as clusters of modules 6with a minimtm number of modules

of about eight) whereby added capacity can be achieved by insertion
l

of additional nodules (see FiQ. 24).

L3. UNCONVENTIONAL PROCESSES

In the continuing development of space processing technology,

one should give objection consideration to new approaches or

methods of supplying refined industrial materials of a special

nature or from other sources which may be available. In this regard,

silicon hydrides (silanes) are potentially interesting fuels for

rocket propellants. 27 SiH 4 and Si2H 6 are gases at room temperature

but their critical temperatures are somewhat higher than for the

corresponding carbon compounds so both are storab!_ as liquids at

reasonable temperatures. They are hypergolic toward oxygen and thus

present a safety problem in storage on earth. They can be manufactured

in high yield from Mg2Si and ammonium salts with the former being

made ,_rom the elements. If this was synthesized on the moon, the _.

p
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hydrogen might well have to be brought from earth, but the total

_ propellant equivalent from the silicon hydrides might be substan-

tially greater per unit mass of hydrogen than that obtained by

directly burning the hydrogen•

M. TECHNOLOGY INTERACTION ST_WDIES

The developments of the various technologies required for

space industrialization may have major impacts on each other's

opportunities, potential and cost effectiveness. Thus the trans-

portation technology will strongl.y influence operational costs,

while the manufacturing and fabricating technologies will determine
I

the ability of space industry to expand and diversify. The mining J

and processing technologies will determine the materials limitations

of the other technologies except for minor fractions of materials

or specialty hardware unavailable from space sources which may be

supplied from earth.

The output of space materials processing facilities may be |

roughly grouped into three classes: !

a. Structural materials (solids) _
i

" b. Fluids (gases, liquids, propellants) _

c Reactive materials (sodium calcium), etc

The last class is primarily used as an intermediate to produce Ji
materials of the other classes, but the reactive metals may be |

useful as _xpendable fuels in propellant systems.

The flexibility of output options of the materials processing

technology will largely determine the ultimate limits of the scope

of space industrialization. The impact on transportation technology

will be most directly evident from the options created in materials

i
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for propellants, spacecraft, and electromagnetic propulsion systems

• (mass drivers, etc.). A reverse interaction from transportation to

processing in addition to cost factors would be options in the

construction materials of earth-lauched spacecraft to supply lunar

deficient elements for recycling in space. In particular, certain

key industrial elements such as copper, tin and other soft metals,
i

carbon, tungsten, and other heavy transition metals will be needed

in small amounts, while molecular materials such as polymers and

elastomors will also be useful if available in recyclable form.

The impact on fabrication technology will depend on the diversity

of materials and supplies which can be furnished to create the

tooling, facilities, and consumables needed to perform various

manufacturing and fabriceting operations. Manufacturing operations

can be sub-divided into hot and cold operations with the former

including casting, hot flowing or drawing, hot forming_ sintering,

welding, brazing, etc. In this class, the tooling requires

refractory properties (hot strength) plus corrosion resistance in

construction materials. In cold operations, high strength, materials
i

hardness (especially in tool bits and abrasives), and machinability

(or formability) are the most important properties for equipment

for metal removal or metal working. Electric and magnetic properties

as well as materials compatibility are also necessary considerations

in some operations. Almost any fabrication or manufacturing opera-

tion which has been conducted on earth could be duplicated in space
t

given a diverse range of steels, refractory oxides, magnetic and

electric materials and thermal insulation, with probably lOg or less
t

of the mass requirement demanding earth supplied components.
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One shLuld not overlook the necessity of various reagent or

r other consumable chemicals in various stages of ess_ntially manu-

facturing rather than chemical processing procedures. Recycling

of rinse waters, spent plating baths, lubricating and cutting oils

and regeneration of acids and bases may be imperative or preferable

to replacement from earth. The ability of materials processing

facilities to perform these tasks as well as to efficiently recycle

scrap generated by manufacturing may be of importance in the rating

of processes.

The major areas in which fabrication technology could impact

on processing technology would center on the ability of the

fabricators to replace critical high wear or corrosion components

such as valves, nozzles, pipes, tanks and refractory liners in

various process steps. This ability, or lack of it, could determine

the relative merits of competing processes. The most favorable case

would be where the fabricators would have a complete capability i

to produce pressure vessels, pipes of various diameters (and i
I

materials), castings for valve bodies, pumps, motors, etc., and

• refractory or sintered ware of any desired shape _ size, as well

as common plate, strip, beam and wire metals forms. •I

_o promote the mutual understanding of the needs and capabilities

of the progressing technologies and to further their use or applica- 1

tion to the other technologies such that the overall space indus- )
T

trialization effort may benefit, it is recommended that workshops !

be held with participants (engineering or study groups) from i

transportation, mining, processing, fabrication, and assembly
t,

disciplines, to review problems, advances, and effects of materials
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i substitutions on proposed operations and to give direction to

future efforts. Some of these should be of a quite general nature,

while others could be limited to very specific topics such as

propellants. All technology reports of the various groups should

be transmitted to the other groups and the report writers should

be encouraged to include in their summary sections brief descriptions

of potential impacts on the other technologies and the overall

prospects for space industrialization.

B

,4

I
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_, Table I

USEFUL PRODUCTS DERIVABLE PRIMARILY FROM LUNAR SOURCES

STRUCTURAL MATERIALS

Metals

Steels, aluminum, magnesium, titanium and alloys

Reinforced Metals

Metals above reinforced with silica, steel, alumina or

titanium silicide

Glasses

Calcium, magnesium, aluminum, titanium, silicates, fused silica,

foamed glasses

Ceramics

Alumina, magnesia, silica, complex oxides, fuse_ basalts

Hydraulic Cements

(Need water)

THERMAL AND SPECIALTY MATERIALS

' Refractory and Hard Materials

Ceramics above plus chromia, titania, titanium silicides

Abrasives

Alumina, garnets, silicon carbide, titaniun_ carbide (limited

by C)

Insulation

Ceramics above plus fiberglass, fibrous or powdered ceramics

_, ELECTRICAL _IATERIALS
Conductors

_, Aluminum, magnesium, iron, resistance alloys (FeCrAl), silicon

q
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: Electrodes

Fe304, graphite (limited by C)

Magnetic Materials

Iron alloys, magnetic ceramics (ferrites, magnetoplumibites)

Electrical Insulation

See glasses, ceramics and thermal insulation

FIBROUS MATERIALS

Glass, silica, synthetic mineral wool

For apparel, paper, filters', etc.

PLASTICS AND ELASTOMERS

Silicone resins (limited by C)

I

SEALANTS, ADHESIVES AND COATINGS
!

I

Soluble silicates

Anodized coatings

On aluminum, magnesium, titanium

Electroplating
i

' Chromium, etc.

Sputtered or vacuum deposited coatings

LUBRICANTS, HEAT TRANSFER FLUIDS

Sulfides, graphite (limited by C)

SO2, He

INDUSTRIAL CHEMICALS

Detergents, cleansers, solvents, acids, bases

H2SO4, H3PO4, CaO, NaOH :,
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Table II

PRODUCT MIX OPTIONS

Metal/silica ratio -

Equivalents l:l Olivine, anorthite, orthosilicates -

0.5:1 Pyroxene, metasilicates _.

0:I Silica _
I

l:O llmenite, spinel, troilite, etc.

Neutral iron _

Aluminum/iron ratio

Negative correlation

Approximate range 5:1 to 1:4 (whole rocks)

Nonstructural/structural metal ratio

Ca : (Mg + Fe) Pyroxenes: l:l to O.l:l
l

llmenite 0 : l

Light metal/iron ratio

(Al + Mg) : Fe Similar to Al:Fe

Silicon/silica ratio

Reduction requirements

Dema_J conditioned on use of photovoltaic systems

Metal/metal oxide ratio

Reduction requirements

Depends on demand for metals vs. refractories and pigments !

!
Oxygen/metal ratio

Depending on ratio of oxygen to structural metal (and silicon)

Demand, oxygen may appear as an unneeded by-product, or iron
w

and other reductants may be a surplus material

Reinforced/normal metal ratio _

Demand dependent on suitability of reinforced meta'_ to _:.,
I

_. replace a variable portion of reinforced resins in st"uct, r._=s
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_ Table Ill

RANGES OF CHEMICAL COMPOSITIONS FOR THE MAJOR MINERALS

High Titanium Basalts

Pyroxene Olivine P1agioclase Opaques ,;
Modal Abundance (Mostlyllmenite)
(Vol.%) 42 - 60% 0 - I0% 15 - 33% lO - 34%

Component
(Wt.%)

SiO2 44.1-53.8 29.2-28.6 46.9-53.3 < l.O

Al203 0.6- 6.0 - 28.9-34.5 0 - 2.0

TiO2 0.7- 6.0 - - 52.1-74.0

Cr203 0 - 0.7 O.l- 0.2 - 0.4- 2.2

FeO 8.1-45.8 25.4-28.8 0.3- 1.4 14.9-45.7

MnO 0 - 0.7 0.2- 0.3 - < l.O

MgO 1.7-22.8 33.5-36.5 0 - 0.3 0.7- 8.6

CaO 3.7-20.7 0.2- 0.3 14.3-18.6 < l.O

Na20 0 - 0.2 - 0.7- 2.7 -

K20 - - 0 - 0.4 -

Low Titanium Basalts

ModalAbundance

(Vol.%) 42 - 60% 0 - 36% 17 - 33% l - If%

SiO2 41.2-54.0 33.5-38.1 44.4-48.2 < l.O

Al203 O.6-11.9 - 32.0-35.2 O.l- 1.2

TiO2 0.2- 3.0 - - 50.7-53.9

Cr203 0 - 1.5 0.3- 0.7 - 0.2- 0.8

FeO 13.1-45.5 21.I-47.2 0.4- 2.6 44.1-46.8

MnO 0 - 0.6 O.l- 0.4 - 0.3- 0.5

MgO 0.3-26.3 18.5-39.2 O.l- 1.2 O.l- 2.3

CaO 2.0-16.9 0 - 0.3 16.9-19.2 < l.O

Na20 0 - O.l - 0.4- 1.3
m

K20 - - 0 - 0.3

D
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Table III (continued)

;,

RANGES OF CHEMICAL COMPOSITIONS FOR THE MAJOR MINERALS

Highlands Rocks

Pyroxene Olivine Plagiocla_e Opaques !
'!odalAbuilda_,ce (Mostlyllmenite)
(Vol.%) 5 - 35% 0 - 35% 45- 95% 0 - 5%

'4

Component
(Wt.%)

SiO2 51.I0-55.4 37.70-39.9 44.0'3-48.0 0 - O.l

Al203 l.OG-2.5 0 - O.l 32.00-36.0 0.80-65.0

TiO2 0.45- 1.3 0 - O.l 0.02- 0.03 0.40-53.0

Cr203 0.30-0.7 0 - O.l 0 - n.02 0.40-4.0 ;

FeO 8.20-24.0 13.40-27.3 0.18- 0.34 II.60-36.0

MgO 16.70-30.9 33.40-45.5 0 - 0.18 7.70-20.0

CaO 1.90-16.7 0.20- 0.3 19.00-20.0 0 - 0.6

Na20 0.20- 0.6

K20 0.03- 0.15

M_
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Table IV

' VITREOUS SILICA

Reagent Dissolving Rate

5% HF (RT) 96.6% (.04 mm dia.) dissolvea 30 min.

I% HF 52.9% (.04 mm dia.) dissolved 30 min.

5% HCl (gs°c) <2.5 x lO-6 cm 24 hr.

5% NaOH (95°C) ~l x lO-3 cm 24 hr.

H2SO4 About same as HC1

H3PO4 (150°C) Some attack I

1
i

v

m2_ p
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Table V

BULK CO_POSiTIONS OF PLAGIOCLASE AND ILMENITE CONCENTRATES

90% Pldgioclaseand 10% Residue 90_ Ilmeniteard I0% Residue
(Weifht%) (Weight%)

weight moles per
percent lO0 gram

SiO3 44.90 .747 SiO2 3.78

TiO2 0.05 .00063 TiO2 48.10

Al203 33.67 .33 Al203 l 07

Cr203 O.Ol .000067 Cr203 0.49

FeO 1.09 .0152 FeO 43.28

: M:,O 0.01 .00014 MnO 0.03

. MgO 1.35 .033 MgO 1.29

CaO 18.59 .331 CaO 1.07

Na20 0.45 .0073 Na20 0.04

K20 0.16 .0017 K20 O.Ol

_ P205 0.03 .00021 P205 0.__

S O.Ol .00031 S 0.02

EnrichmentFactor EnrichmentFactors
.1

A1203 1.96 TiO2 3.7

FeO 2.2

F •
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Table Vl

CARBO-CHLORINATION PROCESS EQUATIONS

CaO - Al203 • (2.25 Si02) (.15 MO) + 8.65 C + 8.65 Cl2 =

CaCl2 + 2 AlCl3 + 2.25 SiCl4 + .15 KCI2 + 8.65 CO ("

C_CI2 + 2H20 + (±) = Ca(OH)2 + H2 + Cl2 (2)

.15 MCl2 + .3 HxO + (±) = .15 M(OH) 2 + .15 H2 + .15 Cl2 (3)

2 AICl3 + (_) (fused salt) = 2 Al + 3 Cl2 (4)

2.25 y SiCl4 + 4.5 yH2 = 2.25 y Si + 9y HCf (5)

2.25 (l-y) SiCl4 + 9(l-y) H20 =

2.25 (l-y) Si(OH)4 + 9(l-y) HCI (6)

9 HCf + (_) : 4.5H2 + 4.5 Cl2 (7)

8.65 CO + nH2 = (intermediates) = 8.65C + (n-8.65)H 2 + 8.65 H20 (8)

Ca(OH)2 = CaO + H20 (9)

.15M (OH)2 = .15 MO + .15 H20 (lO)

" 2.25 (l-y) Si(OH)4 = 2.25 (l-y) SiO2 + 4.5 (l-y)H20 (ll)

(3 + 4.5 y) H20 + ) = (3 + 4.5 y)H 2 + (I.5 + 2.25 y)O 2 (12)
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HF ACID LEACH PROCESS EQUATIONS

+ SiF4(aq) + (2 + x)H20
I. xMO • SiO2 + (4 + 2x)HF = xMF2

{ xMF2 + HSiFs(aq ) + (2 + x)H20
l'. xMO • SiO2 + (5 + 2x)HF =

2. SiF4(aq) + nH20 = SiF4(v) + nH20(v)

{ 2'. HSiF5(aq) + nH20 = SiF4(v) + HF(aq) + nH20(v)

4HF]
3. (l-y) [SiF4(v) + 4H20 = Si(OH)4

3a. (l-y) [SiF4(v) + 2H20 = Sio2 + 4HF]

4. (l-y'-z) [xMF2 + xH20 = xMO + 2x HF]

5. Y [SiF4 + 4Na = Si + 4NaF]

J 6. Y'[xMF 2 + 2x Na = xM + 2x NaF]

7. z [xMF2 + xSiF4(aq) = xMSiF6(aq)]

8. z [xMSiF6(aq) + xH20 + elec. energy = (x/2)02 + xM + YH2SiF6]

8a. z [xMSiF6(aq) + M'SO3R* = xM'SiF6(aq) + xMSO3R*]

9. m NaF + mR*OH = mNaOH + mR*F
= mNaOH + (m/w)CaF2

9a. m NaF + (m/2)Ca(OH)2

lO. m NaOH + elec. energy = mNa + (m/2)O2 + (m/2)H20

II. (l-y) [Si(OH)4 = Si02 + 2H20]

_* = ion exchange resin

m = 4y + 2xy'

-, .,. 1979021033"'
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Table Vilb

METAL FLUORIDE/FLUOSILICATE SEPARATIONS
(Separations of Al, Ca, Fe, Mg ions)

Acid leach (Eqn. I, Table VIIa) with SSA will leave metal_ in

soluble fluosilicate form. We may write the acid leach step as:

SSA + (4 + 2x)HF + xMO • SiO2 = xMSiF6 + SSA' + (2 + x)H20

• I. Electrolyze iron:

MhSiF6 + H20 + elec. energy = Mh + I/2 02 + H2SiF6 (Mh = Fe)

2. Selectively precipitate flaorides

' MiSiF 6 + 2HF ([F-] ~10-3) = MiF2_ + H2SiF 6 (_i = Ca,Mg)

MjSiF 6 + 2HF (excess) = (2/3)AIF 3 + H2SiF6 (Mj = (2/3)AI

., H2SiF6 is returned to leach cycle, AIF 3 to reduction step

3. Redissolve MiF2

MiF2_ + SiF4(aq) = MiSiF 6 (soln)

4. Salt _litting (conversion to chloriaes)

Mi++ + 2HS03 R* = 2H+ + Mi++ 2S03R* recycle H2SiF_ eluant

++ RSO3R* + 2HCf = 2HSO3R* + MiCl2 (soln)Mi

5° Precipitate Mg(OH) 2I

MiCl2 + Ca(OH)2 = Mk(OH)2+ + CaCl2 (Mk = Mg)

6. Salt splitting (conversion to hydroxide)

2Cl- ++ + 2R*OH = 2OH" + 2R*Cl dehydrate Ca(OH) 2 eluant

R*CI + NH4FHF = R*F + NH4F + HCI HCI to 4

R*F + NH3 + H20 = R*OH + NH4F

7. Reagent regeneration

2NH4F + heat = NH4FHF + NH3 NH4FHF to 6

I

.I R* = ion exchange resin

.f

p,

_' • "D
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Table VIII

HCf ACID LEACH PROCESS EQUATIONS

I. xMO SiO2 + 2x HCf + (2-x)H20 _ xMCl2 + Si(OH) 4

2a. (anion exchange resin)

-- - 2++ )ixMCI2 _ x(M2+ + 2Cl ) + x R'An _ (R'An)x y Mj
(-2+

(x-y)Mk + 2x Cl

2b. (acid elution)

(R'An) y M.2+ + 2y Cl" + 2x H+ + >.An' =
x j

R'An' + xH2An + yMj 2+ + 2y Cl"
X

3a. (cation exchange resin)

(x-y) MkCl2 _ (x-y) (Mk2+ + 2 Cl') + 2(x-y) RH _ (x-y) MkR2 _,

2(x-y) (H+ + Cl-)

3b. (partial elution)

(x-y) MkR2 + 2z(H+ + Cl') _ (x-y-z) MIR2 + z Mi2+ + 2z Cl-

4. (regeneration)

x [R'An' + 2 HX _ R*X2 + H2An']

5. (regeneration)

(x-y-z) [MIR2 + 2 HX ___ 2 RH + M2+ + 2X']

R, R* = resin polyelectrolytes

RH = R'H+ = cation exchange resin (sulfonate type)

R'An = R*++ An = anion exchange resin (quaternary ammonium type)

An, An' = anions such as SO4, 2OH, citrate or other species

Reduction, hydrolysis a_d pyrolysis reactions are similar to HF acid

leach process as shown in Table VII.

o
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Table IX

NaOH BASIC LEACH PROCESS EQUATIONS

300°C]. 2
(CaO • AI203 • 2 SiO2).+ 6 NaOH + 2 H20 >autoclave

Na20 • Al203 + Na20 • 2 CaO 2 SiO2 • H20 + Na20 • Al203 • 2 SiO2 H20

2. Na20 . Al203 • 2 SiO2 - H20 + 2 NaOH + 2 CaO + 2 H20 i
}

s2120_ Na20 • • 3 H20 + Na20 • CaO • 2 SiO2 H20urry Al203 . 2 • i

3. Na20 . 2 CaO • 2 SiO2 • H20 _ ? (CaO • SiO2 H20) + 2 NaOH

4. CaO • SiO2 • H20 + 2 H20___ Ca(OH)2 + Si(OH)4

5. 3 H20 + Na20 • Al203 + CO2 _ 2 AI(OH)3 + Na2CO3

6. 2 AI(OH)3 llO0°C > Al203 + 3 H20calciner

7. Na2CO3 + CaO + H20--" 2 NaOH + CaC03¢

8. CO3 : + 2 R*OH--_ R2*CO3 + 2 OH-

o 9a. CO3 = --" C02+ + I/2 02+ + 2 e

9b. Na+ + H20 + e --_ Na+ + OH" + I/2 A2t

lO. CaCO3 A CaO 2

ll. R2 CO3 + 2 HX_ 2 R*X + C02* + H20

12. 2 R*X + CaO + H20 _- CaX2 + 2 R*OH

I
R* = ion exchangeresin

F
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. Table X

COMPARISON OF MATERIALS PROCESSING SYSTEMS

Carbo/
Silico Electrol. C-Cl HF Acid HCI* NaOH*

Characteristic Thermic Silicates ation Leach Leach Leach
|

I
Percentof input mass flow subject lOn- j
to high temperatureprocessing 200 150 _00 40 40 40 .f

t

Plaximumprocesstemperature°C 2300 13OO IOOn- 1200 lO00- 1200
1200 1200

Reductionproducts:
Pure metals, Si X X X
Alloys (Fe, Al, Si) X X X

Secondaryrefiningrequired
(e.g.,metal distillation) X X X

Silica,clear glass, refractory
xide demands require reoxidation X. X

Ratio, electrolysisequivalents: 1.33- 1.33-
net oxygen equivalents 1.5+ 1.5+ ~2.5+ l l l

Oxygen recovery:

Recyclin9 CO X partial
Electrolysisof H20 partial partial partial partial
Electrolysisfused salt, alk., etc. partial partial partial
Electrolysisfused silicates X

Process power:

Electricalwatt hr/equiv. 9_.4 ~I00 {In7,5- 72- NA NA(theoretical) 135.7 {144+
Thermal (theoretical) 129.7# 25-40 <2q <20 <2n <20

Hinh purity Si, SiO2 obtainable X

Elements recycled:
H X X X X

C1 (A) (A) X X X

F X
I,la X X _ X "

C X X X(C03)
Si X X(Mg) X(_g)

N X ?

Technologicalrisk high high medium low low medium
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Table X (continued)

COMPARISON OF MATERIALS PROCESSING SYSTEMS

Carbo/
Silico Electrol. C-CI HF Acid HCf* NaOH*

Characteristic Thermic Silicates ation Leach Leach Leach

Key Problems:

Refractories,corrosion X X X X

Separations- metals X X

Separations- nonmetals X ? X

Rate (kinetic)problems X X

CO conversionto C, 02 X X

Recyclingefficiency ? ? X X ? X

Adaptabilityto:

Anorthite X X X X X X

Pyroxene,olivine X X X X X ?

llmenite,spinel X ? X X X

+
Dependingon reductionload

Using Na, or direct reduction

# May requireelectric (arc) energy

(A) Additionalelementsmay have to be recycled in metals r_finJngoperations

°

.,<- .

w' ._,
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Table XI

Information Summary cf Testing or Qualification (Scale) of

Process Steps for HF Acid Leach Process

Sub-Pilot Plant,
Step Lab Qualified Pilot Plant or Commercial Space

Semi-Commercial Qual i_'ied Qualified

Acid dissolution E(la) E(Ib)
(Silicate rock)

Precipitation, C(2a) C(2b) C(2c)
Crystal Iization,

Filtration MF 2

Distillation, SiF 4, H20 E(3a) C(3b)

Acid hydrolysis, Sil4 E(4a) R(4b)

Distillation, HF, H20 E(Sa)

Na reduction, SiF 4 or MSiF 6 C(6a)

Na reduction, AIF 3 or E(7a)
Na3AIF 6

Na Reduction, MF 2 R(Ba)

Electrochem reduction, C(9a)
Na, 0
ExhauStive drying NaOH E(lOa)

Steam hydrolysis, MF2 E(lla)

Steam hy_ olysis, P!a3AIF6 C(12a)

Conversi'ans NaF, NaOH C(13a) R(13b)

Conversion, MSiF 6, C(]4a)

M(OH) 2 + H2SiF 6

Drying, M(OH) 2, MO E(15a)

Filtration, Si(OH) 4 C(16a)

Process Modificati:Qns

Anhydrous (NH4FHF) R(17a)
dissolution

Neutral hydrolysis (NH3) E(IBa)l

Regeneration, NH 3 E(Iga)

,Tonmembrane C(20a)
regereration

e

_.o+.w" ,p
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Table XI (continued)

References:

la. Common analytical procedure, rock analyses

lb. Metals recovery, silicate ores

2a. Gravity filtration, common separatioll in inorganic analyses

2b. Manufacture, specialty fluorine chemicals

2c. Centrifugal filtration, AIF 3 manufacture (Chem. Engr9. 4/27/64)

3a. Gambaretto and Pedler, Annali di Chimica 64, 711 (1974)

3b. Recovery of SiF4 by product of phosphate fertilizer manu-

fature

4a. S. Thomsen, J. Amer. Chem. Soc. 74, 1960 (1952)

4b. Neutral ;_ydrolysis (using AI(OH) 3, see ref. 2c)

5a. Munter, Aepli and Kossatz, I & EC 39, 427 (1947)

6a. J. Eringer, U.S. Pat. #2,173,969 (1939)

7a. Netto Process, see Encyco of Chem. Tech. 2, P. 540 (Kirk-

Othmer)

8a. Reduction of rare earth and uranium fluorides, see Topp,

Chem. of Rare Earth Elements, p. 128, Elsevier, Ams_. (1965)

9a. Castner sodium cell, see Encyc. of Electrochem., p. I062

(Hempel) N.Y.: Reinhold (1964)

lOa. Rahmel and Kruger, Zeit. fur Physik Chem. 55, 25 (1967)

lla. L. Domange, An_,. Chimique 7, 225 (1973)

12a. Silverman and _owen, An_l. Chem. 31, 1960 (1959)

13a. Recovery 'id . 0_, see Ref. 12a plus solubility data

Encyc. of C!_e,T,.Tec_}.2, p. 7 (Kirk-Othmer)

14a. Three alternative routes" ion exchange resins, ion exchange
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membranes and pptn. as fluorides plus hydrolysis. The

; first requires several steps but is relatively straight-

forward, the second has fewer steps but is largely

unexplored, the third requires se_al steps, includitag one

at high temperatures and probably requires more energy Khan

the others.

15a. MgO and CaO are produced commercially by this method.

16a. Centrifugal filtration during AIF3 manufacture, see Ref. 2c.

" 17a. J. Hickey, U. S. Pat. #2,624,698 (ig53). i
IBa. G. Cunningham, U.S. Pat. #3,101, 254 (1263), C. Faust,

U.S. Pat. #3,g14,398 (1975).

Iga. F. McClenahan, U.S. Pat. #2,446,484 (1948), C. Faust,

U.S. Pat. #3,914,398 (1975).

20a. See Membranes, Technology and Economics, R. Rickles,

Noyes Dev. Corp. and trade literature, Ionics, Inc.,

Watertown, MA (1967).

w
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Appendix A

MASS AND HEAT TRANSFER CONSIDERATIONS IN LOW PRESSURE

i! DISTILLATIONS

Kinetic theory gives the following expression for the mass

flux rate striking unit area of the boundary of a region at
Q

pressure p.

M 112= _ = p (2_--_l_F) = 4.375 x lO"5 p(M/T) I/2 where p is

th_ pressure (dynes/cm2), M is the molecular weight of the gas,

T is the temperature (°K), R is the gas constant and m is given

in units of gm/cm2 sec.

As an example, for Al at 1640°K, p = O.l Torr = 1.33 x lO2

• 10-4 g/m 2dyneslcm2_ M = 27 and m = 7.48 x gm/cm2 sec = 26.9 k hr.

In addition to ma_s transport, heat will be transported

between evaporating and condensing surfaces in the form of latent

heat of the transported molecules and, parasitically, in the form

of radiation between the hotter vaporization and cooler conden-

satlon surfaces• The latter may be expressed as:

AT)
Qp/A = qp = _o (Te4 - Tc4) = o Te4 (4_e e where _ is the mean

emissivity, o is the Stefan-Boltzmann constant (5.67 x 10-8 W/m2

°K4), Te and Tc are the evaporating and condensing temperatures

(°K) and AT is the difference in temperatures and qp is given in

W/m2. The term 4_ _ represents the fraction of the black body
e

: radiant intensity which is parasitically transferred. As an _

example, if _ = l and AT = ,025 Te, a fraction = O.l of the black

Gbody radiant intensity ( bb) is transferred• _E

i
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• KW/m2 " =
As an example, if Te = 1640°K, qbb = 410 and qp 41

KW/m2. If one uses a value of 10.9 Kjoulelgram for latent heat

of vaporization of AI, the previous mass transport example would

require 81.5 KW/m2 be transferred as latent energy. In such a

case, the parasitic loss would amount to more than 50% of the

vaporization energy of the process. Additional losses would

arise from insulation losses on boiler and condenser structures.

The use of solar thermal power would impose further co_,straints

on the boiler insulation. For example if the external emissivity

of the boiler were ¢' = 0.1 and assuming negligible temperature

drop through the wall, an external radiation loss of 41 KW/m2

would also occur.
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Appendtx B

• _ Sodium is deposited from aqueous solutton in the form 6f a dilute

sodium amalgam in commercial mercury-chlorine cells, although it

is not recovered tn metallic form. The deposition ts made possible

by a combination of factors Involving concentration of sodium or

ions tn metalltc and aqueous phases, concentration of hydrogen

gas or Ions in aqueous solution° the standard decomposition

potentials of sodium and hydrogen, and the hydrogen overvoltage

against mercury.

Stmtlar factors may make practical the deposition of magnesium

and/or calcium on mercury cathodes, although the solubility limits

of the alkaline earth metals in alkaline solution may render such

depositions difficult. Aluminum metal may be similarly deposited

if a suitable liquid ternary alloy can be found with sufficient

solubility for aluminum.

Recovery of these reactive metals from dilute amalgams can

be achieved without distilling off all of the mercury by separa-

tion of various intermetallics.

The phase diagrams 28 of Ca-Hg and Mg-Hg are shown in Fig.25. One

may separate Ca or Mg rich intermetallic phases by continuous

deposition of these metals into saturated amalgams or by cooling

unsaturated amalgams to temperatures above their low temperature

eutectics. These solid intermeta1_ic phases may be reheated to

elevated temperatures and decomposed to phases still richer in

Ca or Mg plus leaner liquid phases. The rich phases may be

decomposed by fractional distillation and sublimation. Typical j

operating cycles are summarized below: ___
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i Point Sta_e C_&
r

! A Cathode input
f
; B Cathode output

• C Saturation point

- D Lowest temperature -35° -35°

F Intermetalllc CaHglo MgHg2

• G Decomposition point

H Liquid phase

" a Recooled liquid phase (hypothetical)

K Seocnd Intermet'allIc CaHgS MgHg(

L Second decomposition polnt

M Second liquid phase

N Recooled second llqutd phase (hypothetical)

P Third tntermetalltc CaHg3

f-

t
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Appendix C

i MINIMIZATION OF POWER PLUS SPACE RADIATOR MASS BY HEAT PUMPING

Assume: Q = original thermal load (MW)

, TO = original heat rejection temperature
T,

;._ SM = specific mass of space electric power (MT/MW)

! RM = specific mass of space radiator (MT/NW)
?.

RM = (mass/unlt area) x (area/MW) and mass/unlt area .

_" MT/m2_.. is a constant ( = kl); area/MW is proportional
!:

_" to I/T4(M2/MW) = k2/T4 or

_'-_ k2/T4 K/T 4RM = k1 =

Pumping the heat from TO to T would add a theoretical

additional heat load of AQ = Q (T - To)/To requiring this much

additional power from the space electric power facility•

The heat pump power mass penalty would then be:

AM = AQ (SM) (I + a) where _ - weight fraction for motors,

pumps and additional hardware•

2 The net mass of space radiators plus incremental power is

then:

Mi = Q [(T/To)K/T4 + (T - To)(SM)(I +_)/T o]

Differentiating with respect to T and equating to zero we

obtain"

d Mi/dT = (Q/To) [-3K/T4 + (SM)(l + _)] = 0

or

" T4 = 3K/(SM)(I + _) or T = [3K/(SM)(I , _)]I14
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• If we assume typica] values (Appendix F):

l = .153 x 1012 , SN = 4, a - .2 we obtatn

Topt. = 556°1
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Appendix D

i COMPARISON OF CONTAINER AND CONTENT WEIGHTS OF SPHERICAL AND

CYLINDRICAL VESSELS

For stress limited vessels, the minimum wall thickness

O =dtameter, 4

t = p DIkT where k = {2 cylinder p = pressure differential ,
4 sphere z = wall stress

- !

Pressure Vessel Weight ',

I/6 sphere A = surface area
W = p t A = pt V/cD where c = tl/4 cylinder V = volume

p = density ?,
(wall material)

The weight/volume ratio is then:

W/V = pt/cD = pp/kcT = (I/kc)p/(T/p)

T/p Is the specific strength or stress/density ratio

_here T may be ultimate tensile strength Tu, yield strength Ty,

or for design purposes operating stress To = Ty/F where F

is a safety factor.

(Note W/V is independent of diameter.)

The ratio of weight of container to weight of contents is given
i

by:

WIW' - W/p'V = (I/kc)p/p'(To/p) where p' - density of contents !
t

, t
For gases, p/p' is approximately a constant: p/p = C1RT and :t

independent of pressure. This gives W/W' (gas) = (I/kC)ClRT/(To/p) i
;3 'j

In English units: TO = psi, p • Iblln , ClR = 18,528/M in/°R where 1

M - molecular weight. As _n example, for steam (M = 18) @700°R 4(I16°C), W/W' (steam) = (I/kc) (18,528 • 700/18)/(To/p) =

(.72 x 106/kc)/(To/p).

• l
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! kssumtng To/p (max) - .2 x 106, for a cylindrical vessel kc = .5

, and W/W' (steam) (mtn) - 7.2.

For ltqutds or soltds, p/p' ts no longer Independent of pressure.

But for low or Intermediate pressures p/p' ts much lower than for

gases. As an example, for p - 1 arm (14.696 psi)m pm a .03613
_ 3

lb/tn (H20 ltqutd) O, M/W' (1tq) - (1/kc) • 406.8/(To/p). Ustng

the prevtous value for To/p, we obtatn W/W' (water) (mtn) -

.001016. Even for containers wtth S - 10% of condensed phases

and lower stress/density rattos, W/W' would usually lte below

0.1 for pressures of 1 atmosphere or less.

F

i
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Appendtx E

ANALYSIS OF OPTIMUM MASS FOR DRYING PROCEDURES

I Wo - initial weight of damp product (kg)
)
!

i wi - weight of product at time tI)

i Weq --equilibrium weight (for a given temperature and pressure) "

tI = time at which drying rate becomes linear (hr)

tL = time _))which drying is discontinued

ts = service life {hr) of dryer

Assume_ drying rate W = dW/dt ---k (W - Weq) after time tl

mass of dryer, Md = K Mo tL where Mo = output mass/hr

Then weight loss of recoverable moisture due to termination of

drying at tL is WL - Weq --AW corresponding to H2 loss of .ll2 AW.

Solving the drying equation we obtain: In (W - Weq) = -kt + const

or AW = W' e"kt where W' is an equivalent initial weight if drying

were completely linear.

, Total orbital lift mass penalty over a service life of ts hours is:
i"

= . Mots e'ktLAM = Md + MH K MotL + ll2 (W'/Weq)

Differentiating with respect to tL and equating to zero we obtain:

dAMldtL = Mo [K- kts (.I12 W'/Weq) e'ktL] = 0

or tL(opt) = -(I/k) In (KWeq/.lI2 ktsW')

Expressed as a function of residual moisture, we have:

AWopt = Weq K/.ll2 kts

As an example, if k = l hr"l, K = 3, ts = 5 x lO4 hr, we obtain:
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I_ tL {opt) = -In (Weq/W')(3/.56 x 104) = + 7.53 - In (Weq/W')

!,
If Weq/W' = I, tL (opt) = 7.53 hr. Similarly AWopt = Weq •

! 5.36 x 10-4 or a residual moisture leve of about .05%.
%

'_ E Discounting the hydrogen replacement mass to reflect time of

. delivery would shorten optimum process times and raise residual

i_ moisture levels.

t
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Appendix F

PROJECTED MASSES FOR SPACE ELECTRIC AND THERMAL POWER

A_ID RADIATORS

Preliminary engineering of SSPS systems to deliver lOlO watts

- to earth yield masses of 80,000 to lO0,O00 metric tors.

The speclfic mass for remote power is thus:

= 8 - lO MT/MW
SMr

By avoiding microwave generation, transmission and conversion

losses, the space power level is 1.72 x lOlO watts and a net

mass savings of approximately 25,000 metric tons is achieved.

Thus, for electric power use in space (on site) we obtain a

soecific mass:

._M= 55,000 to 75D000 - 3.2 to 4.37 MT/MW
1.72 x 104

Preliminary engineering of thermal engine SSPS systems to deliver

lOlO w_tts to earth yield masses of 80,000 - lO0,O00 metric tons. t.

, The solar concentrator section has a mass of approximately 15,000
f

MT and gathers a useful ll.2 - 16 x lO4 MW.

The specific mass for solar thermal power is thus:

SMt - 151000 = .134 - .0938 MT/MW
(ll.2 to 16 x lO4)

The specific mass ratio for electric/thermal power is then:

SM
= 34.1 (low) or 32.5 (high) with extreme values 23.9

to 46.5.

_,} For estimating purposes we shall use:

:p

-_,_ _k,_,1
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SM = 4, SMt - .12)
Yh_ spare radiators for the thermal engine SSPS are calculated

to reqv;re a mass of 27,600 MT to dissipate a thermal load of !i

136.9 HW (per module) giving a radiator specific mass:

RH = .202 Ml/MW @932°K. If we assume the mass/unit area

Kg/m2 -) is constant (4.44 ) we predict the specific mass would be :_
?

. proportional to 1/T 4. We then readily derive: '
:

RM= .153 x 1012/T4 MT/MW

!
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Appendix G

ENGINEERING DESIGN PARAMETERS

TypicalStreamVelocity,Vi Process
; ,Equipment _ C.Ipacity (CharacteristicVelocity) Time t' Other

Uotors,Pu,nps, I03KW I0 to I00 m/sec 1 sec t_i

{exceptvacuum)

Distillation mass flow rate l to 3 m/sec (vapor) 5-I0 sec length
Columns I-5 (entrain,_ntlimited) .4 - .6

Kg/m2 sec m/plate

Sedimentation volun_tric settlingvelocity(lO p .5-2min Power
Centrifuges .flowrate particles)I0-5 m/secx G 50-I00KW

.O04-.08m3_m___sestypicalvelocity:
m2 lO"2 m/sec@l,O00G

RotaryKilns LoadingDensity 3 to lO m/hr (axial) 2-I0 hr RotaryPower
.05 - .2 .00083- .0028m/sec .l - .2 KW

3 m-s i
!

Ionexchange .5-3equiv.... 2 to .5 m/min 5-15 min (
Columns Kg (resin) (.0033-.0083m/sec) !

%

AqueousSysten_ i
Heat Transfer

, NucleateBoiling 15-240KW h= 2-16

.. _ K_/m2oK
AT=IO-ZO°K

Condensation 30 - 1,000 KW 30 to 150 m/sec (vapor) h= 3-50

(insidetubes) m--2- KW/m2OK
AT=IU-20°K

Electrolytic i = 103-I04 ion migrationvelocity 10-50hr

Cells Amp/m2 I0"7-10"5 m/sec
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Anode-cathode separation: .03 - .1 m - V
A

: V ,, electrolyte volume, A- anode area

' H = electrolyte mass, p = electrolyte density

H/A = Vp/A = 30 - 200 Kg/m2

H/At = .Of - .04 Kg/Amp

@100% current efficiency, 1 Amp = .0373 equivalent/hr or H/_I o =

(H/A1) �(.0373EW/IO00) where Ho = output mass rate (Kg/hr),
I_ = 11 7 te :-

EW = equivalent weight (gram,I). For Na, EW = 23 and H/ o "

46.6 hr. .,

For design purposes (elec. fused NaOH) we use H/_4o 27.5 hr _

%

,j

,v
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Appendix H

_ CARBOCHLORINATION PROCESS ENGINEERING DATA
{

' _ Major Energy Requirements
z._

• _' The energy requirements of any process can be useful ly

compared with the heat of formation of the input materials from

their elements under standard conditions (I atm @298.15°K). For:,

total reduction processes, the standard heat of formation represents

_ a lower limit to the process energy requirement, while separation

,: or conversion processes which do not involve oxidation or reduction
G,

_ may only require I0 - 20% or less of the energy needed for total

• ! reduction. The standard heat of formation of our empirical silicate

' molecule CaO • AI2L 3 • (2.25 SiO2) • (.15 MO) may be calculated

by two approximate methods -- first as the sum of the constituent

29
oxides; and second as the heat of formation of anorthite,

CaO • AI203 • 2 SiO2 + heats of .25 SiO2 + .15 MO. These methods

give:

]st Approx. _AHf__ 2nd Approx. A____HHf__

CaO -151.8 Anorthite -I009.3

AI203 -400.4 .25 SiO2 - 54.4

2.25 SiO2 -489.7 .15 MO - 17.56

.10 MgO - 14.38 Total -I081.26 Kcal/mol_ =

.05 FeO - 3.18 62.5 Kcal/equiv.

Total -1059,46 KLal/mole = I

61.24 Kcal/eqiv. !

Based on 17.3 equivalents per "mole" I

(Chlorine Regeneration)

- Chlorine is regenerated electrochemically from three sources; ,_

_ 9 equivalents from electrolysis of HCI (from hydrolysis of 1Y
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,
!

SiCl4, 6 equivalents from electrolysis of AICI3 (from fused

salt bath) and 2 3 equivalents from electrolysis of CaCl2 andz '

MCI2. The reduction of some fraction of the SiCl4 would also

yield HCf or transfer some of the chloride to some other chloride

such as NaCl, while lowering the amount of aluminum being reduced

would divert some of the AICI3 to hydrolysis which would transfer

• the corresponding fraction of equivalents to the HCf electrolysis

loop•

For the electrolysis of HC1 we have:

2H+ = 2C1" + elec. energy = H2 + Cl 2 AFr = +62.8 Kcal/mole Cl 2

= +31.4 Kcal/equtv•

(31.4 Kcal/equiv. = 131.4 Kjoule/equiv• Since 1 Faraday = 96,500

coulombs, Vreversible = 131•4/96.5 = 1.36 volts)

Under current industrial practice 8d @ cell voltage = 2.3

V/plate current eflclency = 96%, the actual energy per equlvalent

is: (2.3)(96.5 K)/(•gs) - 231.2 Kjoule or 55.3 Kcal/equiv.

._ 9 equlvalents would then require 497.7 Kca1•

For the electrolysis of AICI3 we have:

(fused salt) + elec. energy = AI + (3)C12 AFr --+152.2 Kcal/moleAICl3

= 50.7 Kcal/eq.

(50.7 Kcal/equlv. = 212.1 Kjoule/equiv. or Vreversible = 2.20 volts)

Under assumed industrial practice, the actual energy per

equivalent Is about 400 Kjoule/equiv 30 , 95 6 Kcal/equlv

6 equivalents would then require 573.6 Kcal. j_

For the electrolysis of salt chlerldes we have:

' 2CI" + 2H20 + elec. energy = Cl2 + H2 + 20H" AFr = 101 Kcal/molo

= 50.5 Kcal/equiv.
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(50.5 Kcal/equtv. = 211.3 Kjoule/equtv. or Yreverstble =

2.19 volts. At 350°K, Vreverstble = 2.3 volts)
8e

Under current Industrlal pr_¢tlce @ cell voltage = 3.82V

_ current efficiency = 96.5%
C

the actual energy per equivalent is:
L

(3.82)(96.5 K)/(.965) = 382 KjouIe/equiv. or 91.3 Kcal/equlv.

2.3 equivalents would then require 210 Kcal.

The total chlorine regeneration energy requirement would amount to

497.6 + 573.6 + 210 = 1281.3 Kcal/mole = 74.1 Kcal/equiv.

For the input molecular weight of 303.1, one metric ton

would contain 3,299 g moles which would require 4.227 x 106

Kcal/MT - 4913 KWH/metric ton,

(Carbon Regeneration)

The theoretical energy r_quirement to recover carbon from

carbon monoxide is given by

CO + C + I/2 02 AHr = -AHf - +26.4 Kcal/mole24b

8.65 moles would then require 228.4 Kcal.

I The actual power requirements will depend on chemical routes
i"

chosen _ the carbon monoxide may be hydrogenated or absorbed as

formate or other species. These in turn may be hydrogenated or

electrochemically reduced. Under the hydrogenation routes,

volatile CH or CHO compounds are formed which may be thermally

cracked to C, H2 and 02.

For electrochemical formation of carbon, the anodic reaction
,r

_/ would normally yield oxygen.

_" In terms of process energetics, the most important considera-

_ tlons are the amount and method of oxygen regeneratio:.. Thus,
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while the carbon consumed and carbon monoxide formed corresponds

to 8.65 g-mole/mole plagloclase concentrate, the net oxygen
)

requirement only corresponds to the reduced metal and silicon

equivalents produced unless excess oxygen is needed.

The net oxygen requirement (exclusive of any excess demand)

is equal to that originally bound to aluminum plus the amount

(4.5 y) bound to the fraction of silicon which is to be reduced

. and any oxygen bound to platable metals such as iron. Per mole

of origlnal ore, we have to regenerate 3 + 4.5 y + .05 gram-
)

atoms of O. This may be performed by a combination of water f

electrolysls and fused carbonate or other fused salt electrolysis ?

if the latter is employed to regenerate carbon.

Depending on the fraction of oxygen generated by fused salt

electrolysls, the water or hydrogen balance may require either

electrolysis of water of burning of hydrogen to level reagent

inventory. The desired balance may be expressed by the equation:

8.65 CO + nH2 = 8.65 C + (3 + 4.5 y + .05) 1/202 +

I

- (5.60 - 4.5 Y)H20 +(n + 4.5 y - 5,60)H 2

For carbon monoxide processe_ .y hydrogenation routes, all

of the oxygen Is converted to water, while fused salt (carbonate)

electrolysis would give up to I oxygen atom per carbon atom

reduced. Since the required O:C ratio would vary from .364 to .88

depending on silicon production, combined electrolysis of formate-

carbonate melts and water should total to the required ratio.

The power requirements may be estimated from these considera- |

tions as follows:

; For water electrolysis from aqueous alkali solution, the
i

&-
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reversible cell voltage @ Zg8°K = 1.23 V.
\

The reaction 1t20 + elec energy = H2 + 1/2 02 consumes 2

equivalents (ZF = 193,000 coulomb) so the energy change is

i _ 193,000 (1.23) = 237.4 Kjoule/mole = 56.7 Kcal/mole + 28.4

Kcal/equi v.

Under current Industrial practice, 8f4.8 - 5 KWH/m 3 H2 STP

(44.61 moles) is equivalent to 388- 404.5 Kjoule/mole (H20) = ,

92.8 - 96.8 Kcal/mole = 46.4 - 48.4 Kcal/equtv.

If only Aluminum reduction is practiced 6 equivalents of

oxygen would be required, but reduction of silicon could require

up to g additional equivalents. Thus, the oxygen generation

energy requirement could vary from 290.4 to 725 Kcal/mole for

a range of 6 to 15 equivalents. The corresponding requirement

per metric ton would amount to .958 x 106 to 2.395 x 106

Kcal/MT = 1113 to 2784 KWH/metric ton,

For fused carbonate electrolysis, the reversible decomposi-

tion potential 31 is about 2V corresponding to a theoretical

; energy requirement of 2 • F - 193,000 joule/equiv or 386,000

Joule/mol (0) = 92.3 Kcal/mole (0) = 46.1 Kcal/equlv. ,

Industrlal practice data is not available, but would probably

raise power requirements at least 50%. If we assume 69.2 Kcal/equiv -

generation of 6 - 15 equivalent: of oxygen (and an equal number

of carbon) would require 415.2 to 1038 Kcal/mole (1592 - 3980

KWH/MT). Returning to the carbon regeneration problem if all

the carbon monoxide is treated by hydrogenatlon-cracking processes,

a11 of the oxygen will appear as water and the oxygen recovery

w111 be by electrolysis of water as discussed above.

The energy of the Jr,verse water gas reaction:

j,

'i_-x. lJ

"'.w_ , r
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CO + H2 + H20 AHr = -31.4 Kca124b.

I This reaction is exothermic so no power is required• When

, considered by individual steps, the hydrogenation is exothermic

while the pyrolysis may be slightly endothermic for hydrocarbons,

i' but exothermic for oxy-compounds, such as methanol or formalde-

i hyde• In any case, the power requirements are much lower than
( tnvolved for oxygen recovery.

i (Heat of Drying and Dehydration)
) The proposed process will involve generation of aqueous
t"

: precipitated Ca(OH)2 1 Mg(OH)2 and 2 25 (l-y) St(OH)4• These

! products must be calcined or dried to corresponding oxides and

may require temperatures to 550°C° The theoretical energy
24,29

requirements are:

C_(OH) 2 �CAO+ H20 (V) AH = 24.4 Kcal

.1 Mg(OH)2 MgO + .l H20 (V) = .I (19.3) = 1.93 Kcal

2.25 (l-y) Si (OH)4 * 2.25 (l-y) SiO2 + 4.5 (I-y)H20 (V) =

, 2.25 (19.6)(I-y) = 44.2 Kcal (max)

- or a maximum t-tal theo. drying energy requirement of 70.5

Kcal/mole (max) for y - 0 or 295 Kjoules/mole (max).

40 - 80% of this energy can be recovered as heat of condensation

of steam formed•

Compressors

Compressor power is necessary for operating H2 and CO streams

in the hydrogenation plant units and to recover heat from steam )

at elevated temperatures. The actual energy requirements are

somewhat flexibl;, but typical values are shown in Fig. 26 along

E. , •
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with the electrical energy requirements. It is seen that the

electrical power needs far exceed all other demands for process

power.

Major additional compressor power requirements could be

added if extensive heat pumping is practiced to raise heat

rejection temperatures of aqueous electrolysis, hydrolysis and

, hydrogenation heat loads. Whlle this would significantly rals_

plant power levels, it would result in a net reduction in mass

due to savings in space radiator facilities. Figure 27 shows

heat transfer load vs. temperature for the verlous process steps.

Energy Summary,

The foregoing analysis indicates that the combined power

requirements for the electrolysis operations amount to 92.5 -

116.8 Kcal/equlvalent = 6,000 - 7,700 KWH/metric ton. These

values are so high that other processing routes were considered

' t-_be virtually mandatory for practical space processing plants.

As an example, for a proposed 7 mature non-terrestrlal processing

, facility designed to convert 399,000 metric tons/year of lunar :

"" plagloclase to industrial feedstocks, the total annual conversion

amounts to 1.316 x 109 moles or 22.77 x 109 equivalents. The
32

current (1976) U. S. production of chlorlne Is approximately

ten million short tons per year which amounts to 255.8 x lO9

equivalents. Operation of such a plant would require generation

of chlorine equal to 8.9% of total U. S. production and would far

exceed the capacity of any single plant now in existence.

plant Slzing

A complete and detailed plant sizing for the carbochlorlna-
,)

tion process was not performed In view of the unfavorable energy

P
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t
/

+ con_Iderations_ However, an estlmat_ of the slze and mass

requirements for the chlorine regeneration sectmon is instructive

and Is given below based on the approximation that the size and

mass of HCf, CaCl2 fused salt chlorine cells would be comparable

with existing NaCI diaphragm cells. A single Diamond A1kall

8 & 24c
D-3 cell has the following specifications:

Output 1.01 short ton (Cl2)/day

Current 30,000 Amperes

Voltage 3.82 Volts

Power 2720 KWH/short ton C12

Cell room area 105 ft2/short ton Cl2 day

Anode life 230 days

Diaphragm life 115 days

Graphite consumption 7.5 Ib/_hort ton Cl2

Asbestos consumption 1.2 Ib/short ton CI2

Cell room maintenance .29 Ban hr/short ton CI2

The cell contains an estimated 40 ft3 of electrolyte with

a density of 75 Ib/ft3 or about 3,000 Ib of electrolyte which
'4

is about 75% water and 25% NaCI.

This cell has an output of 25,839 equiv/day or 1,077

equlv/hr so the electrolyte mass requirement Is 1.264 kg/(equiv/

hr). Such a cell would require 35.7 hr to generate chlorine

equal to the weight of its electrolyte or 72_I hr to generate

sufficient chlorlne to combine with lunar plagioclase concentrate

equal to the weight of the electrolyte.

For a plant to handle 399,000 metric tons/year of lunar ore It

opera_i,lg 330 stream days�year with 90% utilization (10% down
o

0
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time) or 7128 hr/year, the hourly capacity would be .1845 x lO6

" equlv/hr. This would require the equivalent of 2,964 D-3 cells

with a rated power of 340 MW and requiring a floor space of

28,912 m2 (311,220 ft2 or 7.14 acres), The electrolyte mass

would be approximately 4.034 x 106 kg = 4,034 metric tons.

The carbon monoxide conversion and separation facility

would have to convert 318,800 metric tons per year of CO to

136,600 MT of carbon plus oxygen. Thls would involve formation

of approximately 160,000 metric tons of hydrocarbons via Fischer-

Tropsch synthesis followed by pyroly;is as in carbon black

production. By the early 1960's only two plants operating in

the free world had capacities sufficient to syntnesize such

24d
quantities of hydrocarbons from carbon monoxide. The pyrolysis

section would be required to generate carbon black at a rate

equal to approximately 9,4% of the annual U. S. production

32
(1977 - est = 1.45 million Mr),

.]

r,

i
l

(

!
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Appendix I :
j

HF ACID LEACH PROCESS ENGINEERING DATA ;"

The detailed analysis of the proposed process will depend

on the value of the x parameter in the equations and the M element

composit:on. For mass and thP.rmochemlcal estimations, we have .5

chosen x = 2 and M "=Mg. The x = 2 value closely approximates

a lunar anorthite or olivine competition, while the thermochemical

properties of MgO and MgF2 are similar to Al and approximately i_

averages between more reactive calcium compounds and the low
-/

energy ferrous compounds. The equivalent weight of MgO is also

intermediate between Al203 end CaO and FeO. The molecular weight

(Forsterite) is then 140.7 which gives 7170 moles/metric to_1or

56,859 equiv/MT. It is worth noting that for pyroxenes, x = l

and the consumption (recirculatlon) of HF per mole of silica

processed drops from 8 to 6 equivalents which represents a size

reduction of 25% in hydrolysis equipment or even more when

reduction diversions of fluorides are considered. More extensive

use of pyroxe_les would necessitate substitutio,, of magnesium

for aluminum in some light metal production and possibly greater

use of ferrous metals (see Table I).

Materials Balance

A materials balance for the separation process is given in

Table A where the number of moles of reagents present and con-

verted or transferred per input mole of xMO • SiO2 is shown.

The corresponding compositions are shown on the phase diagrams

in Figs. 2B and 29.
t

It wlll be noted that in the leach section, 2_..5 moles of

-
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_ acid are a_ded and 25.5 mole_ vaporized (including water content),C
t

while in the hydrolysis section, 66.6 moles of acid vapors are

added and 65.6 moles are vaporized. An additional thermal load _

is generated from hydrolysis of the metal fluorides requiring

vaporization of a minimum of II.2 moles although equilibrium data

are not sufficiently defined without composition information on

M. This considerable mass transport arises primarily from the

amount of water and SiF4 which has to accompany the HF which must

be removed from the hydrolysis operations to maintain a continuous

or quasicontinuous process. This necessitates a large heat trans-

fer capability although the nec energy requirement can be fairly

low using heat pumps.

The amount of recycled water can be greatly reduced if

hydrolysis is conducted with solutions of lower water content,

since then the HF can be removed (along with recycled SiF4) without

vaporizing any appreciable water. A second approach would involve

neutralization _ydrolysis of SiF4 with NH3 forming Si(OH)4 and

NH4F and thermaliy regenerating the NH3 from NH4F with formation

of NH4FHF.33 This option will be analyzed in the near future.

Detailed materials balance for the metal fluorides separation

and reduction steps are not given since the various options

would require an excessively complex and lengthy tabulation. _:

The flows can be estimated from process equations 5 - lO using

selected values of the parameters.

Thermochemistry

The the_mochemlstry of the process is shown in Fig. 30 and

Table B. In this analysis, the latent heat of phase change of

H20 and HF are not included since they can normally be adjusted
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by the liquld/vapor ratio of acids introduced to the reactors.

Similarly, the boilers in distillation columns may be heated
!

by adiabatically compressing the distillate vapors.

It may be noted that, in contrast to the carbochlorinatlon

process, there Is no large low temperature exotherm requiring

excessive radiator mass. The acld leach step (Eqn l) is exo-

thermic, but the evaporation of SIF4 (Eqn 2) is endothermic and

by introducing part of the acid addition in vapor form, one may

exactly balance the heat load of the combined equations l and 2

(see materials balance, Table A).

The large exotherm from the sodium-o_ygen electrolysis may ,,

furnish part of the heat for distillation operations while the (

remainder may be supplied by compression of distillate vapors.
!

The approximate heat transfer requirement in the evaporation and 1

distillation operations may be estimated as lO Kcal times the

number of moles vaporized or condensed. Referring to the materials

balance table, we thus estimate -285 Kcal (A), +255 Kcal (D),

, -666 Kcal (E'), +411 Kcal (H'), +245 Kcal (J & J'), -(71.5 + lOn)
" l

Kcal (Cl), and +(91.5 + IOn) Kcal (L & L'). The requireme,ts per

equivalent may be calculated by dividing by 8. Thus, the total

(boiler) heat load per input equivalent is about 125.3 Kcal

(8286 KWH/MT).

For the high temperature processes, the hydrolysis of metal

fluorides is seen to depend on the particular element. Transfer

of fluoride ion content from Ca and Mg to Fe or Al would lower

? process energy requirements. More importantly, FeF2 or FeF3 are i

more readily hydrolyzed, 34 and the reaction may be conducted at i
lower temperatures. The fluoride transfer may be carried out

i
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using ton exchange resins. The sodium fluoride must be converted

to hydroxide or other form since hydrolysis as NaF with steam is

impractical, but by conversion to cryolite, Na3A1F6, the hydrolysis

may be effectively carried out.

The sodium reductions are exothermic except for Ca which

would not normally be produced via that route since the equilibria

are unfavorable. Reduction of iron would lead to a large exotherm

but iron can be more easily recovered by aqueous electrodeposi-

tton (Eqn 8).

The energy and heat load requiremei, ts for sodium and oxygen

production may be estimated from theoretical and actual values

for the Castner cell using the proposed modification to remove

water. The reversible decomposition voltage is estimated to be

2.3 Volts @ 300°C (corresponding to a free energy _hange of

53 Kcal/equiv). The industrial cell operated at 4.3 V with a

current efficiency of 40%,8 which should be elevated to 80% by

drying the electrolyte. This gives a projected energy of 518.7

, KJoule/equiv = 124 Kcal/equlv. The dissipative load would then

be 124 - 53 = 71 Kcal/equlv. If 50% of the input equivalents

required sodium reduction. (4 equiv per input mole), the electro-

lytlc heat load would be 284 Kcal/input mole (2348 KWH/MT).

The electrical power load for the same 50% reduction require-

ment would then be 62 Kcal/input equivalent or 4100 KWH/metric ton.

Un|t Operations i

The acid leach operation would be conducted in one or more

stirred tanks at temperatures near the boiling point (ca. 110°C).

Raw or beneficiated silicate ore would be preleached with cool

acid at low pressures to separate dissolved solar wind gases and

_,_ _ f
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then added to the tank along with a mixture of vapor and

condensed acids from hydrolysis stripping operations. Precipi-
k

! tated fluorides would be removed in a centrifugal sedimentation

! unit using some of the condensed acid makeup to leach any un-

dissolved silicates. The reaction exotherm and condensation

i heat of the input acid vapors would vaporize the SiF4 and H20

generated in the leaching step.
i

These vapors would be added to additlonal SiF4-H20 vapors
t

(evaporated from the hydrolyzlng solution after removal of the

precipitated hydrated silica) and dissolved in a second tank

used for the hydrolysis oper_tlon and operated near the boiling

point. After removal of the precipitated silica with a sedimen-

tation centrifuge and partial evaporation to supply the recycle

SiF4-H20 requirement, the resldual acid (which is no longer

saturated with silica) is fed to a fractional distillation column !
l

where it is separated into three streams: steam, acid azeotrope i

(71 m/o H20, 23 m/o HF, 6 m/o SiF4), and SSA. The SSA and 1

steam are recycled to the hydrolysis unit, while the acid

. azeotrope is returned to the leach cycle.
r

The spent le_ch solution would be periodically sent to a

crystallizer or ion exchange column to remove NaF and KF which

would otherwise gradually build up in concentration. Precipitated

and crystalline fluorides would be converted to ele_ents or oxides

by several optlonal routes depending on the element and require-

ments for reduction products. Element requirements except for

iron, magnesium and calcium would be met by sodium reduction.

• m
Iron would normally be electrodeposlted from aqueous fluosilicate b

solution, while magnesium could be reduced from its oxide using
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_: silicon as is practiced commercially. Calcium metal may not be
b

_, an important end product, but it can be produced by electrolysis
z

. ,' of fused salts such as CaCl 2, The sodium reductions may be

carried out in steel retorts or ceramic tubes made of SiC, CaF2

or other resistant refractories at temperatures near gO0°C (the

boillng point of Na is 881°C).

Hydrolysis of non-structural metal or surplus fluorides to

oxides would probably be best conducted in rotary kilns using
i

superheated steam as a recirculant fluid. The HF content of the

vapor stream must of necessity remain lower than the equilibrium

value for coexisting MO and MF2 solid phases. Comange measured

these values for a number of fluorides and reported these

34results :

Fluoride Temperature Vol % HF*

CaF2 IO00°C 1.15

llO0°C 2.3

MgF2 1000°C 6.6

1100°C 12.0

FeF2 550 56.0

FeF3 450 66.0

Hydrolysis of sodium or potassium fluoride is probably not

practical using steam and heat. It w111 be noted that hydrolysis

of CaF2 Is much more difficult than for trans_tlon metal fluorides,

so It may be advantageous to convert Ca and Mg fluorides or

fluoslllcates to more easily hydrolyzable or pyrolyzable (such

: as Iron fluorides) and Ca or Mg hydroxides, carbonates, sulfates

" *At,1 arm. Hydrolysis at reduced pressures yields higher fractional

, content of HF. r
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or chlorides using ton exchange or other methods.

The separation of the mixed metal fluorides may be achieved
35

_I by vartous solution processes. Fluoride solubility will

separate NaF and KF from multivalent metal fluorides. The solu-

bility of A1F3, FeF2 and MnF2 (ca. 1% by weight) is sufficient

to permit electrodeposttion (except for A1), but the sparingly

soluble and insoluble fluorides may also be brought into solution

by adding StF 4 (or St(OH) 4 and HF) and conversion to fluostlicates.
36

These are all soluble at the 10% or higher level and may be

separated by ion exchange or other techniques. Calcium may be

separated from magnesium and aluminum by sulfate precipitation

whtle aluminum and magnesium are separable by hydroxide precipi-

tation at controlled pH. Unfortunately, fluostlicates are subject

to anion hydrolysis and silica precipitation if the pH rises

above 5.

Ion exchange methods appear to be most generally useful.

Regeneration and elutton of the resins will normally r-_qutre a

• r_.generable source of acids and bases. Regeneration should
n.

preferably be performed by a thermal pyrolysis or hydrolysis

operation, These might tnclude steam hydrolysis of calctum

chlortde or fluortde or pyrolysis of NH4F or (NH4)2S04 to IV", 3

plus acid salts. The calctum haltde ,_ydrolysts can regenerate

strong acids and bases whtle the ammonium salt pyrolysis only

gives a weak base, The latter route tnvolves substantially

lower energy and process times, however,

"_ A typical process route to separate the four major metallic

3 constituents is given In Table VIlb. Additional work in process
.s"

( optimization is necessary to refine the separation technology.J)

Wr_-_' ._ _ _ ._ ,_ .........
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• The untt operations required for the reduction steps consist

of aqueous and fused alkall electrolysls, hlgh temperature

reactors for reductlon, and alkall regeneration of the NaF formed

I during reduction.

I Commercial electrodeposttton from aqueous electrolytes ts

normally ltmltpd to 50% or less of the active species in the
i •

electrolyte after which the solutton ts purtfted and/or replenished.
[
! The purification Is often performed In "liberator" cells where

the restdual metal ton content Is reduced to very low values

although the current efficiency drops and substantial hydrogen

i Is released. An alternative Is to remove the residual ions wlth

an Ion exchange resin and elutlng them In a more concentrated

solution for electrodeposltlon or crystallization. Because the

sclutlons are all recycled, It may not be necessary to completely

extract the platable metals In each pass, which w111 speed up the

operation.

The electrolysis of fused HaOH Is different from aqueous

and most fused salt systems In that there Is llttle or no

- "tnert" solvent involved, and the electrolyte mass !s almost

completely derivable from lunar sources. The electrical conduc-

tivity is much higher than aqueous systems whtch permits higher

current densities (ca. 104 amp/mZ).

The sodium reduction reactions wtll normally be conducted

tn steel reaction vessels at temperatures near 900°C. Vola_tle

fluorides such as StF 4 or TtF 4 may be contacted wtth molten

sodtum tn a reflux botler. Solld fluorides such as AIF 3 may be
t

mixed wlth sodlum and charged Into retort tubes. Separation of

the reduced product from the HaF formed depends on the physical

i
f
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properties of the reduced elements. Thus, aluminum wou_d melt

at the reaction temperatures and would separate from the NaF.

Silicon and titanium would be formed at temperatures below their

melting points and would occur as a sponge from which the NaF

could be separated by water extraction,

Magnesium reduction would best be accomplished by conversion

of MgF2 to MgO by steam hydrolysis and reducing the latter with

silicon as previously noted. This reduction process is carried

out commercially in alloy steel tubes at 1100 - 1200°C. The

product distills into the cooler ends of the reaction tubes and

is removed in solid or liquid form.

The NaF must be reconverted to NaOH with recovery of HF to

permit regeneration of sodium. This may be done using an anion

exchange resin (Eqn. 9) or with CaO (Eqn. 9A), Regeneration of

the resin may be accomplished with either CaO or NH3, (In the

latter case, a weak basic resin must be used and the elution

conducted with a reflux condenser with the steam condensation

pre-eluting the NaF. The dilute NaOH leaving the column would

: accumulate t_1 the b_iler.) Regeneration of the column with NH3

would yield NH4F which may be pyrolyzed at temperatures below

150 ° - 200°C to yield NH3 and NH4FHF. Finally, the HF must be

recovered from the acid salt by vaporization or ion exchange

methods.

The aqueous NaOH formed would have to be dried prior to use

in the electrolysis unit.

Plant Sizing II_
Calculatlons of the size and mass of reagents and quip_ent

for the various process steps is inevitably linked to t_ estimates

_*,_
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of process times for the respective steps. These remain somewhat

; uncertain in the absence of pilot plant data, although for most .

of the steps which do not involve chemical reaction, the accumu-

lated experience of equipment vendors for materials handling and

phase separation serves as a useful guide to equipment size/

throughput ratios.

Since most process steps require times ranging from a small

fraction of an hour to several hours, the operating capacity may

be conveniently expressed in gram moles/hr or equivalents/hr.

The conversion from mass/year to equivalents/hr will depend on

the fraction of available time the plant is in operation (equi-

valent hours at full capacity divided by hours per year). We

shall use the previously assumed values of 330 stream days/yr,

21.6 hr/day (90% available time) or a total of 7,128 hr/year.

We thus obtain:

e_, equiv MT . hr equiv MT 128
- nr MT " x y_ y7 " MT " x _ �7,

For discussion purposes, we shall calculate plant sizes for

a proposed initial space processing facility with a rated capacity

of 30,000 metric tons/yr (=I kg/sec) Operating 7,128 hr/yr would

require a throughput of 4.209 MT/hr or 239,320 equiv/hr for an i
assumed equivalent weight of 17.59. Since each mole of ZMO • I

SiO2, has 8 equivalents, the masses processed per hour are obtained

by multiplying the values shown in Table A by 29,915.

The reagent masses per step are then given by 2g,g15 t times

the mass value given in Table A, where t is tn.eprocess time in L
t

hours.

. A more general result may be derived fror_ the mass ratio
_' (

_ b
.F
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p_rametePs, Rm, previously defined. For any step, Rm equals

•. _ the total mass from Table A divided by equivalent input mass

(.1407 Kg). Then the product tRm represents the reagent mass

• per (input mass/hr). Similarly, we may tabulate the net reagent

mass (LDE)(mass of e_ements other than the 13 major and mtnor
<

I

: lunar elements) and calculate the net mass ratto Rm . The
I

; product LRm then gives the net reagent mass per (Input mass/hr)

i. . Table C gives the results of such ca|culattons for the

: principal process steps along _tth corresponding equipment mass

variables, r m and tr m.

The equipment (container) masses were estimated from stress

considerations outlined tn Appendix D. Additional design parameters

for materials handling equipment and other procedures are given

in Appendix G and from chemtcal engineering reference materialso

The equipment masses per process step yield tr m products of less

than ] hr except for the rotary kiln hydrolysis/driers, the sodium

electrolytic cells and the metals reduction reactors.

The process times for chemical reactors and other steps

" were estimated 'tom published data on typical throughput vs. stze
37 37

for sedimentation centrifuges, rotary kilns, fluostltcate
38 8

hydrolysis, fused alkalt electrolysis, metals reduction tn
24

externally heated retorts, etc. These process times, whtch

ftx the reagent mass and volume in a given step, have been plotted

on the volume vs. throughput graph in Ftg. 31. ;'

The Bureau of Mines, U. S. Department of Interior has

published a series of "eports 39 evaluating and sizing proposed i

_. plants for acid leaching of calcined clays to separate stllca

and alumina contents (and Iron Impurities) and rec' er the alumtna.

J
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"C
; The processes have many features similar to acid treatment of

lunar silicate materials. We have calculated process equipment

slze/throughput ratios from their data and displayed these on

Fig. 32° (It may be noted that the tradeoffs between equipment

sizing and process reagent and power conservation would favor

larger but more efficient apparatus for earth-based plant design.)

It is seen that the reactor sizing procedure_ for both the lunar

process and the clay/alumlna process yield points in general

agreement wtth industrial design experience.
I

Summation of the tRm, trm and tRm products i11ustrates

some interesting points: I) the reagent mass tends to dominate

the mass of direct containers and equipment. 2) The net reagent

mass (LDE) which represents primarlly hydrogen and fluorides is
)

comparable with the process equipment mass, and 3) the mass of

peripheral equipment Includlng space solar electric power, space 1

solar thermal power, radiators, compressors, heat exchangers, pipes,

valves, electrical, structural and miscellaneous items will prob-

. ably exceed the mass of a11 other earth-lift requirements. 1

The masses of perlpheral and support equipment and structures

Is also shown in Table C. The masses shown were estimated for

a plant of input capacity 30,000 MT/yr and the "equivalent hours"

are also listed.

Start Up Procedures

An Initial space processlng faclllty In orbit will consist

of earth manufactured components and structural parts and reagents

delivered to some orbital location. Solar cell panels will be

erected and deployed to provide operating power. Large reaction

vessels wlll have to be assembled and made leak-tight. For low
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),

ond medium temperature processes, there is little mass savings

to be gained from large reactors, and multiple smaller vessels

wlll probably be deslrabl_ from a reliability standpoint. This

will also aid in the start up operation by allowing functional

operation at less than design capacity.

• When the lunar ore begins arriving, the first requirement

is to generate oxygen, water and sodium. Since sodium is a

minor lunar element, enough water (or hydrogen and oxygen) must

be brought from earth to treat lunar ore t_ extract its sodium

content and hydrolyze major elements back to oxides. Enough water

must also be brought to recycle NaF and NaOH. The initial oxygen I})isupply can best be provided by electrolyzing the iron fluosilloate

solution and plating the corresponding number of equivalents of

iron. All of the other fluorides would be initially hydrolyzed

and stored for later use.

The NaOH requirement for full capacity sodium cell is 6.1 MT

{for a 30,000 MT/yr plant) corresponding to 4.73 MT of Na20. The

full amount would r_qulre the processing of about l,O00 MT of

lunar ore for sodium extraction. It would be desirable to initially

transport a high iron ore such as llmenlte or pyroxene, since the

oxygen derivable from the FeO content may be Just able to replace

the water loss from the materials processing.

Water may be generated in a fuel cell from earth-lifted

hydrogen and electrolytic oxygen. The key to establishing full

capabtty for the plant is the generation of water which, depends

on oxygen production which, in turn, depends on the accumulation
b

of iron and sodium.

'MI o
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High temperature reactors such as the hydrolysis/drying

kilns may require a miniature sub-pilot unit to operate during

startup procedure at 5% or less of the rated capacity of the

main reactor.

As water accumulates, successive leach tank and hydrolysis

tank modules would be filled and brought on line until full

capacity operation is achieved.

: Reagent Replacement Mass
!

Although some regular transportation of earth replacement

parts, personnel and other special requirements will be necessary,

the mass of reagent replacement will probably represent the

greatest fraction of continued earth-lift operations.

The HF acid leach process will require the recycling of

compounds containing H, F, Na and optionally N (if NH4+ salt

reagents are used).

All anticipated compounds containing H are volatile or

dissociable at elevated temperatures. Hydrogen will appear

principally in H20, HF and NH3 (NH4+) during recycle operations.
4

It is anticipated that all other loss routes of hydrogen or water

will be a small fraction of that represented by chemically bound

or absorbed water in silica, metal oxide or other solid effluents

from the processing facility. One may anticipate a low loss of

H from exit streams consisting of kiln dried (high temperature/

vacuum) oxides, solid elements (metals, and silicon) and fused

slaqs. Moisture content of I/2% or lower would correspond to

less than .06% H. Hydrogen in 02 gas may appear as H20 or H2.
4_

The former should be efficie,_:_y removed by cold traps (I/2% H20

is equivalent to a dew point of 5.4°C) prior to liquefaction

b
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_ while the latter can be catalytically oxidized or fr_ctiona_ly

t
distilled. Hydrogen content below 0.1% avpears to be easily

_ achieved. If the exit material has an average water content of

I% by weight, the equivalent hydrogen content wit| be 0.!!2%.

The total input mass would approximate the output mass, so the

' 30,000 MT/yr plant would lose 300 MT H20/yr which would require

33.6 MT H2/Yr to replace. This should represent a "worst case"

i limit with careful management.

: The principal potential loss mechanism for F appears to be

residual fluoride remaining in oxides after steam or acid hydrolysis.

Studies of steam hydrolysis (@1200°C, 15 minutes) as an analytical

technique for F determinations 40 have shown titratable recoveries

averaging 99.29% (S.D. = .23%) for five aluminum fluoride-containing

materi_Is. Since th_ original charges contained 51-68% F, we may

assume an average upper limit of .36 - .48 wt% residual F. Given

normal process development including vacuum dogassing stages, it

is reasonable to expect recycle efficiencies in excess of 99.5%.

Loss of fluoride should preferably be kept at 0.25% or less in i

oxide products and near zero in reduced (elemental) products. If
}

we assume an average fluorine content of .15%, the earth replacement

requirement of fluoride (as HF) would be 45 MT/yr for a 30,000 MT/yr

plant. (Anhydrous HF is an easily storable and transportable fluid

with a boiling point of 19°C.)

Sodium may be lost in small quantities in metals formed by

Na reduction or in oxide exit streanls The former route will
L ,

_; probably not oxceed a few ppn,,but the latter may potentially

result in greater Na loss. Such _odium losses would probably I

arise from coprecipitation of Na with AI, Ca or Mg fluorides or
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I
hydroxides from originally acid solutions. Of these, only )

!

AI(OH)3 would possioly lead to a problem at levels in excess i&
t

of I/4_. If such a problem would arise, an ion-exchange replace- i

ment of Na+ by NH4+ would eliminate such Na+ losses. It would !

appear that Na losses can be hal,, lower than Na content of

i
input material at least for anorthite processing.

Nitrogen will appear mainlj as NH3-NH4+compounds depending

on pH. Pyrolysis of any NH4+ compounds will lead to volatization I

of NH3 and negligible retention in the solid phase. NH3 may be 1

easily cold trapped o_ acid scrubbed from oxygen streams. _

+ !
NH4 may suffer a small fractional oxidatio,m at electrochemical i

i

anodes to N2 or other oxidation states This is not expected to i•

be a problem but N2 in an oxygen stream may be removed by glow I' i
i

discharge oxidation to acidic nitrogen oxides which may be absorbed

in alkaline scrubbers. These nitrates may be reconverted to NH3
i

by conventional -hemical processes. (The N2-NH3-nitr_te dynamic i
cycle may be established with a significant mass inventory in

. space agricultural operations.) Replacement requirements for all

other reagents should be a minor consideration. _

P. _
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MATERIALSB'ALANCE !

HF Actd Leach/Liquid Phase H.vdrolysts (!00% Capacity, y, y', z-O)
_oles -M- &Ktlogram (Kg)/Gram Mole 2 NO • StO2 (_oMg)

/

Operation Point HF H20 StF4 $t02 $1(OH)4 NF2 NO Total
H M M H M M M M

(Kg) (K9) (K9) (Kg) (Kg) (K9) (Kg) (K9)

Acid Leach ON 6.4 87.2 6.4 6.4 100
Start (.128) (1.57) (.666) (2.364)
Add Acid J',L A 14.4 106.704 7.443 128.547

(.288) (1.921) (.774) (2.983) :
Add Si11care +1 +2
2MO. SIO2 (.06) (.081) (.141)

Conversion A1 6.4 110.704 8.443 2 127.545
(.128) (1.993) (.878) (.125) (3.124)

Evaporation B 6.4 87.2 6.4 2 102
Residue (2.489)
Vapor D 23.504 2.043 25.547

(.423) (.212) (.635)
Removefluorides
solution O" 6.4 87.2 6.4 100
SOlI ds C 2 2

(.125) (.125)
Hydrolysis
Start E 12.4 175.2 12.4 200

(.248) (3.154)(1,29) (4.692)
Add vapor, D.H' E' 12.4 236.816 17.4 266.616

(.248) (4.263)(1.81) (6.321)
Conversion Fb 16.4 232.816 16.4 1 266,616

(.328) (4. ,91)(1.706) (.096) (6.225)
Removesilica 16.4 232.816 16.4 256.616
Solution G (. 328) (4.191)(1.706) (5,231)
Solids G' 1 1 _

(.096) (.096)
Oisttll G H 16.4 194,704 13.443 224.547
Residue (. 328) (3,505)(1.398) (5,231)
Vapor H' 38,112 2,957 41.069 !
Fractional distill (.686) (.308) (.994) :
H Top J" 7.154 • 7.154 :

; (.129) (.129)
Bottom J' 4 (.08) 12.35 1.043-_ 17.393

(.222) (.108) (.410)
Center J,E 12,4 175.2 12,4 200 _
Hydrolyze C n+7.154 2 n+9,154

Add J" +nH20 C1 (.018n+.129) (.125) (.018n+._-.,
Conversion C 4 n+5.154 2 n+11.1r'4 ;

(.08) (.018n+.093) (.081) (.0_,8n+..-:,4 /
Removeoxides

Vapor K 4 n+5.154 n+9.1 _4 :
Solids (.08) (.018n+.093) (.OiBn+.173)

Olstlll K 2
Top L 6 n-2 .081n-2 .081

(. O18n-.036) (. 018n-. 036 ) ':
Bottom L' 4-6 7.154 11.154
Dry G' (.08) (.129) (.209)

Vapor 2 2
Solids (,,036) I (.06) (.06)

k"
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_ Table B

THERNOCHENISTRYOF PROCESS EQUATIONS (HF ACID LEACH)

c Equatton No. AHr Kcal 0 298°K

(
1, 1' -126.4 .

2, 21 23.4

• 3 4.4 (l-y)

3A 23.5 (l-y)

4 94.6 (l-y') M - Mg

131.6 (1-y') M = Ca

65.4 (1-y') H = Fe

3.8 (1-y') H- (2/3)A1

5 -158.0 y

6 - 17.0 y' H - Mg

36.6 y' M = Ca

-206.6 y' F1= Fe

-129.3 y' H = (2/3)A1
F

_ 7 5.4 z8 variable

8A, 9 low

9A - 3.5 m

I0 Fr = 63.3 m

11 19.9 (l-y)

Standard state of HF and H20: vapor, 1 arm. or saturation
b,

: pressure except where noted.
r

• .P

rP ",,¢#" r
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Tabl • C

TIHE - MASSRATIO FACTORS

t R, r. tR, R'm tR'm
STEP Process MaSScontents Masscontainer Net mass(LDE)*

Ttme (hr) Equlv.input m. Equlv.input m. Equiv.tnput mass
hr hr

Acid Leach (A1) .S 22.2 .48 !1.1 .24 7.95 3.97
_im. .0157
centrlfuge/
Dtsttll (A1) 22.2 28.8 .371 .48 7.95 .133

Itydrolyze (F) .5 44.9 .96 22.5 .48 14.7 7.36
Sedtm.
Centrtf. (F) .0167 44.9 42.6 .75 .71 14.7 .207

Distill/
Cond-.nse(H1) .00278 7.06 86.4 .0196 .24 2.14 .006

Distill (1/2) ,00278 22.5 86.4 .0625 .24 7,36 .020

Hydrolyze-dry
(C+G' H20) 3.0 3.0 .55 9.0 1.66 .728 2.18

Distill (R) .00278 7.63 86.4 .021 .24 1.36 .004

Electrolysis 27.5 1.45 .173 40.05 4.75 .036 1.0

zC+ySl_Na)-
2z+4y+m=5)

Matals
Reduction 3.0 1.76 .48 5.28 1.43 .7 2.1

Regeneration (est) .5 5.0 .48 2.5 .24 .7 .35
Htsc. .5 1.0 .4 .5 .2 1.0 .5

" Subtotal 35.54 92.15 _n.91 17.83

EXTRAHASS (metric tons) equiv, hrs

Reagent Inventory 20 4.7

Compressors 10 2.4

Heat Exchangers 10 2.4

Pipes, Valves 5 1.2
Electrical 6 1.4

Structural & misc. 25 5.94

Radiators (20 HW) 24 5.7

Elec. Power(30 HW) 120 28.5

Subtotal 220 52.24 t

D
F
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Appendtx J
+-

_ MATERIALS SPECIFICATIONS

The proper functioning of industrial, commercial and

" consumer processes, equipment, products and supplies demands

i a vartety of standards or specifications covering composition,

performance, dimensions, textures, finishes and various other

factors. In this discussion we will be concerned mainly wlth

compositional specifications for materials produced primarily

for industrial feedstocks. These include structural materials

(metals and alloys), optical materials (glasses), (electrical-

magnettr) materials, and oxygen. In addition, specifications

., may be required tn reagent purity and water quality if process

water is used interchangeably with bloprocess water in life

support systems.

A. Structural Metals

The primary purpose of compositional specifications for

metals and alloys is to provide adequate mechanical properties

. such as ultimate apd yield strengths in tension and shear, ductility
,r

as measured by elongation or reduction in area, fatigue and creep

strength, and rigidity and hardness although corrosion resistance

is often an important factor. The commercially pure elemental

metals derivable from major lunar elements A1, Fe, Mg, and TI

have typical mechanical properties on listed in Table A. The low

strengths in comparison with their ordinary commercial alloys

dictates preference be given for the use of selective alloying

elements and/or hot or cold working or heat treatment to improve
• i

the mechanical properties of these metals. The strength and

ductibility can be substantially modified by alloying, but the
v

: L
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modulus of elasticity is only slightly affected.

, It would be practically mandatory to produce alloys already

used on earth and for which engineering properties are well
(

established rether than to attempt to develop new alloys (based

on availability of alloying elements). Fortunately a good selec-

tion of commercial alloy compositions requiring little or no

content of LDE is available for space production. We shall

discuss such alloys for all of the major lunar structural metals.

(Aluminum)

The following elements are used in various commercial

aluminum alloys: Be, Pi, Co, Cr, Cu, Mg, Mn, Ni, Pb, Si, Sn, Ti,

Zn, and Zr. Of these, only Cr, Mg, Mn, Si and Ti can be readily

obtained from the moon. Although Cu and Zn are widely used in

aluminum a11oys, a fairly good selection of a11oys is available

using only the five lunar-indlgenous alloying elements listed

above, while several commonly used alloys could bemade by impor-

tation of small amounts of LDE's. Table B lists compositions and

representative properties of these alloys.

. Special alloys have been developed for powder metallurgy

production. Table B shows the composition for a high performance

alloy which would, however, require I0.6% by weight of LDE's for

alIoying.

(Ferrous Metallurgy)

Steels are produced and fabricated with a highly dlvp.rse

range of compositions and techniques to obtain desired p)operties

and economic considerations for different applications. 'The

diversity of a space industry will not requir._ such an extensive ._"

range of alloys and techniques, hut a modest range of alloys
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suitable for casting, ingot i,_orkingand powder metallurgy is

available with compositions based entirely or substantially on

lunar indigenous elements.

Steels may be conveniently classified into low alloy and

carbon steels, medium alloy steels, and high a11oy steels based

on the general content of alloying elements. Low alloy steels

may contain up to 1.8% Mn, .6% Si or Cu and I% or less of Cr,

Ni and/or other elements with C content generally held below I%.

Medium a11oy steels usually contain l - 3% or more of (Cr, Ni and/or

Si) plus small amounts of various other elements often including

refractory elements such as Mo. V, etc. High a11oy steels usually

contain 10% or more of at least one element (usually Ni or Cr) and

may contain 30% or more total a11oying elements.

Steels may be also classified on the basis of end use rather

than composition into such categories as structural steels, pipe

steels, corrosion resistant steels, tool steels, etc., but we

will not use such a system in our analysis.

Carbon is the most common and least expensive hardener of

. steels for earth-bound metallurgy. Carbon may also be used in

lunar or orbital metallurgy even if it requires importation, sinre

it is very effective at low concentrations and is rarely used

above I% in structural steels and 1.5% in tool steels. Carbon

and nitrogen are conveniently used also for surface hardening.

Table C lists some compositions and properties for low a11oy

and carbon steels derivable primarily from lunar indigenous

elements. Of particular interest for space industrialization

are the HSLA (high strength, low alloy) steels, which not only b

_ offer substantial property improvements over LDE's and are
,#

e

"*. "e i
i
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_: exceptionally formable and weldable for alloys of such strengths.

One may also note that very high strengths at both room and

¢ elevated temperatures are obtainable from such alloys as AISI

1340, 4140, and 5140.
v

i Table D lists some compositions and properties for medium

i a11oy steels derivable primarily from lunar indigenous elements.

; This group includes heat treatable alloys such as AISI 4042, 4340,

8640, g260 and some tool and electrical steels.

High alloy steels include most of the stainless steels,

high speeC tool steels, oxidation resistant alloys, etc. Some

representative examples with their properties are listFJ in

Table E.

Casting steels are similar in composition to corresponaing

wrought a11oys except that additional SI and Mn are often added

to insure deoxidation and promote soundness in castings. Steel

parts may also be produced by powder metallurgy techniques using

alloys of standard or special composition.

(Magnesium)

• Commercial magnesium alloys generally contain one or more
t,

of the following elements: AI, Ca, Mn, rare earths, Th, Zn, and

Zr. As in the case with aluminum, most magnesium alloys contain

LDE's (primarily Zn and/or Th). Table F lists compositions and

representative properties of alloys derivable solely or primarily

from lunar indigenous elements. It may be noted that the additioz)

of small amounts of Zn improves the strength of Mg alloys while

the use of Th or rare earths improves the high temperature

properties.
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(Titaniur,1)

The el_io.nts used in commercial titanium alloys include

AI, Cr, Fe, Mn, Mo, Nb, Ni, Sn, V, and Zr. Most alloys use V

and/or Mo which are LDE's. Table G lists compositions and

representative properties of alloys derivable primarily from

lunar indigenous elements.

Optical Materials (Glasses)

Commercial glasses contain in addition to SiO2, A1203, CaO,

and MgO, alkali oxides (Na20, C20, and Li20), B203 and/or heavy

metal oxides such as PbO, aaO, TiO2, ZrO2, and rare earth oxides.

Table H gives the compositions of ",number of commercial glasses

derivable primarily from lunar indigenous elements. Table J

lists the thermal shock resistance and working temperatures for

these and other commercial glasses.

Transparencies for these glasses will depend primarily on

the impurity level of veric'_s corstituents such as Fe, Cr, etc.,

although the resista_'e _._ radiation darkening varies widely and

will be important f_ ..,_ceapplications. Refractive index is

; not expected to be a crltical property in most cases.

It may be noted that the high performance fiber "S-Glass"

may be derived e_tirely from lunar indigenous materials.

(Electrical/Magnetic (E/M) Materials)

Within this category we might group conductors, insulators

and permanent (hard) and soft inagnetic materials, but w_ shall

exclude insulators from the following discussion.

The electrical resistar_ce of commercially pure metals is t_'

given in Table A. One notes that Ti is unsatisfactory for

general conductor applications.

4"
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Fe and Mg are not commercially used as general conductors,

but alumlmum is wldely used as a conductor, primarily as the EC

alloy.

Metals composition and purity requirements for electrical

conductor applications in power service are substantially different

from those encountered where mechanical properties only are

required. In the latter case, properties are almost always

Improveable by proper use of alloylng elements, while in the former, !

• the addition of virtually any alloylng element leads to a deterlo- 1

ration in electrical conductivity. For aluminum, the addition of
t

as little as 0.8% Mg reduces the electrical conductivity 20%

while silicon additions beyond the solid solution limit at the

eutectic temperature (1.66%) result in a conductivity drop of

32%. Such a11oys would require 25% and 47% more weight of metal

respectively to gain a system conductance compared with 99.5% Al.

Detailed composltional limits for 1060 alloy (which is

comparable in electrical properties with EC) include: Minimum:

99.6% AI; Maximum: .25 Sl, .35 Fe, .05 Cu, .05 Zn, .03 @Mg, Mn,

Ti, other (all wt. %). While some of these limits may be set

primarily for corrosion resistance, all impurities may be expected

' to adversely affect conductivity. In this regard, the behavior

parallels that of copper.

The effect of alloying elements on the conductivity of

magnesium is much less accessible or known due to lack of

electrical applications on earth. We may expect to find a

: slmllar behavior, however. (The electrical resistance of all -_

commercial alloys at room temperatures is, of course, readily
T

available and listed for AI and Mg alloys.

._w__
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'_ For applications where volume limitations are unimportant, a

usef_l figure of merit for general conductors might be electrical

cond_Jctance per unit cross sectional weight or conductivity:

' denslty ratio. On such a scale, the pure metals would rate as

_ shown in Table K.

While iron is a rather poor electrical conductor, it might

be useful for some direct current applications on the lunar

surface. Alternating current applications would be generally

unsatisfactory due to skin effect and hysteresis losses.

Specia] resistance alloys and non-metallics such as Fe304

would be available for specific applications with properties

corresponding to those available in earth bound commercial

material s.

Magnetic Materials

The dominant magnetic mass requirements would probably arise

for soft magnetic laminations for transformers, motors, e_c.

These are customarily made of high silicon steels such as shown

in Tables D and L. High permeability material needs can be filled

, using alloys such as sendust.
7

All of the high efficiency permanent magnet alloys require

substantial amounts of lunar deficient elements m principally

Co and Ni. However, ceramic permanent magnets can be made

primarily from lunar indigenous elements m primarily Fe203.

Magnetic properties of these materials are given in Table L.

Ceramic soft magnetic materials are useful in a number of

high frequency (communications) applications. These ferrites

- and magnetic garnets are also composed primarily of lunar ir_!iC_._u:_

materials.

p

"E "_ 6
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) OxYgen
._ Oxygen derived from decomposition of lunar ores is unlikely
t

to be admixed wtth substantial amounts of other volattles.t

._ O_pendtng on the method of generation, there may be other soltd ;

) or ltqutd dusts or mtsts, moisture and/or permanent gases such ,

,_ as chlorine, CO or CO2. Oxygen wtll undoubtedly have to be

ltqutfted to be stored, and a combination of cold trapping and

filtration should remove all normal Impurities except N2 and CO

by catalytic oxidation at moderate temperatures prior to cooltng

and l tqutfactton. The CO2 produced may be removed by trapptng

or alkaline scrubbing.

t

l'
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Table H

COMPOSITION OF COMMERCIAL GLASSES

Application Composition (wt %)

Code No. SiO2 AI203 CaO MgO Na20 K20 B203 Other
I

1720 62.0 17.0 8.0 7.0 1.0 5.0 1
} electric

1723 57.0 15.0 10.0 7.0 5.0

6720 60.0 lO.O S.O 9.0 2 0 1.0
} general/

6810 lighting 56.0 10.0 4.0 7.0 1.0 l.O 3.0 PbO

7900 98.0 0.3 3.0
high

7913 temperature 96.5 0.5 3.0

7940 99.9

9606 radome 56.0 20.0 IS.O 9.0 TiO2

G-20 lab ware 75.7 5.1 1.3 6.? 1.2 6.9 3.6 BaO

E-fiberelectric 54.0 14.0 17.5 4.5 10.0

" C-fiberchemical 65.0 4.0 14.0 3.0 8.0 0.5 5.5

S-fiberhigh
strength 65.0 25.0 lO _

L

F
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Table J

Reference temp., °C for various viscosities
(Poise)

Thermal shock resistance, °cC Strain Annealing Softening Working
for annealed plates 6 in. x 6 in. Point Point Point Point

Glass 1/8 in. 1/4 in. 1/2 in.
codea thickness thickness thickness I0_-s 1013 I0TM I0_

0010 (65) (50) (35) 395 435 625 985
0080 (65) (50) (35) 470 510 695 1005
0120 (65) (50) (35) 395 435 630 980
1720 (135) (115) (75) 670 715 915 1190
1723 (]25) (IO0) (70) 670 710 910 1175
1990 (45) (35) (25) 330 360 500 755
2405 (135) (]15) (75) 500 530 770 1085
2475 (65) (50) (35) 440 480 690 1040
3320 (]45) (llO) (80) 500 540 780 1155
6720 (70) (60) (40) 510 550 775 1010
6750 (65) (50) (35) 445 485 c70 1040
6810 (85) (70) (45) 490 530 770 lOlO
7040 450 490 700 1080
7050 (125) (lO0) (70) 460 503 705 I025
7052 (125) (lO0) (/0) 435 480 710 Ill5
7056 470 510 720 I045
7070 (180) (150) (lO0) 455 495 I070
7250 (160) (130) (90) 490 540 780 ll90
7570 340 365 440 560
7720 (160) (130) {90) 485 525 755 ll40
7740 (180) (150) (lO0) 515 565 820 1245
7760 {160) (130) (90) 480 525 780 1210
7900 (1250) (1000) (750) 820 glO 1500
7913 _90 '1020 1530
7940 (1250) (lO00) (750) 990 1050 1580
8160 (65) (50) (35) 395 435 630 975
8161 400 435 600 860
8363 3C0 315 380 460
8871 (55) (45) (35) 350 38b 525 785
9010 405 445 650 lOlO
9606 1350
9700 (150) (120) (80) 520 565 805 1200
9741 (150) (120) (80) 410 450 705
G-20 524 569 794 1190
N51a 540 580 795 1175
X4 520 710
E glasse 830
T glasse 715
C glasse 750
SF glasse 675
S glasse

e Bulk WorkingProperties
k

1979021033-285



_ II-194

• 0 E

I

_ S

0

_ • , • • , • •

*," 0 .... -- -- •

C _

® N

M

1979021033-286



)
) _ _ _ _ _ II-195

X X X _

! !

t

I _ 0 ,

ib "
v v v _ v

L , . i
f

1979021033-287



E L¢_

I ,,-
tr •

X

1979021033-288



lll-I

III. LUNAR STRIP MINING ANALYSIS

" A lunar strip mining system is presented which is capable of

excavating and transporting 3 mil]ion Tons of ore per year to

a central processing plant on the moon's surface. The mining

system would grow fro_ a single front-end loader in the first

year, to a fleet of ten haulers in the 30th year. The cumulative

mass of equipment transported from the earth to the moon by the

30th year woul6 range from 160 to 780 Tons, depending on the

assumptions and conditions. The net energy required per year

would grow from an initial 8 MW-hr to a range of 160 to 930 MW-hr

by the 3_th year, again depending on the assumptions. Lunar

personnel requirements would consist of a single individual,

whose primary function would be to perform maintenance. All

of the mining equipment would either operate automatically or

by remote control from earth.

A. INTRODUCTION

The National Aeronautics and Space Adminstration and the

Department of Energy are currently studying the feasibility of

an energy systJm based on solar power satellites. These satel-

lites woJld be in geo-synchronous orbit and would consist of

huge arrays of solar cells which would generate electricity

directly from sunlight. The electricity would then be convert-
LI

ed into a microwave beam for transmission to earth, where it

would be reconverted to electricity. Each satellite would
,j

produce approximately lO GW of power.

The amount of mass required for nuu_ a satellite system

is enormous compared to earlier space programs. Edch satellite

would have a mass of approximately lO0,O00 Tons and more than

@

r
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: lO0 setellites _Guld be constructed. There are three possible

sources of m_terials for construction of he satellites: the

earth, the morn, or a passing asteriod which would be captured

and placed in earth orbit. All three sources are currently

being studied.

Investigations of the samples returned from the moon dur-

ing the Apollo program have demonstrated that, after beneficat-

ion, the top few meters of lur,ar soil contain almost all of the

basic raw materials needed to construct the solar power satellites,

especially aluminum, silicon, and oxygen. This report describes

a strip mining system which could be used to excavate the ore

and transport it to a central processing plant on the lunar

surface. Reports are being prepared by others which describe:

I. An electrostatic beneficiation _ystem for use on

the moon.

2. _n electromagnetic propulsion system for launching

the beneficiated o_e into space.

3. A chemical processing system in space which would

convert the ore into construction materials.

4. And a Satellite Manufacturing Facility which would

assemble the solar power satellites in earth-orbit.

The mining sy:tem described in this report consists of a

front-end loader and a fleet of haulers. This system was chosen

over other methods primarily for two reasons: flexibility and

maintenanc_
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Flexibility

This system can _asily expand to accommodate t,,edesired

quantity of ore. In additions, if various sources of matcri_Is

must be exploited, the, the equipmen+ can simply be re-directed

to the different _,ine locations as required.

Maintenance

With this system, all of the pieces of equipment c_n be

returned to the #l)_c and maintenance can be performed in an

enclosed shelter in a ship,sleeve environment. This is a

critical requirement.

The mining plan is described in Sec. B. The number of

haulers is calcuRited in Sec. C, and the mass of the m(nin9

equipment is presented illSec. D. The energy and pe"sonnel

requirements are described in Sec. E and Sec. F, respectively.

Recomme:_dations for additional studies are presented in Sec. F.

B. MINING PLAN

B+l MINING RATE

The proposed Satellite Manufacturing F_cility (SMF), _,s

- p_esentIj conceived, would requi_e a feedstock of approximately

600,000 Tons/year of teneficiated lunar ore. Th's beneficiated

ore is expected to represent 20% of t_e total lunar ore mined.

Thus, a gross mining rate of 3,000,000 T/yr will be required to

supply the SMF. All of the lunar ore will be _trip mined from

the lunar surface without requi ;ng any overburden remova'f.

The cui'rent scenario presumes that this gross mining rate

would be achieved in the fifth year of lunar operations, grow-

ing from an initial rate of 30 qo0 T/yr. The mining rate and

the cumuladive ore mined over he 30-year lif? of the mine is
w
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presented in Table l. Thts same information is shown graphi-

cally in Fig. 1 for the first few years of the operation. A]-

though thts scenario requires the mining rate to increase by

a facto_ of one hundret over a period of five years, in fact

the quantity of ore is not large by terrestrial standards and

can be eastly accomplished t:_ the allotted time.

8.2 MINE GEOMETRY

course, the location of the lunar plant and mine have

not been determined yet. For purposes of this study, a hypo-

thetical mine layout has been assumed, as shown in Fig. 2.

3 The lunar soil is assumed to be unmineable for a radial

distance of 2 km from the plant. Beyond that point is the mine,

subtending an angle of _/2 radlans. The thickness of the mine-

: able ore is taken as 2 m, which is a rather arbitrary assumption;

• future exploration will likely yield a greater depth.

: The bulk density of the ore is taken to be 1.8 T/m3. This

is considered to be a very reasonable estimate, and is based on

• _ many direct measurements I.
t.

B.3 EARLY YEARS NF MININA

During the first two years of the mine, all of the ore will

; be excavated and transported to the plant by a front-end loader.

Using a front-end loader to transport the ore a distance of more

than _ km would not normally be considered a very efficient method.

However, a single front-end loader is the least amount of equip-
Z

._ ment needed to start ore flowing into the plant Furthermore,

i" the amount of ore is not large auring the first tv,o years, and

:: can easily be handled by a front-end loader.
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1
i Starting tn the third year, haulers would be brought

to the moon for transporting the ore from the mine to the

plant. The front-end loader would remain tn the mine and

load the haulers.

As presently envisioned, electrostatic beneftciation

• of the ore would begin tn the second year of mining. Studies

are being conducted to determine if this beneftctation can be
t

performed concurrently at the mine. Even if it can, it has

I been assumed that the beneftciatton module would remain at the
(

plant during the second year. It would then be moved to the

mtne with the front-end loader tn the third year.

C. NUMBEROF HAULERS AND EXCAVATORS

C. 1 GENERAL EXPRESSION

The number of haulers requtred to transport the ore on

the lunar surface is dependent upo. many factors, including:

Gross Mining Rate

Distance from plant to mine

_ Ttme available to mine per lunar d_,

Speed of hauler

Payload of each hauler, etc.

Host of these factors are assumed to be constant. How-

ever, for the mining plan discussed above, two factors will

vary: gross mining rate and distance from plant to mine.

The gross mining rate accelerates raptdly during the first

few years of operation and then remains constant at 3,000,000

T/yr. 2n addition, the distance from the plant to the mine
t

gradually increases throughout the life of the project. Thus,
z

even after the gross mining rate levels off, additional haulers ,
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will have to be phased in at appropriate time intervals to

maintain the desired quantity of ore.

Mining companies and manufacturers of haulers have

developed many computer programs to predict vehicle per-

formance and to assist in equipment selection 2 (p. 553).

!n fact, the U.S. Energy Research and Development Adminis-

tration (now part of the Department of Energy), has recently

made available a computer program to analyze coal strip mine

operations 3. Eventually, similar computer programs will have t

to be written to analyze the lunar mining plan. However, at

this stage in the study, such programs are not considered to

be necessary.
q

Instead, the following expression has been derived for

determining the number of haulers required at any time du,-ing

the ltfe of the project:

N = _-_ [G + tI + tu ] (I)

where,

N = number of haulers required

I M' = gross mining rate (Tons/year)

! f = fraction of ore transported to plant

T = time available to mine per year (hours)

m = payload of each hauler (Tons)

i A = availability of equipment

) E = efficiency of equipment •

i G = geometric factor (kilometers) ,,

r v = speed of hauler (kilometers/hour) i

i tl = tlme required t° l°ad hauler (h°urs) 1tu = time required to unload hauler (hours) •

) b
• _

° ,
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' _ Each of these factors are discussed tn detail in the

I, following sections. A range of values for each factor has

been selected which reflect_ ideal, nominal, and unfavorable

conditions In thts way, the mtntmum, most ltkely, and max-L

tmum number of haulers can be calculated. These values are

summarized In Table 2.

It must be noted that thts ex_,resston neglects stock-

- piling of ore at the plant. It siraply calculates the number

of haulers necessary to malntatn the gross mining rate. Thus,

: the calculated value of N Is always rounded up to the nearest

whole number. As a result, this expression is conservative

even under ideal conditions, because there wtll always be

excess hauler capacity. If significant stockpiling were

possible, then the phasing tn of additional haulers could be

stretched out considerably.

C.2 DISCUSSION OF FACTORS

C.2.1 GROSS RINING RATE, H'

, The gross mining rate has already been discussed inW

Sec. B.1 and is summarized in Table 1. It varies from 30,000

T/yr in the first year to 3,000,000 T/yr in the fifth and

subsequent years.

C.2.2 FRACTION OF ORE TRANSPORTEOTO PLANT, f

The fraction of ore transported to the plant depends on

)_hether or not electrGstattc beneflctatton of the ore can be

performed concurrently wtth the excavating operation. If it

: cannot, then obviously all of the ore will be transported to )
t

.: the plant and 80_ waste will be returned to the mine for dis-
?

,_ i
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posal. If electrostatic beneftctatton can be performed at

the mine, then as much as 80% of the ore will remain In the

mine area and only 20% will require transport to the plant.

Thts factor has such an enormous influence that two cases

are considered: wtth and without concurrent electrostatic

beneflctatton.

C.2.3 TIME AVAILABLE TO MINE PER YEAR, T
8

Under 1deal conditions, it would be possible to mine

continuously, night and day, year-round. This amounts to

, L,766 hours per year.
s

More ltkely, tt wtll not be possible to operate during

: lunar night because of the extreme temperature variation.

Nomtnal conditions assume daytime mtntng only, with a one-

shtft (8-hour) loss at sunrtse and sunset. This amounts to

4,185 hours per year.

Unfavorable conditions assume a two-shift (16-hour) loss

• at sunrise and sunset. Thts amounts to 3,987 hours per year. i

• C.2.4 PAYLOADOF EACH HAULER, m

Obviously, the paylcad of each hauler ts Inversely re-

lated to the number of haulers. It ts Important that a rea-

sonable match be achieved. A mtntng plan based on a small

number of high-capacity haulers would be vulnerable to a major

disruption tf one of the haulers fatled. On the other hand,

a large number of low-capacity haulers would unnecessarily

complicate the operation. Thus, the payload of each hauler

ts handled as a variable, wtth a range from 5 to 200 T. 1_

t
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C.2.5 AVAILABILITY OF EQUIPHENT, A

A certain amount of working ttme wtll be lost to inspection,

maintenance, and re-fueling. Availability will depend very

strongly on how the equipment ts operated. On earth, the avail-

ability of large excavating systems ranges from as little as 34Z

to as much as gOZ for continuous operations up to a year 5. Pre-

sumably, equipment destined for the moon wtll be designed and

constructed to higher standards than ordinary terrestrial equip-

ment. Even so, some maintenance will be required over the life

of the project and it is felt that 80Z represents a reasonable

estimate of availability under ideal (continuous) conditions.

On the other hand, if mining only occurs during the day,

then it should be possible to design the equipment so that

inspection and maintenance wtll not be required during operations,

but instead wtll be performed at night. An interview with

He. George Eger, Vtce President for Engineering of [nternatlonal

Harvester, confirms that even cn earth, equipment manufacturers

are developing systems to extend the normal maintenance cycle 5.
f

Furthermore, the trend tn the industry has been toward modular

design. For example, wtth new equipment, tt is now possible

to remove a transmission in a few hours instead of a few days.

It should certainly be possible to incorporate a similar design

philosophy in lunar equipment. In which case, working time

would only b_ lost during re-fueling. Under nominal conditions,

availability is assumed to be 95_, and under unfavorable con-

dtttons, 85_.
t

%
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C.2.6 EFFICIENCY OF EQUIPMENT, E

In any mtning or soil-moving operation, there are always

unavoidable delays that are ,ot associated wtth maintenance.

An efftc|ency factor is used to account for these delays.

Under ideal conditions, the efficiency factor would be 1.0.

Under nomina| and unfavorable conditions, the values would/

be 0.83 and 0.67, respectively 2 (p. 578).

C.2.7 6EOMETRIC FACTOR, G

The geometric factor ts deftned as follows:

8M 6 112
G • w(412 + _hp x 10" ) (2)

where,

w - wander fa:tor along haul route

1 = radial distance from plant to mine (km)

H - cumulative ore mined (T)

B - mtneabtltty factor

e = mine angle (radtans)

• t h - thickness of mtneable ore (m)
-:_ : 0 - bulk density of ore (Tim3)|

" l This expression is based on the go.ometry of the mine plan

described tn 5ec B 2 Obviously, a different expression would

! be used for a different .geometry. As discussed tn Sec. B.2,
r

: the following values are assumed:

1 -2kin

0 " 712

h -2m

o - 1.8 Tim 3

, C.2.7.1 WANDERFACTOR

• Large boulders and craters on the lunar surface w111 pre- i

• vent the haulers from traveling In stratght lines. The wander

j[ :
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factor accounts for this: 1.0 (tdeal), 0.9 (nominal, and

0.85 (unfavorable).

C.2.7.2 CUMULATIVE ORE MINED, M

The cumulative ore mined has already been discussed in

Sec. 8.1 and ts summarized tn Table I. Note that as M increases

during the ltfe of the project, G also Increases, although at

a declining rate.

C.2.7.3 HINEAEILITY FACTOR, B

Not a11 of the ore deposit wtll be mineable: some boulders

will simply be too large for excavation and processing. The

mtneability factor is: 1.0 (ideal), 0.98 (nominal), and 0.95

(unfavorable).

C.2.8 SPEED OF HAULER, v

The velocity of the hauler is given by:

v = Svmax (3)

where,

S = speed factor

Vmax = max'mun speed of hauler (kph)

C.2.8.1 SPEED FACTOR, S

The maximun speed is determined from performance charts

as discussed in the following section. The speed factor accounts

for the additional time required to accelerate to Vmax. The

product of S and Vmax is the average speed.

The speed factor depends on Lhe length of th_ haul, the

grade conditions, and the transmission gear ratios. The follow-

ing values have been assumed: 0.9 (ideal), 0.85 (nominal), and
k

0.7 (unfavorable) 2 (p. 574).
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l C.2.8.2 MAXIMUM SPEED OF HAULER, Vmax
As noted above, Vmax is determined from a performance

chart; an example of a performance chart for a Caterpillar

777 is shown tn Fig. 3 It can be seen that Vmax ts a funct-

ion of the total resistance which is equal to the rolling
> •

resistance plus (or minus) the grade. A total resistance of

i 2% corresponds to a level, well-compacted dirt r;ad. The
P

maximum speed under these conditions has been plotted in
!

Fig. 4 for a variety of terrestrial haulers. It can be seen

: that Vmax is not particularly dependent upon the payload of

the hauler and falls in a range from 43 to 68 kph. Obviously,

as hauler payloads have been increased, the terrestrial design

practice has been to increase the power of the engine and

modify the transmission such that the performance of the

vehicle remains essentially unchanged. It is presumed that

Vmax would be 68 kph under ideal conditions.

Under nominal conditions, the rolling resistance, p,
q

v

would be about 5% and the grade, A, would be _3%. That means

the total resistance would be 8% in one direction and 2% in

the other direction. As can be seen in Fig. 5, the maximum

speed on the 8% leg will be significantly less, amounting to

approximately 32% of VmaX on the 2% leg. As a result, the

weighted maximum speed would equal 33 kph. This assumes the

hauler is loaded in both directions, which is approximately

correct if electrostatic seperation cannot be pe:formed con-

i_ currently at the mine. Recall that for Case 2 conditions,

,' the hauler returns from the plant with an 8q% load of waste

._. for backfilling in the mine.
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For Case 1 conditions, the hauler is empty on the return

leg to t_e mine. If this happens to be the 8% le9, then Fig. fi

shows that the speed would be somewhat higher. However, if the

hauler ts empty on the 2% leg, the speed is essentially the

same and the weighted maximum speed remains unchanged at 33 kph.

It has been conservatively assumed that the maximum total re-

sistance will invariably occur on the )oaded leg and that the

minimum total resistance will occur on the enpty leg.

Under unfavorable conditions, the rolling resistance is

assumed to be 7% and the grade to be +5%. By a similar calcul-w

ation, the weighted maximum speed is determined to be 23 kph.

C.2.9 TIME REQUIRED TO LOAD HAULER, t1

It has been assumed that a front-end loader will be used

to excavate the ore and load it into the haulers• The excavat-

ing system will be discussed in more detail in Sec. C.5.

" The time required to load each hauler, tl, in hours, is
i

given by:
mteS

tl=[p e + tsl + tl]. 3600 (4)
where,

m = payload of each hauler (T)

te = cycle time for front-end loader (s)

s = swell factor

F - bucket fill factor

p = bulk density of ore (T/m3)

t I qe = bucket capacity of front-end loader (m3)

tsl = spotting tlme (s)

ti - r_-load time at plant (s)

The factors m and p have previously been discussed.
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C.2.9.1 CYCLE TINE FOR FRONT-END LOADER, t e

{ The cycle time _s the time required for the front-endF

loader to excavate a bucket of ore, raise the bucket, dro) the

ore into the hauler, and return to the starting point

length of time depends on the size of the front-end lo

can range from 24 to 90 seconds 2 (p. 572). ,_n_ ,r !deal_ n_ ._nal, •

and unfavorable conditions, t e has been assu. ed to equal 30, 45,

and 60 seconds, respectively.

C.2.9.2 SMELL FACTOR, s

As the ore is excavated and dumped into the hauler, the

disturbance causes it to loosen, or in effect, to swell. Under

ideal, nominal, and unfavorable conditions, s has been assumed

to equal l.O, 1.15, and 1.3 respectively 2 (p. 466).

C.2.9.3 BUCKET FILL FACTOR, F

The percent of the bucket capacity that can be achieved

is dependent upon the ease of excavation. Under hard digging

conditions, the bucket fill factor can be as low as 0.52 (p. 572).

However, lunar excavation is expected to be easy to medium.

Under ideal, nominal, and unfavorable conditions, F wo_Id be

equal to 1.O, 0.95, and 0.9 respectively.

C.2.9.4 BUCKET CAPACITY OF FRONT-END LOADER, qe

For short h'uls, it is the usual practice to select a

bucket capacity such that the hauler can be filled in three

to five passes. On longer hauls, the time required to load

the hauler is less critical and more passes can be accomodated. I_
However, for this study, it is felt that four passes represents

a reasonable number• This implies that qe is given by:

k

"j*e
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1 ms (s)
qe " T 'F'_"

C.2.9.5 SPOTTING TIME TO LOAD, tsl

The spotting time to ]oad ts the amount of time required

to position the hau]er near the front-end ]oader at the mine.

On earth, tsl depends on the hau]er type: bottom-d_,mp, rear-

. dump, or side-dump, and can range up to one mtnute 2 (p. 577).
t

On che moon, where control of the hauler will be automatic,

, is1 should be less. Under tdeal, nominal, and unfavorable

conditions, tsl is estimated to be O, 10, and 20 seconds.

C.2.9.6 RE-LOAD TIME AT PLANT, t_

For Case 2 conditions, the hauler wtll be re-loaded at

the plant with waste material for return to the mine. This

matertal would be loaded by means of an overhead bin and chute

arrangement and would occur Immediately after the ore had b_en

dumped without moving the hauler to a new location. In the

usual order, t_ is estimated to be 10,20, and 30 seconds.

, C.2.10 TIME REQUIRED TO UNLOAD HAULER, t u

if The tlme required to unloa(! each hauler, tu, is given by:

t u = It d + t_ ]+ 3600 (6)

where,

t d = dump time (s)

t_ = unload time at mine (s)

C.2.10.1 DUMP TIME, td

The dump time is the amount of time required to position

the hauler at the plant and to du_np the ore, Similar to the It
R#ottlng time discussed in Sec. C.2,9.S, td on earth depends

on tiJehauler type and can require as long as two minutes2 (p. 577).
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Again, t d on the moon should be less and has been estimated

to be 15, 25, and 40 seconds, respectively.

C.2.10.2 UNLC,AD TIME AT MINE, t_

For Case 2 conditions, the hauler will pause in the mine
i

to unload waste material before proceeding to the front-end

' is estimated to be approximatelyloader. The unload time, tu,

equal to td.

' C.3 COMPLETE EXPRESSION

All of the various factors that influence the number of

haulers required to transport ore on the lunar surface have

been discussed in excruciating detail in the preceding sections.

By combining Eqns. (I)_ (2), (3), (4), and (8), the foilowing +

complete expression is obtained: ,L
I

8M -6 ,_ .

N M'f [ w(412+ B-_ x lO j l roteS t tI ' i- +-3-6-0-_(F---_+sl+ +td+tu)] +
TmAE SVmax --

(7)
jr

C.4 NUMBER OF HAULERS REQUIRED 'I:

; By substituting the appropriate factors from Table II into

Eqn. (7), the number of haulers required, N, can be calc_la*_.d

•For any case and condition. This has been done and is summarized

in Table Ill.

As can be seen in Table !II, the payload of each hauler is
wF

significantly less for Case l than fo_ Case 2. A_ noted in

Sec. C.2.2, electrostatic beneficiation at the mine ha_ an +_

enormous influence on the ore transport system. Later studies .;_
t •

" will determine which case is optimal: it remains to be determined +

whether or not the decreased mass and e_ergy requirements +,

for the transport system in Case l offset the it.creased _

-
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mass, enargy, and operational complexity of concurrent benefi-

iation.

Examining Table Illfurther, it can be seen that for any

_ given hauler payload, tne number of haulers req,_ired under

ideal conditions is typically about one-tenth of that required

und_ unfavorable conditions. This large range is primarily
(

due to two factors: (1) The time available to mine; and (2)

i The speed of each hauler. Recall that ideal conditions assume

day and night mining and that the haul road is level and well-

compacted. As a result, the time available for mining is more

than double and the speed of each hauler is nearly quadruple

the respective parameters under unfavorable conditions.

Ideal conditions define the absolute minimum number of

haulers required to transport the lunar ore, and as such, are

rather unrealistic. At the other extreme, unfavorable condit-

ions define the maximum number of haulers required if every-

thing is adverse: reduced time available for mining, steep

, grades and loose soil, poor equipment efficiency, and extra
•z.

time requ!red for loading and unloading.

Consequently, for planning purposes, nominal conditions
D

have been assumed. Referring to Table Ill, a hauler payload

• of I0 Tons for Case 1 results in a reasonable fleet size, even ;

after 30 years. Similarly for Case 2, a hauler payload of 50

Tons is approriate. The growth in the number of haulers for :

these two cases over the life of the mine is shown in Fig. VII. i

In both cases, the initial requirement for haulers is small.
!

However, the fleet increases rapidly to five haulers in the

fifth year. The growth slows down then, and a maximum fleet

:_
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of ten haulers is required by the 30th year.

It should be noted that the fleet size under unfavorableI

conditions is typically 2 to 2.5 times the fleet size under

nominal conditions. This is primarily due to the difference

in the calculated speed of the hauler, which is based on per-

t
formance charts for terrestrial vehicles (see Sec. C.2.8.2).

l

Terrestrial haulers, of course, have been designed to operate

over a wide range of conditions. Presumably, if the lunar

haulers had to operate on steep grades and loose soil, the

drive systems would be designed for those specific conditions

and higher spewds could be achieved (at some trade-off in extra

mass and energy, of course)• Thus, the fleet size under un-

favorable conditions would not necessarily be as great as

implied in Table Ill.

One final point should be considered: the mine geometry

presume_ in this study is rather arbitrary. For example, in

Sec. B.}I it was stated that the thickness of mineable ore, h,

, was _ssumed to be 2 m, but that it might, in fact, be greater.

In the early years of the mi;,e, the value of h does not greatly

affect the calculated numbe' of haulers, because the travel

time is dominated by the distance from the plant to the mine.

In later years, as it becomes necessary to travel ever farther

for ore, the value of h is very important. Referring to Equ.

(7), if h were doubled to 4 m, the number of haulers required

in the later years, under all conditions, would decrease by a

factor approaching v_. This same factor would also apply to

the mass of the haulers and the net energy required. The mine

; angle, @, has a similar effect. In addition, if it is necessary

i
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to mine in two locations (e.g., for plagtoclase in one area

and tlmentte in another), then the mining fleet would also be
f

affected. If the mining equipment could alternate back and

forth between the two areas, and the two mine layouts were I

the same as tn Fig 2, the number of haulers, mass, and energy !:

would also decrease by a factor approaching v_. Conversely, ':

' if two areas were to be mined with similar layouts, except

that B = _/4, instead of _/2, then the fleet size would be

exactly as calculated for the single mine in Table III. Ob-

viously, these sorts of number games can be played ad infi-

nitum and it ts Important that actual condidate .cites on the

lunar surface be evaluated as early as possible.

C.5 HAULER-EXCAVATORMATCH

As discussed in Sec. C,2,9,4, it has been presumed that

it will require four passes by the front-end loader to fill

the hauler. The bucket capacity, qe, can be calculated by

substituting the appropriate factors from Table III, into

Equ. (5):

Ideal Nominal Unfavorable

qe = 6.9 m3 8,4 m3 lO,O m3

This is not a wide variation, and for convenience, the

bucket capacity will be taken as 10.0 m3. The mass per bucket-

ful would be 12.5 T. This applies to both Case 1 and Case 2,

since the total amount of ore mined is the same whether or

not concurrent electrostatic beneflciatton can be performed, LMIt_
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' C.6 SPARE VEHICLES AND SPARE PARTS

As discussed in Sec. C.2.5, under nominal conditions, all

of the scheduled maintenance will be performed during lunar

night. Occasionally, however, a vehicle will break down during

lunar day. To accomodate this situation, a spare vehicle would

be necessary to substitute for the failed vehicle, which could

then be repaired at a more convenient time later•

Of course, spare parts will also be necessary. As an

estimate, one-tenth of each vehicle is assumed to be replaced

each year; in other words, a total replacement time of ten

years. Obviously, the parts inventory at the plant will have

to be replenished periodically from earth.

C.7 SUMMARY OF MINING EQUIPMENT

The anticipated growth in the mining fleet is summarized

in Table IV. Note that the spare parts represent a sizeable

portion of the total number of vehicles transported to the

moon. By the 30th mining year, in Case l, the equivalent of

, more than lg haulers (20 haulers in Case 2} have been required
v

as spare parts, compared to a fleet size of ten haulers plus

one spare.

D. MASS OF MINING EQUIPMENT

D.I MASS OF HAULERS

A plot of empty vehicle mass, mh, versus payload, m, for

a variety of terrestrial haulers is presented in Fig. VIII.

As can be seen, there are numerous haulers available which

have a payload of lO to 50 T. In fact, the largest commercially

available hauler has a capacity of nearly 320 T. Note also

.. that the points in Fig. III tend to fall along a straight line;

*j
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the ratio of payload to vehicle ._ass, m/mh, is approximately

I 1.3 over a wide range, l

! Host of the mass of the hauler is devoted to structural

t support of the payload. Because of the reduced lunar gravity,

i an equivalent mass payload on the moon would impose one-sixth

l as much structural load as on earth. ConsequEntly, as a first

i approximation, it should be possible to design lunar haulers, wtth one-sixth as much mass, or m/mh = 8.

)-. By compartston, the Lunar Roving Vehicle (LRV) of the

i Apollo project had a ratio of mlmh = 2.4. The LRV ob-
)

vtously falls at the low end of the scale with an empty!
vehicle mass of only about 0.2 T.

: These two ratios have been assumed to be upper and

lower bounds. The mass of each lunar hauler can then be

estimated to fall in the following ranges:

Case Payload Vehicle Mass

1 10 T 1.2 to 4.2 T
(see Table V)

: 2 50 T 6.2 to 20.8 T

' D.2 MASS OF FRONT-END LOADER

Unlike the haulers, the mass of a front-end loader is

independent of the gravity field. Thts is because the vehicle

mass is used as a counter-balance to prevent it from tipping

over when the bucket is loaded and extended. Thus, without

greatly changing the geometry of the vehicle (and thereby

reducing its maneuverability), the mass of the lunar front-

.. end loader would be essentially the same as its terrestrial i_

_.. counterpart.
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A plot of tipping mass versus empty vehicle mass for a

variety of terrestrial front-end loaders is presented in Fig. g.

As with the haulers, the points tend to fall along a straight

i line. It is the usual terrestrial practice to multiply the

bucket load by a factor of 2.0 to determine a safe tipping

mass2 (p. 466). The lunar equipment will presumably incor.-

porate automatic sensing systems to prevent tipping over, and

a factor of safety of 1.2 should be adequate. Thus, _Jsing a
Q

bucket load of 12.5 T (see Sec. C.5), a tipping mass of 15 T

is used to enter Flg. 9, from whence a vehicle mass of 23.5 T

is found (see Table V).

D.3 CUMULATIVE MASS OF MINING EQUIPMENT

By combining Table IV and Table V, the cumulative mass

i of the mining equipment can be determined. This is presented

in Table VI and Fig. lO.
;

, In the first two years of the mine, only front-end loaders,

) plus spare parts, are transported to the moon. Thus, in either

Case l or Case 2, a mass of 26 T must be shipped the first year,
t

_i_ and an additional 26 T the second year. Beyond that point, the

cumulative masses for the two cases diverge owing to the heavier

haulers required for Case 2. By the 30th year, the cumulative

mass can range from a minimum of 160 to 240 T for Case l, to

320 to 780 T for Case 2.

i E. ENERGY REQUIRED FOR MINING SYSTEM
i

_" E.I HAULER TRANSPORT

; The energy required to excavate the lunar ore at the mine
,)'

is trivial compared to the energy required to transport it from
i
_ the mine to the pla;t. Consequently, the excavation energy has "

_ been neglected in the analysis that follows. .3
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t:

The net energy (i.e., neglecting losses due to energy

_ storage or conversion) required for a slngle hauler to trans-

port a load of ore to the plant and return to the mine is

given by:

(O.13g)Gam h [(l+_h)(p+A)+(l+_) (_-A)] (8)
E

mh _

' where,

E = net energy per load (kW-hr/load)

a = acceleration of lunar gravity = 1.63 m/s2

and all of the other terms have previously been defined.

The net energy required for any given mining year is then

approximately given by:

y = E M'f (g)

where,

Y = annual energy required (kW-hr/yr)

Once again, by substituting all of the appropriate factors

into Eqns. (8) and (g), the net energy required for the mining

system can be calculated. This has been done and is presented

in Table Vll and Fig. 11. The energy required in the first two

years is the same for Case 1 or Case 2, because a front-end

• loader is used to transport the ore in both cases. After that, ,

the energy required for Case 2 is considerably greater, owing

tn the use of larger haulers, and the necessity to transport

waste back to the mine.

Note that for Case I, the energy requirements actually

t
decrease during the third and fourth years. This is because

beneficiatlon at the mine commences with the third year, and
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the fact that the haulers are much more efficient for trans-

portation than the front-end loader.

The large differences between ideal and unfavorable con-

ditions are primarily due to the differences in total resist-

ance: unfavorable conditions assume a total resistance of 12%,

whereas ideal conditions assume 2%, or a ratio of six.

For the third and subsequent mining years, the net energy

requirements presented in Table VII and Fig. II have been cal-

culated assuming a payload to hauler mass ratio of m/m h = 8.

A ratio of m/m h = 2.4 would require approximately 30% more

energy.

E.2 BALLISTIC TRANSPORT

Ballistic transport is an entirely different concept that

t
, is impossible on earth, but which could be very practical on
)
' the moon
i

' In this system, the ore would be mechanically propelled

_ (similar to a snow blower) along a ballistic trajectory directly
w +

# ;

'" from the mlne to a collection point near the plant. Thus, the

entire hauler fleet would be eliminated.

Such a system would not work on earth, of course, becausei-

atmospheric drag would quickly dissipate the ore and create a •

dust cloud.

It is envisioned that the launcher could be moved within

the mine as required, but that it v,ould be stationary while

_{, ore was being propelled to the plant. A front-end loader could

be used to excavate the ore and carry it to the launcher. As

I the ore was depleted, the launcher would be periodically moved
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to a new location. If electrostatic beneficiation could be

performed at the mine, the beneficiation module and launcher

could be physically combined into one mobile structure.

The ballistic transport system would require less mass

than the hauler transport system and would also be less com-

plex (fewer moving parts). On the other hand, maintenance

would be more difficult, since the launcher would probably not
i
)

return to the plant each lunar night. Presumably, a solution )
- f

could be found for this problem. Also, some additional equip-

ment would be needed to gather the ore at the collection point _

and transport it to the plant.

Much more important is the fact that ballistic transport

requires considerably more energy than hauler transport. This

is shown graphically in Fig. 12. It can be seen that ballistic

transport requires six times as much net energy as hauler trans-

port under nominal conditions• Even under unfavorable conditions,

the ratio is still four-to-one. Furthermore, a system would

have to be devised to supply energy to the launcher.

_,- Nonetheless, in a region of rugged terrain, such as moun-

tains or rilles, the haul road may be excessively long, and con-

sequently the number of haulers may be impractical. In which

case, a ballistic transport system could be very attractive.

F. PERSONNEL

, F.1 LUNAR-BASED PERSONNEL

In the previous sections, the amount of mass and energy

" required to operate the lunar strip mining system has been

': discussed in detail In this section the personnel require-

, ments are considered• Of these three factors, personnel is
:.

y by far the most important and challenging. It is extremely
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expensive to transport people to the moon and to supply them

with the basic requirements of life. Consequently, it is
I

imperative that the number of people required to operate the

mining system be kept to an absolute minimum. It is believed

that the entire system can be operated by one pe:-sonon the

: moon, with support and assistance from earth, of course.

Obviously, this one individual would have to be rotated back
f,

to Tearth, similar to the other personnel at the plant. "

The primary function of this person would be to perform

maintenance on the mining equipment during lunar night. Dur- I

ing lunar day, he would be available for monitoring the mining

activities and trouble-shooting if requlred. All of the

equipment would either be automatic or remote-controlled, and

thus, no other personnel would be required to operate the

mining system.

F.2 AUTOMATIC HAULERS

The haulers can undoubtedly be designed to operate in

_ automatic mode only requiring occasional re-programming.

C _ Prior to mining, orbital photographs would document the

topography in great deta11. A family of haul roads would be

selected and stored in each hauler's on-borad computer memory.

Using inertial guidance, radar, laser ranging, electronic

guideposts, satellite tracking, or a combination thereof, thc

hauler could na':igate back and forth from the mine according

to a pragrammed sequence. Earth-based personnel would monitor

the performance of the haulers and would have the capability

to switch to remote control if necessary. The haulers could

also be either remotely or manually controlled on the lunar surface.
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!
i

Such a system should be readily attainable with present

technology. In fact a child's toy is presently being sold

which will follow a simple programmed path.

F.3 REMOTE-CONTROLLEDFRONT-END LOADER

There are many variables associated with excavation and it is

i doubtful that the front-end loader could operate automatically.
• I
• !
i

i However, it should be possible to remotely control it from
earth The front-end loader would be equipped with television!

cameras and various sensors to monitor its performance and
i
i

location. This data would be displayed to an earth-based

technician who would control the operations. As with the

haulers, the front-end loader could also be either remotely

or manually controlled on the lun- .urface.

Again, the technology already exists for designing such

a system. On a small scale, remote-cu_trslled excavation

on the moon and Mars have already been accomplished in the

Surveyor and Viking programs. On earth, large draglines have

been equipped with digital displays so that the operator can

better monitor his own performance. Because of safety require-

ments, simple remote-controlled equipment has been designed for

use in underground mines on earth. One study by a terrestrial

equipment manufacturer suggests that in the future, most soll-

moving and surface mining projects will be performed by remote

control, again because of increasing safety standards (Ref. 7).

G, ADDITIONAL STUDXES

Thls report has been in the nature of a pre-feasibility

study. There are many questions which must be resolved before

final design and implementation. Some of the additional studies
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that must be performed Inriude the following:

I. Additional parametric studies need to be performed

using the equations developed In this report.

2. The conditions under which other systems would be

used, such as conveyors or ballistic transport,

need to be examined.

3. Computer studies need to be performed using exist-
.a

ing programs written for terrestrial strip mines.

i 4. Detailed computer programs n_ed to be developed forthe lunar mining system, using actu_1 topographies

i fro_ candidate sites.

' 5. The fraction of returned to the
ore plant, f, plays

an enormous role in the mass and energy requirements

I for the mining system. Studies regarding electro°

static beneficiation at the mine should continue apace.

6 The second-most important factor affecting the mining

I system ts the total resistance (rolling resistance

, _ plus or minus grade). Candidate sites need to be

" examined to determine what the grade really is. More

_ important, trafficability studies are absolutely

essential. Although considerable information has

already been obtained for the Lunar Roving Vehicle,

i the front-end loader and haulers would be considerably

i larger an_ heavier. Trafflcability experiments willprobably have to be performed on the lunar surface at

an early stage. 1

!
, !
7

1979021033-316



7. Terrestrial sites must be Iccated for performing

prototype simulations of the mining operations.

8. Comouter and telemetry specialists need to ruantify

the design reauirements for _'emote control of the

front-end loader and automatic operations of the

haulers. Computer programs must be written for |li
simulation exercises.

g. Preliminary designs of the haulers and front-end

loader should be prepared so that the mass and

energy requirements can be refined.

lO. Re-fueling, or rather, re-energizing, of the mining

equipment presents some interesting technical cha_-

lenses that need to be studied. What will be the

energy system: Battery, or perhaps spinning fly-

wheel? How will these be recharged: physical

replacement, mechanical linkage, electrical con-

nection, microwave beam, or something else?
.?

Despite these uncertainties, the lunar mining system

will not require major technological breakthroughs. Rather,

the design will be a natural extension of terrestrial mining

experience, coupled with the invaluable knowledge gained

during the Surveyor and Apollo programs.

0

,

-j

• -q
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i TABLE I

' LUNAR MININ,_',PLAN

Gross Net Cumulative Cumulative

Mining Ore to Ore Ore to

Mining Rate SMF Mined SMF -

Year (T/yr) (T/jr) (T) (T)

l 30,000 30,000" 30,000 30,000

2 150,000 30,000 180,000 60,000

3 600,000 120,000 780,000 180,000

4 1,500,000 300,000 2,_80,000 480,000

5 3,000,000 600,000 5,280,000 1,080,000

7 3,000,000 600,000 ll,300,O00 2,280,000

lO 3,000,000 600,000 20,300,000 4,080,000

15 3,000,000 600,000 35,500,000 7,080,000

20 3,000,000 600,000 50,300,000 lO,lO0,O00

25 3,000,000 600,000 65,300,000 13,100,O00

30 3,000,000 600,000 80,300,000 16,100,000

." "*Nobeneficiatior, during first year

a
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TABLE V

MASS OF MINING EQUIPMENT

' HAULERS

• Vehicle Mass, mh

_ Case PaTload_ m m/mh = B m/mh = 2.4

1 10 T 1.25 4.17

2 50 T 6.25 20.83

FRONT-END LOADER

Bucket Load Factor of Safet_ Tippin 9 Mass Vehicle Mas_ss

12.5 T 1.2 15 T 23.5 T

w

t

!
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TABLE VI

CUMULATIVE MASS OF MINING EQUIPMENT
(Tons)

Including Spares and Spare Parts

Nominal Conditions

Case 1": lO-Ton Haulers Case 2: 50-Ton Haulers
With Concurrent Without Concurrent
Electrostatl_ Electrostatic
Beneficlatlon Beneficiation

Haulers + Haulers +
Front- Front- Front-

Mining End End End .
Year Loaders Haulers Loaders Haulers Loaders

1 26 0 26 0 26

2 52 0 52 0 52

3 54 1-5 55-59 7-23 61-77

4 56 4-14 60-70 21-71 77-127

5 59 9-29 68-88 43-144 I02-203

7 63 II-37 74-I00 56-187 I19-250

lO 70 14-45 84-I15 74-248 144-318

15 82 19-68 lOl-150 I03-344 185-426

20 94 24-81 118-175 135-450 229-544

- 25 106 31-I02 137-208 163-544 269-650

30 ll8 38-126 156-244 198-660 316-778

*Does not include mass of beneftciation-disposal module. !
t
[
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TABLE VII

NET ENERGY REQUIRED FOR MINING SYSTEM*
{MW-hr/yr)

Case 1"* Case 2
gi"th Concurrent 'Wtt'hout Concurrent

Electrostatic Electrostatic
" Mining Beneflclatfon Beneficiation

Year Ideal Nominal Unfavorable Ideal Nominal Unfavorable

l 3 8 12 3 8 12

2 15 43 63 15 43 63

• 3 3 11 18 23 67 100

4 8 30 49 61 180 270 f:

i

5 16 67 100 140 390 600

7 19 81 120 160 460 690

I0 23 95 150 190 550 810

15 28 120 180 230 660 lO00

20 32 130 200 260 770 1200

_ 35 150 230 290 860 1300

, 30 38 160 260 320 930 1400

* Assuming m/mh = 8 for Mining Year 3 and subsequent

**Does not include energy requirement for beneficiation-disposd,
• module
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m
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Central

Processing Unmineable Area Strip Mine
Plant
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f
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r

j.

t : Radial Distance from Plant to Mine over Unmineable Area

0: Mine Angle

h: Thickness of Mineable Ore

p: Bulk D_,_sity of Ore

t

i
r

Fisure III-2 Mine Lay Out

1979021033-330



Ill.43

i j |

I

" GROSSWEIGHT
" i

5 20 40 100 200 Tons
! I I r-_

_i

30%
' 90 : I

70- I 77 Tons//25%
EMPTY LOAD_ D_/20%

50- _ I ////15_40"

° I 0%
8%

Z

•-, lo-

2F I _-

.sL
_ , , _ , , , , ,
o 10 20 30 40 50 60 70 80

km/h
SPEED

TORQUE CONVERTER DRIVE

DIRECT DRIVE

Figure 111-3 Example of Performance Chart for Caterpiller 777

1979021033-331



i 111-44i "

I "- !
!

-i ' i i I " ' _

?

W W

• +

1

"E

i E

W

- 8

I i . f " | 0

|yd_)3ONVJ.SIS3H"IV101%_-O3OVO'I-O:_3dS_n_i×V_

Figure III-_ Maximum Speed of Loaded T,.r,'¢strial Hat_lers

1979021033-332



111-45

• 1.0 '_ _ I 'l I I I I" I

0.9 -

0.8 m

0.7-I!

o: @
®i 4,
c_ 0.6 - •
t,IJ

0

O, 0.5- •
I

° tuJ 0.4 - -
,u

g 0.3- + -
, X< o.2- 1 -

0.1 -

o I .I I ! I I I I =
0 2 4 6 8 10 12 14 16 18 20

TOTAL RESISTANCE, R(%)

', • CATERPILLAR

,_ TEREX

:_ FIGURE III-5 Performance of Loaded Terrestrial Haulers

o,

1979021033-333



111-46

jm:

,!

,,. 1.0 "v' T $ I I i I i i

0.9- • -

; 0.8- -

_ 0.7- + + -

, "0.6-

' I -, 0.5 - �-
o I 4"

' mmm
-, o |
m w 0.4-

_ 0.3-- -_
X _E

=_ <: 0.2-

0.1-

0 I ,. I I I I .I I I .___J...--_
0 2 4 6 8 10 12 14 16 18 :,0

TOTAL RESISTANCE, R (%)

• CATERPILLAR

* "I" TEREX

i

',. _. Fzgure III-6 Perform_ce of Empty Terrestrial Haulers

i

1979021033-334



6
III- 47

T

F

12 I i i I I I I ' I I I "1 - | I' i '

11 -

10 - ..- ....._

8 - .,....4. _0 _ -

•J 7

0 //.. "E

m _ 0 Case 1: Hauler Paylnad, nl=lOTons _
"t" Case 2: Hauler Payload, m=5OTons

I
z 4 I

I
, 3- @
" I

2 !
I
I

I - @

o _ J I I I I I,, I I ,I , I ! t I I _
0 2 4 6 8 10 12 "4 16 18 20 22 24 26 28 30

MINING YEAR

- t
_. Figure 111-7 Number of Haulers Required Under Nominal Conditions

_.

.:,

1979021033-335



°

" III-48

400 ..... I ...... !

k

+

00 o u

9

9

@

-."_,._" 100- l/ •O CATERPILLARMAcK
"; + TEREXO

m • • VOLVO

)

, i"_ 0 I, . I.L

_. 0 100 200 300
9

i EMPTY VEHICLE MASS. mh (Tons)

),
_' Figure III-8 Mass of Terrestrial Haulers

1979021033-336



- I ![-49 ,
i 90 I I "I ;I I

%
¢

t

4,
70 4,,

60

50-
=Z

>

40-

30- -

, /20- • FORD _

• "1" YALE

/ • CLARK

_ 10- o
: &

/ b
0 I t I t i "='

0 10 20 30 40 50 60

TIPPING MASS(Tons)

Fl_ure III-q Mass of Terrestrial Front-End Loaders

1979021033-337



:_ Ill-E0

'i _ "1 I I I I I I _1 i I .... ] .... I i' ! J

Y.
70(

Including Spares and Spare Parts

m _-2.41
m h: Nominal Conditions

Case 1: With Concurrent Electrostatic Benefication
60¢

Case 2: Without Concurrent Electrostatic Benefication

m = Payload of Each Hauler

mh = Massof Empty Hauler

5O0

CASE 2
400

m

" 200

CASE

,i

100

0 ?
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

'_" MINING YEAR __

_: _,_

," Figure lll-lO Cumulative Mass of Mining Equipment '_'_

1979021033-338



III-51

1000 _ J I I I I i I I I t I I I

9OO

Nominal Conditions CASE 2
80O

m = 8
700 mh

600
>,

Ul
Z
w 400
J

z 300
z
<C

200
,_ CASE 1

100

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MINING YEAR

• Figure III-ii Net Energy Required for Mining System

1979021033-339



';_: II1-52

t

0.30

0.28

0.26 BALLISTIC TRANSPORT

0.24

/I

0.20 i"
I

,.--, t
>" 1o 0.16
= IuJ

z
uJ 0.14

O HAULER TRANSPORT
I.--
<: 0.12 m - 8
t- mh

= 7% 5% 2% 0%O Rolling Resistance,IJ
=- 0.10 "_ 1 1z

I- 0.08 _ ,, I _"_I

KU_ f ,,

0.04 ._I,PN _ _ _._

' 0.02 1 _ I
,S

0 0 2 4 6 8 10 12 14 16 18 20

GRADE, & (%} i
t

1: Ideal I

N: Nominal t

U: Unfavorable i

Ft_e I];I-3.2 Energy Requirements for Ballistic Transport
vs. Hauler Transport (One-Way)

-i :""" w,,,,."r, -

1979021033-340



IV- 1

I IV. BENEFICIATION OF LUNAR SOILS
' Summary

Following a review of: I) th_ rlectrostatic separation

f techniques, 2) the lunar environment as it may affect such
L

C

) techniques, and 3) the data available for two of the important
| .

lunar minerals _ anorthite and ilmenite, the report concludes

F that the lunar environment is about as ideal as one could

imagine for the electrostatic beneficiation of all the minerals;

._ both magnetic and non-magnetic. To predict the beneficiation

efficiencies, several analyses and experiments are recommended

to be carried out with the actual lunar soils in a high vacuum

ambient. To produce l megaton of beneficiated ore per year,

sixty combined mining and beneficiation (30 ton/hour) units are

3
recommended. Such conceptual units (approximately 12 x 6 x 3 m

overall size) will have a mass in the order of 20 tons, and power

requirements in the order of 7 kW for the b_neficiation.

A. GENERAL
Ir

, Subsequent to the considerable effort put into the exploration

of the moon and towards the advancement of man's knowledge of

" space, the building of space colonies (1'2) and/or space manufac-

turing facilities is now within the range of technical capabilities

developed on earth. Among the many contemplated space projects,

space solar power stations (SPS) [to beam power by microwaves

to earth and alleviate future energy problems] offer the greatest

:_. immediate incentive.

_ The construction of such colonies in space would become

prohibitively expensive if all materials were to come from earth.

z
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The moon and space asteroids offer far more attractive solutions.

, Based on 1975 estimates,3 the transportation cost of a mass of

' 1 kg from th_ moon to the L-5 orbit (Lagrangian sphere) is fifty

times less than the corresponding cost of launching the same mass

from earth.

Among the thousands of tons of various mcterials required for

building the SPS, aluminum and silicon are currently considered

to involve the largest mass. In addition, other materials will

be necessary, such as iron, titanium, oxygen, and a substantial

shielding mass for the people.

Following the Apollo explorations of the lunar highlands and

maria, the following basic elements, available in the lunar soils,

have been identified for possible extraction from soil and rocks:

l) Seven major elements: Si, Al, O, Mg, Fe, Ca, and Ti

2) Six minor elements: Cr, Mn, Na, K, S and P

3) A few trace elements: H, He, C and N.

The approxiamte mean composition 3 of the various soil samples

(less than l mm fraction) is shown in Table 1.3

It can be seen from the table that A]203 is in substantial

concentration in the highlands, SiO2 is present both in the maria

and the highlands, and TiO 2 and FeO are found primarily in the

maria.

The energy intensive chemical processes for the extraction

of the metals require a prior physical beneficiation of the raw

ores.

- In the background of the decision to evaluate the possibilities

of electrostatic beneficiation of the lunar soils, there were

several observations:
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; I) A large amount of the lunar soil is already in ,

fine particulate form, an essential requirement

for electrostatic processlng. 4 'r

2) The observation of the horizon glow and of the

motion of the lunar soll explained as due to

! electrostatic forces led the scientists of LPI to

" suspect very strong electrification properties of

the dust. 5

3) The lack of water on the moon ought to make the

electrostatic beneficiation, which is a dry

considerably more attractive than flotation
process,

i or the usually wet magnetic separation.

4) The vacuum conditions eliminate the problem of air

r turbulence entrainment of the very fine particles

(<40 _ nO.

5) Electrostatic methods can beneficiate both magnetic

and non-magnetic ore';, thus eliminating the heavy

masses usually associated with magnetic separators.

' Of particular interest is the vacuum of outer space which

presents an ideal environment for any electrostatic beneficiation

scheme. In such an environment, concepts and ideas which were

discarded in the past for earth-based technologies as being

economically unjustifiable and too idealistic can now comP to

practical application.

B. PRINCIPLES OF ELECTROSTATIC SEPARATION

At the base of any electrostatic separation or beneficiation

i process for finely divided matter is the interaction between an
i

external electric field and the electric charges acquired by the

various particles.
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In any such processes, while th_ external electric field

can be easily produced and controlled, the selective charging

of the particles to be separated usually requires most of the

development effort prior to the building of an industrial

installation.

B.1. GENERATION OF CHARGES

A review of what is known of the environmental conditions
t

on the moon and of the lunar soils and their electrical and i

magnetic properties points to three types of selective electri-

fication processes which will very likely find application in a

space manufacturing complex:

l) Triboelectrification

2) Conductive induction

3) Electron bombardment from heated cathodes in the

space vacuum in combination with a conductive

discharge.

B.l.l. TRIBOELECTRIFICATION

The principle is shown schematically in Fig. I. Let us

" assume that the particles placed on the Surface D are made to

repeatedly contact one another as well as the Surface D. This

is typical of a Syntron Vibrator 20 or a Travelling Electric Field 18

conveying system. If WA, the work function of the surface of

Particle A, is smaller than WD, the work function of the Surface D,

and WD is smaller than WB, the work function of the surface of

Particle B, then, upon contact and separation, Particle A will i

become positively charged, Particle B negatively charged, and

_. the Surface D will respectively acquire electrons from Particle A _

and give electrons to Particle B.
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The triboelectrification of various materials ix contact

in vacuum has been extensively studied and proven to be a very (;

Ieffective way of charging.6'7'8

In experiments on earth, it has been found that vacuum _s

essential for any fundamental studies on triboelectrification,

and particularly from the point of view of the reproducibility

, of the results. [A monomolecular layer of adsorbed gas_an

substantially alter the work function of the material.J

Tribo_lectrification is essentially a surface phenomenon, and,

as such, any transient surface changes at the point and time

of contact will have profounc effects on the charge transfer.

Generally, it involves two processes: a) a charge transfer during

contact, and b) a charge backflow just before separation. It is

known in practice that two good conductors will not triboelectrify.

As an example, consider the attached Fig. 2(a) and (b).g It

represents the experimental resdlts obtained when contacting

borosilicate glass and quartz with gold and nickel, in lO-9 Torr

vacuum over a range of temperature [(-) 45 �(+)130°C], and a

' range of applied external electric fields given by the respective

electric potential range [(-) 14 14 kV]. The potential is

considered (+) when the electric field intensity at the point of

contact is directed from the metal to the glass (or quartz). For

"pure" triboelectrification, consider the values on the ordinate

axis only (at zero applied electric field).

In vacuum, at +125°, gold and borosilicate glass when

contacted and separated will no longer triboelectrify because

! of the increased electrical conductivity of the glass. [The l
J

, electrical conductivity of glass increases some three orders of
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magnitude between O°C and IO0°C.] It is interesting to notice

_ _ in the same figure that the le_ _!ectrical conductivities

associated with the lower temperatures result in very consistent

tribo charging.

B.I.2. ELECTRIC CHARGING BY CONDUCTIVE INDUCTION

The principle is shown in Fig. 3. The positive high voltage .

electrode attracts or "induces" greater negative charges on the
w

conductive particles than on those particles assumed to be of

insulating or of smaller electrical conductivity materials. The

resultant electrical forces pull the negatively charged particles

away from the drum.

Upon separation from the drum, while still under the influence

of the electric field, the conductive particles will retain their

negative charge and be deflected towards the collecting bin.

Referring to Fig. 2, one can see the conductive induction

effects _t various temperatures. The experiments carried out at

temperatures from -55°C to ambient show the tribo charging to be

dominant over any conductive induction effect on account of the

very low conductivity of the borosilicate glass and quartz at those

temperatures. At _ 125°C, the higher electrical COnr_UCtivity of

the glass produces conductive induction charging, as evidenced

by the change in the polarity of the charge for positive and

negative fields. The gold charges positively when the field is

directed towards the gold, and negatively when directed towards

the glass. On the other '_and,at this temperature the quartz

still retains some of the triboelectrification dominance.

By proper choice and control of operating temperatures, or

i
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mere fast surface temperature conditioning, one could effectively

charge some pa,ticles by conductive induction while not charging

others.

Of further interest in understanding the advantages of

; electrostatic beneficiation of ores in vacuum, are experiments

i carried out in air at various relative humidities, lO Fig. 4
!

shows the electrification of pyrex glass in contact with stainless

: steel in air at four relative humidities. At very low relative
i

humidities the triboelectric charging is effective and dominant

over the electrification by conductive induction. At relative

humidities in excess of 60%, the triboelectrification disappears

on account of the charge backflow.

The advantages of a vacuum environment for generating tribo

charges are obvious.

B.l.3. ELECTRON BOMBARDMENT FROM HEATED CATHODES IN SPACE VACUUM

IN COMBINATION WITH SELECTIVE CONDUCTIVE DISCHARGE

Corresponding to the corona charging which is used in various

beneficiation applications in an air environment, an electron

bombardment from heated cathodes ueuld be used effectively for

electric charging of ore particIcs in vacuum. To achieve a

selective discharge, the ore falls over a rotating drum maintained

at ground potential. The conductive particles lose their charge

and fall into the first collecting bin (see Fig. 5). The charge

on the insulating particles remains and the particles stay

attached to the drum held by the image charge until they are

scraped off in the second collection bin.

B.2. THE EXTERNAL ELECTRIC FIELD FOR SEPARATION OF PARTICLES
£

Once the particles are charged selectively, and assumlng

?

1979021033-347



_ IV- 8

' that they are allowed to fall freely under gravity forces in

< . an applied, horizontal, electric field, they will acquire a

horizontal acceleratio_ component.

The horizontal acceleration intensity and direction are

determined by the polarity and magnitude of the charge, by the

direction and magnitude of the electric field, and by the mass

of the particle. Positively charged particles will move in the

direction of the field, negatively charged particles will move

in a direction opposite to ti}atof the field. The initial

horizontal acceleration of each particle will be proportional

to its charge to mass ratio and to the intensity of the electric

field.

From the above it is obvious that when one uses the tribo-

electrification procgss, all positively charged particles will

move in a direction opposite to that of the negatively charged

particles regardless of their charge to mass ratio. Given

sufficient time and space to spread, there will be a complete

separation of the two types of particles. Hence particles with

different surface work function may be very effectively separated.

If one chooses conductive induction to charge the particles,

the separation is based primarily on the difference in the

electrical conductivities of the materials at the time of processing.

With proper design and strategically located collection bins,

both triboelectrically and conductive induction charged particles

may be also partly s_parated according to their size on account

of the specific charge to mass ratios.

An important advantage of beneficiatlon in vacuum is the

intensity of the electric field which may be applied. Whereas

....... _ A
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in air, the electric field intensities are generally less than

30 kV/cm, in the high vacuum of the outer space the field could

: be raised to 300 kV/cm or more.

It is of interest to note that when charged particles are

placed in a uniform electric field, the distortion of the field

produced by the concentration of the field lines on the particles

results in an enhancement of the resultant forces (ref. 4 - copy

of the _ertinent section of the paper in Appendix D shows the

calculatior of such forces under ideal conditions).

In summary, once particles are charged by one of the three

methods outlined abeve, the external electric field can selectively

separate:

a) positively from negatively charged particles

b) charged from uncharged particles

(cha_e) values.c) particles of various . mas_

C. A LOOK AT THE EXPECTED LUNAR MINERAL BENEFICIATION TO BE

CARRIED OUT ON THE MOON SURFACE

C.l OVERVIEW

For a realistic estimate of the expected electrostatic

beneficiation of a particular mineral, it is necessary that the

following data be considered:

l) The frequency distribution of the content percentage

of the sought mineral in discrete particles for the

entire particle-size spectrum in the ore.

2) The triboelectrification and conductive induction

properties of the various particles forming the

lunar ore to be processed.
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3) The influence of temperature on the triboelectri-

fication and conductive induction properties of

! the ore particles.

_ The size of the particles in the lunar soils is in

! an ideal range for electrostatic benefication. II The mean

grain size of lunar soils ranges from 40 to 802 _m with most

i falling between 45 and lO0 _m as seen in Fig. 6.

Lunar solls are poorly to very poorly sorted, with

sorting values (standard deviations) ranging from l.gg

to 3.73 ¢, and many exhibit a bimodal grain size distribu-

tion. There is an inverse correlation between the mean

grain size and sorting values, with the coarsest samples

being the most poorly sorted.

The weight percents in each grain size fraction are

shown in Table II for Apollo II _oil -- I0084 -- which is

a typical _are soil. Note that about one-fourth of the

soil is finer than 20 _m."

Under the high electric field intensities which can be used

'" in the vacuum of outer space, and with particles f_._llingunder

the influence ot the low lunar gravity, it is estimated that

particles as large as 2 mm in diameter could be successfully
i

charged and separated; as such, referring to the same table, only _!

4 06% of the weight may have to be eliminated by coarse sieving• i
J.

prior to the beneficiation of the ore.
i

Regarding the actual minerals' distribution among the various

particle sizes, any successful electrostatic beneficiation will

, require that a good number of discrete particles or grains have

,m

<: •
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a substantially higher content of the sought mineral than the

average content in the whole ore, and that a good portion of

the mineral is exposed at the surface of the particle. As the

electrostatic beneficiatlon is a physical separation process,

it would be futile to attempt to bcneficiate any mineral value

which is evenly distributed among all discrete particles.

For a conjectured estimate of what could be achieved electro-

statically in the moon environment, with the moon soils, two

minerals have been chosen -- anorthite and ilmenite. The two

minerals are of major interest as raw materials for chemical

production of aluminum, silicon, titanium, iron and oxygen.

Furthermore, as all the surveying to date has failed to reveal

any anorthite or llmenite-rich regions on the moon, a beneficiation

of the two minerals will very likely be necessary in any contemplated

processing of these. Although the frequency distribution of the

anorthlte and ilmenite content percentage in discrete particles

is not yet fully documented for all size ranges of particles in

the various lunar ores, some assumptions could be made on the

basis of what is already available.

At this time there is no data for the triboelectrification

and conductive induction properties of the lunar soils, nor is

there much from the earth data which could be used. Apart from a

few reported vacuum studies with pure metals and plastics, any data

which we have on the trib_electrification and conductive induction

of the minerals on earth are based on measurements taken in air,

at atmospheric pressure. As a monomolecular layer of gas adsorbed
i t

on the surface of a material is sufficient to substantially change
-I

,Z
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the work function of that material, none of the existing data

on minerals is usable.

Regarding the influence of the temperature on the

triboelectrification and conductive induction, here again there

is no experimental data available which would be directly applicable

to the lunar soils.

However, considering that the lunar environment is an ideal

environment for an electrostatic beneficiation process, i.e.,

i) vacuum

ii) low temperature

iii) the gravity acceleration one-sixth of that at

the earth's surface,

there is every reason to be optimistic that, with proper research

and development work, the efficiencies of beneficiation of the

lunar ores (both magnetic and non-magnetic) will surpass anything

that is currently achieved in the processing of millions of tons

of ore in various facilities on earth.

C.2 MINERAL TYPES

Anorthite (Ca Al2 Si2 08)V

Anorthite is considered to be the lunar aluminum ore, with

silicon and oxygen as bi-products.

By weight percentage, the anortnite elements are:

19.4 aluminum

20.2 silicon

14.4 calcium

46.0 oxygen.
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Based on the analyses of Al203 content* in the various

• luanr soils, and assuming a normatlve percentage of 36.6 for
i

anorthite, it has been estimated that certain soils in the high-

lands of the moon contain an average 60% of anorthite, whereas

in the maria the average anorthite content is 35%.

Let us consider the analyses of the sixteen samples from

the Apollo 16 mission reported in reference 12. For the 90

to 150 pm particle size range, if one takes only those discrete

grains of anorthite ore which have greater than 90% purity, they

represent 43.5% of the ore processed for beneficiation.

In addition to the pure anorthite grains, the anorthite

mineral is also distributed in a smaller percentage content in

the remainder of the particles.

On the basis of these samples, and assuming the total anorthite
ii

content in the lunar highlands to be 60%, one could draw the

beneficiation curves shown in Fig. 7.

The horizontal axis shows the percentage ore extracted defined

as:
J

total amount of ore extracted for future
chemical processing

total ore (after the coarse sieving) processed
in the beneficiation plant or mobile units

The vertical axis represents the anorthite extract content

defined as: !
total anorthite in the ore extracted . i

total extracted ore

*Whereas the Al203 content in various lunar soils is very well

documented, the data on the anorthite mineral content in discrete
particles will require more cuantification.

I
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The top line represents the ideal case where the electro-

static unit could fully benefictate the material. In such case,

for example, by separating 43.5% of the material, one would

obtain >90% pure anorthlte, In the same ideal case, if one

wanted to make use of 60% of the mined material, that amount of

ore Would have a total anorthite content of 75% (point M on the

graph).

The horizontal lower line represents a completely ineffective

electrostatic beneflciation. Assuming well mixed grains of

anorthite and other soils and a uniform extraction, regardless

of the percentage of material separated, the original anortlite

content of 60% will remain the same in all fractions.

The segmented line is what the real beneficiation may look

like: it represents some value between the other two lines.

This curve could only be estimated after the triboelectrification

and the conductive induction properties of the materials are known.

Through research and development in the areas outlined in

Section B, the beneficiation efficiency could undouotedly be

improved further towards the ultimate objective, represented by
J

the ideal line.

A second example of the possibility of electrostatic bene-

ficiation of anorthite is based on the data presented in reference

13. It deals with very fine particles, less than 37 _m diameter,

which were individually analyzed from five Apollo 14 surface

samples and five Apollo 14 core samples.

Out of a total of 2427 particles which were individua]ly

analyzed, 415 of them were plagioclase feldspars (90% cnorthite

content).

IW
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Figure 8 shows a conjectured beneficlation curve for this

ore. The top line is the ideal beneficiatlon. By extracting

17) of the grains, one could expect "pure" anorthite. Any

quantity in excess of 17) will reduce the anorthite content as

shown. For this particular analysis the total percentage of

anorthite in the ore {not given in the report) was also assumed

at 60. go) is considered "pure".

The actual beneficiatlon curve will be represented by the

segmented line on which one could choose the operating point M.

At point M, by extracting lO) of the ore, the anorthite content

will be 85).

In summary, if one assumes that the two cases shown are

indicative of major areas of the lunar soils which could be mined,

and that the triboelectrification and conductive induction

properties of the anorthite are at least as favorable as those

of some other ores which are electrostatically separated in the

earth's atmosphere, the electrostatic enrichment of the anorthite

ought to be fully investigated in well simulated lunar conditions.

" While the anorthite is thought to be available in large

quantities in the lunar highlands, an investigation of the mare

soils for the electrostatic beneficiation of the mineral is also

recommended. As will be seen in Section D, mobile combined mining

and beneficiation units are recommended which will dump the

rejected fractions at the place of mining. Only the beneficiated

material will be transported to the chemical plant. Depending on

the number of beneficiation stages required and on the efficiency
J

of separation of the anorthite from mare soil as compared to that
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: of separating it from the highland soils, it may be that the

beneficiation of the anorthite from the mare soils, in combination

_ with the beneficiatlon of other minerals such as ilmenite
and

i pyroxene, could be economically justifiable.

Ilmenite (Fe Ti 03)

The type of ilmenite mineral found on the moon is considered

to be, by earth's standards, an acceptable ore for producing
e

titanium. It contains 31.6% titanium and 36.8% iron. It occurs

in small amounts in highland rocks and is more abundant in the

mare soils.

Due to the nature of the electrostatic forces, any contemplated

beneficiation of this mineral will have to confine itself to the

lunar regolith rather than to larger sized rocks. [Analysis of

scme mare rocks shows substantially higher ilmenite content than

in the regolith.]

It is estimated 12 that the go - 150 _m fraction of the lunar

regolith contains an average of 4.6% ilmenite, and that the sa_e

figure is representative for the whole soil.

." From various studies it appears that using physical methods,

90% llmenite concentrates are feasible from the mare soils.

It is also believed that the general trend is to find the

ilmenite in the finer grain sizes.

Based on the above, Fig. g shows the possible ilmenite!

beneflciation curves. The top line is the ideal beneficiation.

: By extracting 5% of the material, one could obtain 90% pure

:_ a,_rthite. The bottom line represents a completely ineffective

electrostatic beneficiation. The segmented llne is what the
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c

real beneficiation may look like; again, the true values could
c

only be _stimated after the triboelectriflcation a_d the con-

ductive _nduction properties of the ilmenite in the regolith

mixture Ire known.
In conclusion, as one looks ahead at the possibilities of

electrostatic beneficiation of all minerals from lunar soils

(both magnetic and non-magnetic), one could state that:

I) No better conditions could be imagined for an

environment in which to process the materials.

2) The orec to be beneficiated are already in an

ideal form for electrostatic separation.

3) With combined mining and beneficiation mobile

units adapted for a variety of special surface

conditionings of the minerals for triboelectri- °

fication and conductive induction charging, one

could visualize several such units, following one

ORIGINAL ._AGE IS another and each beneficiating a different
oF PoorQUALrm,

• mineral while reprocessing the waste from the

Iinitahead. As the variety of minerals is

reduced by beneficiation, the electrostatic

separation efficiency and selectivity may

substantially improve.

D. KEY STUDIES NECESSARY FOR A DEINITIVE EVALUATION OF THE

APPLICABILITY OF ELECTROSTATIC SEPARATION TO LUNAR SOILS

As outlined in the description of the principles of

electrostatic separation, any definitive evaluation will require

i an in-depth study of:

?
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l) the triboelectrification

2) the conductive induction charging and discharging.

All investigations will be related basically to a study of
d

the surface properties of the particles in contact, and of the

factors affecting the charge transfer from particle to particTe

or from the conveyor surface to the particles. 1

In the space environment, where the particle ,urfaces have _

been conditioned for a very long time by vacuum, temperature and !,
!

radiation, subject to further experimentation and thought, at

this time it appears that the only parameter to be thoroughly

investigated as to conditioning of such surfaces just prior to

any electrostatic beneficiation process is the temperature.

By introducing radiant heating and also by making use of the

temperature variation and the moon soil from: a) day to night,

and b) from the lunar surfa_ to the mining depth at the time of

processing, one may be able to enhance the surface properties of

the particles just prior to the electrostatic beneficiation.

Heating treatments involving an extremely small layer at

the particle surface would not involve large amounts of energy.

To quote from reference 14: "Heating is one cC the simplest

means by which the energy structure of minerals can be modified.

An increase in temperature causes a shift in the Fermi level

towards the center of the forbidden band, enhancing it in the

p-type and lowering it in the n-type semiconductors."

Heating processes in the earth's atmosphere are generally

associated with a change in the relative humidity, in the amount

of gases adsorbed by the particles' surface, in the surface _i

t

-_ . b
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i electrical conductivity, etc., while the ambient itself changes

from day to day.

In the vacuum of outer space one could determine the true

triboelectrification and conductive induction effects generated

by temperature changes, and any such studies will be universally

valid and reproducible.*

Temperature effect studies will have to cover a practical

range of achievable temperatures of the surfaces in contact in

the lunar ambient. The profound change from a triboelectrification I

charging to a conductive induction charging for borosilicate i

glass when the temperature is increased _rom 25 to 125°C has i_
I,

already been shown in Section B (Fig. 2).

Further ex_mples of temperature influence on separation and

beneficiation methods are given in reference 15, ..alingwith

fluidized beds, and reference 16, showing the effect of heating

in oxygen and separation at high temperature.

Agglomeration of Particles •

In the lunar environment, this is a key processing parameter

, which will have to be invest;gated. Some _udies on the electro- '
r

static interparticle adhesion 17 have shown that under tne

respective experimental conditions, the electrostatic forces

were comparable in magnitude to the adhesion forces between fresh

crystal cleavage surfaces in high vacuum.

Depending on the conveying and the triboelectrification

system chosen for the minerals' beneficiation, a recent development

*By contrast, a survey of the various publications on tribo-
electrification properties of materials in the earth's atmosphere
often shows difficulties of reproducibility, not only of the
electrostatic charges obtained, but even of the polarity of the
charge.
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at the University of Tokyo l_ may find application, not only in

the conveying of snme of the lunar fines but also in the _e-

agglomeration of such particles. The development involves

basically a stationary dielectric surface and a travelling

electric field produced by suitably designed electrodes. It

is shown schematically in Fig. 8 and Appendix B.

In such a system, fine particles placed on top of the

dielectric sheet (be they negatively or positively charged) will

all move in the direction of the travelling electric field while

describing a more or less spiral motion. The system may be an

ideal one to transport, triboelectrify and at the same time

de-agglomerate the lunar soils. A full investigation of this is

strongly recommended, particularly for the very fine ores (<20 _m)

with il_enite content.

In summary, a thorough investigation of: a) triboelectri-

fication, b) conductive induction charging, c) temperature

influence, d) de-agglomeration, and e) conveying by means of

electrostatic fields, will be valuable and essential for the
f

d{velopment of the _lectrostatic beneficiation process. The

results will be universally valid in any future processing in

space.

E. CONCEPTUAL DESIGN FOR AN EXPERIMENTAL APPARATUS TO STUDY

THE ELECTROSTATIC SEPARATION OF THE LUNAR SOILS

The apparatus is shown schematically in Fig. lO. It comprises

in a vacuum enclosu!-e (recommended capability to lO"ll Torr), an

electrostatic separation tower with two electrodes, each energizea _

by a separate power supply - one positive and one negative polarity.
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At the top of the tower a vibratory andjor travelling electric

field feeder supplies the ore which falls into the tower by

gravity. Over the surface of the conveyor belt, as well as

at the point of separation of particles from the conveyor,

there will be means of ;_eating ti_eores and controlling the

temperature. In addition, ultraviolet radiation capabilities

are envisaged. The material will be separ.,ed on a continuous

or batch-type basis in two fractions, and provisions are made

for measuring both the mass and the charge developeC. A

conveying system wi!l allow to rep,_cess either of the two

fractions. As the apparatus will hanrle the very scarce actual

lunar soils, it will have to be essentially miniaturized with

capabilities of handling a few grams of materials at a fast rate

fcr simulating the space charge and possible agglomeration

effects.

An important aspect of the study will be the rates of feed

for oFtimum triboelectrification. In case of a syntron vibrator,

sufficient data will have to be accumulated to determine the

maxi:,um ore height on the conveyor and the velocity of transport.

The electrodes in the vacuum equipment will require careful

design to take maximum advantage of the insulation capabilities

of vacuum.

The triboelectrification which develops on the static

conveyor will be of considerable interest, and it is proposed

that the minimum conveying length which will generate adequate

electrification be determined. As the triboelectrification is

also sensitive to the contact pressure between the particles,

1979021033-361



IV-22

and betweer_ the particles and the supporting surface, some

provisio_ will have to be made to take into consideration the

lower gravity acceleration on the moon surface. Also, _t would

be very desirable to have ways of analyzing the separated frac-

tions whi_e the_ are still in the vacuum environment, possibly

in a continuous way.

The same apparatus could be used for studying the conductive

inducticn charging of the lunar ores by incorporationg a rotating

drum and an inductier _lectrode immediately after the feeder.

In summary, it is believed that actual electrostatic separa-

tion experiments with lunar soils carried out in an ambient as

close as possible to that on the moon surface would be essential

for the contemplated project.*

Regarding the actual lunar soil which will be processed in

the apparatus, it will require a very careful analysis, practically

grain by grain, and in conjunction with the experimental apparatus

the development of a fast analysis technique ought to be pursued.

_. CONCEPTUAL DESIGN OF A LUNAR FACILITY FOR PRODUCING l MEGA-

TON OF BENEFICIATED ORE PER YEAR

It is recommended that the electrostatic beneficiation p_

the various minerals be carried out with combination (min;n. "'d

beneficiation) mobile units for processing 30 tons/hour. _ssuming

an app_'oximate 20% overall yield, and 2700 operating hours/year,

sixty units will produce l megaton of beneficiated ore per yea_.

*Facilities are available at the Applied Electrostatics Laboratory
at the Faculty of Engineering Science of The University of Western
Ontario, and at the NASA/J.S.C. Laboratories which are suitable
for a joint investigation along these lines.

,°

r
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A conceptual design of such a unit is shown in Fig. II.
b

Assuming that the lunar terrain is relatively flat, that

the mined trench will be approximately 2 m deep and 2 m wide,

and that the density of the ore i_ 1.8 kg/dm 3, the entire

processing unit will travel at a snail's pace of 4.2 m per hour.

During the slow motion there will be sufficient time for an

automatic self-levelling system to maintain the unit horizontally.

, The "mined" lunar soil will be lifted by a sideloader to the

first feeder in the mobile unit. The overall dimensions of such

a unit are envisaged as 12 x 6 x 3 m3. However, both the mass

and the dimensions of the unit will be substantially influenced

by the actual beneflciation resu1_s and the number of beneficia-

tion stages which are required. In the conceptual design it was

assumed that the two stages would be sufficient.

On account of the unique mining conditions on the moon where

the raw material is ready to process immediately, it is realistic

to envisage that a second unit designed to betleficiate another

mineral component of the soil could eGsily reprocess the waste

" from the first unit which would otherwise be dumped back into

the same trench.

The general steps of a beneficiation process are shown in

Fig. 12. The raw material is coarse-sieved, possibly electro-

statically sized and then processed through one or several

beneficiation stages. Fig. 13 shows schematically a conceptual

design for a mobile unit using triboelectriflcation as the charging

process. The material lifted by the sideloader on to the vibratory

screen and conveyor is coarse-sieved. The larger fragments fall
L

\,

4 ,_ i
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back into the trench and the n,aterial to he processed goes on to

_ the syntron or travelling electric field feeder for the first

stage processing in the beneficiation tower. The rejects from

the first stage are directed back to the trench and the beneficiated

material is lifted up again for a second stage triboelectrification

and processing tower. The final beneficiated material is assumed

to be transported by fast-moving vehicles to the chemical

processi,mg site.

In the mined trench there will be essentially three layers

of waste matprial. For the particular arrahgement shown in Fig.

13, the rejects from the second stage beneficiation tower will

be at the bottom of the trench followed by th_ rejects from the

first beneficiation tower and the coarse-screening rejects on top.

With relocation of the various beneficiation stages there is no

reason why the three waste layers could not be deposited back

into the trench in a different order, or fed directly to a second

mineral. Table Ill shows the very approximate weights of the

envisaged units, power requirements, overall dimensions, etc.

An alternate possible arrangement of the two beneficiation

stages with tribo charg(no is shown in Fig. 14. The final design

height may be sufficiently small to allow such an arrangement

which could eliminate ohe conveyor.

For the separation of electrically conductive ores from the

less conductive ores, Fig. 15 shows the conceptual design of a

unit similar to that shown in Fig. 13 except using drums and

induction or heated cathode electrodes. Dimensions and power

requirements have been assumed comparable to those of the unit

in Fig. 13.
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Also, for earlier considerations of lunar soil beneficiation
I

schemes, a review of reference 2! is highly recommended.

• Regarding other ideas for future construction of the

beneficiation apparatus, Appendices K of the report include the

drawings of seven pertinent patents for processing ores on earth.

G. CONCLUSIONS

I. The lunar soil is already "comminuted" in an ideal range

for an electrostatic beneficiation of the minerals.

2. The lunar environment is about as ideal as one could

imagine:

a) Sustained high vacuum

b) tow temperature (at night)

c) Acceleration of gravity one-sixth of that of the

earth's surface.

3. The soil may be used directly from the mining trench

into the electrostatic beneficiation units. Only an

initial coarse screening will be required prior to

, processing.
r

4. The ore body being located on _ore or less flat surfaces

and at the very surface of the moon, simultaneous mining

and beneficiation is recommended.

5. In order to estimate the maximum expected beneficiation

efficiencies for the lunar soils, it will be necessary

to carry out a detailed study of the respective soils

to determine the frequency distribution of the sought

mineral content percentage in discrete particles for

the spectrum of particles in the ore.

.

_,d r
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6. Three ways of electric charging of the lunar soils for

electrostatic beneficiation appear attractive at this

time:

a) Triboelectrification

b) Selective conductive induction charging

c) Heated cathode charging and selective conductive

induction discharging.

7. The design of the separating equipment can only be

decided upon afte_ an experimental study of the:

a) Triboelectrification properties of the sought

minerals when contacting the other components of

the respective soils

b) Conductive induction properties of the minerals in

the lunar soils

c) Temperature effects on the separation efficiencies.

8. It is recommended that combined mining and beneficiation

mobile units ("electrostatic worms") be built to each

process = 80 kilo tons/year. To process the envisaged

= 5 mega tons/year, sixty such units will be required.
f

The units could be made to operate in series or in

parallel. When operating in series, some units could

beneficiate a second mineral using the waste produced by

the units ahead. The final waste will be dumped back

into the trench from where th_ ore was mined in the first

place.

It is recommended that in the first year only one such

unit be built to gain operating experience, and then in |
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subsequent years build the number of units dictated by :_

the production requirements. The standardization of

the construction of the units wi]l offer distinct

advantages, both in the manufacture and in the maintenance

of the equipment.

9. The size of such mobile units will be in the order of

l_ x 6 x 3 m3 and the expected mass approximately 20 tens.

lO. It is expected that the beneficiation power requirement

to operate an individual mobile unit will be 7.0 kW.

II. The beneficiation units will process both magnetic and

non-magnetic materials.

12. Critical to immediately pursue the development of a small

apparatus and technique to carry out some preliminary

work on such separations.
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I. TABLES

Table I. MEAN COMPOSITION OF SOIL SAMPLES (< l mm FRACTION)

Maria Highlands !

Apollo Apollo Apollo Apollo Luna Luna Apollo
II 12 14 15 16 20 16

SiO2 42.04 46.40 47.93 46.61 41.70 45.40 44.94
(

TiO2 7.48 2.66 l.74 l.36 3.38 0.47 0.58

Al203 13.92 13 50 17.60 17.18 15.33 23.44 26.71

FeO 15 74 15 50 I0.37 II.62 16.64 7.37 5.49

MgO 7 90 9 73 9.24 I0.46 8.78 9.19 5.96

CaO 12 Ol lO 50 ll.19 II.64 12.50 13.38 15.57

Na20 0 44 0 59 0.68 0.46 0.34 0.29 0.48

K20 0 14 0 32 0.55 0.20 O.lO 0.07 0.13

P205 0 12 0 40 0.53 0.19 -- 0.06 0.12

MnO 0 21 0 21 0.14 0.16 0.21 O.lO 0.07

Cr203 0 30 0 40 0.25 0.25 0.28 0.14 0.12

Total I00.30 lO0.21 I00.22 lO0.13 99.26 99.91 lO0.17
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TABLE II-10084,853 OLD SOIL

Weight Cumulative Weight
Percent Percent

4 - I0 mm 1.67 1,67

2 - 4 mm 2.39 4.06

1 - 2 mm 3.20 7.26

0.5 - I rr[n 4.01 11.27

250 pm - 0.5 mm 7.72 18.c9

150 - 250 pm 8.23 27.22

90 150 pm II.51 38.72

- 75 90 pm 4.01 42.73

45 - 75 _._n 12.40 55.14

20 - 45 pm ]8.02 73.15

< 20 pm 26.85 I00.00

F

1979021033-373



_' IV-34

* TABLE Ill - CONJECTURED DATA FOR A COMBINED MINING
,_ AND BENEFiCIATION UNIT

,}

Processing rate 30 ton/hour

Overall dimensions 12 m long

: 6 m wide

3 m high

Power High Voltage Power Supplies 0,5 kW

(a two-stage unit) Conveyors and Feeders 6.5 kW

Total 7.0 kW

Mass assumed mainly Al 20 tons

Progressing velocity 1.2 mm/s

while mining a 2 X 2 m2
i

trench

i"

" *In Table Ill: l) The mass of the unit has beenestimated,starting

fromtb_,mass of an equ,valentfront enc_loaderand addingan estimated .:

ma_s of the conveyingand electrostaticprocessingcomponents. -

2) The powerrequirementslistedexc]udethe rower

necessaryto mine the ore, which is coveredin a separatereport.

3) The overalldimensionswere primarilydeterminedby

the sizeof the dilutephase streamsof particleswhichwill be iq

beneficia,d. I_'

1979021033-374



J,"

; " 197902-IC
,,, 4m¢



IV-36
i

i

A',i)_'_'___ "I0 A" ' "_o ..... _" '

06 I-I
.1 i 1 i , , i , I * • , * i I I

I0 10 ,10 10 _

A

........ t .............. t ........

Vo.og¢kV _ VoltogckV
' ' ' I_ " ' ' "-I-"-'--"_-'-[o _ ' ' ' ' ' _ _ ' " .......

FIG. 2. (a) Electricchargesdevelopedon goldcontactingborosilirateglass
; plottedagainstvoltage: A, +125 to +130°C;B, _25°C;-55 to lq°C.

(b) Electricchargesdevelopedon gold contactingquartzplottera_inst voltage.
A, +125 to 130°C;B, +25°C;C, -45 to -17°C. (c) Elec+.:-iccilar'gesdeveloped
on nickelcontactingborosilicateglass plotted againstvn_ta_e: A, +125°C.
B, +3_°C;C, -45 to -25°C. (d) Electricchargesdevelopedor,nickelcontacting
quartzplottedagainstvoltage: A, +125 to +130°C;B, +30°C;C, -45 to -20°C.
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FIG, 4, RELATIVE HUMIDITY AND EXTE,_NAL ELECTRIC FIELD
INFLUENCE ON THE ELECTRIFICATION OF PYREX GLASS
IN CONTACT WITH STAINLESS STEEL [Greason, 1972]
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t

- GRAIN SIZE DISTRIBUTIONIN LUNAR SOIL
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90 12C28
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I
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GRAIN SIZE,mm

FIG, 6, CUMULATIVE GRAIN SIZE DISTRIBUTION FOR LUNAR SOILS,
MOST SOILS LIE WITHIN THE ENVELOPE, TWO PARTICULARLY
COARSE SOILS ARE ALSO SHOWN, NASA PHOTO S-76-30404.
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FIG, lO, CONCEPTUAL DESIGN FOR AN EXPERIMENTAL APPARATUS
WITH WHICH TO STUDY THE ELECTROSTATIC SEPARATION

OF THE LUNAR SOILS ON EARTH
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FIG, 12, ELECTROSTATIC BENEFICIATION OF ORES
MATERIAL FLOW CHART [GENERAL CASE]
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K, APPENDICES

A. PATENTS

1. U.S. Patent 01,116,951 - "Process of E_ectrtcal Separation,"

H.M. Sutton and W.L. & E.G. Steele. Nov. 10, 1914.

2. U.S. Patent 02,805,769 - "Benefictatton of Nonmetallic

I -Minerals," d.E. Lawver. Sept. 10, 1957.

,,
3. U.S. Patent 03,24_,225 - "Electrostatic Separation Means,

O.M. Stuetzer et al. May 3, 1966.

4. U.S. Patent #3,477,568 - "Electrostatic Separation of Round

and Nonround Particles," R.W. Madrid. Nov. II, 1969.

5. U.S. Patent #2,328,577 - "Process and Apparatus for Grading

and for Coating with Comminuted Material," N.E. Oglesby.

Sept. 7, 1943.

' ) 6. U.S. Patent 02,106,865 - "Method and Apparatus for Electrostatic

_ _ " T Bantz et al Feb I, 1938,- ! Separation, ....

i "7. U.S. Patent 0668,791 "Process of Electrical Separation of

_ Conductors from Non-Conductors," L.I. Blake and

L.N. Morscher. Feb. 26, 1901.
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_. B. TRIBO AND TRAVELLING FIELDS
.w

•. (Excer_ �from"AppZi_t_on_of _ZeetrioCurtain£n the FieZd of
E_ectrost_tio Powder Coating"j S. t_zsuda, S. Hori and T. Itch.

Speech at the 1975 Conference of the Electrostatics Society of

,_ America, Univ. of Michigan, June 24-26j 1975.)

T

. 1. Introduction

A set of parallel cylinder electrodes, insulated from each other and con-

nected to a single-phase or poly-phase ac source, forms In its surroundings

a series of non-unlform standing or travelling wave fields, which act on

charged particle cloud just llke a contactless barrier or contactless

conveyor. The apparatus based on this princlp]e was named "Electric

i Curtain". In the practical u._eof the electric curtain apparatus, it oftenbecomes necessary to combine suitable dielectric sheet In contact with the

._ _ electrode series, in order to prevent leakage of poorly charged particles.

i I) In thls case however, It was observed that, without any pre-
(Fig.

! charging, the powder deposited on the sheet could someti_ be violently

: _ ejected into space and then transported,
q

_' i: cylinder electrodes

'. /\powderi; r • -- sheet

i ?,
.. .¢.'".:... q_f

-- '_fd

'J 3-phase ac source

Fig. I Structure of contact-type electric curtain (travelling wave type)
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t

Considering this special effect brought about by the contact sheet, one ;

of the authors named this type of the apparatus "Contact-type Electric

Curtain". Based on its possible action of exciting contact-electrification,
i

the dielectric sheet was named "Exciter ''(1). The contact-type electric

I curtain has various fields of application, such as powder feeder, powder

_nveyor, powder recovery apparatus, powder gun for powder coating, dust

removal device for cloth filters, etc.

In this paper, the applications of both the contact-type and nuncontact-

type electric curtain in the field of electrostatic powder coating are

reported, with special emphasis on Electric Curtain Booth (2), which allows

quick color change and highly efficient recovery of overspray and the Inside

lining system (3) with powder paint for small diameter steel pipes.

I
! ',

t

Photo. 1 Ejection and transport of powder deposit (polyethylene powder paint)

ORIGINAL PAGE I_ L

OF POOR QUALI'_

,|
i
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C. FORCES ON CHARGEDPARTICLES

(_cerpt from '_ctroetatge8 in Industry", I.Z. IncuZet. dournaZ

of Electros_8, 4, _o.2, 17_-192, 1977/1978.)

2. I Forces on eo.duchue spherical Imrlicles of radius r placed into a uniform
, electric field Eo in air at standard pre_ure and temperature

Referring to Fig.l:
(a) The electric field is distorted as shown. On ti)e surface of the particles,

the field is perpendicular to it and varies sinusmdally, reaching a maximum of
three times the value of go along the z-axis.

(h) Two equal and opposite resultant electrostatic forces FR appear which
tend to pull the particle apart.

(e) If the particle is a liquid, ifwill change its slmpe becoming elongated,
and if the surf,_.ce tension is exceeded by the electrostatic forces, the particle
wiU break into two or more particles -- some positively, and an equM number
negatively, charged.

Z2 Maximum force on a conductiue spherical particle of radius r charged by
iomt I,ombardmc.t to saturation and placed in a u.ifc)rm electric field Eo

Referring to Fig.2. where it is assumed that the s.turation charge is repre-
._..ted by the situation in which no field lines of E0 land on the cha:ged
p,_.icle and that the resultaat electric field intensity at the upstream point
El,.= O:

(a) Under these conditions, the resultant, electric field intensity on the sur-
h,ce of the partk.le can be described by the sinusoidal expression Er = 3 Eo
(1 + cos 0 ) mxJhema maximum value of 6go.

i

I

I "_ // ,

_ It. I

, I

• ! t-
r I J

! t
I !

_i'_/. Fi¢, I. Conductive spherical particle in a uniform electric fie!d E o .

_-.q,
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Fil.2. A "fully" ©harlled¢ondueLivesphericalparticlein* uniformel_tH¢ field.

t

(b) ']'he total force on the pm-ticle = 24, eo r' Eo2.

It is worth noting that whatever is the maximum value of th,_, dielectric
strength in the particular medium (under the particular conditions of tem-
perature, pressure and radius of the sphere), to avoid the discharge of the

L particles, one must consider a value for the applied uniform electric field
. which is smaller than one-sixth of the dielectric strength of the medium.

2. 3 Size of conductive* spheres of radius r which electrostatic forces can lift
under ideal conditions using a ualue of 3 MV/r.** a_ the dielectric strength of
the air

Equati.g the electrical force with the gravitational force, one finds the
•, ma':imum radius for a spherical particle of iron to be rmax _ 1 mm, and for

a spherical particle of water, rmm__ 8 ram.

•For a dielectric material, a correction factor iS introduced

in the calculation of the saturation charge. Saturation charge

may be defined as the minimum charge which prevents any ion of

the same pola %ty which may be present in the field from landing

on the particle. Neglecting the tangentlal components o£ the

electric _ield at the surface of a dielectric sphere placed in a

uniform electric field, the radlal component may be approximated

by

Er = [2(¢r-l)/(Cr+2) + 1lIEo cos e + I].

Assuming _r ffi4, Er = 2 Eo (cos 8+ 1).

' Hence, at the maximum force conditions, the value of the uniform
electrlc field into which the charged sphere may be placed is

greater than for the conductive sphere case.

, **One must realLze that depending on the radius of the particle,
this value may be ten or more times greater. !

i
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At the other end of the scale, very small particles such as a lO-/Jm-radius
con(luctive (Irol,let of water may In: lifted by electrostatic forces which ,are

{7

i 400 times greater than that o1"gravity.Correspondingly, a 10-/ira-radius spherical particle made out of steel may
be lifted by means of an electrostatic force which is 50 times greater than

I that of the force of gravity.

2. 4 Dieleetrophoretic forces (electrostatic forces on particles itz szon-l_niform
electric fiehis)

These arise from the polarization of the matter and the particles move to-

i wards the region of increasing field strength i[ the permittivity is greater thanthat of the medium. Contrary to the forces oll charged matter, their direc-
tion is independent of the directiot_ of the electric field.

In an idealized case uf a very small neutral body which is linearly, homo-
ge_cousiy and isotropicallv volarizable, in a conservative static field at equi-
librium, the force F = (p.V)E0 where _ is the dipole vector.

!
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V. LUNAR GLASS AND CERAMIC PRODUCTS

A. INTRODUCTION

The importance of glass and ceramic as materials of

engineering is well-known. The most common examples are

found in butldtng materials and in components of equipment

. for industrial manufacturing processes. Most glass and

ceramics are based on silicates. It is of interest to

note that lunar surface materials are practically all

silicates. Thus for industry in space it is logical to

consider using lunar materials as resources for glass and

ceramic products. Indeed the utilization of lunar mater-

ials for the production of glass windows, glass fibers

and slntered ceramic bodies has already been suggested.l, 2

The objectives of this report are to sale . a few lunar

materials which are the most likely candidates for the

manufacture of glass and ceramic products on the lunar

surface or in space,to _valuate the difficulties and

uniqueness of extraterrestrial processing and to propose

some feasible techniques of manufacture.

B. LUNAR MATERIALS OF IMPORTANCE AS GLASS AND CERAMIC PRODUCTS

From available literature on lunar materials and from

knowledge on the manufacture of similar materials on earth,

the following are of obvious importance:

(1) Lunar soil as fovnd

(2) Anorthite from purified plagtoclase

(3) Sllica from slllcon oxidation

(4) Alumina and Magnesia
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I B.l LUNAR SOIL AS FOUND

The chemical compositions of three samples of lunar

_ soils3 (Apollo 11, Apollo 12 and Apollo 16) are shown in

Table I together with those of basa!ts and shale found on

earth. The similarity in chemical compositions between

the lunar soils and especially basalt is striking. Basalts

and shale are fairly low melting solids (liquidus temper-

atures 1200° to 1300°C). Both basalts and shale have been

me1_ed and processed into glass fibers (long strands) and

glass wool (short lengths). 4,7 Because of the high con-

centration of iron oxides, glasses from basalt and shale

are dark brown in color. The fibers and wool are thus

light brown in color. For thermal insulation and for

reinforcement the color is not of importance. The chemical

and mechanical properties of such basalt and shale fibers

are comparable of those of common colorless E-glass fibers.

Lunar soil, as found, that is not separated into lithic

fragments, mineral fragments, glass and agglutinates, l is

thus a very feasible raw material for the manufacture of

glass fibers and glass wool.

Some preliminary experiments have been carried out in

our laboratory on the melting of oxide mixtures correspond-

ing to the chemical compositions of Apollo II, Apollo 12

and Apollo 16 samples. The first two were readily melted
)

at 1350°C and easily cast into glass blocks. The sample
L

corresponding to Apollo 12 was easily made into glass wool.

Figure l shows the glass wool and glass made. Because of

k_
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the high content of alumina, sample 3 of Table I had to be

melted at 1500°C but the melt also formed glass readily on

cooling.

Considerable work has been down by the Russians on the

.. production of glass-ceramics from basalts. 8 (Glass ceramics

are fine-grained polycrystalline ceramics made by the con-

- trolled crystallization of glass). Because of their superior

mechanical strength and chemical inertness, such basalts have

been melted and crystallized to form tiles, pipes and other

building products. Shale has also been converted to glass-

ceramics with high tensile strength and good chemical dura-

bility. 9 We have recently been able to convert the glass

based on the Apollo 12 soil composition into a glass-ceramic.

Is _ppears that the high concentration of iron oxide con-

situtes the nucleating agent necessary for the formation of

glass-ceramics. Lunar soil, as found, will thus be a good

raw materials source for the production of glass-ceramics.

Because of their superior mechanical prepertles {with tensile

strengths in excess of 50,000 p.s.l., for instance), such

lunar glass-ceramics can probably be used as structural

components of buildings in space or on the moon.

B.2 A)ORTHITE FROM PURIFIED PLAGIOCL_SE

Anorthlte (CaAl2Sl_Oa) obtained from plagloclase, has

been suggested a raw material for colorless glass since the

FeO content is less than 0.1%.l If colorless glass is

easily made in large quantities from the fusion of anorthlte,

then obviously glass windows wi(l be a logical product.
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Although glasses have been prepared in small quantities

from the melting of anorthite, 10 it appears that the glass

can be readily crystallized from 9800 to 1100°C. 11 The

melting temperature of anorthite is 1550oc. It is not

possible to predict if anorthite alone can be used to pro-

duce glass windows since devitrification can occur. Secolldly,

:_. the melting temperature is relatively high. Thirdly, the '

_ actt';atton energy for viscosity is likely to be high and

_ there is little industrial experience on such glass forming
T_

_'_ systems. However, the melting temperature can be decreased
?

_ by the addition of small amounts of Na20 and the probability

of devitrification can be reduced by the addition of Si02.12

In general then, it can be concluded that colorless glass

windows can be produced from basically anorthite alone or

with additions of Na20 and/or Si02. The expansion coefficient

of such glasses is likely to be less than that of common

window _lass. This should be an asset for windows which will

experience large changes in temperatures.

B.3 SILICA FROM SILICON OXIDATION

Silica (Si02) is obtalnable from the oxidation of silicon. 1

If glasses or other ceramic products are to be produced, refrac-

tories must be employed as containers and/or furnace parts. q

Vitreous sillca is an ideal refractory material because of

its high glass transition temperature (1200oc). For short

• tZmes up to a few hours, for instance, silica glass can be

used up to 1700oc before distortion of shape becomes serious.

At 1500oc, silica glass does tend to devitrify to crlsto-

ballte but the rate is extremely sma11. 13 At this temperature,

the rate is only 2 x lO"6 cm/mln or about O.l cm per year.
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_'! For refractory applications, the qualtty of stlica

11 glass need not be of the "transparent clear fused quartz"

standard. The $I0= powder can be slntered (or fused) to-/ ,
Y

gether at about 1750°C to form bricks or cructOles. Be-

_:: cause fused stltca has very low expansion, such stntered
_;

_. products can undergo rapid heating and cooltng The ratet,S_ .

_: of corrosion-by molten glass such as basalt is very low

_:_ even at 1400oc. Thus fused stltca is recommended as a

_'_ refractory matertal for extraterrestrial glass and ceramic

- production.

_, B.4 ALUMINAAND MAGNESIA

If fused silica does not have sufficient stability at

temperatures in excess of 1700°C for long times, alumina

(Al=Os) and/or magnesia (MgO) can always be used. The

melting temperatures of alumina and magnesia are 2050°C and

2800oc respectively. For refractory applications, the

powder can be sintered into bricks or crucibles for use

tn glass melting.

C. PROCESSINGOF LUNARMATERIALS- GENERALCONSIDERATIONS

In the above section, it has been suggested that glass

fibers and windows and glass-ceramics (pipes, tiles and

load-bearing structures) can readily be made from lunar

materials. Containers and refractories can be made from

stltca, alumina and magnesia. In this section, the unique-

ness of processing such materials on the moon and/or in

space are brtefly reviewed. Specific examples are described |

ttn the next section.

r !
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A comparison is made of the important differences of

processing glass and ceramics on earth and on the moon or

in space, Industrial productions of glass fibers, glass

windows, glass-ceramics and refractories on earth are all

h!ghly complex technologies based on many years (and perhaps

even centuries) of learning and experience. Such technologies . :

are successful, and only successful, if the conditions of

Table ii are strictly adhered to. If one or more of such

conditions are; altered, both research and develop.lent must

. be done prior to pilot plant-scale process and .,ge-scale

production can be attempted. However, not all th- new J

conditions _re totally unpredictable or unacceptable. Of

all the conditions listed in Table II, the processing of

glass under high vacuum is the most difficult one envisaged.

The processing of fiber glass by common technique is to

allow molten glass to run down freely from nozzles in the

form of liquid streams. If the gravitational forces are

now reduced dractically, the production rate must be de-

creased significantly. Thus an established earth process

, can no longer work and an alternative must be developed.

Zero gravity permits contalnerless melting. Its advantages

:t have been described by Happe. TM Although contalnerless

melting will undoubtedly minimize refractory corrosion, it

is not always easy to apply It to glass products. For _

instance, in flat glass manufacture, highly viscous molten i

glass may be pulled upwards to form sheets. The bulk of

the melt must be retained in the furnace while the sheet is :

being pulled upwards. Contact with refractory is unavoid- {
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able. The availabilityofhigh vacuum and zero gravity can

on the other hand be exploited in the production of vapor

deposited amorphous solids of high purity. There are thus

advantages as well as disadvantages of processing glass and

ceramics in space.

Processing of glass and ceramics requires cooling water.
i

" If the amount of water needed in a normal process is to be ii_

reduced, not oilly the processing rate is altered but machinery

must be modified. In the manufacture of glass fibers (long ,_

strands) and glass wool (short strands), if yarned mats are _

the intended end-products, Gridorganic binder must be sprayed

on to the glass fibers and wool. 15 The amount of organic _
r

binder needed is approximat_ _-2% by weight of the glass

processed. This will presumably have to be transported from

earth. On the other hand, if only loose glass wool is to be

produces for insulation, the organic binder is not necessary.

Practically all industrial processes in use today in the

production of glass and ceramics utilizes oll or gas as energy

sources. Large scale uses of electric melting are uncommon

although recently there are increasing developments in this :

field. 16 It is likely that if and when large scale melting

: of glass is ready for implementation in space, the necessary ,

technology will be ready for adaptation. D_rect utiliz,_tion

of solar energy through focussing mirrors to melt glass to

sinter ceramics has been practised for many years. I/ It :

appears that "batch-type" processes (in contrast to "contin-

uous" process) should be applicable to extraterrestrial

, operations without too many problems although large volume

processing has not been studied on earth. The sintering of
r
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ceramics such as SI02, A1203 and MgO is particularly com-

patible with direct solar heating•

O. SOME SPECIFIC EXAMPLES OF PROCESSING COMMON GLASS AND

CERAMICS IN SPACE AND ON THE MOON

D.I PRODUCTION OF GLASS WINDOWS IN SPACE

Conditions: 1 atmosphere, zero gravity

Energy Source: E1ec_ric resistance

Glass Composition: Anorthite or modified anorthite

A specially designed melting furnace is shown in

• Figure 2. Flat glass is _-awn through the opening 2 of the

top _ of the furnace. The molten glass 3 is not in contact

wlth the bottol a_d walls of the furnace. A "bait" 4 is

dipped i,to the melt to start the draw upwards. The pelle-

tized batch is fed contino_sly at 5 and the hot drawn glass

cooled by compressed air at 8. The solidlfied sheet is i
w !

guided upwards by the rollers 8 and annealed inside furnace

_. The sheet is finally cut in the enclosure 9. The process

shown Is the so-cal]ed "Pennvernon" process, Horizonta'J
!

draw can be made by a so-called "Fourcault" process. Even

the "float-process" can be adopted. The most advantageous

aspect of this space process is the minimal contact with

refractory and the minlmal loss of volatile co_punents

through the closed-up furnace and radiant electric melting.

Normal energy requirement on earth is approximately lO0 kW

per tpd of glass products. 50% of this energy is actually

wasted because of massive hear loss when gas or oi_ is

combusted. It is envisaged that a space furnace utilizin_

electric heating probably needs only 50 KW per tpd*. Most

: industrlal plants on earth produce approxlmately 40C to 600

; * tpd- ton per day
/
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tons of windows per day. Such large continuous operations ,:

are obviously not suitable for space. Smaller plants, and

perhaps even "batch" rather than "continuous" processes may _

be more suitable in space.i8 _

D.2 PRODUCTION OF GLASS WOOL _N SPACE OR ON THE MOON _

Conditions: l atmosphere, zero gravity or

. 1 atmosphere, I/6th _ _,

Energy Source: Electric resistance i

Glass Composition: Lunar soil, as found
| ?

_ specially designed furnace is shown in Figure 3. The ,batch is either pelletized lunar soil or pre-melced lunar

soil in the form of marbles. The betch is fed through a pre-
|

I heater at _ and melted at 2. The molten glass runs into ai
._ rapidly rotating tray 3 and is ejected by centrifugal force

i at the nozzles at 4. The molten gla_s jet is broken-up
-i

;i into :;hortlengths by compressed air at 5 and 6. The loose

wool is collected at 7.

).) w_glass wool production plant on earth producing I0,000

! tons l)eryear would require a capital investment of about

$5 mi lion.Ig Water usage is about I0 million gallons per
!

year _nd energy need is about lO0 kW per tpd. Approximately
i

lO pei'sons are needed to operate the plant on a single shiftF

! five-day week basis.

i D.3 PRODUCTION OF REFRACTORIES ON THE MOON
i

i Conditions: Vacuum, I/6th _

1 Energy Source: Solar via focussing mirrors

! 'Compositions: _I02 or A1203 or MgO

The process suggested by Ho and Sobon can be adapted for

this plant.2 Because the vapor pressures of Si02, _1203 and
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MgO are relatively low at sintering temperatures, vacuum pro-

cessing of the pressed solid powders should pose no problem.

Tromb_ has a,ready designed the apparatus for such applicatlons. 17

Refractory bricks or panels, and indeed tubes can be made this

way.

E. SPECIAL "GLASSES" BASED ON HIGH VACUUM AND/OR ZERO GRAVITY

High vacuum and zero gravity in space has led Happe to

suggest the preparation of specialty glasses of high refractive

index through the suppression of heterogeneous nucleation. TM

The evaporation of solid oxides under a high vacuum and con-

densing the vapor on a relatively cold substrate can lead

to many "amorphous" solids.20 Non-crystalline silica made

IF this way is practically indistinguishable from melt-formed

|i silica glass. It is possible that by direct mirror focusing

_ methods, by _?ectric resistance heating or by laser, many

_ oxide powde.'scan be melted or sublimed in high vacuum. The

__I vapor, if no dispr_portionation occurs, can be collected on

4b

" a substrate. Flat plates of silica can probably be madu this

:_F way to give tra,:3parentwindows.

( High purity glass fibers made for wave-guide applications
L f

• _ cost about $I per foot for a IOp diameter fiber. Most of

these fibers are based on Si02 prepared by vapor-phase de-

_. position. Such wave-guides are predicted to become the

dominant components in communications. The $I per foot cost

is equivalent to more than $I00 million per ton of fiber.

With the possiblity of melting plus ready

containerless the

availability of ultra high vacuum, the processing of high

kkp._.._.-. ...........................
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purity glass fibers can probably be achievable at much

reduced costs in space and then shipped back to earth.

I F. CONCLUSIONS AND RECOMMENDATIONS
I

! Preliminary considerations have indicated that many _
(

glzss and ceramic products can be produced by the use of :
i

lunar materials, notably the as-found soil, anorthite,

• silica, alumina and magnesia. Ths most useful products are

likely to be glass wood for insulation, glass-ceramics for

pipes and structural loadbearing building components, glass

windows and refractories. Although the conditions in space

and on the moon are very different from those on earth for

the production of these products, the processes and equip-

ments appear to be fairly simple to develop. Obviously

laboratory scale research must first be done. The high

vacuum and zero gravity in space are particularly suitable

for the production of high purity glass fibers for shipment

back to earth as components uf wave-guides. It is recommended

that laboratory scale experimental research as well as

econonic analysis be conducted as soon as possible as the
o

next phase of a program to evaluate the above ideas and

suggestions.
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H. TABLES
TABLE I

CHEMICAL COHPOSIT:ONS OF LUNAR SOIL COMPARED

TO EARTH HATERIALS IN WEIGHT PERCENTS

l 2 3 4 5 6

Apollo !l /_pollo 12 Apollo 16 _ Basalt

SiO= 42.0 46.4 44.9 49. l 45.4 45.0

TtOz 7,5 2.7 0.6 3.2 0.6 ....

Al=Os 13.9 13.5 26.7 13.9 16.6 15.0

FeO 15.7 15.5 5.5 14.0 11.0 3.0

MgO 7.9 9.7 6.0 5.3 ll .1 lO.O

CaO 12.0 10.5 15.6 9.4 13.0 20.0

Na=O 0.4 0.6 0.5 3.1 3.6 5.0

K=O 0.I 0.3 0.I 1.3 .... 3.0

! Nos. 1 - 3 According to D. R. Criswell 3

i No. 4 Basalt froia Pullman, Washington 4

) No. 5 Basalt from Armenia, U.S.S.R. 5

_" No. 6 Inorganic portion of oil-shale from Colorado 6

*Z.

K

w

C
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TABLE I ]

IHPORTANTDIFFERENCESOF PROCESSINGGLASS

AND CERAMICSON EARTHAND IN SPACE

,.-, , • , ,.'.

: - ;'_' 'E "" Sp. : , arth Noon ace

"J_ 1. Ambient atmosph.e_'e 0 /N ....

2. Ambtent pres_u.re I arm, vacuum vacuum

3. Gravtty .1 1/6 0

4. CommonEnergy sources Oil/Gas Elec/Solar Elec/Solar

5. Industrial Water Plenty Scarce Scarce

_, 6. Organtc Chemicals Plenty Scarce Scarce
)

i-

k

L

",L

i,

\
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I. FIOURES

Figure V - l Glass wool and 81ass from the meltln8 of oxide
mlxtures correspond_n8 to Apollo 12 composition.
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i,;_ _I INTRINSIC VALUE ($1KG), TOTAL MASS (.KG)AND PRODUCTION

:.,._-. ENERGY OF SELECTED GQOOS

'__ A_. BACKGROUND

:,,_ Progressive development of a materials industry in space

._..:i will depend on acquiring a source ,Jf relatively inexpensive
_:,

_ . materlal to process into sultable industrial feedstock. Exten-

'- sive analyses have been presented in the preceding section

detailing the acquisition and processing of lunar materials

_.. in bulk. Given a source of buIk processed lunar materials for

use in space, and eventually for import of special products to I.:

the earth, It is reasonable to ask what goods in the present

United States economy can be produced wholly or in part from

lunar materials. This viewpoint will provide a means of eval-

uating several possibilities:

(l) Can significant fractions of the developed

terrestrial industrial practices be transferred,

with minimum research and development expenses,

to space to build up a productive space economy?

(2) What will be the qualitative effect on space

" industrial possibilities of sharply decreasing the

intrinsic cost of obtaining lunar materials for use

In cls-lunar space?

These questions were explored by re-evaluating the total

value (B1111ons of dollars- [IS),average intrinsic value ($/kg)

and production energy of the goods outputs of 230 of the 469

Standard Industrial Categories (SLC) of the United States

economy in 1967 and 1972. The 230 categorles were selected on
i

R
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the basis that t_,erelevant goods might be produced wholly or

in part from lunar materials and/or there would be a savings

in processing costs through the use of solar energy. The 230

SIC's were divided into two groups. The first group contained

64 SIC's which we deem most like1_ to be producible from lunar

materials. Average intrinsic value of goods in these 64 SIC's in

1972 ranged from a high of 11 $/kg (complete guided missles)

to a low of 0.285 $/kg (Iron and Steel Foundries). Total ship-

ped value of these goods in 1972 was I05 billion dollars, total

value added to the products was 60 billion dollars, total con-

sumed mass was 65 billion kilograms and total consumed energy

of production was greater than 380 billion kilowatt hours. The

cross hatched bars in figure I show how the total shipped value

oF these goods was distributed on a $/kg basis averaged over

I $/kg ranges.

Also shown in figure I are the clear or open bars which

i depict the corresponding distribution of intrinsic value ($/kg)

averaged over l $/kg intervals of 166 SIC': which are deemed_) less likely to be produced wholly or in part from lunar mater-

o_ ials. Total shipped value of the goods was 310 billion dollars,

total value added was IA4 billion dollars, total processed mass

,, was 1,577 billion kilograms and total consumed energy was greater

_. than 1,420 billion kilowatt hours. Prior to presenting the
_ tabulated data we will discuss the selection procedures for

the 230 SlC's included in tables I and II. These are 1972 data.

_.

_'_'
"c,
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To the best of our knowredge this is the first time that

the value of materials goods across a wide ranoe of industries

has been examined in this manner. As such, the results are of

Intrlnslc qualltatlve interest from a terrestrial economic stand-..
i point. It would be interesting to know the long term trends of

_V " Intr!nslc costs and total m_ss and energy of terrestrial

_: goods. Conversely, the examination of relevant SIC's will

_r provide some indication of what available industrial technologies

!;: could be transferred from the earth into space with minimum

i/ research and development costs. This approach will also offer

a means of identifying which industrial space operations and

practices must be examined in terms of "inding alternate materials

and/or processes. For example, concrete is the basis of much

of the construction industry but requires massive use of water•

In space, glass, ceramics and fiber glasses may be evolved to

: functionally replace concrete.

Successful development of a cis-lunar space economy in the

[ coming decades depends upon rapid development of viable internal
I

and "expert" industries to provide an economic justification for

" the initial investments for each venture. Long-run benefits
¢

s

such as buildln_ bases that may play a role in connection with

hypothetical future exploration and expl'itatlon of the asteroid

belt or the other planets of our solar system must be examined

carefully. They may be discounted so heavily as to contribute

very little to the benefit stde of a current cost-benefit evalua-

tion if long lead times are required.
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By definition viable internal or export industries in space

must compete successfully with the comparable activity on earth

with consideration of up and/or down transport costs. Specifically,

production costs must be enough lower in space to compensate fJr

added transportation costs including both acquisition of the raw

materials and finished goods transport• Lower production costs

may be achievable for any one of a variety of reasons, including

the following:

" cheap energy from the sun

, • cheap _ources of certain bulk materials (from the moon)

• l_ck of gravity

' • cheap vacuum

• cheap means of disposal of waste products.

These potential advantages appear to point toward certain

industries where one or more of the advantages of a location in

space are matched by corresponding disadvantages of earth. For

instance; one immediately thinks of

" manufacture o_ high quality ceramics

" manufacture of high quality glass products

• electrometallurgical processes

• electrochemical processes

• high precision metal-forming

• semi-conductor synthetic gem manufacturing

• micro-electronics

• uranium or plutonium reprocessing

However, while one can make plausible qualitative arguments
4

for some of the above, much more detailed and quantitative analysis
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" is needed to establish even a preliminary casf for undertaking I

major investments. The first step is necessary to ascertain, )

for all candidate industries, the likely transport costs for

both inputs and outputs ---which means tilemass _ in relation

to the econonlicworth of the product. Hence it is helpful to

i characterize each industry in terms of its average product value
per Unit mass of inp,ts ($/kg). This task (among others) is

undertaken in the present paper.

!
B. SELECTION CRITERIA

!t will _e obvious on reflection that dollar' value per

kilogrcm of output is not by itself a sufficient measure. To

take a trivial example, industrial diamonds have a very high
[,

price (per unit weight), hut _re unlikely to be found on the

moon. Ner is diamond synthesis a plausible activity for a

space industry, since the known process IGeneral Electric, Co.)

involves a combination of ultra high pressures a_d tenperatures

that requires very massive production equipment. In this case

gravity is not a clear disadvantage.

It is important to consider the source of the inputs to each

" activity. The standard way of minimizing transport costs on

earth is to co-locate producers and consumers of massive or

bulky intermediate materials. Thus rolling mills are co-located

with steel furnaces which a_,ealmost invariably co-locate_ with

blast furnaces, coke ovens and c_e sintering plants. So

integrated ts the iron and steel industry that most of these

processes are conventionally lumpgd together into a single

Standard Industrial Category (SlC 331__._22).But the same principle

holds much more generally. For Instance, lt would usually make

mmmm
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no sense to produce a casting of alloy steel on the earth,ship it to a machine shop in space for grinding to specs, and

then ship it back to an assembly plant on earth. Nor would it

make sense to make paper on earth, ship it to sFace for

, printing, and back to earth for binding into books, and so on.

Thus, one can exclude as export those industries for which

the bulk of their raw materials must come from the earth. To

first order, this criterion eliminates as export industries based

exclusively on earth materials, all food-processing industries,

wood or paper products, tobacco, cotton, wool, and leather

prod....s, and fossil fuels per se. However, these industries

are not eliminated for significant roles in closed loop space

industries.

Fossil fuels constitute another complication. Space

industry will utilize available solar heat or solar electricity.

In principle, energy should be available (and cheap) in space.

But familiar solid and liquid hydrocarbon fuels would have to

C be synthesized from their'constituent elements transported from
K

"_ i the moon or partially from earth This will clearly driv_ up

process costs. C_nsequently, a number of basic industrial

processes could not be carried out in a lunar or space e_Ivironment
l

: as they are on earth. One obvious example is the reduction of

iron-ore to iron in a blast-furnace, using coke (a form of carbon)

' as a reductant. The newer so-called "direct reduction" processes

_ usin_ coal or natural gas would equally be excluded. Copper,

: lead, and zinc are also conventionally reduced from oxide ores

_c _ by similar means. Adoption of these traditional terrestrial

L

.2.C
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processes will requtre the development of capture and recycle

loops for the working fluids.

How, then, can metals be produced on an industrial scale

in a lunar or space environment at minimum costs of terrestrial

materials, assuming high qualtty sources of ore are available

" (e.g. from the lunar regoltth)? In the distant future such

devices as the plasmarc l may offer promtso, but the technology

is hardly likely to be applied on an industrial scale until

fusion power' itself is more fully developed. Meanwhile electro-

metallurgy ts a very attractive approach and is being explored

for terrestrial use and will be applicable to space operations.

Hydrogen is intrinsically scarce in the low latitude

soils of the lunar surface and consequently may have to be

imported. 2 Other possibilities are being explored, such as the

possible existence of hydrogen or methane under some of the

• craters 3 extraction from lunar water itself scarce 4-or

! ' -' extraction from lunar dust itself.5 It seems very unlikely

' that elemental hydrogen will be available in the early stages
Ti
i of i_,dustrialization on the moon in quantities justifying its

_ use as a reductant for extracting iron or other ferrous metals

• from oxides, _nless the by-product water is valued as highly

as the metal. Open-loop hydrometallurgical processes (acid or

alkali leach) can be ruled out of contention for similar reasons,

i since the chemical reagents would also have to be manufactured

I on site, requiring water. The most direct method of

,l

i obtaining ferrous metals on the lunar surface Is by magnetic

separation of metallic iron particles from the regolith. 6 This
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reduced material could be further refined to ferroalloys by

vacuul_melting (with hydrogen recovery). The most plausible

means of reductlon would seem to be electrolytic cells. However

the further metallurgical processes required to manufacture

carbon or alloy steel and steel products have not yet been

'_ defined, stlll less developed.

If a steel industry develops on the moon, it may be

limited for a long tlme to the production of a11oy steel castings
i

for local use. Low carbon steels suitable for rolling into
i

structural shapes, plate, wire rods, strip, shelp (for pipe and

tube) or shee_ are normally produced mainly from pig iron

i (blast furnace output), obtained from high-grade sintered or

pelletized ores, free from ferrous or other metallic impurities.

The metallic iron found on the moon is associated with nickel

and cobalt, which are extremely difficult to separate.

For the heavier major metals (copper, nickel, zinc, leao)

L\ the technology of acid- or alkali-leaching is fairly well-

advanced and Is becoming competitive in some cases with the

older pyrometallurgical processes. Final refining is normally

electrolytic. This means of extractiolt could be implemented in
!

,P

a lunar environment, providing suitable ores were found. However

" _ many of the geochemical processes that have produced economically

exploitable ore-bodies on the surface of the earth, have not

operated on the moon. Further explorati^n will be required if

' suitable sources of these metals are to be found on the lunar

|

surface.

As regards light metals, the regolith contains substantial

" fractions (non-hydrated) of alumina (A1203), silica (Si02), iron,

C
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I calclum anu magneslum oxides, and titanium dloxlde (Ti02).

The problem is one of efflclent physical or chemlcal separatlon

with mlnlmal water consumption. Three processes are discussed

In chapter II of this report. In a lunar or space environment

all solvents and most reagents would have to be recycled with

- very little loss, and further research wtll be required to over-

come difficulties one can expect to encounter. 7 Nevertheless,

since alumina and silica are indubitably present in vast

quantities on the moon, it seems reasonable to assume that

suitable processes for separating them w111 be available. Some

non-metallic structura_ materials, notably concrete (based on

l portland cement) and plaster-of-parls, to have
are unlikely any

t application tn a lunar or space environment, since they depend

upon a hydration reaction-which means a large amount of water

(H20) is embodied un the final product• Presumably we can,

therefore, rule out all industries based on the use of these
2,

traditional materials.

) What about chemtcal products? Organic chemicals are
wi

i:
conventionally derived from fossil hydrocarbons, or cellulose.

" These raw materials are readily available on the earth's
t

: surface while hydrogen (at least) is very scarce on the moon.
t,

Such ilmlted amounts of be extracted from lunar
hydrogen as can

t '• soll wlll most likely be required to make up agricultural and ,

I process _ater losses. Inorganic chemicals are manufacturedprincipally from the following raw materlals: i;

_, sodium chlortde (NaC1)

• pota_slum chlorlde (KCl)

• _Imestone (CaCU3)
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'. " dolomite (MgCO3"CaCO 3)
r

• trona (NaCO3)

" sulfur (S)

" fluorspar (CaF 2)

• alumina, from bauxite (AI203)
c *

_ " phosphate rock [Calo(PO 4 3/12(Co3)6+, (F,OH,Cl) 2] -

" silica

" natural gas

" atmospheric nitrogen

Most of these substances are concentrated on the earth's _,

su;'face by biogeochen_ical processes -.especially associated with

the water cycle-that have no counterparts on the moon. For

example, the chlorides (salts) accumulate in the oceans by i
J

virtue of their extraordinary solubility in water. They are

mostly extracted from brines or evaporite deposits. Natural
J

sodium carbonate (trona), as well as magnesium salts, borates and

other salts are also obtained from brines or evuporites. Calcium

carbonate mlncrals are obtained from ancient sedimentary deposits _

(oyster shell, coral) or inorganic precipitate deposits from

supersaturated ground water. Fluorspar is often associated

with contact metamorphic zones, a_ a replacement for calcite. 7

It is increasingly being recovered as a by-product of phosphate

rock. Most phosphate rock deposits also originate from phosphates _

dissolved In and precipitated from ocean water-upgraded in many

cases by secondary leaching processes.8 Most of the nat_iral

sulfur deposits currently being mined are associated with !

evaporite deposits (salt domes or gypsum), where th? sulfur was

apparently formed by hydrocarbon reduction ofanhydrite, g Sulfur
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is also increasingly recovered as a byproduct of petroleum _nd
,4

natural gas refining, coal mining and copper, lead and zinc

production. All of these activities will probably remain on _
J

the earth. However sulfur is also occasionally found in
C

unconsolidated volcanic rock and is found in the lunar

soils. Nitrogen, while not especially rare on the moon, will

not be available cheaply there.

In summary, except for alumina, magnesia, silic_ and

(possibly) volcanic sulfur, the traditional raw materials for
i

most _ndustrial chemicals are not likely to be found on the moon

in deposits concentrated enough to be competitive with earth

resources. This fact virtually rules out lunar or space based

production for export and major internal growth of all organic

chemicals, and most inorganics, including ammonia, chlorine,

sodium, potassium, sodium and potassium hydroxide, sulfuric,

hydrochloric, hydrofluoric and nitric acids, phosphoric acid,

hydrogen cyanide, urea and so on. Only silicon, titanium, oxygen

and aluminum-based chemicals appear to be candidates based on

the availability of raw materials. However, it does not rule

' out the possibility of closed loop processes in which make-up

losses and initial reagent stocks are acquired in part from the

: minor and trace elements in lunar soils. Such elements presently

known include Na, H, Ca, C, N, P, S and He.

C. METHODOLOGY

..i Based on the foregoing discussion, we have divided the
_,r

•_ existing U.S manufacturing sector into three different groups

_; of industries depending on their raw material u_age. :

.... _ . t-
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(i) In thi_ group are industries based on raw materials

that may eventually be obtainable on the moon, viz.

electrometallurgy, glass, ceramics, light and specialty

metal working and fabrication, electrol.ics.

(li) I_ this group are.industries based on raw materials

less likely to be available in concentrated

: depo_it_ on the moon, requiring significant terrestrial

makeup or that require major process modifications from

terrestrial practices. Examples include pyrometallurgy

' (based on coke or hydrocarbons), rolled or forged steel

products, copper, zinc or lead products, industrial

chemicals, plastics, textiles, and concrete products.
l-

Also, industries whose products are bulky, in relation I_

to value. This applies to impure fabricated fil}al

products, such as appliances and vehicles. I

(iii) In this groJp are industries based on raw materials only Ii

Iavailable on earth, viz. agriculture, forestry, food

processing, leather, paper and wood products, and !_
i

fossil fuels per se, plus asphalt, arldnon-fuel
, !,_

f petroleum products. Service industries are also

I included in this group.

/ The third group (239 sectors) will be omitted from further

'; _onsideration, while the second group (166 sectors) will be

_ included in the following analysis, but listed separately. The i

first group (64 sectors) constitutes those manufacturing industri_

that, based on present (or anticipated) technology, appear most

suitable for lunar or space locations.

K

K
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To calculate an average product value per unit mass of

inputs ($/kg) there are two basic data requirements, viz.

sectoral outputs (in dollars) and sectoral inputs in mass

units (kg). The former data are systematically gathered and

compiled by the Census and the Bu:-eauof Economic Analysis (BEA)

of the Department of Commerce. The major choice to be made for

purposes of this paper is the level of aggregation. For reasons

that will be explained later, we have mainly utilized the 484

sectoriza)ion scheme defined by the Commerce Dept., for which

input-output coefficients and sectoral outputs are readily

available (on magnetic tape or printouts) for the base-year !
1967 lO A slightly more aggregated version fcr 367 sectors has i• i

II
been published by the Dept. of Commerce. "Raw" output data

I

is also available in the Census of Manufactures for 1967 and

1972.12 These unadjusted data do not correspond exactly to the
i

output figures used in th_ Commerce I-O model, but can be used
i

for purposes of extrapolation, as will be described hereafter.

The major difference is that secondary outputs of all industries

are counted twice in the I.Oo table, first as part of the output ;

of the producing industry, and again as part of the output of

the primary production of that product. This phantom transfer i

results in an inflation of all sectoral outputs.

The major problem for us has to do with computing material

iinputs in mass (kg) units• Data on "materials consumed, by kind"

are gathered and published for each sector by the Census of

Manufactures, but this data is incomplete and difficult to use.

: First, the quantity measures that are used do not necessarily
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correspond uniquely with mass. For example, lumber is

measured in board-feet, plate glass in square feet, liquids in

g_llons or barrels, gas in cubic tent, textiles In linear yards,

cotton in bales, grain in bushels, electric motors in "units"

and sQ on. While these measures can b_ converted roughly to

weights, there are no exact numerical equivalences. Different

types of fabrics have different weights per yard, and the mix of

fabric types produced by a sector might change from one year to

another.

Second, there are many omissions in the published Census

figures. By law the Census cannot publish data that tend to

reveal commercial relationships. Thus, when a commodity is
-(

supplied by only one or two firms, the figures are withheld.

This results in a tendency to underestimate input quantities.

Third, some input materials are obtained from non-commercial

sources. This applies particularly to atmospheric air and process

i water. To the extent that these materials are ,ised by ind'stry,

the "Materials Consumed by Kind" tables are incomplete. Water

consumption is covered elsewhere in the Census of Manufactures,

but the distinction between water "used up" or water embodied

t in a product, and water used as a diluent for wastes is inadequately .

,i
maintained. For the purposes of this paper, the Census data on

water use are not helpful.

F Fourth and finally, some industries as aggregated by he
z:

Census or in the Commerce I-O table-notably industrial cher,licals--

manufacture most of their own inputs. Th6t is to say, the Census

_ of Manufactures lists as "inputs" to each subsector of the

, chemical industry a number of chemicals that are _Iso outputs of

]_ the industry. The only satisfactory way of handling the chemical
C
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• industry is to divide it into individual processes or complexes

of processes that are naturally co-located. This is far too

complex a task to undertake within the modest scope of this paper.

_- Considering the unlikelihood of major chemical manufacturing in

space from lunar materials, due to raw material unavailability,

it does not seem worthwhile to examine this particular industry

in greater depth at present•

, Of course most industries consume some already processed

material_ or components manufactured elsewhere. There are

several possible approaches, but the one we chose was determined

by the fact that a previous study had been carried out by
i

i Research Triangle I_stitute which computed both direct and

d i)'ectplus indirect consumption of certain finished materials:

steel, aluminur,1,glass, pap_.', rubber and plastics, in kg_

; by all 484 Commerce sectors in 1967. 13 This list covers most

of the material inputs to a great many of the "downstream"

sectors of the economy though being conspicuously irrelevant

to most of the primary materials extraction or processing

?_' industries per se For instance, the RTI lis+ includes

_; : virtually none of the material inputs to the metallurgical or

;: chemical industries; nor does it cuver other mineral such as

' sand, lime, cement, gypsum, and their products (structu_:,l

materials, pottery, ceramics). Nor does it include wood pru_ucts

or textiles of any kind.r,

It is plausible to assume that all materials on the RTI
Z

list are "finished" in the sense that they are recognizably in?

:. their final form. Uses by downstream consumers generally involve

\'
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embodiment in products. Thus steel rod_ (from the Steel Industry)

are sold to the wire drawing industry where they are drawn into

| wire; or they are sold to the "screw machine products" sector

and machined into screws, nuts and bolts. Later the wire may
#

. be made into nails or into galvanized mesh fencing. The nuts

and bolts may be used in assembly of autoe_gih_s or furniture.

. When a sector buys raw steel in some form produced by the steel

;, industry itself--say galvanized strip--it is a direct input.

When a sector buys a product containing steel fw'om some other

sector, steel is an indirect input.

Tracing the indirect flows through the economy is very

tedious, but this has already been done by RTI. In particular,

Ref. 13 contains two tables of interest to us, as follows:

Table B-14 Direct Materials Consumption by Sector (lO6 kg), 1967

Table B-16 Direct plus Indirect Materials Consumption per

Dollar of Final Demand (Kg/$), 1967.

These tables give consumption of each of the specified materials.

The data given in Table B-14 of Ref. 12 can be summed up to yield

total direct consumption (lO6 kg) of steel, aluminum, glass,

paper, rubber and plastics by each sector in 1967 measured. We

derived the indirect c_mponent of materials consumption for

each sector by mulltply'i_g the coefficients in Table B-16 by the

Total Output ($) of each sector in 1967, as provided by the

Dept. of Commerce (Refs, lO,ll).

The 1967 data, derived as noted above, were updated roughly

to T972 by assuming constant relative prices and technical

coefficients. Thus, direct materials consumption by each

sector was taken to _e proportional to the value-added ($) by
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that sector. Mathematically, the entries in Tab:e B-14 were

multiplied by the 1972/1967 ratio of value-added, adjusted for

inflatlon. Simi!arly, direct plus indirect materials consumption

was taken to be proportional to output ($), and the entries in

Table B-16 _ being in units of kg/$ -- were assumed to be equally

valid in 1972, as adjusted for inflation and changing sectoral <

" definitions between the two Census years. To obtain total direct

and indirect materials consumption for 1972 we multlplied the
F

entries in Table B-16 (summed and adjusted) by a vector of 1972 _

sectoral outputs.

Unfortunately, the above procedure does not yield a satis-

factory estimate of the materials consumption by the primary

C

I processing sectors which produce metals, gla_s, paper, rubber

! and plastics to begin with Nor does it give m_terial input

_ requirement of industries cr, nsu_Jng significant quantities of

other materials, such as chemicaIs, textiles, or ceramics.

i Based on criteria discussed earlier, we eliminate all sectors
i

prlr_r:,j proc_ssingvegetable or animal products such as food,

| wood paper, leather or fossil fuels' •

We have therefore, added (by hand) further direct inputs of

" all materials not on the RTI list, for which data are available

i,
in the "Materials Consumed by Kind" tables in the 1972 Census of

Manufactures. Intermediate materials produced and consumed by

the same industry (including prompt scrap) were excluded. We

used approximate rules of thumb for conversions where area or

volume units were used, notably;
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cotton 227 kg/hale

i fabric (broad curve) 0.5 kg/yd (suggested in 1967 Census)

glass 1.33 kg/ft 2 (I/4" thickness)

wood 1.25 kg/boar_ ft (3/4" thickness)

leather 0.4 kg/ft2

water 3.78 kg/gal

paint 3.78 kG/gal

alcohol 3.6 kg/gal

fuel oil 3.44 kg/gal

naptha 2.68 kg/gal

natural gas 0.0189 kg/ft 3

Energy consumption by sector, in kwh equivalents, are given

in the Census of Manufactures. These numbers are included in the

data base and printed out for convenience. All fossil fue:s

have an energy content that can be measured in a variety ol

units, including BTU, joules, hp. hrs., or kwh_ The chc!ce is

arbitrary. For consistency electrical energy from all sources

is counted in terms of the amoudt of heat energy (from fossil

fuels) that would have been required to generate it.

D. TABULAR RESULTS DESCRIBED

Tables I and Ill summarize the results of the extended computer

computations of the inputs from references II, 12, 13 and 14. The

input data were for 1967 and 1972. The results shown in the

following tables are for 1972 only. Table I applies to the

MORE LIKELY class of goods whereas Table Ill refers to the

previously described LESS LIKELY class of goods. The headings in

both tables are identical. The first column is the rank order
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" of the entries where the entries are ranked on a $/kg basis.
1 •

_ The third column is the computed $/kg value of that partic_Jar

entry. A short descriptive title of the SIC taken from "Census

of Manufactures" constitutes the second column. Total shipped

value or price (in I065) of the SlC ..onstitutes the fourth

column. Total value-added by all the SICks is given at the

" end of the two tables. The fifth column is the total mass

consisting of direct and indirect mass input to the SIC as

measured in billions of kilograms or millions of metric tons.

The sixth and last column is the energy consumption of the SIC

in billions of kilowatt hours.

Tables II and IV relate the sequence numbers in tables I and

Ill to the SIC codes under which the original data were obtained

and organized for the 1967 and 1972. The Department of Commerce

number is also included. Thus, the original input dat_ can be

checked from these numbers.

Intri;_sic value is based on total shipped value divided by the

total mass input which consists of direct and indirect compone ts.

"Indirect" in this context implies that the materials passed first

through some other sector for processi,,g or fabrication into

components. Since we do not wish to count waste materials or

combustion products that are discarded in processing (for example,

slag from steei mills), the indirect flow analysis only covers

finished materia|s that are likely to be embodied in the
i

intermediate products (steel, aluminum, paper, glass, rubber,

plastic).
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' _ Among the "more likely" group, the value per unit weight of

_ inputs range from ll$/kg for "complete guided missiles," down

to 0.285/kg for "iron and steel foundries." Discrepancies appear

in a _ew cases (e.g. x-ray apparatus, typewriters) between data I:
for direct and indirect materials inputs. The data have been

double checked for all these cases. Almost certainly, the

results are spurious, arising from so-called aggregation errors

in the I-O tables. Further analysis on a sector basis will be

required to eliminate such errors. In one case (Aircraft equip-

ments not elsewhere classified) data was simply unavailable.

Asterisks appear in a few places in tables I and III. An

asterisk signifies that the method of extrapolation from 1967

to 1972 of the price coefficents or correction weights yielded

a "direct and indirect" consumption for 1972 smaller than dimect

consumption. This is obviously not realistic; it arises from

the fact that different methods of extrapolation were used.

Discrepancies introduced in this way are not judged to be quanti-

tatively important. However the fact that they can occur is

• unfortunate. If the analysis were to be redone, a different

extrapolation rule should be adopted.

An asterisk in tables II or IV indicates that the corres-

pondence between 1967 and 1972 SIC definitons is inexact.

In the "less likely" group the highest (plating and polishing)

is probably spurious because the weights of some of the products

being plated or polished are not always counted. No weight data

_ was available for "industrial chemicals" and "gaskets and

. insulation, lhe chemical industry is too complex to summarize,

in any case.
%
#

_ ,.
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The corrected weight used in column 5 of tables I and Ill

| is an estimate of the weight of raw or finished materials consumed

by the sector, but not !ncluded in the RTI study. As prevlousJy

noted, the RTI study explicitly covered iron and steel, aluminum,

glass, rubber, plastic and paper. These materials were chosen

because of their importance in packaging. Evide_s_ly raw materials

of all kinds, as well as building materials, chemicals, wood,

textiles and several important metals (copper, zinc, lead, nickel)

were omitted. To obtain estimates of the weight of these materials

I consumed by each sector, referred to the Census of Manufactures
we

"Materials Censumed by Kind" tables, disregarding those materials

in the RTI list. As noted in the text, many of the data are given

in volmae or other units that have no unique weight equivalent.

Our estin,ates of average weights per unit are listed in the

preceding text.

The number (1) which appears along side entries in the .

i energy consumption column refer to places where data were not
i

available for the 1972 SIC's and energy usage was extrapolated
_A

on the basis of changes in sector "total mass" from 1967 to 1972.
, l

]

._ )n all cases the few individual extrapolations were small compared
!

to the total energy consumption in both the more likely and !

less llkel_ cases,

Portions of the various parts of the studies in this report I

,__ were done early on in the program and were not able to make full

use of the growing knowledge of what could be done with materialsi

from the moon, especially when only small quantities of terres-

_) trial supplement was required to extend the range of useful'

r

__ _ _ - _=- ,,,,I II I l _ [_i ..... '
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possible products. Thus, the less likely listing contains

i many entries which co_l_ be transferred tc space in modified

I forms. Possible examples are designated by sequence numbers

5, 7, 15, 23, 46, 52, 5a, 63, 77, 82, 9_, 96, 103, 117, 127,

i 131, 144, 147 and 153 among others. It is an interesting

exercise to examine tables I and Ill which list the technical
i
)

processing operations of which man is capable and ask, "What

i can be done in space with lunar and eventually asteroidal

materials?"

L"
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