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An experimental invest igat ion was perfonned under NASA Contract NAS 3-20814 t o  
study a i r c r a f t  fhels at low temperatures near t h e  freezing point.  The princi-  
p a l  object ive was an improved understanding of t h e  f lowabil i ty  and pumpability 
of t h e  fuels i n  a f a c i l i t y  t h a t  s i n d a t e d  the heat  t r a n s f e r  and temperature 
p ro f i l e s  encountered during flight i n  long range commercial wing tanks. 

A test tank simulating a sect ion of an outer  wing in t eg ra l  fuel tank approxi- 
mately full sca le  i n  height ,  was designed and fabricated.  In t e rna l  tank con- 
s t ruc t ion  included s t r jnge r s ,  scavenging e jec tors ,  pump inlet surge box, and 
othPr d e t a i l s  corresponding t o  an airplane wing tank construction. The test  
tank was  chi l led  through heat  exchange p l a t e s  on t h e  upper and lower level 
horizontal  surfaces. Other surfaces were i n s a a t e d .  A viewing port  was 
i n s t a l l ed  i n  each v e r t i c a l  panel. 

Fuels used during t h e  program included commercially obtained Jet A and Diesel 
D-2, a special. JP-5 type derived from o i l ' s h a l e ,  pa ra f f in i c  and naphthenic 
Jet A, Diesel D-2, and intermediate f reeze point fuels, and t h e  pa ra f f in i c  
intermediate t rea ted  with a pour point depressant. me pour point depressant 
and most of t h e  fue l s  were furnished through t h e  Coordinating Research 
Council. 

T e s t s  were generally conducted by ch i l l i ng  t h e  tar& skins  t o  a nearly constant 
temperature. 
reached a desired temperature with time. 
were readi ly  withdrawn and presented no obstacles  t o  flow. The accumulation 
of so l id  p a r t i c l e s  a t  t h e  bottom of t h e  tank, remaining a f t e r  t h e  l i qu id  was 
withdrawn, w a s  defined as gravi ty  holdEp. 
fue l  was held up, t h e  h o l d ~ p  was e s sen t i a l ly  a so l id  deposition. A t  g rea te r  
holdups, entrapment of l i qu id  f u e l  within t h e  matrix of so l id s  was discernible .  
Solid buildup commenced on t h e  Sottom of t h e  tank, spread over t h e  lower 
s t r inge r s ,  then began t o  form on t h e  upper surfaces and v e r t i c a l  panels. A t  
l a rge  holdups, accretions on the  walls and upper surfaces sometimes f e l l  and 
could obs tmct  gravi ty  flow. 

Fuel was withdrawn from the  tank by gravi ty  flow after t h e  fuel 
Suspensions of so l id  fuel p a r t i c l e s  

For cases where 10% or  l e s s  of t h e  

Temperatures measured at t h e  approximate locat ion of t he  comerc ia l  fuel tem- 
perature probe provided a good measurement of bulk temperature, but ignored 
lower temperatures near t h e  ch i l led  walls.  
varying w a l l  temperature schedule, with fuel withdraval over a 3-hour period 
t o  represent an extreme condition, long range f l i g h t .  
A fue l s ,  a l l  fue l  could be withdrawn, but t he re  was evidence of some so l id  
formation a t  t he  time of minimum temperatures, and subsequent melti?g of t h e  
so l id  material .  

Tests were a l so  conducted a t  a 

With spec i f ica t ion  Jet 

Sloshing, rec i rcu la t ion ,  and use of e j ec to r s  tended t c  decrease t h e  tempera- 
t u r e  difference between t h e  ch i l l ed  walls and t h e  bulk fue l  and ind i r ec t ly  
affected t h e  holdup by a l t e r ing  t h e  temperature p ro f i l e s .  
nal  b a f f l e  o r  with dehydrated fue l  showed no change from comparable basel ine 
t e s t s .  

Tests with an in t e r -  



Tests with an intermediate d i s t iE-%e fuel, with the addition of a euitablt 
pour point depressant, provided a significant reduction in gravity holdup, 
compared t o  that of the uudoped fbel. ltLnh results agreed with laboratory 
data. 

This experimental investigation provided considerable insight into the behav- 
ior of fuel at low temperatures representative of fl ight conditlms. A rather 
large quantity of t e s t  data was obtained which could f'urnish material for fur- 
ther analysis. 
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2.0 II"l%ODUCTION 

This report  presents the 
Cal i fornia  Company under 
of Aircraf t  Jet Fuels at 

results of a study performed by ",e Lockheed- 
NASA Contract NAS 3-20814, t i t l e d  "Experimental Study 
Low Temperatures N s a r  t h e  Freezing Point". 

This experimental study w a s  designed t o  examine the hear-Freezing-point behav- 
i o r  of av ia t ion  turbine engine Puela i n  a test  f a c i l i t y  representative of a 
section of a commercial a i r c r a f t  fuel tank. The pr inc ipa l  obdective w a s  an 
improved understanding of t he  p r a c t i c a l  f lowabil i ty  and pumpability of t h e  
fuels u t i l i z e d  i n  the  test  program. This understanding would be  Lpplied t o  
evaluation of various specif icat ion tests related t o  t h e  freezing point of t h e  
f'uel.and t h e  formation of so l id s  within the  fuel.  Correlation of all these 
fac to r s  would es tab l i sh  a s e t  of reproducible f lowabi l i ty /pmpabi l i ty  c r i t e r i a  
(Ref. 1, 2, 3, 4, 5). 
ar-d f o r  fu ture  fuels such as might be produced from r a w  materials o ther ' than  
c h d e  o i l ;  examples of such po ten t i a l  raw materials a r e  o i l  shale  and coal. 

These c r i t e r i a  should be su i t ab le  fo r  ex i s t ing  j e t  fucls 

Jet fuel i s  a complex m i x t u r e  of a l a rge  number of  hydrocarbon compounds 
(Ref. 6). In  general ,  t h e  number and types of compounds are control led by the  
crud-. stocks ava i lab le  at each given ref inery,  and by t h e  various specifica- 
t i o n  requirements. Reduced a v a i l a b i l i t y  of crude o i l  from which j e t  f u e l  can 
be manufactured with a minimum of re f inery  processes m a y  i n s t i g a t e  proposals 
t o  broaden t h e  boi l ing  range and compositional spec i f ica t ions  of J e t  fuel t o  
increase t h e  y i e ld  of j e t  fVel product. These changes very l i k e l y  may raise 
the  freezing point of t he  j e t  fue l  (Ref. 2, 4, , ? I .  
compounds have repeatable f reeze points ,  t h e  f reeze point of t h e  mixture can- 
not be determined by calculat ion.  The ASTM D 2386 Freezing Point of Aviation 
Fuels t e s t  determines a temperature at which so l id s  disappear, while t h e  ASTM 
D-97 Pour Point of Petroleum O i l s  t e s t  determines a temperature a t  which tile 
fuel does not flow when the  t e s t  apparatus i s  positioned horizontal ly  (Ref 8). 
The pr inc ipa l  point  of i n t e r e s t  is the  lowest temperature a t  wnich the  fuel 
w i l l  f lov  by gravi ty ,  leaving no so l id  residue. 
t5e  temperature determined by the two tests. 
t i o n s ,  the  f reeze point t e s t  assures some conservatism r e l a t i v e  t o  t h e  temper- 
a ture  a t  which some of t he  fue l  becomes unavailable due t o  so l id i f i ca t ion .  

Although t h e  individual 

This temperature i s  between 
Fortunately f o r  a i r c r a f t  opera- 

The pumpability and low temperature behavior of j e t  f u e l s  have been studied i n  
tank environments previously (Ref. 6 ,  9 ,  10).  
c h i l l i n g  of  fue l  over a period of many hours t o  mpintain a uniform temperature 
within the  +ank. The fue l  was then discharged from the  tank t o  determine t h e  
f rac t ion  of holdup, o r  frozen, unpumpable fuel.  Repeat t e s t s  a+, several  tem- 
peratures es tabl is5ed a re la t ionship  of holdup as a function of temperature. 
The t e s t s  reported herein were intended t o  model an a i r c r a f t  wing tank envir- 
onment r a the r  than an ideal ized s i tua t ion .  
cooling r a t e s ,  an3 t e s t  times simulated extreme cold day commercial a i r c r a f t  
missions. The tank construction was based on a scale  model of a wide-bodied 
airplane wing tank. 

These t e s t s  involved t h e  slow 

In te rna l  temperature p r o f i l e s ,  
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The general scu2e of t h i s  invest igat ion covered t h e  f o l l d n g :  

Design and f ab r i ca t e  a sub-scale tankwe system representat ive 7f can- 
mercial j e t  a i r c r a f t  p rac t ice ,  and capable of simulating in-f l ight  tem- 
perature  h i s to r i e s .  

Procwe test fuels  and character iee  them i n  terms of established t e s t  
methais. 

For 8 range of test fuels, def ine t h e  f l u i d i t y  and pumpability temper- 
a ture  l i m i t s  i n  quiescent and ag i ta ted  states. 

Determine the  e f fec ts ,  i f  any, of sloshing, ba f f l e s ,  fuel rec i rcu la t ion ,  
and other  factors  an t h e  low-temperature f lu id i ty .  

Recm3 temperature p r o f i l e s  and time h i s t o r i e s  fo r  a matrix of fue l  
and t e s t  conditions and obtain photographic records of important 
phenomena 

Recommend fu ture  research, standards, o r  p r a c t i c a l  a p p l i a t i o n s  r e su l t -  
ing from t h i s  study. 

This report includes a descr ipt ion of t h e  test apparatus and procedures, and 
selected temperature and phctographic data. 
r e s u l t s  a r e  discussed. 
and character izat ion t e s t s  performed cn the  f+uels used i n  t h i s  investigation. 
The fue ls  and Ate1 character izat ions wre  P m i s h e d  through t h e  courtesy of t h e  
Coordinating Research Council (C.R.C. ) Group on Low Temperature Flow Perfor- 
mance of .4viation Turbine Fuels. 

The s ignif icance and t rends of t h e  
Appendices A and B present r e s u l t s  of various property 
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This section of t h e  r e p w t  describes t h e  test  Locale, test  tank configurat'--. 
including t h e  structure and associated plumbir,g, access, and observat io  
as w e l l  as da t a  acquis i t ion capab i l i t i e s .  

3.1 TEST CELL 

Experiments with t h e  test tank were  rerformed a t  t h e  Rye Canyon Research Ct'ci*- 

t e r  of t h e  Lockheed-California Company's Engineering Laboratories. The test 
c e l l ,  located at t h e  east end of  Building 209, measures approximately 3.35 
meters (11 f e e t )  by 4.57 meters (15 f ee t ) .  A l a rge  window permits observers 
t o  view t h e  t e s t  c e l l  from t h e  main building; a self-closing door permits easy 
access. At t h e  outer  end of t h e  tes t  c e l l  is a wide r e t r ac t ab le  metal door, 
which was normally open during t e s t i n g .  
through t h e  w a l l s  fo r  service and instrumentation. 
ary b a r r i e r  w a s  erected t o  contain any s p i l l a g e  which might occur. 

Both ends contained penetrations 
On t h e  f l o o r  a low tempor- 

3.2 TANK SHnL 

Configuration of t h e  t e s t  tank was designed t o  simulate a portion of an outer 
wing ftiel tank of a modern commercial J e t  a i r c r a f t .  
tank are 50.8 centimeters (20 inches! high, 50.8 centimeters (20 inches) wide, 
and 76.2 centimeters (30 inches) long. This latter dimension i s  parallel  t o  
the  upper and lower s t r inge r s ,  and would be spanwise relative t o  an aircraft 
wing. 

I n t e r i o r  dimensions of t h e  

Figure 1 i s  a sketch of t h e  tes t  tank i n  plan view, showing t h e  recirculat ion 
path and other features. 

Figure 2 i s  a cross-section of t h e  t e s t  tank ,  looking toward t h e  removable 
panel. 

Figure 3 i s  a photograph of t h e  p a r t i a l l y  f inished tes t  tank ?bowing t h e  in te r -  
n a l  construction, and rods f o r  thermocouple supports. 

Panels f o r  t he  upper and lower sarfaces were fabri2ated from ( 1 6 ~ ~ 6  aluminum 
a l loy  sheet 3.18 mill imeters (0.i25 inch) thick.  
were fabricated from 6061-T6 aluminum a l loy  sheet 4.83 millmeters (0.190 inch) 
thick.  

Panels fo r  t h e  v e r t i c a l  walls 

Lower s t r inge r s  were modified I-sections made of  aluminum a l loy  extrusion 57.2 
millimeters (2.40 inches) high, and 25.4 millimeters (1.00 inch) across t h e  
upper half-flange; thickness o f  t h e  section w a s  6.4 millimeters (0.25 inch).  
The th ree  s t r inge r s  were located .to form four bays with i n t e r i o r  widths of 
approximately 69.8 millimeters (2.75 inches),  146.0 millimeters (5.75 inches),  
146.0 millimeters (5.75 inches) ,  127 millimeters (5.0 inches).  

U7per s t r inge r s  were made from 6061-~6 alumlnum a l loy  sheet formed i n t o  a z 
section 25.4 millimeters (1.00 inch) wide at t he  attaching flange, 
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Figure -1. Plan View Sketch of Fuel Test Tank 

6 



PLATE NUE FOR ATIIACHING 
REMOVABLE END AND BAFFLe 

I'r '4 'J  'a - --- - - 

(EJECTORS & FUEL OUTLET OMITTED FOR C I A R I T Y )  

Figure - 2. Cross Section of Fuel Test Tc,nk 
( V i e w  A-A i n  Figure 1) 
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71.1 millimeters (2.80 inches) deep, and 20.3 millimeters (0.80 inch) wide at 
the other flange; material thickness was 3.2 millimeters (0.12 inch). 
s t r ingers  formed four bays with in te r ior  widths of 60.4 millimeters (2.38 
inches), 187.4 millimeters (7.38 inches), 187.4 uil?.imeters (7.38 inches),  and 
63.5 millimeters (2.50 inches). 

Three 

A t  one corner of t h e  tank, two small panels w e r e  erected t o  form a "surge box" 
between e ver t i ca l  wall and a bottaa  s t r inger ,  surrounding the  file1 exit. 
Dimensions of t h i s  enclosure were 127.0 millimeters (5.00 inches) high, 127.0 
millimeters (5.00 inches) wide, and 203.2 m i l l i m e t e r s  (8.00 inches) long. 
s m a l l  free-swinging "flapper" check valve was i n s t a l l ed  i n  the  end of t h e  
surge box t o  permit f'uel t o  flow i n t o  it frcau the  s t r inger  bay. 

A 

Prior  t o  assembly, various cutouts were made i n  t he  ?anels t o  accommodate view- 
ing ports  i n  a l l  ve r t i ca l  walls, as w e l l  as the  required plumbing penetrations. 
Angle c l ip s  were attached t o  the  two longer v e r t i c a l  panels t o  pennit i n s t a l -  
l a t i on  and removal of a sheet m e t a l  divider panel simulating a fue l  tank baf- 
f le .  
of the s t r ingers  and allow generous passage f o r  l iqu id  fue l .  

Cut-outs were made i n  the  divider t o  accommodate the  envelope dimensions 

Assembly of the  tank was accomplished primarily by rivet.ing. 
three of t h e  s ide  panels were attached t o  angles at the  junctions of t h e  
panels, while t h e  50.8 centimeter (20 inch) square panel a t  one end of t h e  
tank was removable. The angles t o  which t h i s  panel attached were provided 
with sealed p l a t e  nuts t o  f a c i l i t a t e  removal and in s t a l l a t ion  of t h e  end panel. 
The tank w a s  sealed with fue l  tank sealant ,  and the  i n t e r i o r  was painted with 
a urethane anti-corrosion coating as used on the  L-lt?!l airplane.  

Tap, bottom, m d  

3 . 3  COOLING PANTLS 

Since the t e s t  tank simulated a Tortion of an a i r c r a f t  fue l  tank, the  upper 
and lower surfaces represented wing skins a n 3  were provided with cooling panels 
t o  simulate in-fl ight heat t ransfer  t o  the atmosphere. 
of a f l a t  stainless s t e e l  p l a t e  50.8 centimeters (20 inches) by 76.2 centi-  
meters (30 inches) t o  which was spot-velded another s t a in l e s s  s t e e l  p l a t e  
which had been embossed t o  provide a serpentine passage fo r  t he  coolant flow. 
'11 the  lower panel, one convolution of the embossed panel w a s  shortened 
s l igh t ly  t o  &;commodate t h e  fuel  ex i t  tube. 
she l l  with a special  thermally-conductive cement. 

Each panel consisted 

'Ihe panels were bonded t o  the  tank 

Figure 4 shows the  upper cooling panel bonded t o  the  t e s t  tank. 

3. I; VIEWING PORTS 

Because visual observation was considered an important feature ,  viewing ports  
were ins ta l led  i n  a l l  four ve r t i ca l  panels. 
with a view diameter of 198.4 millimeters (7.81 inches).  
opposite t he  i n t e r i o r  end of  t h e  surge box, one was centered opposite the  
location of the d iv ide r  panel and the other w a s  located i n  t he  removable panel. 
A t  the  surge box end of the tank  was a rectangular port  101.6 millimeters 

Three of the ports were c i r cu la r ,  
One was centered 
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(4.00 inches) high by 355.6 millimeters (14.00 inches) wide, dep€gned t o  
provide a broad view of t h e  bottom of t h e  tank. 
t ions  of t he  three  c i r cu la r  por t s  while Figure 3 shows the  rectangular PO-rt 
and two of the  c i r cu la r  ports  p r io r  t o  i n s t a l l a t i o n  of t h e  transparencies and 
spacers. Viewing a t  each port  was provided through two panes of 9.6 m i l l i -  
meter (0.38 inch) th ick  Plexiglas,  separated by a flanged aluminum spacer 
47.8 millimeters (1.88 inches) thick.  
f i t t i n g  so t h a t  t h e  space between t h e  panes could be evacuated during test  t o  
prevent moisture condensatim and t o  improve ins-alation properties.  

Figure 2 illustrates t h e  loca- 

Each spacer was provided with a s m a l l  

3.5 FUEL DISCHARGE AND REXXRCULATIOIV PROVISIONS 

Fuel exited from t h e  tank through a 48.3 millimeter (1.90 inch) diameter open- 
ing i n  t he  bottom of the  tank at the  corner of t h e  surge hax (Figure 3.). 
Over t h i s  opening was an aluminum disc  perforated with 6.4 millimeter (0.25 
inch) diameter holes. 
inches) outside diameter at t h e  tank t o  3.8 millimeters (1.25 inches) dia- 
meter, connected t h e  t e s t  tank t o  a s m a l l  chamber hoyising an aircraf t - type 
24 vo l t  d i rec t  current boost pump. This i s  a centr i fugal  pump used cn ear ly  
Je t  f igh ters  and was selected f o r  i ts  r e l a t ive ly  s m a l l  power requirements of 
approximately 360 watts, thereby minimizing heat re jec t ion  t o  t h e  fael. (By 
comparison, one L l O l l  fue l  boost pump consumes over 10 times t h a t  parer. ) 
The pump assembly incorporated a la rge  area 8-mesh screen surrounding t h e  
impeller i n l e t .  
around t h e  pump motor inh ib i t s  fue l  c i rcu la t ion  and minimi-?s heat re jec t ion  
t o  the  fuel .  The pump discharged i n t o  a l i n e  of 12.7 millimeters (0.50 inch) 
outside diameter and through a turbine flowmeter t ransmit ter .  Damst.ream of 
the  flowmeter t h e  l i n e  branched i n  one d i rec t ion  t o  supply motive LTUN through 
a control valve t o  two small e jec tors ,  o r  j e t  pumps, which could suck fuel 
from two of the  bays formed by t he  bottom sti5ngers.  These 'ecrors  dis-  
charged in to  the  surge box. @-;her direct ion 
would permit fue l  t o  be pmped e i the r  i n t o  o r  out of t h e  tank. An7ther tur-  
bine f l m e t e r  t ransmit ter  was i n s t e l l ed  downstream, a f t e r  which the  l i n e  s i z e  
was increased t o  31.8 millimeters (1.25 inches) outside diameter. 
t h i s  l i n e  allowed fue l  t o  rec i rcu la te  i t b o  the  t&.k through a perforated tube 
extending across the  tank, and was a l so  ccmected t c ;  a standpipe which served 
as a dipst ick wel l ,  o r  as a manual. f i l l e r ;  it w a s  cappea dvring tes t ing .  

An aluminum tube. taper ing from 50.8 millimeters (2.00 

The boost pump ins t a l l a t ion  is  sketched i n  Figure 5. The dome 

A branch and shLtoff valve i n  -L 

A t e e  i n  

3.G FILL, VENT, AND DRAIN PROVISIONS 

F i l l i n g  of the t e s t  t a n k  usually was  accomplished by pumping fue l  throcgh t h e  
perforated recirculat ion return tube i n  t he  tank. An a l t e rna te  method was t o  
fill through the  standpipe mentioned i n  t h e  previous section. 

Venting of +;he tank was accomplished through a 12.7 mill imeter (0.50 inch) 
tube pentrating the  +,est tank v e r t i c a l  w a l l ' a s  high as possible near the 
removable end ?anel. A short  bent-up elbow w a s  connected t o  a transparent 
tube which i n  turn was connected t o  a desiccant chamber and then t o  the  top  of 
t he  coolant reservoir.  
t e s t  tank through the  vent system. 

This arrangement prevented moisture from entering t h e  
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I n  each s t r inge r  bay, on t h e  bottom of t h e  test  tank, a 9.5 millimeter (0.38 
inch) tube w.8 i n s t a l l ed  t o  provide tank itrainage. The tubes were manifolded 
together end terminated i n  a shutoff valve and exit tube. 
of v i r t u a l l y  a l l  l i qu id  fue l  could be accomplished by means of t h e  boost --mp 
and ejectors .  Draina&e of s m a l l  quant i t ies  of remaining fuel, o r  tank flush- 
ing; could be accomplished through the gravity drain manifold. 

In  addi t ion,  removal 

Figure 6 is a photograph showing t h e  drain manifold, as w e l l  as t h e  tapered 
fuel exit tube f o r  connection t o  t h e  boost pump chamber, and t h e  variable speed 
drive used fo r  sloshing t h e  tank, described i n  t h e  following section. 

3.7 SLOSHING F%OVISIOl?S 

The tank had t h e  capabi l i ty  of sloshing osc i l l a t ions  over a range of 50.6 
millimeters (2.0 inches) each s ide  of t h e  neut ra l  posit ion.  
vs r iab le  speed drive rotated a s tud located eccent r ica l ly  on a d isc  attached 
t o  t h e  o u t m t  s h a h  (Figure 6).  From the  s tud,  a p a i r  of push-rods actuated a 
bellcrank whose other  arm actuated push-rods attached t o  a bracket attached t o  
the  removable panel of t h e  t e s t  tank. 

An explosion-proof 

In  order t o  provide freedom of movement during tests requir ing sloshing, t h e  
t e s t  tank was suspended by cables attsched t o  t h e  four upper corners (Fig- 
ure  7). 
bucitle t o  t h e  support frame. 
Positioned at an angle simulating wing dihedral,  with t h e  fue l  e x i t  a t  t h e  low 
end. 
eisconnected readi ly  t o  permit t h e  tank t o  swing on i t s  cables by manual force 
i f  desired. 

Each cable passed over a pulley and was attached through a turn- 
This arrangement allowed t h e  tank t o  be 

"he push rod between t h e  test  tank and t h e  sloshing b e l l  crank could be 

3.8 INSULATION 

Instllation was provided f o r  t h e  test tank t o  assure t h a t  heat t r a n s f e r  was 
confined t o  the  top  and bottom ch i l l i ng  surfaces. 
t o  f i l l  small voids, such as the  spacing between cooling panel duct emboss- 
ments, t h e  space between flanges on t h e  viewing port  spacers. and t o  f i l l  i n  
as required. C v e r  t h e  entire tank blocks of so l id  urethane foam 76.2 m i l l i -  
meters (3.00 inches) th ick  were positioned. These blocks were held i n  place 
by a combination of w i r e  c l i p s  and strapping tape ,  t o  permit easy removal 
whenever required. 
Figure 8. A l l  external l i n e s ,  and the  boost pump chamber, were insulated by 
appropriate combinations of fiberglas., Sa t t ing ,  urethane foam and pre-formed 
foam rubber tubing jackets.  
ing of a l i g h t  blanket of  insu la t ing  paper bonded t o  f l ex ib l e  aluminum f o i l  
which acted as a vapsr ba r r i e r  t o  inh ib i t  ccndensation of atmospheric moisture. 
Cutouts i n  the  blanket p s m i t t e d  observation through t h e  viewing ports .  

Fiberglass  ba t t i ng  was used 

The insulated tank i s  i l l u s t r a t e d  by t h e  photograph i n  

During t e s t i n g ,  the  tank had an addi t ional  cover- 

3.9 COOLANT SYSTEM 

"he coolant system consisted of a reservoir  of methanol which was ch i l l ed  by 
l iqu id  carbon dioxide. I n  t u rn ,  t he  methanol was  c i rcu la ted  t o  t he  heat 
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exchange panels by a centriAzgal ptonp. 
divided just  outside the  test tank t o  supply the  upper and lower cooling panels 
simultaneously through l ines  of equal length. 
panels teed in to  a comon line before returning t o  the  reservoir.  
a schunatic diagram of the  coolant system. 
t r o l ,  the  pump, anJ some of t he  insulated plumbing are v i s ib l e  i n  Figure 8, 
along the  lef’t hand w a l l .  Flexible couplings were ins t a l l ed  in both common 
l ines  t o  accommodate an&ular and axid movement during sloshing. 

The flow of re i r igera ted  methanol was 

Return l i nes  from t he  cooling 

The overflow tank for l eve l  con- 
Figure 9 i s  

Valving was i n s t a l l ed  t o  provide th ro t t l i ng  of the  coolant f l o w  and t o  
the  dis t r ibut ion as required t o  achieve approximately equal temperatures on 
the upper and lower surfaces. 

3.10 TEMPERATURE SENSING 

An array of 55 thermocouples w a s  used 50 sense temperatures ins ide  the t e s t  
tank. 
t o  f ive  ve r t i ca l  rod supports inside the  t e s t  tank. The b e d s  of the  thermo- 
couples projected approximately 12.7 millimeters (0.50 inch) from the  rods. 
Wire bundles from the  tops of t h e  rods were gathered t o  pass through a common 
penetration near t he  top of t he  t e s t  tank, after which a sealant  was applied 
a t  the penetration t o  prevent fue l  _oakage. 

Thermocouples were fabricated from copper-constantan wire, and attached 

Figure 10 i l l u s t r a t e s  the  arrangement of these thermocouples inside the  t e s t  
tank. As sham, there  were three thermocouple racks with 12 thermocouples 
each, two with 7 thermocouples each, and f ive  additional skin thermocouples. 
!The ident i f ica t ion  and location of each thermocouple i s  l i s t e d  i n  Table 1. 
Rote tha t  f o r  Tests 58 and following, thermocouples i n  Racks 2 and 3 were 
relocated f o r  improved def ini t ion of temperature gradients near the  cooling 
surfaces. 

3.11 F L O W  RATE SENSING 

Two turbine flowmeters were used t o  measure flow ra t e s  i n  the  recirculat ion/  
e jector  system, in s t a l l ed  i n  12.7 millimeter (0.50 inch) outside diameter 
tubing. 
and the other downstream (Figure 1). 
the difference between readings of the  two instruments w a s  unreliable.  
flow ra t e  was est inated by comparison of recirculat ion flow ra t e s  with and 
without e jector  use. 
ins ta l led  as shown i n  Figure 1 t o  measure the  withdrawn fue l  flow ra te .  

One t ransmit ter  wp.8 i n s t a l l ed  upstream of the  branch t o  the  e jec tors  
Determination of e jec tor  motive flow as  

Ejector 

For the  scheduled withdrawal t e s t s ,  a small venturi  was 

3.12 AUTOMATIC DATA RECORDING SYSTEM 

An automatic data recording system was available t o  acquire temperature and 
flow r a t e  data. This  system was compatible with the cent ra l  data system a t  
the Rye Canyon Research Center, so tha t  temperature tabul8tions and time tiis- 
t o r i e s  of temperatures could be produced by computer. 
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Figure - 10. Arrangement of Thennocouples in  Fuel Teat Tank 
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Figure 11 is a block diagrem of t h e  automatic da t a  acqu i s i t i sn  sjstem. 
Signals from the  thermocouplas and t h e  f low t ransmi t te r  frequency converters 
were introduced i n t o  t h e  96 - chaunel Weff 620 Ser ies  400 multiplexer.  This 
fed i n t o  tne  H .wlett-Packard 9825A ca lcu la tor  at predetermined in t e rva l s  and/ 
o r  upon cjnrmand a t  t h e  rate of 100 channels per  aecond. 
d i g i t a l  clock furnished t h e  time at which the  da ta  was recorded. The output 
of t h e  ca lcu la tor  was  recordec' on a high speed tape : . . r tr idge which w a s  used 
as t h e  input f o r  t h e  Rye Canyon da ta  system. lZle ca lcu la tor  a lso  provided a 
paper tape a.t scheduled times o r  upon command; 
tem computer, numerical p r in touts  of temperatures end flow rates i n  tabular  
fora  could be produced, a;' well  as graphs showing a t i m e  h i s to ry  or' each dat 
channel. 

A Hewlett-Packard 

From t h e  Rye Canyon da ta  sys- 

An example of t he  tabulated computer pr intout  of temperatures i s  shown i n  
Table 2,  which reproduces a portion of t he  l i s t i n g  f o r  Test 99. 
032, and O h  were reserved as references t o  monitor equipment temperatures. 
Hence,. channel numbers shown as CHOOl on the  pr intout  do l o t  correspond t o  
thermocouple numbers, sham as C 1  on the  pr in tout ,  from channel 016 on. 

Channels 016, 

Figure 12 i s  an example of t h e  computer generated t i m e  h i s to r i e s .  
p l o t s  of temperature against  t i m e  f o r  t h e  first six channels of Test 99,  
l i s t e d  i n  Table 2. 

These a re  

3.13 ADDITIONAL DATA ACQUISITION 

Test data w a s  a l s o  acquired by means othcr  than t h e  automatic system. Cool- 
ant  temperature w a s  monitored ~ l b  a s t r i p  char t  whose pens indicated tempera- 
t u re s  a t  t he  reservoir  and at t h e  i n l e t  t o  t h e  test  tank cooling Fanels. 
discharge quant i ty  was measured by weighing f u e l  on a platform sca l e  of 227 
kilograms (500 pounds) capacity. 
posit ioned t o  contain fue l  pumped o r  drained from t h e  tank. 
pressure was observed visual.ly and recorded manually as required. 
observations of' t he  nature of t h e  so l id  fue l  b u i l 2 q  i n  t h e  tank and o ther  
remarks were recorde? i n  a permanent notebook fo r  each t e s t .  
vided black an? whit,: p r i n t s ,  color  sl ides,  and c o l r  motion p ic tures .  

Fuel 

On the  sca le  platform, a clean ?-rum was 
l u e l  boost pumD 

Qual i t a t ive  

Photography pro- 
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4.0 TESTING PROCEDURES 

This section describes procedures employed f o r  t h e  various types of tests 
performed during t h e  program. Test types were: S t a t i c ;  Recirculation; 
Sloshing; Divider; Ejectors; D r y  Fuel; Scheduled Withdrawal. 

In  general, f u e l  was  loaded i n t o  t h e  test tank, and t h e  test  time commenced 
when t h e  coolant c i r cu la t ion  system was activated.  
was controlled and duration of t e s t i n g  was varied as d ic t a t ed  by such f ac to r s  
as type of fuel and estimated gravi ty  holdup. 
sidered t o  be the  -:he at which pumpout of t h e  f u e l  commenced t o  determine 
t h e  gravity holdup, t h a t  i s ,  t h e  s o l i d  fuel t h a t  could not be withdrawn from 
t h e  tank. 
e j ec to r s  scavenging f u e l  from t h e  s t r i n g e r  bays i n t o  t h e  surge box surround- 
ing t h e  fuel. e x i t ;  from t h a t  point f u e l  flowed by gravity t o  t h e  boost pmp 
i n  i t s  chamber below the  test tank. Gravity holdup was determined after t h e  
pump ceased t o  de l iver  fue l .  
representative and unusual tes t  results. 

Minimum skin  temperatme 

The end of t h e  test w a s  con- 

Fuel w a s  normally removed by means of t h e  boost pump, with t h e  

Photography w a s  employed t o  document both 

4.1 STATIC TESTS 

These tests were performed with the  f u e l  quiescent u n t i l  t h e  end of t h e  test .  
A t  t h e  appropriate t i m e  o r  temperature t h e  f u e l  w a s  pumped out &nd weighed. 
The quantity which did not flow by gravi ty  t o  t h e  boost pump const i tuted t h e  
gravity holdup. 

4.2 RECIRCULATION TESTS 

Fuel flowing by gravity t o  the  boost pump chamber w a s  recirculated through 
the  perforated d i s t r ibu t ion  tube at t h e  opposite 2nd of t h e  tes t  tank. 
t i a l l y ,  the nominal recirculat ion r a t e  was 10 l i t e r s  per minute. 
w a s  reduced t o  a nominal 6 l i t e rs  per minute as b e L g  more appropriate t o  t h e  
tank volume of approximately 193 l i ters .  
the  tes t .  A t  t he  end of t h e  t e s t  t h e  valving w a s  adjusted t o  h a l t  t h e  recircu- 
l a t i o n  and commence pumpout. 
ceased t o  de l iver  fue l .  

Ini-  
Later t h i s  

Recirculation continued throughout 

Gravity holdup w a s  clt:termined when t h e  pump 

During a few tes ts  i n  t h e  ear ly  part  of t h e  program, b r i e f  periods of r ec i r -  
culation were employed f o r  a portion of t h e  cooldown of an otherwise s t a t i c  
t e s t .  This vas done i n  an attempt t o  reduce the  temperature difference 
between the  ch i l l ed  w a l l s  and the  bulk fue l .  

4.3 SLOSHING TESTS 

In these t e s t s  t h e  tank was osc i l l a t ed  a t  a ra te  of 39 t o  40 cycles per minute 
at  an amplitude of plus and minus 50.8 millimeters (2 .0  inches) from the  
neutrel  posit ion.  Sloshing continded throughout t h e  t e s t ,  and was discontinued 
when pumpout was i n i t i a t e d .  
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Three tests were performed with sloshing only, and t h e  tank approximately 
half full. 
tank fu l l .  

The other sloshing tests employed rec i rcu la t ion  also, with the 

During a few tests i n  t h e  ear ly  part of t h e  program, as with rec i rcu la t ion ,  
periodic sloshing was employed f o r  a Fortion of t h e  cool-down period i n  an 
attempt t o  reduce t h e  temperature difference betveen t h e  ch i l l ed  walls and 
t h e  bulk fuel. 

4.4 D M D E R  TESTS 

These were s t a t i c  tests f o r  which t n e  test tank had been modified by i n s t a l l -  
ing a divider p l a t e  approximately midway between t h e  removs3le end an8 t h e  
fuel e x i t  end t o  represent a baf f l e  within an airplane f u e l  tank. 
d'.x-ider k-as 30.5 centimeters (12 inckes) high, wjtth gelr :JUS cutouts at t h e  
bot toP to c l e a r  t he  lower s t r ingers .  

The 

Figure 13 shows the  divider  i n s t a l l e d  in t h e  test tank. Note ,hat  both s ides  
of t h e  divider  can be seen through t h e  viewing port at t h e  r igh t  hand side of 
the  photograph. 

4.5 EJECTOR "EEVS 

Two tests were performed i n  which fuel was rec i rcu la ted  through the eJectors  
as w e l l  as through t h e  performated d i s t r ibu t ion  tube. This combination pro- 
vided flow p r a l l e l  t o  t h e  lower s t r inge r s  from t h e  rec i rcu la t ion  system, 
and f lov  across the  ex i t  end of t h e  tank by e jec to r  action. The combined 
c i rcu la t ion  was maintained throughout t h e  tests, which were otherwise the  
same as the rec i rcu la t ion  t e s t s .  

As with rec i rcu la t ion  and sloshing, during t h e  ea r ly  p a r t  of t h e  program t h e  
e jec tors  were ogerated per iodical ly  i n  an attempt t o  reduce t h e  temperature 
difference between the  ch i l led  w a l l s  and t h e  bulk fuel .  They gere a lso  put 
t o  good use during pumpout, t o  scavenge fue l  from t h e  s t r inge r  bays. 

4.6 DRY FUEL TESTS 

Four tests were performed i n  t he  same manner as s t a t i c  t e s t s  except t h a t  dry 
nitrogen had been bubbled thrcugh the  fue l  i n  the  tank a t  a r a t e  of 195 l i ters  
( 6 . 9  cubic f e e t )  per  hour P J r  a minimum of 3 hours pr io r  t o  the  s t a r t  of  t h e  
t e s t .  
normally dissolved i n  t he  fuel .  

Th i s  procedure was eesigned t o  carry off  atmospheric moisture which i s  

4.7 SCHEDULED WITHDRAW& TESTS 

I n  m 9 s t  tests, t h e  tank sk in  was ch i l l ed  and maintained a t  a reasonably 
const?Tt temperature. Fuel was withdraw, rapidly when the  desired fue l  
temperature w a s  at tail led.  
t u r e  varied according t o  a prescribed schedule, with fue l  withdrawn at a 
slow r a t e  &wing the lrrst par t  of t h e  t e s t .  

Several t e s t s  were conducted wi th  t he  skin tempera- 

This procedure, ca l led  scheduled 
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withdrawal, represented the  condition i n  an a i r c r a f t  fuel tank during 
long-range f l i g h t .  
t h e  bottom center of t h e  tank as a cont ro l  reference, was ch i l l ed  i n  accor- 
dance with t h e  time schedule shown i n  Figure 14.  
0.3% (one day per year) probabili ty of extreme cold temperature encountered 
on a long range f l i g h t  of a commercial airplance (Ref. 11). 
same BY a s t a t i c  tes t  f o r  8.3 hours, a t  which t i m e  f u e l  was withdrawn at a 
rate t h a t  would leave a small quantity of fuel i n  t h e  tank a t  t he  end of the 
test  a t  11.3 hours. 
tank skin temperature shown i n  Figure 1 4  i s  based on the  t o t a l  a i r  temperature 
of Reference li, corrected t o  an adiabatic w a l l  recovery of 90%. 

For these scheduled withdrawal tests,  t h e  skin,  using 

This  schedule i s  based on a 

The tes t  w a s  t h e  

In &11 airplane t h i s  would be reserve fuel. The fuel 
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Figure - 14. Temperature Schedule f o r  Scheduled Withdrawal Tests 
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5.0 FUELS 

This section describes the fuels used i n  t h e  test  program. 
the fue l s  and t h e i r  key charac te r i s t ics .  Fuels LFP-1 through UP-9  were a 
group of fuels from known crude petroleum s o v c e s ,  furnished f o r  test  pur- 
poses through t h e  courtesy of t h e  Coordinating Research Council (CRC) Group 
on Low Temperature Flow Performance of Aviation Turbine Fuels. There were 
three types of these fuels:  
cation Jet  A; a d i s t i l l a t e  comparable t o  Diesel D-2; and a re f ine ry  stream 
d i s t i l l a t e  intermediate t o  t h e  first two fuels Kith respect t o  freeze point. 
The fue l s  were selected ref inery samples representing a range of compositions 
and freezing points,  but they were not necessarily f inished t o  meet a l l  
commercial specifications.  
naphthenic o r  paraf f in ic  according t o  the  usual def ini t ions i n  t h e  petroleum 
industry. 
hydrocarbons; a naphthenic crude has a preponderance of saturated cyc l i c  hydro- 
carbons. 
crudes, however, do not necessarily show hjrdrocarbon type d i s t r ibu t ion  i n  
agreement with the crude characterization. 

Table 3 l ists  

a j e t  f u e l  conforming t o  t h e  commercial specifi- 

The crude petroleum sources are  i den t i f i ed  as 

A paraff inic  crude has a preponderance of saturated a l i p h a t i c  

Analyses of t h e  fuel prccucts obtained by d i s t i l l a t i o n  from these 

Table 3 i den t i f i e s  t h e  fue l s  used i n  t h i s  program by 8. fuel'number; these 
designations w i l l  be used throughout t he  report .  

Four fue ls  i n  Table 3 a re  iden t i f i ed  by numbers othbr than t h e  LFP designation. 
Fuels No. 1 and No. 3 were fue l s  obtained from t h e  Lockheed Company stock, 
used i n  t h e  i n i t i a l  tests. Fuel No. 7 was LFF-5 t o  which had been added a 
polymeric pour point depressant. This addition a f f e c t s  only t h e  low tempera- 
tu re  behaviour of t h e  fue l .  
property data char t s  between Fuel No. 7 and LFP-5 are simply t h e  result of 
imprecision of various characterization tests. 
derived from processed shale o i l ,  meeting most of t h e  specif icat ions (but 
not freezing poin t )  of JP-5, 8 Navy j e t  fue l .  Table 3 a l s o  l i s t s  t h e  approxi- 
mate freezing poin t ,  f i n a l  boi l ing poin t ,  snd spec i f i c  gravi ty  of each fuel. 
Boi1ir.g range i s  presented i n  a standard series of curves of vapor temperature 
versus percent recovered i n  Figure 15. 
temperature i s  presented i n  Figure 16. 
f u e l  properties,  composition, and laboratory low temperature performance 
tests are included as Appendices A and 3 of t h i s  report .  
fumished by cocperative t e s t i n g ,  courtesy of t h e  .:RC Group on Low Temperature 
Ferforrr-ance of Aviation Turbinz Fuels. 

Small discrepancies noted i n  Table 3 and o the r  

Fuel No. 8 was a spec ia l  fuel 

Specific gravi ty  as a function of 
More extensive data on comparative 

These data  were 
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6.0 RESULTS 

6.1 TESTING RECORD 

T & X e  4 l i s t s  t h e  tests by number, ident i fy ing  t h e  fi.trl type  and t h e  t f 3 t  
type.  The d iv is ion  i n t o  two ca tegor ies  i s  a r b i t r a r y .  E a r l y  tests included , 

i n i t i a l  checkout runs and t e s t s  on t h e  Diesel and o ther  fuels. Comprehensive ' 

tests started with Test 59, which used a s l i g h t l y  rev ised  thermocouple 
crrangement. 
ccqdi t ions,  and f l i g h t  simulation by scheduled withdrawal. 

The comprehensive tests aimed at determination of low holdup 

.4 chronological t a b l e  l i s t i n g  a l l  test runs may be found i n  Appendix C. 

6.2 INITIAL TESTS AND OBSEEWATIOMS 

Test ing commenced on 26 May 1978, using f u e l  Wo. 1, a commercial Jet A. 
sequent ea r ly  tests employed t h e  Diesel  f u e l s ,  then  t h e  intermediate  f u e l s  
and a J e t  A. Observation of t h e  i n t e r i o r  of  t h e  t e s t  tank was unobscured 
at t h e  beginning of t h e  tests, as shown i n  Figure 17. This photograph shows 
t h e  s t r i n g e r s ,  e j e c t o r s ,  surge box, and thermocouples i n  a . fue1 - f i l l ed  tank. 
After some c h i l l i n g ,  however, a "fog" of water condensation appeared i n  t h e  
f u e l  i n  some t e s t s ,  obscuring t h e  tank  i n t e r n a l s  (Figure 18). 
temperature continued t o  decrease,  s o l i d s  eventual ly  began t o  form. During 
s t a t i c  tes ts ,  these so l id s  began t o  accumulate on the bottom of t h e  tank ,  
then progressed cpwards onto t h e  bottom s t r i n g e r s .  
as i n  r ec i r cu la t ion ,  e j e c t o r ,  and s'oshing t e s t s ,  suspended p a r t i c l e s  were. 
apparent s o w e r  than during s t a t i c  tests. 

Sub- 

As t h e  f u e l  

When t h e  f u e l  was moving, 

There W ~ S  no a i f f i c u l t y  i n  withdrawing t h e  two phase f u e l  w i t h  suspended 
so l ids .  
tank. A t  s u f f i c i e n t l y  low temperatures, s o l i d  f u e l  would form on the t o p  and 
v e r t i h l  surfaces  of t h e  tank as w e l l  as on t h e  bottom. 
t h i s  s i t ua t ion .  In  severe cases ,  s o l i d  ma te r i a l  dL@oslted on t h e  bottom 
and/or detached from t h e  t o p  and v e r t i c a l  sur faces ,  could block t h e  tank  
discharge l i n e ,  surge box, o r  check valve,  terminat ing f u e l  discharge abrupt ly .  

Holdup occurred wheli s o l i d  f u e l  accumulated i n  t h e  bottcm o f  t h e  

Figure 19 i l l u s t r a t e s  

6 .3  STATIC TESTS 

The bulk of t he  t e s t i n g  consis ted of s t a t i c  t e s t i n g ,  where f u e l  was c h i l l e d  
without rec i rcu la t ion .  S t a t i c  tes ts  were performed w i t h  a l l  t h e  fue ls .  
Tests were conducted a t  severa l  temperatures with each f u e l  t o  e s t a b l i s h  a 
re la t ionship  of t he  holdup of unpunpable f u e l  as tl furicLion of temperature. 
The ea r ly  tes t  runs attempted t o  reduce t h e  bulk temperature of t h e  f u e l  t o  
desired temperatures near t h e  spec i f i ca t jon  f reez ing  point.  
r e l a t i v e l y  large f r ac t ions  of fue l  remP.ined i n  the  tank as s o l i d  deposi ts  on 
a11 surfaces  a t  t1.c conclusion of t hc  tests.  
deposi ts  broke o f f  t h e  upper and/or v e r t i c a l  sur faces  and formed dams, 
t rapping liquid f u e l ;  an example of t h i s  i s  shown i n  Figure 20. The l i q u i d  
holdup i n  such cases was small, however, and physical  rocking of t h e  tank t o  
dislodge o r  rearrange t h e  s o l i d  p a r t i c l e s  re leased  only small quan t i t i e s  of 
addi t iona l  l i q u i d  discharge.  

Consequently, 

Cften por t ions  of t he  s o l i d  

34 













After examinb;tion of early runs, s t a t i c  tests af ter  Test 40 incorporated 
some rev is ions  t o  procedures. 
terms of t h e  lower surfaceoboundary layer .  
tank sk in  temperature, -50 C i n  most cases.  The c h i l l i n g  t ime t o  pumpout 
determined t h e  fuel temperature. Tests were conducted w i t h  t h e  tank  com- 
p l e t e l y  f i l l e d  w i t h  f u e l ,  i n  con t r a s t  t o  a 2% vent  space allowed i n  t h e  early 
tests. The f i l l ed  tank promoted maximum convection cu r ren t s  i n  t h e  tank. 
This is i l l u s t r a t e d  by comparison of Figures 21  and 22, both represent ing  
tests of intermediate  fuel LFP-5. The ea r ly  test i n  Figure 21 shows more 
vertical  and hor izonta l  temperature va r i a t ion .  It is  i n t e r e s t i n g  t h a t  t h e  
test w i t h  t h e  f i l l ed  tank  (Figure 22) represents  the p r o f i l e  after 4; hours 
of c h i l l i n g ,  i n  con t r a s t  t o  74 hours f o r  the earlier test. The temperature 
discrepancy seen near t h e  bottom f o r  thermocougle rack  No. 1 i n  Figure 21 
probably is the  result of t h e  buildup of s o l i d  f u e l  at t h e  surge box. 
was t h e  same f o r  both cases i l l u s t r a t e d ,  a nominal 20%. 

Fuel tenpera ture  va r i a t ions  were defined i n  
Tes ts  irere conducted at constant  

Holdup 

S t a t i c  tests subsequent t o  T e s t  40 concentrated on the Jet  A ,  intermediate ,  
and JP-5 fuels as more representa t ive  of cur ren t  and f u t u r e  av ia t ion  fuels. 
Tests from Test 58 on were a l s o  performed w i t h  s eve ra l  thermocouples r e loca ted  
f o r  more prec ise  de f in i t i on  of boundary l a y e r  temperatures. 

6.4 RECIRCULATION, SLOSHING, AND EJECTOR TESTS 

A t  least one test w a s  conducted w i t h  each f u e l  incorporat ing f u e l  rec i rcu la-  
t i o n  during t h e  chilldown time. 
trated by a comparison of t h e  temperature d i s t r i b u t i o n  shown i n  Figures  23 
and 24, f o r  Jet A fuel LFP-9. 
while Figure 24 represents  Test 75, a r ec i r cu la t ion  test. 
temperatures were similar f o r  both tests,  and holdup was i d e n t i c a l .  
s t a t i c  t es t  p r o f i l e s  show a g r e a t e r  degree of  non-uniformity. Recirculat ion 
obviously promotes mixing and y i e l d s  a p r o f i l e  with a constant  bulk tempera- 
ture over most of t h e  tank height. Convection i s  evident i n  both cases  i n  
the much wider lower surface boundary l aye r ,  a c h a r a c t e r i s t i c  of a l l  tests 
wi th  completely f i l l e d  tanks.  

The e f f e c t  o f  r e c i r c u l a t i o n  i s  best illus- 

Figure 23 represents  Test 76, a static tes t ,  
Boundary l a y e r  

The 

Sloshing was incorporated i n  several of the ea r ly  runs, and i n  some cases 
sloshing and r ec i r cu la t ion  were combined. 
of c h i l l e d  f u e l  and reduced temperature grad ien ts ,  bu t  s losh ing  had no 
apparent e f f e c t  on t h e  discharge of  liquid f u e l  o r  of f u e l  containing sus- 
pended so l ids .  

Sloshing a l s o  improved the  mixing 

The dynamic e f f e c t  of s loshing on chilldown temperature p r o f i l e s  i s  i l l u s -  
trated i n  Figures 25 and 26, which are temperature t i m e  h i s t o r i e s  for e a r l y  
t e s t s  with Fuel No. 3, a Diesel  D-2. 
t u r e  ind ica t ions  far the  f i v e  i n t e r i o r  thermocouples are so c lose  as t o  be 
ind is t inguishable  from each o ther .  
thermocouples and t h e  skin thermocouple is almost t h e  same throughout t h e  
period of  tes t in , .  
ing  was terminated a f t e r  1 . 5  hours (5400 seconds).  
gradients  were quickly es tab l i shed  for  the  s t a t i c  condi t ion when s loshing 
ceased. 

In  Figure 2 5 ,  during s loshing,  tempera- 

The temperature d i f fe rence  betwllen these 

Figure 26 i l l u s t r a t e s  a subsequent tes t  i n  which slosh- 
Ver t i ca l  temperature 
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Figure - 21. Temperature Distribution at  Eid  of Test 28 
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r'igure - 22. Temperature Distribution at  End of Test 97 
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Figure - 23. Temperature Dietributicn at End of Test 76 

43 



I -  T/C Rack No. 1 
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Figure - 24. Temperature Distribution at  End of Test 75 
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Two runs employed t h e  e j ec to r s  during the  chilldown I n  combination with 
re2irculat ion t o  promote flow between t h e  bottom s t r inge r s  i n  addition t o  t h e  
flow from t h e  perforated return tube. Temperature p ro f i l e s  with t h e  e j ec to r s  
and recirculat ion mixing appeared indistinguishable from those with recircula-  
t i o n  alone. 

6.5 DRY FU.JL TLSTS 

D r y  fuel teste vere conducted with t h e  intermediate fue l s  LFP-5 and LFP-6, 
Jet A LFP-9, and t h e  shale-derived Fuel No. 8. 
f i l ter-separator  p r i o r  t o  testLng t o  remove any suspended water, i n  accordance 
with usual aviat ion fueling practices.  
30 t o  35 par t s  per mill ion dissolved water content; t h e  shale-derived f u e l  
had 48 p a r t s  per million. 
p r ior  t o  the  dry fuel 1 as. Holdup and temperature p ro f i l e  resul ts  f o r  
dried and untreated fue l s  were ident ica l .  Drying reduced t h e  condensed 
water "fog" t h a t  appearcd i n  some cases during chilldown, and improved t h e  
v isua l  observation of fue l  behavior. 

Fuels were passed through a 

The intermediate and Jet  A fue l s  had 

Dry nitrogen pretreatment removed most of t h e  water 

6.6 DIVIDER TESTS 

Tests were conducted with j e t  fue l s  LFP-1 and LFP-8, and with intermediate 
f-aels LFP-5 and LFP-6, with a divider p la te  i n  t h e  t e s t  tank. For runs i n  
which t h e  holdup was about 7% o r  less,  the  s t r i n g e r  cutouts a t  t he  bottom of 
t h e  divider p l a t e  were only p a r t i a l l y  obstructed. 
t o  performance wit:  nc divider. 
duced 10.7% gravity holdup. 
s t r inge r  cutout openings; l iquir? f u e l  was able t o  pass through t h e  s l o t  
between the  divider and t h e  viewing port. 
t o  be trapped by the  blockage of  t h e  s t r inge r  cutouts. 
"climb" the  divider.  

Test r e s u l t s  were i d e n t i c a l  
Test 84 with intermediate LFP-6 f u e l  pro- 

This amount proved su f f i c i en t  t o  obstruct t h e  

A small amount of f u e l  appeared 
The deposits did not 

Test 84 temperature pr Les a re  compared t o  p ro f i l e s  of t e s t s  without t h e  
divider i n  Figure 27. The readings of  the  center thermocouple rack, nearest  
t he  d iv ider ,  a r e  p lo t t ed  i n  t h i s  f igure .  The ccnditions f o r  t h e  two tests 
were not i den t i ca l .  The non-divider t e s t  w a s  conducted a t  a s l i g h t l y  higher 
bulk and boundary layer  temperature, producing 8.8% holdup campared t o  10.7% 
f o r  t h e  divider t e s t .  The difference i n  gravity holdup i s  as expected for 
t he  temperature differences.  These reslilta and t h e  good correspond.ence i n  
temperature p ro f i l e s  imply t h a t  t h e  dividcr had l i t t l e  o r  nc e f f ec t  on conduc- 
t i o n  or convective heat t r a n s f e r  within ',he tes t  tank. 

6.7 SCHEDULED WITHDRAWAL TESTS 

Scheduled withdrawal tests were conducted with intermediate fue l s  LFP-5 and 
LFP-6, j e t  fue l s  LFP-8 and LFP-3, and the  shale-derived Fuel No. 8. 
skin temperature schedule f o r  these runs has been presented as Figure 111. 
For LFP-8, because of  t h e  low freezing point of th., f u e l ,  t he  skin tempera- 
t u r e  schedule w a s  modified t o  a minimum of -55OC instead of -49°C. 
done t o  assure some f u e l  holdup during t h e  scheduled withdrawal t e s t .  
modified schedule i s  showr, i n  Figure 28. 

The 

Th i s  was 
The 

Data points on t h i s  f igure  show 
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Figure - 27. Temperature Distribution at End of Teete 
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ac tua l  skin temperatures measured during the  test, and this correspondence 
between t.est and scheduled temperature is also representat ive of 'scheduled 
withdrswsl t e s t s  with t h e  other fuels.  

Figure 29 shows the temsrature p ro f i l e s  at t h e  center  of the  tank a t  var ious 
time i r t e r v a l s  for  t he  scheduled withdrawal t e s t  with LE"-9 fuel. P r o f i l e  
patterns were iden t i ca l  t o  thoee obtained with s t a t i c  testor up t o  t h e  time 
that the  skin temperature was vanned according t o  schedule (about 6.6 hours). 
The Varming skin reduced the  boundary 1a;yer gradients and produced an almost 
uniform fuel temperature at t h e  end of the run. 
IL small  e f fec t  
9.5 hours. 
is, the  fue l  remair?ing after t h e  withdraval schedule could be completely 
discharged after the test. 
with a corresponding s t a t i c  t e s t .  In Figure 30, t he  center  temperature pro- 
f i l e  at the  coldest time of the  scheduled withdrawal test, 6.6 h9urs, is shown 
along wi%h a temperature p ~ . - i l e  from t8e end of a s t a t i c  test v i th  t h e  seme 
fuel. The bulk temperature averaged 10 C higher f o r  the s t a t i c  test, r e f l e c t -  
ing the  shorter t e s t  time of 3 hours. 

The vi thdraval  of fuel had 
d i s to r t ing  the p r o f i l e  as can be observed a6 t h e  curve fcr 

:re vas no holdup of fie1 at t h e  conclusion of the test; that 

However, an i n t e r e s t i n g  comparison can be made 

Skin and boundary layer temperatures a r e  nearly t h e  same f c  the tvo  tests. 
Since the s t a t i c  test exhibited a holdup of 1.25, it I s  reasonable t o  assume 
t h a t  the withdrawal test would heve at l eas t  t h a t  much holdup, considering 
the  similar boundary layer and colder bulk temperatures. Sol id  dispers ion 
was not observed during the  withdrawal test, but it appears that conditions 
favored a small amount cf so l id  prec ip i ta t ion  with subsequent melting during 
the last hours. 
WP-8 fuel.  

Similar t e s t  results and comparisons were observed with 

Conaitions for  t he  scheduled withdrawal tests with LFP-5 and LFP-6 f u e l s  were 
more severe because of the  high freezing points  of these  fuels .  
prof i les  fsr fue l  LFP-6, shown i n  Figure 31, show appreciable d i s t o r t i o n  
before and during withdrawal due t o  t h e  heavy buildup of s o l i d  material. 
Aftor 2 hours, sol ids  had begun t o  form on the  bottom. 
and during the minimum temperature period between 5.5 gnd 6.6 hours solids 
were observed suspended i n  t h e  l i q u i d  fuel.  
agglomeration of the  suspended so l ids  evidently had occurred, so t h a t  the 
so l id s  looked ahnost l i k e  small pieces of cotton. 
during withdrawal, solids were observed on t h e  upper surface with gaps 
indicat ing tha t  chunks had fa l len .  
panels. 
LFP-6 xere similar and i n  fac t  the  buildup of so l ids  was so severe that a 
reduced withdrawal flow r a t e  w a s  used t o  prevent premature depletion of the 
l iqc id  fuel. 

Temperature 

Deposits increased, 

A t  t h e  stkrt of kiithdrawal some 

As t h e  f u e l  l e v e l  receded 

There was a l i g h t  coat ing on t h e  v e r t i c a l  
A t  the  end of the t e s t ,  e rav i ty  holdap was 25.5%. Results w i t h  

6.8 TESTS WITH IXEL NO. 8 

The apparent temperature p ro f i l e s  and t e s t  r e s - d t s  with the  shale-derived 
Fuel No. 8 were d i f f e i en t  enough from the  other  fue ls  t h a t  they could not be 
compared or correlated wi th  data from the other  fue ls .  
drawal t r spera ture  p ro f i l e s  are  p lo t ted  i n  Figure.32 as an example. 

The scheduled with- 
Most 
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Figure - 29. Tempera ture  P r o f i l e s  at  C e n t e r  of Ta.ik, T e s t  94 
Scheduled Withdrawal, LFF-9 Fuel 
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Figure - 30. Cornperison of Static and Scheduled Withdrawal 
Test Temperature Profiles 
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Figure - 31. Temperature P ro f i l e s  ~ i ;  Center of Tank, Test 98 
Scheduled Withdrawal, LFP-5 Fuel 
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Figure - 32. Temperature Profiles at Center of Tank, Test 95 
Scheduled Withdrawal, Fuel Number 8 
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of t h e  problem with this Fuel, however, very probably was an i n su f f i c i en t  
supply, so t h a t  the tsst tank could not %e operated completely f i l l e d .  
it was not possible t o  dis t inguish t h e  behavior of t h i s  fuel from the reduced 
cclnvection e f fec ts  produced by p a r t i a l  tank operation. 
t he re  was about a 5 centimeter vapor space at the top  of t he  tank.) 
deposited by t h i s  fie1 formed needle-like c r y s t a l s  d i f f e ren t  i n  appearance 
from those of t h e  other  fuels .  

Thus 

(It appears t ha t  
Sol ids  . 

6.9 TESTS WI"H WUR POINT DEF'FXSSAIOT ADDITIVE 

Three tests were performed t o  evaluate t h e  e f f e c t  of a pour point depressant 
addi t ive on the low temperatwe behavior of an intermediate fuel. 
point depressant i s  a proprietary polymeric material which disperses the s o l i d  
f u e l  pa r t i c l e s ,  preventing s o l i d  coagulation and buildup. These addi t ives  are 
commonly used f o r  winter service of Diesel and fuel o i l s ,  but o rd ina r i ly  they 
are not used w i t h  jet fue ls .  The addi t ive  used i n  these tests, designated as 
Paradyne 25, was added i n  a concectration of 0.10% by w e i g h t  t o  LFT-5. La:- 
o r a t o q  tests indicated t h a t  t he  pour point of %he fuel decreased from -31 C 
t o  -40 C with t h i s  addi t ive  (see f u e l  data i n  Appendix A).  

The pour 

One of these t e s t s ,  pst 97, was Londucted w i t h  the  undoped f u e l  at a skin 
temperature of -51.7 C and a boundary layer  temperature (1.2 centimeters 
from the bottom sk in)  of -46.0'~. These cond i t ims  produced a holdup of 
20.7%. 
as Fuel Nob 7. 
within 0.3 C ,  r esu l ted  i n  a reduction of holdup t o  10.2% f o r  t h e  treated 
m e 1  . 

After t he  pour point depressant was added t o  LFT-5, it was designated 
Test 99, which maintained the  i d e n t i c a l  conditions of T e s t  97 

F ina l ly ,  t h e  t h i r d  tes t  ( T e s t  100) w a s  performed w i t h  Fuel No. 7 at a skin 
temperature of - 6 3 . 5 ' ~ ~  boundary layer  ternperat.De of -55.9 C ,  or 10 C t o  
12 C below basel ine temperature conditions.  
b e t t e r  than t h e  basel ine test r e su l t s .  
t he  laboratory results of a reduction of g°C i n  pour point due t o  t h e  addi t ion 
of the  pour point depressant. 

0 0 
0 Holdup r e s u l t s  were 17.1%, even 

These l imited tank t e s t s  surpassed 

6.10 SUMMARY OF TWERATLmE PROFILES 

Results of t he  t e s t s  a r e  summarized by t h e  p l o t s  of temperature p ro f i l e s  i n  
Figure 33 through 45. 
rack, which w a s  considered t o  be t h e  most representat ive measurement a'. :he 
conclusion of each t e s t  when fue l  w a s  withdrawn from the tarlk. 
LFP-5 and ~ m - 6  a r e  presented on two f igures  each.) 
t he  legend of each f igure  can be used f o r  reference t o  t h e  t a b l e  i n  Appendix C 
fo r  fur ther  d e t a i l s  on each test .  
were omitted. 

These show t h e  indicat ions of t h e  center  thermocouple 

(3ata f c  ? 

Test numbe-s shown on 

A few sloshing runs w i t h  abnormal F ro f i l e s  

An i n t e re s t ing  aspect of Figures  33 through 45 i s  the  cusp which appears i n  
most of t h e  curves a t  j u s t  above 5 centimeters. 
thermal conductivity of the  lower s t r inge r s ,  whose upper surface i s  a t  t he  
6.1 centimeter l eve l .  
and the  sloshing t e s t s .  

T h i s  i s  probably due t o  the  

This e f f ec t  i s  not evident i n  the  rec i rcu la t ion  tests 
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Figure - 33. Temperature P r o f i l e s  from Center of  T m k  at  End of  Tests - 
Fuel Number 1 
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' Figure - 34. Temperature Profiles from Center of Tank at End of  Tes*s - 
Fuel Number 2 
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Figure - 35. Temperature Profiles from Center of Tank at End of Tests - 
Fuel Number 7 . 
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Figure - 36. Temperature P ro f i l e s  from Center of Tank a t  End of Tests - 
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0 Test 31, static 
A Test 34, sloshing with rccirculatian 

0 Test 55,  static 
VTest 56, static 
d Test 57, d r y  fuel 
PTest 58, static 
a T e S t  59, static 
=Test 60, static 

OTeSt 36, static 

Test 85, divider 
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Figure - 37. Temperature Profiles from Center of Tank at End of Tests - 
Fuel LFT-1 
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Figure - 38. Temperature Prof i les  from Center of Tank at End of Tests - 
Fuels LFP-3/LFP-b , 
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0 Test 67, static 
4 %at  68, static 
0 Test 69, recirculatioa 
0 Test 70, dry Are1 

Q Test 71, dry fuel 
@ Test n, fuel 
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Figure - 39. Tempem%ure P ro f i l e s  from Center of Tank a t  End of Tests - 
Fuel LFP-5 
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Figure - 40. Temperature Profiles from Center of Tank a t  End of Tests - 
Fuel LFP-5 
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, Figure - 41. Temperature Profiles from Center of Tank at End of Tests - 
Fuel ~ p - 6  

6k 



I 

r- r - 
f I i  

b f 

1 I 

I I 
I I 

-50 -45 -40 -35 - 30 -25 . -$o -15 

Ti:IE3dSL% - "c 

Figure  - 42. Temperature P r o f i l e s  from Center  of  Yank a t  End of Tests - 
Fuel LFP-6 
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Figure  - 43. Temperature Profiles from Center  of Tank a t  End o f  Tests - 
Fuel  LFP-7 
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Figure - 44. Temperature P r o f i l e s  from C e n t e r  of Tank at Snd of Tests - 
Fuei LFP-8 
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Test 71, static 
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Figure - 45. Temperature Profiles from Center of Tank at End of Tests - 
Fuel LF'P-9 
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7.0 DISCUSSION 

During t h e  performance of t h i s  progran a considerable amount of test da ta  was 
accumulated. 
aspects which are considered most re levant  t o  t h e  possible fu ture  use of a 
higher freeze point fuel f o r  tu rb ine  engine powered ccunmercial a i rc raf t .  

In t h i s  report, analysis of t h e  da ta  w i l l  be confined t o  those 

In commercial service on a standard day, a t yp ica l  cmmercial je t  airplane 
could climb t o  a cru ise  altitude of 1,,278 meters (37,000 f e e t )  within 30 min- 
u t e s  of takeoff.  
t he  ambient temperature would be -56.5'~ (-69.79). 
0.80, a 90% recovery of ram temperature rise would result i n  an adiabat ic  vali 
(wing skin) temperature of -3 l .5OC;  at Mach 0.85 t h i s  temperature wodd be 
-28.3OC. Present specif icat jon j e t  fue l s  with a maximum freezing point of 
-4C!"C, o r  even those with higher f reezing points ,  would be usable at these  
standard day conditions. 
represented i n  Figure 14 fo r  a one-day-per-year probabi l i ty  of an extreme low 
temperature, i n  which skin temperature at  Mach 0.80 would a t t a i n  a m i n h m  of 
-48.8OC. 

Since t h i s  is  above t h e  11,030 meter isothermal a l t i t u d e ,  
(Reference 12.) A t  Mach 

What i s  of real concern is t h e  f i ight  which was 

Early i n  the  t e s t i n g  phase there  w a s  always a considerable'temperature di f fe r -  
e n t i a l  between the  inner  cooling surfaces (skins! and the center  of t h e  test  
tank during s t a t i c  tests and rec i rcu la t ion  tests. Sloshing with the tank half 
f u l l  g rea t ly  decreased the  temperature var ia t ion ,  but resu l ted  i n  only a small 
decrease i n  temperature var ia t ion  w i t h  t h e  tank full of fuel. 
temperatue d is t r ibu t ion  could have been achieved by gradual reduction of skin 
temperature and extended soak t i m e  at t h e  f i n a l  temperature. However a unique 
feature of t h i s  t e s t i n g  program was a r e a l i s t i c  representation of t h e  a i r c r a f t  
wing tank environment. 
conditions t o  which a i r c r a f t  are subjected. 

A more even 

The chilldown procedure employed was a simulation of 

Visual observations proved t o  be an important means of data  acquis i t ion,  both 
for  in te rpre t ing  data gathered through instrumentation and f o r  understanding 
the  process of formation and deposition of so l id s  as described below. 

As t he  upper and lower surfaces are cooled, heat is t ransfer red  from t h e  fue l  
t o  the  coolant. I n  par t icu lar ,  fuel cooled by the  upper surface becomes more 
dense; t he  resul tant  density gradients set up a convective flow of dense, 
colder fue l  t w a z d  the  bottom of t h e  tank. As p r o f i l e s  a re  fully developed 
i n  t he  completely f i l l e d  tank, t he  center of the tank has a well mixed uni- 
form temperature, wi th  gradients t o  the  a k i n  temperatire over a considerably 
greater  distance a t  the  bottom campared t o  t h e  top. 
fuel  during the  ch i l l i ng  i s  also influenced by the  convection currents  s e t  up 
by t h e  density gradients. 
t he  lower surface of the  tank.  As cooling continue;, t h e  d u l l  a rea  spreads 
along the  bottom, then ccmences t o  climb t h e  v e r t i c a l  webs of the  lower 
s t r ingers  and later t o  spread across the  upper horizontal  flanges of the 
s t r ingers .  

Condensation of so l id  

The first v isua l  evidence of so l id s  is a dul l ing of 

During this process the  dul l ing becomes iden t i f i ab le  as so l id  



deposits increasing i n  depth on t h e  bottoan and t o  a lesser extent on the 
s t r ingers .  
panels. 

Eventually, t he  deposits form on t h e  upper surfaces and v e r t i c a l  

I n  most cases, so l id s  suspended i n  t h e  fuel became evident after t h e  lower sur- 
faces had become coated with deposits,  although i n  a f e w  cases saue s m a l l  par- 
t i c l e s  i n  the  fie1 were observed early i n  t h e  cooldown. 
various shapes and sizes, ranging from p a r t i c l e s  less than one millimet3r i n  
diameter t o  slender strands 6 t o  8 millimeters long. I n  many tests t h e  sus- 
pension of s o l i d  fuel w a s  dense enough t h a t  v is ibi l i ty  i n  t h e  test  tank w a s  
l imited t o  a distance of a f e w  centimeters. During several tests which pro- 
duced la rge  gre-rity holdups, buildup of deposits OD t h e  vertical  panels and 
upper swfaces  could be seen. Judging from slosh tests and t h e  appearance of 
t he  deposits f o r  l a rge  gravi ty  holdups, it can be concluded t h a t  accumulated 
so l id s  m a t  together t o  form a l a t t i c e  o r  matrix which i n  t u r n  can trap l i q u i d  
fuel. 
fue l  i s  minimized became t h e  matr ix  i s  continually being broken up and 
dispersed. 

?he so l id s  were cf 

When sloshing is energetic and continuous, t h i s  entrapment of l i q u i d  

Examples of the  appearance of t h e  so l id  fuel holdup are sham i n  several photo- 
graphs which i l l u s t r a t e  a rmge Gf law t o  high gravi ty  holdup results. 

Figure 46 shows a 3.2% gravi ty  holdup of LFP-9 Jet A, with deposits 011 t h e  
bottom and p a r t i a l l y  covering t h e  s t r ingers .  

Figure 47 shows a 4.3% gravi ty  holdup of No. 1 Jet A, featur ing t h e  crystal-  
l i x e  appearance of the  deposits which cover t h e  lower s t r inge r s  and t h e  bottom 
of the  tank. 

Figure 48 shows approximately the  same gravi ty  holdup f o r  ?.he d i s t i l l a t e  fue l  
LFP-7. 
trast t o  t h e  coarse c rys t a l s  shown i n  Figure 47. 
l i n e  deposition is most l i k e l y  the  result of more rapid c h i l l i n g  i n  t h i s  t es t  
!Test 461, r a the r  than t h e  result of t h e  difference i n  fue l  properties.  

For t h i s  t es t ,  t h e  deposits consisted of t i n y  c rys t a l s ,  i n  marked con- 
The smaller, smooth crystal-  

Figure 49 shows an 8.8% gravi ty  holdup of LFP-5 intermediate f u e l ,  and h i n t s  
of l iqu id  entrapment i n  the  s t r inge r  bays. 

Figure 50 shaws a 57.2% gravi ty  holdup of LFP-1 Jet  A ,  with so l id s  adhering 
t o  thermocouple racks and v e r t i c a l  panels, and t h e  r e f l ec t ions  of t h e  thenno- 
couple racks providing evidence of l i qu id  entrapment. 

From t h e  photographs and other visual  observations it tippeared t h a t  t h e  height 
of t he  deposits i n  t h r  tank could be correlated with t h e  measured gravi ty  
holdup. 
between the  lower s t r ingers .  
v e r t i c a l  webs and upper flanges of the  lower s t r ingers .  
very s l i g h t  f i lm w a s  forming on the  upper surfaces. Deposits were evident on 
t1.e v e r t i c a l  panels a t  about 10% holdup, and by 20% holdup t h e  d i s t r ibu t ion  
w a s  approximately 16% on the bottom (covering t h e  lower s t r inge r s )  , and 4% 

A t  gravity holdups up t o  1%, deposits were on the  bottom skin only, 
By 4% gravi ty  holdup, a t h i n  film had covered the  

A t  about 6% holdup, a 













over t h e  remainder of t he  tank. A t  about 60% holdup, approximately 36% w a s  
on the  bottom and 24% on the  top  and s ides .  
volume-height Tatio of t he  tank, a p lo t  of t h e  height of bottom deposits 
against grav5ty holdup was develqped (Figure 51) .  

From these observations and t h e  

A major objective of t he  analysis of temperature and v i sua l  observations is  
def in i t ion  of t he  condition(s) a t  which gra-qity holdup i n i f i a l l y  occurs. 
One premise i s  t h a t  when gravi ty  holdup 3ccurs i n  conjunction with a tempera- 
ture gradient,  a l i n e  of demarcation could be t h e  in t e r f ace  between t h e  top  of 
t he  so l id  deposition and t h e  l i q u i d  above. 
determine the  apparent solid-liquid in te r face  f o r  emh  fue l .  This was done by 
comparison of t he  measured gravi ty  holdup with t h e  calculated height of 
deposits (Figure 511 and t h e  corresponding temperature a t  t h a t  height from 
the  temperature p r o f i l e  (Fib4re 33 through 45) .  
o r  t h i s  analysis. For each fue l ,  t h e  tes t  numbers, gravi ty  holdup, and esti- 
mated solid-liquid inter:ace temperatures are shorn. 
calculated f o r  each f u e l ,  excluding a few abnormal values, as noted i n  Table 5 .  

Therefore, it is i n t e re s t ing  t o  

Table 5 summarizes t h e  results 

Mean temperatures are 

Table 6 compares t h e  estimated in te r face  teiaperatures with several other values 
f o r  each fue l ,  taken from mean measurements shown i n  !Appendix A. The compari- 
son values include freezing point,  pour point,  and a cold flow temperature 
defined i n  Appendix B. The solid-liquid in t e r f ace  temperature l i es  between 
the  freezing point and t h e  pour point.  
however, i s  highly dependent on the  temperature p r o f i l e ,  and i n  tu rn  oi: +he 
ch i l l i ng  r a t e  and apparatus configuration. 
peratures reported here should not be considered as r?producible fue l  charac- 
t e r i s t i c s  without fur ther  analysis.  

The in t e r f ace  temperature meR;urement, 

Hence, t h e  estimated in t e r f ace  t e m -  

Anc'her method of analysis i s  shown i n  Figure 52, where temperatures 1.2 centi-  
meters above t h e  bottom skin at  t h e  conclusion of each tes t  a r e  plot ted a g h h s t  
percent grsvity holdup. The curves a r e  extrapolated t o  zer3 holdup t o  define 
a freezing temperature. However , t h e  freezing temperature obtained i n  the  
f igure  may be i n  e r ror .  This method of p lo t t i ng  gravi ty  holdup against  temper- 
ature has been used previously by other experimenters t o  determine low tempera- 
t u r e  fue l  f lowahili ty i n  isothermal tests (Ref. 9 and 10). In  the  present 
study w i t h  tenperatwe gradients,  it appears t h a t  de f in i t i on  of a zero holdap 
temperature i s  d i f f i c u l t .  Further ans lys i s  i s  required. 

From t h e  staridpoint of aircra-Tt operation, it should be noted t h a t  temperature 
probes transmitt ing "bulk fuel" temperatures t o  the  cockpit are usually located 
9 o r  more centimeters above the  lower skin. There remains some concern t h a t  
the  fue l  temperature indication may not provide adequate warning of the  incip- 
i en t  formation of unusable so l id s  during extreme low temperature cone-tions. 
For example, note the  temperature p r o f i l e  for  Test 72 (0) i n  Figure 47 for 
LFP-9 fue l ,  which meets commercial J e t  A specifi2ations.  
couple a t  9 Centimeters would ind ica te  - 2 8 O C ,  w e l l  within operating margins 
with t h i s  fke l .  However, the  skin temperattire and gradients representative 
of extreme f l i g h t  conditions 
This quantity i s  l e s s  than the  reserves aiid would melt during descent. This is  
evident by t h e  r e su l t s  of t he  scheduled withdrawal t e s t s  where simulated 

A wing tank thermo- 

produced a qravity holdup of 1 .2% unusable fue l .  



PERCENT GRAVITY HOLDUP 

Figwe - 51. Observed Height of Bot.+,n? ue-posib.i 
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TABLE - 5. SUMMARY OF ESTIMATED SOLID/LIQUID IIEERXACE TEMpERdTuREs (Sh. 1) 

C HOLDUP 
0 C HOLDUP TEST NO. 0 - TEST KO. 

FUEL No. 1 
6 
10 

11* 

53 
24 

MEAN 

FUEL No. 3 
3 2  
i4+ 
15 
18 

19 
20 

blEAN 

-50 36-39 
-49 33.7% 
-54 21.3 

-46 4.39 
-44 2-65 

-47 2 

-21? 42.a 

24.3 
7C. 1% 

-28 76.8$ 

- -  

-22 68.1% 
-23 13.5% 
-24.4 

- FUEL No. 7, 
99 -47 lo.* 
100 -43 
KEAN -45 

FUEL No. 8 
78 
73 
80 
81 
82 

95 
MEAN 

FUEL LFP-1 

31 
34 
36 
55 
56 
57 
58 
59 
60 
85 

MEW1 

FUEL LFP-3 

50 
51 
52 

MEAN 

-33 2.59 

-32 5*29 
-36 10% 
-31 2.7$ 

-32.5 2.79 

-35 l 0 . S  

-33.2 

-44.5 55.7& 

-45 57.6 
-45 1.s 
-43 2.5$ 
-43 1. 5% 
-46 0.45 
-46 0.2% 

-43.5 6.5% 
-45 5.8 
-44.4 

-42.5 17.1% 



TABLE - 5. SUMMARY OF mTIMiTED SOLIE/LIQUI!I IN!PERFACE TEMPERATIRES (Sh. 2) 

TEST NO. 

FUEL LFP-4 
47 
48 
49 

MEAN 

FUEL 'dP-5 

21 

24 

26 
20 
29.y 

67 
68 
69 
70 
71 
77 
86 

97 
98 
MEAN 

0 C HOLDUP - 

-36 16.B 
-32 19.3 
-29.5 27-15 
-33 2o.B 

-44 39.1% 
-29 3.0% 
-30 1.45 
-27 1.7% 

-27 1.-i% 

-28.5 3.641, 
-34 6.s 
-30.5 20.6 

-30.6 

-28 4-87! 

-34-5 25-59 

FUEL UP-8 

at3 -53 0.6% 

91 -54 1.1% 

92 -52.5 5 .* 
90 -53 0.6% 

96 -56 0.4% 

TEST NO. 

ZUEL WP-6 
39 
40 
41 
42 

43 
44 
61 
52 

63 
64 
65 
66 
83 
84 
87 

MEAN 
FUEL LFP-7 

37* 
45 
46 

MEAN 

- OC HOLDUP 

-32 56.1% 
-34.5 21,s 
-37 80% 
-33.5 6.6% 
-30s5 5 - 6  
-30.5 5 . 8  
-33 1.1% 

-33.5 0.7% 

- 34 0.6% 
-30.5 i).3$ 

-29 1.5% 

-31.5 1.6 
-31 4.6% 
-28.5 1 0 . ~  
-34 lr1.2$ 

-32.2 

-16.8 100% 

-1.2 6.8% 
-12 4.5$ 
-12 

r n L  LFP-9 - 
72 - : ~ 6  1 0 %  

73 -45 3.* 
-47.5 0.4% 74 
-45.5 3.% 75 
-45.5 0.7$ ?6 

MEAN -53.7 !+EA B -45.9 

* Sloshing t e s t ,  excluded from calciilation cf mean interfac2 temperature. 

iw lOO$ holdup, excluded from calculation of mean interface temperature. 
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extreme-condition f l i g h t  temperature h i s t o r i e s  produced no holdup f o r  t h e  j e t  
bels LFP-8 and LFP-9, despi te  intermediate temperatures l i k e l y  t o  cause some 
frozen fuel accumulation (see Figures 29 and 30). 

I n  order t o  conserve t h e  stock of t h e  special  Fuels, after each t e s t  t h e  test 
tar& was allgved t o  warm and t h e  frozen held-up fie1 melted. 
w a s  withdrawn from t h e  tank and blended with t he  l i qu id  fuel previously drained 
during the  tes t ,  t o  recons t i tu te  t h e  o r ig i aa l  fuel. Labcratory freezing point  
tests w e r e  conducted t o  determine i f  fue l  lov-temperature behavior was a l t e red  
by t he  freezing and melting his tory.  These tests were performed on Fuel Bo. 7 
and LF'P-9 after they had been subjected t o  cold t e s t s .  The "before and af te r"  
values were 30.6 '~ and 29.8OC f o r  Fuel Bo. 7, and 46.7OC and 46.i°C fo r  LFP-9, 
indicat ing no s igni f icant  change i n  t h a t  property as a results of tes t ing .  

This material 
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8.0 CONCLUSIONS 

Experimental tests were conducted with aviat ion fuels subjected t o  low 
temperatfrres i n  a tes t  tank. 
sented a section of a wing tank of a wide-bodied commercial a i rp lane ,  and c h i l l -  
ing  w a s  such t h a t  i n t e rna l  temperature p r o f i l e s  were comparable t o  those 
encountered i n  f l i g h t .  Twelve fuels were tested, including aviat ion tu rb ine  
fue l s  and high boi l ing range fuels approaching Diesel Fuel o i l s .  
of t h e  fuels w a s  determined by withdrawing t h e  fuel from t h e  t e s t  tank and 
measuring t h e  gravi ty  holdup, o r  unpumpable f ie1 remaining i n  t h e  tank. 

The physical dimensions of t h e  t e s t  tank repre- 

Flowability 

The following conclusions resul ted from t h i s  inves t iga t ion :  

1. 

2. 

3. 

4. 

Low temperature l i q u i d  o r  two-phase fuel i s  r ead i ly  withdrawn from t h e  
tes t  tank by gravity.  Suspended s o l i d s  do not clog t h e  pump screen an3 
can be pumped readily.  
deposits i n i t i a l l y  a t  t h e  bottom of t h e  tank. For several low- 
temperature conditions, r e su l t i ng  i n  a nominal 20% holdup o r  g rea t e r ,  
flow t o  t h e  pump w a s  hal ted by blockage of t h e  pump i n l e t  surge box 
and i t s  check valve. Solid me1 deposits would fa l l  from t h e  upper 
an3 v e r t i c a l  surfaces t o  contribute t o  t h i s  blockage. 

Holdup cons is t s  of an accumulation of s o l i d  

A t  higher percentage hcllhips, t h e r e  w a s  v i sua l  evidence t h a t  l i q u i d  
fue l  w a s  trapped i n  t h e  matr ix  cf so l id s  which had forined. 
sloshing of t h e  tank t o  dislodge t h e  s o l i d s  released very l i t t l e  of 
t h e  l i qu id .  
reproducible resLlt. 

Manual 

The holdup of a solid-liquid g e l  matrix appears t o  be a 

On an a i rp lane ,  e fue l  temperature probe located 9 centimeters or  
higher above t h e  bottom tank skin provides a good indicet ion of bd l .  
f i e1  temperature. Howeyer, t h e  probe readout indicates  a tenperature 
higher than that. of t he  f u e l  near t h e  sk in ,  which m y  be cold enough 
t o  form and accmulate  s o l i d  pa r t i c l e s .  
ing skin temperatures represexting a long-range commercial f l i g h t  a t  
extreme winter conditions, with f u e l  withdrmral over a 3 hour period. 
R e s d t s  of these scheduled withdrawal tes ts  indicated holdup compar- 
able t o  t h e  s t a t i c ,  rapid withdrawal tests. 
t h a t  soiic? fue l  deposits may have occurred at t h e  coldest  t i m e  of t h e  
t e s t s ,  and la ter  loelted when the  skin temperature warmed near t h e  end 
of t h e  tests.  

Tests weye conducted a t  vary- 

There is  evidence, however, 

Most t e s t s  uere conducted under s t a t i c  conditions with no disturbance 
of the  natural  convection within t h e  thnk. Tests with r ec i r cu la t ion  
of fue l  within the  tank, sloshing, dr in t e rna i  fue l  movemat by ejec- 
t o r s  had no d i r e c t  e f f ec t  on s o l i d  formation o r  pumpability. 
dynamic actions did influence the  chilldown rate and produced smoother 
temperature gradients than experienced with s t a t i c  tests. The chaxge 
i n  temperature d i s t r ibu t ion  with t h e  r ec i r cu la t ion  and sloshing tes t s  
had an ind i r ec t  influence on the  t i m e  required f o r  deposit  formation. 

These 
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5 . Addition of a flow improving p u r  point depressant provided a 
s igni f icant  reduction i n  gravi ty  holdup of f u e l  f o r  B given t e s t  
condition. Results were i n  agreement v i t h  laboratory t e s t s .  \\e 
pour point  depressant was added t o  only one bel, a distillate b ' t h  
h higher temperature than commercial J e t  fiels. 

6. Tests with a divider i n s t a l l e d  t o  represent a f u e l  tanlr b a f f l e  showed 
no difference *om those without t h e  d iv ider ,  except t h a t  a s u f f l c i e n t  
depth of deposits could block t h e  divider  openings through which the 
tank stringers passed, and impede t h e  f l o w  of fuel to t h e  tank out le t .  

7. Dehydrating the Fuel had no ef fec t  on t h e  low temperature I'lowability, 
but  eliminated a haze produced by condensation of dissolved water. 



9.0 RECOMMENDATIONS 

Based upon t h e  low temperbture tank 3ests conducted i n  t h i s  study, and t h e  
conclusions i n  t h e  previous sec t ion ,  t h e  fcllowing recommendations are made 
f o r  future work: 

1. A l a rge  amount of data  w a s  generated during t h i s  program. 
analyses of these da t a  end comparisons with f u e l  propert ies  may pro- 
vide c o r r 4 a t i o n s  of t h e  low-temperature behavior. 

Further 

2. For gravi ty  holdtlp tests,  avoid reducing skin temperature too  far  below 
t h e  freeze point  of t h e  fbel; pour point may be a useful minimum. This 
should reduce t h e  temperature gradient through the  f u e l ,  and improve 
accuracy i n  determining the  temperature a t  which s o l i d  deposits begin 
t o  accumulate. 

3. Similar t e s t s  i n  t h e  fu ture  shoLd invest igate  t h e  e f f e c t s  of a i rplane 
vibrat ion,  and possibly sloshing, based on airplane exp?rience. 

4. Tests should invest igate  whether s o l i d  f u e l  holdup a f f e c t s  capacitance 
type f u e l  quantity gauging systems. If  t k e  d i e l e c t r i c  constailt of t h e  
fue l  changes, capacita,nce w i l l  change ar,d a l te r  t h e  quantity indica- 
t i on .  It i s  even possible t h a t  a s ign i f i can t  change i n  d i e l e c t r i c  
constant could l e a d  t o  development of  a gravi ty  holdup warning device. 
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SUMMARY OF CRC DATA ON L C I ~ H E E D  msr FUELS 
INTRODUCTION 

The CRC Group on Low Temperature Flow Performance of Aviation Tui-bine Fuels 
w a s  formed with t h e  following objectives i n  mind: 

1. Review t h e  proposed Lockheeg studies (NASA Contract aAs3-20814) and 
recommended t o  NASA suggestions fer tes t  equipment design and opera- 
t i o n  t h a t  might be adopted without changing t h e  scope of t h e  
contracted research. 

2. Suggest t es t  fuels f o r  t h e  research s tudies .  

3. Conduct a var ie ty  of laboratory tes ts  on the  tes t  fuels which might be 
used t o  describe low temperature handling charac te r i s t ics .  

TEST FLELS 

The Group recomnendecl and supplied nine of t5e test fuels used i n  Lockheed 
tes t  program. These included eight fue l s  selected fromwidely d i f f e ren t  crude 
sources and with a range of freezing points. The ninth fuel w a s  one fue l  con- 
ta ining a flow improver. 

Table I provides a b r i e f  description of t he  eight base fue ls .  Three of t h e  
fue l s  (LFP-4, 6, and 8) w e r e  from predominately naphtkenic crudes, and f i v e  
were from parhff inic  crudes. Two fue l s  (LFP-1 and 9) were production Jet  A 
with freeze points near t he  SpecificaLion l i m i t  of -40°C. 
ref inery streams o r  No. 2 d i e se l  fue l s  with freeze points i n  t h e  range of 
-lO°C t o  -3OOC. 

Five (LFP-3-7) were 

Fcel LFP-8 w a s  a Jet  A blending stock with a freeze point of 
-500~. 

It w a s  desired t o  Frovide one t e s t  f u e l  f o r  t es t  by Lockheed containlng z flow 
improver. Rase Fuels LFP-5 and LFP-6 were considered as t h e  bes t  candidates 
f o r  t h i s  study because they had freeze points higher than - h o c ,  t h e  spec i f i -  
cation l i m i t  f o r  J e t  A. The objective was t o  s e l e c t  an addi t ive t h a t  would 
decrease the  ASTM pour point t o  - 4 O O C  from the -31OC pour point of t h e  base 
fue ls .  

Two commercial additives were evalubted i n  each fue l ,  and the  r e s u l t s  a r e  pre- 
sected i n  Table 11. As a re su l t  of these da ta ,  it w a s  recommended t o  NASA 
t h a t  a su i t ab le  pour-depressed fue l  would be Fuel LFP-'j containing 0 . 1  w t  % of 
Faradyne 25. This additive-coctaining fue l  was iden t i f i ed  as Fuel No. 7. 

LOW TEMPERATbRE IKSPECTIGN TESTS 

Standard inspection test:: were made by NASA on a l l  Lockheed t e s t  fue l s  are 
presented ig Table 111. 



TABLE I: 

GENERAL DESCRIPTION OF TEST FUELS 

LFP-1 

LFP-7 

LFP-9 

LFP-5 

LFP-3 

LFP-4 

LFP-6 

LFP-8 

Jet A-At t i m e  of manufacture, crude run was 59% 
Indonesian and 41% Persian Gulf crude. Both of these 
crudes are considered p a r a f f i n i c  i n  na ture .  

An in t e rmed ia t e  r e f i n e r y  stream having p r o p e r t i e s  similar 
t o  a No. 2 diesel f u e l .  Crude source is  the same as for 
LFP-1 

Jet  A=-Produced from a crude mix  approximated a t  90% 
Arabian Light  and 10% I r a n i a n  Light .  

A diesel f u e l  produced from North Louis iana and o t h e r  
domestic crudes.  These crudes are considered p a r a f f i n i c  
I n  nature .  

An in t e rmed ia t e  r e f i n e r y  stream havicg p r o p e r t i e s  similar 
t o  a No. 2 diesel f u e l .  Crude source was 100% Arabian 
L igh t .  "his product i s  from almost t he  same crude as 
LFP-9 . 
A No. 2 diesel f u e l  produced from 100% mixed C a l i f o r n i a  
v a l l e y  crudes.  These crudes are considered naphthenic.  

An In te rmedia te  r e f i n e r y  stream used as a diesel f u e l  
blending s tock.  Crude sources  were 90% Alaskan North 
Slope, 9% C a l i f o r n i a ,  and 2% miscellaneous.  These are 
considered naphthenic crudes.  

An in t e rmed ia t e  treated r e f i n e r y  stream used  f o r  manufac- 
t u r e  of Jet  A .  Same crude mix  as LFP-6. 
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Additional inspections were, m a d e  on only seven of the  eight  CRC-suppliea base 
fuels .  LFP-8 was not supplied un t i l  late i n  t h e  test program ana, hence, dot 
included i n  all of the  spec ia l  tests made. 

Table IV presents a l l  data submitted on standard tests, such as freeze po ia t ,  
cloud point ,  and pour point. 
t h a t  have been used predominately t o  demonstrate performance of d i e s e l  fuel 
and/or flow improvers. One test ,  '?e Shell Cold Flow B s t e r ,  w a s  developed 
spec i f ica l ly  t o  determine t h e  extent t o  which a v i a t i m  turbine fuels would 
flow under gravi ty  low temperature conditions. A b r i e f  descr ipt ion of t h e  
nonstandard tests referred t o  i n  Table IV is provided i n  Appendix B. 

Also shown a r e  spec ia l  low temperature tests 

Brookfield viscometer t e s t s  were made over a wide temperature range and are 
shown i n  Table V. 
viscometer, ne i ther  D 2669 (apparent v i scos i ty  c f  hot melts) nor D 2983 (appar- 
ent v i scos i ty  of gear o i l s  at fow temperatures) i s  su i t ab le  f o r  fuels. I n  both 
methods, uhe f lu id  i s  brought t o  an equilibrium temperature; t h e  v i s c m e t e r  i s  
s t a r t ed ;  and an e q u i l i h r i m  temperature /apparent v i scos i ty  i s  obtained. 
such r e s u l t s  t o  be va l id ,  t h e  f l u i d  has CG be a s ingle  phase; In  t h e  case of 
a two-phase Fystem which i s  changing at constant temperature - as crys ta l iza-  
t im cont imes  - it i s  not possible  t o  obtain a s ign i f i can t  result. 
i: t h e  fue l  i s  cooled sign?.ficantly below the  freezing poin t ,  is held a t  t h a t  
temperature, and t he  viscormeter i s  then s t a r t ed ,  t h e  resu l tan t  v i scos i ty  
tends t o  be a breakawa=; torque r a the r  than an apparent viscosi ty .  

Although two AS'IM methods have 'teen wr i t ten  around t h i s  

For 

A l s o ,  

The following approach was, therefcre ,  taken. 
i n to  pour point viala and t t e n  in to  a pour point bath. 
NO. 1 spindle of t he  Brookfield viscometer, the  c ther  a thermometer. 
not readi ly  possible  to measure t h e  temperature i n  the  vial  where v iscos i ty  
was measured.) The viscometer w a s  run continuously as the  file1 temperatL--c 
dropped, and readings were taken at  t he  jndicated temperatures. 
increased, t he  visc0mete.r sptzd had t o  be decreased t o  s t ay  withjn t h e  sce1- 
of t he  instrument. Viscosit 'es,  therefo le ,  could not be m i  a t  a s ingle  shear 
-ate f o r  a given fxe l .  

Two f u e l  samples were placed 
One v i a l  contained a 

(It was 

As viscos i ty  

There a rc  a nurcber of l imi ta t ions  t o  these r e su l t s .  The nonstant s t i r r i n g  
qui te  l i k e l y  bad an e f fec t  on w a x  crys ta l iza t ion .  The temperature i n  the  two 
v i a l s  possibly d i f fe red  s l igh t ly  because of t h e  small h e a t  input due t o  stir- 
ring. While an average shear r a t e  can be c t lcu la ted ,  i ts  s ignif icance i s  

'dubious because of t..e r e l a t ive ly  lergr clearance becween the  viscometer ro to r  
E - I ~  the  inside surface of t h e  v i a l .  
standard t e c h i q u e ;  and i ts  s ignif icance f c r  two-*ihase systems has not been 
established. 

Last ly ,  t he  technique described i s  riot a 

Hydrocarbon compositim was measured by mass spect 
phy. The l a t t e r  -#as used t o  ident i fy  the  cynaunt of  n-Alkanes. 
two inves: .gations a;v presented i n  Tables V I  and V I I .  

s e t e r  and gas ciLromatogra- 
T e rebul t s  of 
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BRIEF DEscTiIPTIW OF SPECIAL LOW TEMPERA- TESTS 

SmLL cLouD/PouR ANALYZE3 

This i s  an autauat ic  instrument t h a t  measures :ne thermal crystal point (l") 
o r  temperature a t  which wax i s  in i t i a l ly  separated during control led cooling. 
This temperature is detected by thermal analysis.  
a so l id  point  (TSP) by a falling-ball technique. 
t ha t  t h e  Txp and TSP predict  clou0 and pour point ,  respectively.  

The instmment also measures 
Experience has indicated 

SHELt COLD FLOW TEST 

The tester i s  comprised of two f u e l  compartments, separated by a poppet valve. 
A measured vo lme  of fue l  is  placed i n  the  upper compartment of t h e  tester 
and cooled t o  t h e  test  temperature. "he poppet valve is  then opened f o r  a 
fixed time and t h e  amount of Fuel drained t o  t h e  l(.\rer Compartment measured. 
The test i s  repeated a t  d i f f e ren t  test  temperatures t o  es tab l i sh  t h e  minimum 
temperature at which a l l  fue l  w i l l  drain from t h e  top  t o  bottom compartments 
of t he  tester. 
of Petroleum, November 1962. 

Camplete test d e t a i l s  are given i n  t h e  Journal of t h e  I n s t i t u t e  

COLD FILTER PLUGGING WIN" TEST (CFPP) 

The test sample (45 cm3) i s  cooled at a rate of 40°C per hour t o  t h e  desired 
t e s t  temperature. 
applied t o  draw t h e  fue l  through a 45-micron wire mesh f i l ter .  The CFPP is  
defined as the  highest temperature a t  which t h e  fue l  w i l l  not flow through t h e  
f i l t e r  o r  require  more than 60 seconds f o r  passage of 20 cm3 of fue l .  

A t  i n t e r v a l s  of l 0 C ,  a vacuum of 200 mm water gauge i s  

THE ENJAY F L U I D I T Y  TEST (EFT) 

The f l u i d i t y  t e s t e r  consj.sts of two graduated transparent-plastic cyl inders  
( 3 . 8  mm i n  diameter) which are screwed together t o  form two compartments 
with an  interconnecting brass capi l la ry  (2.54 mm i n  diameter). 
of 40 ml is  placed i n  the  lower compartment and cooled i n  a cold temperature 
bath at b°F per hour t o  the  t e s t  temperature. The t e s t e r  i s  inverted and 
t h e  volume of fue l  recovered i n  the  lower compartment a f t e r  th ree  minutes i s  
measured. This procedure i s  repeated a t  several  t e s t  temperatures t o  deter-  
mine the  temperature a t  which 80 vol  % i s  recovered i n  the  lower compartment. 

A fue l  sample 

SETAPOINT DETECTOR 

This instrunent i s  designed t o  predict  t h e  freezing point of aviat ion turbine 
fue l .  
center of  an aluminum block with an illuminated viewing window. 
circulated a t  1 m l  per second a t  10 nm Hg prepbure through a 400-mesh (33 mic- 
rons) ,  s t a in l e s s  s t e e l  f i l t e r .  

About 6 m l  of fue l  i s  contained i n  a sample chamber bored i n t o  t h e  
The fue l  i s  

The a>miwm block temperature i s  control led 

96 



by compressor refr igerat ion and thermoelectric cooling. 
which e i t h e r  t h e  :"iter plugs o r  when the  f i r s t  c rys t a l  i s  observed can be 
used t o  define low temperature operating l i m i t s .  

The tempers,ture a t  



APPENDIX c 

CI!RONOLocICAL SUMNARY OF TESTS 

This Appendix provides an itemized summary of the  tests performed during t h i s  
program, including fwl iden t i f i ca t ion ,  type of test ,  percent holdup, and 
toxal  test time, arranged i n  chronological order. 
tem f o r  maintaining data  acquisitioI? records, a test  number was assigned fo r  
each t e s t ,  o r  f o r  each day's e f f o r t  whrn pre-cool5ng of  t he  f u e l  was  performed. 
These preparatory procedures, as well  as several  aborted tests, a r e  indicated 
by dashes i n  t he  "TyFe of Test" columns, as well  as by explanations under 
"Remarks". 
t e n  pre-coolings, t h e  net  r e s u l t  w a s  a t o t a l  of 85 completed t e s t s .  

I n  compliance with t h e  sys- 

After allowing f o r  two checkout t e s t s ,  t h ree  aborted t e s t s ,  and 

Number 
Besearch Laboratory records. 

i n  the "Dat's Ref. No." column ident i fy  Lockheed-California Co. 
A l l  o ther  items a re  self-explanatory. 
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