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PREFACE

Research was conducted on the effect of elasticity in
the construction joints on the auto-oscillation of spacecraft
with gas-reactive direction systems; a mathematical model was
obtained, on the basis of the method of mixed coordinates, of
a generalized flexible spacecraft at one end of which was
appended the directive action of a system of gas-reactive
nozzles. Various structural forms were obtained functionally
describing flexible spacecraft, as systems consisting of a
solid central body with flexible structural elements joined’
to it. Studies of the auto-oscillatory processes were conducted
on the basis of a method of point-by-point transformation. The
work derives the equations of the correspondence function and
the equations of velocity at the limiting cycle, taking into
account the delays in the relay and command elements. These

equations were studied using analog and digital computers.
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EVALUATION OF THE EFFECT OF ELASTIC JOINTS
ON THE AUTO-OSCILLATION OF SPACECRAFT
WITE GAS-REACTIVE DIRECTION SYSTEMS

G. G. Sasin,
USSR Academy of Sciences Institute of Space Research

Both the scientific and experimental requirements of
contemporary artificial earth satellites (AES) have become
more rigorous every year, as well as those with respect to
the accuracy of stabilization. So, for example, the AES
placed in geostationary orbits must be light and compact but
at the same time must have a substantial lifetime. The greater
and greater energy consumption of such AES has necessitated the
use of large panels of solar cells (SC). For the triaxial
stabilization of a similar spacecraft at least one type has
used systems of reaction motors of both hot and cold gases
and will soon use electroreactive motors (ERM). The wide
frequency range of the spectrum of these engines will generate
a variety of modes of oscillation. The effect of these high
resonance frequencies on the characteristics of the roll
regulator, the requirement of relatively sensitive reception
in the 0-10 Hz band, the achievement of a high precision of
orientation and stabilization (from several minutes down to
seconds of arc), can all lead to substantial difficulty in

setting up such systems.

Experience has shown that, with the growing requirements
for accuracy of orientation and the high cost of mockups,
there is an increasing value in many projected developments
in creating a mathematical model of the spacecraft with

heightened flexibility and complicated dynamics of construction,

*Numbers in the margin refer to pagination in the foreign text.
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since the performance of tests on the ground of such structures
is rather expensive and often simply impossible. At the pres-
ent time there already exists [l] an entire group of mathematical
models describing flexible spacecraft, the most general outlines
of which are that they are formed of an essentially solid body
with elastic consoles attached to it, which in turn can be
composed of a continuous medium [2] or of a discrete collection
of adjoining solid bodies joined by means of massless elastic
elements called finite elements [3]. Depending on whether the
initial model of the panels is continuous or discrete, its
displaceﬁent with respect to the parent body is characterized
by either distributive or modal coordinates, while the orienta-
tion of the basic body of the spacecraft in inertial space is
always described by the three angles of its spatial position.
Reference [4] proposed a method, combining the advantages of
the discrete and distributive coordinates, called "the method
of mixed (hybrid) coordinates." This method makes it possible
to provide a mathematical description of the basic solid body
with attached flexible panels in such a manner that the
oscillation of the basic solid body is described with the

usual differential equations and the oscillations of the

flexible panels with equations in partial derivatives.

In this work the method of mixed coordinates is used to
obtain a mathematical model of a generalized flexible space-
craft, to the basic body of which the directing action of a
system of gas-reactive nozzles is added. The various struc-
tural forms of the transmission function are derived, as well
as the relationships among them. A method of pointwise trans-
formation is used to study auto-oscillatory processes in the
spacecraft, whose direction circuit is pictured as an aper%pdic
reverse signal (ARS) with a double time constant which includes
a relay element with a band of insensitivity. The equations

of correspondence which are obtained as well as the equation



of velocity in the limit cycle take into account the delays

in the relay element and control console. The research made
use of an analog computer of middling size (AVM-MN-18M) and

a small digital machine (type MIR-2) for which programs were
developed which made it possible not only to study the transi-
tional and established processes from the initial system of

. equations, to construct the Konig-Lamery diagrams, and to
obtain the value of the velocity in the limit cycle, but also

to maintain a double control.-on the correctness of the solution.

Description of the Mathematical Model

The dynamical model of the system is sketched in Figure 1.
It consists. of a solid, rigid body B and, attached to it, the
flexible structures A, consisting in turn of the elementary
bodies Aj;. Assuming the elastic deformation to be negligibly

small, let us first derive the equations of the superstructure.

The Newton-Euler equations describing the motion of the

element A; can be written as

Flem: @GP (1)

7:,- ;_-;,' (2)

In the inertial coordinate system the acceleration ﬁf’f
can be obtained as twice the differentiated sum of the dis-
placement vectors - X-*AC-’ s ReT 0l , which determine the
relation between the immovable point O' in the inertial space

and pj (see Figure 1).

Let the orthonormal system of vectors 55’,, .8:,8_, refer to
body B, and a, a; ,a, to body A. Then the transition

from the system Qs to the system Z‘ (where o = 1,2,3) can be
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performed by means of the time-varying matrix of directional

cosines, C. That is,

CuCalCst -~ 14) (3)

= B C,, C): C” . 6:2

ewaen] &)

or

!. '@,: cfé} | (4)

Geometrically, the coefficient Cjy is the cosine of the angle

between the base vectors g and the rotated. base vector

axsc&‘ ;L'ug We then write
| S
ali= df, (X+¢C z‘+uf) (5)

The relation between the inertial base vectors Jf.dé.JQ and
the base vectors g, . g,,lg is determined by the matrix of

directional cosines 5 ’ or

{2]=8{}} (6)
Realizi that .- - L e - -
ealizing a *_‘%étw‘f%/(f*w&xc
we obtain from equatlons (5) and (1)

Fl= m;{A7+C s i 201 (E *Ll U (,le/upe» 7l 7+

. wx[wr(f*/?*z‘*u‘/] 7

where ( 0 ) is the vectorial derivative in the system at rest

with respect to the body B.

The equation of rotational motion of element Aj is

e g (A RGBT (®)
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Assuming a condition exists of small valﬁes of the
orthogonal displacementslﬁg,ﬁu;[ﬂ of the flexible structure
A relative to the body B, we obtain the inertial angular

velocity of the element Aj:
—, [y '.9‘..

o. 3 " =
The vector ,5‘_ lies within the base vectors 4 ' 6’, R K,, . Sub-

stituting equation (9) into equation (8), we obtain

| FL R B iefy it in et Do B B, o)

Replacing jt,?’ @ with //?‘Ao/l,é, and ¥ l/?‘ ,g‘ with
xl}:,i’ in equation (10) and ignoring J‘A”J , we
obtain at last’ o

T gl (S ek e ek (3N QAR (11) /10

The vectorial product of two vectors with the same coor-
dinate bases is easily expressed in matrix form u51ng a
diagonally symmetric operator. For example,.lf &) is any
diagonally symmetric linear operator in the three dlmen51onal
Euclidean vector spacer 2( it is represented in the orthonormal
base coordlnateslé}. g Z' by a diagonally symmetric matrlx..
Thus, _ I

W= |wy 0 -wl . (12)
and for each vector '@ within U ; the relationship
WxE€ = € (13)

is fulfilled.




Equations (7) and (l11l) can be rewritten in matrix form:

Fem [a.m L+ 200(C+ e Blfpvs Ttt’ /‘ ‘3-(3[&49; g ¢ (14)

r’.zi'w;w,é 7 w]’w-jw/ ml]'zgu/)‘ /"qy-,.,"wfw/,a (15)

It is obvious that the matrix C which characterizes motions
in the CM system depends on the displacements of the elements
A; of the structure A, which are expressed in the matrix ul.
But since, generally speaking, the matrix C also depends on
other variables (the deformation of the other superstructure,
external disturbances, directional moments, etc.) as well, the

substitution for C should be written in the form /11

c _l_énnﬂﬂqfe (16)

43l

where € is any variation in the CM independent of the variation

of the structure under consideration.

Let us Jjoin the matrices in equations (14) and (15). They
have dimensions of 3x1 for each element A,, ..., A, in the
simple matrix equation of the dimensionality 6n x 1. A total
displacement motion (translational and rotational) of the '
structure is described by means of the matrix coordinates 7.

(a matrix column of dimensions 6n x 1).
n
? [ulululﬁlﬁ?lx‘(l ﬁ: ] (17 )

The inertia matrix u, which is zero except for the matrices
of the mass and the moments of inertia of the elements of the

superstructure distributed along the main diagonal, has the form:



T |
m (18)

i

Since the total matrix equation must contain elements
u', B and m’ »‘I,),

which are characterized by two parameters ( U’
it is appropriate to introduce the matrix operators

= [EOEG..FO]" (19)

and
(20)

Soe = [OFOE..DF]” ,

where E and O are the unit and zero matrices, respectively, of /12
dimensions 3x3.
The matrix C in equation (16) now becomes
-4 T (21)
€= p1.Z}o/V? *€

We obtain the equation of motion of the structure, assuming

the system is without friction or plastic deformation, from
equations (14), (15) and (21):

HIE-25 55 MG LN Tn DT U N B, ﬂf]/z
+ (P68 505) ﬂfufwwzﬂ/z;,ﬂ/ﬁ//é.-wg (AR ]+
(22)

+ B M2 *K1g = -//z,.[e,r»e-Péw (64 Rt + DidesR)]+ .
*MT0-$583)+ 4-p%-G M2, |
where K is the matrix of the rlgldltles of the structure,

A is the matrix of external forces and moments (of dimensions
' and ¢ are defined

6n x 1), and the new matrices '$ . 52,
(23)

53 = Zpw=[Wod w.,o]’
= 5. Welowo.. &
.=. [zmz .oj7



(The tilda sumbol () above a matrix indicates dimensions of

6n x 6:)

The extended matrix has elements of 3 x 3 dimensions and
is zero off the diagonal, where the elements . are the corre-
sponding elements of diagonally symmetric matrices obtained
in a manner similar to (12) and correspond to the matrices

of dimensions 6n x 1. For example, obtained from equation

(23) is

(24)

e
1

7 2

A~~'..-.,.' o~ - —~ . .
and 5;‘ 2 S8 Q’_ ,_Qg and/i/g‘ are similar.

The Equation of Motion of the Spacecraft

The equations of motion of the spacecraft are written with
consideration of the fact that the flexible superstructures are

contained in the structure of the spacecraft. Thus

7-.,9_/_7 . (25)
H=Tw +_foc"xf}")'x'5a’m~ (26)

We.rewrite (25) taking (26) into account:
(27)

R - S 3 o . -_ ) -.’ /. _ e
ToF B eiorksFid s MUF 208 Ga(E)s SrEINE G [P Pelm
where  z:. 5.z0 50 5¢
P= R L

We now. rewrite (27) in matrix form:

/13



7'=]wfw]uh/:?/}llfl}a,9‘z[/7 Pg’//f,,-[ /‘/ pr, i
ol (3 //y/fo;]ww‘//ﬂ.?we “Tiseside)e *(‘.w/ S g
*izrﬂf * 4@«!2},//7* fn Z//; 4 WZ:/'/; - ?/'/ +

ETH Ei WG - ErT(E T Mg .,;//r-:w’* (28)
'¢W/2{.F?/’/2—i“’ “’z;t//?[-t W D 2AM(ELR 'Z/]r"

G - el My Prjw. +/2[///zn£+z/] 9 -
: —,e?,«/z‘,.. fn//;f/uh SR

Linearization of the Equation of Motion -

With a wide variety of spacecraft which have flexible
structures attached and are stabilized in 3. dimensions, it
can be assumed that their angular velocity is small enough to

ignore expressions of the second order and their derivatives.

w —~g .

C ) ——
9—-—-/531

where "8 ".-‘[8;8,8;77 of the base vectors 6’,,6’,,!; connected to the
body B. .Under these conditions the linearized equation cor-

responding to (22) is"

MIE-EuZL pyHI G+ Kg = o H-y'/fu/i*e ~2€ 8-.
-/euP/ﬁ]v!/z Znﬁ*/l */ll}o 191 (29)

We transform (29) according to the form of oscillation of the

craft itself, o
. 7 =¢Z (30)

and, rewriting (29) taking (30) into consideration,

///f‘fmf;o/V/H/¢7 . ¢'zr¢7 --¢/'[/4o

- B+ F)-TLeo] B 21X +€- 2é8]]f U (31)

/14



Normalization of the proper vectors can be performed in
the following manner. Let us assume that ¢¢w¥=2;2;/500b'
(where E is the unit matrix). In that case,¢A(¢-becomes the
matrix GQ‘, determining the proper values. These operators,
in combination with equation (31), make it possible to obtain
the equations of motion of a modular element in a form which /15
in its homogeneous parts corresponds to the classical formula-
tion of the equation of oscillation in the functions of

normalized coordinates.

In developments of the model of structures with discrete
parameters the damping is usually ignored, but the diagonal
damping matrix ‘234" with the diagonal elements 23:6 is included

in equation (22) after transformation according ﬁo (30).

In finite form the equation of motion of the flexible

structure can be written in the form
_.g,ggrgfﬁq..1¢;,l(;(;;fwxfg PrgJf-zaeiie 2] ga, (32

The linearized equation corresponding to equation (28) can be
rewritten in view of the above premises, equation (30), and

the fact that in small displacements of the structure the values
of C are small enough to ignore expressions of the second order

and their derivatives:

p]g*/qq)g/ﬂz,, ZrEe Z'a/ (33)

In order to choose the N modes of oscillation which will
be appropriate and to represent with a sufficient degree of
precision the dynamics of the reaction of the system which
has been modeled by means of 6n modes of oscillation, certain

criteria are necessary. For this criterion it is appropriate

10



to select the lowest modes or those modes in which the corre-
sponding frequency will be located in the neighborhood of the

assumed "forced frequency."

Transmission Functions

The equations of motion of the spacecraft which include
the attached structures, (32) and (33), after excluding the
effects of external forces and displacements, and independent
of internal displacements of the structures (that is ‘€ =0 ,
,¢Z'.§0 ), can be given in the following form:

o T;IB;AQ (34)
Q*?]fﬂ*?" -48 (35)

where?} 4 ¢/q/z;‘ [mﬁ ?2_“

Here and subsequently we regard the matrix of modal coordinates

n of dimensions 6n x 1 as truncated to the form!tﬁwith dimen-

sions N + 1, and the underline ( _ ) will be omitted.

By using a Laplace transformation we exclude from consid-
eration the values of the displaced superstructure n. Then

equations (34) and (35) become

Dol G gy
_.:.f;-.m;..s;lﬂls) 5% /1/5)':' (36)
s'q/s)* ?so’;/zls) 6% IS) 3 S'A 8(5) (37)
Solving equation (37) for n(S) and substituting this into
equation (36), we obtaln
: ,T(.S). ./ si- S‘A'&A)HIS) (38)

The matrix »‘”Qé"ff‘?zgdfsod;’fl‘"_is diagonal. 1In accordance with

11

/16



the principle of superposition in the linearized system under
consideration, we can rewrite the matrix of the transmission

function of equation (38) in the form

R & o)
e(s) [IS‘- fw#‘s—ar e

If the matrix of the transmission function is diagonal, the

(39)

reaction of the spacecraft can be represented in the following
system of equations:

(,Z 2;«67’74"6'/21=A;181*A,,83#A;,8,

llﬂﬂibé%*laé'*'14¢&7 Z

]',B,J,,Q«]" ‘;fﬂiaQFT o (40) /17
. I &‘]3151‘1390 * ‘f dislf; =Tg o

N

A structural format corresponding to equation (40) is laid out

in Figure 2.

The scalar transmission function of the open contour
Gy (S) for the a axis (a = 1,2,3) is obtained from equation (39).
When IJ’? v=];”' .]” u‘]” 'st ,];2 - ) the transmission function becomes

l = -§ﬂ§Q== S%QZ:ﬂSoﬁ """" R
6%,{:9 - 1;(3) ‘539[5'// 4;1414/-&)*2;16‘340}"] (41)

The value in the round brackets is called the "normalized

th

reduced inertia" for the o axis ‘and the i mode of oscilla-

tion. It is designated ﬂ“f or simply R.
'!‘QI'AJI/IA-”&I (42)

The physical significance of R for the scalar values dullhi

or in a more general view for the (3 x 3)-dimensional matrix

12




4 LANRS ’
AA’E‘A"AI in equation (39) proceeds from a consideration

of the limiting case.

If the superstructure approaches rigidity, the transmis-
sion function of equation (39) is reduced to the transmission

function of a rigid spacecraft
‘ - 2
G(5)=4/1s" (43)

If, on the other hand, the superstructure beéomes elastic to

the limit, we can assume that the transmission function will /18
be based only on the transmission function of the solid body,

while the superstructure will have essentially separated,

since the reaction under consideration will be lacking on the

part of the superstructure. Therefore, in that case, the

proper frequencies of the structure A in equation (39) will

all tend toward zero, and the equation becomes
|
! 8(31--//]-}5 48)8°177¢8) (44)

That is, the 3 x 3 matrix :'I-gA}A;'I;AvA should be the matrix of
the moments of inertia of the spacecraft relative to its center
of mass, without the moments of inertia of the structures.

This value varies between zero and one, and the value ﬂi from
equation (42) can vary from zero (for the limit of large
structures which are very sensitive to deviations in 8) up

to unity (for small structures or those not sensitive to
changes in 84). Thus, VVOG-R‘“[ .

In many cases it is more acceptable to write the trans-

mission function describing the dynamics of the rigid space-

craft in some other form than (41).

13



Let us write equations (34) and (35) in scalar form,
taking into account the fact that cross-connections between

channels are lacking:

o feexsefa, (45)
-_ fre2pain:+ 00~ 44, (46)

where x#=T,/I, 2.7

From equations (45) and (46) we find

‘{"A!'A = UG 2 of ‘ '
J : ‘. [y l ‘ ‘+ S— > =—x .. (47)
‘ AI .ali A ”" Al ,?‘ o
De51gnat1ng A&a A
-Atdx ' R
| /Z:-fll m? =%; W"‘ P
we obtain
B =-2"+12'A1Iz. o ' (48)
'714:2;}6;' to07" f“f’xo (49)

The transmission function of this system will be

Q5. S1+Ai)+ 226507
5 15} 245 = L 716755 509

The structural flow diagram corresponding to the transmission
function of (49) and (50) is sketched in figure 3. To obtain
equations (48) and (49) in dimensionless form, let us intro-

duce the dimensionless time t° :

(51)

| art . . Gl

lda

Using (51) equation (47) becomes

14



.2 &, g
Z:L:lzl ::\?777‘_‘“7% : 6:. '2‘ 'x" (52)
Introducin;_the new variable
ﬁ.:.’ E%‘;.”‘. (53)
we obtain finally for the flexible element
7v20i, s B =-R e
where /2

D =7/ 1-aT6; T

Let us determine the expression for the coordinates of
the solid body. Passing to dimensionless time t° in equation
(45) , we obtain
(55)

Transforming this expression and using the relation (53), we

obtain:
d’& 46:" - -A 4 “t'n‘ . 2.
et g X (s6)

We introduce the new variable

g- F{ 7o | (57)

In final form the equation (55) becomes
N x ’ o0
§=-2 LA,

We will study the auto-oscillations of a nonrigid space-

craft in the direction circuit of which we will include aper-

iodic feedback.

Description of the System

15




The system (see figure 4) includes a standard regulator
with aperiodic feedback with a double time constant, a pair of
gés-reactive nozzles, a position guage, and the dynamics of
the nonrigid spacecraft. The regulator consists of a relay
element, including aperiodic feedback with a double time
constant (;To, when; yf‘/'{f, - when‘yﬂ) =0 ) and an amplifi-
cation coefficient -K,6. The zone.of insensitivity of the re-
lay element is -¢&, the hysteresis in H. The gas-reactivé
nozzles have a thrust level F and a moment arm L. The dynamics /gi
of the spacecraft include the oscillations of the spacecraft
and the leastic weakly-damped oscillations of the attached

structural elements.

For the class of spacecraft under consideration -~ apparati
with elastically attached structural elements -- the initial
synthesis and classification of the parameters of the circuits
with aperiodic feedback is based on the premise that the
spacecraft is basically governed: by the law of rigid bodies.
The regulator should be designed in such a manner that the
frequency of the proper oscillations of the superstucture will
be above the frequency band of the channel of the direction
system. It is however impossible to ignore the nonrigidities
of the system: the damping of the proper modes of the elas-
tic oscillations is very small, there are time delays in the
circuit which are comparable to the periods of elastic modes
of oscillation, the position gauge follows not only the low
grquency of the motion of the solid part of the spacecraft

but also the higher frequencies of the attached elements.
Retruning to the previous section, we have obtained the
equations of planar motion of a nonrigid spacecraft in dimen-

sionless form, namely:

16




5=-i+éA;q"}' :
| i.f;o‘?b}’fz‘t'fzz 5’? |
) E (02,
where

.(*i npu U>8

v b | O npu -E<ustor. gp
: f:’l'i npu U<l§ |
"."x.qpuldc J'; )- Sl
0 npa ~Scu<ed) for u<0
!"”“+i>n,au u»&? B .

| e "JuU<U
%‘ © n - f;u U‘D
l (o ™ {us-edu -0

.V;~f. { aau u>0
 [Tep NPU

g
°
"W

(58)

(54)

(59)

(60)

(61)

Equations ‘(59), (60), (6l1l) describe the action of the regulator.

The system has delays in the relay element (r and in the

command'element't}. A flow diagram of the stabilization circuit

of a nonrigid spacecraft is presented in figure 4.

put of the relay element (1) the directing signal U(t) arrives;

At the in-

at the output of the relay element the signal £(t) enters the

command element (2). The command element generates the stabil-

izing moment T (t) which acts on the spacecraft in the desired

manner. This same signal f£(t) includes feedback (4).

The

feedback signal Z(t) and the output signal of the angle gauge

(5) enter the summing device (6), in which the directing signal

17




U(t) is formed.

We assume that disturbing moments do not act on the sys-
tem, that the angle gauge is ideal, and that the command and
relay elements used are ideal circuit elements with pure time
delays. The nonrigidity of the system is incorporated into the

model as an externally attached elastic structure (7).

The real motion of the dynamical system corresponds to
the motion of a representatlve point in phase space with the /23
coordinates § , é .+ Let us project the trajectory of the
motion of the representatlve point onto the phase plane 8 é
passing from the consideration of spatial motion to planar mo-

tion.

We find the solutions of equations (58), (54), (59) in the
mth section of the trajectory, where ‘2#0 :

a) for the successively integrated equation (58), we obtain:

(Ge-Revsf AiifisBe=f it
18- ;4;/?:*(5{:’@2.)14 8- ;mz

b) for equation (54) the solution has the form-

Ar-Rot ”’70’*/},):«%:»‘&@%"—’11-@’-’51:2 hee |. 63

e e 7H, cosues- ‘Z*—ﬂf)—m“smm

where W" WFE, - and ?“, ﬁ,, are the initial conditions.

(62)

c) the solution to the third equation has the form:

C ke
2/#}'/--_163/1-8 ) (64)
We begin consideration of the motion at the moment t° = 0,

when

18




i 8 .’t“-:.s‘l alt'-:é' ""_ 2|0

The command element is switched on at the moment #°=¢j . At

this moment (see figure 4)

A AR -

Beginning from the moment- “Qh , the representative point
moves along a phase trajectory intersecting the axis ﬂ-'

At the moment in tlme‘ﬁ ai;x‘-x‘,ﬂ , when

‘gﬂ}* )+2/{’ t"otr) A’g X( ):/? (66) /24

the signal for switching off the command element goes from the
ouput of the relay element to the electropneumatic valve (EPV)

of the command element.

The equations of motion remain as in (62) and (64), but

taking into account the delays they assume the form

| | t -t5+ Ll
(et "*t")--x.,ﬁ (1- v /

é, , ,,)*M/zn& 1-’4.,1,, TR
-m,-t,‘f/e‘;n é;*/ﬁ Mwas*f;,/*oa. [Mu

(67)

Note I
Taking into account the fact that at the moment of each
subsequent switching off of the command element the elastic
oscil}ations of the flexible structures diminish, that is, that
’2(0" l‘z“i. .0 , the latter two equations of system (67) can be

rewritten, taking (65) and (66) into consideration, where
Bre;-t;0=8,  Bla-)-§ - We have

é--f{f t,‘)'Z'A.gz*B- | (68)

Y/ “75“3')»6‘8--1/(.-:,‘,)'/2;[&5, ét 'J‘*éﬂ}t,,) 19



Switching off the command element takes place at the moment

in time .t°- 629ty - At this moment
Bliv)= Ao bk 2

i i i dp=ti , ty=ty
Taking (69) into account and assuming that|tu=tgs , Ty®tp ,
(that is, that the delays of the switching on and switching off

are the same) the system (68) can be rewritten
R + . 4 2 X S
e :iB,'-X:t,'*[A"l: *'B-: S . (70) /25
a . ) ’ . - - o ‘- —
K6 (4-€" " CFHs Al 12t “LAR:

where

§-8¢-n

Noting xhatiéh'-fst and | .='$ in the system of equations
(70) and solving this system for S and S', we obtain

(5= K-3ll-e /fm(t t;*t"/—ﬂ f A; q.

I+
) SN R Lo
¢'= -:cd‘u- o e Oy Enti-fui
! ] ' t“ L ~
where
l): = -)?/v.- € ‘m‘sm Vzt’- |
Beginning with the moment - ¢ ot, the representative

point intersects in its trajectory the é axis, and at the

moment -in time ¢° = ¥; +-¢ , the signal to switch off the

command element goes from the relay element to the EPV of the

command element, which ceases to operate at the moment t° =
._g;th; .

s

Then for the segment where the directing moment disappears

20




(:f =0 ), the equation for the velocity of motion of the system
becomes

[ :__ v" ..: A o A" 73
8iti)- Encilibif A, 72
where Laz,. n: from the second equation of the system (72).

Because the system under consideration has no unsymmetrical
limit cycle, since in the idealized version presented here no
disturbing moments act on it, the function of resenblance can
be examined in the sections S, S', and S". In the final varia-
tion, taking equation (73) into account, the function of corres-

pondance can be wrltten

‘! S_ -X/Q/f ?l,t,‘f”}*K,é{{- ' ) H iA

.

& o

‘ (79

gt Rezt +2£‘f, -t5)-KeB 11 'e -4 '/9 2k 7
; to : .

; S”=S'*fA‘3i R B
where ’Z‘.. -,D‘?tg[ ,,CUS'W: _Q_‘L’V@A.’l‘l’slnyt ].

are the conditions of attenuation.

PPN

Determlnatlon of the Veloc1ty in: the Limit’ Cycle 4

From the first equatlon of the system (70) we have

& -8, f"‘ _5_*75_'_ (75)

Substituting (75) into the second equationvof system (70) and
. ) TR e ae

taking account of the fac_t that $ = é“ S"=-'8,"f4: 3 , we

obtain

o K. by-eFE +57’f—5 (m"/t, 2274 2’ Am (76)

From equation (76) we find the velocity at the limit cycle 6&

21
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for WhiCh‘i37.5'5~ . EL;'

AW w,\ \
‘K.&(l- »‘9%-') 26.,t, ’?‘ H- LA .,7?70“ (77)
or
.26 A A X AT AN A
L e X8 =4- fl/mé‘-;&,/&&xt;/_,.?/g,o“-lz;A,,g/{g;& (78)
whence
B_ 20,1, foobe Re th
= == H 28,4 £5 = Ad
b= Fnl - - %5tk R) 72

Results of the Modeling

The analysis described above was conducted for the stabil-
ization of a spacecraft along a single axis. Conducting an ana-
lytical study of the stailization of the spatial motions of a
spacecraft represented a task of great complexity, so at the
design stage the real direction devices were designed to be
replaced with modeling, using an electronic computer. In addi-
tion, at the planning stage the interactions determined by the
values of I In . Iu }~L§';1h'. (see figure 2) could frequent-
ly be ignored, due to the symmetries of the system and the small

angular displacements in the area of stabilization.

The modeling problem involved the study of the dynamical
behavior of the system for one total moment of inertia I of the
system but different variants of the value of the moment of iner-
tia IK of the solid body and In of the attached elastic structural
elements (panels of solar cells); for different values of the
frequency of proper oscillation of the solar cell panels; with
and without time delays. We also verified the possibility of
performing similar studies both on an analog and on a small

digital computer (of the Mir-2 type), for which programs were
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developed. For the solving of the equations on the analog com-
puter (type MN-18M) the structural model of the transmission

function was obtained.

Equations (58), (54), (59), and the corresponding flow dia-
gram in figure 4 were modeled in the analog computer in the form
of the chart in figure 5. The delay was modeled according to the
Pade arrangement (using amplifiers 10, 11, 12, 13). The elas-
ticity, including the fundamental frequency of elastic oscilla-
tions, was modeled either by the amplifiers 6,7,8,9 (which cor-
responds to the structural arrangement in figure 3a) or by
amplifiers 14, 15,16,17 (which corresponds to figure 3b). The
1’ R2, C2 of the aperiodic feed-
back with a double time constant was made in the following

selection of the elements R

manner. When the circuit is turned on, the signal Z (with

zero initial conditions) at the output is

-~ Ry* )tﬂﬂﬂ#ﬁ
He)= K816 1. (80)
At the switching off with 2, 1n1t1al condltlons the signal 2

becomes ~ L , . :

. whade f'*b‘ .

‘ -Zlt)=Z,e m’ : (81)
So that T‘- EC; o Co = RIRZC://RJ"R:)
or R, 5: Z'I/C; , e 3”;"3/(&(‘9"&)

In the determination of the velocity aa in the limit

cycle equation (77) is used, transformed to the form

K.&([-e “”7-1.t,t +%—J -H [A:fu " (82)

where

e -6Lee Y cosie T /ESAGEIT, - (83)

- VTETTF, 3002, G= X"
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The given equations were solved in the digital computer by
means of the program in figure 8. In order to solve the same
equation on the analog computer, a Laplace transformation was

performed, obtaining

YN"TI&]»— "&"' 'X.__[ H ;;fe';,z'?r‘ (84)

The model with the transmission function (84) is shown in figure
6.

In order to construct the KOnigs-Lamery parametric equa-

tion, the correspondance fuction (74) is rewritten in the form

St 51.1@ 2t,t nglu(,su- ""nj.ﬁ i‘A:fu
&
¢ as'x./e:+2z,t.-:3/-x;5‘r/-e"‘/“/+}f+éd'£a:

(85) /29

This equation was solved on the digital computer by means of the
program in figure 9. The printout produced the values of tis
Stt); Ste), ), k) + where

A =G (6r )€™ sindY; e

The structural model of the system (85) for the use of the
analog computer was obtained in a manner analogous to (84)

and is diagrammed in figure 7.

The parameters of the system of equations and the dynamical
characteristics of the model under s¢udy are produced for various
values of IK and In in Table 1 and presented in figure 9. The
same system was studied with weak damping of the proper modes of

elastic oscillation with the following parameters:




Ko,6 = 162.9 arc min.; H = 0.9 arc min.; 1, = 2.1 sec; % =39.6 sec
T = 0.682 N ; I = 1115 Nm sec? ; Xo = 2.1 arc min/sec?
Al = 6.39 ; 44, = 803.98 Nmsec?; .0, =0.1 Hz
Az = ¢.853 ; Bly = 107.3 Nm sec?; O = 0.18 Hz
A{= 0.457 ; Mds = 57.56 Nm sec?; O = 0.224 Hz
% "%=%  =3.5%x10"° Lo

It was shown in the modeling process that it is possible
to obtain solutions to equations (84) and (85) on both an ana-

log and a digital computer,

The solution to equation (82) fbr the 20th. variant of Table

1 is given in figure 10.

The numerical solution to the system (85) is given‘both
selectively in Table 2 for the variants of the 1lst, 5th, 7th, /30
9th, and 15th modes of the Koénigs-Lamery diagram including
delays ( ¢g= 0.1 sec for "1","5","9","15" and & = 0.2 sec

for "1") and in figure 11 without them. ~

Figure 12 shows.the dependence of the velocity in the
limit cycle,ég.on the inertial coefficient .characterizing

the flexible superstructure A with time delay.

We should note that upon an increase in A the velocity 8;
decreases, and in the pfesence of time delays it declines par-
ticularly rapidly as A > 10. As A + 0 the effect of a time
delay on the change in —ég' is insignificant. As is clear from
an examination of figure 10 and Table 2, the change in value
of the frequencies of the proper oscillations of the super-
structure, @ with a single value of A, are practically un-
affected by 'éa , especially for A < 10. By means of the

modeling on [illegible}, shown in figure 5, confirmed the
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complete identity of the structures modeling the dynamics

of a spacecraft with attached flexible structures in Figure 3.
The research conducted on the analog computer showed that the
largest contribution to the dynamical processes of the system
belonged to the primary (first) harmonic of the elastic oscilla-
tions of the structure and that at the ;nitial design stages

of the system, higher harmonics. can be neglected.
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1638, 10

o 1645y 10

16524 10
16595 10
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