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Chapter 1

INTRODUCTION

The steady operation of a liquid-propellant rocket

engine is often disturbed by the occurrence of large

pressure oscillations in the combustion chamber. These

oscillations, which can lead to damage to or failure of the

motor, are caused by amplification of initially small

acoustic disturbances due to the energy released by unsteady

burning of the propellant. This is usually referred to as

combustion instability. It is generally accepted that

unsteady burning can be correlated with the gas pressure

(pressure sensitivity) and the magnitude of velocity of the

fuel drops relative to the gas (velocity sensitivity).

This dissertation is concerned with mathematical modeling

of velocity-sensitive combustion instability in liquid-

propellant rocket motors.

A survey of literature dealing with mathematical

modeling of pressure-sensitive combustion instability can

be found in the dissertation of Powell (1). One of the

first papers to examine nonlinear effects is that of Maslen

and Moore (2) who considered only the fluid mechanical

effects in a circular cylinder. The paper by Priem and

Guentert (3) is one of the first to include the effect of

velocity sensitivity. They discussed combustion instability

1
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in a thin annulus.

Since direct numerical solution of the governing

equation^ is very time consuming and difficult to extract

information from, many investigators such as Powell and

Zinn (4), Lores and Zinn (5), and Peddiesion, Ventrice, and

Purdy (6) have employed methods of weighted residuals such

as Galerkin and collocation methods.

Previous applications of the method of weighted

residuals to combustion-instability problems have dealt with

pressure-sensitive combustion. In this work this method will

be extended to handle situations in which velocity sensitivity

is important. Both the collocation and Galerkin methods will

be considered. Stability boundaries and pressure wave forms

will be computed numerically for transverse motion in a -

cylindrical combustion chamber. In addition a finite-

difference method will be used to solve the one-dimensional

problem of transverse motion in a thin annular chamber.

These results will be compared with those obtained by a

method of weighted residuals solution of the same problem

in order to assess the accuracy of the approximate solution.

In this study, attempts to solve the velocity-

sensitive combustion instability problem by various

numerical methods are considered. The governing equations

that describe the flow conditions inside liquid-propellant

rocket motors will be derived in Chapter Two. An analytical

solution is obtained in Chapter Three for nonlinear acoustic

motion in a cylindrical chamber. The collocation method is



applied to combustion instability in a cylindrical chamber

in Chapter Four. In Chapter Five, the Galerkin method is

applied to the same problem. In Chapter Six, attention is

given to the analysis of combustion instability in a thin

annulus. This allows the comparison of the Galerkin method

and a finite-difference solution in a one-dimensioned

context. Finally, a summary of this research is contained

in Chapter Seven.



Chapter 2

COMBUSTOR EQUATIONS

It is the objective of the discussion presented in

this chapter to analyze the combustor conservation equations

and reduce them to a tractable system. The simplification

will be done in such a manner that will allow the resulting

equations to retain both the mathematical and physical

essence of the original problem.

Under the assumptions that the usual balance

principles of mechanics can be applied separately to each

phase, the following equations are derived by applying the

laws of conservation of mass, momentum, and energy to an

arbitrary stationary control volume.

Conservation of mass of the fluid requires that the

time rate of change of mass in a volume v equals the rate

at which mass enters v plus the rate at which mass is

generated inside v and can be expressed as follows (for a

fixed volume):

*
* *-»-->- *

3^*7 pdv = - / pu-nds -f / wdv
^ v s v

-> *
where n is an outward unit vector normal to s, p is the

* *
density of fluid, u is the velocity of fluid, w is the rate

*
at which mass is generated per unit volume, and t is the time



Using the divergence theorm and the arbitrariness of

the stationary control volume, yields

» « „

3t»p + v". (pu) = w. (2.1)

Similarly, the balance law of mass for fuel phase is

* *
* -± ,*

9t*PL + V"-(PLU) = - w (2.2)

* *
where p is the density of fuel and u is the velocity of

L L

fuel.

The balance law of linear momentum states that the

rate of change of linear momentum in the volume v equals

the rate of entry of linear momentum across the surface s

plus the sum of all external forces.acting on the volume v

and can be expressed as

** **,* -* Jt ** *-»•
a*/ pudv = - / pu(u*n)ds + / Pdv + / wuTdv - / Pnds
t" v s v v ^ s

*
where ^ is the force per unit volume applied to the gas by

the fuel and P is the pressure of the gas.

Using the same argument, the equation becomes

* * * * * * « x

9t*(*u) + v".(Juu) = $ + WUL - VP. (2.3)

Similarly, the balance of momentum for the fuel phase is
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* * * * * * *
. . C P T U T ) + v - . C p S S ) = - t - wu. ( 2 . 4 )
t * Li L L i L i L i Jj

Substituting (2.1) in (2.3) yields

# # * # . * »

t*u + u-vu) = $ + W(UL - u) - fa.. (2.5)

Similarly for the fuel phase

* ** *
) = - P. (2.6)

The law of conservation of energy states that the

rate bf change of energy in a volume v equals the rate at

which energy enters the volume v plus the rate at which

energy is generated internally plus the rate at which work

is done by external forces and gives

*(e + ̂ *2)dv = - / *(e + ̂ Ku'nMs - / (Pn)-uds
V S S

* * *
* + * * *0

P-uLdv + / w(eL + 3su£)dv + / Qdv

* * * *
where e + hu2 is the energy of gas per unit volume, eT + hufLI LI

K
is the energy of fuel per unit volume3 and Q is the heat

transfer rate from the fuel to the gas.

Following the same argument, the equation becomes



K

v.(p(e + 3s*2)u) = -V.(Pu)

at
•* u Jt ^

U + w(e + ̂ u2) + Q. (2.6)

Similarly, the balance of energy for the fuel phase becomes

* * * * * * * *
t , C p T C e T + '
t Li L

* # Jf *
- ?.u_ - w(e. + Jiu2) - Q. ( 2 . 7 )LI LI LI

Substituting (2.1),:(2.2) into (2.6), (2.7) respectively

yields

i t 3 L * ^ j f c ̂

(3 *(e + ?2u2) + u - v ( e + % u 2 ) ) = - v(Pu)

UT + 5(Ce_ + ^52) - (e + a^2)) + Q (2 .8 )
L L Li

* *" *} ^ -

L t L
f t "

p C 3 * C e

* * *
= - ^-UT - Q. ( 2 . 9 )

Li

It is more convenient to work with the thermal energy

equation for each phase. For gas phase this is done by
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dotting u into (2.3) to obtain the mechanical energy

equation and subtracting this from (2.8) and using (2.1) to

get

*De/Dt*= PD /Dt*(logp) + £-(uT - u) + Q + w((*T - e)LI L

*2 *2 1 1 1 . *
+ (uT - u )/2 + u-(u - u ) - P/p) . (2.10)

Jj Li

In a similar way, it can be shown that

~" p"D e /Dt* = - Q " " (2.11)
L L L

* * ^ * *
where D /Dt* = 9 „+ u-^. DT /Dt = a + ur-^ are the

t* L t* L

comoving derivatives for each phase.

For simplicity, gas phase viscosity and heat

conduction were neglected in the previous analysis. Since

these produce dissipation, equations derived in this way

should give a conservative estimate of the stability of the

system.

It appears {see, for instance, Powell (1.)} that the

primary effect of the burning fuel is that of interphase

mass transfer. Thus5the balance laws for mass, momentum,

and thermal energy for each phase will be further

simplified by neglecting all interphase transfer terms

other than those appearing in the mass-balance equations.



This leads to the system of equations

* #
Dp/Dt* + pv"-u = w

•' ' * *
Dp_/Dt* + PTV"-UT = - wLJ L L

* ft*

pDu/Dt* = - fa

pTDTuT/Dt = 0Li Li Li

JcvDT/Dt* = P(D /Dt*)(logp)

*
p C DT /Dt*= 0 (2.12)
L L L

* * * *
where the constitutive equations e = C T and eT = C TT,V Li VLi Li

have been used (with T denoting temperature and Cy specific

heat). The equation of state for an ideal gas is

* * *
P = pRT (2.13)

where R is the gas constant.

The governing equations will now be nondimensionalized

with respect to a steady reference state, which will be

denoted by the subscript "r". All lengths will be referred

to some characteristic length Lr, such as the chamber radius.

The characteristic velocity is the speed of sound at the
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reference state, and the characteristic time is the wave

travel time ,̂/Ĉ . The dimensionless quantities are

defined below:

= Lrt/Cr

u = Cru

* *
P = PrP PL= PrPL

P = PrP w = PrCrw/Lr

T = CT/(YR)

2
Cr=

The dimensionless conservation equations become

Continuity

Dp/Dt + pv-u = w

DpT/Dt + PT^-UT = - w (2.14)
•LJ I f j_f

Momentum

Du/Dt = -
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DuT/Dt =0 (2.15)LI

Energy

DT/Dt = (Y - DP (D /Dt)(logp)

DTT/Dt =0 (2.16)LI

Equation of state

P = pT • (2.17)

By solving (2.l6a) one obtains

T = p^-i . (2.18)

Equation (2.17) then becomes

P = PY - (2.19)

Substituting (2.19) to (2.15a) produces

Du/Dt = -V(pY-i)/(Y- 1) . (2.20)

Taking the curl on both sides of equation (2.20) gives

v" X Du/Dt = 0 . (2.21)

It can be shown using vector identity that (2.21)

leads to the following equation which describes the

generation of the vorticity fi = ^ X u in the flow.

Dfi/Dt = n-(v u) - 3(V.u) . (2.22)
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This equation describes the variation of vorticity

for a given fluid particle. Suppose that at t = 0, this

particle has zero vorticity and at the point where it is

located the velocity gradients are bounded. Then by (2.22)

the rate of change of vorticity of the particle vanishes.

It follows from this that the vorticity will be zero at the

next instant. By induction, it is seen that as long as the

velocity gradients are bounded at each point occupied by the

particle, its vorticity will remain zero for all time. If

all fluid particles in the system have zero vorticity at

t = 0, the vorticity will vanish at all points in the flow

field and for all t >.0, therefore, as long as the velocity

gradients are bounded through the flow field ( as they would

not be, for example, at a shock wave ). Assuming this

condition to be satisfied implies irrotational flow (tt = 0)

and allows the definition of a velocity potential <f> defined

such that

u = v<j> . (2.23)

Substituting (2.23) to (2.20) gives

<̂j> +pY~V(Y-D = F(t) .
Is

Since the velocity is the space derivative of <|>, it

is permissible to add to <f> any arbitrary function of time.

This is equivalent to a statement that F(t) is arbitrary.

For future convenience F(t) was selected to be

This choice yields
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(2.24)

Substituting (2.24) into (2.l4a), (2.18) and (2.19) gives

i V V V

3^* ~ V2<}>(1 - (Y-l)(̂ 4> +

= 0

P = (1 - (Y-D(3t* + W-VOr/^-a.;. (2.25)

This system of equations contains nonlinear gas.

dynamics terms of all orders.

Due to their highly nonlinear and mathematically

complicated nature, the system of equations obtained above

cannot be solved exactly. In order to obtain simpler, but

approximate, equations which can be more easily analyzed, all

nonlinear terms of order higher than two are neglected.

Th.is has the effect of retaining the most important

nonlinear effect, while greatly simplifying the form of the

equations. The system of equations then becomes

p =

T =



P =

M. -y -v-
9 1 n 2 i f 1 f ~\ \ *\ ± \ _•_ -"-̂ ^ '
, , < P " V 9 ^X — \ y~" J- / v, 9 J +
t u T»

+ (1 - (y-2)9 *)w = 0 . (2.26)
\j

For a cylindrical combustor, it is desired to

investigate the stability of the steady-state solution of

(2.26d). To do this the steady-state solution must be

obtained. It is assumed that the steady-state burning rate

depends on z only (w = w_(z)) and that the flow is axial

(<{> = iCz))« Thus (2.26) simplifies to

du/dz = w (u = d£/dz)

5. = 1 -

P = 1 - a-SYU2

£ = 1 - igu2 . (2.27)

It can be seen from (2.2?) that the deviations of-the

steady-state solution from a uniform state are 0(u2). To

allow a discussion of orders of magnitude of various terms

define the ordering parmeter e such that

e = max (u). (2.28)
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This implies that

u=0(e), w=0(e), _£=0(e). (2.29)

The stability analysis will now be carried out by assuming

that

<J> = iCz) + e < l > f (x ,y ,z , t )

w = w ( z ) + e Z w ' C x . y . z . t ) (2 .30)

where < j > ' = 0(1), w' = 0(1). (2.3D

It is being assumed that the unsteady perturbation of the

velocity potential from the steady state is of the same

order of magnitude as the deviation of the steady state

from a uniform state and that the unsteady burning rate

perturbation is of the same order as the unsteady nonlinear

gas-dynamic terms. The first assumption is necessary to

be consistent with the quadratic approximation inherent in

(2;. 26) while the second eliminates nonlinear terms involving

products of w1 and $'. These assumptions are made for

simplicity and are not meant to imply that other orders of

magnitude for the various terms are impossible or even

unlikely. The objective of this work is to pick one case

which is mathematically tractable and subject it to extensive

analysis. While it is felt that most of the features of the

stability problem will be reflected by this case, it is

recognized that many other possibilities remain to be

explored.
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Substituting (2 .30) and

P=£ + ep1 , P = P_ + eP' , T = T + el" (2 .32 )

{p' = 0(1), P' = 0(1), -I" = 0(1)} into (2.26),retaining all

terms of 0(e3) or lower,and dividing all resulting equations

by e leads to

3tt*
f - V 2 * ' + 2u82 t<|>' + wa t < |> '

+ e{(Y- l )V 2 <}. 1 3 < ( . t + 2 7 < f , ' -V( 3* f ) + W } = 0

p« = _ Y{9 *i + U9 +i + 5 5 e ( V < f , t -V<| , ' - (9 <
t — 2 t

' - V * ' ) . (2 .33)u ~~ z

The equations derived from this perturbation analysis

are expected to be valid as long as the amplitudes of the

perturbation quantities are finite and smaller than unity.

For simplicity the primes appearing in the above

equations will be dropped and it will be understood that

unprimed quantities are associated with perturbation from

the steady state.



Chapter 3

ANALYTICAL SOLUTION OP WAVE EQUATION

In this chapter a second-order solution for the

velocity potential associated with transverse acoustic wave

motion of an ideal gas in a circular cylinder is obtained.

The solution is found in the form of a Pourier-Bessel

series. This provides a standard to compare the proposed

methods which will be discussed in the following chapters.

The governing equation is obtained from (2.33a) by

assumption that the burning rate function is absent. Then

the equation reduces to the second-order form of the one

discussed by Maslen and Moore (2) for pure gas motion in a

cylinder.

3$ - V2c(. + eC2vVv"3<|> + (Y-l)v2<t.a<|>) = 0 (3-D

For a cylinder of radius Lr, a set of cylindrical

polar coordinates (rj6,z) with the z axis being coincident

with the cylinder's axis of symmetry is used. In seeking

a 'second-order transverse wave solution, one assumes

* = + (r,e,t) + e(f> (r,e,t) + ... . (3.2)
i 2

Substituting (.3.2) into (3-1) and (2.33) leads to

17
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, = _ (8fc(u
2) + (y-Dv2* 3t4> ) (3-3)

P = 1 + eP + e2P (3.4)
1 2

where Pj = - Y 3<.4> , P = -Y<M + ^(u2 -. ( 3 , 4 . ) 2 ) ) ( 3 - 5 )
tl 2 ^ 2 1 ti

ui = -^r*^2 + (a8'*/r)2- (3'6)

Three different cases are discussed below. For the

initial conditions

*(r,e,0) = J (S r)cose, 3,^(r,e30) = 0 (3-7)
i l l ^

the solution of C3.3a) is

> = J (S r)cosecos(S t)
i i 11 11 '

Substituting this equation to (3-3b) produces

=(b + i z Jm(Smnr)cos(me))sin(2S t) (3.8)
oo m=o n=i m mn 11

where Jn is used to denote an n'th order Bessel function of

the first kind, S is used to denote the m'th root of

the equation J' = 0, and a prime indicates differentiation



19

with respect to the argument of the Bessel f motion. The

coefficients b are integrals of Bessel functions whichmn

must be computed numerically. The details of this

calcuation are discussed in appendix A.

Solving (3.8) one obtains

cj> = (b /(4S2 ) ) ( 2 S t - sin(2S t))
2 00 11 11 11

+ 1 Z (b /(S2 - 4S2 ))J (S_ r)cos(me)Csin(2S t)
m= o n= i mn mn 11 m mn i 1

m/i

(3'9)

The other two solutions to be discussed subsequently are

found in the same way. For the initial conditions

/ '. i
<{>(r,e,0) = 0, 3.*(r,e,0) = S J (S r)cose (3-10)

t 1 1 1 1 1

it is found that

= J (S r)cos0sin(S t) (3.11)
1 1 11 11

and that <f>2 is given by the negative of (3.9). For the

initial conditions

i(r,e,0) = J (S r)cos63

.e.O) = S J (S r)sin6 (3-12)
11 i 11

the solution is
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4>3_ = J1(S11r)cos(S11t -6)

and * = z {2b2n/(S2n "4S11) }J2(S2nr) (sln(29 ) {cos(2Si;Lt)

- cos(S2nt)> + cos(2e){sin(2S11t) - (2S11/S2n)Sin(S2nt)}).

It can be seen that for these initial conditions ^

represents a spinning wave but ^^ + e<j>2 does not. Some

typical results for the pressure functions P-, and P~ were

computed using the solutions for initial conditions (3-7)

(labeled standing wave) and initial conditions (3-12)

(labeled traveling wave) for r = 1, 6 = 0, and y = 1.2.

These data are presented graphically in Figure 1. For

these computations the series expansions were terminated at

n = 5- There is virtually no difference between the results

for n = 4 and n = 5, and even the results for n = 1 provide

a reasonably accurate solution.

The results discussed above were used to check the

numerical calculations to be discussed in the next two chap-

ters. These results generalize those of Maslen and Moore (2)

to initial conditions which do not lead to periodic solutions.



Chapter 4

COLLOCATION

In previous investigations of velocity-sensitive

combustion instability {see, for instance, (6) and the

references therein} the most widely used burning-rate

equation is that associated with the vaporization limited

combustion model discussed by Priem and Guentert (3). In.

the notation of the present thesis the second-order version

of this equation can be expressed as

w = (w/e2K(l - %eMK(l - u/uT)
2-Ku./uT)— T/ z LI c .LI

where u is the component of perturbed gas velocity in the
Z

axial direction and u is the perturbed component, normal to
t

the axis of symmetry, and UL is the magnitude of the droplet

velocity vector which assumed to be axial. Substituting

(4.1) into (2.33a) yields

Cw/e)((l - %& 3 <j>) ( (1 - 3
\f Z

+ Cv>.v«j, - C9w*)
2)/u2)J«- 1) = 0. (4.2)

21
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No exact solutions are to be expected to (4.2). Fully

numerical solutions, on the other hand, are expected to be

quite time consuming for multidimensional problems. For

these reasons it was decided to attempt approximate

partially analytical solutions using the method of weighted

residuals {see for instance, (6)>. For problems of pressure

sensitive combustion instability Powell (1) successfully

employed the Galerkin method* This method is limited in

applicability, however, to equations containing nonlinear-

ities involving only polynomial functions of the dependent

variable and its derivatives. It is clear that (4.2) is not

of this form. The orthogonal collocation method was,

therefore, chosen because of its simplicity and adaptability

to equations containing nonlinearities of any algebraic

form. The application of this method to the problem of

transverse wave motion in a cylindrical chamber will be

discussed below.

Consider the transverse wave motion in a cylindrical

combustor. It is convenient to describe this problem in

terms of cylindrical polar coordinates (r,e,z). Then

<f> = <j>(r,e,t) . (4.3)

It will also be assumed that w and ur are constants. Then~~ LI

( 3 - 2 ) becomes

3 ( j>-+ w3 <|> - ( 3 <f> "+ 3 <|>/r + 3 <f>/r.2}Cl ~ eCy-D 3
+ .<)>)

t t ~ t r r r 9 ® ^
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3 . * + 3 f t<f>3Q+ .<{>/r2) + (w/eX( l - 5se3 . *
—

+ (3/102)^2)* - i) = o . (4.4)

Now, assume an approximate solution of the form

*

Equation (4.5) is a superposition of the normal modes

associated with the corresponding linear acoustic problem.

A solution of this form allows one to investigate the

influence of nonlinearities on the behavior of modal

amplitudes which would exhibit simple harmonic motion in

the linear case. Only standing modes can be described by

(4.5). To represent spinning modes another series involving

sin(me) must be added. This is omitted for simplicity in

this discussion. It is convenient to rewrite (4.5) as

l J
m <

s
m n r)cos(m.e)f.(t) (4.6)

al m mn j 3

where N = (P + 1)Q .

The equation is now evaluated at N points (the collocation

points) to yield

-IJ ~
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where C. . » J (Ŝ , _ r^ )cos(m161 ). (4.8)
' 1J 4 ^^ IT *^

Next, (4.7) is Inverted to obtain

Then the various derivatives of (4.6) can be expressed in

terms of value of <j> as

N N
/ \ s*-F / * . \ _ /•̂ J- * .

^ i-i.--N (4.10)

Substituting into (4.4), a set of N ordinary second-order

differential equations having the following form is

generated.

N „ . N N

N N

j=i k=i

where CT, = C^ + cjj/r1 +
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*'ijk

Solutions were obtained by a fourth-order Runge-Kutta

method to the set of equations (4.12). It was found that

the results were very sensitive to the number and locations

of collocation points, especially to the radial distribution

of points. It was found that even in cases when w was equated

to zero (no combustion) it was possible to find many choices

of collocation points which lead to the computed modal

amplitudes increasing without bound.

In order to illustrate the difficulties involved in

a simple case, consider a one-dimensional problem of

longitudinal wave motion with y = 1, u = 0 and w = 0. In

this case (4.2) reduces to

3 4. - 3 t + 2eO 4>3 <|>) = 0 . (4.14)
tt zz z zt

t

First consider the boundary condition

3 <KO,t) = 0, <Kw,t) = 0 . (4.15)
Z

A one-term solution satisfying (4.15) is

4, = f(t)cosOsz). (4.16)

Applying the collocation method with a collocation point z0

produces an equation for <{>0 = <Kz0,t) of the form
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<j) ) = 0. (4.17)
o o o o o

The Galerkin method (to be discussed in detail in the next

chapter) when applied to the same problem yields an equation

for f of the form

f + Jtjf + 4 ff/(3iO = 0. (4.18)

As another example consider the boundary conditions

MCO,t) = 0, 3_*(ir,t) = 0. (4.19)
£* £*

A solution satisfying (4.19) is

<f> = f(t)cos(z) (4.20)

for which the collocation method leads to

> + < ) > - 2etan2z < f > < j > = 0 (4.21)
o o o o o

and the Galerkin method leads to

f + f = 0. (4.22)

From the above two cases, one can observe that the

last term in each of the equations obtained by collocation

can take on any value between 0 and » depending on the

location ZQ of the collocation point. No such difficulty

is encountered when using the Galerkin method. Even if more

points were used, the same behavior was obtained. Therefore
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there appears to be no way to rationally decide which sets

of collocation points can produce the correct result. For

this reason, after the expenditure of much effort, the

collocation method was abandoned and the Galerkin method

was adopted. This will be discussed in the next chapter.



Chapter 5

THE GALERKIN METHOD

The Galerkln method is a special application of the

method of weighted residuals (usually referred to as MWR).

It has been extensively used in the solution of various

stability and aeroelasticity problems {see for instance

Powell (1)} and proved itself as a useful tool for the

solution of both linear and nonlinear problems. Although

it is an approximate mathematical technique, it has

nevertheless produced results which were in excellent

agreement with available exact solutions. These approximate

solutions are usually simpler in form than the exact

solutions obtained by numerical integration, and their

quantitative evaluation requires considerably less

computation time. However, this method is known to be

reliable and applied conveniently only to equations

involving nonlinearities of a polynomial type. Therefore,

if this method is used in conjunction with the varporization-

limited burning rate function of (4.1) the problem becomes

intractable. Thus,the following simpler purely phenomenolog-

ical burning-rate function was employed for the case of

instantaneous combustion response.

w = wnu2 (5.1)

28



29

where n is a constant which will subsequently be referred to

as the interaction coefficient. It can be determined either

by comparison of predictions of the theory directly with

experiment or by comparison with burning rate laws meant to

apply to special types of combustion processes. As an

example of the latter method consider the vaporization-

limited burning rate law (4.1). As it stands (4.1) exhibits

both pressure and velocity sensitivity. A purely velocity

sensitive law can be obtained by assuming e « 1 to get

(5.2)

where the v is used to denote the vaporization model. If one

equates the slopes of (5.1) and (5.2) at u2 = 0 and plots

both functions, the graph would look as follows.

w
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It can be seen that (5-1) would overestimate the burning

rate. Thus the upper bound for n can be computed. Prom

(5.1) and (5.2)

= wn,

Thus d ,w(0) = wn, d 9w (0) = w/(4e
2u2)u^ ~ u ̂  v — • ii

Equating these results, one gets

n _ = l/(4e2u2).max LI

The phenomonological law C5.1) can be related to other

special burning-rate laws in a similar manner.

If it is desired to consider history-dependent

combustion processes,this can be done through the general

formula

t
w = n/

0

where G is memory function and 5 is a dummy variable. If

G(t) = H(t) (H being the unit step function) all increments

of change in u2 occurring in the past are counted equally

and (5-1) is recovered. If G(t) = H(t) - H(t-r) all

increments of change in u2 are counted equally up to T units

of time in the past while those previous to that time are

not counted at all. Substituting this expression into (5.4)
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and integrating one obtains

w = wn(u2 - u2) (5-5)

where u =u(t-T) and T is called the time delay. Equation

(5.5) will be used to account for the history of the burning

process in a rough way. More sophisticated treatments of

this phenomenon could be obtained by employing a more

realistic function for G(t). Substituting (5.5) and (5-1)

into (2.33a) one obtains

- V 2<j> + 2 u a < | > + W3* + e( (y-

v<{> - jv<j> -7<f> )) = 0 (5.6)

where J = 0 for instantaneous combustion and j = 1 for

history-dependent combustion.

The most general solution of (5.6) (subject to hard-

wall boundary conditions for the unsteady variables) can be

written in the form of the following Pourier-Bessel series.

= fOO(t)

CO OO

+ Z £ (f (t)cos(me)+g (t)sin(me))J (S r) (5.7)
=j =j mn mn m mn

Substituting (5-7) into (5-6) and applying the usual

Galerkin orthogonalization procedure leads to an infinite
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set of coupled ordinary differential equations governing the

functions f and g . No solution can be obtained unless

the series (5.7) is truncated so as to produce a finite set

of equations. If the terms neglected are actually small,an

accurate solution will result.

In this thesis attention will be focused on initial

disturbances having the form of the first tangential mode.

The simplest finite series contained in (5.7) capable of

modeling the effect of quadradic nonlinearities in (5.6) is

f
1
Ct)J

1
(S
11
r)cose

+ S1Ct)J1CS11r)sin8 + g2(t)J2(S21r)sin26. (5.8)

The Galerkin method then produces the following ordinary

differential equations governing these five variables.

V *fO * S01fO

-J(°ll fOT + C12(fL + SL> + °13<f2%

°15(flf2 + S1S2)
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°15(flTf2,

f2 + w

•2 + »2 + S21S2 + ECC8fOg2 + °9S2fO

The coefficients C (1=1,2,...17) are integrals of

Bessel functions which must be computed numerically. The

details of this calculation are discussed in'appendix A.

The stability boundaries in the (n,e) plane

were determined first. For a given value of w_, a value of

e was selected and solutions were obtained for various values

of n. In each case, if the modal amplitudes exhibited

growth with time, the value of n was decreased for the next

run while if decay of modal amplitudes was observed, the
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value of n was increased accordingly. A systematic

iteration process was devised so that the computer could

carry out these calculations without analyst intervention.

In this way,one point on the stability boundary was

established. Then a new value of e was chosen and the

iteration process was repeated to determine another point

on the stability boundary. This procedure (which consumed

a considerable amount of computer time) was continued until

enough points had been found to establish the shape of the

stability boundary. It should be pointed out that the

amplitude of the IT mode-always initially decreases due to

the fact that purely velocity-sensitive combustion

instability is always linearly stable. Thus it is necessary

to continue the calculation for a considerable period of

time to determine whether a given set of conditions

corresponds to nonlinear stability or instability.

Figures 2 and 3 show some typical stability

boundaries for instantaneous combustion using the initial

conditions

i. (0) = 1, fn(0) = f~(0) = g,(0) = g9(0) = 0

f0(0) = f-^O) = f2(0) = g^O) = g2(0) = 0 (5.10)

and f^CO) = 1, fQ(0) = f2(0) = g1(0) = g2(0) = 0

= 1, fQ(0) = f1(0) = f2(0) = g2(0) = 0, (5-11)
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respectively. The region below and to the left of the

stability boundary is associated with stable conditions,

while the region above and to the right is associated with

unstable conditions.

In the case of linear acoustics, the first set of

initial conditions would lead to a standing wave and the

second set of initial conditions corresponds to a traveling

wave. In both cases,it can be seen that the stability

boundaries have roughly the forms of rectangular hyperbolas.

As expected, increasing the steady-state burning rate reduces

the value of n required to produce, instability. This effect

is somewhat more pronounced for the traveling waves than for

the standing waves. There does not appear to be a distinct

pattern to the results. Thus for w = 0.2 standing waves are

more stable than traveling waves while for w = 0.1 traveling

waves are more stable than standing waves.

Figures 4 and 5 show stability boundaries associated

with initial conditions (5.10) and (5-11), respectively, for

history-dependent combustion. It is apparent that the

influence of the time delay parameter on the results for

standing waves is much greater than on the results for

traveling waves. Again, no clear pattern emerges from the

results. Comparing Figures 2 and 4, and 3 and 5 shows that

instantaneous combustion can be either more or less stable

than history dependent combustion depending on the value of

the time-delay parameter. Comparing Figures 4 and 5, it

can be seen that standing waves can be either more or less
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stable than standing waves for history dependent combustion.

Figures 4 and 5 also illustrate.the fact that increasing the

amount of time delay can either increase or decrease the

stability of the system. Thus5for both standing and

traveling waves,T = ir corresponds to a more stable situation

than either T = 0.5ir or T = 1.5ir • The lack of patterns

exhibited by these results emphasizes the need for numerical

methods of the type developed during the present research.

It appears that the only way to find out what will happen in

a given situation is to solve the equations for that

particular case. This matter will be discussed further

subsequently.

The pressure perturbation can be calculated from the

velocity potential perturbation by substituting equation

(5.8) into (2.33c), expanding the result in a Fourier-Bessel

series and retaining only the terms corresponding to the IT,

2T and IR modes to obtain

P = -

g|)))J0(S01r)

g1g2)))cose
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- f2g1)))sine)J1(S11r)

+ d23(fl -

2)))cos2e

(5.12)

The coefficients d , d , d are calculated in the same
US -LS c. S

fashion as those discussed previously and the values are

listed in table 8 of the appendix.

Some typical results for wall pressure waveforms are

presented in figures 6 through 37-

Figures 6 through 9 correspond to instantaneous

combustion with e = .05, w = . l , n = 175, and initial

conditions (5.10). This leads to a stable standing wave

oscillation and the pressure can be observed to decrease

gradually. However, by changing the interaction index to

n = 220 (Figures 10-13) the pressure is seen to grow

gradually. This is an unstable situation. In both cases

the response is dominated by the IT mode but distorted to

some extent by the presence of the 2T and 1R components.

Figures 14 through 17 correspond to history-dependent
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combustion with n = 3^5, while the other parameters are the

same as before. This is a stable situation and the amplitude

of the pressure slowly decays with time.

Figures 18 through 21 are obtained by changing the

interaction index to n = 352. This is an unstable situation

as indicated by the growth of the pressure amplitude with

time. In both of these cases the presence of the 2T and 1R

components is much more noticable than it was in the first

two situations.

Figures 22 through 25 correspond to instantaneous

combustion with n = 180, e = .05, w = .1, and initial

condition (5.11). This produces a traveling wave. The

pressure is observed to be decreasing with time (a stable

situation) while changing the interaction index n to 210

(Figures 26 through 29) causes the pressure to increase

(an unstable situation). Figures 30 through 37 show the

significance of the time delay function. Figures 30 through

33 are obtained by setting T = ir and n = 197. This is a

stable case. The pressure is observed to decrease. Setting

n = 199 (Figures 34 through 37), on the other hand, produces

an unstable situation when the pressure increases very

rapidly. In both of these situations the response appears

to be dominated by 2T contribution to the pressure.

From these figures one can conclude that the pressure

waveforms exhibit a strong second harmonic distortion and

this distortion arises from the effect of the quadratic

nonlinear terms. A variety of behaviors are possible



39.

depending on the nature of the combustion process and the

parametric values involved.



Chapter 6

ONE-DIMENSIONAL MODEL

In this chapter an annular combustion chamber with a

gap width much smaller than the inner radius is considered.

This geometry will henceforth be referred to as that of a

narrow annulus. While this geometry is not of much practical

interest,it is quite useful for the purposes of analysis.

This is because only one space coordinate is needed to

describe the problem-. This makes a direct finite-difference

numerical solution of the original partial differential

equation feasible and also simplifies the algebra required

to carry out the Galerkin modal analysis. In what follows

three questions will be investigated. First,the effect of

changing the numerical values of certain coefficients

appearing in the governing equations for the modal amplitudes

will be discussed. Second,the Galerkin solution will be

checked using a finite difference numerical solution of the

complete equation. Third, numerical solutions of the

complete wave equation using the vaporization-limited

burning-rate law will be compared to similar solutions

associated with the phenomenological burning-rate law

employed in the previous chapter.

The appropriate wave equation for transverse wave

motion in a narrow annulus can be obtained from (5.6) by

40
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setting r = 1 and a =0. To further simplify the results

the parametic values Y = 1 (isothermal process) and j = 0

(Instantenous burning response) will be employed. For this

situation (5.6) simplifies to

w3, <(> - 8* + 2e3 A 8 Q . <J> + wne(3 < { > ) 2 = 0. (6.1)
~~ T/ 00 0 0U ~~ 9

To carry out the modal analysis, it is assumed that

the potential function can be expressed as

)

4 = f (t)cos9 + f (t)cos26 + g (t)sine +g (t)sin2e. (6.2)

Then applying the usual Galerkin orthogonalization

procedure leads to

fl

- fj) =

Sl + nigl + -Sl + eA1
(S2

fl + flS2 ~ Slf2 ~ f2Sl)

= 0

- 2ewnA l tf1g1=0 (6 .3)
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where 8.^ = 1, £22 = 2, A., = 2, A2 = 2, A, = 1 and A^ = .5.

The symbols fl. , ftp, A,, Ap, A_ and A^ have been inserted to

illustrate the effect of changing their numerical values.

McDonald (7) in his analysis of combustion-

instability in. an annulus found that for a given value of e

the value of n required to produce instability was approx-

imately twice as high for standing waves as for traveling

waves. The results discussed in the previous chapter for

a full cylinder indicated no such relationship. Equations

(6.3) were employed in an attempt to determine the factors

which have a significant effect on the stability boundary.

Several calculations were made and a representative sample

of the data thus obtained is presented in Tables 1 and 2.

It was determined by McDonald that the terms representing

gas-dynamic nonlinearities, had a small qualitative effect

on stability calculations. Thus the coefficients A and A

were held fixed during these calculations.

The entries in the first two lines of each table

were computed using the correct equation for an annulus. It

can b.e seen that the standing wave is twice as stable as the

traveling wave, in agreement with the results of McDonald.

The third and fourth lines in each table were computed by

changing A^ from .5 to .77 (This makes the ratio A^/A

the same as the ratio of the corresponding terms in the

governing equations for the full cylinder.). It can be

seen that this lowers the stability limit in all cases but

does not alter the fact that an initial disturbance in the



Table 1

Stability Limits for Standing Wave
in Annular Combustor
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n

91
46
74
37
735
379
595
307

n2

2
2
2
2
1.66
1.66
1.66
1.66

A4

.5

.5

.77

.77

.5

.5

.77

.77

e

.05

.1

.05

.1

.05

.1

.05

.1

Table 2

Stability Limits for Traveling Wave'
in Annular Combustor

n

44
22
36
18
66
31
54
26

"2

2
2
2
2
1.66
1.66
1.66
1.66

A4

.5

.5

.77
• 77
.5
.5
.77
.77

e

.05

.1

.05

.1

.05

.1

.05

.1



form of a standing wave is twice as stable as one in the

form of a traveling wave.

The fifth and sixth lines in Tables 1 and 2 are found

by restoring A^ to its original value .5 and changing ft-

from 2.00 to 1.66 (This makes the ratio ftp/ft-, equal to the

ratio S2T/sn associated with the full cylinder.). For this

situation it can be seen that the standing wave is approx-

imately ten times as Stable as the traveling wave. Further-

more, the effect of the value of ^2 on the location of

stability boundary is much greater for a standing-wave

motion than for a traveling-wave motion. The last two lines

are associated with implementing both of the changes dis-

cussed above simultaneously. These results confirm that the

change in A|| lowers the stability limit in all cases but

does not affect the relative stability of standing-wave and

traveling-wave disturbances.

The data presented above indicate that standing waves

will be twice as stable as traveling waves only under very

special circumstances (fip/fi, =< 2). There is no reason to

expect this to be a characteristic of other systems exhibit-

ing combustion instability as, in fact, it is not for a full

cylinder.

In this section, a finite different procedure is

employed to generate a set of second order differential

equations. The central difference formulas
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aee*i =

are used to produce the following set of governing equations

- 2$ + * _ ) ( 1 - e ( Y - l ) * ) / ( A e ) 2

- e w . 2 < i < N - l (6 .5)

where N is the number of points employed. A forward

difference formula

and backward difference formula

(6.6)

3 < J > ) / ( 2 A 9 ) (6 .7 )N

are used for the boundary conditions

394>(0) = 0, 3e*(ir) = 0. (6.8)

Hence, along the boundaries, (6.5) becomes



-4>2)/(9A0
2)

and

- *N-2K*N-1

For the phenomeno logical model,. the Burning rate

function becomes

w± = nw(<j,i+1 - <j.1_1)
2/Ci*A92) 2 < i < N-l. (6.10)

Combining (6.8) and (6.10) one obtains

w2 = 4nw(<j>3 - <j.2)
2/(9A82)

- <oN_2)
2/(9Ae2) (6.11)

respectively.

For the vaporization model, the burning rate

function becomes

w± = wCCl -

- <j>1_1)
2/(2AeuL)

2)i'; - l)/e2 2 < i < N-l (6.12)

and,along the boundary, yields



- l)/e2

w.. =wC(l-%eM 1)(1+C2(*. _-*M.9)/(3A8uT))2)
|-i)/e2, (6.13)

IN—J. ~ JM—_L JN—-L JN — d. Jj

accordingly.

Using either the phenomonological or the vaporization-

limited combustion model,-(6.5) and (6.9) can be solved by

the Runge-Kutta method to obtain c^, i = 2,3,..., N-l.

Then the modal amplitudes can be obtained by using the

Fourier-cosine transform

IT

f.(t) =2; <{>cosiedeA. (6.14)
i o

These integrals must be computed numerically since 4> is

known only at the grid points.

Some typical results for standing waves are presented

in Table 3. They are intended to illustrate the

accuracy of the two-term Galerkin solution and to compare

the results associated with the phenomenological and

vaporization-limited combustion laws. The column labeled

PG indicates the results with a two-term Galerkin soluti6n

using the phenomenological model, the column labeled PP

contains the results of a finite-difference solution of

these equations, and the column labeled VP presents results

of a finite difference solution using the vaporization-

limited model.



Table 3

Stability Limits For Phenomenological and
Vaporization-Limited Combustion Model
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e

.1

.05

.01

PG

n

46
91
452

PP

n

28
56
286

VF

UTL

1.3
2.1
5.2

It can be seen that the order of magnitude of the

interaction index n required for instability for both the

finite difference and Galerkin methods are roughly the same

but the stability boundaries predicted by the Galerkin method

are approximately twice as high as those predicted by the

Finite-difference method. It is to be expected that the

Galerkin method will lead to higher stability limits than

the use of an exact solution procedure. This can be explained

as follows. The instability mechanism is basically a feed-

back process. Consider the form of (6.3) associated with

standing waves in an annulus. This is

n + wf, + fnJ. — JL J-
f~f, ) + 2ewnf-f0 = 0c. J. — J. d.

" eflfl ~ = 0. (6.14)
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For clarity the gas-dynamic nonlinearities will be neglected

to give

fl + -fl * fl

=0. (6.15)

A one-term Galerkin solution would lead to the

equation

fl + -fl + fl =

This would indicate unconditional stability. Instability

can arise only when the presence of the last term in (6.15b)

causes f? to grow and this then causes f.. to grow because

of the last term in (6.15a). The growth of f_ also produces

the growth of higher modes which in turn causes additional

growth of f-, . The contributions of these higher modes are

neglected in a two-term Galerkin analysis and thus the energy

input due to unsteady burning is underestimated. For this

reason the Galerkin analysis will overestimate the stability

of the system. This overestimation will decrease as the

number of terms retained is increased. An example of this

can be seen by comparing the one- and two-term analyses.

A one-term solution predicts that the system is always

stable. A two-term solution predicts the correct qualita-

tive behavior but overestimates the system's stability by
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roughly a factor of two. It is to be expected that further

increases in accuracy can be obtained by keeping more terms

in the assumed solution but that this will not seriously

affect the quatitative prediction.

In Chapter 5, it was.found that equating dw/du2 the

phenomenological and vaporization-limited combustion laws

at u2 = 0 lead to the formula

n = l/(4e2u2). (6.16)

Assuming that the actual data can be fitted to a formula of

the form

n = C/(4e2u2) (6.17)

the data give in Table 3 provide an opportunity to estimate

C. The results are shown below.

E

C

.1

1.89

.05

2 .47

.01

3.09

It appears that a value of C = 2.5 would give accept-

able accuracy over this range of e.

For a given value of UT the n computed from (6.16)LI

will overestimate the burning rate. Thus it might be

thought that C should be less than unity. The stability

criterion was, however, based on the magnitude of the modal

amplitudes. Inspection of Tables 4 and 5 shows that the
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vaporization-limited combustion model Involves the higher

modes to a greater extent than does the phenomenological

combustion model. Thus,a given value of UL can be associated

with lower individual modal amplitudes in the former case

than in the latter. These two effects interact and calcula-

tion shows that C is greater than unity in this range of e.



TABLE 4

MODAL AMPLITUDE FOR PHENOMENLOGICAL MODEL
IN ANNULAR COM8'JSTOR

T KODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 MODE 3

O.GO L O G O 0.000 "0.000 0.000 -0.000 0.000 "0.000 0.000
1.25 0.337 0.029 0.002 0.000 0.000 -0.000 -0.000 -0.000
2.50 '0.687 -0.018 -0.000 0.000 0.000 -0.000 0.000 0.000
3.75 -0.700 0.064 "0-008 0-001 "0.000 0.000 0.000 -0.000
5. CO 0 .2C9 -0.043 0.009 -0.001 -0.000 0.000 -0.000 0.000
6.25 0.751 0.040 -0.006 -0.003 -0*001 0.000 0.000 0.000
7.50 0.237 0.025 0.000 -0.002 -0,001 -0.000 -0.000 -0.000
8.75 -0.535 -0.060 0.015 0.004 -0.002 -0.000 0.000 0.000

10.00 -0.523 0.10& -0.023 0.009 -0.003 0.001 -0.000 0.000
11.25 0.187 -0.088 0.024 -0.000 -0.003 0.002 -0.000 -0.000

0.0010.062 -0.009 -0.011 -0.005 -0.001

. . . . . . . . .
20. CO 0.085 -0.009 -0.023 -0.020 -0.014 -0.008 -0.004 -0.002
21.25 -0.374 -0.050 0.045 0.004 -0.015 0.001 0.006 -0.000
22.50 -0.287 0.101 -0.048 0.028 -0.013 0.011 -0.007 0.003
23.75 0.184 -0.107 0-025 0.015 -0-018 0.005 0.004 -0.005
25.CO 0.371 0.089 0.009 -0.016 -0-019 -0.010 9.001 0.005
26.25 0.030 -O.C31 -0.037 -0.030 -0.020 -0.012 -0.006 -0.002
27.50 -0.327 -0.027 0.052 -0.005 -0.021 0.005 0.010 -0.002
28.75 -0.206 0.081 -0-044 0.030 "0.023 0.017 -0. Oil 0.006
3 0 . C O 0,191 -0.102 0.013 0.028 -0.023 0.003 0.008 -0.006
31.25 0.3C2 0.098 0.026 -0.009 -0.023 -0.017 -0.003 0.004
32.50 -0.019 -0.054 -0.051 -0.038 -0.024 -0.012 -0.004 0.001
33.75 -0 .297 0.000 0.056 -0.019 -0.024 0.012 0.010 -0.005
35.00 -0.141 0.053 -0.034 0.027 "0.024 0.020 "0.013 0.008
36.25 0.207 -0.095 -0.005 0.040 -0.023 "0.003 0.012 -0.005
37.50 0.252 0.108 0.046 0.004 -0.023 -0.022 -0.008 0.001
38.75 -0.067 -Q.079 -0.064 -0.042 -0.022 "0.007 0.002 0.005
40.00 -0.284 0.031 0.056 "0.036 "0.020 0.019 0.005 "0.008
41.25 -C.085 0.033 -0.019 0.018 -0.019 0.016 -0.010 0-007
42.50 0.236 -0.087 -0.029 0.052 -0-017 -0.013 3.013 -0.001
43.75 0.218 0.120 0.070 0.023 -0.014 -0.022 -0.014 -0.006
45.00 -0.122 -0.109 -0.076 -0.039 -0.011 0.006 0.012 0.010
46.25 -0 .292 0.070 0-049 -0.055 -0-007 O.Q25 "0.007 -0.008
47.50 -0.029 "0.001 0.005 -0.001 -5.003 0.002 0.000 -O.€00
48.75 0.290 -0.073 -0.063 0.058 0.003 -0.026 0.007 0.009
50*00 0.192 0.135 0.098 0.053 0.011 -0.008 "0.014 -0.013
51.25 -0.207 -0.152 -0.081 -0.020 0.016 0.026 0.019 0.006
52.50 -0.328 0.134 0.022 -0.073 0.026 0.015 "0.022 0.006
53.75 0.055 "0.060 0.055 -0.044 0.034 -0.026 0.022 -0.015
55. CO 0 .404 -0.033 -0.119 0.037 0.046 -0.022 "0.020 0.012
56.25 0.151 0.140 0.125 0.094 0.061 0.038 0.019 0.008
57.50 -0 .403 -0.219 "0.045 0.054 0.065 0.025 "0.013 -0.022
58.75 -0.412 0.276 "0.092 "0.036 0.071 "0.051 3.013 0.012
60.00 0.324 -0.246 0.183 -0.117 0.060 -0.017 "0.011 0.022
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TABLE 5

MODAL AMPLITUDE FOR V A P O R I Z A T I O N MODEL
IN ANNULAR CONB'JSTOR

HODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 MODE 8

0.00
1.25
2.50
3.75
5. CO
6.25
7.50
8.75

10.00
11.25
12.50
13.75
15.00
16.25
17.50
18.75
20.00
21.25
22.50
23.75
25.00
26.25
27.50
28.75
30. CO
31.25
32.50
33.75
35.00
36.25
37.50
36.75
40.00
41.25
42.50
43.75
45. CO
46525
47.50
48.75
50. CO
51,25
52.50
53.75
55. CO
56.25
57,50
58.75
60.00

I. 000
0.384

-0.455
-0.514

0. 060
0 . 4 4 3
0 . 2 9 3

-0. 324
•0.717
-0.224

1.281
2.176
0.264

-2 .9C7
-3.416

0 . 4 4 8
3.619
2.747

-1.442
-3. 229
-1.329

1.794
2.388
0 .463

•1. 8C7
-2.088
-0.063
2.115
2.172

-0 .447
-2.586
-2.044

1.142
2.348
1.497

•1.721
-2.759
-0.807
2.050
2.514
0.206

-2.255
-2.287
0.331
2.477
2.025

-0.915
-2.669
•1.583

0.000
-0.193

0.095
-0.111
-0.035

0.106
-0.225

0.160
-0.029
-0.455

0.558
-0.505
-0.967

0.857
-1.125
-0.794

0.546
-1.259
-0.328
0.136

-1.066
0.024

-0.063
-0.881

0.272
-0.294
-0.796

0.417
-0.647
-0.603

0.434
-1.000
-0.253
0.253

-1.140
0.082

-0.014
-1.084
0.301

-0.289
-0.932

0.397
-0.575
-0.709

0.407
-0.858
-0.377

0. 303
-1.060

-o.ooo
0.039

-0.033
0.042

-0.036
-0.022

0.077
-0.104
0.192

-0.330
0.300

-0.474
0.644

-0.311
0.382

-0.551
0.200

-0.224
0.340

-0.113
0.005

-0.009
-0.093
0.235

-0.195
0.261

-0.404
0.250

-0.302
0.422

-0.193
0.179

-0.260
0.055
0.032
0.011
0.116

-0.251
0.193

-0.260
0.405

-0.263
0.312

-0.439
0.229

-0.236
0.322

-0.109
0.038

0.000
-0.007

0.009
0.018

-0.029
-0.041

0.020
0.071

-0.037
-0.172

0.131
0.087

-0.327
0.100
0.037

-0.324
0.077
0.106

-0.271
-0.068

0.181
-0,085
-0.167
0.090
0.095

-0.143
-0.100

0.120
-0.018
-0.241

0.046
0. 126

-0.241
-0.083
0.196

-0.091
-0.188

0.126
0.083

-0.186
-0.043

0.134
-0.076
-0.200

0.082
0.073

-0.252
-0.033
0.179

-o.ooo
0.002

-0.002
-0.007
-0.020
-0.021
-0.043
-0.049
-0.072
-0.040

0.040
0.172
0.068

-0.053
-0.193
-0.057

0.001
0.166
0.145
0.068

-0.028
-0.086
-0.089

-0^067
-0.024

0.077
0.079
0.128
0.058

-0.004
-0.127
-0.154
-0.089
0.007
0.095
0.105
0.118
0.050

-0.011
-0.117
-0.096
-0.106-o.ooo

0.038
0.141
0.129
0.057

-0.051

0.000
-0.001

0.000
-0.003
-0.012
-0.002

0.019
0.034
0.042
0.041

-0.003
0.024
0.076
0.005
0.052
0.085

-0.024
-0.024
-0.042
-0.080
-0.102
-0.083
-0.030
-5.006

0.043
0.075
0.093
0.049
0.062
0.049

-0.025
-0.044
-0.072
-0.081
-0.109
-0.093
-0.038
-0.033

0.024
0.062
0.082
0.066
0.084
0.08 3
0.004

-0.002
-0.030
-0.068
-0.099

-0. 000
0.000
0.000
0.002

-0.007
0.006
0.007

-0.024
3.020
0.065

-0.021
-0.078
-0.105

0.019
0.072
0.110

-0.039
-0.087
-0.032

0.058
0.012

-0.067
0.022
0.069

-0.031
-0.052

0.025
0.033

-0.032
-0.079

0.035
0.074

-0.004
-0.054
0.006
0.077

-0.020
-0.081

0.010
0.068
0.014

-0.051
-0.002

0.074
-0.011
-0.072
-0.036
0.057
0.028

0. 000
-0.000
-o.ooo

0.000
-0.003

0.006
-0.013
0.017

-0.032
0.047

-0.030
-0.053

0.057
-0.031
-0.074

0.056
-0.044
-0.025

0.063
-0.038

0.059
-0.049
0.041

-0.027
0.021

-0.003
-0.040
0.021

-0.059
0.050

-0.039
O.OOC
0.038

-0.027
0.063

-0.057
0.0*4

— 0 . 012
— 0.001

0.023
-0.063

0.040
-0.053

0.017
-0.021
-0.031

0.060
-0.042

0.055



Chapter 7

CONCLUSIONS

The primary objective of this study was the

development of a new analytical technique to be used in the

solution of nonlinear velocity-sensitive combustion

instability problems. Such a method should be relatively

easy to apply and should require relatively little

computation time.

In an attempt to achieve this aim, the orthogonal

collocation method was investigated first. However, it was

found that the results were heavily dependent on the location

of the collocation points and characteristics of the

equations. Therefore, the method was rejected as unreliable.

Next, the Galerkin method, which has proved to be

very successful in analysis of the pressure sensitive

combustion instability, was considered. This method proved

to work very well. It was found that the pressure waveforms

exhibit a strong second harmonic distortion and a variety

of behaviors are possible depending on the nature of the

combustion process and the parametric values involved.

Finally, a one-dimensional model provided further

insight into the problem by allowing a comparison of

Galerkin solutions with more exact finite-difference

computations.



: 55

Some major conclusions of this research are as follows.

(1) The form of (2.33a) is somewhat insensitive to the

specific assumptions used to derive it. This is demonstrated

by the fact that Powell (1) developed an equation of a very

similar form using a different set of assumptions. (2) The

orthogonal collocation method is unsuited to solution of

problems of the type under discussion here. C3) The Galerkin

method is well suited to the solution of such problems. (U)

Stability boundaries and pressure wave forms appear to be

highly dependent on the parameters of the problem Cinterac-

tion index, time delay, steady-state burning rate, etc.).

Furthermore,there appears to be no clear pattern to the

computed results. C5) The phenomenolbgical'burning-rate law

employed in the majority of the work discussed predicts

results which are qualitatively similar to those associated

with the vaporization-limited burning-rate law used by

previous investigators. The phenomenological law, further-

more, can be used in. conjunction with the Galerkin method

while the vaporization-limited law cannot. (6) The computer

programs developed in the course of this work can be

employed to determine stability boundaries and pressure

waveforms without the expenditure of excessive computer

time. This is important because the lack of clear trends

discussed above make an individual analysis of each

situation desirable.
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Figure 5. Stability Boundary for Traveling Waves
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Figure 6. The Wall Pressure Waveforms for Standing Waves
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Figure 7. The Wall Pressure Waveforms for Standing Waves
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Figure 8. The Wall Pressure Waveforms for Standing Waves
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Figure 9- The Wall Pressure Waveforms for Standing Waves
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Figure 10. The Wall Pressure Waveforms for Standing Waves
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Figure 11. The Wall Pressure Waveforms for Standing Waves
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Figure 12. The Wall Pressure Waveforms for Standing Waves
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Figure 13. The Wall Pressure Waveforms for Standing Waves
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Figure 14. The Wall Pressure Waveforms for Standing Waves
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Figure 15- The Wall Pressure Waveforms for Standing Waves
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Figure 16. The Wall Pressure Waveforms for Standing Waves
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Figure 17- The Wall Pressure Waveforms for Standing Waves
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Figure 18. The Vfall Pressure Waveforms for Standing Waves
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Figure 19. The Wall Pressure Waveforms for Standing Waves
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Figure 20. The Wall Pressure Waveforms for Standing Waves
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Figure 21. The Wall Pressure Waveforms for Standing Waves
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Figure 22. The Wall Pressure Waveforms for Traveling Waves
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Figure 23. The Wall Pressure Waveforms for Traveling Waves
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Figure 24. The Wall Pressure Waveforms for Traveling Waves
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Figure 25. The Wall Pressure Waveforms for Traveling Waves



82

2--

P »••

t = 2.5

t = 1.25

e = .05 n = 210 T = 0 w = .1

2"
= 5

t = 3.75

-4-
0 1.57 3.14 4.71 6.28

0

Figure 26. The Wall pressure Waveforms for Traveling Waves
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Figure 27. The Wall Pressure Waveforms for Traveling Waves
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Figure 28. The Wall Pressure Waveforms for Traveling Waves
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Figure 29. The Wall Pressure Waveforms for Traveling Waves
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Figure 30. The Wall Pressure Waveforms for Traveling Waves
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Figure 31. The Wall Pressure Waveforms for Traveling Waves
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Figure 32. The Wall Pressure Waveforms for Traveling Waves
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Figure 33- The Wall Pressure Waveforms for Traveling Waves
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Figure 34. The Wall Pressure Waveforms for Traveling Waves
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Figure 35. The Wall Pressure Waveforms for Traveling Waves
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Figure 36. The Wall Pressure Waveforms for Traveling Waves
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APPENDIX A

DERIVATION OF THE COEFFICIENTS

In this section, the coefficients b.., C , and d..

appearing in chapter 3 and 5 are derived and their numerical

values are presented in Table 6, 7»and 8 respectively.

In chapter 33 for initial condition (3.7)s one assumes

3tt<|>2 ~ V
2^ = £ HmCr)cos(me)sin(2S11t)

By comparing coefficient yields

H0(r) =

= 0

H2(r) =

HmCr) =0 for m = 3, 4,.. . ,».

Then expanding .<J>p in a Fourier-Bessel series and expanding

H (r) in a Bessel series leads to

b,. = 2Sf /JH, Cr)J, (S, ,r)rdr/{(S,2. - i2) J,2(S
ij ij i i i l i
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This integral must be computed numerically. For the sake

of brevity only the first five coefficients in each series

are calculated and presented in Table 6.

Table 6

BESSEL SERIES COEFFICIENTS FOR ANALYICAL SOLUTION

n

0
1
2
3
4
5

bOn

1.11738-0. 372 46y
0. 50462+0. 37912Y
-0. 09246-0. 00802Y
0. 05019+0. 00184Y
-0. 03290-0. 00067Y
0. 02375+0. 00030Y

b2n
•

0. 27181-1. 09482Y
-0. 11390-0. OlllOy
0. 05^79+0. 00208y
-0. 03^51-0. 00071Y
0. 02451+0. 00033Y

where

In Chapter 5, equation (5.8) can be written as

* = fO*0

<J>0 = JQ, = Jocose,

>_ = J sine, ^ = J2sin20.

By substituting (A-l) into the governing equation (5-6),

yields

R = CA-2)
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where D is the nonlinear differential operator of equation

(5.6). If (A-l) represented the exact solution to (5.6), R

would vanish. Since this is not the case R has a finite

value. The Galerkin procedure consists of making R orthog-

onal to each of the 4».'s. This leads to the equations

1 2ir , f
f f R<J> rdrd = 0 • i = 0 ,1 , . . . ,4 CA-3)

o o i

and a set of five second order differential equations are

generated. The angular part of integration can be performed

in closed form while the radial part of integration must be

computed numerically and leads to the integral

Ci = 6k/P1Cr)JkCSklrIrdr (A-

where Bk = 28^/lCS* - k2} JKS,-,.! >. (A-5)

The numerical values of C. are listed in Table 7 for

Y = 1.2. Also listed in this table are the functional forms

of F.'s. In writing these the notation

Ri = Sii(Y-l)Ji + siiji/r - I2ji/r2» 1=0.1,2 (A-6)

is used. Similarly the numerical values of

G
1j

J
1CS11r)rdr (A-7)
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8.



98

Table 7

COEFFICIENTS APPEARING IN EQUATIONS (5-9) Y = 1.2

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

k

0

0

0

1

1

1

1

2

2

2

0

0

0

1

1

2

2

Ci

4.137

1.042

-0.208

-1.939

-2.312

1.719

1.483

-2.785

-3.039

1.132

2.586

0.480

-0.196

-4.849

1.503

-0.576

-3.481

Fi

R T J- OO 2 Tt2
Q«J Q T dO g}0 Q

R1J1/2 + 32^2+ j2 / r2

R2J2/2 + SljJ^2 + 4j|/r2

Ro ji + 2soisii jo ji

rt i *J ft • ^ O n i » ^ T - i J A * J iJ . U U J . J . J . U J .

V2
/2 + SllS21JiJ2 + 2JlJ

2
/r2

R2J a /2 + S^S^JJJ* + 2J1J2/r2

R T 4 - O c ; Q T » T '
00 2 -r ^^>oJ.b2a 0 2

T3 T i O O O T T T t
K2J 0 ^b01b21d 0J2

RjJ j /2 + S2JJJ2 _ j2/r2

• s i i J fc 2

^(SfiJi2 + J f / r 2 )

S2
3J2

2/2 + 2J2/r2

t o o *J U

S o T ^ T ' AOT T />•» 2O «J U i tu O / X

3s(s2ijl2 - Ji /r2)

2S01S21JJJ2
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Table 8

COEFFICIENTS APPEARING IN EQUATION (5-12)

i

0

0

0

0

0

0

0

1

1

1
1

1

2

2

2

2

2

j

1

2

3

4

5

6

7

1

2

3

^

5

1

2

3

*

5

dij

1.000

1.293

0.240

-0.098

-0.176

0.061

0.049

1.000

-1.212

0.927

0.165

-0.199

1.000

-1.741

-0.223

0.237

-0.175

GU

J o Cs 01^)

^S2,i jo2

J. -L 1 1

3gCS|1Jj2/2 + 2J|/r2)

-w2.
-*Jf

™"^£vJ «

J j CSur )
q q T t T t
^01^11° 0J1

^(S^S^JjJ^ + 2J1J2/r2)

-JoJi

-%JiJ2

J2(S2ir)

S01S21J0J2

1 J. J 1

-J0J2

-Vi
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10,1

SSET LIST FREE
C
C K I N - W I N G M O N G JUN 30 1978
C
C C C M B U S T I O N I N S T A B I L I T Y
C
C . M E T H O D G A L E R K I K M E T H O D
C " T h I S P R O G R A M G E N E R A T E T H E S T A B I L I T Y C U R V E .
C
C U P U T I N F O R M A T I O N
C
C THE PROGRAM USED THE FORMAT FREE INPUT OUTPUT. A
C CCMHA SERVES AS A DELIMITER AND THE INPUT VARIABLES
C ABE ENTER IN THE FOLLOWING ORDER
C TI INITIAL TIME
C TF FINAL TIME
C DT STEP SIZE FOR TI HE
C MB BURNING RATE
C ' TOELAY DELAY TIME
C
C El INITIAL EPS
C EF FINAL EPS
C OE STEP S IZE FOR EPS
C DA ASStiME P O S I T I O N FOR N
C F O » F O A R E T H E I N I T I A L C O N D I T I O N M O D I F I E R A N D
C H A V I N G THE VALUE E I T H E R 1 OR 0
C
C A N O T H E R SETS O F D A T A C A N B E E N T E R B Y E N T E R I N G
C E I > E F r D £ » D A > F O AND FD .
C

D I M E N S I O N O Y ( 1 0 > * F O ( 5 > * O F < 5 ) , G < 1 0 » 5 0 0 ) » Y < 1 0 )
C C M M O N E P * f i ! U * B » E P A N V
C O M M O N / S L I S T / S O » S 1 » S 2
C C M M Q N /BLK1/C1»C2»C3»C4»C5 ,C6 ,C7»C8 ,C9»C10»C11»C12

1»C13»C14* C15*C16»C17
L O G I C A L P A S S - G R O K
D A T A K A X I T R * E P S / 2 0 » . l /
D A T A PI/3.14159/
8 E A D ( 5 » / > T I » T F » D T » W B » T D E L A Y

TCELAY=PI*TOELAY
K=TDELAY/DT
M = K + 1
IF (Kl.GT.5CO) GO TO 105
IF (K.LT.l.ANO.NCF.EQ.l) K=l
N5TEP=(TF-TI)/DT
K = 10
HhALF=DT*.5
NFR08=0
fiEAD(5*/»END=9S9) EI» EF»D£*D
NFROB=NPROB4l
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F f . I N T * / / , K P F Q B
P F I N T *//*FO»DF
MSTEP«<EF-E!)/DE
EF=EI
IF (EP.LT.O) EPs

FASS=, FALSE.
CC IOC 1STEP =0»HS1EP
CC 80 I T R = l * M A X I T R

IF (EPANV-EC.O) £PANV=ANV
CC 10 I=1»K
CC 10 J=l»N

1C G(JrI)=0.
CC 20 I=1»N

2C Y(I> = 0.
C
C I N I T I A L C O N D I T I O N
C

1(5)
YU> = C F U > * S O ; Y < 2 ) = D F < 2 > * S m < 5 > = D F C 3 ) * S 2
Y(7 )=DF(4 ) *S i ;Y<S)=DF(5 ) *S2
CALL DLYFUN <N» Y ,6»K,EPS,Kl >
T = TI

CC 40 I*1,NSTEP
CALL RKDELY(N»T»Y»OY»DT»G»K»EP»illO»HHALF»Kl)
CC 30 J=2»N»2
1F( ABSCYCJ )).GT.2) GO TO 60

3C CCNTINLE
4C CCNTIKUE

GfOW=. FALSE.
If (PASS) GO TO 50

GC TO 80
50 CCNTINUE

A C V D W M A N V
GC TO 70

60 CCNTINUE
P/SS=. TRUE.

7 C C C N T I N L E
IF (A8S{AN¥t 'P-AN¥DHN).LT.£PS> GO TO 90

8C CCNTINUE
SO CCNTINUE

NM, = AN \l
PFINT */ /»EP»NNU»ITR
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I F U T R . E Q . M A X I T R ) P R I N T //*•*•* H A R M I N G * * * T H E
1 A N S W E R M A Y NOT C O N V E R G E *

£ F = E P « 0 £
* N V = A N V U P / 2 ; A N V D H N = 0

I C C C O N T I N U E
GC TO 9

1 C 5 P F I N T / / » * O E L A Y T I M E T O O L A R G E * , T D E L A Y
GC TO 999

11C F F I N T *//, ' I L L E G A L D E L A Y F U N C T I O N *
955 S T O P

E K D
S U B R O U T I N E O I F F U * ( T , Y » D Y >

C
C T H I S S E C T I O N P R O V I D E A SET OF F I V E S E C O N D ORDER
C E Q U A T I O N S
C W H E R E
C F O = Y < 2 > G 1 = Y ( 8 )
C F1 = YU) G 2 = Y ( 1 C )
C F 2 » Y « 6 )
C

D I M E N S I O N Y ( 1 0 ) , C Y ( 1 0 )
C C M M O N E P » F K » M B » E P A N V
C O M M O N / S L I S T / S O » S 1 » S 2
C O M M O N / B L K l / C 1#C2»C3»C4»C5*C6*C7 *C8*C9* Cl C»C1 UC 12

C15*C16»C1?

C H 2 ) = Y ( 1 )
D Y ( l ) = -SO*SC*Y(2)
« H 7 ) ) * C 3 * t Y < 1 0 ) * Y C 9 ) + Y < 6 ) * Y < 5 ) »
C H 4 ) = Y ( 3 )
D Y ( 3 ) » - S l * S l * Y ( 4 ) - E P * < C 4 « ' Y < 2 ) * Y ( 3 ) * C 5 * Y < 4 } * Y < l )

C 6 * < Y < 8 ) * Y < 9 ) * Y U ) * Y < 5 ) )«C7* < YC6 )* Y(3 )* Y<10)* Y

C U 5 ) a - S 2 * S 2 * Y ( 6 ) - E P * ( C 8 * Y ( 2 ) * Y C 5 ) * C 9 * Y < 6 ) * Y < D * CIO*
1 ( Y ( 8 ) « Y < 7 ) - Y ( 4 ) * Y ( 3 ) ) )

C H 8 > = Y ( 7 )
C H 7 ) » - S 1 * S 1 * Y ( 8 ) - E P * ( C 4 * Y ( 2 ) * Y C 7 ) * C 5 * Y ( 8 ) * Y < 1 ) * C6*

l ( \ ( 4 ) « Y C 9 ) - Y ( 8 ) * Y ( 5 ) ) * C 7 * C Y < 1 0 ) * Y ( 3 ) - Y C 6 ) * Y f 7 » )
C Y < 1 0 ) = Y < 9 )
C U 9 ) = - S 2 * S 2 * Y ( 1 0 ) - E P * < C 8 * Y ( 2 ) * Y ( S ) * C 9 * Y < 1 0 ) * Y < 1 ) CIO

l * ( Y ( 8 ) * Y ( 3 ) * Y t 4 ) * Y < 7 > ) )
I F ( R K . E Q . 2 ) R E T U R N

C
C T h I S P R O V I D E T H E C O M B U S T I O N TERMS
C

C t C l ) = D Y < l ) - W 8 * < Y ( l ) + E P A N V * C C l l * Y ( Z ) * Y ( 2 ) * C l 2 * < Y ( 4 ) * Y
HO* Y ( 8 ) * Y ( 8 » * C 1 3 * < V C 1 0 )* Ytl 0 ) * Y<6 ) * Y C 6 ) ) ) )

C H 3 ) = D Y ( 3 ) - N 8 * < Y ( 3 ) * E P A N V * ( C 1 4 * Y ( 2 ) * Y ( 4 ) * C 1 5 * ( Y ( 4 ) » Y
1(6)* Y ( 8 ) * Y ( 1 0 ) ) »

D Y ( 5 ) = O Y ( 5 ) - W 8 * ( Y ( 5 )* E P A N V* CCl 6* ( Y(4 )* Y<4 )-Y( 8) *Y(8) )
1 * C 1 7 * Y ( 2 ) * Y ( 6 ) ) )
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C t < 7 ) = D Y < 7 ) - W 8 * C Y < 7 ) * E P A N y * < C 1 4 * Y < 2 ) * Y < 6 ) * C i 5 * < Y < 4 ) * Y
1(10) Y l 8 ) * Y ( 6 ) » )

O Y < 9 ) = D Y C 9 ) - H B * C Y < 9 ) * E P A N V * < C 1 7 * Y < 2 ) * Y < 1 0 ) * 2 * C 1 & * Y < 4 )
1 « Y ( 8 M )

R E T U R N
E K D
S18ROI ;TINE R K D E L Y ( N * T » Y » D Y * H * G * K » E P S * * * H H A L F * K l )

C
C T H I S S E C T I O N P E R F O R M A F O U R T H O R D E R R U N G E ' K U T T A M E T H O D
C k l T H T I M E D E L A Y F U N C T I O N
C

D I M E N S I O N Y( 10) » G Y U O ) » Y2C1 0) ,Y3C 10 ) » G < 10*500)
C C M M O K £ P » f l K » K 8 » E P A N V
C C M M O N /8LK1/ C 1»C2»C3,C4»C5,C6»C7 »C8, C9» CIO*C1 1»C 12

1 » C 1 3 » C 1 4 » C15»C16'C17
C A L L O I F F U N C T * Y » O Y )
CC 10 I = 1 » N

Y 2 ( I ) = Y C I ) * H H A L F * < D Y ( I ) * G(I»1»

1 C C C N T I K L E
T = T * H h A L F
C J L L C I F F U N ( T » Y 2 » D Y )
CC 20 I = 1»N

Y 3 ( I ) = Y ( I ) * H H A L F * ( D Y < I ) * G ( I » D )
20 Y 2 ( I ) = Y 2 < I ) + 2 .*Y3( I )

C « L L O I F F U N C T » Y 3 » O Y )
CC 40 I = 1 » N

Y 3 ( I ) = Y < I ) * H * ( D Y ( I ) * G ( I » 1 ) J
I F C K . L T . l ) GO TO 40
DC 30 J=1»K

3C 6 ( I » J ) = G(I ,J«1)
AC Y 2 « I ) = Y 2 < 1 ) * Y 3 ( I )

T = T « H H A L F
C * L L O I F F U N ( T » Y 3 » D Y )
CC 50 I = 1 » N

Y e i ) = ( Y 2 C I ) - Yd) * H H A L F * ( O Y < I ) * G<I» l !» /3 .
5 C C O N T I N U E

E N T R Y O L Y F t N ( N » Y » G » K » E P S » K 1 )
C
C T H I S G I V E S THE F O R M OF D E L A Y F U N C T I O N G
C

I F C K . L T . l ) R E T U R N
I F ( R K . E Q . 2 ) R E U R N
G ( 1 » K 1 ) = M B * E P A N ¥ * < C 1 1 * Y ( 2 ) * Y ( 2 ) * C 1 2 * ( Y C 4 ) * Y

1(4)* Y ( 8 ) * Y « 8 ) ) * C 1 3 * ( Y ( 1 C ) * Y < 1 0 ) « Y ( 6 ) * Y ( 6 ) ) )
G ( 3 » M ) = M B * E P A N V * < C U * Y < 2 ) * Y < 4 ) « C 1 5 * < Y ( 4 ) * Y

! ( € ) * Y < 8 ) * Y ( 1 0 ) ) )

G ( 7 » K 1 ) = W 8 * E P A N V * ( C 1 4 * Y < 2 ) * Y ( 8 ) * C 1 5 * < Y ( 4 ) * Y
1(10) Y ( 8 ) * Y ( 6 ) ) )
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G C 9 , K i > = W 8 * E P A N ¥ * < C i 7 * Y ( 2 ) * Y ( i O > * 2 * C l 6 * Y < 4 > * Y < e ) )
R E T U R N
£^0
B L O C K D A T A
C O M M O N / B L K 1 / C I » C 2 » C 3 » C 4 * C 5 » C 6 » C 7 » C 8 » C 9 » C 1 0 ' C 1 1 » C 1 2

l'C13*C14» C15»C16»C17
C C M M O N /SL IST/SOfS l ,S2
CAT A SO.51,52/3,83171,1.84118»3.05424/
C/TA Cl»C2»C3»C4/4.1373»i.0423»-.20a4»-1.9394/
C A T A C 5 » C 6 » C 7 » C 6 » C 9 /-2*3123»1.7167»1.4828»-2.785»

l-3.03fif l /
C / T A C 10»C 11»C12»C13/1.1318,2 ,586».480»-. 196/
C I T A C14»C15>C16»Cl7/-2.4243»1.8534445*".447»-3.481/
E N D



APPENDIX C

PROGRAM FOR MODAL AMPLITUDE AND PRESSURE
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S5ET L ISTUT081NO
S3INO = F R O M *FQRTLI8 /= FREE
FILE 1 ( K I N C = D I S K » M A X R £ C S I Z E = 1 5 » B L O C K S I Z E = 4 2 0 » A R E A S = 4

1 ,AREASI2E=1400 ,F ILETYPE=7)
C
C KIN-MING WONG JUN.30 1978
C
C C O M B U S T I O N INSTABIL ITY
C
c METHOD: THIS PROGRAM USED THE GALERKIN METHOD TO
C G E N E R A T E FIVE SECOND ORDER DIFFERENTIAL EQUATIONS.
C A FOURTH ORDER R U N G E ' K U T T A METHOD IS USED TO SOLVE
C TH£ RESULTING EQUATIONS.
C
C THE PROGRAM GIVES THE MODAL AMPLITUDE AND THE PERTUBED
C PRESSURE IN GRAPHICAL FORM.
C
C THERE ARE TWO T Y P E S OF INPUT D A T A S . THE F IRST SET OF
C INPUT D A T A USED F O R M A T FREE INPUT. A COMMA SERVES
C AS A DELIMITER AND THE D A T A ENTER AS FOLLO*:
C T I I N I T I A L T I M E
C TF F I N A L T I M E
C DT STEP SIZE FOR TIME
C NP PRINT FREQUENCY
C NOF I FOP THE DELAY TIME APPROCHING 0
C 0 OTHERWISE
C I G A S I FOR G A S - D Y N A M I C TERNS
C 0 O T H E R W I S E
C F 0 » I N I T I A L C O N D I T I O N M O D I F I E R
C OF E lTHER 1 OR 0
C R RADIUS OF THE CYLINDER
C
C THE SLCOND SET OF DATA USED THE NAMELIST (LIST)
C INPUT OUTPUT OPTION. THE DATA CAN 8E ENTERED IN
C ANY ORDER. HOWEVER THE FOLLOWING DATA MUST 8E
C PROVIDED INITIALLY.
C TOELAY DELAY TIME IN MULTIPLE OF PI
C EP ORDER PARMETtK ,
C KB STEADY BURNING RATE
C ANV INTERACTION PARMETER
C PLOT T FOR PRESSURE PLOT
C F OTHERWISE
C
C IF PLCT IS TRUE* ONE MORE DATA (NUMPT) IS NEEDED TO
C PROVIDE THE NUMBER OF POINT WITHIN 0 AND 2*PI.
C

DIMENSION XX(100)»YYC100)»OY<10)»PC5)*FO(5)»DFC5)»G
1(10*5CO),Y<10)

C C M M Q N E P » I G A S » R K » W 8 » E P A N V
C'CMHON / S L I S T / S C » S l » S 2
C O M M O N / B L K l / C UC2*C3 » C 4 , C 5 » C6 » C 7 * C 8 » C 9 , Cl 0» Cl 1» Cl 2
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1,C13»C14, C15»C16»C17
C O M M O N / B L K 2 / C 0 2 » C 0 3 » C 0 4 » C 0 5 » C 0 6 » C 0 7 » C 1 2 P » C 1 3 P » C 1 4 P

1»C15P» C 2 2 * C 2 3 , C 2 4 , C 2 5 » G A M A
COMMON /BLK3/ 3JO»BJ1»BJ2»COSQ*COS2Q»SINQ*SIN20
D A T A PI/3.14159/
L O G I C A L PLOT
NAMELIST /LIST/ T D E L A Y * E P » W 8 » A N V » P L O T
R E A D C 5 , / ) T I » T F » D T * N P » N O F » I G A S * F O * D F » R
PRINT * / / »T I»TF»OT»NP»NDF
IF ( IGAS.EQ.O) PRINT / / > » G A S DYNAMIC TERM IS OFF*
PRINT */ /*FO»DF»R
EFS=l.E-6
CALL B E S J C S O * R » 0 » 8 J O » E P S » I E R )
CALL 3ESJ(S1*R»1»BJ1»EPS>1ER)
CALL 8ESJCS2*R»2»8J2»EPS»IER)

999 R E A O ( 5 » L I S T » E N O = 9 9 )
R E W I N D 1
TCLY=PI*TOELAY
EFANV=EP*ANV
IF (EPANV.EQ.O) EPANV-ANV
i«FITE(6»LIST)
N = 10
HHALF=OT*.5
K=TDLY/DT
M=K + 1
IF (Kl .GT. 500) GO TO 500
IF (K.LT.l.AND.NDF.EO.l) K=l
DC 30 I=1*K
CC 30 J=1»N

30 G(J*I)=0.
DO 10 I=1^N

10 YCI)=0.
C INITIAL CONDITION
C

T=TI
Y(2)=FO(1);Y(4)=FO(2)>Y(6)=FO(3)JY(3)=FOC4);Y(10) = F
1(5)
Y(1)=OF(1)*SO;Y< 3)=DF(2)*S1JY<5)=DF(3)*S2
Y(7)=DF(4)*Si;Y(9)=DFC5)*S2
NST£P=(TF-TI)/DT
IF (.NOT.PLOT) GO TO 40
CALL PRE3UE(Y»P)
HRITE(l) T»P

4C CONTINUE
PRINT //^"FUNCTION"
*8ITE(6,100) T»(Y<I)»I=2»N»2)

45 CONTINUE
CALL OLYFUN (N»Y»G»K»EPS»Kl)
DC 20 I=1»NSTEP
CALL RKOELY(N»T>Y»OY»OT»G»K»EP» &400»HHALF»K1)
DC 55 J=2»N»2
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IF<A8S(Y(J)).LT.2) GO TO 55
RK = 2

55 CONTINUE
IF (MOO(I>NP).NE.O) GO TO 20
IF (.NOT.PLOT) GO TO 60
CALL PRESUE<Y»P)
WFITEU) T»P

6 0 « f i I T E ( 6 , 1 0 0 ) T » < Y C J ) * J = 2 * N , 2 )
6 5 C O N T I N U E
2 0 C O N T I N U E

IF (RK.GT.O) PRINT //»•UNSTABLE'
IF ( .NOT,PLOT) GO TO 70
E N D F I L E 1
R E W I N D 1
PRINT / / , 'PRESSURE*
R E A D < 5 » / ) NUMPT
D 6 = P I * 2 . / N U M P T
NLM = N l i H P T » l
T E M P = C ; X X ( n=o;
CC 75 I = 2 » N U M
T E M P = T £ M P * D Q

7 5 X X ( I ) = T E M P
98 R E A D ( 1 , £ N D = 7 0 ) T ,P

P R I N T / / » " T I M E = " » T
S U M Y = C .
DC 80 1=1* MUM
Q C = X X ( I )
Y t ( I ) = - G A M A * ( P ( l ) » P ( 2 ) * C O S ( a f l ) * P ( 3 ) * C O S ( 2 * Q 9 ) * P ( 4 )

l * S I N ( 8 Q ) - » P ( 5 ) * S l N ( 2 * f l O ) )
S U M Y = S U M Y » Y Y ( I )

80 C O N T I N U E
I F ( S L M Y . N E . O . ) CALL P L O T 2 0 ( X X > Y Y F N U M . 1 0 0 * 1 0 0 )
GO TO 98

7 0 C O N T I N U E
RH=0
GC TO 999

400 PFINT *//,•ILLEGAL DELAY FUNCTION1

GC TO 99
50C PRINT *//,'DELAY TIME TOO LARGE'
99 S T O P
1 0 0 F C R M A T ( X > 8 E 1 2 . 5 )
11C F O R M A T ( 1 3 X , 7 E 1 2 . 5 )

£ N O
S U B R O U T I N E D I F F U N ( T » Y » D Y )
C 1 M E N S I O N Y ( 1 0 ) » O Y ( 1 0 )
C C H H O N E P ^ I G A S * R K ^ M S ^ E P A N V
C O M M O N / S L I S T / S O » S 1 » S 2
C O M M O N /BLK1/ C 1 » C 2 » C 3 » C 4 » C 5 » C 6 , C 7 » C 8 » C 9 » C 1 0 » C 1 1 » C 1 2

1 » C 1 3 » C 1 4 > C15*C16»C17

C Y ( 2 ) = Y ( 1 )
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2 ) -EP* IGAS* (C l *Y<2) *Y( 1)«C 2*< Y( 4 ) * Y ( 3)
1 * Y ( 3 ) * Y ( 7 ) ) » C 3 * C Y ( 1 0 ) * Y C 9 ) 4 Y C 6 ) * Y C 5 » )

OU3 > = -Sl*Sl*Y<4 ) - E P * I G A S * < C 4 * Y * 2 ) * Y ( 3 ) * C 5 * Y ( 4 ) * Y < l ) «
1 C 6 * ( Y ( 8 > * Y C 9 ) * Y t 4 ) » Y ( 5 ) ) * C 7 * C Y < 6 ) * Y ( 3 ) * Y C 1 0 ) * Y
2 t7M)

01(6 )=Y(5 )
D Y < 5 ) = - S 2 * S 2 * Y < 6 ) - E P * I G A S * ( C 8 * Y ( 2 ) * Y < 5 ) » C 9 * Y ( 6 ) * Y ( 1)*

1 C 1 0 * ( Y ( 8 ) * Y < 7 ) - Y < 4 ) * Y ( 3 ) ) >
D Y ( 8 ) - Y ( 7 )
O Y ( 7 ) = -S l *S l *Y<e)-£P* IGAS*<C4*Y<2)*Y(7>4C5*Y(8)*YU>*

1 C 6 * ( Y ( 4 ) * Y ( 9 ) - Y < 8 > * Y < 5 » + C 7 * ( Y < 1 0 ) * Y t 3 ) - Y < 6 ) * Y < 7 » )
O Y ( 1 0 ) = Y ( 9 )
OY(9 )= -S2*S2*Y(10 ) -EP* IGAS* (C8*Y<2) *YC9) *C9*Y(10 ) *Y<1)

1 C 1 0 * ( Y < a ) * Y < 3 ) * Y < 4 > * Y < 7 ) »
IF (RK.EQ. 2) RETURN
DY(1 ) = DY(1 ) -HB*«Y( l ) + E P A N W * ( C l l * Y ( 2 ) * Y < 2 ) + C i a * < Y ( 4 ) * Y

lt«)* Y ( 8 ) * Y ( 8 ) > * C 1 3 * < Y ( 1 0 ) * Y ( i a ) » Y < 6 ) * Y ( 6 ) ) ) )
D Y < 3 ) = O Y ( 3 ) - W 8 * ( Y ( 3 ) 4 E P A N t f *(C 14*Y( 2) *YC 4 ) + C15*C Y ( 4 ) * Y

1(6)* Y ( 8 ) * Y ( 1 0 ) ) ) >
C Y ( 5 ) = O Y ( 5 ) - H 8 * ( Y < 5 ) * E P A , M V * ( C i 6 * C Y C 4 ) * Y ( 4 ) - Y ( 8 ) * Y { 8 ) )

1 * C 1 7 * Y « 2 ) * Y < 6 > ) )
D Y C 7 ) = D Y ( 7 ) - H 8 * ( Y C 7 ) * E P A N V * ( C 1 4 * Y < 2 ) * Y ( 8 ) + C 1 5 * < Y ( 4 ) * Y

1(19) Y ( 8 ) * Y ( 6 ) > ) >
D Y ( 9 ) = OY(9 ) -M8*(Y(9)*EPANV*(C17*Y(2)*Y(10)+2*Cl6*Y(4)

1*Y(8)»
RETURN
END
SUBROUTINE RKDELY<N»T, Y ^ O Y »H»G»K»£PS» *»HHALF»KD
DIMENSION Y ( 1 0 > » O Y ( 1 0 ) > Y 2 ( 1 0 ) » Y 3 ( 1 0 ) » G ( 1 0 » S O O )
COMMON EP' IGAS* R K » W 8 » E P A N V
C C M M O N /8LK1/ Cl » C 2 > C 3» C4*C5» C6»C7»C8»C9»C10,C1 1»C12

1*C13'C14* C15»C16»C17
CALL OIFFIJN(T»Y*DY)
00 1 I = 1 » N

Y2( I ) = Y ( I ) •» HHALF*(OY(I ) + G C X » 1 1 >

1 CONTINUE
T = T-»HHALF
CALL O IFFUN(T»Y2»DY)
00 2 I = l * N

Y 3 ( I ) = Y ( I ) + HHALF*(DY( I ) + G(I
2 Y2( I )= Y2( I ) * 2 *Y3< I )

CALL OIFFUN( T * Y 3 » D Y )
DO 3 I=1*N

Y3( I )=Y( I ) « H* (DY( I ) * G(X»D)
IF(K.LT.l) GO TO 3
OC 10 J=1*K

10 G(I»J ) = G(I»J*1 )
3 Y2 ( I )=Y2( I ) * Y3U)

T=T+HHALF
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CALL DIFFUN (T ,Y3»DY)
DC 4 I = i,N

Y ( I ) = (Y2( I ) - Y<I) * HHALF*tDY<I) * G(I,l»)/3.
4 CONTINUE

E N T R Y OLYFUN < N,Y»G,K,EPS,K1 )
IF (K.LT.l) RETURN
IF (RK.EQ.2) RETURN
G(l,Kl)= W8* EPANV*(C11*Y<2)*Y<2)+C12*CY(4)*Y

1(4) + Y ( 8 ) * Y ( 8 ) ) + C 1 3 * < Y ( 1 0 ) * Y ( 1 0 ) * Y < 6 ) * Y ( 6 > ) )
G(3.K1)» H8* E P A N V * ( C 1 4 » Y C 2 ) * Y < 4 ) * C 1 5 * < Y ( 4 ) * Y

1(6)* Y ( 8 ) * Y C 1 0 ) »
G«5»Kl ) = * < 8 * E P A N V * < C 1 6 * ( Y ( A ) * Y ( 4 ) - Y ( 8 ) * Y ( 8 » + C i 7 * Y ( 2 ) * Y

1(6))
G(7,K1)= MB* E P A N V * ( C l 4 * t ( 2 ) * Y < 8 ) 4 C l 5 * ( Y ( 4 ) * Y

1(10) Y ( 8 ) * Y ( 6 ) ) )
G ( 9 » K 1 ) » W 8 * E P A N V * C C 1 7 * Y < 2 ) * Y ( 10)*2*Cl 6*Y« * ) *YC 8 ))
RETURN
END
SUBROUTINE PRESUE<Y»P)

C
C THIS SECTION PERFORM THE PRESSURE CALCULATION
C

DIMENSION Y(10)»P(5)
C O M M O N EP'IGAS* R K » M 8 > E P A N V
CCMMON /8LK2/C02*C03»C04*C05»C06»C07rCl2P»C13P»C14P

CCMMON /BLK3 /BJO '8J1»BJ2»COSQ,COS2Q*SINQ»SIN2Q

F O ^ Y ( 2 ) ; F1=Y(4)* F2 = Y(6) ; G1 = Y (3 ) ; G2=Y<10)
P(1) = BJO*(DFO*EP*(C02*FO*FO-»C03*(F1*F1*G1*G1 )+C04*(F2

1*F2*G2*G2) *C05*OFO*DFO*C06*(DF1*QF1*OG1*OG1)*C07
2(CF2*OF2* O G 2 * D G 2 ) ) )

P(2 ) = BJ1*(OF1 + EP*<C12P*FO*F1 + C13P*CF1*F2*G1*G2)*C14P
1*DFO*DF1+ C15P*(DF1*OF2+DG1*DG2)) )

P(3)=8J2*(OF2+EP*(C22*FO*F2+C23*CF1*F1-GI*G1 )4C24*DFO
1*OF2+ C25*(OF1*DF1-OG1*DG1 )))

P(4 ) = 8J1*(DG1*EP*(C12P*FO*G1+C13P*CF1*G2-G1*F2)*C14P
1*CFO*OG1* C15P*COF1*OG2-DF2*DG1»>

P(5)=BJ2*(DG2*EP*tC22*FO*G2*2.*C23*Fl*Gl»C24*OFO*DG2»
1 2.*C25*OF1*DGD)

RETURN
END
BLOCK D A T A
C G M M O N / B L K 1 / C 1 »C2.C 3, C4*C5» C6»C7 »C8 »C9» CIO »C1 1»C12

1 » C 1 3 » C 1 4 » C15»C16»C17
C O M M O N / S L I S T / S O » S 1 » S 2
CCMMON /8LK2/C02»C03>C04,C05»C06*C07»Cl2P»C13P»Ci4P

CflTA SO, 51 » S2/ 3. 831 71, 1.841 13, 3. 054 24 /
DATA Cl,C2,C3,C4/4.1373,i.0423,-.2084,-1.9394/
D A T A C5,C6,C7,C8,C9 /-2. 3123, 1 .7187 ,1 .4 828, -2. 785,
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1-3.03687
D A T A C10»C11»C12»C13/1.1318*2.586».480»-.196/
D A T A C l4 ,C15 ,Cl6*Ct7 / -2 -424 i , 1.8534445^-. 447, -3.481
D A T A C02»CO 3 »CO 4 »C05»CC6»C07/ 1.2930*0. 2400* -.0982*

1-.1762 *.0607,.0494/C12P*C13P»C14P»C15P/-1.2121

3*.2371»-.1754/
D A T A G A M A / 1 . 2 /
E N D




