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Numerically investigates by means of quasi-linear equa-

tions for the function of distribution of plasma particles

the role of electrostatic conic instability in the diffusion

of spilled particles and the acceleration of the auroral plasma

of the earth. Introduces linear increments to the conic insta-

bility under magnetosperic conditions. Performs an averaging

of the quasi-linear equation along tubes of force taking into

account the drift across the magnetic field lines. Shows that

the existence of a conic instability leads to small spills and

isotropic distribution, of particles, but is also accompanied by

significant acceleration of electrons.



ON THE ACCELERATION OF THE AURORAL PLASMA OF THE EARTH DUE TO

CONIC INSTABILITY

R.S. Chu.ray.ev, Institute -of Space. Research :: _'•!

Introduction

It is well known from experimental observation that the

near-equatorial regions of the auroral zone of the earth's mag-

netosphere, at 4£=L̂ 10 (where L is the distance in Earth radii) ,

contain electrostatic waves of large amplitude, usually in the

range of 1 to 10 MV/m [5]. Analysis in terms of linear plasma

theory [2-4] has shown that the cause of the oscillation is a

conic instability accompanying the electrostatic waves. A

large number of observations has revealed that these waves can

play an important role in the diffusion of the acceleration of,

and in spilling, the low-energy plasma particles of the solar

wind, at typical kinetic energies of T 'v 1 keV and T ^ 10 keV,
e P

which have been swept by convection into the magnetosphere. In

the convection process charged particles which are oscillating

along geomagnetic field lines are transported, together with the

magnetic tubes of force, into the magnetosphere, where they ex-

perience an adiabatic acceleration in the intensified magnetic

field.

The instability changes the phase and energy spectra of

the particles and spills some particles into the atmosphere with

additional acceleration.

The turbulent acceleration of magnetospheric plasma from

the conic instability was first examined in reference [1]. This

*Numb.ers in the margin indicate pagination in the foreign text.



work, however, rigorously derived only the asymptotic solutions

to the self-consistent problem of. the quasi-linear relaxation,

which are only correct at large distances from the point of the

injection of the plasma into the tail of the magnetosphere.

In the present work the same question Is investigated nu-

merically with more general conditions placed on the function

of particle distribution, and the treatment takes into account

a number of supplementary effects, the Fermi acceleration in

particular, which significantly increases the effectiveness of

the acceleration. /4

!_. Linear Analysis of the Conic Instability and: the Initial

Quasi-Linear Equations

The analysis of the acceleration of the auroral plasma by

a conic instability is substantially simplified by the relative-

ly small size of the cone of loss and convection, as a result

of which the magnetospheric plasma is in a quasi-stationary

state.with a low level of plasma turbulence (when we consider

the case of a peaceful magnetosphere).

This situation makes it possible to determine the accelera-

tion using the kinetic equation in the drift approximation, with

a quasi-linear integral for the collition of the conic insta-

bility. For a plasma at low (T ̂  10 keV) energies, we can ig-

nore the drift gradient and the drift due to the curvature of

the magnetic field and consider only the convection in the plane

of the midnight meridian. Under the assumptions indicated the

equation of the distribution function of particles (electrons

will be considered later) can be written in the following way:



The quasi-linear integral of the collition of the electrostat

ic wave has the form [8]:

n«-co

where , /5

and ^,un are the coordinates and the velocity of particles along
->-

the geomagnetic field lines, E is the regular electric field

transverse to the tail of the magnetosphere, and k,a>c are the

wave vector and the cyclotron frequency.

In accordance with references [2-4] we will assume that there

is a background plasma of zero temperature in addition to the

accelerated auroral electrons. The dispersion equation for elec-

trostatic oscillations will then be:

where



and (o and to are the plasma frequencies of the "fundamental"p po *
and "cold" components, respectively.

In order to provide a clear picture of the dependence of

the coefficient of diffusion on the transverse velocity, we shall

compare the rate of growth of the instability waves at the low-

frequency (to >'to ) and high-frequency (to » w ) limits.
- c c

A detailed numerical study for the low-frequency case at

various plasma parameters using a distribution function of the

form

I
te

-( m) 1,2,3,.

was performed in references [3,4]. In particular, it has been

shown that the instability develops at sufficiently large values
EjXL

of <t)<° while the increment of oscillation shows sharp maxima

at low values of

i
0.1

0.05

j 5 , c CJL
c

Fig. 1. Variation of
the low-frequency incre-
ment with frequency [3] .

The graph in figure 1 is tak

en from reference [3] to show the

dependence of the low-frequency

increment on frequency for the

case j = 1 (the most realistic

value for the magnetosphere [3]),

= n A To. =i JL = c
' "rvT ' rin

 t>'
where ~(jj&

is the upper hybrid frequency.

= (2 - 3)o)c, (CJP
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Taking these aspects of the system into account, let us

consider the high-frequency increment at the short-wave limit

(
verse (i.e.

), assuming that the oscillations are almost trans-
om-ntJg .̂̂  4 <&'

' I tenV,, ."'
l - »

Using the formula

f afi^srL,
we introduce the dispersion equation in the form

(3)

Whence, designating x = Id̂ r) , , y = ' I &c ) /we obtain equa-

tions defining the frequency and the increment of the oscilla-

tion in the case j =.1:

]
]ĵ -u

(4)

/8

(5)

Figure 2 represents the dependence of the increment at the

high-frequency approximation which is obtained from equations

(4), (5) with '-JT- = 5, O0r = 3w and 5w . Since the incre-''o c c
ments of the high-frequency and low^frequency oscillations

have the same order of magnitude, all of the terms of the sum-



mation in formula (2) must be~"^

taken into account. In this case

the quasi-linear integral of the

collision assumes the form{6]:

=-*• 2- 2- JLlL,

whereFig. 2. Dependence of
the increment at the
high-frequency approx-
imation on frequency.

As formula (5) implies, the maximum increment occurs at

sufficiently small phase velocities of the perturbed wave, so

that by ignoring L compared to "VI , we may obtain the fol-
ki '

lowing approximate formula for the coefficient of diffusion:

r
J (7)

/9

2. Averaging of the Quasi-Linear Equation along.the Tubes of

Force of the Magnetic Field

Equation (1) can be simplified by using the smallness of

and where T = §the parameters

of.oscillation

is the characteristic convection time; BT

is the period

of „ oscillation between magnetic maxima; T = § ii.
r ^

is the magnetic field;
EC
&L

is the velocity of drift at the plane of the equator;

and R is the radius of the earth. The diffusion time T 9- > T .E /J mm
(T . = 2GT ) is the minimum life span of a particle within themm 13



region of strong diffusion [7], where G = B / B is the rela-in 3.x j_i
tive ratio of magnetic maxima; and T = -|T \Cytt Z£.=o) is the

emptying time of the cone .of loss. For conditions in the mag-

netosphere, T . ^ L1*, T ̂  L, T % L 2.mm F

The presence of small parameters makes it possible to aver-

age equation (1) along the trajectory of particles in phase space

with oscillations along the lines of force, so that we obtain

the equation of the change of the distribution function in the

equatorial plane. The possibility of averaging trajectories

is obvious in regions outside the cone of loss, where paths

are closed curves (for bound particles) . In this case the

paucity of longitudinal velocities and the diffusion create an

equipartition of phase of the particles, so that in the quasi-

stationary state the distribution function is constant along the

trajectory, to the precision of the order- of magnitude of the

terms T/T^ and i /î . The equations of the distribution function

of particles in the equatorial plane can be obtained by consid-

ering the changes in the number of particles in the tubes of

force [9] .

It is appropriate at this point to change variables from __ /1Q

T/l > 2/ii to the invariants along the lines of force y = '2|& 'v* ,

E = ^-ff + V,f / where: B is the magnetic field in the tail of

the magnetosphere at the point of injection of the plasma. Then

the number of particles in the length I, &+d£ of the tube of

force with the cross-section dST on the equator, in the phaseLI
space y, E, at the moment of time t will be:

Correspondingly, the total number of particles in the tube in

the phase space y, E, can be written in the form:



Assuming the equatorial cross-section of the tube of force to

be unity with L = L and changing variables, again to Xl , y,
2CO

we obtain the following expression for the total number of

particles in the tube at unit phase space ^,, , y, in the cen-

tral plane:

; -it
where "//L is the longitudinal velocity of particles in the e-

quatorial plane and the integral in (8) is preserved along the

particle trajectory. It is obvious that

where -- is the corresponding full derivative, or, in accor-
dt

dance with equation (1) ,

" (9) /ii

On the other hand, using a constant distribution function along

the trajectory, we have

(10)

Equating (9) and (10) gives us an equation for the changes in

the distribution function in the equatorial plane:

<£_ '•£ ' (ID
Tfu ' F



An analogous averaging can be performed for the unbound

particles as well, in the case where the cone of loss is filled

by diffusion more rapidly than it is emptied by the spilling

of particles, that is, where

^ ^ T-> <3 ~ &" (12)

In this case the distribution function is also approximately

constant along the trajectory. Taking into account that in

the absence of diffusion the tube in the central section is

emptied in the time TB/ we have in the region of the cone of

loss:

**
"** _J

3. A System of Equations for the Conic Instability and the

Results of Calculation

In accordance with experimental results [5] we will only

consider diffusion to exist in a small region near the equator

of dimension a, while setting the increment of the coefficient

of diffusion equal to zero, a condition which is fulfilled when

the cone of loss is filled up (as in (12)). We also will con-

sider the period of oscillation between maxima to be at the

upper limit of points of reflection, T - /% . s|- •£ ",' since
TJj. 3 •*•

the transverse velocities of the particles increase signifi-

cantly during the process of convection. Finally, by consid-

ering the stationary-state problem (a stationary stat is created

by a continuous injection of particles at L = L , ), we arrive

at the following system of equations for the conic instability:



(14)

where

CXJ 6<3

(15)

The case a = 1 corresponds to the conservation of the sec-

ond adiabatic invariant i§'Z/iic't- , and at the same time takes

into account the acceleration of particles by the Fermi mechan-

ism. We note that reference [1] investigated only the case a =

and did not take into account the term f/T . In addition, it

solved the problem using the variables L and y and took account

of the longitudinal velocities parametrically by means of ;^n^

(averaging the longitudinal velocities of the particles) .

/13

The system of equations (14) , (15) was solved numerically

under the following boundary conditions:

(it was assumed that the distribution function was symmetrical

with respect to x = 0). The initial distribution function at

10



L =

= T

was taken to be a Maxwell distribution with <

The resulting calculations were performed in the approxi-

mate dipole magnetic field BL = B̂ (hjtL)3 and the homogeneous

electric field, for two values of the total temperature: Txb =

0.. 5 keV and 1.0 keV. The results of the calculation are present-

ed in Table 1 in the form of a ratio of the transverse tempera-
^ !•?

ture in the case of adiabatic heating, where ' TJ_ adiab
 = ' xb j^~

for L , = 15,xb
n , - = 0.2 cmxb

a = 0 a = 1.

E = 10 V/cm, G, and

Table 1

~s^^ Ti^ljVOB

15
13
II
9
7
6 /

•5
4,5
4

oL = 0

0.5

I
I

1,001
1,02
1,05
1,07
1,12
1. 15
1,21

I

I
1,01
1,02
1,07
1,18
1,21
1,48

: 1,6

1,8

oi = i
0,5

I
1,005
1,02
I.I
1,3
1.42
2,7
4,32
6,5

I

I
1,01
1,05
1,21
1,8
2,3
4.15
6,14
8,6

It is clear from the table that an increase in the initial

energy of the plasma at L = L leads to an increase in the ef-

fectiveness of the turbulent acceleration. The influence of the

initial concentration of the plasma on the acceleration was not

significant. In turn, taking the Fermi acceleration into account AL4

at a = 1 leads to a noticeable increase in the effectiveness of

the acceleration.

The calculations confirmed the hypothesis about the filling

11



of the cone of loss (stated in (12) ) at all stages of convec-

tion; the figures show an anisotrpic distribution function with

little spilling of particles. This differs from the result of

refere'nce [1], which supposed that at the second stage of con-

vection, beginning at a certain value of L, the cone of loss

became empty in phase space.

In order to evaluate the effectiveness of the acceleration

analytically, we can make use of the self-modeling solution

to equation (14), which goes to zero in the cone of loss[l]:

where

while for a rough determination of the diffusion coefficient, /15

we can use the condition of filling of the cone of loss, (12):

(17)
•-* / x\ /^(*-y

Using (16), we obtain u2 = 5 , and correspondingly

Bx<5 \ ^*g

where

(19)

The numerical calculations have a qualitative correlation with

the values of (17) and (18).

12



All of the qualitative aspects of the acceleration which

are considered above also apply to protons, although in that

case the rate of loss of particles changes to:

, SV^rne T\>

The small size of the! factor " \\ mp <K J reduces

the effectiveness of acceleration, and the transverse energy of

protons differs a little from that of adiabatic acceleration.

Conclusion

The results obtained show that the mere existence of a

conic instability leads to a small amount of spilling and an

isotropic distribution of particles, but it is accompanied by

significant acceleration of low-energy electrons.

As the particle energy increases, the electromagnetic in- /16

stability can begin to play an important role related to the

perturbation of the ionic cyclotron waves and whistlers. Fun-

damentally accompanying this there occurs a diffusion of pitch-

angle which makes the distribution function isotropic, intensi-

fies the loss of particles, and at the same time leads to the

formation of an internal boundary of the plasma layer [7],

The author would like to express his gratitude to A.A.

Galeyev for proposing this topic and for his useful suggestions,

to V.D. Shapiro and V.I. Shevchenko for valuable comments; and

to thank V.I. Kolosov for his discussion of the numerical

method of solving systems of quasi-linear equations.
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APPENDIX

Method of Numerical Solution of the System of Quasi-Linear

Equations Describing, a Conic Instability

The standard method of solving the system of equations in

(14), (15) is the method, of fitting; that is, finding a station

ary solution corresponding to the nonstationary problem:

The nonstationary problem is three-dimensional, with spatial

coordinates L, y, x, so its numerical solution is extremely

laborious.

We can propose, however, the immediate solution of the sta-

tionary problem, a method which makes it possible to reduce

the number of dimensions and to solve the two-dimensional prob-

lem in the y, x coordinates. With this method at each step a-

long the radius L, L + AL we solve the following system of equa-

tions : r " ' " . ' "

717

(A.2)

where, as usual, we replace the region of continuous varia

tion of the variables y, x with a network of discrete points

with the coordinates y., x..

14



f. . = f. .(L + AL)is a well-known function, but f. . =
i/D ifD i/J

f. . (L) and & - X7(̂ -) are subject to determination.1 f D

In order to solve the system (A.I) and (A.2), we used a

combined method together with a "staircase" of. values. The es-

sence of this procedure consists in that for each fiT the system

of linear equations (A.I) can.easily be solved by the method of

a "staircase" of values, while f. . depends on ffi as well as1 / D
on the values of the two parameters. Correspondingly y represents

a certain function of ffi . In that case, in order to find

the root of the equation y( Z^ ) = 0 we can vary the iteration,

by which means we can obtain any given precision in the deter-

mination of fi . Since the apparent type of dependence y( <ffi )

is unknown, the rapid iteration method, such as immediate iter-

ation, the method of Newton and so on, is in this case difficult

or inapplicable. The specific problem is solved, however, since

with the transition from the L + AL layer to the L layer, the

small size of AL means that the diffusion coefficient fiT does

not change a great deal, so that the calculation in turn of the

L layer requires only a small number of iterations, and we can /18

use the method of chords or the method of division in two in

finding $(L), guaranteeing the agreement of the iterations.

15
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