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1.0 SUMMARY

An experimental investigation was performed under NASA Contract NAS 3-2081k to
study aircraft fuels at low temperatures near the freezing point. The princi-
pal objective was an improved understanding of the flowability and pumpability
of the fuels in a facility that simulated the heat transfer and temperature
profiles encountered during flight in long range commercial wing tanks.

A test tank simulating a section of an outer wing integral fuel tank approxi-
mately full scale in height, was designed and fabricated. Internal tank con-
struction included stringers, scavenging ejectors, pump inlet surge box, and
other details corresponding to an airplane wing tank construction. The test
tank was chilled through heat exchange plates on the upper and lower level
horizontal surfaces. Other surfaces were insulated. A viewing port was
installed in each vertical panel.

Fuels used during the program included commercially obteined Jet A and Diesel
D-2, a special JP-5 type derived from oil shale, paraffinic and naphthenic
Jet A, Diesel D-2, and intermediate freeze point fuels, and the paraffinic
intermediate treated with a pour point depressant. The pour point depressant
and most of the fuels were furnished through the Coordinating Research
Council.

Tests were generally conducted by chilling the tark skins to a nearly constant
temperature. Fuel wes withdrawn from the tank by gravity flow after the fuel
reached a desired temperature with time. Suspensions of solid fuel particles
were readily withdrawn and presented no obstacles to flow. The accumulation
of solid particles at the bottom of the tank, remaining after the liquid was
withdrawn, was defined as gravity holdup. For cases where 10% or less of the
fuel was held up, the holdup was essentially a solid deposition. At greater
holdups, entrapment of liquid fuel within the matrix of solids was discernible.
Solid buildup commenced on the hottom of the tank, spread over the lower
stringers, then began to form on the upper surfaces and vertical panels. At
large holdups, accretions on the walls and upper surfaces sometimes fell and
could obstruct gravity flow.

Temperatures measured at the approximate location of the commercial fuel tem-
perature probe provided a good measurement of bulk temperature, but ignored
lower temperatures near the chilled walls. Tests were also conducted at a
varying wall temperature schedule, with fuel withdrawal over a 3-hour period
to represent an extreme condition, long range flight. With specification Jet
A fuels, all fuel could be withdrawn, but there was evidence of some solid
formation at the time of minimum temperatures, and subsequent melting of the
solid materisal.

Sloshing, recirculation, and use of ejectors tended tc decrease the tempera-
ture difference between the chilled walls and the bulk fuel and indirectly
affected the holdup by altering the temperature profiles. Tests with an inter-
nal baffle or with dehydrated fuel showéd no change from comperable baseline
tests.



Tests with an intermediate distillete fuel, with the addition of a suitable
pour point depressant, provided a significant reduction in gravity holdup,
compared to that of the undoped fuel. Tank results agreed with laboratory
data.

This experimental investigation provided considerable insight into the behav-
ior of fuel at low temperatures representative of flight conditions. A rather
large quantity of test data was obtained which could furnish material for fur-

ther analysis.



2.0 - INTRODUCTION

‘This report presents the results of a study pertormed by +he Lockheed-
California Company under NASA Contract NAS 3-2081L, titled "Experimental Study
of Aircraft Jet Fuels at Low Temperatures Nzar the Freezing Point".

This experimental study was designed to examine the hear-freezing-point behav-
ior of aviation turbine engine fuels in a test facility representative of a
section of a commeréial ajircraft fuel tank. The principal objective was an
improved understanding of the practical flowability and pumpability of the
fuels utilized in the test program. This understanding would be cpplied to
evaluation of various specification tests related to the freezing point of the
fuel  and the formation of solids within the fuel. Correlation of all these
factors would establish a set of reproducible flowability/pumpability criteria
(Ref. 1, 2, 3, 4, 5). These criteria should be suitable for existing jet fucls
ar.d for future fuels such as might be produced from raw materials other than
crude o0il; examples of such potential raw materials are oil shale and coal.

Jet fuel is a complex mixture of a lerge number of hydrocarbon compounds

(Ref. 6). 1In general, the number and types of compounds are controlled by the
crud: stocks available at each given refinéry, and by the various specifica-
tion requirements. Reduced availability of crude oil from which jet fuel can
be manufactured with & minimum of refinery processes may instigate proposals
to broaden the boiling range and compositional specifications of Jet fuel to
increase the yield of jet fuvel product. These chenges very likely may raise
the freezing point of the jet fuel (Ref. 2, 4, 7). Although the individual
compounds have repeatable freeze points, the freeze point of the mixture can-
not be determined by calculation. The ASTM D 2386 Freezing Point of Aviation
Fuels tést determines a temperature at which solids diseppear, while the ASTM
D-97 Pour Point of Petroleum Oils test determines a temperature at which the
fuel does not flow when the test apparatus is positioned horiczontally (Ref 8).
The principal point of interest is the lowest temperature at which the fuel
will flow by gravity, leaving no solid residue. This temperature is between
the temperature determined by the two tests. Fortunately for aircraft opera-
tions, the freeze point test assures some conservatism relative to the temper-
ature at which some of the fuel becomes unavailable due to solidification.

The pumpability and low temperature behavior of Jet fuels have been studied in
tank environments previously (Ref. 6, 9, 10). These tests involved the slow
¢hilling of fuel over a period of many hours to meintain a uniform temperature
within the tank. The fuel was then discharged from the tank to determine the
fraction of holdup, or frozen, unpumpable fuel. Repeat tests at several tem-
peratures established a relationship of holdup as a function of temperature.
The tests reported herein were intended to model an aircraft wing tan¥ envir-
orment rather than an idealized situation. Internal temperature profiles,
cooling rates, and test times simulated extreme cold day commercial aircraft
missions. The tank construction was based on a scaele model of a wide-bodied
airplane wing tank.



The general scupe of this investigation covered the following:

@ Design and fabricate a syb-scale tankage system representative >f com-
mercial jet aircraft practice, and capable of simulating in-flight tem-
perature histories.

® Procure test fuels and characterize them in terms of established test
methods.

e For s range of test fuels, define the fluidity and pumpability temper-~
ature limits in quiescent and agitated states.

® Determine the effects, if any, of sloshing, baffles, fuel recirculation,
and other factors on the low-temperature fluidity.

e Reccrd temperature profiles and time histories for a matrix of fuel
and test conditions and obtain photographic records of important
phenomena.

o Recommend future research, standards, or practical applications result-
ing from this study.

This report includes a description of the test apparatus and procedures, and
selected temperature and phctographic data. The significance and trends of the
results are discussed. Appendices A and B present results of various property
and characterization tests performed cn the fuels used in this Iinvestigation.
The fuels and fuel characterizations ware fuarnished through the courtesy of the
Coordinating Research Council (C.R.C.) Group on Low Temperature Flow Perfor-
mance of Aviation Turbine Fuels.



3.0 APPARATUS

This section of the report descrives the test locale, test tank configurat?-~n.
including the structure and associated plumbirg, access, and observatio
as well as data acquisition capabilities.

PRI

3.1 TEST CELL

Experiments with the test tank were performed at the Rye Canyon Research Ceri-
ter of the Lockheed-California Company's Engineering Laboratories. The test
cell, located at the east end of Building 209, measures approximately 3.35
meters (11 feet) by 4.57 meters (15 feet). A large window permits observers
to view the test cell from the main building; a self-closing door permits easy
access. At the outer end of the test cell is a wide retracteble metal door,
which was normally open during testing. Both ends contained penetrations
through the walls for service and instrumentation. On the floor a low tempor-
ary barrier was erected to contain any spillage which might occur.

3.2 TANK SHELL

Configuration of the test tank was designed to simulate a portion of an outer
wing fuel tank of a modern commercial jJet aircraft. Interior dimensions of the
tank are 50.8 centimeters (20 inches) high, 50.8 centimeters (20 inches) wide,
and 76.2 centimeters (30 inches) long. This latter dimension is parallel to
the upper and lower stringers, and would be spanwise relative to an aircraft
wing.

Figure 1 is a sketch of the test tank in plan view, showing the recirculation
path and other features.

Figure 2 is a cross-section of the test tank, looking toward the removable
panel.

Figure 3 is a photograph of the partially finished test tank showing the inter-
nal construction, and rods for thermocouple supports.

Panels for the upper and lower surfaces were fabri:ated from ( )61-T6 aluminum
alloy sheet 3.18 millimeters (0.125 inch) thick. Panels for the vertical walls
were fsbricated from 6061-T6 aluminum alloy sheet 4.83 millmeters (0.190 inch)
thiek.

Lower stringers were modified I-sections made of aluminum alloy extrusiom 57.2
millimeters (2.40 inches) high, and 25.4 millimeters (1.00 inch) across the
upper half-flange; thickness of the section was 6.4 millimeters (0.25 inch).
The three stringers were located to form four bays with interior widths of
epproximately 69.8 millimeters (2.75 inches), 146.0 millimeters (5.75 inches),
146.0 millimeters (5.75 inches), 127 millimeters (5.0 inches).

Upper stringers were made from 6061-T6 aluminum alloy sheet formed into a Z
cection 25.4 millimeters (1.00 inch) wide at the gttaching flange,
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71.1 millimeters (2.80 inches) deep, and 20.3 millimeters (0.80 inch) wide at
the other flange; material thickness was 3.2 millimeters (0.12 inch). Three
stringers formed four bays with interior widths of 60.4 millimeters (2.38
inches), 187.% millimeters (7.38 inches), 187.4 nillimeters (7.38 inches), and
63.5 millimeters (2.50 inches).

At one corner of the tank, two small panels were erected to form a "surge box"
between a vertical wall and a bottom stringer, surrounding the fuel exit.
Dimensions of this enclosure were 127.0 millimeters (5.00 inches) high, 127.0
millimeters (5.00 inches) wide, and 203.2 millimeters (8.00 inches) long. A
small {ree-swinging "flapper" check valve was installed in the end of the
surge box to permit fuel to flow into it from the stringer bay.

Prior to assembly, various cutouts were made in the panels to accommodate view-
ing ports in all vertical walls, as well as the required plumbing penetrations.
Angle clips were attached to the two longer vertical panels to permit instal-
lation and removal of a sheet metal divider panel simulating & fuel tank baf-
fle. Cut-outs were made in the divider to accommodate the envelope dimensions
of the stringers and allow generous passage for liquid fuel.

Assembly of the tank was accomplished primarily by riveting. Top, bottom, and
three of the side panels were attached to angles at the Junctions of the
panels, while the 50.8 centimeter (20 inch) square panel at one end of the
tank was removable. The angles to which this panel attached were provided
with seasled plate nuts to facilitate removal and installation of the end panel.
The tank was sealed with fuel tank sealant, and the interior was painted with
a urethane anti-corrosion coeting as used on the L-1C11 airplane.

3.3 COOLING PANELS

Since the test tank simulated a portion of an aircraft fuel tank, the upper

and lower surfaces represented wing skins and were provided with cooling panels
to simulate in-flight heat transfer to the atmosphere. Each panel consisted
of a flat stainless steel plate 50.8 centimeters (20 inches) by 76.2 centi-
meters (30 inches) to which was spot-welded another stainless steel plate

which had been embossed to provide a serpentine passage for the coolant flow.
“n the lewer panel, one convolution of the embocsed panel was shortened
slightly to sccommodate the fuel exit tube. The panels were bonded to the tank
shell with a special thermally-conductive cement.

Figure U4 shows the upper cooling panel bonded to the test tank.

3.% VIEWING PORTS

Because visual observation was considered an important feature, viewing poris
were installed in all four vertical panels. Three of the ports were circular,
with a view diameter of 198.% millimeters (7.81 inches). One was centered
opposite the interior end of the surge box, one was centered opposite the
location of the divider panel and the other was located in the removable panel.
At the surge box end of the tank was a rectangular port 101.6 millimeters
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(4.00 inches) high by 355.6 millimeters (14.00 inches) wide, derigned to
provide a broad view of the bottom of the tank. Figure 2 illustrates the loca-
tions of the three circular ports while Figure 3 shows the rectangular port

and two of the circular ports prior to installation of the transparencies and
spacers. Viewing at each port was provided through two panes of 9.6 milli-
meter (0.38 inch) thick Plexiglas, separated by a flanged aluminum spacer

47.8 millimeters (1.88 inches) thick. Each spacer was provided with a small
fitting so that the space between the panes could be evacuated during test to
prevent moisture condensation and to improve insulation properties.

3.5 FUEL DISCHARGE AND RECIRCULATION PROVISIONS

Fuel exited from the tank through a 48.3 millimeter (1.90 inch)} diameter open-
ing in the bottom of the tank at the corner of the surge box (Figure 1).

Over this opening was an aluminum disc perforated with 6.4 millimeter (0.25
inch) diameter holes. An aluminum tube, tapering from 50.8 millimeters (2.00
inches) outside diasmeter at the tank to 31.8 millimeters (1.25 inches) dia-
meter, connected the test tank to & smell chamber hovsing an aircraft-type

24 volt direct current boost pump. This is a centrifugal pump used cn early
Jet fighters and was selected for its relatively small power requirements of
approximately 360 watts, thereby minimizing heat rejection to the fuel. (By
comparison, one L-1011 fuel boost pump consumes over 10 times that power.)

The pump assembly incorporated a large area 8-mesh sereen surrounding the
impeller inlet. The boost pump installation is sketched in Figure 5. The dome
around the pump motor inhibits fuel circulation and minimi-=s heat rejection
to the fuel. The pump discharged into a line of 12.T7 millimeters (0.50 inch)
outside diameter and through a turbine flowmeter transmitter. Dowastream of
the flowmeter the line branched in one direction to supply motive fluw through
a control valve to two small ejectors, or Jet pumps, which could suck fuel
from two of the bays formed by the bottom stringers. These < ectors dis-
charged into the surge box. A branch and shutoff valve in i other direction
would permit fuel to be pumped either into or out of the tank. Another tur-
bine flowmeter transmitter was installed downstream, after which the line size
was increased to 31.8 millimeters (1.25 inches) outside dismeter. A tee in
this line allowed fuel to recirculate irnto the tank through a perforated tube
extending across the tank, and was also cunnected tc a standpipe which served
as a dipstick well, or as a manual filler; it was cappeda during testing.

3.6 FILL, VENT, AND DRAIN PROVISIONS

Filling of the test tank usually was accomplished by pumping fuel through the
perforated recirculation return tube in the tank. An alternate method was to
fiil through the standpipe mentioned in the previous section.

Venting of *he tank was accomplished through a 12.7 millimeter (0.50 inch)
tube pentrating the “est tank vertical wall as high as possible near the
removable end nanel. A short bent-up elbow was connected to & transparent
tube which in turn wes connected to a desiccant chamber and then to the top of
the coolant reservoir. This arrangement prevented moisture from entering the
test tank through the vent system.

11
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In each stringer bay, on the bottom of the test tank, a 9.5 millimeter (0.38
inch) tube wes installed to provide tank drainage. The tubes were manifolded
together and terminated in a shutoff valve and exit tube. In addition, removal
of virtually all liquid fuel could be accomplished by means of the boost -yump
and ejectors. Drainage of small quantities of remaining fuel, or tank flush-
ing, could be accomplished through the gravity drain manifold.

Figure 6 is a photograph showing the drain manifold, as well as the tapered
fuel exit tube for conmnection to the boost pump chamber, and the variable speed
drive used for sloshing the tank, described in the following section.

3.7 SLOSHING PROVISIONS

The tank had the capability of sloshing oscillations over a range of 50.8
millimeters (2.0 inches) each side of the neutral position. An explosion-proof
variable speed drive rotated a stud located eccentrically on a disc attached
to the output shafv (Figure 6). From the stud, a pair of push-rods actuated a
bellcrank whose other arm actuated push-rods attached to & bracket attached to
the removable panel of the test tank.

In order to provide freedom of movement during tests requiring sloshing, the
test tank was suspended by cables attached to the four upper corners (Fig-

ure T). Each cable passed over a pulley and was attached through a turn-
buckle to the support frame. This arrangement allowed the tank to be
positioned at an angle simulating wing dihedral, with the fuel exit at the low
end. The push rod between the test tank and the sloshing bell crank could be
disconnected readily to permit the tank to swing on its cables by menual force
if desired.

3.8 INSULATION

Insulation was provided for the test tank to assure that heat transfer was
confined to the top and bottom chilling surfaces. Fiberglass batting was used
to £i11 small voids, such as the spacing between cooling panel duct emboss-
ments, the space between flanges on the viewing port spacers. and to fill in
as required. Cver the entire tank blocks of solid urethane foam T76.2 milli-
meters (3.00 inches) thick were positioned. These blocks were held in place
by a combination of wire clips and strapping tape, to permit easy removal
whenever reguired. The insulated tank is illustrated by the photograph in
Figure 8. All external lines, and the boost pump chamber, were insulated by
appropriate combinetions of fiberglasc batting., urethane foam and pre-formed
foam rubber tubing jackets. During testing, the tank had an additional cover-
ing of a light blanket of insulating paper bonded to flexible aluminum foil
which acted as a vapor barrier to inhibit ccndensation of atmospheric moisture.
Cutouts in the blanket permitted observation through the viewing ports.

3.9 COOLANT SYSTEM

The coolsant system consisted of a reservoir of methanol which was chilled by
liquid carbon dioxide. In turn, the methanol was circulated to the heat

13
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exchange panels by a centrifugal pump. The flow of refrigerated methanol was
divided Just outside the test tank to supply the upper and lower cooling panels
simultaneously through lines of equal length. Return lines from the cooling
panels teed into a common line before returning to the reservoir. Figure 9 is
8 schapatic diagram of the coolant system. The overflow tank for level con-
trol, the pump, and some of the insulated plumbing are visible in Figure 8,
along the left hand wall. Flexible couplings were installed in both common
lines to accommodate angular and axial movement during sloshing.

Valving was installed to provide throttling of the coolant flow and to slter
the distribution as required to achieve approximately equal temperatures on
the upper and lower surfaces.

3.10 TEMPERATURE SENSING

An array of 55 thermocouples was used to sense temperatures inside the test
tank. Thermocouples were fabricated from copper-constantan wire, and attached
to five vertical rod supports inside the test tank. The beals of the thermo-
couples projected approximately 12.7 millimeters (0.50 inch) from the rods.
Wire bundles from the tops of the rods were gathered to pass through a common
penetration near the top of the test tank, after which a sealant was applied
at the penetration to prevent fuel _-akage.

Figure 10 illustrates the arrangement of these thermocouples inside the test
tank. As shown, there were three thermocouple racks with 12 thermocouples
each, two with 7 thermocouples each, and five additional skin thermocouples.
The identification and location of each thermocouple is listed in Table 1.
Note that for Tests 58 and following, thermocouples in Racks 2 and 3 were
relocated for improved definition of temperature gradients near the cooling
surfaces.

3.11 FLOW RATE SENSING

Two turbine flowmeters were used to measure flow rates in the recirculation/
elector system, installed in 12.7 millimeter (0.50 inch) outside diameter
tubing. One transmitter was installed upstream of the branch to the ejectors
and the other downstream (Figure 1). Determination of ejector motive flow as
the difference between readings of the two instruments was unreliable, EjJector
flow rate was estimated by comparison of recirculation flow rates with and
without ejector use. For the scheduled withdrawal tests, a small venturi was
installed as shown in Figure 1 to measure the withdrawn fuel flow rate.

3.12 AUTOMATIC DATA RECORDING SYSTEM
An automatic datas recording system was available to acquire temperature and
flow rate data. This system was compatible with the central data system at

the Rye Canyon Research Center, so that temperature tabulations and time hLis-
tories of temperatures could be produced by computer.

17
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Figure 11 is a block diagram of the automatic data acquisition system.
Signals from the thermocouplas and the flow transmitter frequency converters
were introduced into the 96 - chaunel Neff 620 Series 400 multiplexer. This
fed into the H wlett-Packard 9825A calculator at predetermired intervals and/
or upon coammand at the rate of 100 channels per second. A Hewlett-Packard
digital clock furnished the time at which the date was recorded. The output
of the calculator was recorde on a high speed tape :.rtridge which was used
as the input for the Rye Canyon data system. The calculator also provided a
paper tape at scheduled times or upon command. From the Rye Canyon data sys-
tem computer, numerical printouts of temperatures and flow rates in tabular
foran could be produced, ar well as graphs showing a time history o1 each dat:
channel.

An example of the tabulated computer printout of temperatures is shown in
Table 2, which reproduces a portion of the listing for Test 99. Channels 016,
032, and Oby were reserved as references to monitor equipment temperatures.
Hence . channel numbers shown as CHOOl on the printout do not correspond to
thermocouple numbers, shown as Cl on the printout, from channel 016 on.

Figure 12 is an example of the computer generated time histories. These are
plots of temperature against time for the first six channels of Test 99,
listed in Table 2.

3.13 ADDITIONAL DATA ACQUISITION

Test data was also acquired by means other than the automatic system. Cool-
ant temperature was monitored on a strip chart whose pens indicated tempera-
tures at the reservoir and at the inlet to the test tank cooling panels. Fuel
discharge quantity was measured by weighing fuel on a platform scale of 227
kilograms (500 pounds) capacity. On the scale platform, a clean érum was
positioned to contain fuel pumped or drained from the tank. Tuel boost pump
pressure was observed visually and recorded manually as required. Qualitative
observations of the nature of the solid fuel builduy in the tank and other
remarks were recordel in a permanent notebook for each test. Photography pro-
vided black and white prints, color slides, and colce» motion pictures.

21



we38Ag uor3Isinboy vyeg OF3BWOLNY Jo weadeyg Noold °

&4 saiva mo1d 2

1T ~ aanB14
SYLLIIANOD
0ES/HO 00T —
YDA I TINN AONINDAL
| 00% SHINAS
029 JIAN
TINNVHD 96 LA

STIINODOWMEHL S

22



22+¢L. 906t~ 91s€4e L9098 918 92eLhe SBeCee 65oCye LTLI6GIEY O L 34
sce st 2692« Pz I Tee9%. TELT 22+04~ Egetee €Qetee €G1lgtEt Q¢ %
$9+0€» €0 2Ce €0*Coe 133 L t€+25- SGeLe~ BG4 20 €O*Coe (331 7313 1 [
2eeCEn 9 2¢C- 29°2¢e 06 G GEo1Ge CCeane Gesgga 29+2¢e §2:221€1 Q¢ (4
162~ (1221 F{AR L [ Y3304 05225 €O~ €Le62- 8662 esitgi2t Qs 2t
FiLrt & 16620 1L°6Ls g20°€9- 201G~ L6 6E~ LR L2 SevL2- efic2:2t O Tt
t2+52- 6°92- [ 1443 14 €6°0%e 4,208~ [ 7274 L) $LoG2 €Q+52e [{-1RL3A4 Qe ot
19¢12a 08£2 (411 4 T 06 LC> EE+0Ge SLovete 66012 €612 Q2it211t Oe 6
Cyella 1€e6te Ovege &Lk 2BsLne €9CE~ L9¢L%- L9l 6€3315:351% O |
tacate 69+t 26 2= J0eCt= G G 96252 €8¢0l- Egeete 92:1es¢c Qe I3
CeE*lla 8821 92212« [ 342 1% *ZeGha Eosals GEefte eyrite vG1a1:03 (13 9
Aer5e 904/ tLovle €02 Lo A EALT Qgegle LY e SE*9e 6s1iste Qe s
Cge2e 1LY 208~ 9le2¢e © REvGEe 29:91%a 6le€e $Ge2e 9tivEL6 Qs .
8t 65°€ 10°. L1306 40+0€- 24+0te 692 6242 SEIaT:E Qe £
¢t 98y |89 £90 29%LTe Taote Tasy Teef 2081206 0 2
20eg (2K (T2 ] 918 436 §9°0t 50t [ {1} 06012518 0 )}
[ A ] rA - - 9% 3 1 1] €t 9 F 330 ] . 1t 9 ot 2
. ave
61C nd 810 H) 410 W) 410 w2 €10 MI €30 H2 230 M 110 W) 010 K2 341} N
000° 000° 000° 000°, 000e 000+ 000 000+ , 000 $135440
FARX T XY L1¢T0e §1°6¢Le B8 (L~ 6262 TL062 12462 45028 12e5ce 221651E3 O 93
[IAd 123 0L 10 , &9°0€~ Cre9ke $L°62 €140€~ €1+0C» €1+0¢~ 9Le0¢Ce [{-321-33 A1 gs st
Ceetve Lho0he L€°CL LE20¢- 96°62¢ 31°0E- 4240¢- L4€40€- 09e2€e ttieciel QO ot
29°2¢. 49°0Ce E*0C 420 42°0c= #g8°0E~ 6640C~ $621¢- 90.ECe g2:122:€% O+ €t
€62 L I+ 0892« €0° 64 L6°0€" 08+ 0Fe LLOTE 1202 TteCEe 6stig:2t Q¢ 21
2y+L2a L8°L2e 06092 22oL¢e~ 60°62- 66°0€~ 19e0€a 29442~ 1362 gt 0 Tt
tE+52- 1€+G2. 1602 LA AR L] E6* 82~ 89°0€- {§°0E~ SSe0€- L9siEe [+ L] [+ 24
9812 99°12. 90212 t€ei¢» 91492« €962~ 9262 E9e52e E-{ LR ¢ T [ 1 6
El°nle o tle €S Ll Ceefle 2922« 26042~ L9es2- 26 L2 €Ge62- [ ®
wintle f6°atle aecate L1s01e Tesgle 2R2€2 €0eg2» 88002 Llef20 Ge 2
9221 29°11e 8ot 80¢11e 6L°ST- 8861~ 98012~ €lot2w €562« 0 9
(9 L9~ 119 409~ 801t €60 1. L2+GT. hCeGle 01+02e ce s
tgege 62~ fee20 Tgede 22s4%. (99 $6e 6> bAM T §E+9l. [} v
gte¢ 0gee 20°e 20 oReg 2wz L1 % LI Qe €
2 §9°¢ [{-1F 64 S92 §9+¢ 814 8c9 2402 0° 2
(-1 9Gg 2v's (143 ] 958 95+ ¢ 2ue@ uE® 9geq - 002518 0 1
6 I [ J-] [ - Yy D $ 9 ¢« 2 € 2 2 2 ) S
) Q*d1
6C0 No #00 H) 400 w3 900 M) £00 HI 400 HI €00 ud 200 W2 100 42 3wl wity
[«[-1 70 000° 0Co* 000°* 000e 000¢ 000 0nQe 000 §135448
‘ SL-22-21 1IV0
*dNTI0H $2°0T “IEKL OIIVLS 3 | 848
(SMVESTNIS] LNIOL s2te 11834

€2 BUAVWE 2D $T°0 + S~daT *L ‘ot T4 66 @ SINNLYYIGHIL MO LY SIING o YSYN

STNIVHEIWEL J0 SONILSIT YFUID0D J0 TIIWVYE
¢ JTIdvVL

23



1L SEH0I3IS

“O0PZE “O0BBT "OOTST "6OIIT "O0081 “GOPF] "60B01 “0GTL 6095 ‘0
6°SL-

0°C9-

jo°ss—-

0°SHr-

o°se-

0° €2~

0'Si-

L ]

3358

Cﬂﬂgﬂhﬂb
fitd

t J0LIAS

- €2°01 dNAUN ~ Gdd HLIN = S-dFV ~ I1BIANRIIANI 0°sZ
. 8L/ZZ7Z1: 314

b ~ SAUNIVIIIHIL MO 4V SI1213 - BSUN

VY,

A]

Example of Computer-Generated Temperature lHistory.

Figure - 12,

2k



4.0 TESTING PROCEDURES

This section describes procedures emplioyed for the various types of tests
performed during the program. Test types were: Static; Recirculation;
Sloshing; Divider; Ejectors; Dry Fuel; Scheduled Withdrawel.

In general, fuel was loaded into the test tank, and the test time commenced
when the coolant circulation system was activeted. Minimum skin temperatwre
was controlled and duration of testing was varied as dictated by such factors
as type of fuel and estimated gravity holdup. The end of the test was con-
sidered to be the time at which pumpout of the fuel commenced to determine
the gravity holdup, that is, the sclid fuel that could not be withdrawn from
the tank. Fuel was normally removed by means of the boost pump, with the
ejectors scavenging fuel from the stringer bays into the surge box surround-
ing the fuel exit; from that point fuel flowed by gravity to the boost pump
in its chamber below the test tank. Gravity holdup was determined after the
pump ceased to deliver fuel. Photography was employed to document both
representative and unusual test results.

L.1 STATIC TESTS

These tests were performed with the fuel quiescent until the end of the test.
At the appropriate time or temperature the fuel was pumped out and weighed.
The quantity which did not flow by gravity to the boost pump constituted the
gravity holdup.

4.2 RECIRCULATION TESTS

Fuel flowing by gravity to the boost pump chamber was recirculated through

the perforated distribution tube at the opposite end of the test tank. Ini-
tially, the nominal recirculation rate was 10 liters per minute. Later this
was reduced to a nominal 6 liters per minute as beii.g more appropriate to the
tank volume of approximately 193 liters. Recirculation continued throughout
the test. At the end of the test the valving was adjusted to halt the recircu-
lation and commence pumpout. Gravity holdup was determined when the pump
ceased to deliver fuel.

During a few tests in the early part of the program, brief periods of recir-
culation were employed for a portion of the cooldown of an otherwise static
test. This was done in an attempt to reduce the temperature difference
between the chilled walls and the bulk fuel.

4.3 SLOSHING TESTS
In these tests the tank was oscillated at a rate of 39 to 40 cycles per minute
at an amplitude of plus and minus 50.8 millimeters (2.0 inches) from the

neutrel position. Sloshing continued throughout the test, and was discontinued
when pumpout was initiated.
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Three tests were performed with sloshing only, and the tank approximately
half full. The other sloshing tests employed recirculation also, with the
tank full.

During & few tests in the early part of the program, as with recirculation,
periodic sloshing was employed for a rortion of the cool-down period in an
attempt to reduce the temperature difference between the chilled walls and
the bulk fuel.

L.4 DIVIDER TESTS

These were static tests for which tane test tank had been modified by install-
ing a divider plate approximately midway between the removable end and the
fuel exit end to represent a baffle within an airplane fuel tank. The
Jd'vider was 30.5 centimeters (12 incres) high, with geu ~>us cutouts at the
bottor to clear the lower stringers.

Figure 13 shows the divider installed in the test tank. Note .hat both sides
of the divider can be seen through the viewing port at the right hand side of
the photograph.

4.5 EJECTOR TESTS

Two tests were performed in which fuel was recirculated through the ejectors
as well as through the performated distribution tube. This combination pro-
vided flow parallel to the lower stringers from the recirculation system,
and flow across the exit end of the tank by ejector action. The combined
circulation was maintained throughout tlie tests, which were otherwise the
same as the recirculation tests.

As with recirculation and sloshing, during the early part of the program the
ejectors were operated periodically in an attempt to reduce the temperature
difference between the chilled walls and the bulk fuel. They were also put
to good use during pumpout, to scavenge fuel from the stringer bays.

L.6 DRY FUEL TESTS

Four tests were performed in the same manner as static tests except that dry
nitrogen had been bubbled thrcugh the fuel in the tank at a rate of 195 liters
(6.9 cubic feet) per hour f.r & minimum of 3 hours prior to the start of the
test. This procedure was designed to carry off atmospheric moisture which is
normally dissolved in the fuel.

L.7 SCHEDULED WITHDRAWAL TESTS

In most tests, the tank skin was chilled and maintained at a reasonably
constant temperature. Fuel was withdrawn rapidly when the desired fuel
temperature was attained. Several tests were conducted with the skin tempera-
ture varied according to a prescribed schedule, with fuel withdrawn at a

slow rate dvring the last part of the test. This procedure, called scheduled
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withdrawal, represented the condition in an aircraft fuel tank during
long-range flight. For these scheduled withdrawal tests, the skin, using

the bottom center of the tank as a control reference, was chilled in accor-
dance with the time schedule shown in Figure 14. This schedule is based on a
0.3% (one day per year) probability of extreme cold temperature encountered
on a long range flight of a commercial airplance (Ref. 11). The test was the
same &3 a static test for 8.3 hours, at which time fuel was withdrawn at a
rate that would leave a small quantity of fuel in the tank at the end of the
test at 11.3 hours. In an airplane this would be reserve fuel. The fuel
tank skin temperature shown in Figure 14 is based on the total air temperature
of Reference 11, corrected to an adiabatic wall recovery of 90%.
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5.0 FUELS

This section describes the fuels used in the test program. Table 3 lists

the fuels and their key characteristics. Fuels LFP-1 through LFP-9 were a
group of fuels from known crude petroleum sources, furnished for test pur-
poses through the courtesy of the Coordinating Research Council (CRC) Group
on Low Temperature Flow Performance of Aviation Turbine Fuels. There were
three types of these fuels: a jet fuel conforming to the commercial specifi-
cation Jet A; a distillate comparable to Diesel D-2; and a refinery stream
distillate intermediate to the first two fuels with respect to freeze point.
The fuels were selected refinery samples representing a range of compositions
and freezing points, but they were not necessarily finished to meet all
commercial specifications. The crude petroleum sources are identified as
naphthenic or paraffinic according to the usual definitions in the petroleum
industry. A paraffinic crude has a preponderance of saturated aliphatic
hydrocarbons; a naphthenic crude has a preponderance of saturated cyclie hydro-
carbons. Analyses of the fuel prciucts obtained by distillation from these
crudes, however, do not necessarily show hydrocarbon type distribution in
agreement with the crude characterization.

Table 3 identifies the fuels used in this program by & fuel number; these
designations will be used throughout the report.

Four fuels in Table 3 are identified by numbers other than the LFP designation.
Fuels No. 1 and No. 3 were fuels obtained from the Lockheed Company stock,
used in the initial tests. Fuel No. 7 was LFF-5 to which had been added a
polymeric pour point depressant. This addition affects only the low tempera-
ture behaviour of the fuel, Small discrepancies noted in Table 3 and other
property data charts between Fuel No. 7 and LFP-5 are simply the result of
imprecision of various characterization tests. Fuel No. 8 was a special fuel
derived from processed shale oil, meeting most of the specifications (but

not freezing point) of JP-5, a Navy jet fuel. Table 3 also lists the approxi-
mate freezing point, final boiling point, and specific gravity of each fuel.
Boilirg range is presented in a standard series of curves of vapor temperature
versus percent recovered in Figure 15. Specific gravity as a function of
temperature is presented in Figure 16. More extensive data on comparative
fuel properties, composition, and laboratory low temperature performance

tests are included as Appendices A and B of this report. These data were
furnished by cocperative testing, courtesy of the JRC Group on Low Temperature
Perforrmance of Aviation Turbine Fuels.
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6.0 RESULTS

6.1 TESTING RECORD

Tanle 4 lists the tests by number, identifying the fuec. type and the test
type. The division into two categories is arbitrary. Early tests included
initial checkout runs and tests on the Diesel and other fuels. Comprehensive
tests started with Test 58, which used a slightly revised thermocouple
errangement. The comprehensive tests aimed at determination of low holdup
conditions, and flight simulation by scheduled withdrawal.

A chronological table listing all test runs may be found in Appendix C.
6.2 INITIAL TESTS AND ORSERVATIONS

Testing commenced on 26 May 1978, using fuel No. 1, & commercial Jet A. Sub-
sequent early tests employed the Diesel fuels, then the intermediate fuels
and a Jet A, Observation of the interior of the test tank was unobscured

at the beginning of the tests, as shown in Figure 17. This photograph shows
the stringers, ejectors, surge box, and thermocouples in & fuel-filled tank.
After some chilling, however, a "fog" of water condensation appeared in the
fuel in some tests, obscuring the tank internals (Figure 18). As the fuel
temperature continued to decrease, solids eventually began to form. During
static tests, these solids began to accumulate on the bottom of the tank,
then progressed upwards onto the bottom stringers. When the fuel was moving,
a8 in recirculation, ejector, and s"oshing tests, suspended particles were
apparent socrver than during static tests.

There was no aifficulty in withdrawing the two phase fuel with suspended
solids. Holdup occurred when solid fuel accumulated in the bottcm of the

tank. At sufficiently low temperatures, solid fuel would form on the top and
vertical surfaces of the tank as well as on the bottom. Figure 19 illustrates
this situation. 1In severe cases, solid material d@posited on the bottom
and/or detached from the top and vertical surfaces, could block the tank
discharge line, surge box, or check valve, terminating fuel discharge abruptly.

6.3 STATIC TESTS

The bulk of the testing consisted of static testing, where fuel was chilled
without recirculation., Static tests were performed with all the fuels.
Tests were conducted at several temperatures with each fuel to establish a
relationship of the holdup of unpumpable fuel as a function of temperature.
The early test runs attempted to reduce the bulk temperature of the fuel to
desired temperatures near the specification freezing point. Consequently,
relatively large fractions of fuel remeined in the tank as solid deposits on
all surfaces at the conclusion of the tests. Cften portions of the solid
deposits broke off the upper and/or vertical surfaces and formed dams,
trapping liquid fuel; an example of this is shown in Figure 20. The liquid
holdup in such cases was small, however, and physical rocking of the tank to
dislodge or rearrange the solid particles released only small quantities of
additional liquid discharge.

3k
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After examination of early runs, static tests after Test 4O incorporated

some revisions to procedures. Fuel tewperature variations were defined in
terms of the lower surfaceoboundary layer. Tests were conducted at constant
tank skin temperature, -50 C in most cases. The chilling time to pumpout
determined the fuel temperature. Tests were conducted with the tank com~-
pletely filled with fuel, in contrast to a 2% vent space allowed in the early
tests. The filled tank promoted maximum convection currents in the tank.
This is illustrated by comparison of Figures 21 and 22, both representing
tests of intermediate fuel LFP-5. The early test in Figure 21 shows more
vertical and horizontal temperature variation. It is interesting that the
test with the filled tank (Figure 22) represents the profile after 43 hours
of chilling, in contrast to 73 hours for the earlier test. The temperature
discrepancy seen near the bottom for thermocouple rack No. 1 in Figure 21
probably is the result of the buildup of solid fuel at the surge box. Holdup
was the same for both cases illustrated, a nominal 20%.

Static tests subsequent to Test 40 concentrated on the Jet A, intermediate,
and JP-5 fuels as more representative of current and future aviation fuels.
Tests from Test 58 on were also performed with several thermocouples relocated
for more precise definition of boundary layer temperatures.

6.4 RECIRCULATION, SLOSHING, AND EJECTOR TESTS

At least one test was conducted with each fuel incorporating fuel recircula-~
tion during the chilldown time. The effect of recirculation is best illus-
trated by a comparison of the temperature distribution shown in Figures 23
and 24, for Jet A fuel LFP-9. Figure 23 represents Test 76, a static test,
while Figure 24 represents Test 75, a recirculation test. Boundary layer
temperatures were similar for both tests, and holdup was identical. The
static test profiles show a greater degree of non-uniformity. Recirculation
obviously promotes mixing and yields a profile with a constant bulk tempera-
ture over most of the tank height. Convection is evident in both cases in
the much wider lower surface boundary layer, a characteristic of all tests
with completely filled tanks.

Sloshing was incorporated in several of the early runs, and in some cases
sloshing and recirculation were combined. Sloshing also improved the mixing
of chilled fuel and reduced temperature gradients, but sloshing had no
apparent effect on the discharge of liquid fuel or of fuel containing sus-
pended solids.

The dynamic effect of sloshing on chilldown temperature profiles is illus-
trated in Figures 25 and 26, which are temperature time histories for early
tests with Fuel No. 3, a Diesel D-2. 1In Figure 25, during sloshing, tempera-
ture indications for the five interior thermocouples are so close as to be
indistinguishable from each other. The temperature difference betwcen these
thermocouples and the skin thermocouple is almost the same throughout the
period of testin.. Figure 26 illustrates a subsequent test in which slosh-
ing was terminated after 1.5 hours (5400 seconds). Vertical temperature
gradients were quickly established for the static condition when sloshing
ceased.

Lo
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Figure - 21, Temperature Distribution at End of Test 28
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Two runs employed the ejectors during the chilldown in combination with
recirculation to promote flow between the bottom stringers in addition to the
flow from the perforated return tube. Temperature profiles with the ejectors
and recirculation mixing appeared indistinguishable from those with recircula-
tion alone.

6.5 DRY FU.IL TESTS

Dry fuel tests vere conducted with the intermediate fuels LFP-5 and LFP-6,

Jet A LFP-9, and the shale-derived Fuel No. 8. Fuels were passed through a
filter-separator prior to testing to remove any suspended water, in accordance
with usual aviation fueling practices. The intermediate and Jet A fuels had
30 to 35 parts per million dissolved water content; the shale-derived fuel

had 48 parts per million. Dry nitrogen pretreatment removed most of the water
prior to the dry fuel x.ns, Holdup and temperature profile results for

dried and untreated fuels were ldentical. Drying reduced the condensed

water "fog" that appearcd in some cases during chilldown, and improved the
visual observation of fuel behavior.

6.6 DIVIDER TESTS

Tests were conducted with jet fuels LFP-1 and LFP-3, and with intermediate
fuels LFP-5 and LFP-6, with a divider plate in the test tank. For runs in
which the holdup was about T% or less, the stringer cutouts at the bottom of
the divider plate were only partially obstructed. Test results were identical
to performance witk nc divider. Test 84 with intermediate LFP-6 fuel pro--
duced 10.T% gravity holdup. This amount proved sufficient to obstruct the
stringer cutout openings; liquid fuel was able to pass through the slot
between the divider and the viewing port. A small amount of fuel appeared

to be trapped by the blockage of the stringer cutouts. The deposits did not
"c1imb" the divider. ‘

Test 8h temperature pr .ies are compared to profiles of tests without the
divider in Figure 27. The readings of the center thermocouple rack, nearest
the divider, are plotted in this figure. The conditions for the two tests
were not identical. The non--divider test was conducted at a slightly higher
bulk and boundary layer temperature, producing 8.8% holdup compared to 10.7%
for the divider test. The difference in gravity holdup is as expected for

the temperature differences. These results and the good correspondence in
temperature profiles imply that the divider had little or nc effect on conduc-
tion or convective heat transfer within the test tank.

6.7 SCHEDULED WITHDRAWAL TESTS

Scheduled withdrawal tests were conducted with intermediate fuels LFP-5 and
LFP-6, jet fuels LFP-8 and LFP-9, and the shale-derived Fuel No. 8. The
skin temperature schedule for these runs has been presented as Figure 1h.
For LFP-8, because of the low freezing point of th. fuel, the skin tempera-
ture schedule was modified to a minimum of ~SSOC instead of -h9OC. This was
done to assure some fuel holdup during the scheduled withdrawal test. The
modified schedule is shown in Figure 28. Data points on this figure show
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actual skin temperatures measured during the test, and this correSpondence_
between test and scheduled temperature is also representative of scheduled
vithdrawal tests with the other fuels.

Figure 29 shows the temperature profiles at the center of the tank at various
time irtervals for the scheduled withdrawal test with LFP-9 fuel. Profile
patterns were identical to those obtained with static tes*s up to the time
that the skin temperature was warmed according to schedule (about 6.6 hours).
The warming skin reduced the boundary layer gradients and produced an almost
uniform fuel temperature at tLe end of the run. The withdrawal of fuel had

a small efrect distorting the profile as can be observed a: the curve fcr

9.5 hours. :re was no holdup of fuel at the conclusion of the test; that
is, the fuel remairing after the withdrewal schedule could be campletely
discharged after the test. However, an interesting comparison can be made
with a corresponding static test. In Figure 30, the center temperature pro-
file at the coldest time of the scheduled withdrawal test, 6.6 hours, is shown
along with a temperature pr-~-ile from tge end of a static test with the same
fuel. The bulk temperature averaged 10 C higher for the static test, reflect-
ing the shorter test time of 3 hours.

Skin and boundary layer temperatures are nearly the same fc the two tests.
Since the static test exhibited a holdup of 1.2%, it is reasonable to assume
that the withdrawal test would heve at least that much holdup, considering
the similar boundary layer and colder bulk temperatures. Solid dispersion
was not observed during the withdrawal test, but it appears that conditions
favored a small amount cf solid precipitation with subsequent melting during

the last hours. Similar test reSults and comparisons were observed with
LFP-8 fuel.

Conditions for the scheduled withdrawal tests with LFP-5 and LFP-6 fuels were
more severe because of the high freezing points of these fuels. Temperature
profiles for fuel LFP-6, shown in Figure 31, show appreciable distortion
before and during withdrawal due to the heavy buildup of solid material.
Aft~r 2 hours, solids had begun to form on the bottom. Deposits increased,
and during the minimum temperature period between 5.5 and 6.6 hours solids
were observed suspended in the liquid fuel. At the start of withdrawal some
agglomeration of the suspended solids evidently had occurred, so that the
solids looked almost like small pieces of cotton. As the fuel level receded
during withdrawal, solids were observed on the upper surface with gaps
indicating that chunks had fallen. There wac a light coating on the vertical
panels. At the end of the test, gravity holdup was 25.5%. Results with
LFP-6 were similar and in fact the buildup of s0lids was so severe that a

reduced withdrawal flow rate was used to prevent premature depletion of the
liquid fuel.

6.8 TESTS WITH FUEL NO. 8
The apparent temperature profiles and test results with the shale-derived
Fuel No. 8 were different enough from the other fuels that they could not be

compared or correlated with data from the other fuels. The scheduled with-
drawal teamperature profiles are plotted in Figure .32 as an example. Most
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of the problem with this fuel, however, very probably was an insufficient
supply, so that the test tank could not be¢ operated completely filled. Thus
it was not possible to distinguish the behavior of this fuel from the reduced
convection effects produced by partial tank operation. (It appears that
there was about a 5 centimeter vapor space at the top of the tank.) Solids
deposited by this fuel formed needle-like crystals different in appearance
from those of the other fuels.

6.9 TESTS WITH POUR POINT DEPRESSANT ADDITIVE

Three tests were performed to evaluate the effect of a pour point depressant
additive on the low temperature behavior of an intermediate fuel. The pour
point depressant is a proprietary polymeric material which disperses the solid
fuel particles, preventing solid coagulation and buildup. These additives are
commonly used for winter service of Diesel and fuel oils, but ordinarily they
are not used with jet fuels. The additive used in these tests, designated as
Paradyne 25, was added in a concentration of 0.10% by weight to LFP-5. Lag-
oratorx tests indicated thnat the pour point of the fuel decreased from -31°C
to =40 C with this additive (see fuel data in Appendix A).

One of these tests, Test 97, was conducted with the undoped fuel at a skin
temperature of —51.700 and a boundary layer temperature (1.2 centimeters

from the bottom skin) of -46.0°C. These conditicas produced a holdup of
20.7%. After the pour point depressant was added to LFP-5, it was designated
as Fuel No, 7. Test 99, which maintained the identical conditions of Test 97
within O.3°C, resulted in a reduction of holdup to 10.2% for the treated
fuel.

Finally, the third test (Test 100) was performed with Fuel No. 7 at a skin
tegperature of -63.5°C, boundary layer temperature of -55.9°C, or 10°¢C to

12°C below baseline temperature conditions. Holdup results were 17.1%, even
better than the baseline test results. These limited tank tests surpassed

the laboratory results of a reduction of 9OC in pour point due to the addition
of the pour point depressant.

6.10 SUMMARY OF TEMPERATURE PROFILES

Results of the tests are summarized by the plots of temperature profiles in
Figure 33 througbh U5. These show the indications of the center thermocouple
rack, which was considered to be the most representative measurement a’ :-he
conclusion of each test when fuel was withdrawn from the tank. (Data fco
LFP-5 and LFP-6 are presented on two figures each.) Test numbe»s shown on

the legend of each figure can be used for reference to the table in Appendix C
for further details on each test. A few sloshing runs with abnormal profiles
were omitted.

An interesting aspect of Figures 33 through 45 is the cusp which appears in
most of the curves at just above 5 centimeters. This is probably due to the
thermal conductivity of the lower stringers, whose upper surface is at the
6.1 centimeter level. This effect is not evident in the recirculation tests
and the sloshing tests.
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7.0 DISCUSSION

During the performance of this progrem a considerable amount of test data was
accumulated. In this report, analysis of the data will be confined to those
aspects vhich are considered most relevant to the possible future use of a
higher freeze point fuel for turbine engine powered cammercial aircraft.

In commercial service on a standard day, a typical commercial jet airplane
could climb to a cruise altitude of 1.,278 meters (37,000 feet) within 30 min-
utes of takeoff. Since this is above the 11,000 meter isothermal altitude,
the ambient temperature would be -56.5°C (~69.7°F). (Reference 12.) At Mach
0.80, a 90% recovery of ram temperature rise would result in an adisbatic wall
(wing skin) temperature of ~31.5°C; at Mach 0.85 this temperature would be
-28.3°C. Present specification Jet fuels with a2 maximum freezing point of
-L0°C, or even those with higher freezing points, would be usable at these
standard day conditions. What is of real concern is the fiight which was
represented in Figure 14 for a one-day-per-year probability of an extreme low
temperature, in which skin temperature at Mach 0.80 would attain a minimwm of

-48.8¢°C.

Early in the testing phase there was always a considerabie temperature differ-
ential between the inner cooling surfaces (skins) and the center of the test
tanh during static tests and recirculation tests. Sloshing with the tank halfl
full greatly decreased the temperature variation, but resulted in only a small
decrease in temperature variation with the tank full of fuel. A more even
temperature distribution could have been achieved by gradual reduction of skin
temperature and extended soak time at the final temperature. However a unique
feature of this testing program wes a realistic representation of the aircraft
wing tank environment. The chilldown procedure employed was a simulation of
conditions to which ajrcraft are subjected.

Visual observations proved to be an important means of data acquisition, both
for interpreting data gathered through instrumentation and for understanding
the process of formation and deposition of solids as described below.

As the upper and lower surfaces are cooled, heat is transferred from the fuel
to the coolant. 1In particular, fuel cooled by the upper surface becomes more
dense; the resultant density gradients set up a convective flow of dense,
colder fuel toward the bottom of the tank. As profiles are fully developed
in the completely filled tank, the center of the tank has a welil mixed uni-
form temperature, with gradients to the ckin temperature over a considerably
greater distance at the bottom compared to the top. Condensation of solid
fuel during the chilling is also influenced by the convection currents set up
by the density gradients. The first visual evidence of solids is a dulling of
the lower surface of the tank. As cooling continues, the dull area spreads
along the bottom, then ccmmences to climb the vertical webs of the lower
stringers and later to spread across the upper horizontal flanges of the
stringers. During this process the dulling becomes identifiable as solid
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deposits increasing in depth on the bottom and to a lesser extent on the
stringers. Eventually, the deposits form on the upper surfaces and vertical
panels.

In most cases, solids suspended in the fuel became evident after the lower sur-
faces had become coated with deposits, although in a few cases sume small par-
ticles in the fuel were observed early in the cooldown. The sulids were cf
various shapes and sizes, ranging from particles less than one millimetar in
diameter to slender strands 6 to 8 millimeters long. In many tests the sus-
pension of solid fuel was dense enough that visibility in the test tank was
limited to a distance of a few centimeters. During several tests whicu pro-
duced large grevity holdups, buildup of deposits op the vertical panels and
upper surfaces could be seen. Judging from slosh tests and the appearance of
the deposits for large gravity holdups, it can be concluded that accumulated
solids mat together to form a lattice or matrix which in turn can trap liquid
fuel. When sloshing is energetic and continuous, this entrapment of liquid
fuel is minimized because the matrix is continually being broken up and
dispersed.

Examples of the appearance of the solid fuel holdup are shown in several photo-
graphs which illustrate a renge of low to high gravity holdup results.

Figure 46 shows a 3.2% gravity holdup of LFP-9 Jet A, with deposits on the
bottom and partially covering the stringers.

Figure U7 shows a L.3% gravity holdup of No. 1 Jet A, featuring the crystal-
line appearance of the deposits which cover the lower stringers and the bottom
of the tank.

Figure 48 shows approximately the same gravity holdup for the distillate fuel
LFP-T. For this test, the deposits consisted of tiny crystals, in marked con-
trast to the coarse crystals shown in Figure 47. The smaller, smooth crystal-
line deposition is most likely the result of more rapid chilling in this test
(Test 46), rather than the result of the difference in fuel properties.

Figure 49 shows an 8.8% gravity holdup of LFP-5 intermediate fuel, and hints
of liquid entrapment in the stringer bays.

Figure 50 shows a 57.2% gravity holdup of LFP-1 Jet A, with solids adhering
to thermocouple racks and vertical panels, and the reflections of the thermo-
couple racks providing evidence of liquid entrapment.

From the photographs and other visual observations it uppeared that the height
of the deposits in the tank could be correlated with the measured gravity
holdur. At gravity holdups up to 1%, deposits were on the bottom skin only,
between the lower stringers. By U% gravity holdup, & thin film had covered the
vertical webs and upper flanges of the lower stringers. At about 6% holdup, a
very slight film was forming on the upper surfaces. Deposits were evident on
the vertical panels at about 10% holdup, and by 20% holdup the distribution
was approximately 16% on the btottom (covering the lower stringers), and 4%
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over the remainder of the tank. At about 60% holdup, approximately 36% was
on the bottom and 24% on the top and sides. From these observations and the
volume~height watio of the tank, a plot of the height of bottom deposits
against gravity holdup was developed (Figure 51).

A major objective of the analysis of temperature and visual observations is
definition of the condition(s) at which gravity holdup initially occurs.

One premise is that when gravity holdup occurs in conjunction with a tempera-
ture gradient, a line of demarcation could te the interface hetween the top of
the s0lid deposition and the liquid above. Therefore, it is interesting to
determine the apparent solid-liquid interface for each fuel. This was done by
comparison of the measured gravity holdup with the calculated height of
deposits (Figure 51) and the corresponding temperature at that height from

the temperature profile (Figure 33 through 45). Table 5 summarizes the results
or this analysis. For each fuel, the test numbers, gravity holdup, and esti-
mated solid-liquid interlace temperatures are shown. Mean temperatures are
calculated for each fuel, excluding a few abnormal values, as noted in Table 5.

Table 6 compares the estimated interface temperatures with several other values
for each fuel, teken from mean measurements shown iniAppendix A. The compari-
son values include freezing point, pour point, and a cold flow temperature
defined in Appendix B. The solid-liquid interface temperature lies between

the freezing point and the pour point. The interface temperature meacurement,
however, is highly dependent on the temperature profile, and in turn on <he
chilling rate and apparatus configuration. Hence, the estimated interface tem-
peratures reported here should not be considered as rzaproducible fuel charac-
teristics without further analysis.

Anciher method of analysis is shown in Figure 52, where temperatures 1.2 centi-
meters above the bottom skin at the conclusion of each test are plotted against
percent gravity holdup. The curves are extrapolated to zero holdup to define

a freezing temperature. However, the freezing temperature obtained in the
figure may be in error. This method of plotting gravity holdup against temper-
ature has been used previously by other experimenters to determine low tempera-
ture fuel flowability in isothermal tests (Ref. 9 and 10). 1In the present
study with temperature gradients, it appears that definition of a zero holdup
temperature is difficult. Further anglysis is required.

From the standpoint of aircralt operation, it should be noted that temperature
probes transmitting "bulk fuel" temperatures to the cockpit are usually located
9 or more centimeters above the lower skin. There remains some concern that
the fuel temperature indication may not provide adequate warning of the incip-
ient formation of unusable solids during extreme low temperature con..tions.
For example, note the temperature profile for Test 72 (®) in Figure L5 for
LFP-9 fuel, which meets commercial Jet A specifications. A wing tank thermo-
couple at 9 centimeters would indicate -28°C, well within operating margins
with this fuel. However, the skin temperature and gradients, representative

of extreme flight conditions, produced a gravity holdup of 1.2% unusable fuel.
This quantity is less than the reserves and would melt during descent. This is
evident by the results of the scheduled withdrawal tests where simulated
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TABLE - 5. SUMMARY OF ESTIMATED SOLID/LIQUID INTERFACE TEMPERATURES (Sh. 1)

TEST No. °C  HOLDUP TEST NO. °C_ HOLDUP
FUEL No. 1 FUEL No. 8
6 -50  36.3% 78 -33 2.5%
10 -b9  23.7% 79 -32 5.2%
11* sk 21.% 80 -36 1.2%
53 -L6 4.3% 81 =21 2.7%
>4 -4k 2.5% 82 -32.5 2.7%
MEAN -47.2 95 -35  10.T%
MEAN -33.2
FUEL No. 3 FUEL LFP-1
12 -2 42,29 31 -5 55.7%
ik SNt 2h3% 3k -k2,5 17.1%
15 7¢.1% 36 k5 57.2%
18 -28 76.8% 55 -4s 1.3%
19 -22  68.1% 56 -42 2.5%
20 -23 13.5% 57 -43 1.5%
MEAN -2k 58 -u46 0.4%
59 =46 0.2%
60 -43,5  6.5%
85 b5 L.2%
MEAN <kh Y
FUEL No. 7 FUEL LFP-3
a9 47 10.2% 50 -21.5 2.3%
100 =43 17.1% 51 -18.5 2.4%
MEAN -4s 52 -19 1.7%
MEAN -19.7
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TEST No. °C HOLDUP TEST NO. °C  HOLDUP
FUEL LFP-L FUEL LFP-6
47 -21.5 2.1% 39 -32  56.1%
48 -24,5 1.1% ko -34.5 21.3%
L9 -21 1.7% b1 -37 8.8
MEAN -22,3 L2 -33.5 6.6%
L3 -30.5 5.2%
FUEL IFP-5 LY -30.5 5.2%
21 36  16.7% 61 -33 1,1%
ol -32  19.3% 62 -33.5 O0.T%
2 -29.5 27.1% 63 -29 1.5%
28 -33  20.8% 6h -34 0.6%
29* -4k 39.1% 65 -30.5 0.3%
67 -29 3.0% 66 -31.5 1.0%
68 -30 1.4% 83 -31 4.6%
69 -27 1.7% 84 -28.5 10.T%
70 -27 1.7% 87 -3 h1.2%
71 -28 L.8% MEAN -32,2
77 -28,5 3.6% FUEL LFP-7
86 =34 6.8% 37 -16.8  100%
97 -30.5 20.7% 45 -12 6.5%
98 -34.5 25.5% L6 -12 L.5%
MEAN -30.6 MEAN -12
FUEL LFP-8 FUEL LFP-9
83 -53 0.6% 72 -6 1.2%
90 =53 0.6% 73 -bs 3.2%
91 -5k 1.1% ™ -b7.5  0.4%
o2 -52.5 5.2% 75 -b5.5  0.7%
9% -56 0.4% 76 -45.5  0.7%
MEAN ~53.7 MEAN -b5.9

TABLE - 5. SUMMARY OF ESTIM.TED SOLID/LIQUID INTERFACE TEMPERATURES (sh. 2)

* Sloshing testu, excluded from calculation cf mean interfacz temperature.

** 1009 holdup, excluded from calculation of mean interface temperature.
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extreme-condition flight temperature histories produced no holdup for the Jet
fuels LFP-8 and LFP-9, despite intermediate temperatures likely to cause some
frozen fuel accumulation (see Figures 29 and 30).

In order to conserve the stock of the special fuels, after each test the test
tank was allowed to warm and the frozen held-up fuvel melted. This material
was withdrawn from the tank and blended with the liquid fuel previously drained
during the test, to reconstitute the origianal fuel. Laboratory freezing point
tests were conducted to determine if fuel low-temperature behavior was altered
by the freezing and melting history. These tests were performed on Fuel No. 7
and LFP-9 after they had been subjected to cold tests. The "before and after"
values were 30.6°C and 29.8°C for Fuel No. T, and 46.7°C and 46.1°C for LFP-9,
indicating no significant change in that property as a results of testing.
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8.0 CONCLUSIONS

Experimental tests were conducted with aviation fuels subjected to low
temperatures in a test tank. The physical dimensions of the test tank repre-
sented a section of a wing tank of a wide-bodied commercial airplane, and chill-
ing was such that internal temperature profiles were comparable to those
encountered in flight. Twelve fuels were tested, including aviation turbine
fuels and high boiling range fuels approaching Diesel fuel oils. Flowability

of the fuels was determined by withdrawing the fuel from the test tank and
measuring the gravity holdup, or unpumpable fuel remaining in the tank.

The following conclusions resulted from this investigation:

1. Low temperature liquid or two-phase fuel is readily withdrawn from the
test tank by graviiy. Suspended solids do not clog the pump screen and
can be pumped readily. Holdup consists of an accumulation of solid
deposits initially at the bottom of the tank. For several low-
temperature conditions, resulting in a nominal 20% holdup or greater,
flow to the pump was halted by blockage of the pump inlet surge box
and its check valve. Solid fuel deposits would fall from the upper
and vertical surfaces to contribute to this blockage.

2. At higher percentage hcldups, there was visual evidence that liquid
fuel was trapped in the matrix cf solids which had formed. Manual
sloshing of the tank to dislodge the solids released very little of
the liquid. The holdup of a solid-liquid gel matrix appears to be a
reproducible result,

3. On an ajrplane, a fuel temperature probe located 9 centimeters or
higher above the bottom tank skin provides a good indication of bulk
fuel temperature. However, the probe readout indicates a temperature
higher than that of the fuel near the skin, which may be cold enough
to form and accumulate s0lid particles. Tests weie conducted at vary-
ing skin temperatures representing a long-range commercial flight at
extreme winter conditions, with fuel withdrewal over a 3 hour period.
Results of these scheduled withdrawal tests indicated holdup compar-
able to the static, rapid withdrawal tests. There is evidence, however,
that solid fuel deposits may have occurred at the coldest time of the
tests, and later melted when the skin temperature warmed near the end
of the tests.

L. Most tests were conducted under static conditions with no disturbance
of the natural convection within the tank. Tests with recirculation
of fuel within the tank, sloshing, or internal fuel movemeat by ejec-
tors had no direct effect on solid formation or pumpability. These
dynamic actions did influence the chilldown rate and produced smoother
temperature gradients than experienced with static tests. The change
in temperature distribution with the recirculation and sloshing tests
had an indirect influence on the time required for deposit formation.
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Addition of a flow improving pour point depressant provided a
significant reduction in gravity holdup of fuel for a given test
condition. Results were in asgreement with laboratory tests. .'he
pour point depressant was added to only one fuel, a distillate w'th
8 higher temperature than commercial Jet fuels.

Tests with a divider installed to represent a fuel tank baffle showed
no difference from those without the divider, except that a sufficient
depth of deposits could block the divider openings through which the

tank stringers passed, and impede the flow of fuel to the tank outlet.

Dehydrating the fuel had no effect on the low temperature rlowability,
but eliminated a haze produced by condensation of dissolved water.



9.0 RECOMMENDATICONS

Based upon the low temperature tank tests conducted in this study, and the
conclusions in the previous section, the following recommendations are made
for future work:

1.

A large amount of data was generated during this program. Further
analyses of these data snd comparisons with fuel properties may pro-
vide correlations of the low-temperature behavior.

For gravity holdup tests, avoid reducing skin temperature too far below
the freeze point of the fuel; pour point may be a useful minimum. This
should reduce the temperature gradient through the tuel, and improve
accuracy in determining the temperature at which solid deposits begin
to accumulate.

Similar tests in the future shou.d investigate the effects of airplane
vibration, and possibly sloshing, based on airplane experience.

Tests should investigate whether solid fuel holdup affects capacitance
type fuel quantity gauging systems. If the dielectric constan* of the
fuel changes, capacitance will change and alter the quantity indica-
tion. It is even possible that a significant change in dielectric
constant could lead to development of a gravity holdup warning device.



APPERDIX A

SUMMARY OF CRC DATA ON LO.KHEED TEST FUELS
INTRODUCTION

The CRC Group on Low Temperature Flow Performance of Aviation Turbine Fuels
was formed with the following objectives in mind:

1. Review the proposed Lockheed studies (NASA Contract NAS3-20814) and
recommended to NASA suggestions for test equipment design end opera~
tion that might be adopted without changing the scope of the
contracted research.

2. Suggest test fuels for the research studies.

3. Conduct a variety of laberatory tests on the test fuels which might be
used to describe low temperature handling characteristics.

TEST FUELS

The Group recommended and supplied nine of the test fuels used in Lockheed
test program. These included eight fuels selected from widely different crude
sources and with a range of freezing points. The ninth fuel was one fuel con-
teining a flow improver,

Table I provides a brief description of the eight base fuels. Three of the
fuels (LFP-L4, 6, and 8) were from predominately naphthenic crudes, and five
were from paraffinic crudes. Two fuels (LFP-1 and 9) were production Jet A
with freeze points near the specification limit of -L0°C. Five (LFP-3-7) were
refinery streams or No. 2 diesel fuels with freeze points in the range of
-10°C to -30°C. Fuel LFP-8 was a Jet A blending stock with a freeze point of
-50°cC.

It was decired to provide one test fuel for test by Lockheed containing =z flow
improver. Base Fuels LFP-5 and LFP-6 were considered as the best candidates
for this study because they had freeze points higher than -L0°C, the specifi-
cation limit for Jet A. The objective was to select un additive that would
decrease the ASTM pour point to -40°C from the -31°C pour point of the base
fuels.

Two commercial additives were evaluated in each fuel, and the results are pre-
sented in Table II. As a result of these data, it was recommended +to NASA
that a suitable pour-depressed fuel would be Fuel LFP-% containing 0.1 wt % of
Paradyne 25. This additive-containing fuel was identified as Fuel No. T.

LOW TEMPERATURE INSPECTION TESTS

Standerd inspection tests were made by NASA on all Lockheed test fuels --d are
presented in Table III.
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LFP-1

LFP-7

LFP-9

LFP-5

LFP-3

LFP-4

LFP-6

LFP-8

TABLE I
GENERAL DESCRIPTION OF TEST FUELS

Jet A--At time of manufacture, crude run was 59%
Indonesian and 41% Persian Gulf crude. Both of these
crudes are considered paraffinic in nature.

An intermediate refinery stream having properties similar
to a No. 2 diesel fuel. Crude source is the same as for
LFP-1.

Jet A--Produced from a crude mix approximated at 90%
Arabian Light and 10% Iranian Light.

A diesel fuel produced from North Loulsiana and other
domestic crudes. These crudes are considered paraffinic
in nature.

An intermediate refinery stream having properties similar
to a No. 2 diesel fuel. Crude source was 100% Arabian
Light. This product is from almost the same crude as
LFP-9.

A No. 2 diesel fuel produced from 100% mixed California
valley crudes. These crudes are considered naphthenic.

An intermediate refinery stream used as a diesel fuel
blending stock. Crude sources were 90% Alaskan North
Slope, 9% California, and 2% miscellaneous. These are
considered naphthenic crudes.

An intermediate treated refinery stream used for manufac-
ture of Jet A. Same crude mix as LFP-6.
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Additionsl inspections were made on only seven of the eight CRC-supplied base
fuels. IFP-8 was not supplied until late in the test program and, hence, .ot
ineluded in all of the special tests made.

Table IV presents all data submitted on standard tests, such as freeze point,
cloud point, and pour point. Also shown are special low temperature tests
that have been used predominately to demonstrate performance of diesel fuel
and/or flow improvers. One test, *he Shell Cold Flow Tester, was developed
specifically to determine the extent to which aviation turbine fuels would
flow under gravity low temperature conditions. A brief desciiption of the
nonstandard tests referred to in Table IV is provided in Appendix B.

Brookfield viscometer tests were made over a wide temperature range and are
shown in Table V. Although two ASTM methods have teen written around this
viscometer, neither D 2669 (apparent viscosity of hot melts) nor D 2983 (appar-
ent viscosity of gear oils at low temperatures) is suiteble for fuels. 1In both
methods, .he fluid is brought to an equilibrium temperature; the viscometer is
started; and an equilibrium temperature/apparent viscosity is obtained. For
such results to be valid, the fluid has %¢ be a single phase. In the case of
a two-phase system which is changing at constant temperature — as crystaliza-
tion contiuues — it is not possible to obtain a significant result. Also,

iz the fuél is cooled significantly below the freezing point, is leld at that
temperature, and the visconeter is then ztarted, the resultant viscosity

tends to be a breakawsy torque rather than an apparent viscosity.

‘The following approsch was, therefcre, taken. Two fuel samples were placed
"into pour point vials end then into & pour point bath. One vial contained a
No. 1 spindle of the Brockfield viscometer, the cther a thermometer. (It was
not readily possible to measure the temperature in the vial where viscosity
was measured.) The viscometer was run continuously as the fuel temperatu.c
dropped, and readings were teken at the indicated temperatures. As viscosity
increased, the viscometer spced had to be decreased to stay within the scel-
of the instrument. Viscosit’es, therefore, could not be run at a single shear
»ate for a given fuel.

There are a number of limitations to these results. The constant stirring
quite likely had an effect on wax crystalization. The temperature in the two
. vials possibly differed slightly because of the small heat input due to stir-
ring. While an averasge shear rate can be celculated, its significance is
'dubious because of t..e relatively large clearance becween the viscometer rotor
end the inside surface of the vial. TLastly, the technique described is not a
standard technique; and its significance fer two-)hase systems has not been
established.

Hydrocarbon composition wes measured by mass spect .eter and gas cLromatogra-

phy. The latter was used to identify the amount of n-Alkanes. T e results of
two inves!.gations a:¢ presented in Tables VI and VII.
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APPENDIX B

BRIEF DESCRIPTION OF SPECIAL LOW TEMPERATURE TESTS
SHELL CLOUD/POUR ANALYZER

This is an autamatic instrument that measures -he thermal crystal point (TXP)
or temperature at which wax is initially separated@ during controlled cooling.
This temperature is detected by thermal analysis. The instrument also measures
a solid point (TSP) by a falling-ball technique. Experience has indicated

that the TXP and TSP predict cloud and pour point, respectively.

SHELL COLD FLOW TEST

The tester is comprised of two fuel compartments, separated by a poppet valve.
A measured volume of fuel is placed in the upper compartment of the tester

and cooled to the test temperature. The poppet valve is then opened for a
fixed time and the amount of fuel drained to the lcwer compartment measured.
The test is repeated at different test temperatures to establish the minimum
temperature at which all fuel will drain from the top to bottom compartments

of the tester. Complete test details sre given in the Journal of the Institute
of Petroleum, November 1962.

COLD FILTER PLUGGING POINT TEST (CFPP)

The test sample (45 cm3) is cooled at a rate of 40°C per hour to the desired
test temperature. At intervals of 1°C, a vacuum of 200 mm water gauge is
applied to draw the fuel through a U4S-micron wire mesh filter. The CFPP is
defined as the highest temperature at which the fuel will not flow through the
filter or require more than 60 seconds for passage of 20 cm3 of fuel.

THE ENJAY FLUIDITY TEST (EFT)

The fluidity tester consists of two graduated transparent-plastic cylinders
(3.8 mm in diameter) which are screwed together to form two compertments

with an interconnecting brass capillary (2.54 mm in dismeter). A fuel sample
of 40 ml is placed in the lower compartment and cooled in a cold temperature
bath at L°F per hour to the test temperature. The tester is inverted and

the volume of fuel recovered in the lower compartment after three minutes is
measured. This procedure is repeated at several test temperatures to deter-
mine the temperature at which 80 vol % is recovered in the lower compartment.

SETAPOINT DETECTOR

This instrument is designed to predict the freezing point of aviation turbine
fuel. About 6 ml of fuel is contained in a sample chamber bored into the
center of an aluminum block with an illuminated viewing window. The fuel is
circulated at 1 ml per second at 10 mm Hg pressure through a LOO-mesh (33 mic-
rons), stainless steel filter. The alumirum block temperature is controlled
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by compressor refrigeration and thermoelectric cooling. The tempersture at
which either the i 'l1ter plugs or when the first crystal is observed can be
used to define low temperature operating limits.
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APPENDIX C

CERONOLOGICAL SUMMARY OF TESTS

This Appendix provides an itemized summary of the tests performed during this
program, including fuel identification, type of test, percent holdup, and
toial test time, arranged in chronological order. In compliance with the sys-—
tem for meintaining data acquisitiorn records, a test number was assigned for
each test, or for each day's effort when pre-cooling of the fuel was performed.
These preparatory procedures, as well as several aborted tests, are indicated
by dashes in the "Tyre of Test" columns, as well as by explanations under
"Remarks". After allowing for two checkout tes*s, three aborted tests, and
ten pre-coolings, the net result was a total of 85 completed tests.

Number . in the "Data Ref. No." column identify Lockheed-California Co.
Research Laboratory records. All other items are self-explanatory.
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